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ABSTRACT 

An understanding of the structure of price volatility is of great interest since this is a major contributor to 
economic risk in the salmon industry. The volatility process in salmon prices was analyzed based on 
weekly price data from 1995 to 2007. The Generalized Autoregressive Conditional Heteroskedasticity 
(GARCH) model was used to test for volatility clustering and persistence of volatility for prices. We find 
evidence for and discuss the degree of persistence and reversion in the salmon price volatility. We further 
find that the usual assumption of an independent zero mean normally distributed error term is not 
satisfactory when describing the salmon price process. 
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Introduction 

In general, producers face two main types of risk, production risk, which influences how much is produced with a 
given input factor combination, and price risk, which influences obtained from the quantity produced (Just and Pope 
1978; Sandmo 1971). A number of studies have recognized that salmon farming is a risky (Asche and Tveterås, 
1999; Tveterås, 1999; 2000, Kumbhakar, 2002 and Kumbhakar and Tveterås, 2003). However, production risk is the 
main focus of these studies. Despite substantial volatility in prices that also seems to be one main source for cycles 
in profitability, price risk in salmon aquaculture has received little focus. In this paper we will investigate the price 
volatility for Norwegian salmon, and thereby obtain information with respect to the nature of the price risk that 
salmon farmers are facing. 
 
For the salmon industry providing information on the volatility of prices is potentially valuable. There is substantial 
variability in industry profit levels (Tveterås, 1999), and an important part of this variability is due to fluctuating 
prices.  Not only the first hand sellers, the farmers, experience the economic costs of highly fluctuating prices. The 
costs of price volatility are transferred to the entire value chain. Retailers and consumers increasingly demand 
stability of price and supply, and often have little understanding for biological and other mechanisms driving the 
formation of prices in the market. Modern value chains for food products are organized and have capital-intensive 
technologies that are geared towards predictability and stability of supplies and prices. From the fluctuating first-
hand prices to the relative stable retail prices many intermediary agents in the value chain, such as fish processors, 
can experience substantial variability of capacity utilization and profits, as prices fluctuate.  
 
Revealing information on the volatility term of the price process also contributes to the literature on price processes 
in aquaculture. Studies of price forecasting (Guttormsen, 1999; Gu and Anderson, 1995; Vukina and Anderson, 
1994) rely on precise knowledge of the noise generating part of prices. The question of how precise we can expect 
price forecasts to be is highly related to the volatility term. Also studies of market integration (Asche, Bremnes, and 
Wessells, 1999; Asche, Gordon, and Hannesson, 2004) rely on knowledge of the volatility term. If markets for 
comparable goods are integrated, which imply that we can describe them through one price measure, this should also 
include the integration of the volatility processes of the comparable goods.  
 
Previous research on salmon prices has been predominantly concerned with issues such as price forecasting and 
market integration, and as such has for the most part focused on the price levels and the drift term of the price 
process. As far as we know little work has been done on examining the volatility properties of salmon prices. Thus 
this paper contributes to the study of salmon prices by analytically and descriptively investigating the volatility term 
of the price process. In essence we will look for indications that the volatility term cannot be described by a, 
generally assumed, independent zero-mean normally distributed random variable. We do this econometrically by 
applying the GARCH model (Bollerslev 1986) to our price time-series. The GARCH model allows us to model the 



IIFET 2008 Vietnam Proceedings 

 2 

variance term of the price process as a regression equation dependent on some explanatory variables, where the 
lagged variance and squared error term of the price process is assumed as default variables. This in essence allows 
us to empirically model any heteroskedasticity in the process. The result from the analysis of this process will reveal 
information on the volatility term in the form of bringing to light attributes such as volatility clusteringi and the 
degree of persistence of volatility. This again allows us to discuss how volatility reverts after a shock, and as such 
reveal predictive powers of the volatility. The persistence of any volatility shock will also provide an indicator on 
the level of efficiency in the market; how fast prices revert to a conceived equilibrium following a shock. In addition 
we will investigate the distributional properties of the error term in the price structure in order to reveal non-
normality attributes such as leptokurtosis and skewness. In estimating the distributional form of the error term we 
apply the kernel density estimation method.   
 
The paper starts by descriptively trying to analyse the behaviour of price volatility. We apply some measures of 
volatility to our time series in order to apprehend indications of the properties of volatility that will in turn direct our 
further analysis. Following the descriptive analysis we apply the GARCH model to our time series so as to more 
rigorously investigate the properties suggested by the descriptive analysis. Our results reveal that the volatility term 
is not independent and that persistence and clustering is present in the short term dynamics of the price structure. As 
such the investigation provides valuable information on the salmon price path for any risk averse market participant.  
 

The short term dynamics of salmon prices 

Our data set is provided by the Norwegian Seafood Export Council and consists of 650 weekly observations of 
salmon prices in Norwegian Kroners from the start of 1995 to week 21 in 2007. One observation of price at time t 

will be denoted as tX . As a starting point we decompose the price path as such. 

 

 tttt dBXXdX σµ +=          (1) 

 
The above Stochastic Differential Equation breaks the price movement down in two parts. One predictable, or trend 

part tXµ , and one noise part, tt dBXσ  accounting for the uncertainty of the price movement. The uncertainty of 

price movements σ  is driven by the Brownian motion tB , which in its increments is normally distributed with 

mean zero and variance equal to the size of the time increment. Note that the price decomposition contains two 
information terms, namely the drift term and a constant volatility term. The Brownian motion is pure noise and 
contains no information. 
 
This basic way of modelling price movements is much applied in financial economics. We will argue that the price 
process in the salmon industry may be described by the same process. The selling and buying of salmon is motivated 
by the same incentive for utility maximization as any financial asset investment. The sale of salmon does not have to 
occur at the exact moment the fish reaches sellable size; the profit maximizing policy of sellers is a dynamic 
problem, they might hold the salmon and wait for price to change or sell it immediately. This strengthens the 
speculative forces underlining the price of salmon. Since uncertainty is a fundamental attribute of the salmon 
production process we know that the price of salmon is volatile. A hypothesis concerning salmon prices is therefore 
that the price process is very much explained by the Brownian motion, and that long term predictability is limited. In 
our time series the long term predictability, or drift term, is linked to any trend observed in the given time domain.   
 

The relative difference in price levels, or return, from week to week is denoted as 1/ −= tt XXR . To account for 

proportional changes in returns we apply a logarithmic transformation of the price difference such that 

1lnln −−= ttt XXY . The logarithmic transformation is also applied to the price process; transforming both the 

variables and the shape and moments of the probability distribution  
 

tt dBdtdY σσµ +−= )2
1( 2              (2) 
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The log return tY  is normally distributed with mean t∆− )
2

1
( 2σµ  and variance t∆2σ . This simple model, in the 

case of zero drift, assumes that log returns are independent. For the Black-Scholes option pricing formula, for 
example, the pricing equation does not contain a local mean rate of return. Generally this seems like a strict 
assumption, and as such the seminal work done by Black and Scholes has been criticized for this independence 
assumption. In fact, empirical analysis of stock returns indicates that non-linear functions of returns are 
autocorrelated (Jones, 2003). The non-zero correlation between different powers of return gives rise to volatility 
clustering. Thus log-returns, at least for stocks, often seem to be connected not only through a drift term but also 
through a non-zero conditional variance.  
 
If the noise term σ  is equal to zero, the price movement is completely predictable and described by the linear 

relationship tY µ+0 . Thus we see that volatility is the term describing the divergence of prices from its predictable 

level. In relation to salmon prices we might expect that the price will often diverge from any assumed predictable 
level. From 1996 to 2007 we observe that the trend line in prices (figure 1) is weakly declining. Increasing industry 
productivity subsequently explains the decline in prices over timeii. In our figure prices are nominal so that the 
downward effect from increased productivity on prices is counteracted by inflation.  
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Figure 1. Weekly salmon prices from 1995 to 2007 with fitted trend line. 
 
If the market for salmon is completely efficient, meaning that all relevant information concerning the future value of 
salmon is incorporated in its price, the predictable part of the price movement approximates to zero; more precisely, 
any trend observed in the price in the case of an efficient market is due to inflation. Thus the change in price from 

week to week should be completely described by the noise term tt dBXσ . The parameter σ  in the price process is 

the fundamental measure of volatility, and is in this simple description assumed to be constant. From figure 3 it is 
hard to argue that the predictable factor µ  is very dominant, there seems to be little drift in the price process and the 

dominant part of the given price movement seems to be given by the Brownian motion. If this holds then no patterns 
in prices can be found, and thus for the market participants they would be unable to acquire any information on the 
future price movements. The best prediction on future prices would simply be today’s price levels, where the 
volatility term would be a simple white noise term. 
 
In order to examine the noise term of the production process, we now apply a historical rolling volatility measure in 
which we measure the divergence of prices from a 20 week moving average.  
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Figure 2. Twenty weeks moving average of salmon price volatility 
 
As indicated in Figure 2 volatility is displaying variation over time. In addition volatility seems to “spike” in some 
time intervals. There seems to be significant positive jumps in the volatility process. This suggests that the volatility 
σ  in our price process is itself stochastic, and that the assumption that volatility σ  is fixed seem insufficient in 
describing the price process. When modelling stochastic volatility to incorporate spikes the Ornstein-Uhlenbeck 
process for volatility has been applied (Zerili 2005). The Ornstein-Uhlenbeck process allows for autocorrelation in 
volatility. 
 
For discrete time the counterpart of the Ornstein-Uhlenbeck process can be implemented by the GARCH model. The 
indication that volatility is stochastic process opens up for the possibility that volatility is connected across time and 
such that a GARCH model is suitable to describe the price process for the discrete time approach.   
 
We might also incorporate the moving average measure of volatility in the level chart of salmon prices. 
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Figure 3. Salmon Price and Volatility 
 
By examining Figure 3 another pattern in the volatility process seems to emerge. The figure suggests that volatility 
is larger in periods of relative high prices, that there is positive correlation between price and volatility. In the theory 
of commodity prices it has been conjectured that this relationship should exist (Deaton and Laroque, 1992; 
Chambers and Bailey, 1996). In periods with scarce availability of goods; for example due to a streak of bad 
harvests, the price is allowed to persist above the long run equilibrium level. As inventories are emptied the 
producers reach a state where excess demand can not be satisfied. This gives rise to the characteristic price spikes 
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observed in commodity markets; and as such larger than average volatility. In order to examine this property we 
divide our data-set in two; one set where price is below the trend and one where it is above. Thus this functions as a 
proxy for a high and low price data set. Further we test, using both the Levene (1960) and Brown and Forsythe 
(1974) test, whether the standard-deviation of the two price sets are significantly different, as shown in Table 1. We 
note that the standard deviation of the “high price” and “low price” series are 3.47 and 2.27, respectively. Both the 
Levene and the Brown and Forsythe test strongly indicate that the standard deviations are different. As such this 
approach supports the suspicion that volatility is larger in periods of high prices. For the market participants this 
means that larger expected profits generally come at a trade-off of larger price risk.  
 
 

Table 1. Levene/Brown and Forsythe test for equality of variance 
      
Dummy Mean St.Dev. Freq.     
Low price 24.33 2.27 360   
High price 30.19 3.47 290     
Total 26.95 4.08 650   
       
w0   = 40.14       df(1,648)             Pr > F = 0.0000000   
      
w50 = 13.26       df(1,648)             Pr > F = 0.0002914   
      
w10 = 24.15       df(1,648)             Pr > F = 0.0000011   

 
*The term w0 reports Levene’s statistic, and w50(median) and w10(10 percent trimmed mean) replaces the mean 
with the two alternative location estimators as proposed by Browne and Forsythe. 
 
Next we move to the log-space where we apply our measures of volatility to the log-return of prices. By examining 
returns instead of levels we are able to say something about the short term dynamics of the price movements; that is 
the corrective movements in prices. The return movement indicates how the market price converges to the 
equilibrium price. If the equilibrium price level is constantly changing, as we would assume in a market with much 
uncertainty, this would lead to large volatility in returns as prices constantly “catches up” to the equilibrium price. 
Moreover, if drift is absent from the return process we should observe that the log returns are independent and (in 
the case of a constant volatility term) fluctuate unsystematically around zero according to the Brownian motion (the 
Brownian motion is as stated independent and normally distributed in its increments). 
 
Figure 4 depicts the moving average with and without drift. The figure supports the hypothesis that drift is largely 
absent in the salmon return process. There seems to be little divergence between a drift and a zero drift process. The 
difference between the two moving average measures is a mean adjustment term to the log-returns in the case of the 
drift measure. If there were significant drift in the price process this would lead to a notable difference between the 
two measures since log-returns would over time diverge from zero. This figure also suggests that volatility displays 
clustering. The indication of volatility clustering further strengthens our suspicion that the volatility term of the price 
process is itself stochastic, meaning that both the Brownian motion and the stochastic volatility might shift prices, 
and such that variance is not independent of other previous week(s) variance. Moreover, assuming that volatility 
fully follows a random walk does not seem satisfactory in describing the volatility term in the price process. 
 
It is also necessary to determine the time series properties of the variables in order to avoid the problem of 
nonstationarity. We do this by testing for nonstationarity by applying the augmented Dicky-Fuller (ADF) test. We 
included a constant in all our variables that do not appear to be trending, and included a trend, in addition, in the 
ADF test on volume. The results are shown in table 2. Lag length was chosen to minimize Akaike Information 
Criterion. The most important tests are the tests on log returns and log volume change (log-diff.-volume). The ADF 
tests reject the null of nonstationarity on both of these variables at the five percent level.  
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Figure 4. Twenty weeks moving average of log returns with and without drift 
 

Table 2: Unit root tests (ADF)     

    

Series t-adf Lag lenght Options included 

    

Salmon price -2.748 2 Constant 

Log-Return -26.84** 0 Constant 

Volume -12.10**  1 Constant and trend 

Log.-diff.-volume  -10.75** 14 Constant 
    

 
We also tested for “ARCH effects” (Engle 1982) on both log return and log-diff.-volume We regressed the 
dependent variable (log return and log-diff.-volume sequentially) on a constant, and saved the residuals, squared 
them, and regressed them on five own lags to test for ARCH of order 5. We obtained R2 and multiplied with the 
number of observations. This test statistic is distributed as Chi-square. The test statistic (table 3) for both log return 
and log-diff.-volume shows that the series show evidence of ARCH effects. A test for autocorrelation in the data 
was also performed. The Ljung-Box test suggests that autocorrelation is present in all series except log returns.  
 

 Table 3: Autocorrelation and ARCH tests 
   
   
Price Series Autocorrelation ARCH 

 Ljung-Box (25) Chi^2 
Salmon Price 8405**  
   
Log-Return 24 220** 
   
Volume 6096**  
   
Log-diff.-volume 114** 265** 

 
The analysis so far suggests that long term predictability is severely limited; that drift in the price process is largely 
absent in our time frame, and such that the volatility movements is important in describing the price process. 
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Further, the existence of spikes and clustering of volatility suggests that volatility is itself described by a stochastic 
process and that it is not independent across time. This further suggests that, despite a lack of predictability arising 
from an approximately zero drift term, the log returns still might display correlations arising from a non zero 
conditional volatility. Thus the natural extension of the analysis is to apply the GARCH model to our price process. 
 

Econometric approach 

If we simulate an ARCH(1) series, we can see that the ARCH(1) error term ut has clusters of extreme values. This is 
a consequence of the autoregressive structure of the conditional variance. That the variance is dependent on the 
squared variance of the previous period leads to the possibility of higher power correlations between log-returns. If 
the realized value of ut-1 is far from zero, ht (the conditional variance of ut ) will typically be large. Therefore, 
extreme values of ut are followed by other extreme values, and thus we observe the clustering seen in financial 
market returns.  
 
There have been some difficulties implementing the ARCH model. A problem is that often a large number of lagged 
squared error terms in the equation for the conditional variance are found to be significant on the basis of pre-
testing. In addition, there are problems associated with a negative conditional variance, and it is necessary to impose 
restrictions on the parameters in the model. Consequently in practice the estimation of ARCH models is not always 
straight forward. Bollerslev (1986) extended the ARCH model and allowed for a more flexible lag structure. He 
introduced a conditional heteroskedasticity model that includes lags of the conditional variance (ht-1, ht-2,…, ht-p) as 
regressors in the model for the conditional variance in addition to lags of the squared error term  

),...,,( 22
2

2
1 qttt uuu −−− , which leads to the generalized ARCH (GARCH) model. In a GARCH(p,q) model, ut is 

defined as: 
 

∑ ∑
= =

−− ++=
q

i

p

j
jtjititt huu

1

2/1

1

2
0 )( βααε           (4) 

 

where εt ~NID(0, 1); qiaaqp i ,...,1,0,0;0,0 0 =≥>≥≥ and 0≥β , j = 1, 2,…, p.  

It follows from manipulation of the above equation that ht (the conditional variance of ut) is a function of lagged 

values of 2
tu and lagged values of ht: 

 

∑ ∑
= =

−− ++=
q

i

p

j
jtjitit huh

1 1

2
0 βαα            (5) 

 
Earlier in the paper we noted that volatility is larger in periods of higher prices, as such it seems reasonable that the 
volatility process is asymmetric and positively skewed. In order to incorporate asymmetric volatility it is normal to 
apply the EGARCH (exponential GARCH) rather than GARCH model. In describing our price series we have not 
found this to be a suitable approach. Under leptokurtic distributions such as the Student-t distribution, the 
unconditional variance does not exist for EGARCH. The exponential growth of the conditional variance changes 
with the level of shocks, this leads to the explosion of the unconditional variance when extreme shocks are likely to 
occur. In empirical studies it has been found that EGARCH often overweighs the effects of larger shocks on 
volatility and thus results in poorer fits than standard GARCH modelsiii . 
 

Econometric results and discussion 

In this section, we present the results from our GARCH estimation. A normality test (Doornik and Hansen, 1994), 
which is presented in Table 4, on our price series indicate non-normality, which is not surprising considering many 
large residuals. Non-normality is an inherent feature of the errors from regression models of financial data, and 
hence robust standard errors are calculated. Further the price level series displays kurtosis (1.6361) and skewness 
(0.8663). Concerning log returns the distribution displays excess kurtosis (45.324) but as opposed to the price level 
series skewness (0.094122) is to a large degree eliminated. Furthermore the large kurtosis in log returns means that 
more of its variance is explained by infrequent extreme deviations from its mean. This illustrates the uncertainty and 
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risk underlying the return process in the industry. Corresponding results for both volume and log-diff.-volume can 
be seen in table 4 below. Applying kernel density estimation with a Gaussian distribution term we can estimate the 
distribution of the price series and log-returns. 
 

Table 4. Summary Statistics for Salmon Price, log returns, volume and 
log-diff.-volume     
       
       
Price Series   Mean Std.Dev. Skewness Kurtosis Normality 

      Chi^2 
Salmon Price 26.946 4.0835 0.8663 1.6361 67.858** 
       
Log-Return  -0.00032165 0.031898 0.094122 45.324 3607** 
       
Volume  5305.9 1954.6 0.84598 1.0401 81.885** 
       
Log-diff.-volume   0.0023095 0.49352 0.03005 129.11 9449.3** 

 
As figure 10 shows the skewness is to a large extent eliminated when looking at log-returns. The low level of 
skewness suggests that in the short term there is little possibility of any reliable excess return. Furthermore the high 
kurtosis in log returns means that more of its variance is explained by infrequent extreme deviations from its mean. 
This would suggest that large returns are generated by unpredictable shocks. The distributional analysis indicates 
that assuming a normally distributed error term in the price structure of salmon is non trivial, and that any research 
on salmon prices should account for the distributional form of the price series in their time domain.  
 
In the volatility equation we will include the stationary time series of log volume differences. This series illustrates 
the growth pattern in volume of salmon sold. The reason for including volume can be found in the relationship 
between inventorying and short term price dynamics in commodity prices (Deaton and Laroque, 1992; Chambers 
and Bailey, 1996). The theory states that inventorying allows the smoothing of short term price fluctuations. In 
production of goods with limited durability; such as fresh salmon, the possibility for inventorying is limited. One 
might conjecture that the only possibility for inventorying of fresh fish in aquaculture is through a continuation of 
cultivation. As such there exists an inverse relationship between the growth in volume sold and the availability of 
inventories to smooth future prices; or alternatively that the growth in volume indicates the utilization of inventories. 
The relationship between volatility and volume is also investigated in financial markets (c.f. Bessembinder and 
Seguin 1993).   
 
We estimate the GARCH model with Student-t distributed errors, as proposed by Bollerslev (1987)iv. The 
distribution tends to the standard normal when degrees of freedom go to infinity. From table 5 below we observe 
that the optimal number of lags in our model is five. 
 
 

Table 5. Akaike Information Criteria (AIC) and Bayesian Information Critaria 
(BIC) 
     

GARCH(1,1)*      

    AIC   BIC 
AR(1)  -3139.51  -3133.84 
AR(2)  -3139.13  -3132.66 
AR(3)  -3139.46  -3132.17 
AR(4)  -3140.02  -3131.92 
AR(5)  -3146.11  -3137.21 
AR(6)  -3137.3  -3127.58 
AR(7)  -3132.59  -3122.06 
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AR(8)  -3123.85  -3112.52 
AR(9)  -3116.76  -3104.62 
AR(10)  -3108.86  -3095.91 

         
* Extending the GARCH terms to GARCH(2,1), GARCH(1,2) or GARCH(2,2) does not improve the fit over the 
GARCH(1,1) alternative 
 
The model is estimated with a five week lag in the price equation and a one week lag in the GARCH and ARCH 
terms.   
 

t

5

1i
itit uyy +η+µ= ∑

=
−              (6) 

 

11
2

110 −− ++∆+= ttt huVolumeh βαγα            (7) 

 
Here Volume∆ is along with return defined on log form. The model (6) – (7) was estimated sequentially using 
maximum likelihoodv. 
 

 
Table 6. AR(5)-GARCH(1,1) estimation results         
       
Parameter             

       
Price Function   Coefficient  Robust Std.Dev. t-value   

µ    -0.00024 0.00068 -0.358  

1η    0.35227** 0.04683 7.52  

2η    -0.02208 0.04079 -0.541  

3η    -0.06444 0.04129 -1.56  

4η    0.02923 0.03537 0.827  

5η    0.08648** 0.03061 2.83  
       
Variance Function       

0α    0.00018** 0.000003 2.81  
γ    -0.00035* 0.00016 -2.13  

1α    0.44230** 0.1259 3.51   

1β  
  0.3694** 0.1214 3.04 

 

       
Log likelihood   1581.8        
       

** implies significance on the one percent level, * implies significance on the five percent level 
 
 
From table 6 we observe that both previous period variance and error term is significant on the 5% level on today’s 
variance of price. Thus the large spiking and clustering in volatility indicated earlier can be explained by the 
conditional variance term. Intuitively the lag 1 structure of variance suggest that if price was very volatile last week 
it is more likely than not to be very volatile this week as well. After a period with high volatility, one can expect that 
the volatility reverts to a more stable level. For aquaculture firms this means that volatility last week has some 
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predictive power concerning this week’s volatility, and as such can offer information to a risk averse firm who 
values information on price volatility.  
 
In the variance equation, we see that Volume∆  is negative and significant on the five percent level: the conditional 
variance of salmon prices is negatively (positively) related to positive (negative) changes in traded volume. 
Following the reasoning for including volume movements in the volatility equation, the results state that as the 
utilization of inventories increase volatility decreases. This supports the relationship that the availability of 
inventories helps smooth prices. However the utilization of inventories today comes at a trade-off of lower 
inventories tomorrow such that the option for smoothing prices in the future has decreased. We should note that 
although the difference in volume traded is statistical significant, it is less likely to be economically significant due 
to a low coefficient value.  
 
In table 6 we observe how the conditional mean (return) is related to its previous values. Particularly, lag 1 and lag 5 
are significant and positive. The return in week t depends on the return last week and return five weeks ago. Thus we 
might state that lag 1 and 5 of log returns offer some predictive powers on the log-returns.  
 
Next we perform misspecification tests on the residuals from our model. The Portmanteau statistic for the scaled 
residuals returns a Chi square value of 15.453 (a p-value of 0.75). The Portmanteau statistic for squared residuals 
results in a Chi square value of 0.31328 (a p-value of 1). Hence, the Portmanteau tests reject autocorrelation in the 
residuals. We test for error ARCH from lags 1 to 2. With a p-value of 0.97 we reject ARCH 1-2 in the residuals. 
Lastly, a normality test is performed. A p-value of 0.00 implies serious non-normality. With regressions from 
speculative prices, we do not get normally distributed errors. We therefore report robust standard errors.  
 

In a GARCH(1,1) model, the sum )( 11 βα +  measures the degree of volatility persistence in the market; the speed 

at which the market dissipates a shock. Thus it tells us something about the degree of efficiency in the market, where 
the intuition is that if a market is completely efficient it should immediately correct to any shock. What this means is 
that the larger the persistence is the lower is the speed of correction in the market. We note that the value of 
volatility persistence in our model is estimated to 0,81. To put this in context we note that doomi, Hudson and 
Hanson (2003) found persistence values for catfish, corn, soybeans and menhaden equal to 0,98, 0,94, 0,88 and 0,38, 
respectively. Moreover, this suggests that the market for salmon displays a larger degree of efficiency than catfish, 
corn and soybeans products, but lower than menhaden.    
 
Furthermore we might use the degree of volatility persistence in the market to estimate the half life of a volatility 
shock. The half life estimate measures the time it takes for a shock to fall to half of its initial value and is determined 
by (Pindyck 2004): 
 

Half-life time = )log(/)5log(. 11 βα +            (8) 

 
We calculate a half life time of 3.3 weeks. Recent literature on volatility persistence suggests that the persistence in 
the conditional variance may be generated by an exogenous driving variable that is itself serially correlated. Hence 
the inclusion of such an exogenous variable in the conditional variance equation would reduce the observed 
volatility persistence (see Lamourex and Lastrapes, 1990; Kalev et al., 2004). We find that excluding the exogenous 
variable results in a half life time of 4.4 weeks.   
 

Concluding remarks 

While production risk in salmon aquaculture has received substantial attention, little focus has been given to price 
risk. It is important to understand price risk as this seems to be a main factor driving the cycles the industry is 
experiencing. Our results indicate that the assumption of an independent zero mean normally distributed error term 
is not trivial when modelling salmon prices. We find that the salmon prices and log-returns are non-normal, and 
display skewness and kurtosis for the former and kurtosis for the latter case. As such, assuming normality when 
modelling salmon prices is not supported by our study. Moreover, we find that a AR(5)-GARCH(1,1) process 
describes the salmon price process. Thus academic research applying salmon prices should account for the fact that 
there is persistence of volatility itself on the short-term dynamics. For studies of price forecasting, for example, this 
means that in periods of large shocks we cannot expect as precise forecasts, even in periods following the shock 
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since volatility will generally persist for some time as the market corrects. Also for studies of market integration we 
note that if comparable salmon goods are to be aggregated they should also display some of the same volatility 
patterns, we should observe some volatility spill over effects between comparable goods. For the relevant market 
participants the fact that volatility clustering is existent offers some predictive information on the price fluctuations 
in the market. More specifically we find that previous week’s volatility offers some indication of next week’s 
volatility. This provides information to a market chronically missing stability and predictability. Risk averse market 
participants can avoid trading next week if they observe that volatility is large this week. This gives the market 
participants an additional hedging possibility; there is clear evidence that volatility reverts following a shock. We 
also find support for the hypothesis that volatility is larger in periods of high prices. For the industry this means that 
larger expected profits more often than not comes at a trade-off of larger price risk. 
 
Our results also indicate that the degree of efficiency in the market for salmon aligns itself with a small sample of 
other agricultural goods. We also note that following a shock, the volatility will half in an estimated 3.3 weeks, 
which offers some planning information for the market participants. Concerning the predictability of prices we find 
that today’s log-returns are dependent on a 1 and a 5 week lag of log-returns. This means that there is some level of 
short term predictability present in the market. To some degree this supports studies that claim to offer some level of 
short term predictions of salmon prices. Concerning long term predictions on price levels we find that the long term 
trend in prices is weakly declining. The decline is mostly due to increasing industry productivity. As such, any 
prediction on future price levels can, at least in the long run, be found in the continuation of the productivity 
increase. Short term price correlations offer no predictive powers on any long term price levels. The focus of this 
paper has been on understanding price risk in salmon prices. Future research can be conducted on evaluating 
forecasting performance of different volatility models.  
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i Volatility clustering is the property that prices are correlated in higher powers, that in general large changes in 
prices(of either sign) are followed by large changes, and small changes (of either sign) are followed by small 
changes 
 
ii See e.g. Asche (1997) and Asche and Tveterås (2002) 
 
iii  See the empirical study of Engle and Ng (1993) 
 
iv Likelihood Equation evaluated 
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v Akaike Information Criterion also confirms that log-diff-volume in the variance equation should be included. AIC 
with volume included is -4.88, and is -4.87 without log-diff-volume in the estimation. 
 


