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MULTISCALE ANALYSIS OF SATURATED FLOW IN A POROUS

MEDIUM WITH AN ADJACENT THIN CHANNEL

1 INTRODUCTION

The problem of modeling flow of a single phase fluid through a fully-saturated porous

medium has been widely studied. To this end Darcy’s equation is not only regarded as an

acceptable model by experts of different fields but considered as an empirical-theoretical

relation which effectively defines porous media. Many extensions of this law have been de-

veloped to address more complicated types of flow and types of media. Some refinements

preserve the original structure and modify the equation by the introduction of physical

parameters while others perturb the structure of the equation itself.

Amongst the various geometric scenarios an important case arises when the porous medium

contains cracks or fractures, since the velocity of fluid in these regions is expected to be

considerably higher than that of the adjacent or surrounding medium. The presence of

fractures introduces the question of preferential flow, and this affects the overall per-

meability of the medium. The situation when there is a periodic distributed system of

such fractures has been studied in [TA06]. Some other cases have been studied under

the hypothesis that the medium has a microstructure such as fissured or layered media

[BS89] by means of double-porosity models treating partially [RS95] or totally fissured

media [SW90]. The difference is whether there is direct flow between the blocks or not,

respectively; see also [Sho97b]. The previous cases are concerned with the geometry of

the medium while we can quote Blavier and Mikelić for Non-Newtonian Flow [BM95],
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Bourgeat for Two Phase Flow [Bou86] or Ene and Sanchez-Palencia for Thermal Flow

[ESP81], [ESP82] as works regarding a different type of flow. Finally we mention the

work on Poroelastic Media by Auriault and Sanchez-Palencia [ASP77] as a special case

since it is concerned with the material properties of the medium rather than its geometric

structure.

Here we study the situation in which there is a single specified fracture which is a narrow

region of high fluid velocity and low pressure gradient. Such a phenomenon takes place in

the vicinity of a rigid wall of a porous medium where the particles do not pack efficiently

and therefore the permeability rises sharply. As a result there exists a narrow region close

to the wall where the velocity is considerably higher and the fluid flow mostly parallel to

such wall; this phenomenon is known as the channeling effect [DAN99]. The same situa-

tion occurs in interior fractures, and it is applicable to several examples of the real world

such as oil extraction and subsurface water flow [JRC71]. The problem in which there is

a single specified fracture has been studied from a numerical point of view in [VMR05].

Such problems contain two sources of singularity, one geometric due to the thinness of

the region in which the fast flow occurs, and the other, a material effect since the flow in

the channel is qualitatively different from that of the porous medium. Due to the contrast

in behavior it is immediate that whichever model is chosen to describe this phenomenon

it will present great difficulties when trying to compute solutions. The problems may be

of numerical stability when using a not so accurate choice or to spend too many com-

putational resources in the geometric description of the phenomenon when trying to be

accurate. These lead to numerical issues of stability, storage, computational time and

many other aspects. Since these problems come from the inherent singularities it seems

natural to use the asymptotic analysis of the problem in order to balance out these sin-
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gularities and seek a model free of them which is still a good approximation.

The present dissertation is written in the ”manuscript document format” as specified

by the Oregon State University Thesis Guide 2006-2007. Each of the three subsequent

chapters contains a manuscript on approaching the problem from different points of view,

whether the formulation or the laws involved, or the discussion of interface conditions,

together with its corresponding asymptotic analysis. Each approach gives deeper insight

than the others in different aspects: the impact of the shape of the channel, the geometric

structure of the flow under which it can be considered controlled or estimated, variational

minimization principles, the interface activity, coupling PDE systems with non-uniform

structure and degenerate evolution equations. The publication status of each manuscript

is specified in the respective chapter heading page. In the last chapter of this dissertation

the reader can find some overall conclusions and special remarks as well as open questions

that did not make it into the submitted manuscripts.

I apologize in advance for the difficulties the reader will find due to the difference in

notation and style between manuscripts. The chosen notation was meant to be in agree-

ment with the preexisting literature published on the subject. Besides, each document was

written at different stages of my academic career and it is aimed to different audiences.

This introduction will not explain in detail the material of each document since each of

them contains an appropriate introductory section. However it is pertinent to give the

overall accomplishment of each work under a general perspective.

The first and second parts model the flow in both the channel and surrounding medium

by means of Darcy’s law with scaled permeability to balance the channel width and model

the higher flow rates in it. However the formulation of the system of partial differential
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equations and interface conditions is different: the first document models the problem in a

context of direct variational formulation, as a minimization problem, the second part takes

the setting of a particular mixed formulation which to the author’s best knowledge is a

totally new approach in the formulation of boundary-value problems. For the similarities

of the problems we mention that both cases use equivalent boundary conditions, suitable

to the spaces of formulation and reasonable physical assumptions. Also a fully-coupled

model with a lower dimensional interface problem is obtained in the limit as an approx-

imation from the asymptotic analysis. In both cases the limit has the same structure

and formulation of the original system but coupling the fluid flow inside an open set with

a lower dimensional interface which is part of its boundary. The asymptotic analysis is

presented for a stationary problem in both cases and in the first one it is extended to the

evolution problem by means of analytic semigroups. The time dependent problem for the

mixed formulation is still work in progress. Finally in the standard formulation the time

evolution problem induces a degenerate evolution equation, since the evolution term on

the interface vanishes in the limiting problem.

For the differences of the approaches we begin by mentioning that the first part presents

an additional section which is the analysis of the concentrated capacity model, since its

similar structure makes it a good fit in the context. In turn, the second part presents a

gravity-driven flow including the appropriate forcing term since it is more convenient to

handle the additional term in the mixed formulation context. Another important differ-

ence lies on the geometric description of the channel. In the first part the channel must

be bounded between a flat interface and a top boundary described by a ”width” func-

tion, therefore the surfaces are not parallel. The second part describes the channel as a

region trapped between two parallel surfaces: the interface which may be curved or not

and a top boundary. The treatment of a-priori estimates is radically different in the two
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cases: while in the first case a-priori estimates can be obtained by standard techniques

of asymptotic analysis and they reveal standard information, the search for a-priori esti-

mates in the second case is deeply connected to the nature of the flow and reveals valuable

information about which physical entities must be preserved while the asymptotic anal-

ysis takes place. Even though in the present work both cases assume the same interface

conditions of continuity of the pressure and a balance of the normal flux which are to

be expected, the mixed formulation allows interface conditions of much greater generality

replacing the continuity of pressure and normal flux for balance statements in both cases.

These conditions are consistent with the demands and insight of homogenization theory

when modeling coupled problems where two regions interact and have radically different

physical properties, namely, very different values of permeability for flow in porous media,

of conductivity when modeling problems of heat diffusion or different values of stiffness

for elasticity problems. Interface conditions of such generality make necessary the mixed

formulation and are unknown in the literature. Finally, another remarkable property of

the particular mixed formulation introduced here is the fact that it leaves the spaces of

functions fully decoupled, leaving the interface conditions only on the solution of the prob-

lem.

The third part uses Darcy’s law in the porous medium and Stokes law for the fluid velocity

in the channel, which is a more accurate model for the faster flow. The two laws have

very different structure and scale of validity, making the formulation of a coupled system a

more difficult task. The choice of interface conditions plays a fundamental role in the for-

mulation of a well-posed problem as well as in the asymptotic analysis of the PDE system.

The tangential velocity and the pressure of the fluid are not continuous on the interface,

although conservation of fluid mass requires the normal flux to be continuous; the inter-

face conditions address these facts and relate the normal stress balance with the exchange
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of fluid. The scaling by means of the physical parameters must now be introduced not

only on the Stokes law modeling the narrow channel, since the interface conditions contain

so much important information of the problem they must be similarly scaled. The limit

solution is characterized as a fully-coupled system consisting of Darcy flow in the porous

medium and Brinkman flow on the interface. Therefore, the structure of the problem itself

changes. The function spaces in which the limit problem is modeled also have a different

structure, and it is defined by the a-priori estimates. Several geometric possibilities for

the shape of the channel and the interface are explored leading to interesting cases. The

impact of these possibilities on the structure of the flux on the channel is revealed. Also,

the importance of parallelism between the interface and the top boundary of the channel

follows: there must exist at least a set of non-zero measure where the channel is trapped

between parallel surfaces one of them being the interface and the other the top boundary.

The Relation Between Darcy, Brinkman and Stokes Equations

The present dissertation will address coupled systems containing equations of the three

types: Darcy, Brinkman or Stokes. Combinations of these types will be used to model the

flow in different settings as they arise from the asymptotic analysis of the fluid behavior.

These three laws are related according to the scale at which the problem is analyzed.

From a theoretical point of view Stokes law should suffice to model the viscous fluid flow

through a porous medium as well as any other configuration including an open fracture.

However, Stokes law demands a detailed description of the geometry of the medium.

This requirement makes its use impractical to model flow through a porous medium,

because it will hardly have an easy geometric description or even possible within reasonable

investment of efforts and resources. It is therefore a necessity to use an upscaled equation

which models an averaged flow which describes the main characteristics of the porous

medium flow without taking in consideration a detailed geometric description of the pores.

To this end, Darcy’s law is considered one of the most successful models, accepted by a
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wide variety of experts in different fields. In its primitive form at this macro-scale, it

states merely that the fluid’s velocity is proportional to the negative gradient of pressure,

meaning the fluid moves from regions of high pressure to regions of low pressure. The

constant of proportionality is a ratio between the two main physical parameters involved

in the flow, the permeability describing the overall impact of the medium’s geometry on

the resistance to flow and the viscosity describing the resistance of the fluid to shear. It

is expressed as

v +
κ

µ
∇p = 0 (1.1)

where κ is the permeability of the medium and µ is the viscosity of the fluid. The results

provided by this law are in excellent agreement with the measurements coming from ex-

periments, and it is clear that its scale of validity is the macro-scale, meaning that Darcy’s

law relates quantitative averages over a typical representative cell. The size of the pores

in average is much smaller than the cell and the medium is considered a homogeneous

composite of these cells. It is in this sense an averaged law.

Since the same phenomenon could be modeled in theory by means of Stokes law whenever

the porous medium has a relatively simple description, and since its scale of validity is

considerably smaller, it is a natural question whether Darcy’s law is an ”averaged” version

of Stokes law or how is related. Several efforts have been done in this direction from dif-

ferent points of view and with many different techniques. The first rigorous proof showing

Darcy’s law as an averaged version of Stokes law appeared in [Tar80]. Later [All89] used

the two-scale convergence to show that Darcy’s law is the limit problem of Stokes law

under the hypothesis that the porous medium structure is periodic. However there are

more general results given by Cioranescu and Murat [CM82] and [CM97] using the energy

method introduced by Tartar to give a more general result. The key aspect comes from

the geometry of the medium, the main parameter is a special ratio between the size of the
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particles ε and the distance between them η that can be easily identified with the period.

We define according to the dimension N

σ ε =


ε
(η
ε

)N/2 for N ≥ 3

η
∣∣∣log

(
ε
η

)∣∣∣1/2 N = 2
(1.2)

The limit behavior of the ratio σε as ε ↓ 0 determines the structure of the limiting problem,

since it dictates the dominant nature of the flow. Three cases are in order

lim σε = +∞ :



∇p− µ∆v = f in Ω

∇ · v = 0 in Ω

v = 0 on ∂ Ω

(1.3a)

lim σε = σ > 0 :



∇p− µ∆v + µ
σ2 v = f in Ω

∇ · v = 0 in Ω

v = 0 on ∂ Ω

(1.3b)

lim σε = 0 :



v = 1
µM

−1 (f −∇p) in Ω

∇ · v = 0 in Ω

v = 0 on ∂ Ω

(1.3c)

We see a list of momentum equations in the limit, in the first case Stokes, in the third case

Darcy and the intermediate or transition case is the second one, known as Brinkman’s

law. In all the cases the mass conservation law ∇ · v = 0 remains identical through the

homogenizing or limiting process. An important part of the task is not only identifying

the main geometric parameter, but also giving the type of convergence in which these

laws can be considered as an upscaled version of Stokes law. The type of convergence also

defines the type of ”averaging” process executed on Stokes law to generate the other cases.
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On the line of qualitative modeling rather by asymptotic analysis we recall [Lév83] who

studies the problem of fluid flow through an array of fixed particles. The work does not

assume periodicity of the medium, but rather the existence of a representative element

of volume for the medium and with it a representative relation between the representa-

tive size of the particles ε and the representative space between them η. By means of

asymptotic formal expansions the author discusses the order of magnitude of the different

physical effects identifying which are important and which are negligible according to the

geometry of the medium. For flow in three dimensions the three cases are identified

ε� η3 : ρ0
∂ v
∂ t

+ ∇p− µ∆v = f (1.4a)

ε = η3 : ρ0
∂ v
∂ t

+ ∇p− µ∆v + µ c ′H · v = f (1.4b)

η3 � ε� η : µ c ′H · v = f −∇p (1.4c)

where c ′ is the concentration of the number of particles per unit volume c multiplied by

a factor, we have c′ ≡ c η3 and H is a tensor depending only on the intrinsic geometry of

the particle, dependent only on its shape. Again, the three laws are concluded according

to the geometry. Other works pursuing the derivation of Darcy’s law by homogenization

using formal asymptotic can be found in [Kel80] and [SP80].

The mentioned works are evidence of the strong connections between these laws despite

the dramatic difference in the approach when analyzing the problem. The importance

of the relationship between size of the particles ε and space between them η as critical

parameter to decide the flow regime is an agreement, though the required specifications

for such relation might change from one work to another, the domain of validity for the

critical case i.e. Brinkman’s equation is an active topic of research [Aur05]. It is generally

recognized that Brinkman’s law does not describe a ”normal” porous medium, since it

would require the porosity to be at or above 0.8. It has been used with some success as a

means to transition from Darcy to Stokes flow by continuously modifying the coefficients,
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and our results in the third part may explain in part that success. This dissertation shows

the relationships of these laws are present when efficiency of the packing of the particles

near a rigid wall goes down, thereby inducing transition to a different flow regime. The

choice of accuracy level in the starting model will prove to be of capital importance to

detect the perturbation on the flow regime.



11

2 THE NARROW FRACTURE APPROXIMATION BY
CHANNELED FLOW

2.1 Introduction

Fluid flow through a fully-saturated porous medium is altered in the vicinity of a

rigid wall by the sharp rise in permeability due to the inefficiency of the packing of the

particles in the vicinity of the wall. Consequently, in a narrow region close to the wall

the velocity is substantially higher and the flow is predominantly parallel to it; this phe-

nomenon is known as the channeling effect [DAN99]. Related models were used previously

to describe flow through a porous medium in the vicinity of a narrow fracture which is

characterized similarly as a thin interior region of high permeability. Such problems arise

e.g. from hydraulic fracturing in which narrow channels of high permeability are created in

the vicinity of a well to enhance the flow rate and consequently the production. The nar-

row fracture approximation leads to a model like the one above for thin channel flow, and

by taking advantage of the symmetry about the center surface defining the fracture, one

can reduce such a problem to one of the type considered here with the high-permeability

region located on the boundary [JRC71], [VMR05]. Analogous models of heat conduction

arise from regions of high conductivity, and these may also include a concentrated capacity.

We include these in the discussion for comparison.

For a final example, we mention saturated gravity-driven flow of subsurface water

through a hillslope bounded below by sloping bedrock. A network of narrow channels

of very high permeability develops in the vicinity of the impermeable bedrock, and it is

observed that most of the fluid in the system flows through this region. Such systems with
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high flow rate over narrow regions greatly influence the transport and flow processes and

are a topic of current study [WM07].

We shall describe such situations with Darcy flow for which the permeability is scaled

to balance the channel width and model the higher flow rates in the channel. Due to the

higher permeability, the fluid flows primarily into and then tangential to the channel.

The resulting model captures the tangential boundary flow coupled to the interior flow

by continuity of flux and pressure. It contains two sources of singularity: a geometric one

from the the thinness of the channel and a material one due to the higher permeability

of the channel. With the appropriate scaling, these two singularities are balanced, and a

fully-coupled model is obtained in the limit as an approximation. See [HSP74], [SP80] for

asymptotic analysis and [VMR05] for numerical analysis of these and related models.

An additional challenging issue is to account for the shape of the channel, especially

for any taper near the edges or boundary of the channel. Such shapes are ubiquitous

in applications, but they are not commonly included in the modeling process. They

are important because the rate of the tapering at the edges determines the appropriate

boundary conditions (or lack thereof) that describe the resulting model [Mey70], [Sho79].

The geometry of the model is described first. Let Ω1 be a bounded domain in IRn

and denote by Γ a relatively-open connected portion of its boundary ∂Ω1 along the top of

the domain. For simplicity of representation, we assume this portion of the boundary is

flat, that is, Γ ⊂ IRn−1×{0} and that xn < 0 for each x = (x̃, xn) ∈ Ω1, where x̃ ∈ IRn−1.

The channel is realized as a region of the form Ωε
2 = {(x̃, ω(x̃)xn) : (x̃, xn) ∈ Γ× (0, ε)}.

The function ω(·) shapes the width of the channel at each x̃ ∈ Γ, and the parameter ε > 0

denotes its scale. We assume that this width function satisfies 0 < a ≤ ω(x̃) ≤ 1 on each

compact subset of Γ, where a depends on the set, but it may approach zero near ∂Γ at

a rate to be determined below. This assumption permits the channel to be tapered or to

pinch off near its extremities.

For the single-phase flow of a slightly compressible fluid through Ωε ≡ Ω1 ∪ Γ ∪Ω ε
2 ,
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Darcy’s law together with conservation of fluid mass lead to the interface problem

m1
∂u ε1
∂t
−∇ · k1∇u ε1 = m1f in Ω1

u ε1 = 0 on ∂Ω1 − Γ

uε1 = uε2, k1∂zu
ε
1 −

k2

ε
∂zu

ε
2 = g on Γ

m2
∂u ε2
∂t
−∇ · k2

ε
∇u ε2 = m2f in Ωε

2

k2

ε
(∇u ε2) · n̂ = 0 on ∂Ωε

2 − Γ ,

(2.1.1a)

at each t > 0 for the fluid density u ε1(·, t) in Ω1 and u ε2(·, t) in Ω ε
2 , and these satisfy the

initial conditions

u ε1(·, 0) = u0
1(·) on Ω1, u ε2(·, 0) = u0

2(·) on Ω ε
2 . (2.1.1b)

Thus, the region is drained along ∂Ω1 − Γ and there is no flow across ∂Ωε
2 − Γ, where

the outward normal is indicated by n̂. This latter condition would follow if the region

were symmetric about Γ× {ε}. The given initial density distributions u0
j (·) complete the

initial-boundary-value problem. Corresponding non-homogeneous problems with known

pressure on ∂Ω1 − Γ and flow-rate along ∂Ωε
2 − Γ can be reduced to this case. The

permeability in Ωε
2 has been scaled by 1

ε to indicate the high flow rate, and this will be

shown to balance the width ε of the channel, so the flow in Ωε
2 is closely approximated by

surface flow along Γ. It will be seen below that k2 is the effective tangential permeability

and k2
ε2

is the effective normal permeability for channel flow; see [VMR05] for substantial

discussion and further perspective. The coefficients m1, m2 are obtained from the porosity

and from the compressibility of either the fluid or the medium. We include for comparison

the concentrated capacity model in which also m2 is scaled by 1
ε , but this has nothing to

do with porous media.

2.2 Preliminaries

We use standard notation and results on function spaces. L2(Ω) is the Hilbert space

of (equivalence classes of) Lebesque square summable functions on Ω, and Hm(Ω), m ≥ 1,
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with the norm ‖ · ‖m,Ω is the Sobolev space of functions in L2(Ω) for which each weak

derivative up to order m belongs to L2(Ω). The space H1
0 (Ω) is the closure in H1(Ω)

of those infinitely differentiable functions which have compact support in Ω. The trace

γ(v) of a v ∈ H1(Ω) is its boundary value in H1/2(∂Ω). The spaces with fractional

exponents are defined by interpolation. Corresponding spaces of vector-valued functions

are denoted by bold-face symbols, L2(Ω), Hm(Ω). The space of those functions of L2(Ω)

whose divergence belongs to L2(Ω) is denoted by L2
div(Ω). These have a normal trace on

the boundary. See [Ada75], [Sho77], [Sho97a], [Tem79].

Assume the interface Γ is an open bounded connected subset of IRn−1 and that it

lies locally on one side of its boundary, ∂Γ, a C1 manifold. Let δ(x̃) be the distance from

x̃ ∈ Γ to ∂Γ and 0 ≤ α < 1. Define W (α) to be the space obtained by completing H1(Γ)

in the weaker norm

‖v‖W (α) =
{∫

Γ

(
v(x̃)2 + δ(x̃)α‖∇̃v(x̃)‖2

)
dx̃

}1/2

.

Here and in the following, ∇̃ denotes the IRn−1-gradient in directions tangent to Γ. It is

known that the embedding W (α)→ L2(Γ) is compact and the trace operator γ : W (α)→

L2(∂Γ) is continuous [Gri63], [Mey67]. Here we assume the width function satisfies

ω(x̃) ≥ cδα(x̃) a.e. x̃ ∈ Γ (2.2.2)

for some c > 0, and we say Γ is weakly tapered. Then define H1
ω(Γ) to be the completion

of H1(Γ) with the norm

‖v‖H1
ω

=
{∫

Γ

(
v(x̃)2 + ω(x̃)‖∇̃v(x̃)‖2

)
dx̃

}1/2

.

As above, the embedding H1
ω(Γ)→ L2(Γ) is compact and the trace operator γ : H1

ω(Γ)→

L2(∂Γ) is continuous. More generally, we have the following [Sho79].

Theorem 2.2.1. Let the bounded domain Γ be given as above and let 0 ≤ α < 1. Suppose

there is a function α(·) on ∂Γ for which 0 ≤ α(x̃) ≤ α for each x̃ ∈ ∂Γ. Assume the

function ω(·) satisfies (2.2.2) and that at each point of ∂Γ there is a neighborhood N in

IRn−1 and constants 0 < c(N) < C(N) such that
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1. for each x̃ ∈ N ∩ Γ there is an x̃0 ∈ ∂Γ such that ‖x̃0 − x̃‖ = δ(x̃), and

2. for each x̃ ∈ N ∩ Γ, c(N) ≤ ω(x̃)

δ(x̃)α(x̃0) ≤ C(N).

Then the trace map is continuous from H1
ω(Γ) into L2(∂Γ), its kernel is the closure of

C∞0 (Γ) in H1
ω(Γ), and the range is dense in L2(∂Γ).

In the contrary case we call Γ strongly tapered if

ω(x̃) ≤ Cδ(x̃) a.e. x̃ ∈ Γ, (2.2.3)

for some C > 0, and then C∞0 (Γ) is dense in H1
ω(Γ), so H1

ω(Γ)′ is a space of distributions

on Γ and L2(Γ) ⊂ H1
ω(Γ)′.

We recall some classical results for unbounded operators and the Cauchy problem;

see [Kat95], [Sho77] or the first Chapter of [Sho97a] for details. Let V be a Hilbert

space, and denote its dual space of continuous linear functionals by V ′. A bilinear form

a(·, ·) : V × V → IR is V -elliptic if there is c0 > 0 for which

a(u, u) ≥ c0‖u‖2V , u ∈ V .

The Lax-Milgram theorem shows this is a convenient sufficient condition for the associated

problem to be well-posed.

Theorem 2.2.2. If a(·, ·) is bilinear, continuous and V -elliptic, then for each f ∈ V ′

there is a unique

u ∈ V : a(u, v) = f(v) , v ∈ V .

An unbounded linear operator A : D → H with domain D in the Hilbert space H

is accretive if

(Ax, x)H ≥ 0 , x ∈ D ,

and it is m-accretive if, in addition, A + I maps D onto H. Sufficient conditions for the

initial-value problem to be well-posed are provided by the Hille-Yoshida theorem.
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Theorem 2.2.3. Let the operator A : D → H be m-accretive on the Hilbert space H. Then

for every u0 ∈ D(A) and f ∈ C1([0,∞), H) there is a unique solution u ∈ C1([0,∞), H)

of the initial-value problem

du

dt
(t) +Au(t) = f(t) , t > 0 , u(0) = u0 . (2.2.4)

If additionally A is self-adjoint, then for each u0 ∈ H and Hölder continuous f ∈

Cβ([0,∞), H), 0 < β < 1, there is a unique solution u ∈ C([0,∞), H) ∩ C1((0,∞), H) of

(2.2.4).

Finally, the standard finite-difference approximation of (2.2.4) leads to the station-

ary problem with λ > 0,

u ∈ D(A) : λu+A(u) = λF in H,

for the resolvent of the operator A. It is precisely the m-accretive operators for which this

problem is always solvable with ‖u‖H ≤ ‖F‖H .

2.3 The Stationary Problem

With the family of domains Ω ε = Ω1 ∪ Γ ∪ Ω ε
2 given above for each value of the

parameter with 0 < ε ≤ 1, the stationary problem corresponding to the initial-value

problem (3.1.1) takes the weak form

uε ∈ V ε :
∫

Ω1

λm1 u
εv dx+

∫
Ω1

k1∇uε · ∇v dx

+
∫

Ω ε
2

λm2 u
εv dx+

∫
Ω ε

2

k2

ε
∇uε · ∇v dx̃ dxN

=
∫

Ω1

λm1 Fv dx+
∫

Ω ε
2

λm2 Fv dx+
∫

Γ
g γ(v) dx̃ ∀ v ∈ V ε, (2.3.5)

in the space V ε ≡ {v ∈ H1(Ω ε) : v = 0 on ∂Ω1 − Γ}. This is the exact or ε-problem to

be solved, and it depends on the thin domain Ω ε
2 and the high permeability

k2

ε
through

the scale parameter ε > 0. We expect the last term on the left side to be approximated
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for small values of ε by averaging across the narrow channel,

1
ε

∫
Ω ε

2

k2∇u · ∇v dxN dx̃ ≈
∫

Γ
k2∇̃u · ∇̃v ω(x̃) dx̃, (2.3.6)

where ∇̃ denotes the gradient in the variable x̃ in Γ, and this will be established in our

work below.

2.3.1 The Scaled Problem

Since our primary interest is the dependence of the solution on ε, we shall reformulate

the problem in a space that is independent of this parameter. In order to eliminate this

dependence on the domain, we scale Ω ε
2 in the direction normal to Γ by xN = εz to get an

equivalent problem on the domain Ω = Ω1 ∪ Γ ∪ Ω2 with Ω2 ≡ Ω 1
2 = {(x̃, ω(x̃)z) ∈ IRn :

(x̃, z) ∈ Γ× (0, 1)}. The corresponding bilinear form is

aε(u, v) ≡
∫

Ω1

k1∇u · ∇v dx+
∫

Ω2

k2∇̃u · ∇̃v dx̃ dz +
∫

Ω2

k2

ε2
∂zu∂zv dx̃ dz. (2.3.7)

This form is continuous on V ≡ {v ∈ H1(Ω) : v = 0 on ∂Ω1 − Γ}, and the scaled

problem is

uε ∈ V :
∫

Ω1

λm1 u
εv dx+ ε

∫
Ω2

λm2 u
εv dx̃ dz + aε(uε, v)

=
∫

Ω1

λm1 F v dx+ ε

∫
Ω2

λm2 F v dx+
∫

Γ
g γ (v) dx̃ ∀ v ∈ V. (2.3.8)

For each ε > 0 the bilinear form (2.3.7) is clearly V -elliptic, so the problem (2.3.8) is

well-posed. Moreover, the solution u ε satisfies

λm1 u
ε
1 −∇ · k1∇u ε1 = λm1 F in Ω1 ,

u ε1 = 0 on ∂Ω1 − Γ ,

uε1 = uε2 , k1∂zu
ε
1 −

k2

ε2
∂zu

ε
2 = g on Γ ,

ε λm2 u
ε
2 − ∇̃ · k2∇̃u ε2 −

k2

ε2
∂z∂zu

ε
2 = ε λm2F in Ω2 ,

(∇̃u ε2 ,
1
ε2
∂zu

ε
2) · n̂ = 0 on ∂Ω2 − Γ .

(2.3.9)

This is the stationary form of the interface problem (3.1.1) after the rescaling. Here we see

the role of the effective tangential permeability k2 and the effective normal permeability

k2
ε2

.
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The Estimates

Denote by χj the characteristic function of Ωj , j = 1, 2, and set u ε ≡ u ε1 χ1 +u ε2 χ2.

Due to the boundary conditions of the space V , the gradient controls the entire H1(Ω)

norm on V . Testing (2.3.8) with v = u ε, we obtain

C1

(
‖ u ε1 ‖ 2

0,Ω1
+ ‖ u ε2 ‖ 2

0,Ω2

)
≤ C2

(
‖ u ε1 ‖ 2

0,Ω1
+ ‖ ∇u ε1 ‖ 2

0,Ω1

+ ε ‖ u ε2 ‖ 2
0,Ω2

+ ‖ ∇̃u ε2 ‖ 2
0,Ω2

+
∥∥∥∥1
ε
∂zu

ε
2

∥∥∥∥ 2

0,Ω2

)
≤ ‖F‖ 0,Ω1 ‖u ε1‖ 0,Ω1 + ‖g‖0,Γ ‖u ε1‖1,Ω1 ≤ C̃ ‖u ε1‖1,Ω1

where C1, C2, C̃ are positive constants. It follows that

‖ u ε1 ‖ 2
0,Ω1

+ ‖ ∇u ε1 ‖ 2
0,Ω1

+ ε ‖ u ε2 ‖ 2
0,Ω2

+ ‖ ∇̃u ε2 ‖ 2
0,Ω2

+
∥∥∥∥1
ε
∂zu

ε
2

∥∥∥∥ 2

0,Ω2

≤ C (2.3.10)

for some generic positive constant C.

The Limit

The estimate (2.3.10) implies that there is a subsequence, which we denote again

by {uε}, and a u∗ = u1 χ1 +u2 χ2 ∈ V such that uε w⇀ u∗ in H1(Ω) and strongly in L2(Ω).

For any v ∈ V , as ε→ 0 we have∫
Ω1

k1∇u ε1 · ∇v dx −→
∫

Ω1

k1∇u1 · ∇v dx, and∫
Ω2

k2∇̃u ε2 · ∇̃ v dx̃ dz −→
∫

Ω2

k2∇̃u2 · ∇̃ v dx̃ dz.

Since the right side of (2.3.8) is bounded for v ∈ V fixed, we conclude the existence of the

limit

`(v) ≡ lim
ε ↓ 0

∫
Ω2

k2

ε2
∂zu

ε
2 ∂zv dx̃dz ,

and due to the a-priori estimates we conclude ` ∈ V ′. In addition, there must exist ζ ∈

L2(Ω2) such that ε−1∂zu
ε
2
w
⇀ ζ in L2(Ω2). Also ‖ ∂zu ε2 ‖ 0,Ω2 ≤ εC, so ‖ ∂zu ε2 ‖ 0,Ω2→ 0,

and we know ∂zu
ε
2

w
⇀ ∂zu2 in L2(Ω2), so ∂zu2 ≡ 0 and u2 is independent of z in Ω2.
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Taking the limit in (2.3.8), we find that u∗ = u1 χ1 + u2 χ2 satisfies

u∗ ∈ V : ∂zu2 = 0 in Ω2, and
∫

Ω1

λm1 u1 v dx+
∫

Ω1

k1∇u1 · ∇v dx

+
∫

Ω2

k2∇̃u2 · ∇̃ v dx+ `(v) =
∫

Ω1

λm1Fv dx+
∫

Γ
g γ (v) dx̃ ∀v ∈ V. (2.3.11)

Define now the subspace W ≡ {v ∈ V : ∂zv = 0 on Ω2}. We have shown that

for some subsequence we obtain a weak limit, uε w⇀ u∗ in V with u∗ ∈ W , and since the

linear functional `(·) vanishes on W , this limit satisfies

u∗ ∈W :
∫

Ω1

λm1 u
∗v dx+ a0(u∗, v)

=
∫

Ω1

λm1 F v dx+
∫

Γ
g γ(v) dx̃ for all v ∈W. (2.3.12)

where the limit bilinear form on W is defined by

a0(u, v) ≡
∫

Ω1

k1∇u · ∇v dx+
∫

Ω2

k2∇̃u · ∇̃v dx̃ dz. (2.3.13)

This continuous bilinear form is W -elliptic, so we see that u∗ is the only solution and

the original sequence {uε} converges weakly to u∗. In summary, the problem (2.3.12)

characterizes the limit u∗ of the stationary problems (2.3.8).

2.3.2 Strong convergence

On the space V we take the scalar product

〈v, w〉 ≡
∫

Ω1

k1∇v · ∇w dx+
∫

Ω2

k2∇v · ∇w dx. (2.3.14)

This scalar product 〈·, ·〉 is equivalent to the usual H1(Ω) scalar product, that is, the

V -norm ‖ v ‖V ≡ 〈 v, v 〉1/2 is equivalent to the H1(Ω) norm, so from the weak convergence

uε
w
⇀ u∗ in H1(Ω) we know

‖ u∗ ‖V ≤ lim inf
ε ↓ 0

‖ uε ‖V .

Now, for 0 < ε ≤ 1, the solution uε of (2.3.8) satisfies

‖ uε ‖ 2
V ≤ ε

∫
Ω2

λm2 (uε)2 dx̃ dz + aε(uε, uε) = −
∫

Ω1

λm1(uε)2 dx

+
∫

Ω1

λm1 F u
ε dx+

∫
Ω2

ελm2 F u
ε dx+

∫
Γ
g γ uε dx̃ ,
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so from weak lower-semicontinuity of the first term we obtain

lim sup
ε ↓ 0

‖ uε ‖ 2
V ≤ −

∫
Ω1

λm1(u∗)2 dx+
∫

Ω1

λm1 Fu
∗ dx+

∫
Γ
g γ(u∗) dx̃.

But with (2.3.12) this gives

lim sup
ε ↓ 0

‖ uε ‖ 2
V ≤ a0(u∗, u∗) = ‖u∗‖2V ,

so lim ε ↓ 0 ‖ uε ‖V = ‖ u∗ ‖V . Together with the weak convergence of the sequence, this

implies ‖ u ε − u∗ ‖V → 0, and so we have strong convergence u ε → u∗ in H1(Ω).

An Alternative System

The solution of the limiting problem can be characterized by a boundary-value

problem on Ω1 and Γ. First we rewrite (2.3.11). Since C∞0 (Ω1) ⊆ V , for any ϕ ∈ C∞0 (Ω1)

we obtain ∫
Ω1

λm1 u1 ϕ dx+
∫

Ω1

k1∇u1 · ∇ϕ dx =
∫

Ω1

λm1 Fϕ dx,

i.e., λm1 u1 −∇ · k1∇u1 = λm1 F in L2(Ω1), so k1∇u1 ∈ L2
div(Ω1) and the normal trace

k1∇u1 · n̂ ∈ H−1/2(∂Ω1) is well-defined. Moreover, we know that for any v ∈ V the Stokes’

formula [Tem79]

〈k1∇u1 · n̂, γ (v)〉H−1/2(∂Ω1), H1/2(∂Ω1) =
∫

Ω1

k1∇u1 · ∇v dx+
∫

Ω1

∇ · (k1∇u1) v dx

must hold. Substituting these into (2.3.11), we conclude

〈k1∇u1 · n̂, γ (v)〉H−1/2(Γ), H1/2(Γ) +
∫

Ω2

k2∇̃u2 · ∇̃ v dx

+ `(v) =
∫

Γ
g γ (v) dx̃ for all v ∈ V. (2.3.15)

Since the functions in W are independent of z for (x̃, z) ∈ Ω2, we have for each pair

u, v ∈W

(u, v)H1(Ω2) =
∫

Ω2

(
u(x̃) v(x̃) +∇u(x̃) · ∇ v(x̃)

)
dx̃ dz

=
∫

Γ

(
u(x̃) v(x̃) + ∇̃u(x̃) · ∇̃ v(x̃)

)
ω(x̃) dx̃ .
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This is equivalent to the scalar product

(u, v)H1
ω(Γ) ≡

∫
Γ

(
u(x̃) v(x̃) + ω(x̃) ∇̃u(x̃) · ∇̃ v(x̃)

)
dx̃

of the weighted Sobolev space

H1
ω(Γ) ≡

{
u ∈ L2(Γ) : ω1/2∇̃u ∈ L2(Γ)

}
.

Furthermore, we see W is equivalent to the space

VΓ ≡
{
v ∈ H1(Ω1) : v|Γ ∈ H1

ω(Γ), v|∂Ω1−Γ = 0
}

in the sense of boundary trace. Thus, the solution of problem (2.3.12) is characterized by

u∗ ∈ VΓ :
∫

Ω1

λm1 u
∗ v dx+

∫
Ω1

k1∇u∗ · ∇v dx

+
∫

Γ
k2 ω ∇̃u∗ · ∇̃ v dx̃ =

∫
Ω1

λm1 F v dx+
∫

Γ
g γ(v) dx̃ for all v ∈ VΓ, (2.3.16)

and this means it determines a pair u1 = χ1u
∗ ∈ H1(Ω1), u2 = γ(u∗) ∈ H1

ω(Γ) which

satisfies the system

λm1 u1 −∇ · k1∇u1 = λm1F in Ω1 (2.3.17a)

u1 = 0 on ∂ Ω1 − Γ (2.3.17b)

u1 = u2 on Γ , and (2.3.17c)∫
Γ
k2 ω ∇̃u2 · ∇̃ γv dx̃+ 〈k1∇u1 · n̂, γv〉H−1/2(Γ), H1/2(Γ) (2.3.17d)

=
∫

Γ
g γ (v) dx̃ for all v ∈ V.

In the situation of Theorem 2.2.1, the variational identity (2.3.17d) is equivalent to

−∇̃ · k2 ω ∇̃u2 + k1∂zu1 = g in Γ (2.3.17e)

u2 = 0 on ∂Γ. (2.3.17f)

However, in the strongly tapered case of (2.2.3), the last condition (2.3.17f) is deleted,

since the trace is meaningless and the variational equation is equivalent to the equation

(2.3.17e) in H1
ω(Γ)′. See [Sho79] for such examples. Thus, the limiting form of the singular
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problem (2.3.8) is the elliptic boundary-value problem on Ω1 with the (non-local and

possibly degenerate) elliptic boundary constraint.

We summarize the above as follows.

Theorem 2.3.1. Let the regions Ω ε and the rescaled Ω, the constants k1, k2, m1, m2 >

0, λ ≥ 0, and functions F ∈ L2(Ω), g ∈ L2(Γ) be given. Define the bilinear form (2.3.7) for

each 0 < ε ≤ 1 on the space V . Then each scaled problem (2.3.8) has a unique solution,

uε, these satisfy the estimates (2.3.10) and converge strongly uε → u∗ in V , where u∗

satisfies (2.3.11). Finally, the limit u∗ is characterized as the solution of the well-posed

limit problem (2.3.12) or its equivalent form (2.3.16).

Remarks on Minimization and Penalty

Set f ε(v) =
∫

Ω1
λm1 F v dx + ε

∫
Ω2
λm2 F v dx +

∫
Γ g γ(v) dx̃. The equation (2.3.8)

shows that uε is characterized by the minimization of

ϕε(v) ≡ 1
2

(∫
Ω1

λm1 v
2 dx+

∫
Ω2

ελm2 v
2 dx+ aε(v, v)

)
− f ε(v), v ∈ V.

According to (2.3.11), the limit u∗ satisfies

u∗ ∈W :
∫

Ω1

λm1 u
∗v dx+ 〈u∗, v〉V + `(v) = f0(v) for all v ∈ V

and is characterized by (2.3.12), that is,

u∗ ∈W :
∫

Ω1

λm1 u
∗v dx+ 〈u∗, v〉V = f0(v) for all v ∈W.

This shows that u∗ is obtained by the minimization of

ϕ(v) ≡ 1
2

(∫
Ω1

λm1 v
2 dx+ 〈v, v〉V

)
− f 0(v), v ∈ V, (2.3.18)

over the subspace W . This is the same as minimizing ϕ(v) + IW (v) over all of V , where

IW (v) ≡

 0 if v ∈W ,

+∞ if v 6∈W ,

is the indicator function of W .

Furthermore, if ∂IW (·) denotes the subgradient of the convex IW (·), then ` ∈

∂IW (u∗) is the Lagrange multiplier that realizes the constraint u∗ ∈W . The last term in

(2.3.7) is the penalty term and (2.3.8) is a penalty method to approximate (2.3.12).
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2.3.3 The Concentrated Capacity Model

Suppose that in the interface problem (3.1.1), we assume that not only the per-

meability k2 but also m2 is scaled by 1
ε in Ω2. Such an assumption is meaningless for

porous media, since the porosity is bounded by 1, but it is appropriate in analogous heat

conduction problems with a concentrated capacity along the highly-conducting interface

or boundary. However, the problem (2.3.8) with the factor ε deleted from the two terms

can be used as a fracture model with highly anisotropic permeability. We include this case

to show what assumptions are required to arrive at the narrow fracture model described

in [JRC71].

Theorem 2.3.2. Let the region Ω, the constants k1, k2, λm1 > 0, and functions F ∈

L2(Ω), g ∈ L2(Γ) be given. For each 0 < ε ≤ 1, consider the problem

uε ∈ V :
∫

Ω1

λm1 u
ε v dx+

∫
Ω2

λm2 u
ε v dx+ aε(uε, v)

=
∫

Ω1

λm1 F v dx+
∫

Ω2

λm2 F v dx+
∫

Γ
g γ (v) dx̃ ∀ v ∈ V, (2.3.19)

This problem has a unique solution, uε, these satisfy the estimates (2.3.10) and converge

strongly uε → u∗ in V , where the limit u∗ satisfies

u∗ ∈W :∫
Ω1

λm1 u
∗ v dx+

∫
Γ
λm2 ω u∗ v dx̃+

∫
Ω1

k1∇u∗ · ∇v dx+
∫

Γ
k2 ω ∇̃u∗ · ∇̃ v dx̃

=
∫

Ω1

λm1 F v dx+
∫

Γ
λm2 ω F̃v dx̃+

∫
Γ
g γ(v) dx̃ for all v ∈W, (2.3.20)

and the channel average of F in Ω2 is given by

F̃ (x̃) =
1

ω(x̃)

∫ ω(x̃)

0
F (x̃, z) dz, x̃ ∈ Γ.

Note as before that the limit u∗ ∈ VΓ determines a pair u1 ∈ H1(Ω1), u2 ∈ H1
ω(Γ)

which satisfies

λm1 u1 −∇ · k1∇u1 = λm1 F in Ω1 (2.3.21a)

u1 = 0 on ∂ Ω1 − Γ (2.3.21b)

u1 = u2 on Γ, (2.3.21c)
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and
∫

Γ
λm2 ω u2 v dx̃+

∫
Γ
k2 ω ∇̃u2 · ∇̃ v dx̃

+ 〈k1∇u1 · n̂, γv〉H−1/2(Γ), H1/2(Γ) =
∫

Γ
λm2 ω F̃v dx̃+

∫
Γ
g γ (v) dx̃

for all v ∈ VΓ.

In the weakly tapered situation of Theorem 2.2.1, the variational identity is equivalent to

λm2 ω u2 − ∇̃ · k2 ω ∇̃u2 + k1∂zu1 = λm2 ω F̃ + g in Γ, (2.3.21d)

u2 = 0 on ∂Γ, (2.3.21e)

and in the strongly tapered case of (2.2.3), the last condition (2.3.21e) is deleted.

2.4 The Evolution Problems

We apply Theorem 2.3.1 to show the dynamics of the initial-boundary-value problem

(3.1.1) is governed by an analytic semigroup on the Hilbert space H = L2(Ω), and the

limiting form corresponds similarly to an analytic semigroup on the Hilbert space H0 =

L2(Ω1). Then we establish the convergence as ε → 0 of solutions of the corresponding

evolution problems.

2.4.1 Well-posed problems

Let Hε denote H with the norm ‖u‖Hε = ‖m1/2
1 χ1u + (εm2)1/2χ2 u‖L2(Ω), so its

Riesz map is the multiplication function mε = m1χ1 + εm2χ2 from Hε to H ′ε. Similarly,

m0 = m1 is the Riesz map from H0 to H ′0, where ‖u‖H0 = ‖m1/2
1 u‖L2(Ω1). Note that

V ⊂ Hε and W ⊂ H0 are dense and continuous inclusions.

Define the operators Aε : Dε → H ′ε with domains Dε ⊂ V by uε ∈ Dε and Aε(uε) =

F ∈ H ′ε if uε ∈ V : aε(uε, v) = F (v) for all v ∈ V . Similarly the operator A0 : D0 → H ′0

with domain D0 ⊂ W is determined by u0 ∈ D0 and A0(u0) = F ∈ H ′0 if u0 ∈ W :

a0(u0, w) = F (w) for all w ∈ W . If we set g = 0, then the scaled problem (2.3.8)

is equivalent to Aε(uε) = λmε(F − uε) for F ∈ H, and the limit problem (2.3.12) is

equivalent to A0(u∗) = λm0(F − u∗) when F ∈ H0.
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Each of the operators m−1
ε Aε is m-accretive on Hε, that is, ‖(I+αm−1

ε Aε)−1F‖Hε ≤

‖F‖Hε for each α > 0 and F ∈ Hε. Likewise (I + αm−1
0 A0)−1 is a contraction on H0

for each α > 0. These operators are also self-adjoint, since the corresponding bilinear

forms are symmetric, so m−1
ε Aε and m−1

0 A0 generate analytic semigroups on Hε and H0,

respectively.

The Hille-Yoshida Theorem 2.2.3 shows that the corresponding initial-value prob-

lems are well-posed. Applying it to the operator m−1
ε Aε in Hε, we obtain the scaled

problem.

Theorem 2.4.1. For every u0 ∈ L2(Ω) and F ∈ Cβ([0,∞), L2(Ω)), there is a unique

uε ∈ C([0,∞), L2(Ω)) ∩ C1((0,∞), L2(Ω)) with uε(t) ∈ Dε for each t > 0 such that

uε(t) = χ1 u
ε
1(t) + χ2 u

ε
2(t) satisfies the scaled problem

m1
∂u ε1
∂t
−∇ · k1∇u ε1 = m1F in Ω1

u ε1 = 0 on ∂Ω1 − Γ

uε1 = uε2, k1∂zu
ε
1 −

k2

ε2
∂zu

ε
2 = 0 on Γ

εm2
∂u ε2
∂t
− ∇̃ · k2∇̃u ε2 −

k2

ε2
∂z∂zu

ε
2 = εm2F in Ω2(

k2∇̃u ε2 ,
k2

ε2
∂zu

ε
2

)
· n̂ = 0 on ∂Ω2 − Γ ,

(2.4.22a)

at each t > 0, and these satisfy the initial conditions

uε1(·, 0) = u0(·) on Ω1, uε2(·, 0) = u0(·) on Ω2 . (2.4.22b)

Note that this is a rather strong solution, since ∇ · kj∇uε1(t) ∈ L2(Ωj) for each

t > 0, j = 1, 2.

Similarly from the operator m−1
0 A0 in H0 we obtain the limiting problem. When

the fracture is weakly tapered, this takes the following form.

Theorem 2.4.2. For every u0 ∈ L2(Ω1) and F ∈ Cβ([0,∞), L2(Ω1)), there is a unique

u∗ ∈ C([0,∞), L2(Ω1))∩C1((0,∞), L2(Ω1)) with u∗(t) ∈ D0 for each t > 0, such that the
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functions u1(t) = u∗(t)|Ω1 ∈ H1(Ω1), u2(t) = γ(u∗(t)) ∈ H1
ω(Γ) satisfy

m1
∂u1

∂t
−∇ · k1∇u1 = m1F in Ω1 (2.4.23a)

u1 = 0 on ∂ Ω1 − Γ (2.4.23b)

u1 = u2 on Γ , and (2.4.23c)

−∇̃ · k2 ω ∇̃u2 + k1 ∂zu1 = 0 in Γ, (2.4.23d)

u2 = 0 on ∂Γ, (2.4.23e)

at each t > 0 and the initial condition

u1(·, 0) = u0(·) on Ω1. (2.4.23f)

In particular, each term of the equation (2.4.23a) belongs to L2(Ω1), so the solution

is rather strong. As before, in the strongly tapered case, the last condition (2.4.23e) is

deleted.

2.4.2 Strong Convergence

For the stationary problems, we have shown that (mε + Aε)−1mε F → (m0 +

A0)−1m0 F in the V -norm, hence, in H1(Ω) so also in H. However, for the corresponding

dynamic problems, with ε > 0 we have an evolution in Hε = L2(Ω) whereas the limit is an

evolution in H0 = L2(Ω1), and these are not immediately comparable, so we shall work

directly in the corresponding evolution spaces, V ≡ L2(0, T ;V ) and W ≡ L2(0, T ;W ).

The Cauchy problem leads to the Hilbert space

W 1.2(0, T ) ≡
{
u ∈ V :

du

dt
∈ V ′

}
with the norm ‖u‖W 1.2(0,T ) =

(
‖u‖2V + ‖dudt ‖

2
V ′
)1/2

, and this space is contained in C([0, T ], H)

with continuous imbedding, that is,

‖u‖C([0, T ], H) ≤ C ‖u‖W 1.2(0, T ), u ∈W 1.2(0, T ).

See any one of [Ada75, Sho97a, Tem79].
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The solution of (2.4.22) satisfies

uε ∈ V : ∀v ∈ V ∩W 1.2(0, T ;H) with v(T ) = 0,

−
∫ T

0

(
mε u

ε(t),
dv

dt
(t)
)
L2(Ω)

dt+
∫ T

0
aε(uε(t), v(t))

=
∫ T

0
(mεF (t), v(t))L2(Ω) dt+ (mεu 0, v(0))L2(Ω).

This is the weak formulation of the Cauchy problem

uε ∈ V : mε
duε

dt
(·) +Aε(uε(·)) = mε F (·) in V ′, uε(0) = u0,

and the solution uε satisfies the identity

1
2

(mεu
ε(T ), uε(T ))L2(Ω) +

∫ T

0
aε(uε(t), uε(t)) dt

=
∫ T

0
(mεF (t), uε(t))L2(Ω) dt+

1
2

(mεu0, u0)L2(Ω). (2.4.24)

This implies that ‖uε‖V , ‖1
ε∂zu

ε‖L2(0, T ;H0) are bounded, so there is a weakly convergent

subsequence, uε w
⇀ u∗ in V with limit u∗ ∈ W. Then the evolution equation shows that

duε

dt
w
⇀ du∗

dt in W ′, so we obtain

u∗ ∈ W : ∀v ∈ W ∩W 1.2(0, T ;H0) with v (T ) = 0,

−
∫ T

0
(m0u

∗(t),
dv

dt
(t))L2(Ω1) dt+

∫ T

0
a0(u∗(t), v(t))

=
∫ T

0
(m0F (t), v(t))L2(Ω1) dt+ (m0u0, v(0))L2(Ω1).

As before, this characterizes the solution of

u∗ ∈ W : m0
du∗

dt
(·) +A0(u∗(·)) = m0F (·) in W ′, u∗(0) = χ1 u0 ,

which has only one solution [Sho74], so the original sequence converges weakly to u∗ and

this is also the solution of (2.4.23). Moreover, we have

1
2

(m0 u
∗(T ), u∗(T ))L2(Ω1) +

∫ T

0
a0(u∗(t), u∗(t)) dt

=
∫ T

0
(m0 F (t), u∗(t))L2(Ω1) dt+

1
2

(m0 u0, u0)L2(Ω1), (2.4.25)
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and this will be used to show strong convergence uε → u∗ in V. From the weak convergence,

we have ∫ T

0
〈u∗(t), u∗(t)〉 dt ≤ lim inf

ε ↓ 0

∫ T

0
〈uε, uε〉 dt.

This follows since the V -norm from the scalar product (2.3.14) is equivlent to the H1(Ω)-

norm. Also from (2.4.24) we have

∫ T

0
〈uε, uε〉 dt ≤

∫ T

0
aε(uε, uε) dt = −1

2
(mε u

ε(T ), uε(T ))L2(Ω)

+
∫ T

0
(mεF (t), uε(t))L2(Ω) dt+

1
2

(mε u0, u0)L2(Ω) .

Then using the (weak) continuity of the linear map u→ u(T ) from
{
u ∈ W : m1/2

0
du
dt ∈ W

′
}

to H0, we take the lim sup above to get

lim sup
ε ↓ 0

∫ T

0
〈uε, uε〉 dt ≤ −1

2
(m0 u

∗(T ), u∗(T ))L2(Ω1)

+
∫ T

0
(m0 F (t), u∗(t))L2(Ω1) dt+

1
2

(m0 u0, u0)L2(Ω1) .

Together with the limiting identity (2.4.25) this shows

lim sup
ε ↓ 0

∫ T

0
〈uε, uε〉 dt ≤

∫ T

0
a0(u∗(t), u∗(t)) dt =

∫ T

0
〈u∗(t), u∗(t)〉 dt,

so we have established limε ↓ 0

∫ T
0 〈u

ε, uε〉 dt =
∫ T

0 〈u
∗(t), u∗(t)〉 dt and, hence, strong con-

vergence in V. Recalling that from the evolution equation we have the strong convergence

mε
duε

dt → m0
du∗

dt in W ′, we have

Theorem 2.4.3. In the situation of Theorem 2.4.1 and Theorem 2.4.2, the sequence

converges strongly uε → u∗ in V = L2(0, T ;V ) and in C([0, T ], H0).

2.4.3 The Concentrated Capacity Model

We obtain the analogous results for the evolution problem corresponding to Theo-

rem 2.3.2. The approximation evolves in H = L2(Ω) with the norm ‖u‖H = ‖(m1/2
1 χ1 +

m
1/2
2 χ2)u‖L2(Ω); its Riesz map is the multiplication function m1χ1 +m2χ2 from H to H ′.
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Similarly, H0 is defined to be the closure of W in H, and as above we find it is equivalent

to the weighted L2 space with the scalar product

(u, v)L2
ω(Ω) =

∫
Ω1

m1 u(x)v(x) dx+
∫

Γ
m2 u(x̃) v(x̃)ω(x̃) dx̃ .

Note that V ⊂ H and W ⊂ H0 are dense and continuous inclusions.

By the same arguments given previously, we obtain the following.

Theorem 2.4.4. For every u0 ∈ L2(Ω) and F ∈ Cβ([0,∞), L2(Ω)), there is a unique

uε ∈ C([0,∞), L2(Ω)) ∩ C1((0,∞), L2(Ω)) with uε(t) ∈ Dε for each t > 0 such that

uε(t) = χ1 u
ε
1(t) + χ2 u

ε
2(t) satisfies the scaled problem

m1
∂u ε1
∂t
−∇ · k1∇u ε1 = m1 F in Ω1

u ε1 = 0 on ∂Ω1 − Γ

uε1 = uε2, k1 ∂zu
ε
1 −

k2

ε2
∂zu

ε
2 = 0 on Γ

m2
∂u ε2
∂t
− ∇̃ · k2∇̃u ε2 −

k2

ε2
∂z∂zu

ε
2 = m2F in Ω2(

k2∇̃u ε2 ,
k2

ε2
∂zu

ε
2

)
· n̂ = 0 on ∂Ω2 − Γ ,

(2.4.26a)

at each t > 0, and these satisfy the initial conditions

uε1 (·, 0) = u0 (·) on Ω1, uε2 (·, 0) = u0 (·) on Ω2 . (2.4.26b)

Also, there is a unique u∗ ∈ C([0,∞), L2(Ω)) ∩ C1((0,∞), L2(Ω)) with u∗(t) ∈ D0 for

each t > 0, such that the functions u1(t) = u∗(t)|Ω1 ∈ H1(Ω1), u2(t) = γ(u∗(t)) ∈ H1
ω(Γ)

satisfy

m1
∂u1

∂t
−∇ · k1∇u1 = m1F in Ω1 (2.4.27a)

u1 = 0 on ∂ Ω1 − Γ (2.4.27b)

u1 = u2 on Γ , and (2.4.27c)

m2 ω
∂u2

∂t
− ∇̃ · k2 ω ∇̃u2 + k1 ∂zu1 = m2 ω F̃ in Γ, (2.4.27d)

u2 = 0 on ∂Γ, (2.4.27e)
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at each t > 0 and the initial condition

u1(·, 0) = u0(·) on Ω1, u2(·, 0) = ũ0(·) on (2.4.27f)

Finally, we have strong convergence uε → u∗ in V = L2(0, T ;V ) and in C([0, T ], H0).
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3 LIMIT MIXED FORMULATION OF DARCY-DARCY MODEL
FOR CHANNELED FLOW

3.1 Introduction

The constitutive law of Darcy is

a(x) u(x, t) + ∇p(x, t) + g(x) = 0 , (3.1.1a)

where u(x, t) represents the fluid flux, p(x, t) the pressure, and g(x) is the gravity force.

The flow resistance a(x) is fluid viscosity times the inverse of permeability of the porous

medium. The conservation law is

c(x)
∂ p (x, t)

∂t
+ ∇ · u(x, t) = f(x, t) , (3.1.1b)

in which c(x) is the (slight) compressibility and porosity of the fluid and porous medium

with sources f(x, t). The density factor has been dropped from each term of (3.1.1b).

The system (3.1.1) is supplemented with appropriate boundary and initial conditions.

The backward-difference approximation for ∂
∂ t p leads to a corresponding boundary-value

problem for the stationary system

a(x) u(x) + ∇p(x) + g(x) = 0 ,

c(x)λ p(x) + ∇ · u(x) = f(x) ,
(3.1.2)

where λ = h−1 is the reciprocal of the time increment h > 0. We study an interface

problem for which the resistance coefficient a(x) is of order ε > 0 on a thin fracture with

width of order ε and show that this is approximated by a coupled problem with tangential

flow on the interface.

3.1.1 The Interface Problem

Consider a domain Ω ε = Ω 1 ∪ Γ ∪ Ω ε
2 in IRN representing a porous medium as

the union of disjoint subdomains Ω 1, Ω ε
2 separated by a smooth IRN−1 manifold Γ =

∂Ω 1 ∩ ∂Ω ε
2. For any function on Ω ε we denote its restrictions to Ω 1 and to Ω ε

2 by
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superscripts 1 and 2, respectively. Vectors are denoted by boldface letters, as are vector-

valued functions and corresponding function spaces. We use x̃ to denote a vector in IRN−1.

If x ∈ IRN , then the IRN−1 × {0} projection is identified with x̃ = (x1, x2, . . . , xN−1) so

that x = (x̃, xN ). The IRN−1 gradient ∇̃ and divergence ∇̃· are denoted similarly.

The geometry of Ω ε is prescribed by a domain G ⊂ IRN−1 and a continuously

differentiable map ζ : G→ IR, i.e., the interface Γ is the graph of ζ, Γ ≡ { (x̃, ζ (x̃)) : x̃ ∈

G }. Denote the thin fracture domain with width ε > 0 by

Ω ε
2 ≡ { (x̃, xN ) : ζ (x̃) < xN < ζ (x̃) + ε, x̃ ∈ G }. (3.1.3)

It is bounded below by Γ and above by its vertical ε-translate, Γ + ε. Let Ω 1 ⊂ IRN be a

domain for which Ω 1 ∩ Ω ε
2 = ∅ and ∂Ω 1 ∩ ∂Ω ε

2 = Γ, and set Ω ε = Ω 1 ∪ Γ ∪ Ω ε
2.

The stationary interface problem is

a1 (x) u ε, 1 + ∇ p ε, 1 + gε(x) = 0 and

c1(x)λp ε, 1 + ∇ · u ε, 1 = f ε in Ω 1,

p ε, 1 = 0 on ∂ Ω 1 − Γ, (3.1.4a)

p ε, 1 − p ε, 2 = αu ε, 1 · n and (3.1.4b)

−u ε, 1 · n + u ε, 2 · n = f εΓ on Γ,

ε a2 (x)u ε, 2 + ∇ p ε, 2 + gε(x) = 0 and

c2 (x)λp ε, 2 + ∇ · u ε, 2 = f ε in Ω ε
2,

u ε, 2 · n = 0 on ∂Ω ε
2 − Γ, (3.1.4c)

for the fluid pressure p ε, 1, p ε, 2 and velocity u ε, 1, u ε, 2 on the respective domains Ω 1, Ω ε
2.

The coefficients are a1, c1 on Ω 1 and ε a 2, c 2 on Ω ε
2. The interface conditions on Γ are

that fluid flux from Ω 1 is driven by the pressure difference with resistance α ≥ 0 and that

fluid is conserved.
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For our weak formulation of the stationary system we use the spaces

V ε ≡
{
v ∈ L2(Ω ε) : ∇ · v1 ∈ L2(Ω 1), α v1 · n

∣∣
Γ
∈ L2(Γ)

}
,

Q ε ≡
{
q ∈ L2(Ω ε) : ∇q 2 ∈ L2(Ω ε

2)
}

with the norms

‖v‖Vε =
(
‖v‖2L2(Ω ε) + ‖∇ · v1‖2L2(Ω1) + ‖αv1 · n‖2L2(Γ)

)1/2
,

‖q‖Q ε =
(
‖q‖2L2(Ωε) + ‖∇q 2‖2L2(Ωε2)

)1/2
.

Our weak formulation of the interface problem (3.1.4) is

u ε ∈ V ε, p ε ∈ Q ε :
∫

Ω1

a1u ε · v dx−
∫

Ω1

p ε ∇ · v dx

+ ε

∫
Ωε2

a2u ε · v dx+
∫

Ωε2

∇p ε · v dx+
∫

Γ
p ε, 2 v1 · n dS

+
∫

Γ
α
(
u ε, 1 · n

) (
v1 · n

)
dS = −

∫
Ωε

gε · v dx , (3.1.5a)

∫
Ω1

λ c1 p
ε q dx+

∫
Ω ε

2

λ c2 p
ε q dx+

∫
Ω1

∇ · u εq dx

−
∫

Ω ε
2

u ε ·∇q dx−
∫

Γ
u ε, 1 · n q 2 dS

=
∫

Ω ε

f ε q dx+
∫

Γ
f εΓ q

2 dS for all v ∈ V ε, q ∈ Q ε. (3.1.5b)

Remark 3.1.1. We have coupled the Hdiv − L2 formulation on Ω 1 and the L2 − H1

formulation on Ω ε
2. Each q ∈ Q ε has a well-defined trace q 2|Γ ∈ H1/2(Γ) and similarly

each v ∈ Vε determines a normal trace v1 · n ∈ H−1/2(Γ). If α > 0, then for each such

v it is additionally required that v1 · n ∈ L2(Γ).

Define operators Aε : Vε → Vε ′ , Bε : Vε → Qε
′
, Cε : Qε → Qε

′
by

Aεu (v) =
∫

Ω1

a1 u · v dx + ε

∫
Ω ε

2

a2 u · v dx+
∫

Γ
α
(
u ε, 1 · n

) (
v1 · n

)
dS , (3.1.6a)

Bεu (q) = −
∫

Ω1

∇ · u q dx+
∫

Γ
u1 · n q 2 dS +

∫
Ω ε

2

u · ∇ q dx , (3.1.6b)
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Cεp (q) =
∫

Ω1

c1 p q dx+
∫

Ω ε
2

c2 p q dx. (3.1.6c)

Then the system (3.1.5) has the mixed formulation

u ε ∈ Vε, p ε ∈ Qε :

Aεu ε(v) + B ε ′p ε (v) = −gε(v), v ∈ V ε,

−Bεu ε(q) + λ Cεp ε (q) = f ε(q), q ∈ Q ε.

For the analysis of such problems, see [GR79a, BF91, Sho10].

Theorem 3.1.1. Assume that V and Q are Hilbert spaces and A,B, C are continuous

linear operators A : V→ V ′, B : V→ Q ′, C : Q→ Q ′ such that

• A is non-negative and V-coercive on KerB,

• C is non-negative, symmetric, and

• B ′ is bounding, i.e., it is 1-1 and

inf
q∈Q

sup
v∈V

|Bv(q)|
‖v‖V‖q‖Q

≥ c0 > 0. (3.1.7)

Then for every f ∈ Q ′, g ∈ V ′ and λ ≥ 0 the system

u ∈ V, p ∈ Q :

Au + B ′p = −g in V ′,

−Bu + λ Cp = f in Q ′,

(3.1.8)

has a unique solution, and it satisfies the estimate

‖u‖V + ‖p‖Q ≤ K
(
‖g‖V ′ + ‖f‖Q ′

)
. (3.1.9)

We have the following classical result. (See Proposition 5.2 of [Sho97a].)

Lemma 3.1.2. There is a cε > 0 for which

‖∇q‖2L2(Ω ε
2 ) + ‖q‖2L2(Γ) ≥ cε ‖q‖

2
L2(Ω ε

2 ) (3.1.10)

for all q ∈ H1(Ω ε
2).
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Lemma 3.1.3. For each ε > 0, the operator B ε satisfies the inf-sup condition (3.1.7) on

V ε and Q ε.

Proof. Let q ∈ Q ε and denote by ξ the unique solution of the mixed problem

−∇ ·∇ξ = q1 in Ω 1, ∇ξ · n = q 2 on Γ, ξ = 0 on ∂ Ω 1 − Γ.

Set v1 = ∇ξ. Then −∇ · v1 = q1 and v1 · n = q 2 on Γ with c1‖v1‖L2
div(Ω1) ≤ ‖q1‖L2(Ω1)

by the Poincaré inequality. Set v 2 = ∇q 2. For v = [v1,v 2] on Ω ε we have v ∈ V ε and

with (3.1.10) the estimate

B εv(q) = −
∫

Ω1

∇ · v1 q1 dx+
∫

Γ
v1 · n q 2 dS +

∫
Ω ε

2

v2 · ∇q2 dx

=
∫

Ω1

∣∣q1
∣∣2 dx+

∫
Γ

∣∣q 2
∣∣2 dx+

∫
Ω ε

2

∣∣∇q 2
∣∣2 dx

≥
∫

Ω1

∣∣q1
∣∣2 dx+

cε
2

∫
Ω ε

2

∣∣q 2
∣∣2 dx+

1
2

(∫
Γ

∣∣q 2
∣∣2 dx+

∫
Ω ε

2

∣∣∇q 2
∣∣2 dx)

≥ c‖v‖V ε‖q‖Q ε ,

with c0 = min(c1,
1
2 ,

cε
2 ), and this yields the inf-sup condition (3.1.7).

Theorem 3.1.4. Assume that 0 < ε ≤ 1, 0 ≤ λ, 0 ≤ α, a(·), c (·) ∈ L∞(Ω ε), a(x) ≥ a∗ >

0 and c (x) ≥ 0 on Ω ε, f ε ∈ L2(Ω ε), g ε ∈ L2(Ω ε), and f εΓ ∈ L2(Γ). Then the system

(3.1.5) has a unique solution.

3.2 The Scaled Problem

By scaling Ω ε
2 in the vertical direction with xN = ε z + (1− ε) ζ(x̃), we shall refor-

mulate the interface problem (3.1.5) on the regions

Ω 2 ≡ { (x̃, z) : ζ (x̃) < z < ζ (x̃) + 1, x̃ ∈ G } , Ω ≡ Ω 1 ∪ Γ ∪ Ω 2.

These regions and the corresponding spaces

V ≡
{
v ∈ L2(Ω) : ∇ · v1 ∈ L2(Ω 1), α v1 · n

∣∣
Γ
∈ L2(Γ)

}
,

Q ≡
{
q ∈ L2(Ω) : ∇q 2 ∈ L2(Ω 2)

}
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are independent of ε. The norms on the spaces V and Q are given by

‖v‖V =
(
‖v‖2L2(Ω) + ‖∇ · v1‖2L2(Ω1) + ‖αv1 · n‖2L2(Γ)

)1/2
,

‖q‖Q =
(
‖q‖2L2(Ω) + ‖∇q 2‖2L2(Ω2)

)1/2
.

The gradient is written as ∇ = (∇̃, ∂xN ), and it becomes (∇̃, 1
ε∂z) on Ω 2 under the scaling

above. The scaled interface problem is to find

u ε ∈ V, p ε ∈ Q :
∫

Ω1

a1 u ε · v dx −
∫

Ω1

p ε ∇ · v dx

+ ε2
∫

Ω2

a 2 u ε · v dx + ε

∫
Ω2

∇̃p ε · ṽ dx +
∫

Ω2

∂ zp
ε vN dx

+
∫

Γ
p ε, 2 v1 · n dS +

∫
Γ
α
(
u ε, 1 · n

) (
v1 · n

)
dS

= −
∫

Ω1

gε · v dx− ε
∫

Ω2

gε · v dx (3.2.11a)

∫
Ω1

λ c1 p
ε q dx+ ε

∫
Ω2

λ c2 p
ε q dx+

∫
Ω1

∇ · u εq dx

− ε
∫

Ω2

ũ ε, 2 · ∇̃ q dx −
∫

Ω2

uε, 2N ∂z q dx−
∫

Γ
u ε, 1 · n q 2 dS

=
∫

Ω1

f ε, 1 q dx+ ε

∫
Ω2

f ε, 2 q dx+
∫

Γ
f εΓ q

2 dS for all v ∈ V, q ∈ Q. (3.2.11b)

Theorem 3.1.4 shows that the system (3.2.11) has a unique solution for each 0 < ε ≤ 1.

This solution satisfies the equations

a1u ε + ∇ p ε + g ε = 0 and (3.2.12a)

λ c1 p
ε + ∇ · u ε = f ε in Ω 1 , (3.2.12b)

p ε = 0 on ∂ Ω 1 − Γ , (3.2.12c)

p ε, 1 − p ε, 2 = αu ε, 1 · n and (3.2.12d)

−u ε, 1 · n +
(
ε ũ ε, 2, uε, 2N

)
· n = f εΓ on Γ , (3.2.12e)

ε a2 ũ ε, 2 + ∇̃p ε + g̃ ε = 0̃, ε 2 a 2 u
ε, 2
N + ∂z p

ε + ε g εN = 0 and (3.2.12f)

ε λ c2 p
ε + ε ∇̃ · ũ ε, 2 + ∂ z u

ε, 2
N = ε f ε in Ω 2 (3.2.12g)(

ε ũ ε, 2, uε, 2N

)
· n = 0 on ∂ Ω 2 − Γ . (3.2.12h)



37

3.2.1 The Estimates

We shall assume additionally that

‖f ε‖L2(Ω ε) is bounded and f 1,ε w⇀ f1 in L2(Ω 1). (3.2.13a)

‖g ε‖L2(Ω) is bounded and (3.2.13b)

‖f εΓ‖L2(Γ) is bounded. (3.2.13c)

Note that ε 1/2 f 2, ε is bounded in L2(Ω 2), so ε f 2, ε → 0.

Set v = u ε, q = p ε in (3.2.11) and add to obtain

a∗
(
‖u ε, 1‖20,Ω1

+ ‖ εu ε, 2‖20,Ω2

)
+ α ‖u ε, 1 · n‖2L2(Γ)

+ λ ‖ c1/2
1 p ε‖20,Ω1

+ λ ‖ c1/2
2 ε1/2p ε‖20,Ω2

=
∫

Ω1

f ε p ε dx

+
∫

Ω2

εf εp ε dx +
∫

Γ
f εΓ p

ε, 2 dS −
∫

Ω1

g ε · u ε dx−
∫

Ω2

g ε · εu ε dx

≤ C (‖f ε ‖0,Ω + ‖f εΓ‖0,Γ) ‖p ε‖Q + ‖gε‖0,Ω
(
‖u ε, 1‖0,Ω1 + ‖εu ε, 2‖0,Ω2

)
(3.2.14)

The constant C is independent of ε ≤ 1. From (3.2.12f) we have

‖∇̃p ε, 2‖0,Ω2 ≤ ε ‖a2‖L∞(Ω2) ‖ ũ ε, 2‖0,Ω2 + ‖g̃ ε‖0,Ω2 , (3.2.15a)

‖∂ zp ε, 2‖0,Ω2 ≤ ε 2‖a2‖L∞(Ω2)‖u
ε, 2
N ‖0,Ω2 + ε ‖gεN‖0,Ω2 , (3.2.15b)

so we obtain for 0 < ε ≤ 1

‖∇p ε, 2‖0,Ω2 ≤ ‖a2‖L∞(Ω2)‖ εu ε, 2‖0,Ω2 + ‖gε‖0,Ω2 . (3.2.16)

From (3.2.12a) we obtain

‖∇p ε, 1‖0,Ω1 ≤ ‖a1‖L∞(Ω1)‖u ε, 1‖0,Ω1 + ‖gε‖0,Ω1 .

With the boundary condition (3.2.12c) and the Poincaré inequality, this shows the left

side of (3.2.14) bounds ‖p ε, 1‖2H1(Ω1). The interface condition (3.2.12d) and (3.2.16) in

(3.1.10) show that the left side of (3.2.14) bounds ‖p ε, 2‖2H1(Ω2). We conclude from these
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together with (3.2.15b) and (3.2.12b) that each of the sequences

‖u ε, 1‖0,Ω1 , ‖ εu ε, 2‖0,Ω2 , α
1/2‖u ε, 1 · n‖L2(Γ), (3.2.17)

‖ p ε, 1‖H1(Ω1), ‖p ε, 2‖H1(Ω2),

∥∥∥∥1
ε
∂zp

ε

∥∥∥∥
0,Ω2

, ‖∇ · u ε, 1‖L2(Ω1) (3.2.18)

is bounded. In L2(Ω2) we know only that the combination ∇̃ · ũ ε, 2 + 1
ε∂zu

ε, 2
N is bounded

due to (3.2.12g).

Remark 3.2.1. The preceding can be done even without the boundary condition (3.2.12c)

when the coefficient c1(·) is not identically zero and λ > 0.

Lemma 3.2.1. Assume the nonnegative function c1(·) is non-zero in L∞(Ω 1). There is

a c > 0 for which

‖∇q‖2L2(Ω1) + ‖c1/2
1 q‖2L2(Ω1) ≥ c ‖q‖

2
H1(Ω1) (3.2.19)

for q ∈ H1(Ω 1).

3.2.2 The Weak Limits

We have bounds on u ε =
[
u ε, 1, εu ε, 2

]
in V and on p ε =

[
p ε, 1, p ε, 2

]
in H1(Ω 1) ×

H1(Ω 2), hence, in Q. Therefore, there must exist p ∈ Q, u = [u1,u 2] ∈ V, η ∈ L2(Ω 2)

such that for some subsequence, hereafter denoted the same, we have weak convergence

p ε
w
⇀ p in Q, strongly in L2(Ω), (3.2.20a)

u ε, 1 w
⇀ u1 in L2(Ω 1) and ∇ · u ε, 1 w

⇀ ∇ · u1 in L2(Ω 1), (3.2.20b)

α1/2u ε, 1 · n w
⇀ α1/2u1 · n in L2(Γ), (3.2.20c)

εu ε, 2 w
⇀ u2 in L2(Ω 2), (3.2.20d)

1
ε
∂z p

ε w⇀ η, ∂z p
ε → 0 strongly in L2(Ω 2). (3.2.20e)

In the equation (3.2.11b), take limits with q = ε φ ∈ C∞0 (Ω 2); then from (3.2.20d)

we conclude 〈 ε ∂z uε, 2N , φ 〉D ′(Ω2), D(Ω2) → 〈 ∂z u2
N , φ 〉D ′(Ω2), D(Ω2) = 0 , so the component
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u2
N = u2

N (x̃) is independent of z in Ω2. Again with ε q in (3.2.11b) with a general q ∈ Q,

take limits and use (3.2.20d) to conclude

0 = lim
ε ↓ 0

∫
Ω2

ε uε, 2N ∂z q dx =
∫

Ω2

u2
N (x̃) ∂zq(x̃, z) dx

=
∫
G
u2
N (x̃)

(∫ ζ(x̃)+1

ζ(x̃)
∂z q (x̃, z) dz

)
dx̃

=
∫
G
u2
N (x̃) [ q (x̃, ζ(x̃) + 1)− q (x̃, ζ(x̃))] dx̃ . (3.2.21)

Since this holds for all q ∈ Q, in particular with q (x̃, ζ(x̃)) = q |Γ = 0 and q (x̃, ζ(x̃)+1) =

q |Γ+1 = φ(x̃) for φ ∈ C∞0 (Γ) arbitrary, we obtain u2
N = 0.

Now consider a function ṽ ∈ (C∞0 (Ω2))N−1, set v = (1
ε ṽ, 0) in (3.2.11a) and let ε ↓ 0

to obtain

ε

∫
Ω2

a 2 (x) ũ ε, 2 · ṽ dx+
∫

Ω2

(
∇̃p ε + g̃ ε

)
· ṽ dx→∫

Ω2

a 2 ũ 2 · ṽ dx+
∫

Ω2

(
∇̃p+ g̃

)
· ṽ dx = 0 .

This holds for all ṽ ∈ (C∞0 (Ω 2))N−1, so we conclude the lower-dimensional Darcy-type

constitutive law

a2 (x) ũ 2 + ∇̃p 2 + g̃ = 0 in Ω 2 . (3.2.22)

From (3.2.20e) it is clear that p 2 does not depend on the variable z, i.e. p 2 = p 2(x̃).

Therefore if we assume

a2 = a 2(x̃), g̃ = g̃(x̃) in Ω 2 , (3.2.23)

we conclude ũ 2 = ũ 2(x̃) is independent of z in Ω 2.

3.3 The Limit Problem

Define the subspaces V0 ≡ {v ∈ V : ∂zv2 = 0 and vN = 0 in Ω 2}, Q0 ≡ {q ∈ Q :

∂zq = 0 in Ω 2}. That is, v2 = [ṽ 2(x̃), 0] when v ∈ V0 and q 2 = q 2(x̃) when q ∈ Q0.
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If v ∈ V0 then we have [v1, 1
ε v 2] ∈ V0. Using the latter and a q ∈ Q0 as test

functions in (3.2.11), we obtain

u ε ∈ V, p ε ∈ Q :
∫

Ω1

a1 u ε · v dx −
∫

Ω1

p ε ∇ · v dx

+ ε

∫
Ω2

a 2ũ ε, 2 · ṽ dx +
∫

Ω2

∇̃p ε · ṽ dx

+
∫

Γ
p ε, 2 v1 · n dS +

∫
Γ
α
(
u ε, 1 · n

) (
v1 · n

)
dS

= −
∫

Ω1

g · v dx−
∫

Ω2

g̃ · ṽ 2dx ,

∫
Ω1

λ c1 p
ε q dx+ ε

∫
Ω2

λ c 2 p
ε q dx+

∫
Ω1

∇ · u εq dx

− ε
∫

Ω2

ũ ε, 2 · ∇̃ q dx −
∫

Γ
u ε, 1 · n q2 dS

=

∫
Ω1

f εq dx+
∫

Ω2

ε f εq dx+
∫

Γ
f εΓ q

2dS .

Letting ε ↓ 0 we find that the limits
[
u ε, 1, εu ε, 2

]
→ u and p ε → p of the subsequences

are a solution of the limit problem

u ∈ V0, p ∈ Q0 :
∫

Ω1

a1u · v dx −
∫

Ω1

p∇ · v dx

+
∫

Ω2

a 2 ũ 2 · ṽ dx +
∫

Ω2

∇̃p · ṽ dx +
∫

Γ
p 2 v1 · n dS

+
∫

Γ
α
(
u1 · n

) (
v1 · n

)
dS = −

∫
Ω1

g · v dx−
∫

Ω2

g̃ · ṽ dx , (3.3.24a)

∫
Ω1

λ c1 p q dx+
∫

Ω1

∇ · u q dx −
∫

Ω2

ũ · ∇̃ q dx

−
∫

Γ
u1 · n q 2 dS =

∫
Ω1

f q dx+
∫

Γ
fΓ q

2 dS

for all v ∈ V0, q ∈ Q0. (3.3.24b)

This problem is a mixed formulation (3.1.8) with the operators

A 0u (v) =
∫

Ω1

a1 u · v dx +
∫

Ω2

a 2 ũ · ṽ dx+
∫

Γ
α
(
u1 · n

) (
v1 · n

)
dS ,

B 0u (q) = −
∫

Ω1

∇ · u q dx+
∫

Γ
u1 · n q 2 dS +

∫
Ω2

ũ · ∇̃ q dx ,
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C 0p (q) =
∫

Ω1

c1 p q dx .

Note the degeneracy in C 0: the c2-terms on Ω 2 have vanished in the limit. Theorem 3.1.1

applies to these operators on V0 and Q0. The inf-sup condition follows from the proof

of Lemma 3.1.3. As a consequence of the uniqueness of the solution of the limit problem

(3.3.24), not only a subsequence but the original sequences
[
u ε, 1, εu ε, 2

]
, p ε converge as

indicated to
[
u1,u 2

]
, p.

We summarize the above as follows.

Theorem 3.3.1. Assume the conditions of Theorem 3.1.4 and (3.2.13) and (3.2.23).

Then the sequence
[
u ε, 1, εu ε, 2

]
, p ε of solutions of the corresponding scaled problems

(3.2.11) converges weakly in V × Q to the solution
[
u1,u 2

]
∈ V0, p ∈ Q0 of the limit

problem (3.3.24), and

p ε
w
⇀ p weakly in H1(Ω 1)×H1(Ω 2), strongly in L2(Ω).

3.3.1 The Strong Form

Plane area on G is related to surface area on Γ by dx̃ = nNdS, where nN is the

N -th component of the unit inward normal on ∂ Ω 2, nN = n · eN . Note n = ñ(x̃) and

nN = 0 on ∂ Γ × [0, 1]. Functions of x̃ can be regarded as functions on Ω 2, G, or Γ, and

we have the identities ∫
Ω2

F (x̃) dx =
∫
G
F (x̃) dx̃ =

∫
Γ
nN F dS.

From (3.3.24a) we obtain

a1u1 + ∇p1 + g = 0 in Ω 1, (3.3.25a)

a 2 ũ 2 + ∇̃p 2 + g̃ = 0 on Γ, (3.3.25b)

and

−
〈
p1,v1 · n

〉
∂ Ω1

+
∫

Γ

{
p 2v1 · n + α

(
u1 · n

) (
v1 · n

)}
dS = 0
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for all v ∈ V. Note that (3.3.25a) shows p1 ∈ H1(Ω 1), so it’s trace is in H1/2(∂ Ω 1). Thus

we have

p 1 = p 2 + α
(
u1 · n

)
on Γ, (3.3.25c)

p 1 = 0 on ∂ Ω 1 − Γ (3.3.25d)

Choosing q ∈ C∞0 (Ω 1)× C∞0 (G) in (3.3.24b), we first obtain

λ c1 p
1 + ∇ · u1 = f in Ω 1, (3.3.25e)

nN∇̃ · ũ 2 − u1 · n = fΓ on Γ. (3.3.25f)

Since ∇̃ · ũ 2 ∈ L2(G), the third term in (3.3.24b) can be rewritten

−
∫

Ω2

ũ · ∇̃q dx = −
∫
G

ũ · ∇̃q dx̃ =
∫
G

∇̃ · ũ q dx̃− 〈ũ · ñ, q〉∂G

=
∫

Γ
nN∇̃ · ũ q dS − 〈ũ · ñ, q〉∂Γ for q ∈ Q0,

so we obtain also

ũ · ñ = 0 in H−1/2(∂Γ) (3.3.25g)

The system (3.3.25) is the strong form of the limit problem (3.3.24).

The limit problem (3.3.24) on the lower dimensional interface Γ is in the mixed form

(3.1.8). To see this, we define the spaces

V00 ≡
{
v =

[
v1, ṽ

]
∈ L2(Ω 1)× L2(Γ) : ∇ · v1 ∈ L2(Ω 1), αv1 · n ∈ L2(Γ)

}
,

Q00 ≡
{
q =

[
q1, q 2

]
∈ L2(Ω 1)×H1(Γ)

}
and the operators

A 00u (v) =
∫

Ω1

a1u · v dx +
∫

Γ
nN a 2 ũ · ṽ dS +

∫
Γ
α
(
u1 · n

) (
v1 · n

)
dS ,

B 00u (q) = −
∫

Ω1

∇ · u q dx+
∫

Γ
u1 · n q 2 dS +

∫
Γ
nN ũ · ∇̃q dx ,

C 00p (q) =
∫

Ω1

c1 p q dx .

It suffices then to check that (3.1.8) with these operators and spaces is equivalent to

(3.3.24).
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3.4 Strong Convergence of the Solutions

Assume additionally the strong convergence

g ε → g in L2(Ω) and f εΓ → fΓ in L2(Γ). (3.4.26)

Set v = u ε, q = p ε in (3.2.11) and add to obtain the identity

‖ a1/2
1 u ε‖20,Ω1

+ ε 2‖ a1/2
2 u ε‖20,Ω2

+ α ‖u ε, 1 · n‖2L2(Γ)

+ λ ‖ c1/2
1 p ε‖20,Ω1

+ ε λ ‖ c1/2
2 p ε‖20,Ω2

=
∫

Ω1

f ε p ε dx

+ ε

∫
Ω2

f ε p ε dx +
∫

Γ
f εΓ p

ε, 2 dS −
∫

Ω1

g ε · u ε dx− ε
∫

Ω2

g ε · u ε dx (3.4.27)

From the strong convergence of the source terms (3.4.26) and the strong convergence of

the sequence {p ε : ε > 0} in L2(Ω), we can estimate

lim sup
ε→ 0

{
‖ a1/2

1 u ε‖20,Ω1
+ ‖ a1/2

2 εu ε‖20,Ω2
+ α ‖u ε, 1 · n ‖2L2(Γ)

}
≤ −λ ‖ c1/2

1 p ‖20,Ω1
+
∫

Ω1

f1p dx +
∫

Γ
fΓ p

2 dS −
∫

Ω1

g · u dx−
∫

Ω2

g̃ · ũ 2dx . (3.4.28)

Set v = u, q = p in the limit problem (3.3.24) and add. Using the resulting identity to

evaluate the right side of (3.4.28), and then using the weak lower semicontinuity of the

norms, we obtain

lim sup
ε→ 0

{
‖ a1/2

1 u ε‖20,Ω1
+ ‖ a1/2

2 εu ε‖20,Ω2
+ α‖u ε, 1 · n‖2L2(Γ)

}
≤ ‖ a1/2

1 u1‖20,Ω1
+ ‖ a1/2

2 ũ 2‖20,Ω2
+ α ‖u1 · n‖2L2(Γ)

≤ lim inf
ε→0

{
‖ a1/2

1 u ε‖20,Ω1
+ ‖ a1/2

2 εu ε‖20,Ω2
+ α‖u ε, 1 · n‖2L2(Γ)

}
. (3.4.29)

But since these norms converge to their value at the weak limit, it follows that the con-

vergence is strong in the indicated norm.

Theorem 3.4.1. Under the assumptions of Theorem 3.3.1 and (3.4.26), we have strong

convergence

u ε, 1 → u1 in L2(Ω 1), εu ε, 2 → u 2 in L2(Ω 2), (3.4.30a)

p ε, 1 → p1 in H1(Ω 1), and p ε, 2 → p 2 in H1(Ω 2). (3.4.30b)
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4 STATIONARY DARCY-STOKES SCALED MODEL OF
CHANNELED FLOW GRADIENT FORMULATION

4.1 Introduction

Consider the flow of a single phase incompressible viscous fluid through a system

composed of two regions, the first being a porous structure and the second being an

adjacent open channel, possibly a macropore, an isolated cavity, or a connected fracture

system. Both regions are saturated with the fluid, and we need to prescribe the stress

and flow couplings on the interface between the Darcy flow in the porous medium and the

Stokes flow in the open channel.

The disjoint regions Ω 1 and Ω ε
2 in IR3 share the common interface, Γ ≡ ∂Ω 1 ∩ ∂Ω ε

2

and Ω ε
2 ≡ Γ × (0, ε) i.e. the fracture Ω ε

2 has a cylindrical geometry. The first region

Ω 1 is the fully-saturated porous matrix structure, and the second region Ω ε
2 is the fluid-

filled macro-void system. Here we denote by n the unit normal vector on the boundaries,

directed out of Ω 1 and into Ω ε
2. The derivative with respect to time will be denoted by a

superscript dot.

4.1.1 The Equations

The laminar flow of an incompressible viscous fluid through the porous medium Ω 1

is described by the Darcy system

∇ · v1 = h1(x, t) , (4.1.1a)

Qv1 + ∇p1 = 0 , (4.1.1b)

a conservation equation for fluid mass and Darcy’s law for the filtration velocity or fluid

flux v1. Here p1 is the pressure of the fluid in the pores. The conductivity tensor Q is the

reciprocal of the permeability of the structure, times the shear viscosity of the fluid.

The slow flow of an incompressible viscous fluid in the adjacent open channel Ω ε
2 is
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described by the incompressible Stokes system [Tem79, SP80]

∇ · v 2 = 0 (4.1.2a)

−∇ · σ 2 + ∇p 2 = f2 (4.1.2b)

σ 2 = 2 ε µD(v 2) , in Ω ε
2 (4.1.2c)

where v 2 is the velocity of the fluid and p 2 is the pressure of the fluid in Ω ε
2. Amongst

the above equations only two of them are constitutive. Darcy’s law (4.1.1b) describes

the fluid on a piece of the domain that is not subject to change with respect to the

thickness of the channel, therefore it is not subject to scaling. The law (4.1.2c) describes

the relationship between rate of strain tensor and stress for the fluid in the thin channel

and µ is the viscosity; it is a constitutive law therefore it is subject to scaling according

to the geometry. Finally, we recall that whenever ∇ · v 2 = 0 we have

∇ · σ 2 = ∇ ·
[
2 ε µD

(
v 2
)]

= ε µ∇ ·∇v 2 (4.1.3)

This observation transforms (4.1.2) in the classical Stokes flow.

4.1.2 Interface Conditions

The objectives in Section 2 are to describe a physically consistent set of interface

conditions which couple these systems together in a variational statement modeling a

mathematically well-posed boundary-value problem. The interface coupling conditions

recognize the conservation of mass and total momentum. Thus, they will include the

continuity of the normal fluid flux and account for the stress. These include the dependence

of the Darcy flux on the increment of normal stress at the interface and the effect of the

tangential component of stress on the velocity increment at the interface. The former is

the classical Robin boundary condition, and the latter is the slip condition of Beavers-

Joseph-Saffman.

The description of a free fluid in contact with a rigid but porous solid matrix requires

a means to couple the slow flow to the upscaled Darcy filtration. Since a Stokes system
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is used for the free fluid, we have two distinct scales of hydrodynamics, and these are

represented by two different systems of partial differential equations. Fluid conservation

is a natural requirement at the interface, and other classically assumed conditions such

as continuity of pressure or vanishing tangential velocity of the viscous fluid have been

investigated [ESP75, LSP75], but these issues have been controversial. See the discussion

on p. 157 of [SP80]. In fact, one can even question the location of the interface, since

the porous medium itself is already a mixture of fluid and solid. Moreover, Beavers and

Joseph [BJ67] discovered that fluid in contact with a porous medium flows faster along

the interface than a fluid in contact with a solid surface: there is a substantial slip of the

fluid at the interface with a porous medium. They proposed that the normal derivative

of the tangential component of fluid velocity vT satisfy

∂

∂ n
vT =

γ√
K

(v 2
T − v 1

T )

where K is the permeability of the porous medium, γ is the slip rate coefficient and v 2
T is

the tangential Stokes velocity on the interface while v 1
T is the tangential Darcy velocity

also on the interface. This condition was developed further in [Saf71, Jon73], and a

substantial rigorous investigation of such interface conditions was given in [JM96, JM00].

See [DAN99, McK01] for an excellent discussion, [ASD94, DKGG96, WJLY03, ABar,

TAJ04] for numerical work, [PS98] for dependence on the slip parameter, and [AL06]

for homogenization results on related problems. Later, Saffman realized that the Darcy

velocity of the fluid could be neglected and stated that the tangential stress is proportional

to the tangential velocity on the interface this is the so called Beavers-Joseph-Saffman

σ 2
T = γ

√
Qv 2

T .

Finally in the present work assuming that the velocity is curl-free on the interface we give

an equivalent version of this condition by

ε
∂

∂ n
v 2
T = ε

∂

∂ xN
v 2
T = ε 2γ

√
Qv 2

T . (4.1.4a)

Where the left hand side of the expression above express the tangential stress on a curl-

free surface and on a flat horizontal interface the normal derivative becomes the derivative
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with respect to the third component. Finally ε 2 is a scaled destined to balance out the

geometric singularity introduced by the thinness of the channel.

We continue with the mass-conservation requirement that the normal fluid flux

be continuous across the interface. The solution is required to satisfy the admissability

constraint

v1 · n = v 2 · n (4.1.4b)

for the conservation of fluid mass across the interface. The Darcy flow across Γ is driven

by the difference between the total normal stress of the fluid and the pressure internal to

the porous medium according to

σ 2
n − p 2 + p1 = αv1 · n .

The constant α ≥ 0 is the fluid entry resistance. This last conditions expressed in terms

of the rate of strain tensor and recalling the scales we have

ε

(
∂ v 2

∂ n
· n
)
− p 2 + p1 = ε

∂ v 2
N

∂ xN
− p 2 + p1 = αv1 · n (4.1.4c)

We shall show that the interface conditions (4.1.4) together with adequate boundary

conditions suffice precisely to couple the Darcy system (4.1.1) in Ω 1 to the Stokes system

(4.1.2) in Ω ε
2.

4.1.3 Boundary Conditions

We choose the boundary conditions on ∂ Ω 1 ∪ ∂ Ω ε
2 − Γ in a classical simple form,

since they play no essential role here. On the exterior boundary of the porous medium,

∂ Ω 1 − Γ, we shall impose null flux conditions, v1 · n = 0.

On the exterior boundary of the free fluid, ∂ Ω 2 − Γ, we impose no-slip conditions

on the wall of the cylinder Ω ε
2 = Γ × (0, ε), i.e. v = 0 on ∂ Γ × (0, ε). On the top

to the cylinder we have a mixed boundary condition: a Neumann-type condition on the

tangential component of the normal derivative of the velocity

∂ v 2

∂ n
−
(
∂ v 2

∂ n
· n
)

n =
∂ v 2

T

∂ xN
= 0 on Γ + ε (4.1.5)
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The above condition is actually a statement on the tangential stress. Besides there is a

non-flux, we have:

v 2 · n = v 2
N = 0 on Γ + ε (4.1.6)

Where Γ + ε ≡ {(x̃, ε) : x̃ ∈ Γ}

4.1.4 Preliminaries

Standard function spaces will be used [Ada75, Tem79]. Let Ω be a smoothly bounded

region in IR3 with boundary Γ = ∂Ω. Let H 1(Ω) be the Sobolev space consisting of those

functions in L2(Ω) having each of their partial derivatives also in L2(Ω). The trace map

or restriction to the boundary is the continuous linear map γ : H 1(Ω) → L2(Γ) defined

by γ(w) = w|Γ. Corresponding spaces of vector-valued functions will be denoted by

boldface symbols. For example, we denote the product space L2(Ω)3 by L2(Ω) and the

corresponding triple of Sobolev spaces by H 1(Ω) ≡ H 1(Ω)3. We shall also use the space

L2
div(Ω) of vector functions L2(Ω) whose divergence belongs to L2(Ω). Recall that for the

functions w ∈ L2
div(Ω) there is a normal trace defined on the boundary, and this is denoted

by w · n, since it takes this value on the smooth functions w in L2
div(Ω).

We adopt the convention that repeated indices are summed. In particular, the

scalar product of two vectors is v · w = viwi, and that of two second-order tensors is

σ : τ = σijτij . Let n = {ni} be the unit normal vector on a surface. For a vector w, we

denote the normal projection wn = w · n and the tangential component wT = w − wnn.

Likewise for a tensor τ , we have its value at n, τ(n) ≡ {τij ni} ∈ IR3, and its normal and

tangential parts τ(n)(n) = τn = τijninj , τT = τ(n)− τnn .

For an element x = (x 1, . . . , xN−1, xN ) ∈ IRN we denote by x̃ = (x 1, . . . , xN−1) ∈

IRN−1 the first N−1 components. For a vector function w : IRN → IRN we define wT the

first N − 1 components and wN the last component of the function. Finally ∇T denotes

de IRN−1-gradient in directions tangent to Γ, i.e. ∇T = ( ∂
∂ x 1

, . . . , ∂
∂ xN−1

).
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4.1.5 The weak formulation

We want to construct an appropriate variational formulation of the the Darcy system

(4.1.1) coupled by the interface conditions (4.1.4) to the Stokes system (4.1.2). Consider

now the spaces:

V1 ≡
{
v ∈ L2

div(Ω1) : v · n = 0 on ∂ Ω1 − Γ
}

V ε
2 ≡

{
v ∈ H1(Ω ε

2) : v = 0 on ∂ Γ× (0, ε), v · n = 0 on Γ + ε
}

X ε ≡
{

[ v1,v2 ] ∈ V1 ×Vε
2 : v1 · n = v2 · n on Γ

}
Yε ≡ L2

0(Ω1)× L2
0(Ω ε

2)

Where L 2
0 (U) =

{
p ∈ L 2(U) :

∫
U p dx = 0

}
for any U ⊂ IRN open.

Multiply the Darcy law by a test function w1 ∈ V ε
1 and the momentum equation

by w 2 ∈ V ε
2 integrate and obtain:

∫
Ω1

(
Qv1 ·w1 − p δ :D

(
w1
) )

dx+
∫

Ω ε
2

(
ε µ∇v 2 − p δ

)
:∇w 2 dx

+
∫

Γ

(
p1 n ·w1 + ε

(
∇v 2 n

)
·w 2 − p 2

(
w 2 · n

))
dS =

∫
Ω ε

2

f 2 ·w 2 dx

For test functions satisfying the admissibility constraint (4.1.4b), i.e w1 · n = w 2 · n on

Γ, the interface integral reduces to∫
Γ

(
ε
∂ v
∂ n
·w 2 +

(
p1 − p 2

) (
w 2 · n

))
dS

Moreover, decomposing the velocity terms into their normal and tangential components,

we obtain: ∫
Γ

{
ε

(
∂ v
∂ n

)
T

·wT
2 +

(
ε

(
∂ v
∂ n
· n
)

+ p1 − p 2

) (
w 2 · n

)}
dS

and then, the interface conditions (4.1.4a) and (4.1.4c) yield:∫
Γ
ε 2 γ

√
Qv 2

T ·wT
2 dS + α

∫
Γ

(
v1 · n

) (
w1 · n

)
dS

Finally, multiply the fluid conservation equations by test functions ϕ1 ∈ L2(Ω 1), ϕ2 ∈

L2(Ω ε
2), integrate over the corresponding regions and add to obtain the second of two
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variational statements.

Find [ v ε, p ε ] ∈ Xε ×Yε such that :

∫
Ω1

(
Qv1, ε ·w1 − p1, ε ∇ ·w1

)
dx+

∫
Ω ε

2

(
ε µ∇v 2, ε − p 2, εδ

)
:∇w 2 dx̃dxN

+ α

∫
Γ

(
v1, ε · n

) (
w1 · n

)
dS +

∫
Γ
ε 2 γ
√
Q v 2, ε

T ·wT
2 dS

=
∫

Ω ε
2

f 2, ε ·w 2 dx̃ dxN (4.1.7a)

∫
Ω1

∇ · v1, ε ϕ1 dx+
∫

Ω ε
2

∇ · v 2, ε ϕ2 dx̃ dxN =
∫

Ω1

h1, ε ϕ1 dx. (4.1.7b)

for all [w,Φ] ∈ Xε ×Yε

Where it is understood that v ε =
[
v1, ε,v 2, ε

]
, p ε =

[
p1, ε, p 2, ε

]
, w =

[
w1,w2

]
and

Φ =
[
ϕ1, ϕ2

]
.

4.1.6 The mixed formulation

We write the resolvent system on a product of two spaces so that it is realized as a

saddle point problem. We define the operators:

A ε =

 Q+ γ′n αγn 0

0 ε 2 γ′T γ
√
QγT + ε (∇)′ µ∇

 (4.1.8)

B ε =

 ∇ · 0

0 ∇ ·

 =

 div 0

0 div

 (4.1.9)

And the resolvent system is obtained in the form

[ v, p ] ∈ X ε ×Y ε : A ε v − (B ε)′ p = f (4.1.10)

B ε v = h (4.1.11)

for the unknowns v ≡ [ v1,v 2 ] ∈ Xε, p ≡ [ p1, p 2 ] ∈ Y ε. This formulation requires a

closed range condition on the operator B, and it provides a natural and well established

approach to the numerical approximation of such problems. In addition, the estimates

provide a means to establish the relation with the singular limits below.
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Lemma 4.1.1. The operator A ε is X ε-coercive over X ε ∩Ker(B).

Proof. The form A ε v (v) +
∫

Ω1
(∇ · v) 2 is X ε-coercive, and ∇ · v |Ω1 = 0 if v ∈ Ker(B).

Lemma 4.1.2. B ε has closed range.

Proof. Since H1
0(Ω ε) ⊆ X and ‖v ‖X ≤ C ‖v ‖H1

0(Ω ε) we have:

inf
ϕ∈L 2

0(Ω ε)
sup
v∈X

B ε v (ϕ)
‖v ‖X ‖ϕ ‖L2

0(Ω ε)

≥ 1
C

inf
ϕ∈L 2

0(Ω ε)
sup

v∈H1
0(Ω ε)

B ε v (ϕ)
‖v ‖H1

0(Ω ε) ‖ϕ ‖L2(Ω ε)

and this last term corresponds to the Stokes problem and is known to be ≥ c > 0.

According to the theory for problems in mixed formulation [GR79b] the problem

(4.1.10) is well-posed.

4.1.7 Fixing a Domain of Reference

So far the sequence of solutions {[ v ε, p ε ] : ε > 0} to the problem (4.1.10) have dif-

ferent geometric domains of definition and therefore no convergence statements can be

established. On the other hand the a-priori estimates given from the well-posedness of

the problem (4.1.10) depend on the geometry where the problem is defined. Therefore a

domain of reference must be found; since the only part that is changing is the thickness

of the channel it suffices to make a change of variable on such region.

Let x = (x̃, xN ) ∈ Ω ε
2, define xN = ε z and notice ∂

∂xN
= 1

ε
∂
∂z and for any w ∈ V2

notice the changes on the structure of the gradient and divergence respectively:

∇w (x̃, xN ) =

 [ ∇T wT ] ε−1 ∂zwT

( ∇T wN )′ ε−1 ∂zwN

 (x̃, z) (4.1.12)

∇ ·w (x̃, xN ) =
(

∇T · wT +
1
ε
∂zwN

)
(x̃, z) (4.1.13)

Taking in consideration (4.1.12), (4.1.13) and combining it with (4.1.7) we conclude a

family of ε-problems in a domain of definition given by Ω ≡ Ω 1 ∪Ω 2, where Ω 1,Ω 2 ⊆ IR3
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bounded open sets, with Ω 2 ≡ Γ× (0, 1), Γ = ∂Ω 1 ∩ ∂Ω 2 ⊆ IR2. The test spaces are fixed

and given by:

V1 ≡
{
v ∈ L2

div(Ω 1) : v · n = 0 on ∂Ω1 − Γ
}

V2 ≡
{
v ∈ H1(Ω 2) : v = 0 on ∂Γ× (0, 1), v · n = 0 on Γ + 1

}
X ≡

{
[ v1,v2 ] ∈ V1 ×V2 : v1 · n = v2 · n on Γ

}
Y ≡ L2

0 (Ω 1)× L2
0 (Ω 2)

Where Γ + 1 ≡ {(x̃, 1) : x̃ ∈ Γ}. The problem (4.1.7) in this common domain of reference

is given by:

Find [v ε, p ε] ∈ X×Y such that :

∫
Ω1

Qv1, ε ·w1 dx−
∫

Ω1

p1, ε ∇ ·w1 dx

− ε
∫

Ω2

p 2, ε ∇T ·wT
2 dx̃ dz −

∫
Ω2

p 2, ε ∂zw 2
N dx̃ dz

+ ε 2

∫
Ω2

µ∇T v 2, ε
T : ∇T wT

2 dx̃ dz +
∫

Ω2

µ∂zv
2, ε
T · ∂zwT

2 dx̃ dz

+ ε 2

∫
Ω2

µ∇Tv
2, ε
N ·∇Tw 2

N dx̃ dz +
∫

Ω2

µ∂zv
2, ε
N ∂zw 2

N dx̃ dz

+ α

∫
Γ

(
v1, ε · n

) (
w1 · n

)
dS + ε 2

∫
Γ
γ
√
Qv 2, ε

T ·wT
2 dS

= ε

∫
Ω2

f 2, ε ·w 2 dx̃ dz (4.1.14a)

∫
Ω1

∇ · v1, εϕ1 dx+ ε

∫
Ω2

∇T · v 2, ε
T ϕ2 dx̃ dz

+
∫

Ω2

∂zv
2, ε
N ϕ2 dx̃ dz =

∫
Ω1

h1, ε ϕ1 dx. (4.1.14b)

for all [w,Φ] ∈ X×Y

4.1.8 The Strong Problem on the Domain of Reference

After integrating by parts and recovering boundary and interface conditions, the

problem (4.1.14) is the weak solution of the following strong problem:

Qv1, ε + ∇p1, ε = 0 , (4.1.15a)
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∇ · v1, ε = h 1, ε in Ω 1 (4.1.15b)

ε∇T p
2, ε − ε 2 ∇T · µ∇T v 2, ε

T − ∂z µ∂z v
2, ε
T = ε f 2, ε

T , (4.1.15c)

∂z p
2, ε − ε 2 ∇T · µ∇Tv

2, ε
N − ∂z µ∂zv

2, ε
N = ε f 2, ε

N , (4.1.15d)

ε∇T · v 2, ε
T + ∂zv

2, ε
N = 0 in Ω2 (4.1.15e)

ε µ ∂z v
2, ε
N − p 2, ε + p1, ε = αv1, ε · n , (4.1.15f)

ε µ
∂ v 2, ε

τ

∂ n
= ε µ ∂z v

2, ε
T = ε 2γ

√
Qv 2, ε

T , (4.1.15g)

v1, ε · n = v 2, ε · n on Γ (4.1.15h)

v1, ε · n = 0 on ∂Ω1 − Γ (4.1.15i)

v 2, ε = 0 on ∂Γ× (0, 1) (4.1.15j)

v 2, ε · n = v 2, ε
N = 0 , (4.1.15k)

µ
∂ v 2, ε

τ

∂ n
= µ∂z v

2, ε
T = 0 on Γ + 1 (4.1.15l)

4.2 The a-priori Estimates

In order to compute the a-priori estimates test (4.1.14a) with w = vε and (4.1.14b)

with Φ = pε and add them together in order to get rid of the terms that are not necessarily

positive (mixed terms) to end up with:

∫
Ω1

Qv1, ε · v1, ε dx

+
∫

Ω2

µ∇T

(
εv 2, ε

T

)
: ∇T

(
εv 2, ε

T

)
dx̃ dz +

∫
Ω2

µ∂zv
2, ε
T · ∂zv

2, ε
T dx̃ dz

+ ε 2

∫
Ω2

µ∇Tv
2, ε
N ·∇Tv

2, ε
N dx̃ dz +

∫
Ω2

µ∂zv
2, ε
N ∂zv

2, ε
N dx̃ dz

+ α

∫
Γ

(
v1, ε · n

) (
v1, ε · n

)
dS +

∫
Γ
ε 2 γ
√
Qv 2, ε

T · v
2, ε
T dS

= ε

∫
Ω2

f 2, ε · v 2, ε dx̃ dz +
∫

Ω1

h1, ε p1, ε dx (4.2.16)
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Assume for the respective coefficients to be positive and bounded from below and above,

and for the tensors involved to be uniformly elliptic, assume α > 0 . Finally, apply the

Cauchy-Schwartz inequality to the right hand side and conclude the following estimate:

∥∥v1, ε
∥∥ 2

0,Ω1
+
∥∥∥ ∇T

(
εv 2, ε

T

)∥∥∥ 2

0,Ω2

+
∥∥∥ ∂zv 2, ε

T

∥∥∥ 2

0,Ω2

+
∥∥∥ ε∇Tv

2, ε
N

∥∥∥ 2

0,Ω2

+
∥∥∥ ∂zv 2, ε

N

∥∥∥ 2

0,Ω2

+
∥∥∥v 2, ε

N

∥∥∥ 2

0,Γ
+
∥∥∥ εv 2, ε

T

∥∥∥ 2

0,Γ

≤ 1
k

(∥∥ f 2, ε
∥∥

0,Ω2

∥∥ εv 2, ε
∥∥

0,Ω2
+
∫

Ω1

h1, ε p1, ε dx

)
(4.2.17)

The summand involving an integral needs a special treatment in order to get the a-priori

estimate.∫
Ω1

h1, ε p1, ε dx ≤
∥∥ p1, ε

∥∥
0,Ω1

∥∥h 1, ε
∥∥

0,Ω1
≤ C

∥∥∇ p1, ε
∥∥

0,Ω1

∥∥h 1, ε
∥∥

0,Ω1

=
∥∥Qv1, ε

∥∥
0,Ω1

∥∥h 1, ε
∥∥

0,Ω1
≤ C̃

∥∥v1, ε
∥∥

0,Ω1
(4.2.18)

The second inequality holds since
∫

Ω 1
p1, ε dx = 0 the equality is due to (4.1.15a) and

the third inequality because the tensor Q is bounded and so is the family of sources

{h1, ε : ε > 0 } ⊂ L 2(Ω 1).

Poincare-type inequalities

We need to control the L2(Ω 2)-norm of v 2, ε. For this we use the fundamental

theorem of calculus and the trace on the interface Γ, we have

∥∥v 2, ε
∥∥

0,Ω 2
≤
∥∥ ∂ z v 2, ε

∥∥
0,Ω 2

+ 2 ‖v 2, ε ‖ 0,Γ (4.2.19)

Combining (4.2.18) and (4.2.19) in (4.2.17) we have:

∥∥v1, ε
∥∥ 2

0,Ω1
+
∥∥∥ ∇T

(
εv 2, ε

T

)
)
∥∥∥ 2

0,Ω2

+
∥∥∥ ∂zv 2, ε

T

∥∥∥ 2

0,Ω2

+
∥∥∥ ε∇Tv

2, ε
N

∥∥∥ 2

0,Ω2

+
∥∥∥ ∂zv 2, ε

N

∥∥∥ 2

0,Ω2

+
∥∥∥v 2, ε

N

∥∥∥ 2

0,Γ
+
∥∥∥ εv 2, ε

T

∥∥∥ 2

0,Γ

≤ C
[∥∥ f 2, ε

∥∥
0,Ω2

(∥∥ ∂ z (εv 2, ε
) ∥∥

0,Ω 2
+ 2

∥∥ (εv 2, ε
) ∥∥

0,Γ

)
+ C̃

∥∥v1, ε
∥∥

0,Ω1

]
≤ Ĉ

(∥∥∥ ∂ z v 2, ε
T

∥∥∥
0,Ω 2

+
∥∥ ∂ z v 2, ε

∥∥
0,Ω 2

+
∥∥∥ εv 2, ε

T

∥∥∥
0,Γ

+
∥∥∥v 2, ε

N

∥∥∥
0,Γ

+
∥∥v1, ε

∥∥
0,Ω1

)
(4.2.20)
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Using the equivalence of norms ‖ · ‖ 1 , ‖ · ‖ 2 for 5-D vectors.

∥∥v1, ε
∥∥ 2

0,Ω1
+
∥∥∥ ∇T

(
εv 2, ε

T

)
)
∥∥∥ 2

0,Ω2

+
∥∥∥ ∂zv 2, ε

T

∥∥∥ 2

0,Ω2

+
∥∥∥ ε∇Tv

2, ε
N

∥∥∥ 2

0,Ω2

+
∥∥∥ ∂zv 2, ε

N

∥∥∥ 2

0,Ω2

+
∥∥∥v 2, ε

N

∥∥∥ 2

0,Γ
+
∥∥∥ εv 2, ε

T

∥∥∥ 2

0,Γ

≤ C ′
{∥∥∥ ∂ z v 2, ε

T

∥∥∥ 2

0,Ω 2

+
∥∥ ∂ z v 2, ε

∥∥ 2

0,Ω 2
+
∥∥∥ εv 2, ε

T

∥∥∥ 2

0,Γ
+
∥∥∥v 2, ε

N

∥∥∥ 2

0,Γ
+
∥∥v1, ε

∥∥ 2

0,Ω1

}1/2

≤ C
{∥∥v1, ε

∥∥ 2

0,Ω1
+
∥∥∥ ∇T

(
εv 2, ε

T

)∥∥∥ 2

0,Ω2

+
∥∥∥ ∂zv 2, ε

T

∥∥∥ 2

0,Ω2

+
∥∥∥ ε∇Tv

2, ε
N

∥∥∥ 2

0,Ω2

+
∥∥∥ ∂zv 2, ε

N

∥∥∥ 2

0,Ω2

+
∥∥∥v 2, ε

N

∥∥∥ 2

0,Γ
+
∥∥∥ εv 2, ε

T

∥∥∥ 2

0,Γ

}1/2

(4.2.21)

The expression above implies, there must exist a constant K such that:

∥∥v1, ε
∥∥ 2

0,Ω1
+
∥∥∥ ∇T

(
εv 2, ε

T

)∥∥∥ 2

0,Ω2

+
∥∥∥ ∂zv 2, ε

T

∥∥∥ 2

0,Ω2

+
∥∥∥ ε∇Tv

2, ε
N

∥∥∥ 2

0,Ω2

+
∥∥∥ ∂zv 2, ε

N

∥∥∥ 2

0,Ω2

+
∥∥∥v 2, ε

N

∥∥∥ 2

0,Γ
+
∥∥∥ εv 2, ε

T

∥∥∥ 2

0,Γ
≤ K (4.2.22)

Where K is an adequate positive constant.

4.3 Convergence Statements

4.3.1 Convergence of the Velocities

Due to the general a-priori estimate (4.2.22) we assure there exists a subsequence,

still denoted {vε : ε > 0} and v ∈ L2(Ω) such that:

v1, ε → v1 weakly in L2(Ω1) (4.3.23)

εv 2, ε → v 2 weakly in H1(Ω 2) strongly in L2(Ω 2) (4.3.24)

∇T

(
εv 2, ε

T

)
→∇T v 2

T weakly in L2(Ω 2) (4.3.25)

We also identify bounded higher order terms. There must exist χ ∈ L2(Ω 2), η ∈ L2(Ω2)×

L2(Ω 2) such that:

∂zv
2, ε
N ⇀ χ ,

∥∥∥∂z ( εv 2, ε
N

)∥∥∥
0,Ω2

→ 0 (4.3.26)

∂zv
2, ε
T ⇀ η,

∥∥∥∂z ( εv 2, ε
T

)∥∥∥
0,Ω2

→ 0 (4.3.27)
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Where the weak convergence is in the sense of L2(Ω 2). Due to (4.2.19) and (4.2.22) we

know there exists ξ ∈ L2(Ω 2) such that:

v 2, ε
N ⇀ ξ ,

∥∥∥εv 2, ε
N

∥∥∥
0,Ω2

→ 0 (4.3.28)

4.3.2 Convergence of v 2, ε

Due to (4.2.22) and (4.2.19) we can consider the sequence
{
εv 2, ε

T

∣∣∣
Γ

: ε > 0
}
⊂

L2 (Γ) × L2 (Γ) as a bounded sequence, then we have that εv 2, ε
T

∣∣∣
Γ
⇀ v 2

T

∣∣
Γ

in L2 (Γ) ×

L2 (Γ). On the other hand due to (4.3.27) we have ∂z v 2 = 0, i.e

v 2
T = v 2

T (x̃) (4.3.29)

Since the traces are continuous applications on this space and using (4.3.29) we conclude

v 2
T = v 2

T |Γ ∈ H1
0 (Γ)×H1

0 (Γ).

4.3.3 Convergence and agreement of v 2, ε
N

Finally we show the agreement ∂z ξ = χ and ξ |Γ = v1 · n. For this, consider the

Hilbert space

H(∂z,Ω2) ≡ {u ∈ L 2(Ω 2) : ∂z u ∈ L 2(Ω 2)} (4.3.30)

〈u, v 〉H(∂z ,Ω2) ≡
∫

Ω2

(u v + ∂z u ∂z v ) dx (4.3.31)

Due to the estimates the sequence
{

v 2, ε
N : ε > 0

}
can not be considered as a bounded

sequence of the space H 1(Ω 2) because we do not have estimates in L 2(Ω2) × L 2(Ω 2)

for
{

∇T v 2, ε
N : ε > 0

}
. However we can still consider

{
v 2, ε
N : ε > 0

}
⊆ H(∂z,Ω2) as a

bounded sequence due to the estimates; then we conclude ∂z ξ = χ. Matter of fact the

limiting problem will be modeled on this space in the normal direction (vertical direction

in this particular case). On the other hand since the trace application v 7→ v |Γ is well-

defined and continuous in this space we conclude ξ |Γ = v1 · n |Γ. Finally we write:

v 2, ε
N

w
⇀ ξ , in H(∂z,Ω2) (4.3.32)
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Moreover, since v 2, ε
N (x̃, 1) = 0 and the trace on the faces Γ,Γ + 1 are continuous in the

space H(∂z,Ω2) we conclude:

ξ (x̃, 1) = 0 (4.3.33)

4.3.4 Convergence of p1, ε

We know from (4.1.15a) that:

∥∥∇ p1, ε
∥∥

0,Ω1
=
∥∥∥√Qv1, ε

∥∥∥
0,Ω1

≤ C

The positive constant on the inequality above comes from (4.2.22). Since
∫

Ω1
p1, ε dx = 0

we know there exists a constant C̃ > 0 such that:

∥∥ p1, ε
∥∥

1,Ω1
≤ C̃

∥∥∇ p1, ε
∥∥

0,Ω1

Combining the two inequalities above we conclude there must exist p1 ∈ H1(Ω 1)∩L 2
0 (Ω 1)

such that:

p1, ε → p1 weakly in H1(Ω 1), strongly in L2
0(Ω 1) (4.3.34)

In particular holds:

p1, ε → p1 weakly on L2(Γ) (4.3.35)

Notice that the fact that
∫

Ω1
p1 dx = 0 does not imply

∫
Γ γ (p1) dx̃ = 0. Therefore γ (p1)|Γ

will not belong necessarily to L 2
0 (Γ).

We turn now our attention to the convergence of the pressures on Ω 2

4.3.5 Convergence of p 2, ε in L2(Ω 2)

Take any φ ∈ C∞0 (Ω 2), and define now a new function:

ς(x̃, z) ≡
∫ 1

z
φ(x̃, t) dt (4.3.36)

By construction we know ‖ ς ‖ 1,Ω2 ≤ C‖φ ‖ 0,Ω2 . We know there must exist a function

w1 ∈ L2
div (Ω 1) such that w1 ·n = w 2 ·n = ς(x̃, 0) =

∫ 1
0 φ (x̃, t) dt on Γ and w 1 ·n = 0 on
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∂ Ω 1−Γ and ‖w1 ‖L2
div(Ω1) ≤ ‖ ς ‖ 0,Γ ≤ C‖φ ‖ 0,Ω2 . Take the function w 2 = (0T , ς(x̃, z)),

then [w1,w 2] ∈ X. Test, (4.1.14a) with this test function to end up with:

∫
Ω1

Qv1, ε ·w1 dx−
∫

Ω1

p1, ε ∇ ·w1 dx

+ α

∫
Γ

(
v1, ε · n

) (
w1 · n

)
dS +

∫
Ω2

p 2, ε φ(x̃, z) dx̃ dz

+ ε 2

∫
Ω2

µ∇T v 2, ε
N · ∇T ς(x̃, z) dx̃ dz −

∫
Ω2

µ∂z v
2, ε
N φ(x̃, z) dx̃ dz

= ε

∫
Ω2

f 2, ε
N ς dx̃ dz (4.3.37)

From here we conclude the following inequality an applying the Cauchy-Schwarz inequality

to the integrals we have

∣∣∣∣∫
Ω2

p 2, ε φ(x̃, z) dx̃ dz
∣∣∣∣ ≤ C1

∥∥v1, ε
∥∥

0,Ω1

∥∥w1
∥∥

0,Ω1
+
∥∥ p1, ε

∥∥
0,Ω1

∥∥∇ ·w1
∥∥

0,Ω1

+ C2

∥∥v1, ε · n
∥∥

0,Γ
‖ ς ‖ 0,Γ + εC3

∥∥∥∇T

(
εv 2, ε

N

)∥∥∥
0,Ω2

‖∇T ς(x̃, z) ‖ 0,Ω2

+ C4

∥∥∥ ∂z v 2, ε
N

∥∥∥
0,Ω2

‖φ ‖ 0,Ω2
+
∥∥∥ ε f 2, ε

N

∥∥∥
0,Ω2

‖ ς ‖ 0,Ω2

we notice all the norms depending on w1 and ς due to the construction are controlled by

the norm ‖φ ‖ 0,Ω2 . Therefore, the above expression can be reduced to

∣∣∣∣∫
Ω2

p 2, ε φ(x̃, z) dx̃ dz
∣∣∣∣ ≤ C (∥∥v1, ε

∥∥
0,Ω1

+
∥∥ p1, ε

∥∥
0,Ω1

+
∥∥v1, ε · n

∥∥
0,Γ

+ε
∥∥∥∇T

(
εv 2, ε

N

)∥∥∥
0,Ω2

+
∥∥∥ ∂z v 2, ε

N

∥∥∥
0,Ω2

+
∥∥∥ ε f 2, ε

N

∥∥∥
0,Ω2

)
‖φ ‖ 0,Ω2 ≤ C̃ ‖φ ‖ 0,Ω2

The last inequality holds since all the summands in the parenthesis are bounded due to

(4.2.22) and (4.3.34) and we assume the forcing term is bounded. Taking upper limit

when ε→ 0, on the above expression we have:

lim sup
ε ↓ 0

∣∣∣∣∫
Ω2

p 2, ε φ(x̃, z) dx̃ dz
∣∣∣∣ ≤ C̃ ‖φ ‖ 0,Ω2

(4.3.38)

Since the above holds for any φ ∈ C∞0 (Ω 2) we conclude that the sequence
{
p 2, ε : ε > 0

}
⊂

L2(Ω 2) is bounded and therefore it has a weakly convergent subsequence, i.e. there exists

p 2 ∈ L2
0(Ω 2) such that p 2, ε w

⇀ p 2 in L2
0(Ω 2).
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4.3.6 Behavior of the Normal Stress Interface Condition

We want to analyze the normal interface condition in the limit. We have already

shown that
{
p 2, ε : ε > 0

}
⊂ L2(Ω 2) is weakly convergent, therefore in (4.3.37) take limit

as ε ↓ 0 to get∫
Ω1

Qv1 ·w1 dx−
∫

Ω1

p1 ∇ ·w1 dx+ α

∫
Γ
ξ
(
w1 · n

)
dS

+
∫

Ω2

p 2 φ(x̃, z) dx̃ dz −
∫

Ω2

µ∂z ξ φ(x̃, z) dx̃ dz = 0

integrating by parts the second summand and using (4.1.15a) we get

−
∫

Γ
p1
(
w1 · n

)
+ α

∫
Γ
ξ
(
w1 · n

)
dS

+
∫

Ω2

p 2 φ(x̃, z) dx̃ dz −
∫

Ω2

µ∂z ξ φ(x̃, z) dx̃ dz = 0

recalling by construction that w1 · n |Γ =
∫ 1

0 φ (x̃, z) dz the above expression becomes

−
∫

Γ
p1 |Γ

(∫ 1

0
φ(x̃, t) dt

)
dx̃+ α

∫
Γ
ξ |Γ

(∫ 1

0
φ(x̃, t) dt

)
dx̃

+
∫

Ω2

p 2 φ(x̃, z) dx̃ dz −
∫

Ω2

µ∂z ξ φ(x̃, z) dx̃ dz = 0

Since the above holds for any φ ∈ C∞0 (Ω 2) and ξ |Γ, p1 |Γ can be understood as functions

in Ω 2 extended to the whole domain as constant with respect to z we conclude:

−p1 |Γ + α ξ |Γ + p 2 − µ∂z ξ = 0 in L2(Ω 2) (4.3.39)

4.3.7 Convergence of the Equation Terms

We want to show the agreement between v1 · n and ξ |Γ. Take any u ∈ H 1(Ω 1)

consider the identity:

−
∫

Ω1

v1, ε · ∇u dx+ 〈v1, ε · n, u〉H−1/2(Ω1), H−1/2(Ω1) =
∫

Ω1

∇ · v1, ε u dx (4.3.40)

In this specific problem we know v1, ε · n = v 2, ε · n on Γ and v1, ε · n = 0 on ∂Ω1 − Γ

then, the identity above transforms in:∫
Ω1

∇ · v1, ε u dx = −
∫

Ω1

v1, ε · ∇u dx+
∫

Γ
v 2, ε
N u dS (4.3.41)
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From (4.3.23) and (4.3.32) we know both terms on the right hand side converge, therefore

the sequence {∇ · v1, ε : ε > 0} is weakly convergent in L 2(Ω 1), this says the sequence

{v1, ε : ε > 0} is weakly convergent in L2
div(Ω 1), moreover, from (4.3.28) we conclude:∫

Ω1

∇ · v1 u dx = −
∫

Ω1

v1 · ∇u dx+
∫

Γ
( ξ |Γ ) u dS (4.3.42)

Then we conclude

v1 · n = ξ |Γ (4.3.43)

Now we can rewrite (4.3.39) as

p 2 = µ∂z ξ − αv1 · n|Γ + p1 |Γ (4.3.44)

Consider now a test function of the structure Φ = [ 0, ϕ2 ] ∈ Y, test (4.1.14b) and let

ε→ 0, we have: ∫
Ω2

∇T · v 2
T ϕ

2 dx̃ dz +
∫

Ω2

∂z ξ ϕ
2 dx̃ dz = 0

i.e.

∇T · v 2
T + ∂z ξ = c

Where c is a constant, we know v 2
T = v 2

T (x̃) then we conclude

∂z ξ = ∂z ξ (x̃) (4.3.45)

combining this with (4.3.44) we conclude:

p 2 = p 2(x̃) (4.3.46)

Finally, we notice that in (4.1.14b) in the quantifier [ w1,w 2] ∈ Y since the tangential and

normal effects are not coupled then we can replace w 2 = [wT
2,w 2

N ], by [ε−1 wT
2,w 2

N ]

and rewrite (4.1.14) as:

Find [ v ε, p ε ] ∈ X×Y such that :



61∫
Ω1

Qv1, ε ·w1 dx−
∫

Ω1

p1, ε ∇ ·w1 dx

−
∫

Ω2

p 2, ε ∇T ·wT
2 dx̃ dz −

∫
Ω2

p 2, ε ∂zw 2
N dx̃ dz

+
∫

Ω2

µ∇T

(
εv 2, ε

T

)
: ∇T wT

2 dx̃ dz +
1
ε 2

∫
Ω2

µ∂z

(
εv 2, ε

T

)
· ∂zwT

2 dx̃ dz

+ ε

∫
Ω2

µ∇T

(
εv 2, ε

N

)
·∇Tw 2

N dx̃ dz +
∫

Ω2

µ∂zv
2, ε
N ∂zw 2

N dx̃ dz

+ α

∫
Γ

(
v1, ε · n

) (
w1 · n

)
dS +

∫
Γ
γ
√
Q
(
εv 2, ε

T

)
·w2

T dS

= ε

∫
Ω2

f 2, ε ·w 2 dx̃ dz (4.3.47a)

∫
Ω1

∇ · v1, εϕ1 dx+ ε

∫
Ω2

∇T · v 2, ε
T ϕ2 dx̃ dz

+
∫

Ω2

∂zv
2, ε
N ϕ2 dx̃ dz =

∫
Ω1

h1, ε ϕ1 dx. (4.3.47b)

for all [w,Φ] ∈ X×Y

4.4 The Limiting Problem

Consider now the subspaces W ⊆ X, Λ ⊆ Y defined as follows:

W ≡ {(w1,w 2) ∈ X : w 2
T = w 2

T (x̃), ∂z w 2
N = ∂z w 2

N (x̃) }

Λ ≡ {(ϕ1, ϕ 2) ∈ Y : ϕ 2 = ϕ 2(x̃)}

Now test the problem (4.3.47) with a function of the structure [w,Φ] ∈W×Λ, we have:∫
Ω1

Qv1, ε ·w1 dx−
∫

Ω1

p1, ε ∇ ·w1 dx

−
∫

Ω2

p 2, ε ∇T ·wT
2 dx̃ dz −

∫
Ω2

p 2, ε ∂z w 2
N dx̃ dz

+
∫

Ω2

µ∇T

(
εv 2, ε

T

)
: ∇T wT

2 dx̃ dz + ε

∫
Ω2

µ∇T

(
εv 2, ε

N

)
·∇T v 2

N dx̃ dz

+
∫

Ω2

µ∂z v
2, ε
N ∂zw 2

N dx̃ dz + α

∫
Γ

(
v1, ε · n

) (
w1 · n

)
dS

+
∫

Γ
γ
√
Q
(
εv 2, ε

T

)
·wT

2 dS =
∫

Ω2

f 2, ε
T · wT

2 dx̃ dz + ε

∫
Ω2

f 2, ε
N · w 2

N dx̃ dz (4.4.48a)



62∫
Ω1

∇ · v1, ε ϕ1 dx+
∫

Ω2

∇T ·
(
εv 2, ε

T

)
ϕ2 dx̃ dz

+
∫

Ω2

∂zv
2, ε
N ϕ2 dx̃ dz =

∫
Ω1

h1, ε ϕ1 dx (4.4.48b)

Now let ε ↓ 0 to end up with:∫
Ω1

Qv1 ·w1 dx−
∫

Ω1

p1 ∇ ·w1 dx

−
∫

Ω2

p 2 ∇T ·wT
2 dx̃ dz −

∫
Ω2

p 2 ∂z w 2
N dx̃ dz

+
∫

Ω2

µ∇T v 2
T : ∇T wT

2 dx̃ dz +
∫

Ω2

µ∂z ξ ∂zw 2
N dx̃ dz

+ α

∫
Γ

(
v1 · n

) (
w1 · n

)
dS +

∫
Γ
γ
√
Qv 2

T ·wT
2 dS

=
∫

Ω2

f 2
T · wT

2 dx̃ dz (4.4.49a)

∫
Ω1

∇ · v1ϕ1 dx+
∫

Ω2

∇T ·
(
v 2
T

)
ϕ2 dx̃ dz

+
∫

Ω2

∂zξ ϕ
2 dx̃ dz =

∫
Ω1

h1 ϕ1 dx (4.4.49b)

Notice that the limit [ v, p ] /∈W × Λ since we have not proved v 2
N ∈ H1(Ω 2). Then, we

need to consider a setting where the limiting solution belongs to and the above variational

formulation makes sense. Define the following spaces:

V ≡ {w 2 = [ wT
2,w 2

N ] : wT
2 ∈

(
H1(Ω2)

)2
, wT

2 = wT
2(x̃),

wT
2 = 0 on ∂Γ, w 2

N ∈ H(∂z,Ω2) , ∂zw 2
N = ∂z w 2

N (x̃ ) , w 2
N (x̃, 1) = 0 } (4.4.50)

‖w 2 ‖V =
(
‖wT

2 ‖ 2
1,Ω2

+ ‖w 2
N ‖ 2

H(∂z ,Ω2)

)1/2
(4.4.51)

Z ≡
{

(w1,w 2) ∈ L 2
div(Ω1)×V : w1 · n = w 2

N = w 2 · n on Γ
}

(4.4.52)

Clearly W ⊆ Z and we have the following result:

Lemma 4.4.1. W is dense in Z.

Proof. Let G ⊆ IRN be an open set, we know from the theory that for every g ∈

H−1/2(∂G) there exists a function u ∈ L2
div(G) such that u · n = g and ‖u ‖L2

div(G) ≤
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K‖ g ‖H1/2(∂G). In particular if g ∈ L 2(∂G) the function u meets the estimate ‖u ‖L2
div(G) ≤

K‖ g ‖ 0, ∂G with K depending only on the domain G.

Consider now an element w = (w1,w 2) ∈ Z, then w 2 = (wT
2,w 2

N ) ∈ V with

w 2
N ∈ H(∂z,Ω2) and it is completely defined by its trace on the interface Γ. For ε > 0 take

$ ∈ H1
0 (Γ) such that ‖$−w 2

N |Γ ‖L 2(Γ) ≤ ε. Now extend the function to the whole domain

by %(x̃, z) ≡ $(x̃)(1 − z), then ‖ % − w 2
N ‖H(∂z ,Ω2) ≤ ε. The function (wT

2, %) clearly

belongs to W. By construction of % we know ‖ % |Γ −w 2
N |Γ ‖ 0,Γ = ‖$−w 2

N |Γ ‖ 0,Γ ≤ ε.

Define g = % |Γ − w 2
N |Γ ∈ L 2(Γ) and find u ∈ L2

div(Ω 1) such that u · n = g and

‖u ‖L 2
div(Ω1) ≤ C1 ‖ g ‖ 0,Γ. Then, the function w1 + u is such that (w1 + u) · n =

w1 · n + $ −w 2
N = $ and ‖w1 + u −w1 ‖L2

div(Ω1) = ‖u ‖L 2
div(Ω1) ≤ C1 ‖ g ‖ 0,Γ ≤ C1 ε.

Moreover, we notice the function (w1 + u, [ wT
2, % ]) ∈ W and due to the previous it

holds:

‖w − (w1 + u , [ wT
2, % ]) ‖Z = ‖ (w1,w 2)− (w1 + u , [ wT

2, % ]) ‖Z ≤ C1 ε

The involved constants were dependent only on the domains Ω 1,Ω 2, then we conclude W

is dense in Z as desired.

Define now the function v = ( v1, [ v 2
T , ξ ]), then it is clear that the limit [ v, p ] ∈

Z×Λ and the variational statement (4.4.49) holds true for all [w,Φ] ∈W×Λ. Since the

bilinear forms are continuous with respect to the space Z × Λ we can extend the above

variational statement by density to all test functions [w,Φ] ∈ Z × Λ and formulate the

problem as follows

Find [ v, p ] ∈ Z× Λ

∫
Ω1

Qv1 ·w1 dx−
∫

Ω1

p1 ∇ ·w1 dx

−
∫

Ω2

p 2 ∇ ·w 2 dx̃ dz +
∫

Ω2

µ∇T v 2
T : ∇T wT

2 dx̃ dz

+
∫

Ω2

µ ( ∂z ξ )
(
∂zw 2

N

)
dx̃ dz + α

∫
Γ

(
v1 · n

) (
w1 · n

)
dS

+
∫

Γ
γ
√
Q v 2

T ·w2
T dS =

∫
Ω2

f 2
T · w 2

T dx̃ dz (4.4.53a)



64∫
Ω1

∇ · v1ϕ1 dx+
∫

Ω2

∇ · [ v 2
T , ξ ] ϕ2 dx̃ dz =

∫
Ω1

h1 ϕ1 dx (4.4.53b)

for all [ w,Φ ] ∈ Z× Λ

The above problem is well-posed in mixed formulation. Define the forms

A =

 Q+ γ′n αγn 0

0
[
γ′T γ

√
QγT + (∇T )′ µ∇T , (∂z)′ µ∂z

]
 (4.4.54)

B =

 ∇· 0

0 ∇·

 =

 div 0

0 div

 (4.4.55)

And the resolvent system is obtained in the form

[ v, p ] ∈ Z× Λ : Av −B ′ p = f (4.4.56a)

B v = h (4.4.56b)

Lemma 4.4.2. The operator A is Z-coercive over Z ∩Ker(B).

Proof. The form Av (v) +
∫

Ω1
(∇ · v) 2 is Z-coercive, and ∇ ·v |Ω1 = 0 if v ∈ Ker(B).

Lemma 4.4.3. B has closed range.

Proof. For an open domain G ⊆ IRN it is a well-known fact that for any ϕ ∈ L 2
0(G) there

exists u ∈ (H1
0(G) )N such that:

∇ · u = ϕ

‖u ‖1, G ≤ c ‖ϕ ‖ 0, G

where the constant c > 0 depends only on the domain G.

Now choose Φ = [ϕ1, ϕ 2 ] ∈ Λ, due to the previous result and since ϕ 2 = ϕ 2(x̃ ) ∈

L2(Γ) we know there exist a couple of functions u1 ∈ H 1
0 (Ω 1) and u 2

T ∈ H1
0 (Γ)×H1

0 (Γ)

such that ∇ · u1 = ϕ1, ∇T · u 2
T = ϕ 2 |Γ, and ‖u1 ‖1,Ω1 ≤ c1 ‖ϕ1 ‖ 0,Ω1 , ‖u2

T ‖1,Γ ≤

c 2 ‖ϕ 2 |Γ ‖ 0,Γ = c 2 ‖ϕ 2 ‖ 0,Ω2 . Extend the function u 2
T to H 1

0 (Ω 2) × H 1
0 (Ω 2) in the
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trivial way and denote it in the same way. Consider the function u =
(
u1, [ u 2

T , 0 ]
)
,

clearly this function belongs to the space Z and

‖u ‖Z ≤ C
(
‖u1 ‖ 2

1,Ω1
+ ‖u 2

T ‖ 2
1,Ω2

)1/2 ≤ C̃ (‖ϕ1 ‖ 2
0,Ω1

+ ‖ϕ 2 ‖ 2
0,Ω2

)1/2
Where C̃ depends on the domains Ω1,Γ and the equivalence of norms for 2-D vectors, and

it is independent from Φ ∈ Λ.

Consider now the following inequalities

sup
w∈Z

∫
Ω Φ ∇ ·w dx

‖w ‖Z
≥
∫

Ω1
ϕ1 ∇ · u1 dx+

∫
Ω2
ϕ 2 ∇T · u2

T dx̃ dz

‖u ‖Z

≥ 1

C̃

‖ϕ1 ‖ 2
0,Ω1

+ ‖ϕ 2 ‖ 2
0,Ω2

(‖ϕ1 ‖ 2
0,Ω1

+ ‖ϕ 2 ‖ 2
0,Ω2

)1/2

=
1

C̃

(
‖ϕ1 ‖ 2

0,Ω1
+ ‖ϕ 2 ‖ 2

0,Ω2

)1/2 =
1

C̃
‖Φ ‖ 0,Ω , ∀Φ ∈ Λ

From the two lemmas above and from theory of problems in mixed formulation

[GR79b] we know (4.4.56) is well-posed.

4.4.1 Dimensional Reduction

Notice that the space V has the property ∂z w 2
N = ∂z w 2

N (x̃) = −w 2
N (x̃, 0), since

w 2
N (x̃, 1) = 0. Consider now the statement (4.4.53) written as:

Find [ v, p ] ∈ Z× Λ

∫
Ω1

Qv1 ·w1 dx−
∫

Ω1

p1 ∇ ·w1 dx

−
∫

Ω2

p 2 ∇T ·wT
2 dx̃ dz −

∫
Ω2

p 2 ∂z w 2
N dx̃ dz

+
∫

Ω2

µ∇T v 2
T : ∇T wT

2 dx̃ dz

+
∫

Ω2

µ ( ∂z ξ )
(
∂zw 2

N

)
dx̃ dz + α

∫
Γ

(
v1 · n

) (
w1 · n

)
dS

+
∫

Γ
γ
√
Q v 2

T ·w2
T dS =

∫
Ω2

f 2
T · wT

2 dx̃ dz



66∫
Ω1

∇ · v1ϕ1 dx+
∫

Ω2

∇T · v 2
T ϕ

2 dx̃ dz +
∫

Ω2

∂z ξ ϕ
2 dx̃ dz =

∫
Ω1

h1 ϕ1 dx

for all [ w,Φ ] ∈ Z× Λ

introducing the previous observation in the statement above and simplifying the integrals

for the functions not dependent on the variable z we have the formulation:

Find [ v, p ] ∈ Z× Λ

∫
Ω1

Qv1 ·w1 dx−
∫

Ω1

p1 ∇ ·w1 dx

−
∫

Γ
p 2 ∇T ·wT

2 dx̃+
∫

Γ
p 2 w 2

N (x̃, 0) dx̃

+
∫

Γ
µ∇T v 2

T : ∇T wT
2 dx̃

+
∫

Γ
µ ξ(x̃, 0) w 2

N (x̃, 0) dx̃+ α

∫
Γ

(
v1 · n

) (
w1 · n

)
dS

+
∫

Γ
γ
√
Q v 2

T ·w2
T dS =

∫
Γ
f 2
T · wT

2 dx̃ ,

∫
Ω1

∇ · v1 ϕ1 dx+
∫

Γ
∇T · v 2

T ϕ
2 dx̃−

∫
Γ
ξ(x̃, 0)ϕ2 dx̃ =

∫
Ω1

h1 ϕ1 dx

for all [ w,Φ ] ∈ Z× Λ

Taking in consideration (4.3.43) and recalling that w 2
N (x̃, 0) = w 2 ·n = w1 ·n we rewrite

the problem as:

Find [ v, p ] ∈ Z× Λ

∫
Ω1

Qv1 ·w1 dx−
∫

Ω1

p1 ∇ ·w1 dx+ (µ+ α )
∫

Γ

(
v1 · n

) (
w1 · n

)
dx̃

+
∫

Γ
p 2
(
w1 · n

)
dx̃−

∫
Γ
p 2 ∇T ·wT

2 dx̃

+
∫

Γ
µ∇T v 2

T : ∇T wT
2 dx̃ +

∫
Γ
γ
√
Q v 2

T ·w2
T dS =

∫
Γ
f 2
T · wT

2 dx̃ (4.4.59a)

∫
Ω1

∇ · v1 ϕ1 dx−
∫

Γ

(
v1 · n

)
ϕ 2 dx̃+

∫
Γ

∇T · v 2
T ϕ

2 dx̃ =
∫

Ω1

h1 ϕ1 dx (4.4.59b)

for all [ w,Φ ] ∈ Z× Λ
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Consider now the space

H ≡
{

w 2 = [ wT
2,w 2

N ] : wT
2 ∈

(
H1(Γ)

)2
, wT

2 = 0 on ∂Γ,w 2
N ∈ L2(Γ)

}
(4.4.60)

‖w 2 ‖H ≡
(
‖wT

2 ‖ 2
1,Γ + ‖w 2

N ‖ 2
0,Γ

)1/2 (4.4.61)

Notice that the space V is isomorphic to the space H and the application is given by

ι : V→ H

w 2 = [ wT
2,w 2

N ] 7→ [ wT
2,w 2

N (x̃, 0) ]

Define now the space E as follows

E ≡
{

(w1,w 2) ∈ L2
div(Ω 1)×H : w1 · n = w 2

N = w 2 · n on Γ
}

(4.4.62)

Then it is clear that the spaces Z and E are isomorphic too. Finally, for the pressures

define the space

Π ≡ L 2
0 (Ω 1)× L 2

0 (Γ) (4.4.63)

Clearly the spaces Π and Λ are isomorphic. Thus we can rewrite the statement (4.4.59)

as follows:

Find [ v, p ] ∈ E×Π

∫
Ω1

Qv1 ·w1 dx−
∫

Ω1

p1 ∇ ·w1 dx+ (µ+ α )
∫

Γ

(
v1 · n

) (
w1 · n

)
dx̃

+
∫

Γ
p 2
(
w1 · n

)
dx̃−

∫
Γ
p 2 ∇T ·wT

2 dx̃

+
∫

Γ
γ
√
Q v 2

T ·wT
2 dx̃+

∫
Γ
µ∇T v 2

T : ∇T wT
2 dx̃ =

∫
Γ
f 2
T · wT

2 dx̃ (4.4.64a)

∫
Ω1

∇ · v1 ϕ1 dx−
∫

Γ

(
v1 · n

)
ϕ2 dx̃+

∫
Γ

∇T · v 2
T ϕ

2 dx̃ =
∫

Ω1

h1 ϕ1 dx (4.4.64b)

for all [ w,Φ ] ∈ E×Π

We show now this problem is well-posed in mixed formulation.
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Well-Posedeness of Reduced Limiting Problem

Consider the forms

A =

 Q+ γ′n (µ+ α ) γn 0

0 γ
√
Q+ (∇T )′ µ∇T

 (4.4.65)

B =

 ∇· 0

−γn ∇T ·

 =

 div 0

−γn divT

 (4.4.66)

And the resolvent system is obtained in the form

[ v, p ] ∈ E×Π : Av −B ′ p = f (4.4.67a)

B v = h (4.4.67b)

Lemma 4.4.4. The operator A is E-coercive over E ∩Ker(B).

Proof. The form Av (v) +
∫

Ω1
(∇ · v) 2 is E-coercive, and ∇ ·v |Ω1 = 0 if v ∈ Ker(B).

Lemma 4.4.5. B has closed range.

Proof. For an open domain G ⊆ IRN it is a well-known fact that for any ϕ ∈ L 2
0(G) there

exists u ∈ (H1
0(G) )N such that:

∇ · u = ϕ

‖u ‖1, G ≤ c ‖ϕ ‖ 0, G

where the constant c > 0 depends only on the domain G.

Now choose Φ = [ϕ1, ϕ 2 ] ∈ Π, due to the previous result and since ϕ 2 = ϕ 2(x̃ ) ∈

L2(Γ) we know there exist a couple of functions u1 ∈ H 1
0 (Ω 1) and u 2

T ∈ H 1
0 (Γ) ×

H 1
0 (Γ) such that ∇ · u1 = ϕ1, ∇T · u 2

T = ϕ 2, and ‖u1 ‖1,Ω1 ≤ c1 ‖ϕ1 ‖ 0,Ω1 , ‖u 2
T ‖1,Γ ≤

c 2 ‖ϕ 2 ‖ 0,Γ. Consider the function u =
(
u1, [ u 2

T , 0 ]
)
, clearly this function belongs to

the space E and ‖u ‖E ≤ C
(
‖u1 ‖ 2

1,Ω1
+ ‖u 2

T ‖ 2
1,Γ

)1/2
≤ C̃

(
‖ϕ1 ‖ 2

0,Ω1
+ ‖ϕ 2 ‖ 2

0,Γ

)1/2
.

Where C̃ depends on the domains Ω 1,Γ and the equivalence of norms for 2-D vectors,

and it is independent from Φ ∈ Π.
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Consider now the following inequalities

sup
w∈E

∫
Ω Φ ∇ ·w dx

‖w ‖E
≥
∫

Ω1
ϕ1 ∇ · u1 dx+

∫
Γ ϕ

2 ∇T · u2
T dx̃ dz

‖u ‖E

≥ 1

C̃

‖ϕ1 ‖ 2
0,Ω1

+ ‖ϕ 2 ‖ 2
0,Γ

(‖ϕ1 ‖ 2
0,Ω1

+ ‖ϕ 2 ‖ 2
0,Γ)1/2

=
1

C̃

(
‖ϕ1 ‖ 2

0,Ω1
+ ‖ϕ 2 ‖ 2

0,Γ

)1/2 =
1

C̃
‖Φ ‖ 0,Ω , ∀Φ ∈ Π

From the two lemmas above and from theory of problems in mixed formulation

[GR79b] we know (4.4.56) is well-posed.

4.4.2 The Strong Reduced Limiting Problem

After integrating by parts and recovering boundary and interface conditions the

problem (4.4.64) is the weak solution of:

Qv1 + ∇p1 = 0 , (4.4.68a)

∇ · v1 = h 1 in Ω 1 (4.4.68b)

∇T p
2 + γ

√
Qv 2

T − (∇T )′ µ∇T

(
v 2
T

)
= f 2

T , (4.4.68c)

∇T · v 2
T − v1 · n = 0 , (4.4.68d)

p1 − p 2 = (µ+ α ) v1 · n in Γ (4.4.68e)

p1 = 0 on ∂Ω 1 (4.4.68f)

v 2
T = 0 on ∂Γ (4.4.68g)

4.5 Strong Convergence of the Solutions

Assume the extra hypothesis
∥∥ f 2, ε − f 2

∥∥
0,Ω
→ 0,

∥∥h 1, ε − h1
∥∥

0,Ω
→ 0. Test

(4.1.14a) with w = v ε and (4.1.14b) with Φ = p ε and add them together in order to get
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rid of the terms that are not necessarily positive (mixed terms) to end up with:

∫
Ω1

Qv1, ε · v1, ε dx+
∫

Ω2

µ∇T

(
εv 2, ε

T

)
: ∇T

(
εv 2, ε

T

)
dx̃ dz

+
∫

Ω2

µ∂zv
2, ε
T · ∂zv

2, ε
T dx̃ dz +

∫
Ω2

µ∇T

(
εv 2, ε

N

)
·∇T

(
εv 2, ε

N

)
dx̃ dz

+
∫

Ω2

µ∂zv
2, ε
N ∂zv

2, ε
N dx̃ dz

+ α

∫
Γ

(
v1, ε · n

) (
v1, ε · n

)
dS +

∫
Γ
γ
√
Q
(
εv 2, ε

T

)
·
(
εv 2, ε

T

)
dS

=
∫

Ω2

f 2, ε ·
(
εv 2, ε

)
dx̃ dz +

∫
Ω1

h1, ε p1, ε dx

We realize the right hand side of the expression above converges and so does the left hand

side. However we only control some terms, then taking lim sup we have:

lim sup
ε ↓ 0

{ ‖
√
Qv1, ε ‖ 2

0,Ω1
+ ‖√µ∇T

(
εv 2, ε

T

)
‖ 2

0,Ω2

+ ‖√µ∂z v 2, ε
N ‖ 2

0,Ω2
+ ‖
√
αv1, ε · n ‖ 2

0,Γ + ‖√γ 4
√
Q
(
εv 2, ε

T

)
‖ 2

0,Γ

+ ‖√µ
(
ε∇T v 2, ε

N

)
‖ 2

0,Ω2
+ ‖√µ

(
∂z v

2, ε
T

)
‖ 2

0,Ω2
}

≤
∫

Ω2

f 2 · v 2 dx̃ dz +
∫

Ω1

h1 p1 dx (4.5.69)

On the other hand test (4.4.53) on the solution, add both equations together to end up

with:

‖
√
Qv1 ‖ 2

0,Ω1
+ ‖√µ∇T ( v 2

T ) ‖ 2
0,Ω2

+ ‖√µ∂z ξ ‖ 2
0,Ω2

+ ‖
√
αv1 · n ‖ 2

0,Γ + ‖√γ 4
√
Qv 2

T ‖ 2
0,Γ

=
∫

Ω2

f 2 · v 2 dx̃ dz +
∫

Ω1

h1 p1 dx (4.5.70)

Comparing the left hand side of (4.5.69) and (4.5.70) we conclude one inequality. On the

other hand, we know the application

w 7→ { ‖√µ∇T ( wT
2) ‖ 2

0,Ω2
+ ‖√µ∂z wT

2 ‖ 2
0,Ω2

+ ‖√µ∂z w 2
N ‖ 2

0,Ω2

+ ‖
√
αw 2

N ‖ 2
0,Γ + ‖√γ 4

√
QwT

2 ‖ 2
0,Γ }1/2 ≡ ‖w ‖V (4.5.71)
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is a norm in the space V as defined in (4.4.50). The norm in (4.5.71) is equivalent to the

norm

w 7→
{
‖∇T wT

2 ‖ 2
0,Ω2

+ ‖ ∂z wT
2 ‖ 2

0,Ω2
+ ‖w 2

N ‖ 2
H(∂z ,Ω2)

}1/2
(4.5.72)

Due to the convergence statements we have seen that the sequence { [ εv 2, ε
T ,v 2, ε

N ] } ⊆ V

is bounded and weakly convergent to [ v 2
T , ξ ] ∈ V ⊆M it must hold:

∥∥ [v 2
T , ξ

] ∥∥ 2

V
≤ lim inf

ε ↓ 0

∥∥∥ [ εv 2, ε
T ,v 2, ε

N

] ∥∥∥ 2

V

= lim inf
ε ↓ 0

{ ‖√µ∇T ( εv 2, ε
T ) ‖ 2

0,Ω2
+ ‖√µ∂z v 2, ε

T ‖
2
0,Ω2

+ ‖√µ∂z v 2, ε
N ‖ 2

0,Ω2
+ ‖
√
αv 2, ε

N ‖ 2
0,Γ + ‖√γ 4

√
Qv 2, ε

T ‖ 2
0,Γ } (4.5.73)

Since we have seen v1, ε w
⇀ v1 in L2

div(Ω 1) in particular it holds

∥∥v1
∥∥ 2

0,Ω1
≤ lim inf

ε ↓ 0

∥∥v1, ε
∥∥ 2

0,Ω1
(4.5.74)

Putting together (4.5.73), (4.5.74), (4.5.69) and (4.5.70) we conclude the norms are con-

vergent i.e.:

∥∥ ( v1, [ v 2
T , ξ ] )

∥∥ 2

L 2(Ω1)×V
= lim

ε ↓ 0

∥∥∥ ( v1, ε, [ εv 2, ε
T , v 2, ε

N ] )
∥∥∥ 2

L 2(Ω1)×V
(4.5.75)

Also since
{(

v1, ε,
[
εv 2, ε

T , v 2, ε
N

])
: ε > 0

}
⊆ L 2(Ω 1)×V is weakly convergent we conclude

the strong convergence of the overall sequence; again using the equivalence of norms we

have: ∥∥∥v 2, ε
T − v 2

T

∥∥∥
0,Ω2

→ 0∥∥∥∇T v 2, ε
T −∇T v 2

T

∥∥∥
0,Ω2

→ 0
(4.5.76)

∥∥∥v 2, ε
N − v 2

N

∥∥∥
H(∂z ,Ω2)

→ 0 (4.5.77)

Finally since ∇ · v1, ε = h1, ε and the forcing term converges strongly we conclude too:

∥∥v1, ε − v1
∥∥

L2
div(Ω1)

→ 0 (4.5.78)
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Strong Convergence of p1, ε

Notice that (4.5.78) together with (4.1.15a) implies
∥∥∇p1, ε −∇p1

∥∥
0,Ω1
→ 0. Again,

since
∫

Ω1
p1, ε dx = 0,

∫
Ω1
p1 dx = 0 we know the gradient controls the H1(Ω 1)-norm, this

implies: ∥∥ p1, ε − p1
∥∥

1,Ω1
→ 0 (4.5.79)

Strong Convergence of ∇T

(
εv 2, ε

N

)
, ∂z v

2, ε
T

Notice too that (4.5.75) together with (4.5.69) imply

c lim
ε ↓ 0

{∥∥∥∇T

(
εv 2, ε

N

)∥∥∥ 2

0,Ω2

+
∥∥∥∂z v 2, ε

T

∥∥∥ 2

0,Ω2

}
≤ lim

ε ↓ 0

{∥∥∥µ∇T

(
εv 2, ε

N

)∥∥∥ 2

0,Ω2

+
∥∥∥µ∂z v 2, ε

T

∥∥∥ 2

0,Ω2

}
= 0 (4.5.80)

with c > 0 an ellipticity constant coming from µ.

4.5.1 Strong Convergence of p 2, ε

In order to show this convergence a previous step of localization of the function p 2, ε

must be taken, consider then a function φε ∈ C∞0 (Ω 2) such that:

∥∥ p 2, ε − φε
∥∥

0,Ω2
< ε (4.5.81)

Observe the following:

∣∣∣∣ ∫
Ω2

p 2, ε p 2, ε dz dx̃−
∫

Ω2

p 2, ε φε dz dx̃

∣∣∣∣
=
∣∣∣∣ ∫

Ω2

p 2, ε
(
p 2, ε − φε

)
dz dx̃

∣∣∣∣
≤
∥∥ p 2, ε

∥∥
0,Ω2

∥∥ p 2, ε − φε
∥∥

0,Ω2
< C ε (4.5.82)

The last inequality holds due to (4.3.38). Now, for any w ∈ L2(Ω 2):

∫
Ω2

φεw dz dx̃ =
∫

Ω2

(
φε − p 2, ε

)
w dz dx̃+

∫
Ω2

p 2, εw dz dx̃

→ 0 +
∫

Ω2

p 2w dz dx̃ (4.5.83)
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The expression above implies φε
w
⇀ p 2 in L2(Ω 2). In particular if we take w = w(x̃) in

the expression above we conclude
∫

[ 0,1 ] φε dz
w
⇀ p 2 in L2(Γ).

Now, for φε define the function ς ε by the same rule as (4.3.36). The function

ς ε(x̃, 0) =
∫

[ 0,1 ] φε dz ∈ L
2(Γ). Then, there must exist w1

ε ∈ L2
div(Ω 1) such that w1

ε · n =∫
[ 0,1 ] φε dz on Γ, w1

ε · n = 0 on ∂ Ω1 − Γ and
∥∥w1

ε

∥∥
L2

div(Ω1)
≤ C̃ ‖ ς ε(x̃, 0) ‖Γ < C. Where

C̃ depends only on the domain and by construction ς ε |Γ is bounded in L 2(Γ).

We know the function [ w1
ε ,w

2
ε ] ∈ X, with w 2

ε = (0T , ς ε(x̃, z)) . Test, (4.1.14a)

with this test function to end up with:

∫
Ω1

Qv1, ε ·w1
ε dx−

∫
Ω1

p1, ε ∇ ·w1
ε dx+ α

∫
Γ

(
v1, ε · n

) (
w1
ε · n

)
dx̃

+
∫

Ω2

p 2, ε φε(x̃, z) dx̃ dz + ε

∫
Ω2

µ∇T

(
εv 2, ε

N

)
· ∇T ς ε(x̃, z) dx̃ dz

−
∫

Ω2

µ∂z v
2, ε
N φε(x̃, z) dx̃ dz = ε

∫
Ω2

f 2, ε
N ς ε dx̃ dz (4.5.84)

In the expression above all the summands except the fourth are known to be convergent

due to the previous strong convergence statements, therefore, this last summand must be

convergent too. The first two summands behave as

∫
Ω1

Qv1, ε ·w1
ε dx−

∫
Ω1

p1, ε∇ ·w1
ε dx = −

∫
Γ
p1, ε

(
w1
ε · n

)
dx̃

= −
∫

Γ
p1, ε

(∫
[ 0,1 ]

φε dz

)
dx̃→ −

∫
Γ
p1 p 2 dx̃

The limit above holds due to the strong convergence of the pressure in H1(Ω 1) and the

weak convergence of
∫

[ 0,1] φε dz. The third summand behaves as

α

∫
Γ

(
v1, ε · n

) (
w1
ε · n

)
dx̃

=
∫

Γ
α
(
v1, ε · n

) (∫
[ 0,1 ]

φε dz

)
dx̃→

∫
Γ
α
(
v1 · n

)
p 2 dx̃

And the strong convergence of the velocities and its traces is already proven. We know
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the fifth summand vanishes due to the estimates. The sixth summand behaves as

−
∫

Ω2

µ∂z v
2, ε
N φε(x̃, z) dx̃ dz → −

∫
Ω2

µ∂z ξ

(
wk − lim

ε ↓ 0
φε(x̃, z)

)
dx̃ dz

= −
∫

Γ
µ∂z ξ

(∫ 1

0
wk − lim

ε ↓ 0
φε(x̃, z) dz

)
dx̃ = −

∫
Γ
µ∂z ξ p

2 dx̃

The first equality above holds true since ∂z ξ = ∂z ξ(x̃) and because
∫ 1

0 wk−lim ε ↓ 0 φε(x̃, z) dz =

wk− lim ε ↓ 0

∫ 1
0 φε(x̃, z) dz = p 2. Finally the right hand side on (4.5.84) vanishes. Putting

together all these observations we conclude:∫
Ω2

p 2, ε φε(x̃, z) dx̃ dz →
∫

Ω2

(
µ∂z ξ − αv1 · n |Γ + p1 |Γ

)
p 2 dx̃

This fact together with (4.5.82) and (4.3.44) implies:

∥∥ p 2, ε
∥∥ 2

0,Ω2
→
∫

Ω2

(
µ∂z ξ − αv1 · n |Γ + p1 |Γ

)
p 2 dx̃ =

∫
Γ
p 2 p 2 dx̃ =

∥∥ p 2
∥∥ 2

0,Ω2

again, the convergence of norms together with the weak convergence imply:

∥∥ p 2, ε − p 2
∥∥

0,Ω2
→ 0 (4.5.85)

4.5.2 Ratio of Velocities

The relationship of the velocity in the tangential direction with respect to the ve-

locity in the normal direction is very high and tends to infinity as expected. We know

{ ‖v 2, ε
N ‖ 0,Ω2 : ε > 0 } is bounded, therefore ‖ εv 2, ε

N ‖ 0,Ω2 = ε ‖v 2, ε
N ‖ 0,Ω2 → 0. Suppose

first that v 2
T 6= 0 and consider the quotients:

‖v 2, ε
T ‖0,Ω2

‖v 2, ε
N ‖0,Ω2

=
‖ εv 2, ε

T ‖0,Ω2

‖ εv 2, ε
N ‖0,Ω2

>
‖v 2

T ‖0,Ω2 − δ
‖ εv 2, ε

N ‖0,Ω2

> 0

The lower bound holds true for ε > 0 small enough and adequate δ > 0 then we conclude

the quotient of tangent component over normal component L2-norms blows-up to infinity,

i.e. the tangential velocity is much faster than the normal one in the thin channel.

If v 2
T = 0 we can not use the same reasoning, so a further analysis has to be made.

Suppose then that the solution [ ( v1,v 2 ), ( p1, p 2 ) ] of (4.4.64) is such that v 2
T = 0

then (4.4.64b) imply v1 · n = 0 on Γ i.e. the problem on the region Ω 1 is well-posed



75

independently from the activity on the interface Γ. The pressure on Γ becomes subordinate

and must meet the following conditions:

p 2 = p1 − (µ+ α) v1 · n = p1 − (µ+ α)Q−1 ∇ p1 · n

∇T p
2 = f 2

T

We know the values of p1 are defined by h1 then, if we impose the condition on the forcing

term f 2
T

f 2
T 6= ∇T

(
p1 − (µ+ α) v1 · n

)
we conclude a contradiction and therefore it is impossible to have v 2

T = 0, i.e. restrictions

on the forcing terms f 2, h1 can be given so that v 2
T 6= 0 and ‖v 2, ε

T ‖ 0,Ω2 � ‖v
2, ε
N ‖ 0,Ω2

for ε > 0 small enough as discussed above.
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5 CONCLUSIONS AND FUTURE WORK

In the present work the problem of flow in porous media with the presence of adjacent

cracks has been extensively studied with different modeling assumptions and with different

mathematical techniques. The aim was to better understand the physical phenomenon of

preferential flow inside porous media.

It is common in the three problems presented that the singularity introduced by the

presence of the channel can be well approximated by a problem with lower dimensional

interface since the geometric singularity and the physical one balance out by means of

appropriate scaling. Another accomplishment of this dissertation is the treatment of the

shape of the channel. The first two problems treat a large variety of potential shapes of

cracks under reasonable assumptions and combinations of both geometric scenarios can

be done.

Another important accomplishment of this thesis is the introduction of the mixed-mixed

formulation in the treatment of coupled problems with interface. This formulation which

appears to be totally new is necessary in order to study interface conditions of greater

generality than the preexistent ones in the literature, and at the same time to provide

a setting as reasonable as possible from the numerical approximation point of view. Im-

portant characteristics of this formulation are that it mixes the spaces of functions of

both velocity and pressure and handles them in a fully decoupled fashion so that the

interface conditions apply only to the solution and never on the test functions. The for-

mulation uses boundary and interface conditions from both equations: conservative and

constitutive. This is in contrast to its mixed predecessors which pick boundary and inter-

face condition only from either the conservative or the constitutive law, but not from both.

The first work is taken further and illustrates the technique in dealing with the time
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dependent problem at the same time that induces in the limit a problem which is degen-

erate in time on the interface. It also shows how this technique can be easily applied to

the analysis of the concentrated capacity model.

Finally, the third problem analyzes a much more complicated model of the same phe-

nomenon by coupling a Darcy-Stokes system. The analysis of estimates and convergence

becomes much more delicate even though the limiting problem can be identified as a

problem with lower dimensional interface; this is not immediate since the identification

of adequate spaces and isomorphisms to that end is of substantial difficulty. The struc-

ture of the limiting problem is different from the original because it is characterized by

a Brinkman flow model in the tangential coordinates of the surface representing the col-

lapsed fracture coupled with a Darcy flow in the interior. The Brinkman law has been

successfully used in numerical simulations when coupling Darcy and Stokes flow models

from the experimental point of view. The identification of a Darcy-Brinkman coupled

system as a limiting problem of a Darcy-Stokes coupled system supports such numerical

success and provides understanding of this phenomenon to a deeper extent.

Future Work

Amongst the future research projects we mention the analysis of the mixed-mixed

formulation in evolution by means of semigroups and further explorations on the possibil-

ities this new formulation allows at the time of modeling coupled systems with interface.

These include the application of such techniques to more general settings such as de-

formable porous media where elasticity becomes important.

From the Numerical Analysis point of view the author has results only at the level of

numerical experimentation for the first two problems. It is one of the goals for future

research to achieve rigorous results on the convergence rate of the solutions and explore

the theoretical aspects of the discreete mixed-mixed formulation of these problems.
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For the Darcy-Stokes system our future projects include the analysis of different types

of geometry for the shape of the crack. It is planned to analyze cracks limited by con-

tinuous parallel surfaces such as in the case of the mixed-mixed formulation problem as

well as those limited by non parallel surfaces and finally by piece-wise linear surfaces.

This third case is important from the numerical implementation point of view. Also, the

behavior of the system in evolution must be studied. Another interesting question is the

behavior of the system under perturbations of the interface which is clearly non-linear;

since the interface separates two types of flow at a very different scale, a small pertur-

bation of the interface can become significant. Preliminary results show that the level of

technical difficulty in order to get statements of continuity can be extremely hard. How-

ever, getting stability statements is a reasonable task and the existence of such statements

allows numerical simulation as a valuable tool in understanding this dependence. Finally,

the scaling of the Beavers-Joseph condition in coupling the Darcy-Stokes system plays a

fundamental role in the conclusion of the limiting problem. Further possibilities of such

scaling must be explored.
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JM96. Willi Jäger and Andro Mikelić. On the boundary conditions at the contact
interface between a porous medium and a free fluid. Ann. Scuola Norm. Sup.
Pisa Cl. Sci. (4), 23(3):403–465, 1996.
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