
Investigating Software Complexity: Knot Count Thresholds

Paula A. Hannan

A Research Paper submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Master of Science

Presented October 17, 1989

----~=======-----

Acknowledgements

I have been particularly fortunate to meet many helpful collegues

and friends at Oregon State University. I would like to thank each and

every one of these great people, but then the acknowledgements

would be longer than the paper. Although it is a difficult job, I must

single out a few particular people for special thanks.

Dr. Cook and the other faculty at OSU for transforming me from

a programmer into a scientist.

Sherry Yang who is always ready and willing to help.

Tom Sturtevant, Dr. Dave Sandeberg, Rick Charon and John

Bertani who allowed me to use their classes for my expirement.

Paula A Hannan

This paper is dedicated to my family:

Alice and John Hannan

Paul and Yvonne Melkonian.

Table of Contents

1

2

3

4

Introduction

Control Flow Metrics
2.1 McCabe's Cyclomatic Complexity
2.2 Knot Count
2.3 What Does Knot Count Measure
2.4 Why Use Knot Count
2.5 Metric Guidelines or Thresholds

Experiment
3.1 Subjects
3.2 Materials
3.3 Task
3.4 Results

Conclusion

Bibliography

Appendices

A - Background Data
CS2 l 2 Background Data
CS317 Background Data
CS312 Background Data
CS43 l Background Data

B - Materials
Pascal Materials

Pascal Background Questionaire
Easy Program

1

4
4
6
8

12
21

23
23
23
29
34

48

49

Comprehension Quiz - Forward Reasoning Question First
Comprehension Quiz - Backward Reasoning Question First

Hard Program
Comprehension Quiz - Forward Reasoning Question First
Comprehension Quiz - Backward Reasoning Question First

C Materials
C Background Questionaire
Easy Program

Comprehension Quiz - Forward Reasoning Question First
Comprehension Quiz - Back\vard Reasoning Question First

Hard Program
Comprehension Quiz - Forward Reasoning Question First
Comprehension Quiz - Backward Reasoning Question First

Index Of Tables

Table

2.1

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8
3.9
3.10

Sensitivity of Metrics to Program Structure

Metric Values for Pascal Programs
Metric Values for C Programs
Percent of Subjects Who Attempted All Questions
Pascal Subjects - Total Class Performance
Pascal Subjects - Average Performance by Student
Pascal Subjects - Performance on First vs. Second
Program
C Subjects - Total Class Performance
C Subjects - Average Performance by Student
Control Flow Metrics
Size Metrics

Page

20

27
29
33
36
36

39
40
41
46
47

Index of Figures

Figure Page

2.1 Program with Flow Graph 4
2.2 V(G) and Compound Conditionals 6
2.3 V(G) and Simple Conditionals 6
2.4 Program with Jump Table 7
2.5 Knots with Iteration 8
2.6 Knots with If Then Else Statement 9
2. 7 Knots with Case Statement 10
2.8 Knots with Goto Statement 10
2.9 Knots with Return Statement 11
2.10 Knots with Break Statement 12
2.11 Knots with Continue Statement 12
2.12 Program Segment with Multiple Exits from a Loop 13
2.13 Program Segment without Multiple Exits from a Loop 14
2.14 Program with Unnecessary Branching 15
2.15 Program with Reduced Unnecessary Branching 15
2.16 Program with Lower Independence Between Statements 16
2.17 Program with Reduced Independence Between

Statements 1 7
2.18 Program Segment with Else Goto 18
2.19 Program Segment with Else Goto Statement Removed 18
2.20 Program Segment with Bushy Decision Tree 19
2.21 Program Segment with Bush Decision Tree Removed 19

3.1 Sample Comprehension Quiz Questions 25
3.2 Computing Overlap Rectangle 28
3.3 Percent Attempted on Both Programs 32
3.4 C Subjects - Percent Attempted Forward vs. Backward

Reasoning Groups 34
3.5 Pascal Subjects - Performance Hard vs. Easy Program 36
3.6 Pascal Subjects - Percent Attempted Forward vs.

Backward Reasoning Questions 3 7
3.7 Pascal Subjects - Performance Forward vs. Backward

Reasoning Questions 38
3.8 Pascal Subjects - Effect of Program Ordering on

Performance 39
3 .9 C Subjects - Performance Hard vs. Easy Programs 40
3.10 C Subjects - Percent Attempted Forward vs. Backward

Reasoning Questions 41
3.11 C Subjects - Performance Forward vs. Backward

Reasoning Questions 43
3.12 C Subjects - Performance by Group 45
3.13 C Subjects - Effect of Program Ordering on Performance 46

•
I

1

1 INTRODUCTION

What makes software complex? Is it the size of the product, the

number of decisions made or the amount of information processed?

There is no commonly agreed upon model or measure. Software

complexity metrics, which attempt to measure program quality, fall

into two groups; those that measure the software process and those

that analyze the software product. "Process metrics quantify attributes

of the development process and the development environment"

[Conte, pg. 19]. One popular example is Boehm 's CoCoMo model

where inputs include factors like system speed, programmer skill, and

project difficulty; the output is an estimation of effort and time [Lewis,

pg. 54]. Product metrics, on the other hand, are "measures of the

software product" [Conte, pg. 20]. There are three general types of

product metrics; size metrics, data structure metrics and control flow

metrics . Size metrics include lines of code and function counts. Data

structure metrics include variable counts, variable life spans and Henry

and Kafura's information flow [Henry]. Control flow metrics include

decision counts, cyclomatic complexity and knot count.

Logical structure or control flow is one important component of

complexity. Software complexity metrics that measure logical

structure concentrate on the decisions made in a module and the

branching those decisions cause. Two popular control flow metrics

are McCabe 's cyclomatic complextiy and the knot count. McCabe's

cyclomatic complexity is based on the control flow graph associated

2

with the module and corresponds to the number of decisions in a

program [McCabe]. McCabe's measure is widely accepted because it

is easy to compute and agrees with our intuition concerning logical

complexity. The knot count, proposed by Woodward, Hennen and

Hedley [Woodward], measures the number of overlapping transfers

of control (e.g. knots). The number of knots measures complexity,

particularly complexity introduced by poor programming practices

such as unstructured code. The number of knots is easy to compute

and is language independent.

The ability to classify a program as to its difficulty to test,

understand or maintain is one expected benefit from the study of

software complexity metrics. To classify a module using a complexity

metric, however, we must set guidelines or threshold values, where a

module exceeding the threshold is flagged as a possible problem.

Most current metric thresholds are based on intuition, experience and

ease of implementation. McCabe, for example, suggests the number of

decisions in a module be less then 10 [McCabe, pg . 314] without proof

or confirming empirical support. The validation of metrics, including

the empirical confirmation of threshold values, is an especially

pressing need [Conte , pg. 360].

This study concentrates on threshold values for the two most

popular control flow metrics: McCabe's cyclomatic complexity and the

knot count. We describe the results of an experimental study to

empirically determine a threshold value for knot count for student

3

programmers. The experiment was designed to measure the

interaction between difficulty, as measured by knot count, and

comprehension quiz scores. This experiment had two goals:

1. Show that there are threshold values for the knot count
metric.

2. Discover knot count threshold values for students in
Pascal and C.

This research was motivated by the need to establish threshold

values for complexity metrics. First we show that the knot count is a

useful control flow metric because of its ability to gauge the

structuredness of code: then we describe the results of an

experimental study to determine the threshold value for the knot

count. Our work suggests a threshold value of 20 when evaluating

upper division student programmers using C and 7 for beginning and

intermediate Pascal students.

The second chapter describes control flow metrics and the

issues involved in setting standards for the knot count. The third

chapter describes the subjects, materials and procedures used in

experiment and discusses the results. Finally chapter four reviews

this experiment's contribution to software metrics and discusses the

possibilities for future work.

4

2 CONTROL FLOW METRICS

Control flow metrics attempt to measure the contribution of

logical structure to program complexity. This chapter defines the two

most popular control flow metrics: McCabe's cyclomatic complexity

and the knot count. It shows how the knot count measures the

structured and unstructuredness of code. This chapter concludes

with a discussion of the current research concerning threshold values

for complexity metrics.

2.1 MC CABE'S CYCLOMATIC COMPLEXITY

Cyclomatic complexity is based on the module's flow graph. A

flow graph represents basic blocks of statements with nodes, and the

flow of control between blocks with edges. Here is a program with its

associated flow graph:

1 procedure ignoreVowels(s:string; length:integer);
2 var
3 vowels : set of char;
4 i : integer;
5 begin
6 vowels:=['a', 'e', 'e', 'o', 'u']
7 for i:=l to length do
8 if not (s[i] in vowels) then
9 write(string[i]);
10 end;

Figure 2.1 - Program with Flow Graph

The cyclomatic number V(G) of a graph G with n vertices. e

.-

edges and p connected components is

V(G) = e - n + 2p.

5

V(G) for the example program is three (8-7+2). V(G) was

designed to "measure and control the number of paths through a

program" [McCabe], which in tum indicates a minimum number of test

cases. The number of paths in a program is related to the number of

circuits in the flow graph; so that the cyclomatic complexity is the

number of edges that must be removed in order to transform it to its

"skeleton" - the graph without circuits or loops [Conte, pg. 66].

Computing the cyclomatic complexity by constructing the flow graph

would be a time consuming task, however V(G) is only dependent on

the number of edges and nodes, not how they are connected, so the

computation of V(G) simplifies to the number of decisions + one.

Counting the number of decisions however does not distinguish

compound conditionals from simple conditionals. Figure 2.2 shows a

program segment with a compound conditional where V(G) is two.

Figure 2.3 shows the equivelent program segment without compound

conditionals. The number of decisions has increased to two so that

V(G) increases to three. Our intuition would suggest (and one study

has confirmed [Cook86]) that these two program segments have

similar complexity.

A
B
C
D

A
B
C
D
E

if sunny and warm then
wearshorts: =true

Figure 2.2 - V(G) and Compound Conditionals

if sunny then
if warm then

wearshorts: =true

A

Figure 2.3 - V(G) and Simple Conditionals

6

The most common solution to this problem is counting a

compound conditional as one + the number of logical operators.

Hence V(G) is one + the number of simple predicates.

2.2 KNOT COUNT

Informally a knot occurs when two separate control flow paths in

a module cross; where a control flow path is an arc from a control flow

operator to the destination of the transfer. We can define a flow of

program control from statement a to statement b mathematically as

an ordered pair of statement numbers (a.b). A knot occurs when two

jumps (a.b) and (p.q) exist such that

.-

1) min(a,b) < min(p,q) < max(a ,b) and max(p,q) > max(a,b)
or
2) min(a,b) < max(p,q) < max(a,b) and min(p,q) < min(a,b)

7

The knot count is easily computed by creating a list of the ordered

pairs and then comparing the pairs for overlap. As an example, lets

compute the knot count for the following program:

1
2
3
4
5
6
7
8
9
10
1 1
12
13
14
15
16
17
18
19

procedure Dallas(var married: boolean)
var

faithful : boolean:
show: integer:

begin
faithful:=true:

..--~ for show = 1 to 25 do
begin

end;

if married
if beautifulWomen(show)

faithful:=false
else

faithful:=true
else

married:=true:
if unfaithful

married: =false:
end;

Jump Table

From To Crosses

9 14 (11,16). (13, 16)
10 12 (11,16)
1 1 16
13 16
16 18
18 8

Figure 2.4 - Program with Jump Table

Note that there is no arc when the flow of control is to the next

contiguous statement.

;;:;

8

2.3 WHAT DOES KNOT COUNT MEASURE?

In this section we consider the knot count for the various

structured and unstructured constructs in order to substantiate the

claim that the knot count measures unstructuredness.

Structured Constructs

iteration - Woodward shows that properly nested looping

constructs such as for and while are implemented without any knots

[Woodward, pg. 48]. For example:

var
row. col : integer;
data = array[10, 15] of integer;

begin
for row:=l to 10 do

[
or col:= 1 to 15 do

begin
write('enter row ',row, 'column' ,col);
readln(data[col.row]);

...__ __ end;
end;

Figure 2.5 - Knots with Iteration

The fact that knot count does not measure the complexity of

iteration could be cited as a disadvantage; but studies show that

alternation, which increases the knot count, not iteration, is the major

source of errors in a program [Lewis, pg. 403].

if then else - Control flows from the if statement to the else

block and from the last statement in the if block to the statement after

the else block creates a knot.

if sleepy
writeln('Please do not disturb')

else
writeln('Come in')

Figure 2.6 - Knots with If Then Else Statement

Note that an if then statement (no else) does not create a knot .

9

case - The case construct is a more structured alternative to the

computed goto used in Fortran. Woodward shows that a computed

goto statement creates n(n-1)/2 knots, where n is the number of

labels. The Fortran computed goto has the format

GO TO (L1,L2 Lm) EXPRESSION

A table of possible integer values of the expression along with the

corresponding labels or their statement numbers can also represent

a computed goto. The case statement can be represented as a similar

table . where the values the expression can assume are not necessarily

integer. These tables can be thought of as the list of jumps used to

compute the knot count. Therefore an n-way case produces a knot

count of n(n-1)/2. The following example [Folts. pg . 42] has six labels

and 15 knots.

I ■ I ■ I ■ ■ ■ -I i

I I - -
I ■ ...
I I .,

11■ ...

I I
I I

-

case NoteLength of
- '8 -

'6 -

- '4 -
- '2 -
- 'l -

el --
end;

'·

'·

,,

,,

'·

Length:= QUARTERNOTE div 2;

Length := (QUARTERNOTE * 3) div 2;

Length := QUARTERNOTE;

Length := QUARTERNOTE * 2;

Length := QUARTERNOTE * 4;
se
Length:= O;

Figure 2.7 - Knots with Case Statement

A logically equivalent if then else block produces n knots.

Unstructured constructs

10

A language such as C provides more opportunities to create

knots. Besides the if then else, and the switch, C has several

unstructured constructs (goto, return, break and continue) which can

create knots.

goto - Unstructured jumping is an obvious source of knots.

This sample has two knots:

while (1)
{
scanf("% 1 f' ,&x);
if (x<O.O)

goto error;
prin tf(" \n%f', sqrt(x))

---}
'---II► error: printf("\n Square root of negative number");

Figure 2.8 - Knots with Goto Statement

11

return - The return statement terminates the execution of a

function and returns control to the calling environment. Returns are

frequently used to exit a routine early, given certain conditions. The

return can be thought of as a goto where the label is the function's

ending brace. This example, from a communication utility, [IRC] has

three knots created by returns.

int matches(name 1, name2)
char *name 1, *name2;
{

for (:(*name l!=NULL)&&(*name2!=NULL);namel++, name2++)
{
if (*name2==NULL)

....++1---- return(2):
else

{
printf("Error 1 \n"):

----- return(O);

Figure 2.9 - Knots with Return Statement

break - The break statement terminates the execution of the

innermost enclosing loop or switch statement. The break can be

thought of as a goto where the label directly follows the innermost

enclosing loop or switch statement. The break statement will cause at

least one knot since the flow of control must cross the flow of control

for the enclosing loop or switch statement. The break statement can

create knots with any additional flow of control lines near it. This

example, from A Book on C, [Kelly, pg. 164) has two knots.

while (1)
{
scan[("% 1 f', &x):
if (x<0.0)

~t--1----ttr--break:
printf(" \no/of" ,sqrt(x))
} .__ __

Figure 2.10 - Knots with Break Statement

12

continue - The continue statement causes the current iteration

of a loop to stop and the next iteration of the loop to begin. The

continue statement only causes knots if it is enclosed in an if or switch

statement. The use of continue without an if or switch statement is

unlikely since any code that follows the continue would never be

executed. This example, from a communication utility, [IRC] has one

knot created by a continue statement.

r---~for(:(*namel!=NULL)&&(*name2!=NULL);namel++, name2++)
{

if (cl == c2)
continue:

Figure 2.11 - Knots with Continue Statement

2.4 WHY USE KNOT COUNT?

Evangelist lists several widely accepted programming style

rules and tests the sensitivity of several metrics to these structuring

rules [Evangelist]. He divides these rules into several different

categories such as "increase modularity", "add functionality", "simplify

the logic", "replace complex branching with complex expressions",

"clarify the nature of computation" and "improve readability". We will

13

concentrate on his rules related to control flow complexity : "logical

simplification" and "clarify the nature of computation". We will show

that in many cases the knot count decreases with the application of

the rules.

Logical Simplification

Avoid Multiple Exits from Loops - Evangelist notes that V(G)

increases if you modify the code to avoid multiple exits. Jumping out

of a loop is frequently listed as an example of unstructured

programming [McCabe, pg. 315] and unstructured programming is

measured by knot count. An example with two knots looks like

[Evangelist, pg. 537]:

while p(x) do
begin
yl:=f(x);
if q(x) then

goto l;
y2:=g(x):
end;

1:

Figure 2.12 - Program Segment with Multiple Exits from a Loop

While the alternative which uses a flag has one knot and looks like:

flag:=true;
while p(x) and flag do

begin
yl :=f(x);
if q(x) then

flag: =false;
else

y2:=g(x);
end;

1:

14

Figure 2.13 - Program Segment without Multiple Exits from a Loop

Note that V(G) is 3 in the first case and increases to 4 in the

alternative. Thus McCabe says the second example is more complex

while intuition and the knot count say otherwise.

Avoid Unnecessary Branching - V(G) does not change when you

follow this precept [Evangelist. pg. 537]. Knot count on the other

hand captures the complexity of unstructured branching.

Woodward gives the following example [Woodward, pg. 48]:

1
2
3
4
5
6
7
8
9
10
1 1
12

CALLTPR
IF (ZR) 500,500,100

100 CALLTED
150 IF (Z3) 200,200,550
200 ZG = ZG + 1

zc = 0
CALLTCO

300 CALLTRA
GOTO 2000

500 CONTINUE
Z3 = 1
GOTO 150

13 "--ti--~~ 550 CONTINUE
14
15

CALLTEC
ZB = ZB + 1
zc = zc + 1 16

17'--++-----
18

GOTO 300
2000 RETURN

END 19

Figure 2.14 - Program with Unnecessary Branching

The improved version looks like:

CALLTPR
IF (ZR) 500, 500, 100

00 CALLTED
IF (Z3) 200,200,550
ZG = ZG + 1
zc = 0
CALLTCO
GOTO 600

500 Z3 = 1
'---~ 5 5 0 CALL TEC

ZB = ZB + 1
zc = zc + 1

'-----:1~600 CALLTRA
RETURN
END

15

Figure 2.15 - Program with Reduced Unnecessary Branching

Both examples have two conditionals so V(G) = 3. Yet the knots have

been reduced from nine to three.

;;;

16

Reduce Interdependence Between Statements (or keep

related parts together) -Code movement decreases or increases the

knot count while V(G) stays constant. Program A, the original version

given by Woodward , has nine knots. Simply by exchanging statements

5-9 with 10-17 the knot count is reduced to four.

The improved version given looks like [Cook, pg. 117]:

1
2
3

Block A 4

Blrk ~
7
8
9
10

100
150
500

550

11
12-----
13
14
15
16_~
17
18
19

200

300

2000

CALLTPR
IF (ZR) 500,500,100
CALL TED
IF (Z3) 200,200,550
CONTINUE
Z3 = 1
GOTO 150
CONTINUE
CALLTEC
ZB = ZB + 1
zc = zc + 1
GOTO 300
ZG = ZG + 1
zc = 0
CALLTCO
CALLTRA
GOTO 2000
RETURN
END

Figure 2.16 - Program with Lower Independence Between

Statements

17

To reduce the knot count further exchange Block A and Block B

[Cook, pg. 119].
CALLTPR

------- IF (ZR) 500,500,100
00 CONTINUE

23 = 1
GOTO 150
CALL TED
IF (Z3) 200,200,550
CONTINUE
CALLTEC
ZB = ZB +l
ZC =ZC + 1 .-@---- GOTO 300

200 ZG = ZG + 1
zc = 0
CALLTCO

.__~300 CALLTRA
GOTO 2000

2000 RETURN
END

Figure 2.17 - Program with Reduced Independence Between

Statements

Clarify the Nature of Computation

Avoid Else Goto - Evangelist notes that V(G) does not change

when avoiding the else goto structure. Avoiding else goto reduces the

knot count, since it is directly related to the structuredness of the

program segment.

[Lewis, pg. 494]:

The unstructured version below has 6 knots

1 :read(a);
.---- if a>bl then

if a>b2 then
------sl

else
goto 1

.__~► else

goto 2
L-===~ goto 1

2:

Figure 2.18 - Program Segment with Else Goto

After restructuring the program segment has no knots.

read(a);
while a>bl do

, begin
read(a);
if a>b2 then

sl
end;

Figure 2.19 - Program segment with Else Goto Removed.

18

Use While Statements - The previous example also illustrates

another programming style rule: replace branching structures with

while loops. V(G) stays the same in the second version, yet the knot

count is reduced to zero. Replacing branching structures with while

loops can only reduce the knot count since while statements do not

create knots.

Use If Elseif Elseif - Kernighan and Plauger in their book The

Elements of Programming Style recommend avoiding the use of an if

inside a then. (They call this structure a bushy decision tree.)

Instead, they suggest using an if elseif elseif... structure. The knot

count effectively measures the difference between a bushy decision

tree and the if elseif structure. The control flow of an if nested inside

19

a then crosses the control flow of the outer if. The control flow of an if

inside an else statement control falls through to the next statement

without crossing any other control flows .

This bushy decision tree has three knots.

if Friday then
if afterFour then

writeln('Taking a nap')
else -@--- writeln('Busy, Busy, Busy')

else
writeln('I cant wait till Friday'):

Figure 2.20 - Program Segment with Bushy Decision Tree.

But the equivalent if elseif structure has 2 knots.

if not Friday then
.-Ht--- writeln('I cant wait till Friday')

else
if afterFour then

----fB--- writeln('Taking a nap')
else

writeln('Busy, Busy, Busy')

Figure 2.20 - Program Segment with Bushy Decision Tree Removed.

Kernighan and Plauger give two program segments to show the

difference in these structures. The original program segment has a

knot count of nine while the improved version has a knot count of five.

V(G) does not measure the bushyness of the decision tree since it only

counts decisions.

Use Structured Programming - Many of the previous style rules

replace unstructured versions with structured ones. A structured

program is one that is reducible to a single entry single exit construct

20

[Lewis, pg. 365]. To reduce a program replace the structured

programming constructs (which are all single entry single exit) with a

single node or meta construct. A single entry single exit construct

does not have multiple exits and therefore can not have flow of control

lines crossing. Any knots calculated for a structured program are

considered unessential knots, so that a structured program can also be

defined as one with zero essential knots. McCabe's measure does not

adequately capture the reduction in complexity due to structured

programming practices. In summary

Table 2.1 - Sensitivity of Metric to Program Structure

RULE GROUP 1 MCCABE2 KNOTS

Reduce interdependence 3 increases or decreases or
unchanged unchanged

Avoid Unnecessary Branches 3 unchanged decreases

Avoid multiple exits 3 increases decreases
'

Use if ... elseif ... 5 unchanged decreases

Avoid else goto ... 5 unchanged decreases

1 The codes for rule group given by Evangelist are: 3, logical
simplification; and 5, clarify the nature of computation.

2 Using the extended version of McCabe's, where each condition is
counted.

21

This section has included several example code segments

where modifications that involve only rearranging the source code

statements did not change V(G). but significantly changed the knot

count. Several papers have suggested extensions to V(G) such as

coupling it with other metrics [Myers, Hansen]. Many of these

extensions to V(G) are justified by using a code sample showing an

improved metric rating which corresponds to intuition or a style rule.

It is easy to find examples which increase or decrease a metric but is

important to analyze the probable response of a metric in a generic

sense rather then on an example by example basis [Evangelist]. In

this section we have argued that, in general, knot count decreases as

code becomes more structured. Evangelist suggests that we need

metrics specifically defined to measure structured programming

practices. In the case of control flow structuring rules the knot count

seems to be a good candidate for such a metric.

2.5 Metric Guidelines or Thresholds

There is a general consensus that control flow complexity should

be minimized but there is little agreement as to what the guidelines or

threshold values should be. McCabe recommends that programmers

limit the complexity of modules based on V(G) instead of physical size.

He feels that if a modules cyclomatic complexity exceeds 10 then it

should be broken into smaller units. This decomposition does not

decrease the total complexity of the program however since the

number of disjoint components (p) increases.

22

The threshold of 10 for McCabe's V(G) is thoroughly entrenched

in the folklore of computer science. In his paper McCabe discusses

the threshold for V(G) only as an interesting observation, but he does

not prove or substantiate it. Most professionals realize intuitive

complexity is frequently quite different from actual complexity, yet the

threshold of 10 for McCabe's is frequently taken as fact rather than

opinion. This threshold has been accepted despite the fact that many

studies show cyclomatic complexity is little better than lines of code:

[Schneidewind, Evangelist] despite the fact that V(G) responds poorly

to accepted programming standards: and despite the fact that there

have been no confirming studies. There is evidence that relatively

high values of V(G) identify error prone modules [Kafura]. but there is

little evidence to support the threshold of ten.

Some studies have included knot count as one of the metrics,

[Gibson, Baker]. but none address the knot count threshold

specifically. In particular, no studies exist which attempt to set

guidelines for the knot count. Threshold values for the knot count

would be especially useful for educators since they are valuable in

evaluating student programs. In order to evaluate students programs,

however, the threshold values must be chosen with care . In the next

chapter we describe our experiment that attempted to establish a

threshold value for the knot count.

23

3 Experiment

This section presents a study of control flow complexity metrics

using C and Pascal students. The goal of the experiment was to find a

general threshold value for knot count for students.

3.1 Subjects

The experiment was conducted in four programming classes at

Oregon State University; one beginning, two intermediate and one

advanced. The 86 Pascal subjects were from two classes: CS212, a

second class in programming, and CS3 l 7, a data structures class.

CS212 is a prerequisite for CS317. Both classes use Pascal for class

assignments. The 82 C subjects were from two classes: CS312, a class

where students first learn C and UNIX, and CS43 l a senior level

applications programming class. CS312 is a prerequisite for CS431.

Students in CS43 l are given the choice of doing class work in Pascal

or C.

3.2 Materials

The materials were composed of three parts: a background

survey with directions and two programs packages.

Background survey

The background survey was given to determine the expertise of

subjects. Moher and Schneider state "For researchers using student

subjects the message is clear: experimental designs must take into

account both experiential and aptitudinal differences in subject pools"

[Moher]. Moher and Schneider recommend using grade point

24

averages and number of computer science classes. Since Oregon State

is on the quarter system (three quarters per year), we felt that it

would be difficult for subjects to accurately remember and count every

computer science class. We were also concerned that the subject's

interpretation of a computer science class would be different. For

instance must a computer science class be offered by the Computer

Science Department? Are classes in mathematics, engineering, or

statistics which require programming or the use of program packages

to be interpreted as computer science courses? To overcome these

problems we asked the subjects to give the number of classes in

which they used the experimental language (either C or Pascal). Also

included in the background survey was class level. grade point

averages and the number of programming languages used in classes or

professionally. To minimize reporting errors GPAs were translated

into letter grades where:

3.7 - 4.0 = A
2.7 - 3.6 = B
2.0 - 2.6 = C

The subjects completed the background survey before the

experimental tasks were performed. The results are summarized in

Appendix A.

A chi-square test was run on all data and confirmed that there

was little significant difference in background between the cells.

25

Program Package

Each program package consisted of two pages stapled together;

the first a comprehension quiz and the second a program listing.

Each subject received two program packages , one with a low knot

count (easy program) and one with a high knot (hard program).

Comprehension Quiz

The six comprehension

questions alternated forward and

backward reasoning questions.

Forward reasoning questions are

those which ask what the program

will output from a given input:

backward reasoning questions ask

what input will produce a given

program output. Figure 3.1

shows some sample questions:

questions one and three are

forward reasoning and questions

two and four are backward

reasoning.

1. How many syllables will
this function calculate for the
word briar.

2. Give any combination of
four letters that will return a
syllable count of 0. The result
need not be a valid word.

3. How many syllables will this
function calculate for the word
ciao?

4. Given the word chick, give
a single vowel (a,e,i,o , u) that
can be added after the i so
that the syllable count remains
unchanged at 1. The result
need not be a valid word .

Figure 3 .1 - Sam pie
Comprehension Quiz Questions

In one class, CS43 l, one question for the easy program was

thrown out due to an error discovered during administration. While

this error was corrected before the experiment was administered to

the second C class (CS312). CS43 l was graded out of a total of five:

three forward and two backward reasoning questions.

Program Modules

26

Since we were interested in studying the knot count, care was

taken to chose program modules which had widely varying knot

counts but fairly consistent cyclomatic complexities. In addition the

modules were selected from two different problem domains and did

not assume any domain specific knowledge.

All modules were implemented using the same style guidelines.

Typographical style, which is an important factor of comprehension

[Oman]. was the same for all modules. Meaningful variable names

were chosen. No comments were used since it is difficult to control

the affect of comments on subject performance.

Pascal

The Pascal module with a low knot count, procedure value, is a

simplified version of a program in [Jones, pg. 35-36] and was

translated to Pascal from Modula II. Procedure value converts strings

containing scientific notation into three integers; whole, fraction and

power. The module converts the digits before a '.' into the integer

whole, the digits after the '.' but before an 'E' (or 'e') into the integer

fraction and any digits after the E into the integer power. For

example the string '123.45E6' would return whole = 123, fraction =

45, and power = 6. The original program accepts a wider range of

inputs (for example '+' or '-') than the version used in this

expirement. Procedure value uses two string functions; StringTolnt

27

and Copy, which were explained at the top of the comprehension quiz.

The high knot count module, (syllableCount). estimates the

number of syllables in a word by counting the number of vowels.

This module Special rules are applied when contiguous vowels are

encountered. For the syllableCount module the special rules only

occur when the first vowel of the pair is an "a" or an "i". As an

example consider the word "special". The syllableCount module gives

a correct count of two; one for the combination ia and one for the e.

(spe-cial) This method of counting syllables is not totally accurate (a

perfect system would require a dictionary search) but it does provide

a reasonable estimation. (The orignal algorithm used a large number

of rules and achieved 99.5 percent accuracy [Fang].) The syllable

count module is a simplified version of the program used in

[Cook86, pg. 340]. That version implements several additional rules,

which were deleted for this experiment.

In choosing our modules we attempted to hold McCabe's V(G)

and lines of code reasonably constant and only vary the knot count.

Metric values for all modules and are shown below:

Table 3.1 - Metric Values for Pascal Programs

Procedure K V(G)i V(G)2 WC V E

value 8 10 1 1 66 1430 57711
syllableCount 22 13 13 57 905 26560

K= Knot Count V=Halstead's Volume E=Halstead's Effort LOC=Lines of Code
V(G) !=Original Cyclomatic Complexity V(G)2=Extended Cyclomatic Complexity

C

The low knot count module, flndOverlap,

calculates the area of intersection of two

rectangles. This module was developed

specifically for this experiment. The overlap

module uses the upper right comer and lower

left corner coordinates for two rectangles as

input and finds the rectangle created by the

intersection. If there is an overlap, it

computes the area of the overlap rectangle

otherwise it returns 0.

28

overlap
rectangle

Figure 3.2 -
Computing Overlap
Rectangle

The module with a high knot count is a version of the syllable

counting routine used in the Pascal experiment. The major difference

between the C and Pascal versions of the syllableCount routine is

caused by the lack of sets in C. Two sets are used in the Pascal

version; the set 'vowels' and the set 'lstc'. The C function 'int

isVowel(c)' (which returns 1 (true) if the character is a vowel

(a,e,i,o, u) and O (false) otherwise) is used in place of the set 'vowels'.

The set 'lstc' is simplified to the character constant 'c'. Thus the

Pascal version of the routine has the statement

if not(previous in lstc)

which is replaced by

if (previous!='c')

in the C version. This means that the syllable count for some words

29

will be overestimated by the C function but not by the Pascal module.

For example the Pascal module will return a syllable count of 1 for the

word liar while the C function will return a syllable count of 2. The C

version also handles strings slightly differently to avoid bound errors.

The C function had the following statements:

if (i==(length-1))
second=' '

else
second = word[i+l];

Which creates an extra knot.

Metric values for both functions are shown below:

Table 3.2 - Metric Values for C Programs

Procedure K V(G)l V(G)2 LOC V E

find Overlap 9 8 9 45 805 24645
syllableCount 23 14 14 57 873 35082

K= Knot Count V=Halstead 's Volume E=Halstead's Effort LOC=Lines of Code
V(G) l=Original Cyclomatic Complexity V(G)2=Extended Cyclomatic Complexity

3.3Task

The materials were handed out randomly to all subjects. The

subjects were told that they could not use any reference materials.

First the subjects were told to read and fill out the background survey

carefully. When the background survey was finished the subjects were

told to answer the comprehension questions as accurately and quickly

as possible and that they might not finish in the 10 minutes provided.

They were told to work on the first program and not start on the

second program until directed to do so. \Vhen the time was up the

30

subjects were asked to turn to the second program and not to return

to the first program.

Experimental Design

Our experimental design had to consider three factors: first the

design had to consider subject variability (studies have shown a wide

variation in programer ability [Brooks, pg. 209)); second we felt

subjects would not perform optimally for longer than 30 minutes; any

longer would fatigue the subjects and effect their performance; and

third we needed to allow enough time to complete each program.

We considered three alternative experimental designs:

1. Have each subject only work on one program, either
the hard or the easy program for 20 minutes.

2. Use a within subjects design where each subject
worked on both programs for 15-20 minutes. (In a
within subjects design each subject is exposed to all
levels of the experimental variable; in this case each
subject would be given two programs one with a low
knot count and one with a high knot count.)

3. Use a within subjects design where each subject
worked ten minutes on each program.

Administration added 5-10 minutes to the total time needed. Even

though design option one only required thirty minutes it was rejected

because it did not address the problem of subject variability. We chose

a within subjects methodology because it has been the most effective

way to minimize subject variability [Brooks, pg. 209]. Design option

two, was rejected because it would require 45 minutes of

concentrated work by the subjects. We concluded that design option

31

three was the best choice - the subjects could perform at their best

for at most thirty minutes, and the subject variability issue was

resolved.

Each module had two versions of the question sets. One with a

forward reasoning question first and one with a backward reasoning

question first. This gave a total of 4 versions (2 (modules) X 2

(questions)) of the materials . Each class was divided randomly into 4

cells; each having one of the four possible orders. The cells were:

cell O -

cell 1 -

cell 2 -

cell 3 -

easy module, forward reasoning question first
hard module backward reasoning first
hard module, forward reasoning question first
easy module backward reasoning first
easy module backward reasoning first
hard module forward reasoning first.
hard module backward reasoning first
easy module forward reasoning first.

Dependent measure

The dependent measure was the percentage of questions

attempted that were answered correctly.

performance = number correct
number attempted

So that

The dependent measure, which is referred to throughout this paper

as performance, was only computed for subjects who attempted both

programs, since it is undefined when the number attempted is 0.

The dependent measure was chosen for two reasons: accuracy

was stressed in the instructions and the short time allotted had a

significant impact on the number of questions that the subjects could

complete. Accuracy was stressed in two ways during the instructions;

32

first the subjects were told to work as accurately as possible, and

second they were told that they might not finish in the time allotted.

We believe that telling them that they might not finish reinforced the

emphasis on accuracy. The short amount of time allowed impacted

the number of questions subjects could reasonably answer. No subject

group was able to complete more then 65% of the questions in the

time allotted. Figure 3.3 shows the average percent of questions

attempted for the easy and hard programs for each of the four classes.

Note that CS 431 was the only classes that attempted more questions

for the easy program than the hard one. The lower number of

questions attempted on the easy program suggests that in most cases

the subjects spent more time trying to answer the questions for the

easy program.

p o.ao
Ha.rd VS Easy

e
r 0.75
C

0.70
e
n 0.65
t

0.60

A 0.55
t
t 0.50
e

0.45 m
p 0.40
t
e 0.35

d 0.30

21 2 317 312 431

<> Easy CJ Hard

Figure 3.3 - Percent Attempted on Both Programs

33

To complete all six questions a subject would have to average

less then two minutes per question. Table 3.3 shows the percent of

the students who answered all questions, which ranged from under

5% to a little over 30%. In retrospect a comprehension quiz with four

questions would probably have been better, although it would not have

exercised all paths in the program.

Table 3.3 - Percent of Subjects Who Attempted All Questions

Class Easy Program Hard Program

212 .17 .22
317 .26 .26
312 .04 .32
431 .08 .22

Another example illustrates why measuring a subjects

performance based on the number attempted is important. Consider

the number of questions attempted for C classes. Figure 3.4 shows

that the subjects in the two cells which had forward reasoning

questions first attempted more forward reasoning questions, and

similarly those subjects in cells which had backward reasoning

questions first attempted more backward reasoning questions. This

suggests that the subjects attempted to answer the questions in

order.

34

p Hard
0 . 690

Program-Forward Reasoning Questions

e
r 0.661
C

0.632 e
n 0.603
t

0.574

A 0.545
t
t 0.51 6
e
m 0.487

p 0 . 458
t
e 0 . 429
d 0.400

312 431

-Forvvard First Cl Backward First

p Hard Prograrn-Backvvard Reasoning Questions
a.so

e
r 0.76
C 0.72 e
n 0 . 68
t

0.64
A 0.60
t
t 0.56
e

rTl
0.52

p 0.48
t
e 0 . 44

d 0.40

312 431

- Forvvard First Cl Backvvard First

Figure 3.4 - C Subjects - Percent Attempted Forward vs. Backward

Reasoning Groups

3.4 Results

This section discusses the results of the experiment. First we

discuss the results of the Pascal experiment, then the results of the C

experiment, and finally we draw some conclusions from the results.

The measure of subject performance is the number of questions

answered correctly divid ed by the number of questions attempted.

35

Pascal

This section describes the results of the experiment for the

Pascal classes. First we discuss performance on the low verses the

high knot count programs. We also consider some secondary results in

this section including the subjects performance on forward and

backward reasoning questions and the effect of program ordering of

programs on the results.

The graph in Figure 3.5 illustrates the difference in

performance between the hard and easy Pascal programs. The

differences are interesting but not statistically significant. Both

classes performed below our expectations. It is surprising that the CS

212 classes had a slightly higher performance score than CS 317.

The CS 212 subjects attempted fewer questions, so possibly they were

more careful.

The poor performance of both classes suggests that students in

their second or third programming class should limit the knot count

of their programs to 7. (The procedure value, the easy Pascal

program had a knot count of 8.) Further research is needed to

validate this limit.

0.80
Hard Vs Easy Program

p
0.76

--
e --
r 0. 72 --
f 0.68 --0 0.64
r --
m 0.60 7 --
a. 0.56 --n 0. 5 2_ ...
C ~

e 0.48 ;----0.44 ---0.40 I I
I I

21 2 317

<> Easy CJ Ha.rd

Figure 3.5 - Pascal Subjects - Performance Hard vs. Easy Program

Table 3.4 - Pascal Subjects - Total Class Performance

1 Total Class Performance =

Class

212
317

Easy

0.64
0.61

Hard

0.51
0.49

Total Number Correct for Class
Total Number Attempted for Class

36

' Table 3.5 - Pascal Subjects - Average Performance by Student

Class

212
317

Easy

.56 (.39)

. 52 (.34)

(Standard Deviation)

Hard

.52 (.33)

.4 7(.38)

t-value

.61

.44

p

.54

.67

37

Secondary Results

The Pascal subjects attempted more forward reasoning questions than

backward reasoning questions for both programs (See Figure 3.6).

p
0.60

Ec1.,a;y P rc:>g rc1.m

E3
r C>. 57
c::

C>. 54-
E3 ,..., C>. 51
t

C>.4-8

A. C> . 4-5
t
t C>.4-2

E3 C> - 3 g m
p 0.36
t

E3 C>. 33

c::t C> . 30

21 2 317

<> Forvvard Cl Backvvard

p
0.60

Ha.rd Progra.m

(3

r 0.57
c::
(3

0. 54-

n 0.51
t

0.4-8

A. 0 .4-5
t
t 0 .4-2

(3

m 0.39

p 0.36
t

(3 0.33

d 0.30

21 2 317

<> Forvvard □ Backvvard

Figure 3.6 - Pascal Subjects - Percent Attempted Forward vs.

Backward Reasoning Questions

From Figure 3. 7 we see that in general the subjects performed

better on backward reasoning questions. One possible explanation is

that there was a certain amount of false confidence concerning

38

forward reasoning questions . Another possible explanation is that

backward reasoning questions require more time, which pays off in

better understanding.

0.70Easy Program Forward VS Backward

p 0 . 68
e 0.66
r 0 . 64
f
0 0 . 62
r 0.60

n,
0.58

a
n 0.56
C 0.54
e 0.52

0.50

21 2 317

<> Forvvard □ Backvvard

Hard Program Forvvard vs Backvvard
0.60

p 0.56
e 0.52
r 0.48
f
0 0.44

r 0.40
m

0.36 a
n 0.32
C 0.28
e

0.24

0.20

212 317

<> Forvvard □ Backvvard

Figure 3. 7 - Pascal Subjects - Performance Forward vs. Backward

Reasoning Questions

Two subject groups had the hard program first and two had the

39

easy program first. The two programs were alternated to lessen

learning affects and fatigue. The following two graphs (Figure 3.8)

show the difference in performance between those subjects who had

the hard program first (hard first) and those subjects who had the

easy program first (easy first).

p 0 .80

e o.n
r o. 74

~ ~:: %10

Easy Program

mo 62 ·.· .. ·.·.-·.·.-·.

a o:sg })\:}/:ir.,,,-,,,~
no 56

. :. : :.->·~·:

·.·· .. -....·.:• .. : .. ·· .. ··. ::::::::::(::::::::-::: ~ ~:~ @}
212 317

D Easy First D Hard First

Hard Program

212 317

D Easy First 12.J Hard First

Figure 3.8 - Pascal Subjects - The Effect of Program Ordering On

Performance

Table 3.6, which shows the average performance on the first

program whether hard or easy. suggests that any unknown interaction

between learning affects and fatique was mitigated by alternating the

programs in the vvithin subjects design.

Table 3.6 - Pascal Subjects - Performance on First vs. Second Program

First Program
Second Program

212
0.57
0.57

317
0.48
0.48

40

C

This section discusses the results of the experiment for the C

classes. First we discuss performance on the low verses the high knot

count programs. As with the Pascal section, we also illustrate several

different secondary results in this section.

The graph in Figure 3.9 illustrates the difference in

performance between the hard and easy program. For both classes a

t-test indicated a significant difference in performance for the easy

and hard programs.

p
e
r
f
0

r
m
a
n
C

e

0 .80
Hard vs Easy Program

0.77

0.74

0 . 71

0.68

0.65

0 .62

0 .59

0 .56

0 .53

0 .50

312 431

◊ Easy □ Hard

Figure 3.9 - C Subjects - Performance Hard vs. Easy Programs

Table 3.7 - C Subjects - Total Class Performance 1

Class

312
431

Easy

0.71
0.68

Hard

0.59
0.53

1 Total Class performance = Total Number Correct for Class
Total Number Attempted for Class

Table 3.8 - C Subjects - Average Performance by Student

Class

312
431

Easy

. 76 (.33)

.68 (.33)

(Standard Deviation)

Hard

.51 (.35)

.52 (.33)

t-value

3.29
1.73

p

.002

.094

41

The results suggest that students in upper division classes should limit

the knot count of their C programs to 20.

Secondary Results

In general the C subjects attempted more forward reasoning

questions than backward reasoning questions. See Figure 3.10.

p
e
r
C

e
n
t

A
t
t
e

m
p
t
e
d

F> -r
c::: -......
t

--t
t -m

p
t -c:t

O . BO

0 . 75

0.70

0 . 65

0 . 60

0 . 55

0 . 50

0 . 45

0 . 40

0.35

0 . 30

Easy Program

....._-----+-----------+------
312 431

<> Forward □ Backward

C:::,_E,C:::,
1--fe:1.rci P'rc:::,grE!ll.m

C> - 59

c:::, - 5a

C> _ 57

C> - 5 E>

C> - 5 5

C> - 54-

C> _ 53

C> - 5 :2

c, _ 5,

C)_5C>

3 , :2 -4-3,

<> F o rvv a. ref CJ Ba.c::kvva.rc:f

Figure 3.10 - C Subjects - Percent Attempted Forward vs. Backward

Reasoning Questions

42

Figure 3.11 shows that on the hard program the subjects

performed better on backward reasoning questions; on the easy

program the subjects performed better on the forward questions.

These results bring up several interesting questions. Is there an

interaction between difficulty of the program and the ability to answer

forward vs. backward reasoning questions or were one set of questions

easier than the other? In this experiment when the students

performed poorly on a program (Pascal subjects on both programs and

C subjects on the hard program). they did better on the backward

reasoning questions. When they performed reasonably well on a

program (C students on the easy program) they did better on forward

reasoning questions.

p
a
r
f
0

r
n,

a
n
C

e

p
e
r
f
0

r
n,

a
n
C

e

0.50Easy Program Forward vs Backward

0.47

0.44

0.41

0.38

0.35

0.32

0.29

0.26

0.23

0.20

312 431

<> Forward c Backward

Hard
0.80

Program Forward VS Backward

0.77

0.74

0. 71

0.68

0.65

0.62

0.59

0.56

0.53

0.50

312 431

<> Forward a Backward

Figure 3.11 - C Subjects - Performance Forward vs. Backward

Reasoning Questions

43

44

More interesting questions arise when you look at Figure 3.12

where the subjects were grouped by what type of question they had

first. Two groups had a forward reasoning question first (forward

first) and two groups had a backward reasoning questions first

(backward first). What effect does the amount of time have on the

ability to understand forward and backward reasoning questions

correctly? If the amount of time allotted for each question was

strictly controlled, would students perform equally as well on forward

as on backward reasoning questions? It would appear that for the

easy program starting out with a backward question first is an

advantage . For the hard program the results are inconclusive.

Perhaps subjects who attempt a backward reasoning question first

spend more time trying to understand a program before answering,

and this pays off in increased understanding. Further research is

needed to investigate these questions.

45

p 0.80
Easy Program - Forward Reasoning

e 0.76

r 0. 72

f 0.68
0 0.64

r 0 . 60
m 0.56
a 0.52
n 0.48
C 0 .44
e 0.40

312 431

o Forward First □ Backward First

p 0.90
Easy Program - Backward Reasoning

e 0 .86

r 0.82

f 0. 78
0 0. 74

r 0. 70
m 0.66
a 0.62
n 0 .58
C 0 .54
e 0.50

312 431

o Forward First □ Backward First

Figure 3.12 - C Subjects - Performance by Group

Two subject groups had the hard program first and two had the

easy program first. The two programs were alternated to lessen

learning affects and fatigue. The following two graphs (Figure 3.13)

illustrate that alternating the programs was an important precaution.

These graphs show the difference in performance between those

46

subjects who had the hard program first (hard first) and those

subjects who had the easy program first (easy first).

p 0 .80
Easy Program

31 2 431

□ Easy First 0 Hard First

p 0.80

e o.76
r o.72
f 0.68

0 0.64

Hard Program

31 2 431

0 Easy First E"] Hard First

Figure 3.13 - C Subjects - Effect of Program Ordering On Performance

Discussion For Pascal and C

Table 3.9 gives the metric values for McCabe's and the knot

count for all four programs:

Table 3.9 - Control Flow Metrics

Procedure K V(G)1 V(G)2

value 8 10 1 1
find Overlap 9 8 9
syllableCount (Pascal) 22 13 13
syllableCount (C) 23 14 14

There is a considerable difference in the knot counts for the

easy and hard Pascal and C programs while the differences in V(G)

are relatively small. Note that V(G) for the easy program was below

47

McCabe's threshold of 10 and V(G) for the hard program was above

the threshold. For Pascal we found no significant difference in

performance scores between the hard and easy programs. Also the

performance of the subjects was quite poor. However, for the C

program we did find a significant difference in performance between

the easy and hard programs. This suggests that the threshold of 10

does not hold across languages and that metric threshold values for

different programming languages should be set differently based on

experience and/or language.

Table 3.10 gives the Lines of Code (LOC). Halstead's Volume (V)

and Effort (E) metric values and the average class performance for

each program. This table points out lack of correlation between these

metrics and performance. Lines of Code, Halstead's Volume and
.

Effort decrease from the easy to the hard Pascal program yet the

performance also decreased. In addition the relatively small changes

in these measures from the easy to the hard program does not seem

to account for the decrease in performance.

Table 3.10 - Size Metrics

Procedure WC

value 66
find Overlap 45
syllableCount (Pascal) 5 7
syllableCount (C) 5 7

V

1430
805
905
873

E

57711
24645
26560
35082

Performance

0.63
0.70
0.50
0.56

4 Conclusion

This research was motivated by the need to set threshold

values for control flow metrics. First we showed that the knot count

is a useful control metric because of its ability to gauge the

structuredness of code; then we described the results of an

experimental study to determine the threshold value for the knot

count. This work establishes a threshold value of 20 when evaluating

upper division student programmers using C. Unfortunately we were

unable to determine a threshold for beginning Pascal students,

although we saw some evidence the threshold should be seven or less.

This research has uncovered several interesting questions:

• Should different threshold values for metrics be set
differently based on experiential factors or programming
language?

• Should a knot count threshold value of 7 be used for
beginning and intermediate Pascal students?

• Should 10 be a knot count threshold for beginning C
students and 20 for advanced students?

• What is the interaction among degree of comprehension,
order of questions, time to answer questions and the
ability to perform forward vs. backward reasoning tasks?

48

Bibliography

[Baker]

[Brooks]

[Conte]

[Cook]

[Cook86]

[Evangelist]

[Fang]

[Folts]

[Gibson]

[Hansen]

Baker, A. L., Zweben, S . H. "A Comparison of
Measures of Control Flow Complexity". IEEE
Transactions on Software Engineering , Vol. SE-6
(6). November 1980, pp. 506-512.

49

Brooks, R. E. "Studying Programmer Behavior
Experimentally: The Problems of Proper
Methodology". Communications of the ACM, Vol. 23
(4), April 1980 , pp. 207-213.

Conte , S . D., Dunsmore, H. E., and Shen, V. Y.
Software Engineering Metrics and Models. The
Benjamin/Cummings Publishing Company, Inc.,
Menlo Park , California, 1986.

Cook, C. R. "Graph Theoretic Program Complexity
Measures". Proceedings West Coast Coriference on
Combinatorics, Graph Theory, and Computing ,
Humboldt State University. September 5-7, 1979.
pp. 109-124.

Cook, C. R., Harrison , W. "Are Deeply Nested
Conditionals Less Readable". The Journal of Systems
and Software, Vol. 6 (4), 1986 , pp. 335-341.

Evangelist , W. M. "Program Complexity and
Programming Style". Proceedings Int'l Coriference
on Data Engineering, Los Angeles , CA. April 24 -27 ,
1984. IEEE Silver Springs, MD., pp. 534-541.

Fang, I.E . "By Computer: Flesch's Reading Easy
Score and a Syllable Counter ". Behavioral Science,
13, 1968, pp. 249-251.

Folts, J., Beekman, G., Johnson , M. Oh! Turbo 5
Pascal!. W. W. Norton & Company , New York, 1988.

Gibson, V. R., Senn , J. A. "System Structure and
Software Maintenance Performance".
Communications of the ACM , Vol. 32 (3). March,
1989, pp. 347-357.

Hansen, W. J. "Measurement of Program Complexity
by the Pair (Cyclomatic Number, Operator Count)".
ACM SIGPLAN Notices, Vol. 13 (3). March, 1978 ,
pp. 29-33 .

[Henry)

[Kafura)

[Kelly)

[IRC]

[Jones]

[Kernighan)

[Lewis)

[McCabe)

[Myers)

[Moher)

[Oman)

50

Henry, S., Kafura, D. "Software Structure Metrics
Based on Information Flow". IEEE Transactions on
Software Engineering, Vol. SE-7 (5). September,
1981, pp. 510-518.

Kafura, D., Canning, J. "A Validation of Software
Metrics Using Many Metrics and Two Resources".
Proceedings: 8th International Coriference on
Software Engineering, 1985, pp . 378-213.

Kelly, A., Pohl. I. A Book On C, The
Benjamin/Cummings Publishing Company, Inc ..
Menlo Park, California, 1984.

Internet Relay Chat V2.0 , University of Oulu,
Computing Center.

Jones, "Entering Data: A "Real" Problem". Journal of
Pascal, Ada, & Modula-2, Vol. 7 (3), May-June,
1988, pp. 34-37.

Kernighan . B. W., Plauger, P. J. Elements of
Programming Style, McGraw -Hill, New York, NY,
1974.

Lewis, T. G. CASE Computer-Aided Software
Engineering. InformaTex Press, Corvallis, OR,
1988.

McCabe, T. J . "A Complexity Measure". IEEE
Transactions on Software Engineering, Vol. Se-2 (4).
December, 1976.

Myers. G. J. "An Extension to the Cyclomatic
Measure of Program Complexity". ACM SIGPLAN
Notices, Vol. 12 (10). October, 1977, pp. 61-64.

Moher, T., Schneider, M. "Methods for
Improving Controlled Experimentation in Software
Engineering". Proceedings: 5th International
Coriference on Software Engineering , 1981, pp. 224-
233.

Oman, P. \V . Cook, C.R. "Typographic Style is More
than Cosmetic". Oregon State University Computer
Science Dept., Tech Report 89-60-5, 1989.

51

[Schneidewind] Schneidewind, N. F .. Hoffmann , H. M. "An
Experiment in Software Error Data Collection and
Analysis". IEEE Transactions on Software
Engineering. SE-5 (3). May. 1979, pp. 276-286 .

[Walker] Walker. J . T . Using Statistics for Psychological
Research: An Introduction. Holt, Rinehard and
\Vinston. New York. 1985.

[Woodward] \Voodward, M. R. , Hennen. M. W., Hedley. D. "A
Measure of Control Flow Complexity in Program
Text ". IEEE Transactions on Software Engineering.
Vol. SE-6 (1). January. 1979, pp. 45-50.

Apendix A - Background Data

CS212 Background Data
CS3 l 7 Background Data
CS3 l 2 Background Data
CS43 l Background Data

CS212 Background Data

Class

Cell Freshman Sophmore Junior Senior /Post-Bae

0 4 5 4 3
1 9 3 3 2
2 3 4 2 5
3 3 3 1 8

Total 19 15 10 18

Overall GPA Computer Science GPA

Cell A B C Cell A B C

0 4 10 2 0 7 5 3
1 3 13 1 1 4 12 0
2 4 6 3 2 4 5 3
3 0 8 5 3 3 6 2

Total 1 1 37 11 Total 18 28 8

Number of Classes Using Pascal Number of Languages

Cell 1 2 3 or More Cell 1 2 or More

0 1 13 2 0 10 3
1 3 8 6 1 12 5
2 1 10 3 2 8 6
3 0 14 1 3 6 9

Total 5 45 12 Total 36 23

CS317 Background Data

Class Number of Languages
Freshman/ Senior or

Cell Sophmore Junior Post-Bae Cell 1 2 3 or more

0 3 1 1 0 1 3 2
1 1 5 0 1 3 2 1
2 3 2 1 2 3 0 3
3 3 1 1 3 3 1 1

Total 10 9 3 Total 10 6 7

Overall GPA Number of Languages used
Professionally

Cell A B C
Cell 0 1 or more

0 3 9 0
1 0 1 1 1 0 5 1
2 1 9 1 1 6 0
3 0 9 0 2 4 2

3 5 0
Total 4 38 2

Total 20 3
Computer Science GPA

Cell A B C

0 0 3 0
1 1 4 1
2 1 2 1
3 0 3 1

Number of Classes Using Pascal

Cell 2 3 4 or more

0 0 5 1
1 1 4 1
2 1 3 2
3 0 3 2

Total 2 1 5 6

CS312 Background Data

Class Number of Languages
Seniors or

Cell Soph. Junior Grads Cell 2 or 3 4 or 5 6 or 7
0 1 4 5
1 3 3 6 0 2 8 1
2 2 7 3 1 5 6 1
3 2 3 6 2 4 7 1

3 3 8 0
Total 8 17 20

Total 14 29 3

Overall GPA Number of Languages Used
Cell A B C Proffesionally

0 0 10 1 Cell 0 2 to 4
1 2 9 0
2 2 8 1 0 10 1
3 1 9 1 1 10 2

2 8 4
Total 5 36 3 3 9 2

Computer Science GPA Total 37 9

Cell A B C

0 2 6 1
1 2 7 0
2 3 4 2
3 6 3 1

Total 13 20 4

Number of Classes Using C

Cell 1 2

0 1 1 0
1 1 1 1
2 12 0
3 9 2

Total 43 3

CS431 Background Data

Class Number of Languages

Senior Or Cell 4-5 6-7
Cell Junior Grad

0 1 7
0 1 7 1 6 3
1 0 9 2 5 5
2 0 10 3 4 5
3 0 1 1

Total 16 17
Total 1 37

Overall GPA Number of Languages Used
Professionally

Cell A B C
Cell 0 1-2 3-4

0 1 7 0
1 1 8 0 0 4 2 2
2 2 4 4 1 5 3 1
3 2 5 0 2 7 3 0

3 6 1 2
Total 6 24 4

Total 5 7 38
Computer Scienc GPA

Using C Currently?
Cell A B C

Cell No Yes
0 2 5 0
1 2 7 0 0 1 7
2 3 5 2 1 3 6
3 2 5 0 2 2 8

3 3 6
Total 9 22 2

Total 9 27

Number of Classes Using C

Cell 1-2 3 4-5

0 1 3 3
1 3 4 2
2 3 3 4
3 2 3 3

·Total 9 13 12

Apendix B - Materials

Pascal Materials
Pascal Background Questionaire
Easy Program

Comprehension Quiz - Forward Reasoning Question First
Comprehension Quiz - Backward Reasoning Question First

Hard Program
Comprehension Quiz - Forward Reasoning Question First
Comprehension Quiz - Backward Reasoning Question First

C Materials
C Background Questionaire
Easy Program

Comprehension Quiz - Forward Reasoning Question First
Comprehension Quiz - Backward Reasoning Question First

Hard Program
Comprehension Quiz - Forward Reasoning Question First
Comprehension Quiz - Backward Reasoning Question First

You have been selected to participate in an experiment related to programming comprehension .

Though your participation is optional, we request you to participate and try to answer all

questions to the best of your ability.

This experiment will not effect your course grade in any way. Thank You.

Please fill out the following questionaire . Be as accurate as possible.

Class level FR SO JR SR POST-BAC GRAD

Overall GPA ___ (4.0=A) Computer Science GPA __ _ (4.0=A)

How many classes, including this one, have you programmed in PASCAL?

The following matrix refers to programming experience. Mark all appropriate items with a ✓.

Used In Used Using

Language Class Professionally Currently

(e.g . for pay)

PASCAL

C

COBOL

FORTRAN

ASSEMBLY
LISP

Please read the following instructions carefully.

• Please do not write your name on any of the materials .

• If you have questions at any time, plea se raise your hand.

• Do not refer to any text books, manuals or notes during the experiment.

• There are two sections to the experiment, each taking a maximum of ten minutes .

• If you finish early, plea se sit quietly and await further instructions.

• The scoring in this experiment is based on accuracy, so be careful.

Do not proceed to the next portion of the experiment until you are told to do so.

procedure value(s:string; sLast:integer; var whole, fraction, power
var

plus: boolean;
i 1 !irst, last~ sign integer;
d1g1ts: set or char;
t~ : string;

begin
digits:= ['0','1','2','3','4','5','6','7','8','9'J;
i : = 1;

while s [il in digits do
i: =i+1;

last:=i;
t~:=copy(s,1,last-1);
whole:=Stringlolnt(te!Tl));
if s[il ='·'then

begin
i: =i+1;
if s(il in digits then

begin
first:=i·
while sch in digits do

i :=i+1;
last:=i-1;
t~:=copy(s, first, last·f i rst+1);
fraction:=Stringlolnt(t~);
end

else
fraction:=O;

end
else

fraction:=O;

if i <=sLast then
begin
if (s(i] = 'e') or (s(iJ = 'E') then

begin

end

i: = i +1;
if s(il = '·' then

begin
sign:=·1;
i :=i+1;
end

else
begin
if s(il='•' then

begin
sign:=1;
i :=i+1
end

else
sign:=1;

end·
first:~i-
while srh in digits do

i := i +1;
last:=i-1;
t~:=copy(s.firs!,last·first•1);
power:=s1gn Str1nglolnt(t~);

else
power:=1

end
else

power:=1;
end;

int~er);

String functions:
StringToint(s:string) : int; - Returns the integer value of

strings. Ifs contains non-numeric characters then
StringToint returns O and prints an error message.
Example: t:=StringToint('456') then t=456

t:=StringToint(' ') then t=O
copy(s:string; start, length: integer) : string; - Returns a

substring of the strings, starting from position start and
containing length characters.
Example: t:=copy('l234',2,3) then t:='234'

t:=copy('abcd' ,3,2) then t:='cd'

The following questions refer to the procedure value on the next
page:

1. Given s='7.55' and sLast=4, what would the output of
procedure value be?

whole fraction power ______ _

2. Given s='546.7E78' what would sLast need to be so that
power= l?

sLast

3. Given s='099e-5' and sLast=6, what would the output of the
procedure value be?

whole fraction power ______ _

4. Given s='l230E+78' and sLast=8, what no~-nurneric character
could you replace the 3 without creating an error message in
StringTo!nt.

s

5. Given s='7.534~789',
procedure value be?

whole

sLast==9, 'i,,,·hat would the

fraction power ______ _

6. What changes to s='987.45 E 7' need to be hlade in order for
power to be= 7?

s

Do not proceed to the next section until directed.

String functions:
StringToint(s:string) : int; - Returns the integer value of

strings. Ifs contains non-numeric characters then
stringToint returns O and prints an error message.
Example: t:=StringToint('456') then t=456

t:=StringToint(' ') then t=O
copy(s:string; start, length: integer) · : string; - Returns a

substring of the strings, starting from position start and
containing length characters.
Example: t:=copy('1234',2,3) then t:='234'

t:=copy('abcd',3,2) then t:='cd'

The following questions refer to the procedure value on the next
page:

1. Given s='546.7E78' what would sLast need to be so that
power= 1?

sLast

2. Given s='099e-5' and sLast=6, what would the output of the
procedure value be?

whole fraction power ______ _

3. Given s='1230E+78' and sLast=B, what non-numeric character
could you replace the 3 without creating an error message in
StringToint.

s

4. Given s='7.534E789', sLast=9, what would the output of the
procedure value be?

whole fraction power ______ _

5. What changes to s='987.45 E 7' need to be made in order for
power to be= 7?

s

6. Given s='7.55' and sLast=4, what would the output of
procedure value be?

whole fraction power ______ _

Do not proceed to the next section until directed.

fi.nc:tion syllableCOU'1t(word:string;length:inte-ger):int~r;
var

first, second, previous :char;
sccx.nt,i:inte-ger;
vowel,, lstc:set of char; ··

begin
SCOU'1t:c:O;
vowels:=['e' ,'e' ,'i' ,'o' ,'u' ,'y');
lstc:=['l','s','t','c');

for i:=1 to length do
begin
first:=word[i);
second:=word[i+l);
if i>l then

previous:=word[i-1)
else

previous:=' ';
if first in vo..els then

begin
if second in vowels then

begin
if first='e' then

begin
if(second<>'e') then

scOlX1t:=scOU'1t+1
else

if i<> 1 then
scount:=scount + 1;

end
else

end
else

if first='i' then
begin
if secood='e' then

scount:=scOU'1t+1
else

if secood='e' then
begin
if not(previous in lstc)then

scount:=scount+1;
end

else
if secood='o' then

scount:=scount+l;
end

else
scount:=scount+1;

scOU'1t:=scount+1;
end;

end;

syllebleCount:=scou,t;

end;

The following questions refer to the function syllableCount on
the next page.

1. How many syllables will this function calculate for the word
briar?

2. Given the word aerie, give a single letter that can replace
the first e without changing the syllable count? The result
need not be a valid word.

3. How many syllables will this function calculate for the word
ciao?

4. Give any combination of four letters that will return a
syllable count of O The result need not be a valid word.

5. How many syllables will this function calculate for the word
solarium?

6. Given the word chick, give a single vowel (a, e, i, o, u)
that can be added after the i so that the syllable count
remains unchanged at l? The result need not be a valid word.

The following questions refer to the function syllableCount on
the next page.

1. Given the word chick, give a single vowel (a, e, i, o, u)
that can be added after the i so that the syllable count
remains unchanged at 1? The result need not be a valid word.

2. How many syllables will this function calculate for the word
briar?

3. Given the word aerie, give a single letter that can replace
the first e without changing the syllable count? The result
need not be a valid word.

4. How many syllables will this function calculate for the word
ciao?

5. Give any conbination of four letters that will return a
syllable count of O The result need not be a valid word.

6. How many syllables will this function calculate for the word
solarium?

You have been selected to participate in an experiment related to programming comprehension.

Though your participation is optional, we request you to participate and try to answer all

questions to the best of your ability.

This experiment will not effect your course grade in any way. Thank You.

Please fill out the following questionaire. Be as accurate as possible.

Class level FR SO JR SR POST-BAC GRAD

Overall GPA ___ (4.0=A) Computer Science GPA __ _ (4.0=A)

How many classes, including this one, have you programmed in C?

The following matrix refers to programming experience. Mark all appropriate items with a ✓.

Used In Used Using

Language Class Professionally Currently

(e .g. for pay)

PASCAL

C

COBOL

FORTRAN

ASSEMBLY

LISP

BASIC

Please read the following instructions carefully.

• Please do not write your name on any of the materials.

• If you have question s at any time, please raise your hand.

• Do not refer to any text books, manuals or notes during the experiment.

• There are two sections to the experiment, each taking a maximum of ten minutes.

• If you finish early, please sit quietly and await further instructions.

• The scoring in this experiment is based on accuracy, so be careful.

Do not proceed to the next portion of the experiment until you are told to do so.

#include <stdio.h>

typedef struct C
int top(left, bottom, right;
) rec tang e;

int find0verlap(r1,r2)
rectangle r1,r2;
{
rectangle overlap;
int overlapArea;

if (r1.top > r2.top)
{
overlap.top=r1.top;
if (r1.left > r2.\eft)

overlap.left=r1.left;
else

overlap.left=r2.left;
)

else
{
overlap.top=r2.top;
if (r1.left > r2.\eft)

overlap.left= r1.l~ft;
else

overlap.left = r2.left;
)

if (r1 .bottom > r2.bottom)
{
overlap.bottOOFr2 .bottom;
if (r1.right > r2.right)

overlap.right=r2.right;
else

overlap.right=r1.right;
)

else
{
overlap.bottom=r1.bottom;
if (r1.right > r2.right)

overlap.right= r2.right;
else

overlap.right= r1.right;
)

if ((overlap.top>overlap.bottom) I I (overlap. left>overlap.right))
overlapArea=O;

else .
overlapArea=(overlap.right·overlap. left) * (overlap.bottom-overlap.top);

return(overlapArea);
)

The following questions refer to the function findOverlap on the
next page.

1. Given:
rl.top=20
r2.top=20

rl.left=l0
r2.left=20

What is overlapArea?

2. Given:
rl.top=380 rl.left=20
overlap.top=420
overlap.bottom=415

rl.bottom=70
r2.bottom=60

rl.right=60
r2.right=60

rl.bottom=415 rl.right=60
overlap.left=20
overlap.right=60

Give an example of r2.top for a
this overlap rectangle.

second rectangle that would produce

r2.top

3.Given:
rl.top=l50
r2.top=l20

rl. left=5
r2.left=l5

What is OverlapArea?

4. Given:
rl.top=l0
r2.top=30

rl. left=220
r2.left=210

rl.bottom=200
r2.bottom=l70

rl.bottom=90
r2.bottom=ll0

rl.right=60
r2.right=70

rl.right=260
r2.right=290

Give one way can you change r2.right and not change the overlapArea
at 2400?

r2.right

5. Given:
rl.top=l15
r2.top=l35

rl. left=2 2 5
r2.left=265

What is OverlapArea?

6. Given:
rl.top=l5
r2.top=5

rl. left=ll0
r2.left=100

rl.bottom=l90
r2.bottom=210

rl.bottom=50
r2.bottom=70

rl.right=260
r2.right=280

rl.right=l60

Give one way to complete r2 so that overlapArea = 1750?

r2.right

Do not proceed to the next section unt "il directed.

The following questions refer to the function findOverlap on the
next page.

1. Given:
rl.top=380 rl.left=20
overlap.top=420
overlap.bottom=415

rl.bottom=415 rl.right=60
overlap.left=20
overlap.right=60

Give an example of r2.top for a
this overlap rectangle.

second rectangle that would produce

r2.top

2. Given:
rl. top=l50
r2.top=l20

rl.left=S
r2.left=l5

What is OverlapArea?

3. Given:
rl.top=l0
r2.top=30

rl.left=220
r2.left=210

rl.bottom=200
r2.bottom=l70

rl.bottom=90
r2.bottom=ll0

rl.right=60
r2.right=70

rl. right=260
r2.right=290

Give one way can you change r2.right and not change the overlapArea
at 2400?

r2.right

4.Given:
rl.top=ll5
r2.top=l35

rl.left=225
r2.left=265

What is OverlapArea?

5. Given:
rl.top=l5
r2.top=5

rl.left=ll0
r2.left=l00

rl.bottom=l90
r2.bottom=210

rl.bottom=S0
r2.bottom=70

rl.right=260
r2.right=280

rl.right=l60

Give one way to complete r2 so that overlapArea = 1750?

r2.right

6. Given:
rl. top=20
r2.top=20

rl.left=l0
r2.left=20

What is OverlapArea?

rl.bottom=70
r2.bottom=60

rl.right=60
r2.right=60

Do not proceed to the next section until directed.

#include <stdio.h>
#include <ctype.h>

int isVowel(c)
char c;
{
/* isVowel returns 1 (true) if c is a vowel (a[e,i,o,u) and

returns O (false) if c is not a vowe •t
switch (c)

{

)

case 'a':
default
)

case 'e': case 'i': case 'o': case 'u': return(1);
: return(O);

int syllableCount(word,length)
char •word;
int length;
{
char first, second;
int scount,i;

scount=O;

for (i=O; i<length; i++)
{
first=word(il ·
if (i==(length·1))

second=' ';
else

second=word(i+1J;
if (i!=O)

previous=word[i·1J;
else

)

previous='';
if (isVowel(first))

{
if (isVowel(second))

{
if (first=='a')

{
i f(second' =' e')

scount=scount+1;
else

)
else

if (i ==1)
scount=scount + 1;

if (first=='i')
{
if (second=='e')

scount=scount+1;
else

)

if (second=='a')
{
if (previous!='c')

scount=scount+1;
)

else
if (second== 1 0 1)

scount=scount + 1;

else
scount=scount+1;

)
else

scount=scou~ t •1;
)

return (scount);
)

The following questions refer to the function syllableCount on
the next page.

1. How many syllables will this function calculate for the word
briar?

2. Given the word aerie, give a single letter that can replace
the first e without changing the syllable count? The result
need not be a valid word.

3. How many syllables will this function calculate for the word
ciao?

4. Give any combination of four letters that will return a
syllable count of O The result need not be a valid word.

5. How many syllables will this function calculate for the word
solarium?

6. Given the word chick, give a single vowel (a, e, i, o, u)
that can be added after the i so that the syllable count
remains unchanged at l? The result need not be a valid word.

The following questions refer to the function syllableCount on
the next page.

1. Given the word chick, give a single vowel (a, e, i, o, u)
that can be added after the i so that the syllable count
remains unchanged at l? The result need not be a valid word.

2. How many syllables will this function calculate for the word
briar?

3. Given the word aerie, give a single letter that can replace
the first e without changing the syllable count? The result
need not be a valid word.

4. How many syllables will this function calculate for the word
ciao?

5. Give any conbination of four letters that will return a
syllable count of O The result need not be a valid word.

6. How many syllables will this function calculate for the word
solarium?

!L

