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Wavelength Dependence of the Scattering of Sunlight by Small Particles 

Background 

Rayleigh Scattering<I) 

Why is the sky blue? Most physicists know the blue color in the sky comes from 

the scattering of light off of the atoms and 

molecules in our atmosphere. Scattering of 

light is at the center of this thesis. Rayleigh 

scattering is the theory that describes the 

above phenomenon, our blue sky. This 

theory applies to cases where the radius of 

the particle, a, is much less than the 

wavelength of the incident light. Light acts 

just like a massive particle and scatters off 

Figure 1 
Scattering Diagram 

z 

/ 

/ 
/ 

/ 

of true massive particles, almost like billiard balls. The intensity, a unitless quantity, of 

radiation scattered at an angle 'ti and distance r is given by 

y 

167t4a6 m2 -1 . 
l(r,'tf)= 2 4 2 S1Il2'tf 

r A m +2 
(1) 

where mis the index of refraction for the particle. By integrating the intensity function 

over the scattering angle 'ti and the azimuthal angle <j>, we can calculate the scattering 

cross-section, Csca· The scattering cross-section has units of area. 
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1t 2 1t 

c sca = f f Ir2 sin 'tf d'tf d<I> (2) 
0 0 

(3) 

The efficiency factor of the scattering, which is unitless, can be calculated from the cross-

section. The equation for this is Cscafrca2
, which is the scattering cross-section over the 

cross-sectional area of the particle with radius a. The efficiency factor for scattering, 

(4) 

which can be rewritten as 

(5) 

using the size parameter x = 2rca/A. While this is a good overview of light scattering, 

Rayleigh scattering is a very special case, applying only when a<<A, as mentioned above. 

Mie scattering theory is the most general solution for light scattering off of a sphere. 

Mie Scattering and Radiation Pressure 

Light has momentum. The momentum of a photon is given by the equation 

E 
p=-

c 
(6) 
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where E is the energy and c is the velocity of the photon. When a photon scatters off of a 

particle, it is absorbed or deflected. Either of these interactions causes a change in 

momentum of the photon, which becomes a force exerted upon the particle. This force is 

F= (Cext -(cosS)Csca) S 
c 

S in this equation is the magnitude of the Poynting vector; Cext is the cross-section for 

(7) 

extinction. Cext is the sum of the cross-sections for scattering and absorption, leading to 

the following two equations: 

(8) 

(9) 

<cos8> is the average of case weighted by the angular intensity of the scattered beam.<l) 

It is given by 

(cos e) = _f c_o_s _8 s_in_8_d_8 
f S(8) sin 8d8 

(10) 

where S(8) is the fraction of energy incident on the particle that is scattered into a cone 

opening forward with sides at angle e to the forward z axis. <2) 

The pressure on the particle is<l) 

F S 
P=-2 =-Qpr 

na c 
(11) 

where 

(12) 

The function <cos8>Qsca can be expressed in terms of spherical Bessel functions, 

eliminating the dependence on S(8), as follows. 



( ) 4 +2) cos e Qsca = -2 L..i [Re( an) Re(an+I) 
X n=I n + 1 

+ lrn(an) lm(an+J) + Re(bn) Re(bn+I) 
2n+l 

+ lrn(bn) Im(bn+I )] + [Re( an) Re(bn) 
n(n + 1) 

+Im( an) Im(bn )J} 

4 

(13) 

Both Debye and Mie derived this result independently in the early 1900's. The above 

function uses the following factors and functions. 

a = X'lf 'n (y)'!f n (x)-y'!f 'n (X)'!f n (y) 
n X'!f 'n (y)Sn (x)-ys 'n (X)'lf n (y) 

b = Y'V 'n (y)'!f n (x)- X'lf 'n (X)'!f n (y) 
n Y'V 'n (y)sn (x)- xl; 'n (X)'!f n (y) 

( 
1tCX. 'Vn (a)= - J I (a) 
2 n+-

2 

(14) 

(15) 

(16) 

(17) 

(18) 

Here, Jk(a) is the spherical Bessel function of half-integral (k) order. These account for 

the radial behavior of the light scattered from the particle. Equations 16-18 are the 

Riccati-Bessel functions. While x0 (a.) is not used explicitly, it is noted that 

Sn (a) = "'n (a) + iXn (a) (19) 

The variable y = mx = (n+ik)x when k is small compared ton. n and k are the refractive 

and absorptive indexes, respectively, of the material of which the particle is composed. 
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Generally, mis [K-2icr/Jc] 112
, where K is the dielectric constant of the material and cr is 

its electrical conductivity and its value is small. 

Written in this general format, Qsca is 

We finally write Qext in terms of the factors an and bn as follows.<2
) 

This allows us to rewrite equation 12 as 

Q., = : 2 +jb,!']- : 2 
[Re( an) Re( an+i) +Im( an) Im( an+i) + 

Re(bn) Re(bn+l) + lm(bn) lm(bn+I )] + 

2n+l } --[Re( an) Re(bn) +Im( an) lm(bn )] 
n(n + 1) 

and reduce it to the equation used in the computer program, 

Q., =4 f,{(2n+l)[laJ +jb,!2]-2 n(n+2) 
x n=l n + 1 

[Re( an) Re(an+I) + lm(an) lm(an+I) + 

Re(bn) Re(bn+I) + lm(bn) lm(bn+I )]-
2n + 1 

2 [Re( an) Re(bn) + lm(an) lm(bn )l} 
n(n + 1) 

Beta 

(20) 

(21) 

(22) 

(23) 

The goal of this thesis is to find the the ratio between force due to 

the radiation pressure of the sun and gravitational force exerted on the particle by the sun. 
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As stated in equation 7, the force exerted by radiation is Cpr Sic. This force can be 

rewritten in terms of A as 

F _ J2ithc
2 

( d/.., J 2Q R; 
rad - cA5 exp[hc/AkTJ-1 7ta pr r2 

(24) 

where a is the radius of the particle and r is the distance from the sun. This also includes 

the Planck blackbody radiation function 

B(A T) = I 
' s A\exp[hc/ AkT

8
]-1) 

(25) 

The gravitational force is 

F _ GMsm 
grav - 2 r 

(26) 

Ms and Rs are the mass and radius of the sun, respectively. Knowing these two forces, 

we can write as 

_ F,.d _ 2ithc2 R; Jta 2 3r2 J Q"'dA 
-Frav - cGMs 7p 4na3 A5 (exp[hc/AkTJ-1) 

pis the mass density of the particle. More concisely, given as follows 

= 3ithcR; J Q.,[m *(A.),(a/A)] dA. 
2GMspa A, A5 exp[hc/AkTs]-1 

be rewritten in terms of the size parameter x as: 

(27) 

(28) 

Note that the value of the x3 dx term is negative. We are interested in the magnitude 

which can be accounted for by switching the limits of the integral. Since x is inversely 

proportional to A, the limits on the integral go from low x to high x. Using the values 
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Table 1: 
Values of Important Constants 

h 6.626 10-27 _g_ cm2 Is 
c 3.00 1010 cm Is 

Rs 6.96 1010 cm 

G 6.67 10-5 cm3 I _g_ s2 

Ms 1.99 1033 _g_ 

k 1.38 10-16 _g_ cm2 I s2 K 

Ts 5800K 

given in Table 1 and using a=0.25 micrometers, we can rewrite equation 29 as a more 

convenient expression. 

A 2.2470xJUQ [ *( ) 1( x3 Jd 
t-' = p x, pr m x 'x exp[l.582x]-1 x (30) 

For this equation, A is in micrometers and the density is in g/cm3
• 



Project 

The first object of this project was to write a program to find values of Qpr and 

Before the program began, certain parameters had to be set. A range for x was chosen 

from 0.1to10.1, roughly fitting a range of A values from 0.15 to 15 microns. This was 

later modified to span x=0.3 to x= 10.1 because the A value of -15 was so far removed 

from this new range, which spans wavelengths from about 0.15 microns to about 5 

microns. This smaller range still covers a sufficiently large percentage of the Planck 

curve of the sun, which will be discussed later. 

Another parameter that needed to be decided upon was the number of orders of 

the Bessel functions to be summed over. Using a Qpr program written by Dr. Griffiths(3), 

sums over up to 15 orders were tested. While there were significant differences between 

summing over ten orders and summing over fewer orders, there seemed to be no 

difference in the values of Qpr for sums to orders 10, 12, and 15. However, summing 

over fifteen orders took quite a long time to run for fifty values of Qpr (about half an 

hour). Out of the three options, summing over ten orders took the least time, fifteen to 

twenty minutes, and was as accurate as the other two choices. 

8 

This initial program was written to use values of n and k that are constant over all 

wavelengths. The first attempts at this had the functions a0 and b0 explicitly written out 

in terms of the Riccati-Bessel functions. This did not work in either Maple or 

Mathematica. Instead of spending hours debugging this code and figuring out why it 

wouldn't work, it was decided to use the program written by Dr. Griffiths, mentioned 
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above, as a basis for a new program. The algorithm for this program defined each part of 

the quotients in an and bn separately, named their quotient an and bn, and used equation 23 

to create tables of Qpr values. The value used for p in this and subsequent programs was 

that of water ice, 0.92 g/cm3
. 

This program created five tables of values, each term of which was the value of 

the function for a certain x value. The values of x for all of the tables ranged from x=0.3 

to x= 10.1 in increasing steps of 0.2. The first table listed the values of Qpr calculated for 

each value of the x range. The second listed the appropriate values of the blackbody 

function. The third table listed the values of the integrand for B, the product of the first 

two tables. After this table, a value of B was calculated. The last two tables listed 

coordinate pairs of x and the corresponding value of Qpr and the blackbody function, 

respectively. Finally, graphs of these tables were plotted. With the test program 

completed and working, the next step was to incorporate wavelength dependent values of 

the absorptive and refractive indices. 

n(A.)+ik(A.) 

The ultimate goal of this project is to use realistic, wavelength dependent values 

for the refractive and absorptive indices, n(A) and k(A), of a particle in space in order to 

determine how it is deflected from its original path when it enters the solar system. 

These data were found in an article published by Dr. Stephen Warren from the University 

of Washington. <4> The article includes a table containing values of A, n, and k for ice over 

a wide range of wavelengths, including the infrared, visible, and ultraviolet portions of 

the electromagnetic spectrum. Unfortunately, none of the specific values of A that were 
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given match the values of A used in our program. The most important implication of this 

fact is that we then needed to somehow perform a curve fit to the data in order to 

interpolate values for the A values we were using. The second problem was that there 

was no way to perform a direct comparison between the values from the actual data and 

. the curve fit. Without this direct comparison, error on the calculated data points can only 

be extrapolated. 

A curve fit was needed. After looking for curve fits in Mathematica and Maple, it 

was discovered that Maple could perform a spline fit to data read from a pair of files. 

The spline fit command in Maple creates a third-degree polynomial function that best 

approximates the function in the space between any two subsequent A values given. Each 

part of the piecewise function is labeled by the term A < Aj where Aj is the /h value of 

lambda in the read data file. Because nearly every required value of A had a different 

function describing the corresponding values for both n(A) and k(A), a "brute force" 

approach was needed to find all 100 values within our range. 

Two Maple worksheets were created for this brute force method, one to find n(A) 

values and one to find values of k(A). In each worksheet, the required values of A were 

calculated. For each value, the corresponding function was copied and pasted into the 

worksheet, A, was defined, and the value of n(A) or k(A) was calculated by Maple. Plots 

comparing the calculated value of n(A) and k(A) to the data are shown in Figure 2. After 

all fifty values of n(A) or k(A) were found, they were copied and pasted and formatted 

into a column. Each value was then assigned a name of n 1-n50 or kl-k50, corresponding 

to the appropriate value of x, increasing from 0.3. This formatting was 



Figure 2 
Calculated and given data values of n(A) and k(A) 
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such that Mathematica could read it without any alteration. Both of these columns were 

then copied and pasted into a second Mathematica program that solves for p. 

Beta Using Wavelength Dependent m Values 

A second Mathematica program was written to solve the wavelength dependent 

values of Qpr· The values of Qpr were solved for using the same method as in the 

previous program. However, this program solved for fifty different values of Qpr· Each 

value was defined as ql-q50, each using the corresponding value of nl-n50 and kl-k50. 

The output for each of these Qpr values was a table one item long, the Qpr value for the 

appropriate value of x. The end of the program created a table of q 1-q50. Unfortunately, 

this created a "table of tables", as each item in this final table was a table itself. 

This final table was copied and pasted into a third Mathematica program and edited so 

that each item was no longer its own table. This was then multiplied by a table of Planck 

function values, as in the first program, to give a table for the integrand. The integral was 

then performed, using the Listlntegrate function of Mathematica, and multiplied by the 

appropriate constants to give an accurate, wavelength dependent value of A. Since this 

was a modification of the first program, the plot of the Planck function was left as a part 

of this program. However, the plot of Qpr was removed due to the lack of ease of 

producing a table to create a plot. 



Results and Conclusions 

Planck Function 

This project looks at the wavelength dependence of radiation pressure on a 

particle in our solar system. The wavelengths that we use should be those at which the 

sun radiates with significant intensity. The Planck blackbody radiation curve gives us, 

for an object at a certain temperature, intensity as a function of wavelength. The 

blackbody equation used in the program is 

13 

x3 
B(x,Ts)=----

exp[l.582x]-1 
(31) 

This is written in terms of the dimensionless size parameter x for a particle of radius 0.25 

microns. The question arises as to how much of the sun's total blackbody curve does our 

program integrate over. In the program, x ranges from 0.3 to 10.1. The blackbody 

radiation curve covers all wavelengths from zero to infinity. This corresponds to the 

same range for x. Since the Planck curve is small for very small x, we used x= 10-4 as the 

lower limit in our total integration. Infinity, likewise, can be approximated by a value of 

x large compared to 10. Two values were used in two different comparisons, 103 and 

104
. The comparisons used the Listlntegrate program to integrate over a table of values 

produced using the above limits. The integral of these two curves was the same to six 

figures, returning a value of 1.03674. The integral from x=0.3 to x= 10.1 gave a value of 

1.03192, differing from the total value by 0.00482. This gives a percent difference of 

about 0.46%, meaning that our program uses 99.54% of the total solar Planck curve. 

This leaves little room for error to arise from this portion of the project. 
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Figure 3 
Graphs with error bars on spline fit of n(A.) and k(A.) 

Error on n(A.) is 0.25%. Error on k(A.) is 10%. 
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Error Analysis of Spline Fit 

While the approximations from the spline fit are good, there is still some definite 

variation from the data. This is shown by the graphs in Figure 3. Most of the values for 

the refractive index seem to be good to within 0.25 %. Most of the k values, on the other 

hand, seem to be good to within 10%. This is an uncomfortably large value. However, 

an error of 10% here means a difference of less than 10-5 for over 80% of our calculated 

values. A difference this small in the absorptive index would not affect our results for 

Qpr in any significant manner. The point with the largest value, x=0.5, is good to within 

5%, an acceptable value. 

Comparison Between Orders of Bessel Functions 

As shown in Figure 4, there are differences in the Qpr values when using more 

than ten orders of the spherical Bessel functions. However, these differences become 

significant only above x=9. Past this point, the Planck curve is small, as is the product of 

the Planck curve and Qpr· The values differ by less than 0.00011 between n= 10 and 

n=12, and by about 0.000001 between n=12 and n=15. (See Table 2) For n=lO, 

value differs from that of n=12 by 0.016%. This percent difference is essentially the 

same between orders of 10 and 15. Using the sum of Bessel functions to the twelfth 

order is more accurate than summing to the tenth order. Anything above twelve orders, 

however, seems too insignificant to spend the processing time on. 
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Table 2 
Comparison of results 

k value Order Difference 
A dependent 10 0.69104 0 
A de_Q_endent 12 0.69115 0.00011 
A dependent 15 0.69115 0.00011 

0.15 10 2.6194 1.9284 
0 10 1.0785 .3874 
0 10 0.59908 0.09196 
0 15 0.59908 0.09196 

Figure 4 
Qpr using different values of n and k=O 
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Comparison Between Constant and Dependent m Values 

The original program, written by Dr. Griffiths, used a value of 1.4 for the 

refractive index and 0.15 for the absorptive index. The values from this program for both 

p and Qpr differ largely from the wavelength-dependent 

values, as shown in Table 2 and Figure 4. For a more 

accurate comparison, we first decided to keep n= 1.4, but 

to set k to zero, as most of the values for k are very 

smaller than 10-5. This gave a better p than the previous 

refractive index values, but it was still too large. The p 

value is over 1.5 times the value from the /... dependence. 

Figure 5 
Path Deflection by <I> 

i 
/ 

/ 
path 

of particle 

Furthermore, the value of p is greater than one. This is significant, as it will change the 

quadrant of the deflection angle. This angle is related to P as follows. 

(32) 

K is a product of constants that is not significant here. As can be seen, a p greater than 

one will change the sign of the arctan function, which will make it appear as if the 

particle deflected in the other direction. The major difference between this and the 

previous program is that this does match the general form of the wavelength dependent 

Qpr values, including a departure from the clean line appearance of the first portion of the 

function. 

Another set of values were run, this time with n= 1.3 and k=O. Both of these 

values correspond to the approximate value for most of the wavelengths. The Qpr values 

here match the wavelength dependent function better than the n= 1.4 curve. In fact, the 



18 

two functions match very well for x<l .5. The biggest discrepancy here is the 

commonality between this and the n=l .4 program: This curve maintains its nice 

appearance throughout the x range, not "scattering" at high x. While the value 

produced with this constant n value is better than from n=l .4, it is still significantly 

different from found using the wavelength dependence. Furthermore, the percent 

difference of 13.31 is much larger than the percent error from the approximated data 

points. 

It is interesting to note that the local maxima and minima for all of the Qpr plots 

with small k seem to be consistent but offset in the different functions. It also appears 

that the "scattering" of Qpr values occurs after the same number of local maxima, 

excluding the point x=0.5. This scattering appears to happen in this data range on for n 

values greater than 1.3. 

Conclusions 

There is no easy and accurate substitute for the wavelength dependent n+ik values 

when calculating Qpr· While some constant approximations come closer than others, our 

closely matching values were chosen using the function of n+ik vs. wavelength. A 

closely matching constant approximation of any wavelength dependent n+ik value would 

need to be based on the data. We have looked only at this type of data for ice. Other 

materials may behave differently, with an easier constant approximation, but we need to 

find data for their refractive and absorptive indices as a function of wavelength to know 

this. If this is done after setting up a computer program, there is the advantage of finding 



the data for the specific values of/..., that are needed to run the program and solve 

This would avoid the approximations that were necessary in this project. 

19 

Investigation into the n(A), and k(A) curves of other materials is one possibility 

for future work. Carbon dioxide, methane, and other types of space dust have different 

properties than water, and will produce a different value and Qpr curve. The behavior 

of a cloud of particles differing in radius could also be investigated. Further investigation 

with water ice could be done performing a study on the exact Qpr curves for /..., less than 

the particle radius and for the regions around resonance wavelengths, with produce 

relatively high n(A) and k(A) values. 
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Figure 3 
Comparison of Calculated and Given n(A) and k(A.) values for A, from 0.152µm to 

0.748µm 
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Figure 5 
Comparison of Calculated and Given n(A) and k(A) values for A, from 2. lOµm to 2.35µm 
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Figure 6 
Comparison of Calculated and Given n(A) and k(A) values for A from 3.00µm to 3.28µm 
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Figure 7 
Comparison of Calculated and Given n(A) and k(A) values for A from 4.5µm to 5.8µm 
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Figure 9 
0.75% Error Bars on n Data from 0.75µm up to 2.8µm 
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Figure 10 
10% Error Bars on k Data from O. l 84µm to 0.49µm 
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Figure 11 
10% Error Bars on k Data from 0.49µm to 0.80µm 
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Figure 13 
Comparison of Qpr functions using constant and wavelength dependent n and k values 

k, when constant, is zero. x ranges from 0.3 to 10.1. 
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Table 1 
Values of x, A, n, and k used in the programs using wavelength dependence 

x A n k x A n k 
0.3 5.235988 1.315913 1.37E-02 5.3 0.296377 1.33479 5.67E-09 
0.5 3.141593 1.567734 0.474845 5.5 0.285599 1.337698 6.21 E-09 
0.7 2.243995 1.258288 2.01 E-04 5.7 0.275578 1.340802 6.77E-09 
0.9 1.745329 1.284652 1.36E-04 5.9 0.266237 1.344098 7.38E-09 
1.1 1.427997 1.29306 8.97E-05 6.1 0.257508 1.347573 8.01 E-09 
1.3 1.208305 1.297834 8.32E-06 6.3 0.249333 1.351212 8.68E-09 
1.5 1.047198 1.300646 2.23E-06 6.5 0.241661 1.35504 9.38E-09 
1.7 0.923998 1.302758 4.88E-07 6.7 0.234447 1.359196 1.01 E-08 
1.9 0.826735 1.304436 1.45E-07 6.9 0.227652 1.363789 1.09E-08 
2.1 0.747998 1.305832 5.66E-08 7.1 0.221239 1.368879 1.17E-08 
2.3 0.682955 1.307231 2.16E-08 7.3 0.215178 1.374494 1.25E-08 
2.5 0.628319 1.308542 1.01 E-08 7.5 0.20944 1.380639 1.33E-08 
2.7 0.581776 1.309946 4.17E-09 7.7 0.204 1.387325 1.42E-08 
2.9 0.541654 1.311335 2.97E-09 7.9 0.198835 1.394607 1.51 E-08 
3.1 0.506708 1.312726 2.07E-09 8.1 0.193925 1.402532 1.61 E-08 
3.3 0.475999 1.314193 1.59E-09 8.3 0.189253 1.411668 2.13E-08 
3.5 0.448799 1.31577 1.57E-09 8.5 0.1848 1.421899 7.22E-08 
3.7 0.42454 1.317378 2.16E-09 8.7 0.180551 1.433891 8.37E-07 
3.9 0.402768 1.319144 2.66E-09 8.9 0.176494 1.447932 6.21 E-06 
4.1 0.383121 1.32104 3.03E-09 9.1 0.172615 1.465275 4.97E-05 
4.3 0.365301 1.322983 3.40E-09 9.3 0.168903 1.487075 3.44E-04 
4.5 0.349066 1.325026 3.79E-09 9.5 0.165347 1.518342 2.28E-03 
4.7 0.334212 1.327198 4.22E-09 9.7 0.161938 1.565661 1.36E-02 
4.9 0.320571 1.32954 4.67E-09 9.9 0.158666 1.625413 6.43E-02 
5.1 0.307999 1.332071 5.16E-09 10.1 0.155524 1.638526 0.145613 



(* Pressure Q factor and Beta - February 1, 2002 

Finally works after many modifications. 
Removed "{" brackets from qpressure equation in integrand. 
Final modification on Apr. 13, 

2002. May go back to original code later. 
I think that most of this may be Dr. Griffith's beta2 program. 
The original code (his Qpress program) should work, 

too. The planck and qpr functions are my own code. 

April 22, 2002 Found minus sign error in qpr, 
thanks to Dr. Griffiths. Now corrected. 

4th version, adjusting below n and k values. *) 

(* The wavelength ranges from about 0.15 microns to 4.00 microns *) 
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(*This corresponds to X ranging from 10.47 to 0.3917 for a= 0.25\(Mu] 
*) 

(* In fact, here the range for X is from 10.10 to 0.30 *) 

(* Give values for the real (n) and imaginary (k) parts of the index; 
assume k=O here to roughly match data *) 

<<NumericalMath'Listintegrate' 

n 1.30 (* The real part of the refractive index *) 

k 0.0 (* The imaginary part of the refractive index *) 

np =50(* The number of points for the graph*) 

no 12(* The number of orders of the Bessel Functions*) 

rhod 0.92 (*density of ice*) 

step 0.20 (* Step size for the abscissa *) 

anl = x D[Sqrt[0.5 Pi y] BesselJ[i + 1/2,y], y] Sqrt[0.5 Pi x] BesselJ 
[i + 1/2, x]; 

an2 = y Sqrt[0.5 Pi y] BesselJ[i + 1/2, y] D[Sqrt[0.5 Pi x]BesselJ[i + 
1/2, x], x]; 

ant anl - an2; 

adl x D[Sqrt[0.5 Pi y] BesselJ[i + 1/2, y], y] Sqrt[0.5 Pi 
x] (BesselJ[ i + 1/2, x] +I ( (-l)"i) BesselJ[-i - 1/2, x]); 

ad2 = y Sqrt[0.5 Pi y] BesselJ[i + 1/2,y] D[Sqrt[0.5 Pi x] (BesselJ[ i + 
1/2, x] +I ((-l)"i) BesselJ[-i - 1/2, x]), x]; 

adt = adl - ad2; 

ai = ant/adt; 
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(* Now, we generate the i + 1 term for the a coefficients. *) 

anlp = x D[Sqrt[0.5 Pi y] BesselJ[i + 3/2,y], y] Sqrt[0.5 Pi x] BesselJ 
[i + 3/2, x]; 

an2p = y Sqrt[0.5 Pi y] BesselJ[i + 3/2, y] D[Sqrt[0.5 Pi x]BesselJ[i + 
3/2, x], x]; 

antp anlp - an2p; 

adlp x D[Sqrt[0.5 Pi y] BesselJ[i + 3/2, y], y] Sqrt[0.5 Pi 
x] (BesselJ[ i + 3/2, x] +I ( (-l)"(i + 1)) BesselJ[-i - 3/2, x]); 

ad2p = y Sqrt[0.5 Pi y] BesselJ[i + 3/2,y] D[Sqrt[0.5 Pi x] (BesselJ[ i 
+ 3/2, x] +I ( (-l)"(i + 1)) BesselJ[-i - 3/2, x]), x]; 

adtp = adlp - ad2p; 

aip = antp/adtp; 

(* First, we generate the i term for the b coefficients. *) 

bnl = y D[Sqrt[0.5 Pi y] BesselJ[i + 1/2, y], y] Sqrt[0.5 Pi x] BesselJ 
[i + 1/2, x]; 

bn2 = x Sqrt[0.5 Pi y] BesselJ[i + 1/2, y] D[Sqrt[0.5 Pi x]BesselJ[i + 
1/2, x], x]; 

bnt bnl - bn2; 

bdl y D[Sqrt[0.5 Pi y] BesselJ[i + 1/2, y], y] Sqrt[0.5 Pi 
x](BesselJ[ i + 1/2, x] +I ((-l)"i) BesselJ[-i - 1/2, x]); 

bd2 = x Sqrt[0.5 Pi y] BesselJ[i + 1/2,y] D[Sqrt[0.5 Pi x] (BesselJ[ i + 
1/2, x] +I ((-l)"i) BesselJ[-i - 1/2, x]), x]; 

bdt = bdl - bd2; 

bi = bnt/bdt; 

(* Now, we generate the i + 1 term for the b coefficients. *) 

bnlp = y D[Sqrt[0.5 Pi y] BesselJ[i + 3/2, y], y] Sqrt[0.5 Pi x] 
BesselJ [i + 3/2, x]; 

bn2p = x Sqrt[0.5 Pi y] BesselJ[i + 3/2, y] D[Sqrt[0.5 Pi x]BesselJ[i + 
3/2, x], x]; 

bntp bnlp - bn2p; 

bdlp y D[Sqrt[0.5 Pi y] BesselJ[i + 3/2, y], y] Sqrt[0.5 Pi 
x] (BesselJ[ i + 3/2, x] + I ( (-1) "(i + 1)) BesselJ[-i - 3/2, x]); 

bd2p = x Sqrt[0.5 Pi y] BesselJ[i + 3/2,y] D[Sqrt[0.5 Pi x] (BesselJ[ i 
+ 3/2, x] +I ( (-l)"(i + 1)) BesselJ[-i - 3/2, x]), x]; 

bdtp = bdlp - bd2p; 
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bip = bntp/bdtp; 

Clear[qpress] 

plfunct = 
Table[((0.1 +step j)"'3)/(Exp[l.582(0.l +step j)] - 1), {j, l, np}] 

qpr = Table[ 
Sum [ ( 2 I ( x"' 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x"' 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"'2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) /. 
{x \[Rule] (0.1 +step j), y \[Rule] (n - I k) (0.1 +step j)}, {i, l, 
no} J , { j , l , np} ] 

integrand = plfunct qpr 

beta (2.2470/rhod) (Listintegrate[integrand, step]) 

planck = Table [ { ( 0 .1 + step j), ( ( 0 .1 + step j) "'3) I (Exp [ 1. 582 ( 0 .1 + 
step j) ] - 1) } , { j , l, np}] 

qpress Table[{ (0.1 + step j), Sum [ (2 I (x"'2)) (2i + 1) Re[ai +bi] 
- (4 / (x"'2)) (i (i + 2) I (i + 1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + 
Re [bi] Re [ bip] + Im [bi] Im [ bip] ) - ( 4 I ( x"' 2) ) ( ( 2 i + 1) I ( i ( i + 1) ) ) 
(Re[ai] Re[bi] + Im[ai] Im[bi]) /. {x \[Rule] (0.1 +step j), y \[Rule] 
( n - I k) ( 0 . 1 + step j ) } , { i, l, no} ] } , { j , l, np} ] 

ListPlot[qpress, AxesOrigin \[Rule] {0,0}] 

ListPlot[planck, AxesOrigin \[Rule] {0,0}] 



(* Testing qpress function with n and k values for ice from data. 
April 16, 

2002. 
Final adjustment May 2, 2002. *) 

(* The wavelength ranges from about 0.15 microns to 4.00 microns *) 
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(*This corresponds to X ranging from 10.47 to 0.3917 for a= 0.25\[Mu] 
*) 

(* In fact, here the range for X is from 10.10 to 0.30 *) 

(* Give values for the real (n) and imaginary (k) parts of the index *) 

<<NumericalMath'Listintegrate' 

(* The real part of the refractive index *) 
nl=l.31591336 
n2=1.567734 
n3=1.258288 
n4=1.284651571 
n5=1.29306044 
n6=1.297834096 
n7=1.30064645 
n8=1.30275829 
n9=1.30443558 
nlO=l.30583249 
nll=l.30723065 
n12=1.30854227 
n13=1.309946234 
n14=1. 311334533 
nlS=l.312726173 
n16=1.314192851 
n17=1.315769744 
n18=1.317377884 
n19=1.319144177 
n20=1.321039685 
n21=1.322983370 
n22=1.325025918 
n23=1.327198086 
n24=1.329540395 
n25=1.332071304 
n26=1.334790241 
n27=1.337697849 
n28=1.340801637 
n29=1.344097526 
n30=1.347573188 
n31=1.351211737 
n32=1.355039590 
n33=1 . 359196065 
n34=1 . 363788714 
n35=1.368878570 
n36=1 . 374493631 
n37=1.380638711 
n3 8=1. 3 87324921 
n39=1.394607387 
n40=1.40253224 



n41=1.4116681 
n42=1.4218989 
n43=1.4338911 
n44=1.44793224 
n45=1.46527488 
n46=1.48707513 
n47=1.5183424 
n48=1.5656605 
n49=1.6254134 
nSO=l.6385262 

kl=.136934*10A-1 
k2=.474845 
k3=.20106*10A-3 
k4=.1364010*10A-3 
k5=.8974*1QA-4 
k6=.83210*10A-5 
k7=.222685*1QA-5 
k8=.487610*1QA-6 
k9=.1446659*1QA-6 
k10=.5659619*10A-7 
kll=.2162394*10A-7 
k12=.10099060*10A-7 
k13=.417479*1QA-8 
k14=.297342*10A-8 
k15=.207023*10A-8 
k16=.1592514*10A-8 
k17=.157099*10A-8 
k18=.21648526*1QA-8 
k19=.2658815*10A-8 
k20=.302725145*10A-8 
k21=.339666117*10A-8 
k22=.378948065*1QA-8 
k23=.421501309*1QA-8 
k24=.467261255*1QA-8 
k25=.515894832*1QA-8 
k26=.567008777*10A-8 
k27=.620674090*1QA-8 
k28=.677470713*10A-8 
k29=.737657843*10A-8 
k30=.801233379*1QA-8 
k31=.868034106*10A-8 
k32=.937918451*10A-8 
k33=.1010993762*10A-7 
k34=.1087261274*10A-7 
k35=.1166595681*10A-7 
k36=.1248791850*1QA-7 
k37=.133359987*1QA-7 
k38=.142134981*10A-7 
k39=.151386769*10A-7 
k40=.1613788*10A-7 
k41=.21290*10A-7 
k42=.7215*1QA-7 
k43=.83655*10A-6 
k44=.6207*10A-5 
k45=.49657*10A-4 
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k46=.34437*10"'-3 
k47=.22804*10"'-2 
k48=.136025*10"'-l 
k49=.6429*10"'-l 
k50=.145613 
(* The imaginary part of the refractive index *) 

np =50(* The number of points for the graph*) 

no 10(* The number of orders of the Bessel Functions *) 

rhod 2.0(*density of dust*) 

step 0.20 (* Step size for the abscissa *) 

anl = x D[Sqrt[0.5 Pi y] BesselJ[i + 1/2,y], y] Sqrt[0.5 Pi x] BesselJ 
[ i + 1I2, xJ ; 

an2 = y Sqrt[0.5 Pi y] BesselJ[i + 1/2, y] D[Sqrt[0.5 Pi x]BesselJ[i + 
1/2, x], x]; 

ant anl - an2; 

adl x D[Sqrt[0.5 Pi y] BesselJ[i + 1/2, y], y] Sqrt[0.5 Pi 
x] (BesselJ[ i + 1/2, x] +I ((-l)"'i) BesselJ[-i - 1/2, x]); 
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ad2 = y Sqrt[0.5 Pi y] BesselJ[i + 1/2,y] D[Sqrt[0.5 Pi x] (BesselJ[ i + 
1/2, x] +I ((-l)"'i) BesselJ[-i - 1/2, x]), x]; 

adt = adl - ad2; 

ai = ant/adt; 

(* Now, we generate the i + 1 term for the a coefficients. *) 

anlp = x D[Sqrt[0.5 Pi y] BesselJ[i + 3/2,y], y] Sqrt[0.5 Pi x] BesselJ 
[ i + 3 I 2, xJ ; 

an2p = y Sqrt[0.5 Pi y] BesselJ[i + 3/2, y] D[Sqrt[0.5 Pi x]BesselJ[i + 
3/2, x], x]; 

antp anlp - an2p; 

adlp x D[Sqrt[0.5 Pi y] BesselJ[i + 3/2, y], y] Sqrt[0.5 Pi 
x] (BesselJ[ i + 3/2, x] +I ( (-l)"'(i + 1)) BesselJ[-i - 3/2, x]); 

ad2p = y Sqrt[0.5 Pi y] BesselJ[i + 3/2,y] D[Sqrt[0.5 Pi x] (BesselJ[ i 
+ 3/2, x] + I ( (-l)"'(i + 1)) BesselJ[-i - 3/2, x]), x]; 

adtp = adlp - ad2p; 

aip = antp/adtp; 

(* First, we generate the i term for the b coefficients. *) 
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bnl = y D[Sqrt[0.5 Pi y] BesselJ[i + 1/2, y], y] Sqrt[0.5 Pi x] BesselJ 
[ i + 1I2, x] ; 

bn2 = x Sqrt[0.5 Pi y] BesselJ[i + 1/2, y] D[Sqrt[0.5 Pi x]BesselJ[i + 
1/2, x] , x]; 

bnt bnl - bn2; 

bdl y D[Sqrt[0.5 Pi y] BesselJ[i + 1/2, y], y] Sqrt[0.5 Pi 
x] (BesselJ[ i + 1/2, x] + I ( (-1) "i) BesselJ[-i - 1/2, x]); 

bd2 = x Sqrt[0.5 Pi y] BesselJ[i + 1/2,y] D[Sqrt[0.5 Pi x] (BesselJ[ i + 
1/2, x] +I ((-l)"i) BesselJ[-i - 1/2, x]), x]; 

bdt = bdl - bd2; 

bi = bnt/bdt; 

(* Now, we generate the i + 1 term for the b coefficients. *) 

bnlp = y D[Sqrt[0.5 Pi y] BesselJ[i + 3/2, y], y] Sqrt[0.5 Pi x] 
BesselJ [i + 3/2, x]; 

bn2p = x Sqrt[0.5 Pi y] BesselJ[i + 3/2, y] D[Sqrt[0.5 Pi x]BesselJ[i + 
3/2, x], x]; 

bntp bnlp - bn2p; 

bdlp y D[Sqrt[0.5 Pi y] BesselJ[i + 3/2, y], y] Sqrt[0.5 Pi 
x] (BesselJ[ i + 3/2, x] +I ( (-l)"(i + 1)) BesselJ[-i - 3/2, x]); 

bd2p = x Sqrt[0.5 Pi y] BesselJ[i + 3/2,y] D[Sqrt[0.5 Pi x] (BesselJ[ i 
+ 3/2, x] +I ((-l)"(i + 1)) BesselJ[-i - 3/2, x]), x]; 

bdtp = bdlp - bd2p; 

bip = bntp/bdtp; 

Clear[qpress] 

ql = Table[ 
Sum [ ( 2 I ( x" 2 ) ) ( 2 i + 1 ) Re [ a i + bi ] - ( 4 I ( x" 2 ) ) ( i ( i + 2 ) I ( i 

+ 1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] 
Im[bip]) - (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] 
Im[bi]) /. {x \[Rule] (0 .1 + step j), y \[Rule] (nl - I kl) (0 .1 + step 
j ) } I { i I l , no} ] I { j I l , 1} ] 

q2 = Table[ 
Sum [(2 I (x"2)) (2i + 1) Re[ai +bi] - (4 I (x"2)) (i (i + 2)/(i 

+ 1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] 
Im[bip]) - (4 I (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] 
Im[bi]) /. {x \[Rule] (0.1 +step j), y \[Rule] (n2 - I k2) (0.1 +step 
j ) } I { i I l , no} ] I { j I 2 I 2 } ] 

q3 = Table[ 
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Sum [ (2 I (x"'2)) (2i + 1) Re[ai + bi] - (4 I (x"'2)) (i (i + 2) / (i 
+ 1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] 
Im[bip]) - (4 I (x"'2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] 
Im[bi]) /. {x \[Rule] (0.1 +step j), y \[Rule] (n3 - I k3) (0.1 +step 
j ) } I { i I 1 I no} ] I { j I 3 I 3 } ] 

q4 = Table[ 
Sum [ ( 2 I ( x"' 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x"' 2) ) ( i ( i + 2) / ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"'2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) /. 
{x \[Rule] (0.1 +step j), y \[Rule] (n4 - I k4) (0.1 +step j)}, {i, 
1 I no } ] I { j I 4 I 4 } ] 

q5 = Table[ 
Sum [ ( 2 I ( x"' 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x"' 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- ( 4 I ( x"' 2) ) ( ( 2 i + 1) I ( i ( i + 1) ) ) (Re [ ai] Re [bi] + Im [ ai] Im [bi] ) I . 
{x \[Rule] (0.1 +step j), y \[Rule] (n5 - I k5) (0.1 +step j)}, {i, 
1 I no} ] I { j I 5 I 5 } ] 

q6 = Table[ 
Sum [ (2 I (x"'2)) (2i + 1) Re[ai + bi] - (4 I (x"'2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"'2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n6 - I k6) (0.1 +step j)}, {i, 
1 I no} ] I { j I 6 I 6 } ] 

q7 = Table[ 
Sum [ (2 I (x"'2)) (2i + 1) Re[ai + bi] - (4 I (x"'2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"'2)) ( (2i + 1) I (i (i + 1))) (Re [ai] Re [bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n7 - I k7) (0.1 +step j)}, {i, 
1 I no } ] I { j I 7 I 7 } ] 

q8 = Table[ 
Sum [ ( 2 I ( x"' 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x"' 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"'2)) ( (2i + 1) I (i (i + 1))) (Re [ai] Re [bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n8 - I kB) (0.1 +step j)}, {i, 
1 I no } ] I { j I 8 I 8 } ] 

q9 = Table[ 
Sum [ (2 I (x"'2)) (2i + 1) Re[ai + bi] - (4 I (x"'2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"'2)) ( (2i + 1) I (i (i + 1))) (Re [ai] Re [bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n9 - I k9) (0.1 +step j)}, {i, 
1 I no} ] I { j I 9 I 9 } ] 

qlO = Table[ 
Sum [ ( 2 I ( x"' 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x"' 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"'2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (nlO - I klO) (0.1 +step j)}, {i, 
1 I no} ] I { j I 10 I 10 } ] 

qll = Table [ 
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Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) / (i + 
1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (nll - I kll) (0.1 +step j)} , {i, 
1 I no } ] I { j I 11 I 11 } ] 

q12 = Table[ 
Sum [ ( 2 I ( x" 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x" 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- ( 4 I ( x" 2) ) ( ( 2 i + 1) I ( i ( i + 1) ) ) (Re [ ai] Re [bi] + Im [ ai] Im [bi] ) I . 
{x \[Rule] (0.1 +step j), y \[Rule] (n12 - I k12) (0.1 +step j)}, {i, 
1, no}] I { j I 12 I 12}] 

q13 = Table [ 
Sum [ ( 2 I ( x" 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x" 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n13 - I k13) (0.1 +step j)}, {i, 
l, no} ] I { j I l 3 I l 3} ] 

q14 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + [bi] Im[bip]) 
- ( 4 / ( x" 2) ) ( ( 2 i + 1) I ( i ( i + 1) ) ) (Re [ ai] Re [bi] + Im [ ai] Im [bi] ) I . 
{x \[Rule] (0.1 +step j), y \[Rule] (n14 - I k14) (0.1 +step j)}, {i, 
l, no} ] I { j I 14 I 14} ] 

q15 = Table[ 
Sum [ ( 2 I ( x" 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x" 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n15 - I k15) (0.1 +step j)}, {i, 
1 , no} ] I { j I 15 I 15 } ] 

q16 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n16 - I k16) (0.1 +step j)}, {i, 
1 I no} ] I { j I l 6 I 16 } ] 

q17 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n17 - I k17) (0.1 +step j)}, {i, 
l , no } ] I { j I 1 7 I 1 7 } ] 

q18 = Table[ 
Sum [ (2 / (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n18 - I k18) (0.1 +step j)}, {i, 
l , no} ] I { j I l 8 I 18 } ] 

q19 = Table[ 
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Sum [ ( 2 I (xi\ 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I (xi\ 2) ) ( i ( i + 2) I ( i + 
1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- ( 4 I (xi\ 2) ) ( ( 2 i + 1) I ( i ( i + 1) ) ) (Re [ ai] Re [bi] + Im [ ai] Im [bi] ) I . 
{x \[Rule] (0.1 +step j), y \[Rule] (n19 - I k19) (0.1 +step j)}, {i, 
1, no} ] , { j , 19 , 19} ] 

q20 = Table[ 
Sum [ (2 I (x/\2)) (2i + 1) Re[ai + bi] - (4 I (x/\2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x/\2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n20 - I k20) (0.1 +step j)} , {i, 
1 , no} ] , { j , 2 0 , 2 0 } ] 

q21 = Table[ 
Sum [ (2 I (x/\2)) (2i + 1) Re[ai + bi] - (4 I (x/\2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x/\2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n21 - I k21) (0.1 +step j)}, {i, 
1 , no} ] , { j , 21 , 21} ] 

q22 = Table[ 
Sum [ ( 2 / (xi\ 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I (xi\ 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x/\2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n22 - I k22) (0.1 +step j)}, {i, 
1 , no} ] , { j , 2 2 , 2 2 } ] 

q23 = Table[ 
Sum [ ( 2 I (xi\ 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I (xi\ 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x/\2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n23 - I k23) (0.1 +step j)}, {i, 
1 , no} ] , { j , 2 3 , 2 3 } ] 

q24 = Table[ 
Sum [(2 I (x/\2)) (2i + 1) Re[ai +bi] - (4 I (x/\2)) (i (i + 2)/(i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + [bi] Re[bip] + Im[bi] Im[bip]) -
(4 I (x/\2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. {x 
\[Rule] (0.1 +step j), y \[Rule] (n24 - I k24) (0.1 +step j)}, {i, l, 
no } ] , { j , 2 4 , 2 4 } ] 

q25 Table[ 
Sum [ ( 2 I (xi\ 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I (xi\ 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x/\2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n25 - I k25) (0.1 +step j)}, {i, 
1 , no } ] , { j , 2 5 , 2 5 } ] 

q26 = Table[ 
Sum [ (2 I (x/\2)) (2i + 1) Re[ai + bi] - (4 I (x/\2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x/\2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n26 - I k26) (0.1 +step j)}, {i, 
l , no } ] I { j I 2 6 I 2 6 } ] 

q27 = Table[ 
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Sum [ ( 2 I ( x" 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x" 2) ) ( i ( i + 2) I ( i + 
1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n27 - I k27) (0.1 +step j)}, {i, 
1 I no} ] I { j I 2 7 I 2 7} ] 

q28 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) /. 
{x \[Rule] (0.1 +step j), y \[Rule] (n28 - I k28) (0.1 +step j)}, {i, 
1 I no } ] I { j I 2 8 I 2 8 } ] 

q29 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- ( 4 I ( x" 2) ) ( ( 2 i + 1) I ( i ( i + 1) ) ) (Re [ ai] Re [bi] + Im [ ai] Im [bi] ) I . 
{x \[Rule] (0.1 +step j), y \[Rule] (n29 - I k29) (0.1 +step j)}, {i, 
1 I no} ] I { j I 2 9 I 2 9 } ] 

q30 = Table[ 
Sum [ ( 2 I ( x" 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x" 2) ) ( i ( i + 2) / ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] 
Im[bip]) - (4 I (x"2)) ( (2i + 1) I (i (i + 1))) (Re [ai] Re [bi] + Im[ai] 
Im[bi]) /. {x \[Rule] (0.1 +step j), y \[Rule] (n30 - I k30) (0.1 + 
step j ) } I { i I 1 I no} ] I { j I 3 0 I 3 0} ] 

q31 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n31 - I k31) (0.1 +step j)}, {i, 
1 I no} ] I { j I 3 l I 31 } ] 

q32 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n32 - I k32) (0.1 +step j)}, {i, 
1 I no} ] I { j I 3 2 I 3 2 } ] 

q33 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n33 - I k33) (0.1 +step j)}, {i, 
1 I no} ] I { j I 3 3 I 3 3 } ] 

q34 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n34 - I k34) (0.1 +step j)}, {i, 
1 I no} ] I { j I 3 4 I 3 4} ] 

q35 = Table[ 
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Sum [ (2 I (x"'2)) (2i + 1) Re[ai + bi] - (4 I (x"'2)) (i (i + 2) I (i + 
1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- ( 4 I ( x"' 2) ) ( ( 2 i + 1) I ( i ( i + 1) ) ) (Re [ ai] Re [bi] + Im [ ai] Im [bi] ) I . 
{x \[Rule] (0.1 +step j), y \[Rule] (n35 - I k35) (0.1 +step j)}, {i, 
l , no } ] I { j I 3 5 I 3 5 } ] 

q36 = Table[ 
Sum [ (2 I (x"'2)) (2i + 1) Re[ai + bi] - (4 I (x"'2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"'2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n36 - I k36) (0.1 +step j)}, {i, 
l , no} ] I { j I 3 6 I 3 6 } ] 

q37 = Table[ 
Sum [ (2 I (x"'2)) (2i + 1) Re[ai + bi] - (4 I (x"'2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"'2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n37 - I k37) (0.1 +step j)}, {i, 
l , no } ] I { j I 3 7 I 3 7 } ] 

q38 = Table[ 
Sum [ ( 2 I ( x"' 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x"' 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"'2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 + step j), y \[Rule] (n38 - I k38) (0.1 + step j)}, {i, 
l , no} ] I { j I 3 8 I 3 8 } ] 

q39 = Table[ 
Sum [ (2 I (x"'2)) (2i + 1) Re[ai + bi] - (4 I (x"'2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- ( 4 / ( x"' 2) ) ( ( 2 i + 1) I ( i ( i + 1) ) ) (Re [ ai] Re [bi] + Im [ ai] Im [bi] ) I . 
{x \[Rule] (0.1 +step j), y \[Rule] (n39 - I k39) (0.1 +step j)}, {i, 
l , no} ] I { j I 3 9 I 3 9 } ] 

q40 = Table[ 
Sum [(2 I (x"'2)) (2i + 1) Re[ai +bi] - (4 I (x"'2)) (i (i + 2)/(i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"'2)) ( (2i + 1) I (i (i + 1))) (Re [ai] Re [bi] + Im[ai] Im[bi]) I. 
{x \[Rule] ( 0 .1 + step j) , y \[Rule] (n40 - I k40) ( 0 .1 + step j)}, { i, 
1 , no} ] I { j I 4 0 I 4 0 } ] 

q41 = Table[ 
Sum [ ( 2 I ( x"' 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x"' 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"'2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n41 - I k41) (0.1 +step j)}, {i, 
l , no} ] , { j , 41 , 41 } ] 

q42 = Table[ 
Sum [ (2 I (x"'2)) (2i + 1) Re[ai + bi] - (4 I (x"'2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- ( 4 / ( x"' 2) ) ( ( 2 i + 1) I ( i ( i + 1) ) ) (Re [ ai] Re [bi] + Im [ ai] Im [bi] ) I . 
{x \[Rule] (0.1 +step j), y \[Rule] (n42 - I k42) (0.1 +step j)}, {i, 
l, no} ] I { j I 4 2 I 4 2} ] 

q43 = Table[ 
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Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 
1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n43 - I k43) (0.1 +step j)}, {i, 
l , no} ] I { j I 4 3 I 4 3 } ] 

q44 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n44 - I k44) (0.1 +step j)}, {i, 
1 , no} J , { j , 4 4 , 4 4 } ] 

q45 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 I (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n45 - I k45) (0.1 +step j)}, {i, 
l, no}], {j, 45, 45}] 

q46 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n46 - I k46) (0.1 +step j)}, {i, 
l , no } ] I { j I 4 6 I 4 6 } ] 

q47 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) I. 
{x \[Rule] (0.1 +step j), y \[Rule] (n47 - I k47) (0.1 +step j)}, {i, 
1 I no} ] I { j I 4 7 I 4 7} ] 

q48 = Table[ 
Sum [ ( 2 I ( x" 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x" 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] 
Im[bip]) - (4 I (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] 
Im[bi]) /. {x \[Rule] (0.1 + step j), y \[Rule] (n48 - I k48) (0.1 + 
step j ) } , { i, 1, no} ] , { j , 4 8 , 4 8} ] 

q49 = Table[ 
Sum [ ( 2 / ( x" 2) ) ( 2 i + 1) Re [ ai + bi] - ( 4 I ( x" 2) ) ( i ( i + 2) I ( i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) /. 
{x \[Rule] (0.1 +step j), y \[Rule] (n49 - I k49) (0.1 +step j)}, {i, 
1 , no } ] , { j , 4 9 , 4 9 } J 

q50 = Table[ 
Sum [ (2 I (x"2)) (2i + 1) Re[ai + bi] - (4 I (x"2)) (i (i + 2) I (i + 

1)) (Re[ai] Re[aip] + Im[ai] Im[aip] + Re[bi] Re[bip] + Im[bi] Im[bip]) 
- (4 / (x"2)) ( (2i + 1) I (i (i + 1))) (Re[ai] Re[bi] + Im[ai] Im[bi]) /. 
{x \[Rule] (0.1 +step j), y \[Rule] (n50 - I k50) (0.1 +step j)}, {i, 
1 I no} ] I { j I 5 0 I 5 0 } ] 



qpr = Table[{ql, q2, q3, q4, q5, q6, q7, q8, q9 , qlO , qll , ql2 , ql3 , 
ql4, ql5, ql6, ql7, ql8, ql9, q20, q21, q22 , q23 , q24 f q25 , q26 , q27, 
q28, q29, q30, q31, q32,q33, q34, q35, q36 , q37, q38 , q39 , q40 , q41 , 
q42, q43, q44, q45, q46, q47, q48, q49, q50}] 
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(* Further Modification of qpress_planck3_beta_final_working. 
Adding in new qpr function, 

a table of values from qpress_final_test2. 
Plot of Qpr is to be done using MS Excel. April 20, 2002 *) 

(* The wavelength ranges from about 0.15 microns to 4.00 microns *) 

(*This corresponds to X ranging from 10.47 to 0.3917 for a= 0.25\(Mu] 
*) 

(* In fact, here the range for X is from 10.10 to 0.10 *) 

(* Give values for the real (n) and imaginary (k) parts of the index *) 

<<NumericalMath'Listintegrate' 

np =50(* The number of points for the graph *) 

no 10(* The number of orders of the Bessel Functions *) 

rhod 0.92(*density of ice*) 

step 0.20 (* Step size for the abscissa *) 

plfunct = 
Table[((O.l +step j)"3)/(Exp[l.582(0.l +step j)] - 1), {j, l, np}] 

qpr = 
Table[{0.010421396356131696,0.5293231048667987,0.014594656423937641, 

0.04135246819448386,0.0795716338972744,0.12020243945520165, 
0.1497674027918325,0.16492966726550673,0.1812990887457252, 
0.21930321789244042,0.27334650231355617,0.31345746863574764, 
0.3272856295673084,0.3319163773599328,0.3492257976183164, 
0.3780273762310032,0.40525030107332716,0.42714429132619197, 
0.44810536961352865,0.4659033478156193,0.4750677539613635, 
0.48637730823691866,0.5133289172598007,0.5463928406320763, 
0.5646092618021665,0.570056239581049,0.5809073317790873, 
0.6031798239435618,0.6310231780608218,0.659400121359017, 
0.678463831239897,0.6729775074038127,0.6794636856598216, 
0.7297060081264833,0.7774161164921534,0.7438393600231517, 
0.7362777735177926,0.8221276636959161,0.8426975269769251, 
0.7683383156098996,0.8100416033481724,0.9335448684096527, 
0.7843794152030004,0.7707948680452357,0.8979225178211006, 
0.7451802729332048,0.5034700402726577,0.6435785527148196, 
l.0929128332454132,1.1285159020514284}] 

integrand = plfunct qpr 

beta (2.2470/rhod) (Listintegrate[integrand, step]) 

planck = Table[{(0.1 +step j), ((0 . 1 +step j)"3)/(Exp[l.582(0.l + 
step j ) ] - 1) } I { j I 0 I np} ] 
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ListPlot[planck, AxesOrigin \[Rule] {0,0}] 
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(* Attempt to determine percent of blackbody curve used in program. 
April 13, 2002. 

April 29, 
2002. Changed second and third functions to cover range< x=O.l. *) 

<<NumericalMath'Listintegrate' 

np = 50 
np2 1000 
np3 = 10000 

step = 0.20 (* Step size for the abscissa *) 

plfunct = 
Table[((0.1 +step j)"'3)/(Exp[l.582(0.l +step j)] - 1), {j, l, 

np} J; 

blbodyO (Listintegrate[plfunct, step]) 

planckl = 
Table[(( O.OOOOl+step j)A3)/(Exp[l.582(0.00001+step j)] - 1), {j, 

0 I np2}] ; 

blbodyl Listintegrate[planckl, step] 

(blbodyl - blbodyO)/blbodyl*lOO 

planck2 = 
Table[((O.OOOOl+step j)A3)/(Exp[l.582(0.00001+step j)] - 1), {j, 0, 

np3}]; 

blbody2 Listintegrate[planck2, step] 

(blbody2 - blbodyl)/blbody2*100 

(blbody2 - blbody0)/blbody2*100 








