THE FLOW CHARACTERISTICS OF COMMERCIAL POWDERED CATALYSTS. STUDY II

by

GAYLE HOWARD NICHOLS, JR.

A THESIS

submitted to

OREGON STATE COLLEGE

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

June 1948

APPROVED:

Redacted for Privacy

Head of (Department of Chemical Engineering

In Charge of Major

Redacted for Privacy

Chairman of School Graduate Committee

Redacted for Privacy

Dean of Graduate School

ACKNOWLEDGMENT

The author wishes to acknowledge the suggestions offered by Professors J. S. Walton and Joseph Schulein. Their interest and criticism are greatly appreciated.

Acknowledgment is also due the Filtrol Corporation, Standard Oil Company of New Jersey (Louisiana Division). and American Cyanamid Company for providing the catalysts Filtrol. 3A, and Aerocat, respectively.

TABLE OF CONTENTS

Page

Objective	1
Introduction	3
Apparatus	4
Materials	8
Technique	10
Results	13
Conclusions	24
Appendix	25
Sample Calculation Table of Experimental Data	26 27

LIST OF FIGURES

Figu	re	Page
1	Diagram of Apparatus	7
	Friction Factor Charts for Catalyst Flow	
2	Filtrol	17
3	Catalyst SA	18
4	Aerocat	19
5	Comparison chart	20

THE FLOW CHARACTERISTICS OF COMMERCIAL POWDERED CATALYSTS. STUDY II

OBJECTIVE

The fundamental aim of the work described here was to refine the equipment described by D. F. Rynning (1) and to add to the information presented by him. The specific problem investigated was the study of the pressure drop due to fluid friction in a flow system containing a powdered solid of the "fluid catalyst" type and the correlation of this pressure drop with the other variables generally associated with frictional pressure drop: namely, the velocity and density of the material flowing, the size of the conduit through which the pressure drop is measured, and the nature of the material.

A further consideration was the applicability of the flow equation suggested by J. S. Walton and D. F. Rynning (2) following the publication of Rynning's original work and based on that work.

⁽¹⁾ Delroy Finlay Rynning, THE FLOW CHARACTERISTICS OF COMMERCIAL POWDERED CATALYSTS, M.S. Thesis, Oregon State College, Corvallis, Oregon, 1947.

⁽²⁾ Jesse Seburn Walton and Delroy Finlay Rynning, FLOWING CHARACTERISTICS OF COMMERCIAL POWDERED CATALYSTS, Presented to American Chemical Society, Regional Meeting, Pullman, Washington, May 1947.

Lastly, it was desired that these investigations should provide more data and fundamental information on the behavior of fluidized solids for future investigators, the data of Rynning (3) being all that is currently available.

(3) D. F. Rynning, loc. cit.

INTRODUCTION

"Fluid catalyst" is a term that has come into general use with reference to an aereated powder of a catalytic material which is circulated through process equipment in the manner of a true fluid. It differs from a gaseous suspension in that the density of the material flowing is much nearer that of the packed solid than that of the gas which is being used to move it.

Fluid catalyst technique has become of major importance in petroleum refining and is expected to find more widespread use in other chemical industries both for catalysis and as a method of treating finely ground solids. Thus it may be seen that it is desirable that information on the behavior of fluidized solids be available as a basis for design calculations. The work which has been done in the petroleum industries has been entirely commercial and the results are not generally available.

APPARATUS

Essentially, the same equipment was used in this work as that described by Rynning (4) with a variation of flow tube diameter and with the addition of a return system to make the apparatus semi-continuous.

Basically the equipment consisted of a standpipe which served to provide a pressure head for the powdered catalyst, a glass flow tube through which the catalyst flow could be measured while the attendant pressure drop was measured, and a line to provide for the return of the catalyst by compressed air to the standpipe. The apparatus is shown schematically in Figure 1.

The standpipe was a five foot section of standard three-inch pipe mounted vertically, with a conical sheet metal hopper at the top. The hopper tapered from two feet in diameter and was two feet deep. The lower end of the standpipe was reduced by standard fittings to a one-inch pipe from which a connection was made to the flow tube by rubber tubing. A 1/4-inch compressed air line was provided at the bottom of the standpipe just above the fittings.

Flow tubes were made of glass tubing with pressure

(4) Ibid., p. 3.

taps near each end. These pressure taps were of smaller diameter glass tubing which maintained the inside contour of the flow tube as far as possible. The powder was prevented from entering the manometer by glass wool filter plugs in the side outlets. Flow tubes having the following characteristics were used.

Tube Number	Inside Diameter	Distance Between Taps	Overall Length	Volume
1	1.024	41 in	53 in	718 cc
2	1.024	32 1/4 in	53 in	718 cc
3	1.024	26 1/4 in	53 in	718 cc
4	0.997	41 in	53 in	690 cc

The lengths and volumes tabulated here take into consideration the short length of connecting hose extending beyond the ends of the tubes.

The flow tubes having the pressure taps closest together were made so that the intervals between the taps were at the lower end of the tubes in order to provide short calming sections between the regulating clamp and the section across which the pressure drop was to be measured.

This apparatus was mounted vertically in the laboratory with the hopper extending above the second floor level and the standpipe suspended from that floor. The flow tube was mounted independently by suitable clamps and allowed to discharge into a collecting drum. Use of a rubber connecting tube allowed regulation of the catalyst flow by means of a small clamp.

The use of a vertical flow tube made it necessary to correct the manometer reading for the difference in static head of catalyst between the pressure taps.

The return line from the collecting drum was a standard one-inch pipe which discharged into a small cyclone set above the hopper. Bends necessary in the return line were of approximately three-foot radius to prevent the powder from packing.

FIGURE I

MATERIALS

Three fluid catalysts were used in this project. The first, sold under the name of Filtrol, is a refined form of a naturally occurring substance. The second, manufactured as Catalyst 5A, is a synthetic substance used in petroleum refining; and the third, a synthetic catalyst produced as Aerocat, is also used in petroleum refining. All are hydrated aluminum silicates which have been finely ground. All three will pass about 90 percent through 100 mesh; Filtrol and Catalyst 5A are about 25 percent smaller than 20 microns and Aerocat is about 50 percent smaller than 20 microns. A more complete investigation of the range of particle sizes in these three powdered catalysts is currently being made in these laboratories.

Since some discussion of the effect of physical characteristics will be undertaken later, it is advisable to describe some of the more obvious differences between the three catalysts at this time. Filtrol and Catalyst 3A tend to agglomerate to some extent when not in an areated state while Aerocat does not appear to agglomerate to the same degree. This observation is borne out by microscopic examination. However, the moisture content of the powders may be expected to affect their tendency to agglomerate.

The particles of Filtrol and 3A appear under the microscope as irregularly shaped, somewhat translucent particles. Aerocat, offered by its producers as a catalyst made up of spheroidal particles, appears as a smooth opaque powder.

TECHNIQUE

Flow measurements were made with the hopper initially full of catalyst. For any one run, the change in head was negligible, and while the catalyst head was not the same for all runs, no error was incurred because the pressure difference was measured only across the flow tube.

At the beginning of a run, the clamp on the connecting hose was opened and a small amount of air was admitted to start the powder flowing. The flow rate was adjusted with the clamp and the density of the material flowing was varied by the amount of air allowed to flow. The degree of regulation provided in this manner did not permit fixing the flow condition to a desired point, but did provide for obtaining a range of flow variation over which data could be taken.

When a flow condition was established, the manometer reading was taken and the catalyst flowing for a measured time interval was collected and weighed. Immediately afterward the flow tube was closed off on both ends as nearly simultaneously as possible and the quantity of material trapped was collected and weighed. This information then provided the data for one run. When the collecting drum became full, the catalyst was returned to the hopper. The use of three catalysts and two different tube

diameters allowed for the observation of the effect of these factors on the flow.

NOMENCLATUR E

u	velocity
۵P	pressure difference
ſ	Fanning friction factor
v	volume
R	density
L	length
D	diameter
g	acceleration due to gravity
m	viscosity
G	mass velocity

RESULTS

In order to correlate the data taken, it was necessary that it be converted to the variables under consideration. The apparent density of the material flowing was readily available and from it the flow rate, linear velocity, and mass velocity were calculated. Values for the pressure drop due to friction were computed by correcting the manometer reading for the static head exerted by the flowing catalyst between the points across which the pressure drop was measured. Theoretically, this correction would be large enough to change the direction of the indicated pressure difference, but in many cases this condition did not obtain and the discrepancy was originally attributed to a change of equilibrium conditions within the system during the run. It was found, however, that the provision of a calming section between the regulating clamp and the upper manometer tap overcame this difficulty to a considerable extent and under stable conditions the corrections were reasonable. A typical conversion is shown by sample calculation in the Appendix.

The foregoing pressure correction was established by the application of the Bernoulli theorem to the flow system. However, applying this theorem required the use

of some assumptions. The flowing catalyst could not be assumed to be a perfect gas since the solid particles constituted such a large percentage of the material; nor could the material be assumed incompressible. However, since the heat capacity of the solid does not differ widely from that of air, the enthalpy (E + pv) of the system may be considered constant, and the use of Bernoulli's theorem will involve little error.

Correlation was then made in the manner suggested by Walton and Rynning (5). The friction factor was calculated by the Fanning equation and plotted against the mass velocity. The Fanning equation for steady isothermal flow of fluids in circular conduits (6) is $\Delta P = \frac{2fLu^2}{gD}$, the units being consistent. For true fluids, the friction factor has been determined to be a function of the dimensionless group DG/m which is designated as the Reynolds number. The terms in the numerator of this expression were readily available, but

- (5) J. S. Walton and D. F. Rynning, loc. cit.
- (6) Complete discussions of fluid flow calculations may be found in J. H. Perry, CHEMICAL ENGINEER'S HAND-BOOK, 2nd edition, New York, McGraw-Hill Book Co., 1941, pp. 788-833, or in any general chemical engineering text.

the viscosity was not known. However, the calculations may be reversed and an "apparent viscosity" computed from this data. It was pointed out by Walton and Rynning that there were indications that the "apparent viscosity" did not vary appreciably with the density of the material flowing and experiments currently being conducted in these laboratories indicate that the "apparent viscosity" of these areated catalyst powders does not vary to a great extent with density. It is to be expected, however. that better correlations of flow characteristics will become evident when viscosity values are available. The results of the friction factor-mass velocity correlation are shown in Figures 2 through 4 and Figure 5 shows a comparison of the three catalysts. The dotted line in the latter figure indicates the curve presented by Walton and Rynning for Filtrol. The curve set forth here for Catalyst SA is substantially the same as that presented by them.

The data as shown in Figures 2, 3, and 4 are not as consistent as may be desired, but about 70% of the points fall into a relatively narrow band with the balance at some variance. However, these widely divergent data may be accounted for possibly by the proximity of the transition range in which the flow characteristics change from

streamline flow to turbulent flow, and some divergence may also be attributed to elutriation of the catalyst due to repeated handling, but before this latter assumption can be made with any degree of certainty, more specific investigations must be made into the effect of particle size on the flow characteristics of powdered solids.

and the second sec

FIGURE 2

1.

FIGURE 3

FIGURE 4

These possible explanations do not, however, preclude variation due to experimental technique.

The discrepancy between the two Filtrol lines will need some explanation. Walton and Rynning (7) point out that differences in tube diameter appear to have little or no effect on the correlation as made and this appears to be borne out to some extent by the Catalyst 3A data. However, there is the possibility that this effect will vary to some extent with the nature of the substance under investigation. It must be pointed out also that there is not as yet sufficient information to make any definite conclusions along this line because correlations attempting to take into account the variance in diameters of the flow tubes appeared to be unsatisfactory. There is the possibility, however, since the data compiled here for Filtrol are not so profuse as that accumulated by the foregoing investigators, that a greater amount of data would have more nearly tended to coincide with the previous work.

The curves as drawn may be described by the following equations:

(7) J. S. Walton and D. F. Rynning, loc. cit.

1	Catalyst	Investigator		12	Equation
1	Filtrol	Rynning	ſ		$(2.5)(10^5)/g^{3.34}$
	Filtrol	Author	ſ	=	$(5.4)(10^4)/g^{3.48}$
	3A	both	L	=	(7.4)(10 ⁵)/G ^{3.75}
	Aerocat	Author	ſ	=	(4.6)(10 ⁶)/G ⁴ ·25

The fact must be recognized that since the data fall into somewhat of a band, the lines chosen to represent them are not unique and the equations as offered are subject to some modification. Assuming that the differences in the characteristics of the curves are valid as presented, it is not unreasonable to connect these differences with the nature of the powdered material being handled. In this respect, it is pertinent to point out that pressure drops of the same magnitude are not to be expected for different materials of the same density flowing through the same tube at identical velocities; and this difference is apparently due to the physical characteristics of the materials. The characteristics pointed out in the description of the catalyst used probably all contribute to this variation.

The moisture content of the material introduced to the system is probably a highly contributing factor to its flow characteristics and it would no doubt be desirable to conduct further studies with materials of a constant

degree of dryness.

The effect of the physical characteristics of powdered solids on their flow behavior is basically important and this information must be accumulated for many substances of a widely varying nature before general calculations can be made applicable to all systems of powdered solids in a flow system.

CONCLUSIONS

The foregoing results may be summarized with a few general conclusions;

<u>One</u>. The results of the studies to date on fluidized solids indicate that they may be treated much in the same manner as true fluids and the flow variables involved may be correlated with but slight variation on the classical treatment of these variables. The viscosity factor necessary for the usual treatment of the variables could not be predicted from the data compiled, but it is expected that this term, when made available, will modify the correlation as presented only slightly.

<u>Two</u>. It is shown that for small diameter glass flow tubes the tube diameter does not enter into the correlations as a major variable as may be expected from inspection of the classical treatment of the variables involved.

APPENDIX

and the product of the second s

P. C. W. La

SAMPLE CALCULATION

Set No. 6. Run No. 210

Data

Manometer reading	26	om H ₂ 0
Flow rate	264	gr/sec
Weight of catalyst trapped in tube	253	gr
Tube volume	690	ee
Overall length (including connection)	53	in
Distance between taps	41	in

Apparent Specific Gravity

$$\frac{253}{690} = 0.367$$

Corrected ΔP

 $(0.367)(41)(2.54) - 26 = 12.2 \text{ om } H_20$

Velocity

(264)(53) = 4.61 ft/sec (253)(12)

Mass velocity

(0.367)(62.3)(4.61) = 105.5 <u>1b</u> It²sec

Friction factor

 $\frac{(12.2)(32.2)(0.997)}{(0.367)(2.54)(12)(2)(4.61^2)(41)} = 0.01981$

Appar- AP due Velo- Mass Friction Quant Run Mano- Flow to city Velo- Factor in ent No meter Rate city f Tube Sp Gr Flow 11 G 1b/ft² ft om of om of gr gr H₂0 996 sec H₂O Sec Filtrol in Tube No. 1 Set No. 1. run incomplete 6.5 32.5 1 71.8 2 13 0.0993 - 2.69 53.5 0.0205 87.1 3.05 3.69 33.2 3 12 104 1448 1.50 408 11 226 315 21.8 29.5 4 76.8 56 13 84.9 72.4 1009 - 2.52 19.3 1.81 39.3 223 17 102.9 251 349 7 1891 -18.31 38 155.4 136 8 40 86.4 81.3 1132 -28.22 23 97.4 1358 - 8.9 9 124.2 0898 - 5.66 15 10 64.5 89.5 11 45.7 9 46.0 0636 - 2.4911 76.5 0476 - 6.05 12 34.2 13 13 79.7 65.7 0915 - 3.49-46.32 14 49 197.0 185.5 258 13 11 0451 - 8.3115 50.1 32.4 0507 - 5.73 16 53.7 37.2 17 0365 - 2.20 6 42.3 26.2 0314 - 2.73 18 44.1 22.5 6 -11.28 19 28 139.0 115.5 161 1228 17 12.4 38.3 20 99.6 203 283 2.17 21 10 35.7 0497 - 4.83 61.6 11 50.0 0696 - 3.76 65.3 22 17 0815 - 8.53 23 58.5 81.0 84.2 1141 - 3.19 24 15 82.0 1149 - 1.07 25 13 81.5 82.5 17 1571 - 0.65 26 154.9 113 27 23 142.8 100 1391 - 8.51 0516 - 5.64 11 28 61.3 37 29 7 20 0279 - 4.1048.1 30 10 48.2 47 0655 - 4.190710 - 6.62 31 14 130 51 14 0446 - 9.36 32 60.5 32 53 12 57.7 31 0432 - 7.50 34 24 97.8 100 1391 - 9.51 0585 -13.93 93.8 35 20 42 27.1 0901 17 70.8 158 220 5.9 1,98 36

FLOW

EXPERIMENTAL

DATA

ON

THE

OF

27

FLUID CATALYSTS

Run No	Mano mete	- Flow r Rate	Quent in Tube	Appar- ent Sp Gr	AP due to Flow	Velo- city u	Mass Velo- city	Friction Factor f	
		em o H20	f <u>gr</u> sec	gr		cm of H20	ft sec	1b/ft ² sec	
37	11	62.6	30	0.0418	- 6.65				
38	19	82.8	57	0783	-10.86				
39	21	103.0	102	1421	- 6.2	а а а е а о з А			
40	14	62.4	50	0696	- 6.76	Sec. 1.			
41	16	75.6	24	0339	-12.48				
42	17	106.2	112	1561	- 0.78				
43	17	85.1	58	0809	- 8,60				
44	23	93.9	138	1921	- 3.0	1	· · · · ·		
45	23	126.0	98	1365	- 8.81	4	1		
46	19	94.6	46	0641	-12,84	-			
47	10	59.4	26	0362	- 6.24	e, i garch	1 . A. 1		
48	23	133.5	73	1018	-12,42				
49	21	114.1	85	1182	- 8.70				
50	27	103.9	65	0906	-15.57				
51	15	91.0	68	0948	- 5.15				
52	17	97.1	65	0906	- 7.57				
	S	et No.	2. F1]	trol in	Tube N	0. 4			
53	41	118.9	196	0.284	-11.5			36 * 10	
54	27	128.8	185	268	0.9	3.32	55.5	0-00391	
55		ALC							
66	30	236	215	313	2.6	4.86	94.8	00448	
	30 19	236 125	215	313 218	2.6	4.86	94.8	00448 01593	
57	30 19 32	236 125 156.8	215 150 70	313 218 1015	2.6 3.7 -21.45	4.86 3.69	94.8 50.1	00448 01593	
57	30 19 32 31	236 125 156.8 187.0	215 150 70 136	313 218 1015 1975	2.6 3.7 -21.45 - 8.55	4.86 3.69	94.8 50.1	00448 01593	
57 58 59	20 19 32 31 20	236 125 156.8 187.0 149.1	215 150 70 136 67	313 218 1015 1975 0972	2.6 3.7 -21.45 - 8.55 - 9.90	4.86 3.69	94.8 50.1	00448 01593	
57 58 59 60	20 19 32 31 20 38	236 125 156.8 187.0 149.1 158.2	215 150 70 136 67 157	818 218 1015 1975 0972 228	2.6 3.7 -21.45 - 8.55 - 9.90 -14.3	4.86 3.69	94.8 50.1	00448 01593	
57 58 59 60 61	30 19 32 31 20 38 21	236 125 156.8 187.0 149.1 158.2 152.8	215 150 70 136 67 157 89	218 218 1015 1975 0972 228 1290	2.6 3.7 -21.45 - 8.55 - 9.90 -14.3 - 7.60	4.86 3.69	94.8 50.1	00448 01593	
57 58 59 60 61 62	20 19 32 31 20 38 21 24	236 125 156.8 187.0 149.1 158.2 152.8 146.1	215 150 70 136 67 157 89 106	218 218 1015 1975 0972 228 1290 1538	2.6 3.7 -21.45 - 8.55 - 9.90 -14.5 - 7.60 - 8.0	4.86	94.8 50.1	00448 01593	
57 58 59 60 61 62 63	20 19 22 21 20 28 21 24 28	236 125 156.8 187.0 149.1 158.2 152.8 146.1 164.3	215 150 70 136 67 157 89 106 190	218 218 1015 1975 0972 228 1290 1538 275	2.6 3.7 -21.45 - 8.55 - 9.90 -14.3 - 7.60 - 8.0 0.6	4.86 3.69	94.8 50.1	00448 01593 001890	
57 58 59 60 61 62 63 64	20 19 22 21 20 28 21 24 28 50	236 125 156.8 187.0 149.1 158.2 152.8 146.1 164.3 397	215 150 70 136 67 157 89 106 190 201	218 218 1015 1975 0972 228 1290 1538 275 436	2.6 3.7 -21.45 - 8.55 - 9.90 -14.3 - 7.60 - 8.0 0.6 - 4.6	4.86 3.69 3.83	94.8 50.1	00448 01593 001890	
57 59 60 61 62 63 65	20 19 22 21 20 28 21 28 21 28 21 28 50 27	236 125 156.8 187.0 149.1 158.2 152.8 146.1 164.5 597 528	215 150 70 136 67 157 89 106 190 201 179	313 218 1015 1975 0972 228 1290 1538 275 436 260	2.6 3.7 -21.45 - 8.55 - 9.90 -14.3 - 7.60 - 8.0 0.6 - 4.6 0	4.86 3.69 3.83	94.8 50.1	00448 01593 001890	
57 59 60 62 62 64 65 65	20 19 22 21 20 28 21 24 28 50 27 17	236 125 156.8 187.0 149.1 158.2 152.8 146.1 164.3 397 328 153.5	215 150 70 136 67 157 89 106 190 201 179 22	313 218 1015 1975 0972 228 1290 1538 275 436 260 0646	2.6 3.7 -21.45 - 8.55 - 9.90 -14.5 - 7.60 - 8.0 0.6 - 4.6 0 -12.17	4.86 3.69	94.8 50.1	00448 01593 001890	
57 59 60 62 62 63 65 65 65 65 67	20 19 22 20 28 21 20 28 21 28 21 28 50 27 17	236 125 156.8 187.0 149.1 158.2 152.8 146.1 164.3 397 228 153.5 115.4	215 150 70 136 67 157 89 106 190 201 179 32 54	218 218 1015 1975 0972 228 1290 1538 275 436 260 0646 0784	2.6 3.7 -21.45 - 8.55 - 9.90 -14.3 - 7.60 - 8.0 0.6 - 4.6 0 -12.17 - 2.85	4.86 3.69	94.8 50.1	00448 01593 001890	
57 59 61 62 65 65 66 65 66 68	20 19 22 20 28 21 20 28 21 20 28 21 20 27 11 27	236 125 156.8 187.0 149.1 158.2 152.8 146.1 164.3 397 328 153.5 115.4 189.0	215 150 70 136 67 157 89 106 190 301 179 32 54 95	313 218 1015 1975 0972 228 1290 1538 275 436 260 0646 0784 1378	2.6 3.7 -21.45 - 8.55 - 9.90 -14.3 - 7.60 - 8.0 0.6 - 4.6 0 -12.17 - 2.85 - 2.69	4.86 3.69	94.8 50.1	00448 01593 001890	
57859612566566789	20 19 22 20 22 20 22 20 22 20 22 20 21 20 22 20 21 20 22 20 20 20 20 20 20 20 20 20 20 20	236 125 156.8 187.0 149.1 158.2 152.8 146.1 164.3 397 328 153.5 115.4 189.0 152.2	215 150 70 136 67 157 89 106 190 201 179 22 54 95 120	313 218 1015 1975 0972 228 1290 1538 275 436 260 0646 0784 1378 1881	2.6 3.7 -21.45 - 8.55 - 9.90 -14.3 - 7.60 - 8.0 0.6 - 4.6 0 -12.17 - 2.85 - 2.69 - 2.42	4.86 3.69	94.8 50.1	00448 01593 001890	
5785061236656678970	20 19 22 20 28 24 20 28 24 20 27 11 27 20 27 11 27 20	236 125 156.8 187.0 149.1 158.2 152.8 146.1 164.3 397 228 155.5 115.4 189.0 152.2 289	215 150 70 136 67 157 89 106 190 201 179 32 54 95 130 235	313 218 1015 1975 0972 228 1290 1538 275 436 260 0646 0784 1378 1881 341	2.6 3.7 -21.45 - 8.55 - 9.90 -14.3 - 7.60 - 8.0 0.6 - 4.6 0 -12.17 - 2.85 - 2.69 - 2.42 - 4.5	4.86 3.69 3.83	94.8 50.1	00448 01593 001890	

here was in

Run No	Mano- meter	Flow Rate	Quant in Tube	Appar- ent Sp Gr	AP due to Flow	Velo- city u	Mass Velo- city G	Friction Factor f
	em of H ₂ 0	gr seo	gr		cm of H ₂ 0	ft seo	1b/ft" seo	
72 73 74 75 76 77 78 79	30 27 37 16 40 37 24 40	195 236 245 155.4 252 288 247 204	123 164 200 78 242 208 151 125	0.1780 238 290 1130 341 301 219 1812	-11.5 - 2.3 - 6.9 - 4.25 - 4.5 - 4.5 - 5.7 - 1.2 - 21.15			
80 81 82	20 20 13	271 112.5 95.3	135 89 110	1954 1291 1595	- 9.7 - 6.56 3.6	3.82	58.0	0.0261
83 84 85 86 87 88 89	14 16 19 27 20 17 20	110*5 123*8 270 218 88 147 133*2	80 113 136 149 107 108 125	1160 1638 1971 216 1550 1566 1781	1.94 1.0 0.5 - 4.5 - 2.89 - 0.72 - 1.49	4.84 8.78	49.4 107.8	00333 000419
90 91 92 93 94 95 95 95 95 95 95	22 4 19 27 44 40 40 42 38 40	127.5 54.5 135.8 167.2 301 312 382 382 382 264 409	106 30 97 123 267 239 261 227 195 256	1550 0435 1406 1781 387 547 547 578 329 280 371	- 0.42 - 4.39 - 8.49 - 3.8 - 3.8 - 3.9 - 0.7 - 7.8 - 8.9 - 1.4	8,05	21.8	001902
100	42	215	317 150	459 217	- 4.3 - 9.4			
102 102 104 105	Set 26 27 31 15	No. 3 220 186.5 255 145.5	299 197 232 79	trol in 0.416 274 327 1100	Tube No - 1.8 - 4.5 - 4.2) - 6.0)* 2		

Run No	Mano- meter	Flow Rate	Quant in Tube	Appar- ent Sp Gr	AP due to Flow	Velo- city u	Mass Velo- city	Friction Factor f
	em of H ₂ 0	gr seo	gr		cm of H ₂ 0	ft sec	lb/ft ² sec	
106	12	105.0	90	0.1251	- 1.75			
107	12	114.2	110	1531	0.56	4.64	44.3	0.00286
108	15	140	140	1990	0.98	4.4%	D2.7	00434
109	25	222	166	231	- 0.1			13
110	31	200	240	004	- 2.0			24 °.
111	22	224	272	070	- 1.0			
772	04	010	104	500 944	-11.0	1.412		
110	67 1219	276	179	644	- 7.0	8.68	191.8	01858
114	01	210	200	477	- 0.8	0.000	202 C	04000
110	22	276	201	420	1.4	3-47	90.8	00467
117	33	229	255	356	- 3.8			00101
118	36	331	336	457	8.4	4.35	124.0	00467
119	36	342	308	429	- 0.8			
120	40	296	332	239	-12.7			
121	39	587	293	409	- 5.5			
122	40	412	264	368	- 9.9	0 * x 1 * 1 * 1		L. L. M. M.
123	30	286	190	265	- 8.3			n gebied I a thurse state of a
124	31	242	437	609	18.9	2.45	92.8	0871
125	32	249	158	221	-13.95			
126	28	365	326	454	- 0.7			
127	37	464	281	392	- 4.9			
	Set	No. 4	. Pilt	rol in	rube No	. 3		
128	35	383	337	0.469	- 1.7			
129	32	363	330	459	- 1.4			
120	32	418	341	475	- 0.3			
131	24	512	267	362	0.1	8.47	191.2	0.000795
132	35	399	500	697	11.5	3.53	153.5	0274
133	30	488	362	504	3.6	5.97	187.5	00412
134	37	384	412	575	1.3	4.12	147.5	00274
135	29	338	254	354	- 5.4			
136	27	329	268	374	- 9.8			
137	34	434	394	549	- 8.7			
138	26	266	235	327	- 5.0			
139	30	483	220	307	-10-3		500 0	10.000
140	16	277	266	370	7.7	4.61	100.9	0203

Run No	Mano- meter	Flow Rate	Quant in Tube	Appar- ent Sp Gr	AP due to Flow	Velo- city u	Mass Velo- city	Friction Factor f
	cm of H ₂ 0	<u>gr</u> 5 60	gr		cm of H ₂ 0	ft sec	1b/ft ² sec	
141 142	28 25	131.1	325 286	0.453	1.1	1.782	50.3 130	0.01578
143 144 145 146	25 24 34	221 201 371 272	339 278 306	472 387 426	5.3 0.8 - 6.7	3.92 5.90	115.2 142.1	01514 001231
147 148 149 150	31 35 37 32	411 280 538 346	334 347 341 359	465 483 475 500	- 1.2 - 2.8 - 5.3 1.4	4.26	132.5	00285
151 152 153	34 35 30	264 277 285 348	365 333 356 387	508 464 496 526	- 0.1 - 4.1 3.1 -11.2	3.54	109.2	01034
155 156 157	28 36 37	447 319 287	317 379 406	441 553 566	1.4 0.8 0.7	6.24 3.73 3.12	171.5 128.8 110.0	001680 00212 00266
158 159 160 161	36 37 35 32	380 536 326 367	403 389 463 356	542 645 496	- 0.9 8.0 1.0	3.12 4.56	125.0 140.9	0261
162 163 164	30 36 33	600 315 470	330 394 398	459 548 555	0.6 0.5 4.0	8.04 3.54 5.21	220 121.0 180.0	000418 001514 00549
165 166 167 168	34 30 32	504 308 288 321	371 341 369	517 475 514	0.4	5.67 5.74 5.85	118.0 110.8 123.1	001178 00495 00595
169 170 171	33 31 26	417 398 350	304 353 401 298	423 491 559 415	- 4.8 1.7 11.3	4.98 3.86	152.1 134.2	00288 0270
173	34 35	231	437 378	609 526	6.6 0	2.53	205	0414

Run No	<u>Mano-</u> meter	Flow Rate	Quant in Tube	Appar- ent Sp Gr	AP due to Flow	Velo- city u	Mass Velo- city	Friction Factor f
	em of H ₂ 0	gr sec	gr		em of H ₂ O	ft sec	1b/ft ² sec	
ander Geboor	Set	No. 5	. Cata	alyst 3A	in Tub	e No.	8,	
176	20	186.5	264	0.368	4.5	3.12	71.5	0.0260
177	20	207	334	465	10.9	2.74	79.2	0646
178	16	307	337	469	15.2	4.03	117.8	0414
179	18	275	318	443	11.5	3.82	105.0	0367
180	18	315	243	339	4.6	5.74	121.0	00850
181	22	210	358	498	11,1	2.60	80.5	0680
182	18	331	326	454	12.2	4.49	127.0	0275
183	23	300	367	436	11.0	3.61	114.9	0341
184	18	322	302	573	10.0	4.72	123.5	0219
185	24	395	319	455	5.6	5.48	152.0	00865
186	24	408	313	615	5.0	5.76	156.8	00715
187	26	386	412	539	12,1	4.14	151.8	0255
188	27	470	327	499	3.3	6.35	179.8	00360
189	25	280	441	371	15.9	2.81	107.5	0699
190	24	525	387	472	11.9	6.01	201	01260
191	22	444	358	488	11,2	5.40	109.1	01223
192	19	311	266	457	5.7	5.17	113.4	01100
193	19	340	339	505	12.44	4.44	120 +5	0279
194	18	346	350	488	14+0	4.00	100.1	0910
195	21	316	328	497	9*4 0 C	4.40	161+6	0000
196	24	352	363	505	3.0	4.29	194.0	0220
	Set	No. 6	. Cat	alyst 3A	in Ťub	e No.	4	
197	32	396	267	0.387	8.2	6.56	158.1	0.00625
198	39	368	196	284	- 9.5			
199	34	347	276	400	7.6	5.56	138.2	00785
200	34	330	278	403	7.9	5.25	131.9	00911
201	35	186	225	326	- 1.1			
202	34	257	168	244	- 8.6		3	
203	30	231	171	248	- 4-2	a la	"adver" a s	S. Market .
204	26	192	324	470	22.8	2.62	76.4	0901
205	32	222	273	396	9.2	3.60	88.5	0228
206	16	73.4	170	246	9.6	1.91	29.2	1268
207	36	286	182	264	- 8.5		and the second se	
208	24	297	226	328	10.1	5.81	118.4	01158

Run No	Mano- meter	Flow Rate	Quant in Tube	Appar- ent Sp Gr	AP due to Flow	Velo- city u	Mass Velo- city	Friction Factor f
	cm of H ₂ 0	gr sec	gr		em of H ₂ 0	ft sec	1b/ft ² sec	
209	26	164.5	233	0.338	9.2	3.12	65.7	0.0355
10	27	202	200	329	3.2	5-69	116.5	00385
212	27	878	200	343	- 1-3		alle allebet 🖉 6.4	00000
21%	20	225	161	219	- 7.2			
274	24	258	235	341	1.5	4.85	102.8	00238
215	36	466	221	320	- 2.7			
216	30	207	218	316	2.8	4.20	82.7	00643
217	32	228	250	363	5.8	4.04	91.4	01248
218	34	310	295	428	10.5	4.65	124.0	01449
219	52	348	210	304	-20.4			
220	37	364	225	326	- 3.1			
221	36	386	196	284	- 6.5		a ser la	and an and a second
222	36	386	250	363	1.8	6.81	153.8	001359
223	30	426	255	369	8.4	7.40	170.1	00531
224	31	346	260	377	8.2	5.88	138.1	00800
225	21	124.5	173	251	5.1	3.18	49.6	0255
226	30	260	288	418	13.5	3.99	103.0	0208
227	22	200	241	249	4.0	9.00	107.4	00501
220	20	AU A	841 870	049	- 1+7	6 94	149.0	00666
229	40	074	910	****	0+7	9494	740*2	00000
	Set	No. 7	. Aero	ocat in	Tube No	. 4		
230	40	191.0	20 3	0.438	5.6	2.79	76.3	0.0209
231	53	112.1	396	573	6.5	1.252	44.8	0918
232	42	140.8	288	418	1.5	2.16	56.1	00978
233	35	182.0	191	277	- 6.2			
234	37	189.2	211	306	- 5.2		ę.	
235	55	240	298	432	-10.1			
236	52	200	270	391	-11.4			
237	29	109.2	150	217	- 6.3			
238	37	282	250	363	0.8	4.98	112.7	001140
239	34	186.2	183	265	- 6.4			
240	52	232	237	344	-10.2			
241	20	234	270	891	-11-3			
242	36	195.0	228	331	- 1.6			
243	44	266	299	418	- 0.5			

Run No	Mano- meter	Flow Rate	Quant in Tube gr	Appar- ent Sp Gr	△P due to Flow cm of H ₂ O	Velo- city u <u>ft</u> sec	Mass Velo- city G <u>lb/ft²</u> sec	Friction Factor f
	em of H ₂ 0	gr sec						
244 245	36 56	243 135.9	176 393	0.255	- 9.5	1.529	54.3	0.0222
246 247 248	38 55 38	273 184 277	199 397 176	289 576 255 305	- 8.0 5.0 -11.5	2.05	73.6	0268
249 250 251 252	50 39 49	144.2 123.7 253	281 226 230	407 328 334	- 7.7 - 4.9 -14.3			
	Set	No. 8	. Aero	oat in	Tube No	. 8		
253 254 255 256	26 32 30 30	445 335 396 484	549 557 297 325	0.486 497 414 450	6.3 1.1 - 2.5 - 0.1	5.63 4.15	170.4 128.0	0.00845 00264
257 258 259	27	370 369 563	303	423	1.1	5.38	141.4	001838
260 261 262	25 32 34	326 335 277	282 367 393	393 511 548 421	1.2 2.0 2.5	5.11 4.04 3.12	125.1 128.5 106.2	00245 00475 00957
264 265 266 267 268 269 270 271 272 273 274 275 276	26 29 37 29 38 38 38 38 38 38 38 38 28 25 28 25 28 25 28 25 28 25 28	311 461 317 471 297 400 298 269 309 290 274 296 422 207	269 232 419 359 439 430 437 313 269 287 325 273 325 273 346 228	514 463 584 500 612 599 608 436 375 400 453 381 482 457	8.2 1.8 1.8 4.3 2.8 1.8 4.5 9.0 3.0 1.6 2.2 0.4 0.1	3.73 6.14 3.35 5.80 3.17 3.18 3.01 3.80 5.08 4.47 3.74 4.80 5.40 4.14	119.2 176.8 121.5 180.4 120.9 118.5 112.8 103.0 118.9 111.3 105.2 113.8 162.0 117.5	0235 00211 00564 00524 00945 00611 01680 0293 00611 00410 00715 000920 000071 001048

Run No	Mano- meter	Flow Rate	Quant in Tube gr	Appar- ent Sp Gr	∆P due to Flow	Velo- city u <u>ft</u> sec	Mass Velo- city G lb/ft ² sec	Friction Factor Í
	cm of H ₂ 0	gr sec			cm of H ₂ 0			
278	32 31	304 278	384 329	0.536	3.7	3.51	117.1	0.01143
280	35	279	416	579	3.5	2.97	106.8	01408
j.	Set	No. 9	. Aero	eat in	Tube No.	. 2		
281	40	372	299	0.417	- 5.8			
282	34	358	336	468	4.4	4.71	137.0	0.00708
283	34	391	293	408	- 0.5			and the second sec
284	33	382	299	417	1.2	5.66	146.5	001519
285	38	390	346	482	1.6	4.99	149.8	00 223
286	36	443	320	446	0.6	6.13	170.1	000597
287	34	496	339	472	4.8	6.48	190.5	00404
288	36	512	340	474	2.9	6.66	196.1	00230
289	39	417	360	501	2.1	5.12	159.5	00268
290	40	470	208	428	- 4.8		and the second second	i la construir de la construir
291	38	450	344	479	1.3	5.79	172.1	001352
292	40	354	395	551	5.2	3.97	136.0	01004
293	32	351	327	456	5.4	4.75	134.9	00878
294	45	291	431	600	4.2	2.98	111.2	01319
295	40	415	368	513	2.0	4.98	158.9	00264
296	38	365	365	508	3.7	4.42	139.5	00623