

FINAL REPCRT

GNAT CREEK WEIR STUDIES

by
Raymond A. WIIIIs
Fish Commission of Cregon
Resesceh Division
Clackamas, Oregon
December 1962

Funds Surpplised by the
Tindted States Departmont of the Interios
Fish end Wllalife Sarvice
Bureas of Commorefal Fiahories

TABLES OF CONTENTS

Rape Ils
INTRODUCTION. 2
Profect Plans 1
Objectives. 2
DESCRIPITON OP SIREAM AND FACILIITISS. 2
Gpat Greek Watershed 2
Gngt Greek Weir 5
METHODS OF COLIECTING DATA. 9
RESULITS 10
Physical_Data 10
Eleh Migrations 10
Tall Chinook Selmon 10
Adult Stlver Salman 23
Juvenile Silvar Salron. 39
Productivity. 46
Steelhead Theut 53
Masoollaneous Spectes 58
SUMMARY AND CONCLUSIONS 58
ACKNOWLEDGMENTS 62
ITHEPATUR OITEED. 63

LIST OF FIGURES

Eixure No.
Prige No.

1. Gnat Creek and Tributaries 3
2. Gnat Greek Weir at 180 cof. B_{0} 4
3. Sampling Traps on Dam ($180 \mathrm{c} . \mathrm{I}_{*} \mathrm{~S}_{\circ}$). 4
4. Partially-Passable Cascades Looatod on Gnat Groek 3 Miles above Weir. 4
5. First of 7 Impasseble Falla Located 1 IIIle above Nanary Greek 4
6. Impassable Falls at Mouth of Unnamed Tributary Near U.S. 30 Bridge. 6
7. Partially-Passable Culvert Located on Manary Creek 6
8. Screoned Section (laft oenter), Bulkhead (in background), and Treps (at right) 6
9. Dounstrean Trap Basket in Raised Position for Draininge 6
10. Several Sea-Run Cutthroat Trout at Base of Dam. 8
11. Upstream Adult Trap with Easilymopened Gates, in Lowered Position. δ
12. Upstroam Adult Trap in a Maised Position. 8
13. Watarproof Random Khanber Table for Saripling Dounstroan Migrant: 8
14 . Perieds of Overfilou at the Gnat Greek Den Whan Juvenile Salmonids Could ifigrate, 1955-62. 13
14. A Comparison of Stlver Salmon (Adult and Juck) Counta at Gnat Creek with Oregon Lower Columbia River and Coastel River Index Cocmts, 1955-61 27
15. Relationship of Numbers of Silver Seimon Jacks in One Year to Adults in the Following Year at Onat Greekp October 1956 January 196I 29
16. A Scattor Diagram Showing the Relationsinip Betwoen Circuli Counts and Distances from Focus through First Annulus, 1958 irrood 33
17. The Relationship of Fecundity to Length for Columbia River Silver Salmon Sample, 1961 37

LIST OF FIGURES (Cont ${ }^{\mathbf{1}} \mathrm{d}_{\mathbf{*}}$)

Figure No_{4} Page Nos
19. Time of Outmigration of Juvenile Silver Salmon of the 1958 Brood and Average Daily Discharge, by 5-Day Periods, Gnat Creek Weir, 1959-60. 42
20. A Comparison of Points on Two Length-Drequency Distributions with a Normal Distribution (shown as a straight Lina) 44
21. Average Lengths and Range in Sise of 3,474 Downstreammigrant Sliver Selmon of the 2959 Brood at Cnat Grealc Hesry Aprif 2960-June 1961 47
22. Cosuparison of Length-Frequency Distributiona of Juvenile Steelhead Talcon by a Sumpling Teclmique uith the Entire Population, 1\%1. 56

Fance 10.

1. Avarage Flows in Cubie Feot Par Seoond by 5-Day Periods, Gnat Greok, Jamuary 1956-Jume 30, 1962. 21
2. Flows Ovar the Dan by Day During the lonths of April and Hey, 1957-62. 14
3. Couparison of Anmal Escapements of Adult Fall Chinook and Resulting Outmigration of Wild Juvoniles at Gnat Creek Weir, 17
4. Catahos of Fall Chinook Selnon Pry and Flots Over Cnat Creek Woir and Dam by 5-Day Pericid, Jamuary 16mpril 25, 1\% 18
5. Sumary of Chinool: Salmon Iarking Experimente at Gnat Greek. 19
6. Iongth-irequency Distributions of 1956-Brood Adult Foll Chinools Mariced Dmaid that Returnod to Gnat Greek in 1958-60 22
7. Tise of Maration for Iature Silvar Sainon at Gat areek by 5-Day Pariods, 1955-62 24
8. Total Silvar Salmon Counts and Sax Composition of Returning Runs to Onat, Spring, IIInter, and Waddell Creeks 30
9. Sumary of learicing Experimenta for Silver Selmon at Gnat Creak 34
10. Summary of Recovery Data for Silver Salmon Marling Experfments at Gnat Creek. 35
11. Computations for Doriving the Potentinl Egg Daposition for Silver Solpon at Onat Greek from 1955-6I Runs. 38
12. Counts of Wild Juvenile Silver Salmon Hicrants at Onat Greek Weir by 5-Day Periods fron Zlovember 16 to End of Mgration Year, 1954-59 Brood Years. 40
13. Characteristics of the Length-5requency Distributions in 5 -am Groups of Wild Silvar Salmon Smalts that Migrated out of Gnat Creek by Brood Tear Betreen Itoverber 15, 1956 and June 30, 1961 43
14. Iength-Frequeney Distribution of 2.212 1959-Brood Yearling Silvar Salmon, Gnat Greek, lay 1961.............. 45
15. Avarage Length-Weight leasuranents for Yearling Silver Selwon per Millineter of Fork Lengthg 1960 Brood. 48
16. Avarage Condition Factors for Yearling Silver Salmon per Millimeter of Forls Length, 1960 Brood. 49

LTST OF TABLES (Cont ${ }^{\mathrm{e}} \mathrm{d}$)

Tahle Ils.
Papa №.
17. Comperisons of Ammul Adult Silver Salmon Rums and Fesulting Progony at Gnat Creoly $1955-59$ Brood Years. 50
18. Surrivel Iatos of 817 vor Salmon Based on Celeulated Eges Depo- sition, Juvonile-ifigrant Counts, and Rearitant Adults Returing to Gnat Crook Woirg 1955-60 Brood Years 52
19. A Comparison of Calumbia Rivar Gillmbet Catches and Onat Creek Adults with Iumot' Index Two Foers Eerlier. 54
20. Inumbers of Adult Steelhoad Counted at Gnat Greok Meir During Upstrean IIIqration and Survival after Sparnince 1955-62 54
21. Ihmbers of W13d Jugenite Stealheed Outritgrants Trapped at Gnat Greek Weir, January I, 2956mune 25, 1962. 55
22. Sumary of Information Relating to Steelhead Mark Experymenta at Onat Creek, Through Jume 1962. 57
23. Mieco17aneous Spectes of Flish Bnumarsted at Gnat Greek Weirs Ootobex $1,1955-\sqrt{2}$ une $30,29 \%$ 59
LTSI (${ }^{5}$ APPSTDIX TABIES
Aprendfx Table IVa
Io Tength-Frequenoy Tabniation of liariced and Orumaised Wild Silver Salron Adults at Gnat Creek, 1956-57. 65
II. Loncth-drequancy Tabulation of Naziced and Jomariced WIId SIIvere Salnon at Cnat Creek, 1957=58 66
III. Lengtherrequency Tabulation of laricod and Trmarked Wild Silver Salmon Adults at Gnat Greelig 1956m59. 67
IV. Longthmirequency Tabuiation of Iarked and Urwarked Wild Silvere Salmon Aduits at Gnat Crealt, 1959-60. 68
Vo Lengtb-Frequency Tabulation of Marked and Tranarked Hild sylvers Salmon Adults at Gnat Greek, 1960-61. 69
VI. Lengtherrequency Tabulation of Merkod and Jmariked Wild Silvers Salmon Adulta at Gnat Greek, 2\%in62.... 70
VII ${ }^{(1)}$ Length-Prequancy Diatribution of Adult Fall Chinook Salraon in the 1960 Rm at Cmat Creek Woir by Sex and Harle 7

Gnat Creek Veir, constructed with fedoral funds, was ocmplated in Oatober 1955. Pirimary objectives welre to quantitatively stoxiy fall chim nook and silvor salmon tos (1) determine tho survivals timing, and size of juvenile selmonids resulting from natural apawings (2) measure the suseFival of hatohergwreared fingerlings and yoarlingss (3) determine if a rem Iationship betraen varying stream flows and adult production existed; and (4) study the juvenile production resulting frore various mmbers of adults above the weir. The source of Gnat Creek in at 2,500 feet altitude and the stream system drains 22 square miles. Palls and other obstructions lindt the production area abore the weir to the central part of the main strean and parts of two anall tributarios. Counts of juvenilas, although not complete due to spill over the dam above $150 \mathrm{c}+\mathrm{c}_{\mathrm{s}} \mathrm{S}_{0}$, are considered accurate and complete during tites of no spill. Survival rates for silvor salrom senolts (yearlings) were 0.5 and 2.0% of the maximum calenlated egg deposittion in the two years with no apil1 during April and May and averaged 1. 5% for all yoara. Soventymone per cent of the smolts migreted during Way and 90% chring April and May. The average size of 7, 878 smolta from 6 brood yoars was 214.9 mm forlc lengith with 95% contidence Litnits of 87.80242 .0 umi , S3lver salmon survival rates of adults only (jacks exaluded) returning to the wefs avaraged $2.5 \%^{\circ}$ of the smolts counted downstream. An excollent com rolstion existed between the numbers of silver salmon jaoks in one yoer and the numbers of adults in the following year at Gnat Creek. Counts of atselw head adults and juveniles are presented and a manuseript concerning a teat of apaghatti and Patersen tags on Eteelhead was ppopared.

THIRODUCTIO:

Project. Plang

As a part of the Columbia Miver Fishery Development Program (CRFDP) bem tween the Oregon Fish Comaission (OFC) and $U_{0} S_{0}$ Fish anl Wildife Service (USTRIS) I/ it wes desirod to learn nore about the fresh-water phase of ansarom mous saimonid Iife histary in general and lower Columbia River fall chinook salmon in particular.

After numerous stroan survays had been conducted on Oregon tributaries bolow the Willomette River, it was apparent that only one or possibly two streans would be at all suitable for a two ray weix on a stream having an appreciable minimum flowo Gnat Creok was chosen when prelininary engineoring and biological data indicated maximun flows would not likely exceed $2_{0} 000$ cofos and ninimum flows would be about 10 cofos . Two species of seimon, chinook (Oncorhymehus tabauxtaging) and silver (O. kisutch) or coho, ware present in addition to steelhead (Salmo gairdneri) and seamun cuthroat trout (Salng clazed. . Construction was completed in 1955.

The Gnat Creek project vas initiated prion to the publication of two exiensfive papars dealing with weir studies on silver sairm and steelhead (Salo and Bayliff, 1958, and Shapavalov and Tafi p 1954)。 $^{\text {1 }}$

Obiecthyos

Objeatives of the study were: (i) detormine tho aurvivol, tining, and size of juvenile saimonids resulting from natural spauming (2) meaaure tho survival of hatchery-seared inggerlinga and yearlings 1iberated into Gnat Groek; (3) determine if a relationship between varying stremm flows and ndult production axistad; and (4) study the juvenile production resulting from varis ous numbers of adulte above the weirs Although unoountod numbers of juvoniles 2 Lator the Burcau of Comnercial Fisheries of the USFAS.
would migrate over the dam when flows excaeded 150 cofsso, it uas hoped that a sampling techaique could be developsd for obtaining a reliable estimate of those fish that by-apassod the counting facilities, Corrosion of the heavy gaged screens lator caused inter in excess of about 135 csfos to spill over the dam and the use of suitable gear for sampling on the crest of the dam durIng storns, especially at night, was only partially solved by Juns 1962 when the field project terminatod.

DESCRIPTIOR OF STREAM AFD FACIIITIES

Gnat Creek Uatershed

The Gnat Creok systen is in Clatsop County, Oregon, and drains the northern slopes of Micciat Mountain in the Coast Range. It originates at an altitude of 2,500 feet and flows northoriy into Blind Slough which joins the Columbis Rivor 28 milies above its mouth (Figure 1)。 Climate of the 22-squaremille stream systom is generally simular to that of other coestal foothinl oreas with abundant rainfall in the fegl, winter, and spring monthso A maxisum flow of $J_{-}, 300$ cof ${ }_{a} B_{0}$ cocurred at the weis for a short duration on llovenber 22,1959 , as a result of 3.8 inches of rain in 22 hours. Hininum flows, on the other hand, of 7 c.f.s. ware ofton encountared in the gumes after a prolonged peris od of dry weathors.

The mouth of Gnat Groels at high wator of the Columbia Rivor is Joceted approximetely between Supply Creels and Rocis Creek, The weir with the dan On the north side (Figure 2) and the acreens on the aouth side (Figures 2 and 3) is located 100 yards upstreen from the mouth of Rock Greek. The photom graphs wore token on Decomber $12,1 \% 1$ when the flow was $160 \mathrm{cof}_{0} \mathrm{~s}$. Three miles of strean are accessible to andromors fish botwes the weir and a Gw8 foot cascade (FIgues 4) which is located about 100 yarda above tho $U_{0} S_{0}$ 30 highway bsicige at low flous this ceacade appears to be impessable and

Figure 1. Gnat Creek and Tributaries.

First of 7 Impassable Falls Located 1 Mie above Manary Creek.
usualiy represents the upstrean limit of chinook salnon migration, Ilowever silver selmon and steelhead trout are able to pass. The gradient in the 3 mile section of strean below this cascade is moderato with several fair riffles of coarse gravel. Occasional channel changes with scouring of the stream bottom have been observed.

A new hatchery operated by the Oregon Game Comivission (OGC) was constructed under the federal progran in 1960 at the highnay befdge. Its vator-suppiy dem Is about 400 yards above the cescades and is equippod uith a fishway of modern design. Hater for hatchery uee flows over a heavymducy, finemeshed, incinnedw plane sareen. Occasional. IaN flows at the dan present a problem to upstream miferating adults such as steelheed in lay of sone years.

The remains of an old dam are located about 3 miles above the hatohecy weter-supply dam, This woodon arib dom was considered to be an impassable berrier to fish nigration during its use in the logging operations of 1920-30. One mile above Nanary Creek, the strean drops about 800 feot within onembalt mile over 7 falles. A photograph of the iower most of this acries of felle is shown in Figure 5.

Wost of the Gnat Creak tuributaries above the weir am non-producars of anadromous fish beceuse of impassebis barriers. Aithough the morth of Rock Creek is belou the weirs this steepmradient strear has an inpessable cuivert at nost flows under Highay 30 . Big Noise Creek hes a steep cascade which is loosted $1 / 4$ mile above the highway and is inpasscble at most flows. An un-
 passable falls at ata mouth (photo in Figuee 6). Manary Greek has a reed culvert (Figure 7) about $\mathbf{I m} 2 / 4$ miles above $1 t s$ nouth that is impassable at most timss although an oceasional steelheed is able to pasa through ito

Gnat Graek Whis

The bwomby fish counting facility, commonly called a weir, was pri-

on

Figure 7. Figure 6. Impassable Falls at Mouth of Unnamed Figure 6. Impassable Falls at Mouth of Unnamed

marily in two parts, vize, the 100-footelong dam 10 feet high, and 9 incinede plane screens leading to a holding box in a trap (Figure 2). The two perts vere separated by a rock-iilied, crib bulkhead running pacallel to the stream upstream about 100 feet to the wooden watar-control structure which alloned a maximum of 135 cofes. to the scraened parte Two gates and stop logs controlled the amount of water to the screens and the excess over 135 cof.so was diverted over the spiliway. Two additions) stop logs (shown in Pigure 8) at the head of each ecreon provided additional vetar control depth adjustmonts over the screens. Each of the nine $7 / 8$-jnch mesh screens paased up to $15 \mathrm{c}_{\mathrm{o}} \mathrm{f}$ 。ss In such a manner that ilsh of various sizes vere collected into a continuous trough under the lower ends of the screens. A longitudinal screen of $1 / 2$ fuch mesh provided a separato gection of trough for the sualler fish. The trough carriod the esish in wetar to the downstreas trap (shown in the raized and drainad position in Figure 9). Excassive water from the trough by-pased the domstream trap (to prevent turbulence for the fish being hald) and fish ware separated by a rocaxy screen driven by a pacldle wheel. When omptying the trap the entrance was closed, the trap basket with fish and water was lifted by an electric hoist and druinod by ewo hoses into two standard hatchery troughs for inspection of the dey ${ }^{1}$ s cateh. Afver inspection the fish wore returned so the strean below the weir via a chrte with vatar.

The upstream treap was located between the dowstreara trap and the first inclined-plane screon and utilized the flow from the domsturean aereoning and trapping lacilitios for added attraction to the ansoll Iaddex and trap ontrance. Fish occasionaliy appeared at the base of the dam (shown in Figure 10) but most aoon located the ladder leading to the upstream trapo In 1961. a floator Ing compartment weas installed so the adult isich would be lifted in sater as shown in Figure 12 (Jowared position) and Figure 12 (raisod poaition).

Figure 11. Upstream Adult Trap with Easily-Opened
Gates, in Lowered Position.

Figure 13. Waterproof Random Number Table for Sam-
pling Downstream Migrants.

METHODS OF COLZDCTITM DATA

Air and vater terperatures vere obtained by a Welsion recording thermometer. Strean flows were obtained from gage height to flow convarsion tables prepared by the OFC Engineering Division. An indess for each annusal average runoff in inches por acre, simfiar to that developed in Washington by Smoker (1953), was coilculated by the formula:

$$
\text { Index }=\frac{(A)(120)}{(22)(64 ; 0)}
$$

whese A is the jeariy total flotr in cofosog C is the constant $2_{0} 9835$ thet convarte $\mathrm{c}_{.} \mathrm{P}_{0} \mathrm{~S}$. to acre-feet and converts the numesator to inches; and the denominator is the area of the Gnat Creek uatershed in acres.

Juvenile saimonids were separated by species and individually counted. Foll chinook juveniles wero all ot except there noted. Silwer juveniles wese tabulated arbitsarily as $0+$ through November 15 and as It yearlings ar smolts from that date until the end of the following apring. Twomyormold snolts were Identified emong the latior group but in insignificant numbersa Raloborim steelhead trout are noted as steelhead for the sake of bsevity.

Lengths of juvenile fish ware recorded in both millimeters and inchos but are standerdized in this roport as fork Iength in millineters. Lengths of adults wore recorded to the nearest onowielis inch (foriz length) and aubo sequently rounded to the nearest jower inch in leoping with length measurem ments obtained in the commorial fishexy. With minor excaptions, no anesthetics were used while handjing the filihg Rendan somples of juvenile silvor goltom and steelhoed were collectod with the afd of a rendon monbers table. Approgriate informetion vas put on a water-mproof teble for reference in collenting the samples (Figure 23).

Examinations of all silver salron secles collected ware mede with a Bausch and Lomb Trimsinglox projector at 150 X which was ca. 140 rated with an

Amorlan Optical stage mioromoter. Circull were countod along a 20° IIne on either side of the anterior-postorior axis through the ond of the fresh-atater grovth. Distances were moasured in units of $1 / 40$ inch from a Bruning precision ruler from the center of the focus to the last circulus counted.

nESULSS

Physicn? Date

Strean flou data were recorded each day the wels wes attended; the avarages for 5-day periods from Jamary 1956 through June 1962 are presented in Table 1. Convarsion of rumoff into average dopthe (in inches por acre) have bean calallsted for lator use in studying silver salmon production in relation to flows. Dates associated uth possible incomplete counts of juvenile fish during times of apill ovar the dan are shown graphically in Figwe 240 Closer amaminam tion of the duration and magaitude of these spijns is possible with the listm ing of wator volumes by day during the majox dounstream-nimation pariod in Aprill and lay (Table 2).

Voluminous records of strean tomparatures have bean rocorded but aro not presented.

Fish Mifrationg

Fall Chincols Salmon

Fron inspection of tlie Iall. chinoois adult cornts in Table 3, it is readity apparent thet rwas are sporadic in Gnet Creek. The adult counts to the welp are quite accurate in comiast to tho iry and fingerjing outminrentse

Since neariy aly of the Grat creok fall chinook juvenilec magrate downatrean in the month of Pebruary, and reference to Figure ν_{s} incitantes considerabje spily. In February of each yearg substantial emunation exgors for these fiy are suggestad. Additional erras may have beon introduced into counts of

Table 1. Average Flours in Cubic Feat Per Second by 5-Day Pariods, Gnat Creek, January 1956-June 30,1962 I/

Dato Ending		1956	1957	1958	1959	1960	2961	296
Jamuary	5	401	58	203	161	47	100	142
	10	321	62	78	352	55	190	164
	15	200	88	186	244	49	168	92
	20	262	54	209	150	59	151	77
	25	191	45	3.92	227	68	77	70
	31	105	45	249	239	168	88	96
Pebruary	5	68	104	373	160	204	140	62
	20	67	118	142	138	288	161	77
	15	103	98	205	135	265	317	122
	20	79	68	224	186	166	301	95
	25	98	167	231	147	108	438	7.
	28-29	184	21.2	220	132	64	255	55
Narch	5	333	111	125	111	62	24,6	75
	20	247	250	149	84	121	254	107
	1.5	120	171	84	b7	360	350	74
	20	121	116	74	85	361	216	64
	25	377	105	67	93	96	168	1/47
	31	195	98	70	198	175	242	124
Apris	5	1/4	94	127	217	119	98	7
	10	107	93	98	95	78	73	358
	15	86	137	73	70	81	67	78
	20	64	93	273	54	14,4	69	54
	25	55	63	232	47	258	110	49
	30	49	49	117	100	210	81	147
May	5	36	42	59	86	74	92	90
	10	35	33	52	68	59	77	66
	25	33	29	44	66	55	58	57
	20	28	30	45	45	111	45	40
	25	27	38	32	57	155	40	40
	31	29	26	34	47	92	33	34
June	5	28	24	32	45	56	24	41
	10	39	23	81	73	39	24	35
	25	29	25	38	54	39	19	24
	20	29	23	29	39	41	14	21.
	25	25	20	25	27	33	12	28
	30	23	20	27	29	25	12	20
July	5	21	314	25	25	24	12	
	10	16	31	22	36	20	12	
	15	14	13	15	24	14	11	
	20	11	10	13	16	11	11	
	25	10	9	13	12	21	9	
	32	9	9	10	12	20	9	
August	5	25	8	9	10	20	8	
	10	10	10	8	9	7	8	
	25	9	10	8	9	10	8	
	20	9	8	8	10	30	8	
	25	9	8	8	3	12	7	
	31	12	8	9	22	10	8	

12.

Table 1_{0} (Cont ${ }^{\text {id }}$)

Date Ending	1956	1957	1958	1959	1960	1961
September	8	8	8	30	9	19
	14	7	8	27	9	8
	10	7	9	12	8	8
	9	8	10	42	9	8
	10	9	10	40	9	7
	19	9	9	93	10	9
October	10	10	8	43	10	7
	10	10	17	76	17	12
	13	10	10	119	12	17
	71	10	56	62	9	9
	130	20	32	152	35	29
	92	10	17	89	80	55
Hovember	93	10	26	69	49	35
	48	28	253	50	52	32
	45	159	354	44	152	42
	145	59	338	233	333	28
	49	50	227	506	471	195
	34	7	101	226	187	109
December	35	107	138	85	93	122
	153	205	113	64	65	80
	258	65	122	162	72	57
	175	294	122	137	.137	262
	135	291	188	92.	86	220
	72	239	173	71.	92.	180
Total Runoff (cofase $/ 24$ hrse)	40,070	23,200	33,130	48.415	29,360	31,8/4,5
Average Annual Flow ($c, f_{0} B_{0}$)	111.31	64,044	92.03	134049	87.56	88.46
Runoff Index	67.72	39,21	56.30	\$1.82	49.62	53.82

Table 2. Flows Over the Daxn by Day During the Months of
April and May $1957-62$. April and lay, 1957-62. I

$\begin{aligned} & \text { Calendar } \\ & \text { Year. } \end{aligned}$	Month	Day	$\begin{aligned} & \text { FIow } \\ & \text { cofalle } \end{aligned}$	$\begin{gathered} \text { Calendar } \\ \text { Year } \end{gathered}$	Month	Day	$\begin{aligned} & \text { Flow } \\ & \text { cof } \end{aligned}$
1957	April	1	78	1957	May	18	36
		2	69			19	29
		3	69			20	32
		4	110			21	30
		5	143			22	43
		6	115			23	42
		7	98			24	38
		8	90			25	36
		9	90			26	28
		10	72			27	25
		17	65			28	27
		12	62			29	26
		13	81			30	26
		14	156			31	23
		25	130			32	2
		26	100				
		17	100				
		18	86				
		19	90	1960	Aprej2	1	128
		20	0			2	128
		27	67			3	0
		22	60			4	105
		23	65			5	97
		24	58			6	86
		25	0			7	80
		26	54			8	77
		27	50			9	0
		28	48			10	70
		29	47			11	61
		30	46			12	70
						13	63
						$1{ }_{3}$	95
	May	2	46			35	116
		2	44			16	0
		3	42			17	0
		4	39			18	94
		5	38			19	123
		6	32			20	106
		7	31			21	106
		8	31			22	711
		9	39			23	171
		10	32			24	106
		11	31			25	106
		12	27			26	109
		33	28			27	118
		14	29			28	112
		15	28			29	88
		16	26			30	87
		17	26				

Table 2. (Cont $^{1}{ }^{1}{ }_{0}$)

Calendar Year	Month	Day	$\begin{aligned} & \text { Flow } \\ & \mathrm{c}_{\text {a }}^{3} \mathrm{SO} \end{aligned}$	Calendar Year	Month Day	$\begin{aligned} & \text { Flow } \\ & \text { caferse } \end{aligned}$
2960	Hay	1	0	1961	April 14	65
		2	84		15	62
		3	75		16	60
		4	72		17	67
		5	63		28	66
		6	63		19	82
		7	0		20	75
		8	0		21	97
		9	56		22	217
		10	57		23	116
		11	57		24	112
		12	54		25	99
		13	55		26	88
		${ }^{1}$	0		27	83
		15	0		28	76
		16	67		29	78
		17	87		30	80
		18	106			
		19	120			
		20	93		May 1	92
		22.	301		2	87
		22	106		3	92
		23	101		4	99
		24	106		5	89
		25	131		6	84
		26	114		7	77
		27	95		8	73
		28	80		9	79
		29	0		10	70
		30	0		11.	58
		33.	65		12	52
					13	56
					24	67
					15	56
					16	52
1961	Agreil	1	106		17	47
		2	108		18	45
		3	103		19	42
		4	89		20	40
		5	82		21.	42
		6	77		22	43
		7	72		23	40
		8	74		24	38
		9	75		25	36
		10	66		26	36
		11	65		27	40
		12	69		28	35
		13	76		29	31.

Table 2. (Cont ${ }^{2} \mathrm{~d}_{0}$)

1/ The total Gnat Creek flow on a particular day is the sum of the flow over the dam plus the flow over the screenso. This table shows the mage nitude of the flows over the dam during the periods indicated in Figure $\frac{1}{6}$ o 1 Ho migration over the dam was apparent when the spill was less then $50 \mathrm{c}_{0} \mathrm{f}_{0} \mathrm{~s}_{0}$

Table 3．Comparison of Anmua＂Escapoments of Adult Fell Chinook and Resulting Outmigration of Uild Juveniles at Gnat Greek Weir， 1955－62。

$\begin{aligned} & \text { Year of } \\ & \text { Parent } \\ & \text { Run } \\ & \hline \end{aligned}$	Size of Parant Run				Year of Outmi－ cration	Wais Count of Resulitant Outraipration
	Mals	Female	Unknorm	Total		
1955	0 （0）	2	－	2 （0）1／	1956	0
1956	35 （0）	23	－	58 （0）	1957	1，279
1957	1 （0）	3	－	4 （0）	1958	0
1958	51 （33）	16	\cdots	67 （33）	1959	432
1959	56 （4）	23	－	79 （4）	1960	45
1960	33 （0）	53	2	88 （0）	1961	174
1961	6 （0）	3	－	9 （0）	1962	0
1962	－	－	\cdots	7 （0）	－	－

2．Humbers in parentheses list jacks which are included in the total．
juvenile fall chinook due to occesional fish passing over the rotating screen during flooding conditions．A larger and more efficiont soreen vas installed in 1960．The most euccessful operation of the 5 gcoop traps on the dam was accomplished in the vinter and spring of 1961 and these sarpling data are in aluded in Table 40 The total weir trap count of the 2960 brood was 174 （in Table 3）and 164 of these were caught botween Jamuary 16 and April 25， 1961. Since all 5 scoop traps fished 10 lineal foet of the 100 foot dam，a total of 1,000 vas estimated to have passed over the dam during that time interval． No statistical treatment of these data appoared warranted bocause of the mall numbers involved．Additional details concerning fall chinook adult and juvem nile counting were presented in each anmual Gnat Creek progress report from the start of the project in 1955 through June 1962。

A sumary of all past chinoolk marking experiments at Gnat Groek inciuding liberation data and all actual recoveries is presented in Table 5o Less than 50,000 fish ere involved in each of 8 exporiments．The purpose of four of the experiments uas to compare the returns from fingarling vso yearling

$\begin{aligned} & \text { 5-Dlay I } \\ & \text { Period } \\ & \text { Ending } \end{aligned}$	Sanning Traps on Dam							Sempling Trap Catoh + Weir Trap Catch ($\mathrm{Jan}_{\bullet} \cdots A \mathrm{pr} \mathrm{O}_{0}$)	Sampling Catch as \% of Total Catch				
	A	B	C	D	E	Total				Weis		Dem	
										Avo	V/ax	AV.	Max。
Jamuary													
20	0	2	0	0	0	2	0	2	100	118	221	33	55
25	0	0	0	0	0	0	-	-	-	77	87	0	0
30	0	0	0	0	0	0	23	23	0	84	135	4	26
Fobruary													
5	0	0	0	0	2	2	7	9	22	129	145	11	30
10	1	4	1	1	1	8	19	27	30	128	140	33	85
15	19	2	7	9	6	43	26	69	62	114	125	203	337
20	2	6	3	4	0	25	25	40	38	210	122	192	347
25	0	0	0	0	0	0	24	24	\cdots	107	321	331	607
28	0	0	0	0	0	0	0	0	\cdots	112	225	1/3	189
March													
5	1	0	0	0	3	4	1	5	80	119	225	127	215
10	1	0	0	0	0	1	2	3	33	119	125	135	223
15	0	0	3	5	4	12	26	28	43	112	125	238	337
20	3	5	4	0	0	12	15	27	44	118	130	98	181
25	0	1	0	0	0	1	0	1	100	124	130	44	79
30	0	0	0	0	0	0	0	0	-	23.9	130	22	79
April													
5	0	0	0	0	0	0	3	3	-	98	121	0	0
10	0	0	0	0	0	0	2	2	-	73	78	0	0
15	0	0	0	0	0	0	0	0	\cdots	67	78	0	0
20	0	0	0	0	0	0	1	1	-	69	87	0	0
25	0	0	0	0	0	0	0	0	-	108	121	2	22
Total	27	20	18	19	16	100	164	264	38				
Approximation													
$\begin{array}{r} \text { Jan. } 16=A \\ \text { Per } \end{array}$	125		$\begin{aligned} & x \text { dam: } \\ & a_{1}: \end{aligned}$	1, 0			In W	ir Trap: 164	Total:	${ }_{2} 164$			0

Table 5．Sumary of Chinook Salmon Marking Experiments at Gnat Creek．

Marking Information					Release and Juvenile Recovery Information								
Brood	Mark	Purpose of Experiment	of Eggs Origin of Eggs		Date	$\begin{array}{r} \text { Nuruber Relac3e } \\ \text { Site 2f } \end{array}$		AverageSize	Weir Recovery				
Year					Number			\％Sur viva 1	FW Resi－ dence $4 /$				
1953	Ad	To Augment Runs of Fall Chinook and to Appraise Results of Return	$\mathrm{H} 1 /$	Bonneville to Sandy Bonneville		6／24－ 25／54 7／1／55	49．641		Br 。	$\begin{aligned} & \text { 180/1b at } \\ & \text { marking (F) } 3 / \\ & 64 \mathrm{~mm}(F) \end{aligned}$	（Migrated prior to weir construction）		
1954	D				49.851		Br ．						
1955	LP	Time of Liberation	H	Bonneville	6／20／56	25.997	Br．	278／1b at marking （F）	19，436	75	3 days		
1955	RP	Time of Liberation	H	Bonneville	4／3／57	23.938	Br 。	$\begin{aligned} & 3.6^{n} \text { at } \\ & \text { release (Y) } 3 / \end{aligned}$	21，007	88	2 days		
1956	D－RM	Time of Liberation	H	Bonneville	6／12／57	26，221	Br．	$\begin{aligned} & \text { 2. } 2^{n} \text { or } 262 / 1 \mathrm{~b} 16,466 \\ & \text { at marking }(F) \end{aligned}$		63	3 daye		
			H										
1956	D－LM	Time of Liberation		Bonneville	4／15／58	24.600	Br ．	$\begin{aligned} & 4-5^{\prime \prime} \text { at } \\ & \text { releasa (Y) } \end{aligned}$	12，264	50	5 days		
1956	Ad	Identify	W 1／Gnat Creek		$\begin{aligned} & 3 / 1 \text {. } \\ & 10 / 24 / 57 \\ & 2-4 / 60 \end{aligned}$	1，022	BW	$\begin{aligned} & 40 \mathrm{~mm} \text { on } \\ & 3 / 20 / 57(F) \end{aligned}$	－	－	－		
		Natural Stock											
1959	Ad	Identify Natural Stock	W	Onat Creek		45	EW	$1 \frac{1}{2}-2^{\prime \prime}(\mathrm{F})$	－－	－－	－－		

Table 5. (Contínued)

[^0]Liberations of hatchery fish into Gnat Greek. The 1955-brood experimonts used two nearlymequal groups of fish from the Bonnoville Hatchery. One group was marked $L P_{9}$ yeared until Jume 20_{0} 1956, and released when about $2-1 / 4$ inches in length at the HiHhway 30 bridge. The second group, marked $R P_{5}$, sas reared 8 months longer at the hatchery and wes liberated from the sarne location then 3.6 inches in longth. The same type of experimant vas repeated using 1956 brood; the yearling group (DmLM) was somewhat laxgor than the yearling group (RP) of the 1955 brood. A consistency in all four groups is that onsehalf of all fish surviving to reach the weir on the outward nifration wore counted within 2 to 5 days of the time they vere liberated. The reason for the cone sistency of the rapid movement downstream Irmediately after each liberation is suggested by the results of Miller"s (1957a and b) studies with cutthroat trout in Gorge Creek, Alberta, Canada. Ha demonstrated that native resident fish had established home territories where they would apend their entirs life. After libocrating hatchery-weared fish into the stroam and measuring the blood Isctate levels of both groups, he found the hetchery groups had signim ficant2y higher anounts of lactic actd and conclucied that in corupoting for space and food, the introduced group encountered highar nortalitise. Higher lactic acid snounts were also found in tha hatchery groups libarated into areas devold of resident trout, Total strean survival of all chinook between the time of Iibcration and their migration to the Columbia River varied from 50 to 88% with the lowest fresh-matar survival from the 1956 obrood yearling Group. Subsequent actual returns (98) of adult fish , hovever, showed the best merine survival from this group. However only 6 fish from this experiment ware recovered in all of the various fisheries. Table 6 contains longth maesurements of 92 of the 98 adult chinook salmon that returned to the Gnat Greek Weir at 2,3 , and 4 years of age. No 5myear-old chinook were rem covered in the fall of 1961. The recoveries from the other ohinook marlelng

Table 6. Lengtherrequency Distributions of 1956mbood Adult Fall Chinook Marked DmIM that Returned to Gnat Creek in 1958-60.

Fork Iength (in Inches)	1958	1959	1960	Total
11	7			7
12	7			7
13	12			12
14	6			6
15				0
16		1		2
17		1		1
18		0		0
29		2		2
20		4		4
2.		3		3
22		3	1	4
23		8	0	8
24		8	0	8
25		4	0	4
26		0	0	0
27		0	1	1
28		0	0	0
29		1	0	1
30		1	3	4
31			0	0
32			3	3
33			6	6
34			3	3
35			3	3
36			3	3
37			1	1
Total	32	36	24	92

experiments appear to be too few in mubler to umriant any further analysis.

Silver Salmon

Adult Silvar Selmon

Table 7 sumarizes the timing of adult and jack silver salmon by sex to the Gnat Greek Weir for each year Irom the start of the project in October 1955 to its end in June 1962. Fron the 7-year totals of the counts, it is apparent that the fish have entercd Gnat Greek as eerly as the third week in September and as late as the second waek in Februnrya Feak jack counts wore both earlier and later than peals adult counts, although none of the peaks ware sharp and well defined. Host of the adult fish ware not ripe upon arrival at the weir prior to November 20 but beceme progressively ripar after that date。 From information at Spring Creek, a $1-20 \mathrm{c}_{0} \mathrm{I}_{\circ} \mathrm{S}_{0}$ rivulat of the Wilson River of Tfllamook Bay, females took about 12 deys and malos 10 days to spawn and die after reaching their spaining sites (Wil1is, 2954). The average run at Gant Craek was 150 nature silvers compoacd of 32 meles (over 20 znehes is length) 84 jacks (precocious naios leas than 20 inches), and 33 fenales. In per cent this is $22_{2} 56_{p}$ and 22_{0} respectively. Fran the cumaletive totals an average of 97% of sil sdults and jacks arrived at the woir by November 20 and 95\% arrived pelor to Jamary 10. The comulative totals (In per cent) of females is just slightly lowar for the ame time periodso

All adult fish wore maasured (with ninore exreeptions) and longth-irequency h1stograms of fish for each sun are graphed in previous processed progress

General comsistency of escapament abundance for Oregon tributaries of the Iower Columbia River (6.1 miles), Oregon coastal streans (Oakley, 1961), and Gnat Creek counts are shown in Figure 15。 Divargence in 1961 is readily apporent when both the Ginat Greek counts and lower Columbia River index counts I/ Kruse, Thomas $\mathrm{E}_{0 \rho}$ 1959. Summary of Gnat Creek Woir Oparations, 1958-59 (Iypewititen report).

Table 7. Time of Migration for liature SLivor Salmon at Gnat Greelc by 5-Day Periods, 1955-62.

5-Day Period Ending 1/ Yonth Day	1955-56				1956-57				1957-58			
	$12 /$	$32 /$	F	Total	N	J	F	Total	8	J	F	atal
Sopt.	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	0	1
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	0	1
Octo $\begin{array}{cc} \\ & 1 \\ & 15 \\ & 20 \\ & 25 \\ & 30\end{array}$	0	0	0	0	0	2	0	2	0	4	0	4
	0	4	0	4	0	0	0	0	0	0	1	1
	0	3	0	3	0	5	0	5	1	12	1	14
	0	19	0	19	1	24	0	25	0	0	0	0
	6	9	0	15	0	8	0	8	6	25	9	40
	15	6	3	24	2	9	1	12	5	12	9	26
Nov.	2	1	3	6	3	17	2	22	0	0	0	0
	12	2	7	21	1	11	4	16	0	1	1	2
	2	0	0	2	0	5	1	6	22	22	34	78
	0	1	0	1	5	4	2	11	5	2	3	10
	1	6	1	8	1	0	0	1	0	0	0	0
	10	21	2	23	0	1	0	1	0	1	0	1
Dec。	1	4	2	7	2	4	1	7	6	3	3	12
	4	2	2	8	0	8	0	8	2	0	1	2
	2	4	1	7	10	29	8	47	0	1	1	2
	0	0	0	0	10	12	5	27	3	1	2	6
	0	0	0	0	1	4	0	5	0	0	0	0
	1	4	2	6	0	0	0	0	0	0	0	0
$\begin{array}{lll}\text { Jan. } \\ & 1 \\ & 3 \\ & 20 \\ & 2 \\ & 30\end{array}$	2	1	2	4	0	0	0	0	0	0	0	0
	1	0	2	2	0	0	1	1	0	0	0	0
	4	2	2	7	3	3	2	8	4	1	2	7
	1	2	0	3	0	0	0	0	0	2	0	2
	2	0	0	2	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
Pebo	0	0	0	0	6	1	1	8	0	0	0	0
	1	0	1	2	1	2	1	4	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
Total	67	81.	. 26	174	46	149	29	224	53	89	67	209

I. Six days are included in last pespiod of a 31-day month.

2/ $M=$ adult males 20° and over. $J=$ jacks less than 20° in 1ength。

Table 7. Tine of Mieration for Matwe Silver Saimon at Gnat Greek by 5-Day Periods, 1955-62. (Cont'do)

5 5abay				\% 5				-60				$\underline{61}$	
Month	Day	N	\pm	F	Total	1	J	F	Total	H	J	T	ota 2
Sept.		0	0	0	0	0	0	0	0	0	0	0	0
	20	0	1	0	1	0	0	0	0	0	0	0	0
	25	0	0	0	0	1	2	2	5	0	1	0	1
	30	0	0	0	0	0	0	0	0	0	0	0	0
Oct.	5	0	0	0	0	0	0	0	0	0	1	0	2
	10	3	17	4	24	0	0	0	0	0	2	0	2
	15	0	4	1	5	0	7	0	7	0	0	0	0
	20	9	5	6	20	0	3	1	4	0	2	0	2
	25	2	5	2	9	0	5	2	7	4	28	1	33
	30	2	5	1	3	1	6	2	9	2	22	2	25
Nove	5	5	6	5	16	0	0	0	0	0	0	0	0
	10	5	12	13	30	0	1	0	1.	0	0	0	0
	25	2	9	4	15	0	0	0	0	0	0	2	1
	20	0	5	1.	6	3	8	5	16	3	1	3	7
	25	1	7	1	9	1	4	6	11	0	6	1	7
	30	0	3	0	3	0	1	1	2	0	2	0	1
Dec.	5	0	5	2	7	2	0	1	2	0	2	0	2
	10	0	3	0	3	0	0	0	0	0	0	0	0
	1.5	0	3	0	3	4	4	15	23	0	2	0	1
	20	0	6	0	6	1	1	3	5	1.	1	0	2
	25	0	3	0	3	0	0	0	0	0	0	0	0
	30	1	2	0	2	0	2	1	3	0	0	0	0
Jano	5	0	0	0	0	0	0	0	0	0	0	0	0
	10	0	0	0	0	0	0	0	0	0	1	0	1
	15	0	0	0	0	0	0	0	0	0	0	0	0
	20	0	0	0	0	0	0	1	1.	0	0	0	0
	25	0	0	0	0	0	0	2	2	0	0	0	0
	30	0	0	0	0	0	0	3	3	0	1	0	1
Feb ${ }_{\text {c }}$	5	0	0	0	0	1	0	0	1	0	0	0	0
	10	0	0	0	0	0	0	0	0	0	0	0	0
	2.5	0	0	0	0	1	0	0	1	0	0	0	0
	20	0	0	0	0	0	0	0	0	0	0	0	0
Total		30	100	40	170	14	4.	45	103	9	70	8	87

Table 7. Time of Iligration for liature Silver Salmon at Gnat Creek by 5-Day Periods, 2955-62. (Cont ${ }^{\mathrm{d}} \mathrm{d}_{0}$)

5-Day Period	1967 62				7 Year Toto 78				Cuma Total	Cume Totel $(\sqrt{6})$	Gumo Ferniles	
Month Das	M	3	F	Tatal	11	I	F	Total			Jo,	(\%)
Sept。 15	0	0	0	0	0	0	0	0	0	0.0	-	0.0
20	0	0	0	0	0	2	0	2	2	0.2	∞	0.0
25	0	0	0	0	2	3	2	6	8	0.8	2	0.9
30	0	0	0	0	0	1	0	1	9	0.9	0	0.9
Oct. 5	0	0	0	0	0	7	0	7	16	1.5	0	0.9
10	0	1	0	1	3	24	5	32	48	4.6	7	3.0
15	0	0	0	0	1	31	2	34	82	7.8	9	3.9
20	0	0	0	0	10	53	7	70	152	14.5	16	6.9
25	0	1	1	2	18	81	25	114	266	25.4	31	13.4
30	0	1	0	1	26	61	18	105	371	35.5	49	21.2
Nov. 5	0	0	1	1	10	24	12	45	416	39.8	60	25.9
10	0	0	0	0	18	27	25	70	486	46.5	85	36.8
15	0	2	2	4	26	38	42	106	592	56.6	227	55.0
20	0	0	0	0	16	21	14	51	643	61.5	141	61.0
25	1	3	5	9	5	26	1	45	688	65.8	255	67.1
30	3	15	1	19	13	33	4	50	738	70.6	159	68.8
Dec. 5	2	18	3	23	12	36	12	60	798	76.3	172	74.0
10	0	0	0	0	5	13	3	21	819	78.3	174	75.3
15	0	0	0	0	16	42	25	83	902	86.3	199	86.1
20	2	8	3	13	17	29	13	59	961	92.0	212	91.8
25	0	3	0	3	1	10	0	11	972	93.0	212	91.8
30	0	2	0	2	2	9	2	13	985	94.3	214	92.6
Jan. 5	0	1	0	1	2	2	1	5	990	94.6	215	93.1
10	0	0	0	0	1	2	2	4	994	95.0	217	93.9
15	0	0	0	0	11	6	5	22	1.016	97.1	222	96.1
20	0	0	0	0	2	4	1	6	1,022	97.7	223	96.5
25	0	0	0	0	2	0	2	4	1,026	98.1	225	97.4
30	0	0	0	0	0	1	3	4	1,030	93.5	228	98.7
Feb. 5	0	0	0	0	7	1	1	9	1,039	99.3	229	99.1
10	0	0	0	0	2	2	2	6	1.045	99.9	231	100,0
15	0	0	0	0	2	0	0	1	18046	300.0		
20	0	0	0	0	0	0	0	0				
Total	8	55	16	'79	227	588	231	1,046				
7-Iear	Aver				32	84	33	349				
7 -Iear	Aver	ge 1	Pers	Cent	22	56	22					

Figure 15. A Couparison of Silver Saimon (Adult and Jack) Counts at Gnat Greek with Oregon Lowar Columbia Rivar and Coestal Rivar Index Counts, 1955-61。
were dom while the constal river indox was up substantinlly. A good correla tion exists ($r=0.87$ with 5 degrees of freedom) between the Onst Creek counts and the lover Columbia River sparning ground counts (jacks included). Correlation coefficients were also computed for adults only from 1957 through 1961 (lower Columbia River survey counts for 1955-56 were not usod because jacks wore not aluays 2isted separately). When the abundance of adults is compared at Gnat Creek uith the Iover Coiumbia standard survey units, the correlation coefficient obtained is quite high ($r=0.90$) and significant at the 5\% levei. The correlation coafficient (0.78) between the Gnat Creek and the coastal river counts is not aignificant at the $5 \%^{\prime}$ level ($r_{05}=878$ for 3 decrees of freedom).

The relationship between the nuabers of jacks in one year and the numbers of adults the following year for Gnat Greek is show in Figure 16. A very good correlation ($x=0.922$) resulted which is significent at the 5% level with 4 degrees of freedom.

The parcentage sex composition of jacks, adult males y_{g} and fermies in the silver salmon runs each year at Gnat Creek are compared in Table 8 with similar data from Minter Creek (Salo and Bayliff, 1958), thaddell Creek (Shapavalov and Taft, 195/s), and Spring Greek (tillis, uapub. maruscript)。 The avarage percentage of females was ainilar at Gnat (22\%) and Spring (25\%) creoks but only balf of that for lifinter (45%) and Waddell (44%) creeks. The proportion of adult males in the runs at Springs Minter, and Waddoll areeks vas generally similar but Gnat Creek had a mach lower pareentage of acult males and a consistentiy higher percentage of jecks (average of 56% and range fram 43 to 80\%). Since the years involved at each stream are not the same, and each run was subjected to different kinds of fisheries, no reason for these gross

Table 8. Total Silver Selnon Counts and Sex Composition of Returning Runs to Gnat, Spring, Minter, and Waddoll Creaks.

Location	Yoar	Adult fates		Jacks		Fernleg		Tota Ho.
			Per Cent		$\begin{aligned} & \text { Per } \\ & \text { Cent } \end{aligned}$	MO_{2}	$\begin{aligned} & \text { Par } \\ & \text { Cont } \end{aligned}$	
Gnat Cro	1955	67	38	81.	47	26	15	174
	1956	46	20	149	67	29	13	224
	1957	53	25	39	43	67	32	209
	1958	30	17	100	59	40	24	170
	1959	14	13	44	43	45	44	103
	1960	9	11	70	80	8	9	87
	1961	8	10	55	70	16	20	79
	Total	227	22	588	56	231	22	2,046
	Averaga	32		84		33		149
Spring Cro	1950	39	40	33	39	21	21	98
	2951	83	42	63	31	57	28	203
	1952	44	49	24	27	22	24	90
	1953	40	60	12	18	25	22	67
	1954	15	58	5	19	6	23	26
	1955	38	51.	20	27	37	23	75
	1956	26	39	29	29	21	32	66
	Total	285	46	181	29	159	25	625
	Average	42		26		23		90
Minter Cro	1938	795	32	679	28	9\%	40	2,470
	1939	673	33	433	12	915	45	2,021
	1940	1,314	35	850	23	1,574	42	3,748
	1941	922	36	502	19	1.360	45	2,583
	1942	759	34	662	29	821	37	2,21,2
	1943	978	42	349	25	1,015	43	2,342
	1944	1,787	46	166	4	1,959	50	3,912
	1945	1,922	51	134	4	1,681	45	3,737
	1946	719	37	179	9	1,034	54	1,932
	1947	872	58	39	2	60_{4}	40	1,515
	1948	357	52	4	6	291	42	692
	1949	2,181	47	178	7	2.210	46	2,499
	1950	964	52	68	4	807	4	$1_{9} 839$
	1951	637	42	290	9	598	39	1.525
	2952	1,282	45	55	2	1,536	53	2,873
	1953	943	5%	75	4	737	42	1.755
	1954	593	55	51	4	442	47	1,085
	Total Average	$\begin{array}{r} 16,697 \\ 982 \end{array}$	43	$\begin{array}{r} 40764 \\ 280 \end{array}$	12	$\begin{array}{r} 17,309 \\ 1,018 \end{array}$	45	$\begin{array}{r} 38_{0} 770 \\ 2,280 \end{array}$
Weddell Cr 。	1933	15.	34	319	26	177	40	447
	1934	265	45	35	6	283	49	583
	2935	33	26	56	44	39	30	128
	2936	104	49	4	1	106	50	214

Table 8。 (Cont ${ }^{\text {d }}$).

Iocation	Year	Advit lales		Jaokn		Fopgles.		$\begin{array}{r} \text { Total } \\ \text { No. } \end{array}$
		Hos	Per Cent	HO_{0}	Per	NO	or ent	
$\begin{aligned} & \text { Waddel1 } \mathrm{Cr} \\ & \text { (Gont }{ }^{\text {P }} \mathrm{d} \text {) } \end{aligned}$	1937	42	50	20	24	22	26	84
	1938	29	33	17	20	40	47	86
	1939	88	33	52	20	126	47	266
	1940	95	36	65	25	103	39	263
	1941	61	41	11	7	75	5.	147
	Total	868	39	379	17	971	4.4	2,218
	Avarage	96		42		108		216

difforences is offerod. An attompt was made by scale analysis to determine if the larger-sized downstream nigrants contributed to the production of jacks. Circuli counts and neasurements from the focus through first annulus were made for nearly all silver salmon zeturning to Gnat Creek from the 1958 brood and were separated into two croupsmjacks and adults. These 1960-61 data are presented in Fisure 17; the overlapping disparsion of the jacks (iots) and adults (crosses) sucgests that facks resulting from natural rearing vere produced from a mixture of sizes at the time of downtream migration.

A non-aignificant correlation coefficient of 0.20 resulted betwoen the average fork lengths of the snolts for the 1954-through 1959-brood years and the resulting numbers of jacks returning to the weir in the fall and winter of the same year. Likewise, no significant correlation existed between the average sizes of the smolts and the percentage of the run returning as jackse This lack of correlation may be due to the lack of any large variation in the annual average longths of the snolts.

A sumary of all silver salmon marking exporinents at Gnat Creek is contained in Tabies 9 and 20. The purposes of each experiment are included in Table 9 and all experiments utilized wild fish except for one small group of 631 hatchary yearlings. The actual recoveries are show in Table 10; due to the sanll numbers involved it is doubtful if any extrapolations involving total calculated recoveries in the commercisl fisheries are justifiod. The total actual recovary of 1955 -brood wild yearlings marked LV was 77 while those of the batchery yearlings marked RV was \mathcal{L}_{4}. Since about five times as many wild migrante wexe ariginaily carleed the survival rates of the two groups were similar.

Survival rates of various yearling groups (where over $I_{p} 000$ were released) returning to the weir as jacks and adults combined ares 1954 brood -3.0%, 1955 brood $-2.3 \%, 1956$ brood $-1_{0} 3 \%$, and 1958 brood - 3.2% The over-all average survival rate was 205\%

$\begin{aligned} & \text { Kxpt. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Brood } \\ & \text { Year } \end{aligned}$	Mark	Marking Information				Release Information		
			Purpose of Experiment	$\begin{aligned} & \text { H or } \\ & \text { W } 1 / \\ & \hline \end{aligned}$	$\begin{gathered} \text { Origin of } \\ \text { Eggs } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Aga } \\ & \text { (0 or } 1+\text {) } \end{aligned}$	Date	Number	Ave. Length
1.	1954	RP	$\begin{aligned} & \text { Survival of Natural } \\ & \text { Yearlings } \end{aligned}$	W	Gnat Creek	1+	$\begin{aligned} & 1 / 1 / 56- \\ & 6 / 17 / 56 \end{aligned}$	3.112	$\begin{array}{r} 92 \mathrm{~mm} \\ 129 \mathrm{~mm} \end{array}$
2.	1955 1955	Ad LV	Compare Fingerling and Yearling Returns	W ${ }_{\text {W }}$	Onat Creek Onat Creek	${ }_{1+}^{0}$	8/3/56 11/15/56 11/16/56 6/25/57	$\begin{array}{r} 116 \\ 2,995 \end{array}$	76 mam 94 mim 92 mm 112 mm
3.	1955	RV	Compare Natural \& Hatch. Yearlings	H	Big Craek	$1+$	$\begin{aligned} & 12 / 56- \\ & 4 / 57 \end{aligned}$	631	141 man
4.	1956	LP-LM	$\begin{aligned} & \text { Survival of Natural } \\ & \text { Yearlings } \end{aligned}$	W	Gnat Creek	1+	$\begin{aligned} & 11 / 28 / 57= \\ & 6 / 13 / 58= \end{aligned}$	1,806	2.0-5.8 in
5.	1957	RP-LM LP-RM	Compare Survival of Fingerlings and Yearlings	$\begin{aligned} & W \\ & W \end{aligned}$	Gnat Croek Gnat Creek	$\begin{aligned} & 0 \\ & 1+ \\ & 1+ \end{aligned}$	$\begin{aligned} & 10 / 9 / 58- \\ & 1 / 92 / 59 \\ & 2 / 5 / 59 . \\ & 6 / 15 / 59 \end{aligned}$	$\begin{aligned} & 113 \\ & 934 \end{aligned}$	$\begin{array}{r} 3.4 \mathrm{in} \\ 3.2-5.9 \mathrm{in} \end{array}$
6. 6. 6.	1958 1958 1958	An LP RP	Compare Returns of 3 Segments of 1958-Brood Natural Migrants	W W W	Gnat Creek Gnat Creek Onat Creek	0 0 $1+$ $1+$ $1+$	$\begin{aligned} & 2 / 6- \\ & 6 / 22 / 59 \\ & 9 / 27 / 59- \\ & 1 / 15 / 60 \\ & 1 / 18- \\ & 6 / 10 / 60 \end{aligned}$	264 156 1,013	$\begin{array}{r} 1.3-3.5 \mathrm{in} \\ 4.0 \mathrm{in} \\ 4.6 \mathrm{in} \end{array}$
7. 7. 7.	1959 1959 1959	LP RP RV	Compare Returns of 3 Segments of 1958-Brood Natural Migrants	$\begin{aligned} & \text { W } \\ & \text { W } \\ & \text { W } \end{aligned}$	Onat Creek Onat Creek Gnat Creek	$\begin{aligned} & 0 \\ & 0 \\ & 1+ \\ & 1+ \end{aligned}$	$\begin{aligned} & 4 / 12- \\ & 6 / 27 / 60 \\ & 8 / 29 / 60 \\ & 1 / 15 / 61 \\ & 1 / 16- \\ & 6 / 16 / 61 \end{aligned}$	$\begin{array}{r} 118 \\ 311 \\ 2,974 \end{array}$	$\begin{aligned} & 3.0 \mathrm{in} \\ & 3.5 \mathrm{in} \\ & 4.6 \mathrm{in} \end{aligned}$

Table 10. Summary of Recovery Data for Silver Salmon Marking Experiments at Cnat Creek.

$\begin{gathered} \text { Fxpt. } \\ \text { No. } \end{gathered}$			Jacks							Adults							BroodYearTotal
			Ocean 71		River		Other	Gnat Creek	TotaI	Ocean		River		Other	Gnat Creek	Total	
				$\begin{aligned} & \text { Sp. } \\ & \text { RS } \end{aligned}$							$\begin{aligned} & \mathrm{Sp}_{\circ} \\ & \mathrm{R} \mathrm{~S} \end{aligned}$		$\begin{aligned} & \mathrm{Sp} .0 \\ & \mathrm{R} \text { S } \end{aligned}$				
1.	1954	RP	00	00	00	00	0	57	57	00	06	140	00	$52 /$	37	62	119
2.	1955	Ad	00	00	00	00	$12 /$	1	2	00	00	00	00	2 2/	0	2	4
2.	1955	LV	00	00	00	02	5 2/	43	50	00	00	00	00	0	27	27	77
3.	1955	RV	00	00	00	00	2 2/	6	8	00	00	00	00	3 2/	3	6	14
4.	1956	LP-LM	00	00	00	00	0	10	10	01	00	00	00	0	13	14	24
5.	1957	RP-LM	00	00	00	00	0	1	1	00	00	00	00	0	0	0	1.
5.	1957	LP-RM	00	00	00	00	0	8	8	10	00	01	00	0	3	5	13
6 。	1958	An	00	00	00	00	0	0	0	00	00	00	00	0	0	0	0
6.	1958	LP	02	00	00	00	0	1	3	00	01	20	00	0	0	3	6
6.	1958	RP	00	00	10	00	0	26	27	01	00	20	00	0	6	9	36
7.	1959	LP						1									
7.	1959	RP						7									
7.	1959	RV						25							213		

[^1]Hearly all jacks and adults that roturned to Gnat Creek were moasured. Appendix Tables I - VI show length-frequency tabulations by sex and mark for each inch interval from 1956-61. Data from 5 years, 1957-61, were then combined into two separate groups, viz.g marked and umarked. The mean length of the mariced fish was 20.34 inches (number $=227$; variance $=31.719$; and standard deviation $=5.632$). The mean length of the umarked group was 21.50 inches ($n=412 \mathrm{~g}^{2}=31.472 ; \mathrm{s}=5.610$). In making a comparison of the two means with unpaired observations and nearly equal variances, the null hypothesis was made that the means of the two groups were equal and a t-teat was used (Steel and Torie, po 73). Since the computed twralue was 2.505 and the table value for $t_{005}\left(637 d_{0} f_{0}\right)=1.960$, the hypothesis was rejected. These results suggest that somathing affected the growth of narked fish to make their average size smaller than that of the umarked group.

An effort to refine the estimates of potential egg deposition was undertaken in 1961。 Since it vas inadvisable to kill any Gnat Greek fish in order to count the eggs, a sample of 2 females from each inch intorval from 22 to 31 inches was taken from the Lower Columbia River corwercial gillenet fishery in late September. Details of the collection of fish the handecounting of all eggs by ovary, and the analyses of these fecundity data compared with data from other areas, are presented in a separate paper \%/0 The rolationship of fecundity to length was found to be Linear for the Columbia River somple; the sumary of the regression analysis is psesented in Figure 18. The regression equation is $\hat{\mathbf{Y}}=239.433(x)=3,3450033$. The increase in egg content is about 240 egge for each inch increase in length of fish. The potential egg deposition for each year of operation at Gnat Greek mas based on fish length and the above linear equation and the subsequent computed numbers of eggs spawned above the weir are included in Table 11_{0}
If Fecundity of silver salmon (Oncorphonchas kisutch) in northwestern Horth Amarica. $R_{0} \Lambda_{0}$ Willis (in preparation)

Figure 18. The Relationship of Fecundity to Length for Columbia River Silver Salmon Sample. 1961.
Table 11. Computations for Deriving the Potential Egg Deposition for

Computed Ova Counts (from LengthFecundity Equation)	Fork Length in Inches	1955		1956		1957		1958		1959		1960		1961	
		$\begin{gathered} \text { No. } \\ \text { Females } \end{gathered}$	$\begin{gathered} \text { Calc. } \\ \text { No. } \mathrm{No} \text {. } \\ \text { Eggs } \end{gathered}$	$\begin{gathered} \text { No. } \\ \text { Females } \end{gathered}$	Calc. No. Eggs	$\begin{aligned} & \text { No. } \\ & \text { Female } \end{aligned}$	Calc. No. Eggs	$\begin{gathered} \text { No. } \\ \text { Females } \end{gathered}$	Calc. No. Eggs	$\begin{gathered} \text { No } \\ \text { Females } \end{gathered}$	Calc. No. Eggs	$\begin{gathered} \mathrm{No} \\ \text { Females } \end{gathered}$	$\begin{aligned} & \text { Calc. } \\ & \text { No. } \\ & \text { Eggs } \end{aligned}$	$\begin{aligned} & \text { No. } \\ & \text { Fenales } \end{aligned}$	$\begin{gathered} \text { Calc. } \\ \text { es No. } \\ \text { Eggs } \end{gathered}$
1,683	21	0	--	0	--	0	--	1	1,683	2	3.366	0	--	0	--
1.922	22	0	--	2	3,844	0	--	2	3,844	1	1,922	0	--	0	-
2,162	23	0	-	0	--	0	--	1	2,162	1	2,162	0	\cdots	0	-
2,401	24	0	--	1	2.401	2	4,802	2	4.802	3	7,203	1	2,401	0	--
2,641	25	1	2,641	2	5.282	3	7.923	4	10.564	41	10.564	0	--	1	2,641
2,880	26	3	8,640	7	20,160	16	46,080	6	17,280	113	31.680	0	--	0	-
3,120	27	3	9.360	0	--	9	28,080	9	28,080	41	12,480	3	9.360	41	12.480
3.359	28	7	23.513	10	33.590	16	53.744	6	20,154	9	30.231	0	--	62	20,154
3,599	29	51	17.995	3	10,797	11	39.589	5	17.995	41	14.396	0	--	31	10,797
3,838	30	62	23,028	2	7.676	8	30,704	4	15.352	41	15.352	2	7.676	1	3.838
4,077	31	1	4,077	1	4.077	2	8,154	0	--	2	8,154	2	8.154	1	4.077
4,317	32	0	-	1	4,317	0	--	0	-	0	--	0	\cdots	0	\sim
Total No. F	Females	26		29		67		40		45		8		16	
Total Calc	. No. Eggs		89.254		92,344		219,076		121,916		137,510		27.591		53.987

Silver salmon juveniles are separated into two groups possessing different habits, characteristics, and nortelity rates. One group consists of fish-of-the-year and are often raferred to as O+, fry, or fingerlings. They are less than one year of age and do not appear to contribute to the adult population if they migrate to soa at this age. Hunter at Port John, British Columbia, counted 20,000 fry per year (Hoar, 1951) and Wickett (1951) counted varying nuribers between 700 and 2,800 into the intertidal zones and concluded that the najority perished. Marr (1944) oxanined the saales from 885 Columbia River silver salmon from the 1914 run and found no fish of the $0+$ groupe The time of migration for the second group, called yearlings, it, or snolts, occurs nostly at 12-14 months of age. Counts of these fish for each brood year while the weir was in operation from Hovember 16 of one year through the end of migration the folloring sumor are sumarized in Table 12. It is readily apparent that most amolts counted at the weir nigrated in the spring and that of those counted only 4% of the 6 -year average nigrated in the latter half of Hoveriber. of tha 2,217 (6-year average) counted, 7lif migrated Into brackish water during the ronth of May and 90% migrated in April and May comm bined. By referring to Table 2 and Figure \mathbb{L}_{4} it can be seen that no water spilled over the dom during these two spring months in 3 (1956, 1958, and 1959) of the 6 years. The time of migration at Gnat Creek is generally similar to that at linter Creek, Jaddell Creek, and Taku River (Meehan and Siniff, 1962). When spawing grounds are located on small hoadvater tributaries which are also farther from salt water, the tims of yearling migration appears to be earlier. At Spring Creek this peak occurred regularly in late liarch and early April and was closely associated with increased flows (Willis, 1955 typed maruscript)1/. At Deer Creek, Alsea River, OCC personnel found a sharp peak of smolts in March (Chapran, Corliss, Phillipa, and Demory, 1961)。 A graph

[^2] salmon in certain Oregon coastal arcas. Oreg. Fish Comm. Typeuritten

Table 12. Counts of Wild Juvenile Silver Salmon Migrants at Gnat Creek Weir by 5-Day Periods frou November 16 to End of Migration Year, 1954-59 Brood Years.

5-Day Períod Ending 1/		Brood Year						Total	$\begin{aligned} & \text { 6-Year } \\ & \text { Average } \end{aligned}$
		1954	2955	1956	1957	1958	1959		
Mo.	Day								
Nov.	20	0	170	29	3	10	101	313	52
	25	2	62	9	11	3	33	120	20
	30	5	64	5	2	6	33	115	19
Dec.	5	4	4	23	5	6	9	51	9
	10	3	5	17	4	2	12	43	7
	15	2/	27	8	0	3	4	42	7
	20	2/	6	10	3	4	1	24	4
	25	1	3	9	0	1	5	19	3
	30	3	3	5	1	0	3	15	3
Jan。	5	11	0	2	0	0	0	13	2
	10	4	0	2	0	2	0	8	1
	15	13	0	18	3	11	3	48	8
	20	5	0	13	0	13	0	31	5
	25	6	0	5	0	11	1	23	4
	30	0	0	2	8	6	1	17	3
Feb.	5	$?$	0	4	1	2	I	15	3
	10	0	7	5	0	1	3	16	3
	15	9	5	6	16	0	8	44	7
	20	0	2	11	0	0	5	18	3
	25	7	9	3	0	3	2	24	4
	30	26	17	2	0	24	0	69	12
Mar.	5	16	6	6	2	3	2	35	6
	10	2	22	0	1	5	2	32	5
	15	10	3	1	1	3	4	22	4
	20	19	5	3	1	3	2	33	5
	25	7	10	9	1	2	14	42	7
	30	8	46	8	2	9	11	84	14
Apr.	5	14	41	16	3	13	43	130	22
	10	18	31	13	2	6	129	199	33
	15	43	4	40	4	26	72	189	32
	20	28	62	54	47	30	91	312	52
	25	60	92	17	36	40	185	430	72
	30	168	221	12	216	72	69	758	126
May	5	245	295	20	37	75	355	1,027	171
	10	509	544	312	48	155	437	2,055	343
	15	351	320	235	188	181	396	1.671	279
	20	542	515	399	128	271	442	2.297	383
	25	516	216	441	108	3	256	1.440	240
	30	332	124	143	81	34	257	971	162
June	5	1.06	45	22	46	15	150	384	64
	10	33	9	5	2	8	29	86	14
	15	11	1	2	2	0	4	20	3
	20	2	0	0	0	0	1	3	1
	25	0	0	0	0	0	0	0	
	30	0	0	0	0	0	0	0	
July	5	0	0	0	0	0	0	0	
	10	0	0	1	0	0	0	1	
	15	0	0	0	0	0	0	0	
	20	3.146	2.995	1,847	1,013	1,061	3,226	13289	$(2,217)$

Table 12. Counts of Wild Juvenile Silver Salmon Migrants at Gnat Creek Weir by 5-Day Periods from November 16 to End of Migration Year, 1954-59 Brood Years.

5-Day Period Ending 1/		Brood Year						Total	$\begin{aligned} & \text { 6-Year } \\ & \text { Average } \end{aligned}$
		1954	1955	1956	1957	1958	1959		
Mo.	Day								
Nov.	20	0	170	29	3	10	101	313	52
	25	2	62	9	11	3	33	120	20
	30	5	64	5	2	6	33	115	19
Dec.	5	4	4	23	5	6	9	51	9
	10	3	5	17	4	2	12	43	7
	15	2/	27	8	0	3	4	42	7
	20	2/	6	10	3	4	1	24	4
	25	1	3	9	0	1	5	19	3
	30	3	3	5	1	0	3	15	3
Jan。	5	11	0	2	0	0	0	13	2
	10	4	0	2	0	2	0	8	1
	15	13	0	18	3	11	3	48	8
	20	5	0	13	0	13	0	31	5
	25	6	0	5	0	11	1	23	4
	30	0	0	2	8	6	1	17	3
Feb.	5	?	0	4	1	2	i	15	3
	10	0	7	5	0	1	3	16	3
	15	9	5	6	16	0	8	44	7
	20	0	2	11	0	0	5	18	3
	25	7	9	3	0	3	2	24	4
	30	26	17	2	0	24	0	69	12
Mar.	5	16	6	6	2	3	2	35	6
	10	2	22	0	1	5	2	32	5
	15	10	3	1	1	3	4	22	4
	20	19	5	3	1	3	2	33	5
	25	7	10	9	1	2	14.	42	7
	30	8	46	8	2	9	11	84	14
Apr.	5	14	41	16	3	13	43	130	22
	10	18	31	13	2	6	129	199	33
	15	43	4	40	4	26	72	189	32
	20	28	62	54	47	30	91	312	52
	25	60	92	17	36	40	185	430	72
	30	168	221	12	216	72	69	758	126
May	5	245	295	20	37	75	355	1,027	171
	10	509	544	312	48	155	487	2,055	343
	15	351	320	235	188	181	396	1,671	279
	20	542	515	399	128	271	442	2,297	383
	25	516	21.6	341	108	3	256	1,440	240
	30	332	124	143	81	34	257	971	162
June	5	106	45	22	46	15	150	384	64
	10	33	9	5	2	8	29	86	14
	15	11	1	2	2	0	4	20	3
	20	2	0	0	0	0	1	3	1
	25	0	0	0	0	0	0	0	
	30	0	0	0	0	0	0	0	
July	5	0	0	0	0	0	0	0	
	10	0	0	1	0	0	0	1	
	15	0	0	0	0	0	0	0	
	20								$(2,217)$
		3.146	2.995	1,847	1.013	1.061	3.226	13289	

showing tho numbers of migrants and average flows by 5-day intervals for the 1958-brood fish that migrated doumstream at Gnat Creek in 1959 and 1960 is included as Figuro 19. This Pigure and Figure 18 in Selo and Bayliff (1958) appear somewhat similar in that no close relationship exists between flows and Juvenile silvar nifaction. However, at Spring Creek an incrense in smolt migrants accompanted an increase in flow during days with freshets in late Jarch or April.

During Kay 9 and $10,1962,3$ and 6mour counts of doumstrean migrants vere made at Gnat Greek. A total of 180 silver yearings vere saptured in the following tine periods: 30 ($17 \%_{i}^{\prime}$) fram noon-6 $p_{0} m_{0} ; 96$ (53%) from 6 pomeo midnight; 38 ($21 l_{0}^{\prime}$) from nidnight to $6 a_{0} n_{0} ;$ and 26 (9_{j}^{\prime}) from $6 a_{0} m_{0}$ to noon。

A total of 7,878 smol.ts was neasurod during the Gnat Creek atudy. The characteristics of the iangth-frequancy distributions in 5 -fim groups are prem sented in Table 13 for each brood year. It uas desired to compute confidence limits to qualify the avarage lengths since not all migrants ware measured. The numbers measured exceeded 500 except for the 1956 brood and it was assumad that confidence intervals based on a normal distribution would be suitable. This assumption was testad in the following nanner: (1) the curnulative frequency of the 6 -year everage was tairulnted in per cent as shown in Table 13; (2) tho mean and standard deviations ware computed; (3) the curaulative frequency in par cent was determined for $\overline{\mathrm{X}} \pm 1,1 . \%$, and 3 standard derietions, which were then piotted (as (2) points) on normal probability paper in Figure 20. It was also desired to compare the asmple diatribution (Table 14) composed of 2,20.2 May migrants (as 0 in Figure 20) with both the 6 mear average and a twe normal distribution which is shown as the straight line。 With the minor exception of each extreme, both longth distrikutions are similar to a normal distribution. Confidence linits at the 95\% level were then computed and added to the bottom of Table 13 and enclosed in parentheses in the following eentences. The avarage longth of all 7,878 smalts measured
$\left({ }^{\circ} g^{\circ} J^{\circ} จ\right)$ MOTd π Ieq®M

ヘ
$7,878 \quad 1,315,8$

※్
\%
\%
c.r. 1
CoPo in
Per Cont
∞

Table 13. Characteristics of the Length-Frequency Distifibutions in 5-m Groups of Wild Silver Salmon Saplts
C.F。 In

Figura 20. A Comparison of Pointe on Two Length-jrequency D1atributions with a Nompal Diatribution (shown as a straight line)。

Table 14. Length-Freouency Distribution of 2.212 1959-Brood Yearling Silver Salmon, Gnat Creek, May 1961.

was 11409 (87.8 to $1,2,0$) and the average length of the large somple of May migrants of the 1959 brood was 117 (100 -134) meno The average lengths for other brood years did not vary a great deal from the 6-year average with the smallest being 101 ($61-1 / 1$) mand the largest 121 ($92-150$) m. The avarage langths of smolts at Spring Creek vere slightly under 100 zen.

A genaral indication of fresh-mater growth as reflected by the fish loaving the stream is inlustrated in Figure 2I for 3,414 juveniles of the 1959 brood. When alevins absorb the yolk aac, they are about 1.5 inches 20 ng as shoum in April. Dy mic-erinter (Deconbar) they vere 40 I inches long and the bulk of the fish mitrated in liay at an average length of 4.6 inchos.

In Kay 1962, 10 weight neasurements were obtained for each millineter in length ranging from $101-135 \mathrm{~mm}$. The individual veights are shoum in Table 15 with averages for each 5 -mm group. Sinco only 8 ferales were rem leased above the weir in $\mathbf{1 9 6 0}$, the majority of these 1962 migrants vas bow Lieved to be from a Liberation of $30,000 \mathrm{Big}$ Creek Hatchery fingorlings released into Gnat Creek in Jume 1961 and reared naturally for about 10 nonthso The weight dste and the condition factors included in Teble 16 were obtainod for comparison with naturally reared fish of hatohary origin on other OFC projects. The typical Onat creek snolt ves 115 nem longe weighed 15.4 grams ($27 \mathrm{fish} / \mathrm{Ib}_{0}$), and had a condition factor of 1.01 . The avorage size of silver salmon yearlings of the same brood naturally reared from Kay 1961 to February 1962 ($8-1 / 2$ months) in Wahkeena Pond was 102 mm in foris longth and 10.2 grams in welght or 44 fish/ib。(Haas and Hil1is, 2962). The lattor group probably would have been 12 mim ($1 / 2$ inch) longer-based on inforration in Figure 22-had they been released in leyo

Productivity

Comparisons of the anmal adult silver aalmon runs and resuiting progeny are shown in Table 17。 \& supmary of the productivity of silver salmon in

Table 15. Average Length-Weight Measurements for Yearling Silver Salmon per Millimeter of Fork Length. 1960 Brood.

Fork Length (mm)	$\begin{aligned} & 5-\min \\ & \text { Mid } \\ & \text { Point } \end{aligned}$	Total Weight of Ten Fish (grams)	$\begin{gathered} \text { Average Weight } \\ \text { for }{ }^{\text {rach }} \\ \min 1 / \end{gathered}$	Average Weight Per 5-min Interval 2/
101		118.9	11.9	
102		109.3	10.9	
103	103	112.5	11.3	11.4
104		113.6	11.4	
105		115.8	11.6	
106		121.0	12.1	
107		122.1	12.2	
108	108	129.2	12.9	12.8
109		132.1	13.2	
110		135.5	13.6	
111		140.4	14.0	
112		142.8	14.3	
113	113	146.1	14.6	14.6
114		149.3	14.9	
115		153.5	15.4	
116		157.2	15.7	
117		160.4	16.0	
118	118	166.7	16.7	16.6
119		172.0	17.2	
120		174.7	17.5	
121		179.6	18.0	
122		184.0	18.4	
123	123	184.7	18.5	18.7
124		187.9	18.8	
125		197.0	19.7	
$\overline{126}$		196.8	19.7	
127		203.6	20.4	
128	128	207.3	20.7	20.8
129		215.3	21.5	
130		218.4	21.8	
131		220.9	22.1	
132		225.5	22.6	
133	133	229.5	23.0	23.0
134		237.3	23.7	
135		236.2	23.6	

$1 / N=10$
$\frac{N}{2} N=50$

Table 16. Average Condition Factors $1 /$ for Yearling Silver Salmon per Millimeter of Fork Length, 1960 Rrood.

Fork Length (mm)	$\begin{array}{r} 5 \text {-mim } \\ \text { Mid- } \\ \text { Point } \end{array}$	$\text { Average for } 2 /$ Each mm	Average Per 5-man 3 Interval
101		1.04	
102		1.03	
103	103	1.03	1.03
104		1.01	
105		1.00	
106		1.702	
107		1.00	
108	108	1.03	1.02
109		1.02	
110		1.02	
111		1.03	
112		1.02	
113	113	1.01	1.02
114		1.01	
115		1.01	
116		1.01	-------
117		1.00	
118	118	1.02	1.01
119		1.02	
120		1.01	
121		1.01	
122		1.01	
123	123	0.99	1.01
124		0.99	
125		1.01	
$\overline{12} \overline{6}$		0.98	
127		0.99	
128	228	0.99	0.99
129		1.00	
130		1.00	
131		0.98	
132		0.98	
133	133	0.98	0.98
134		0.99	
135		0.96	

1/ Condition Factor $=\frac{100,000 W_{0}}{I 3}$ where W j.s weight in grams and L
is fork length in millimeters.
$\frac{2 /}{3 /}$
$\mathrm{N}=10$
$\mathrm{~N}=50$
Table 17. Gomparisons of Annual Adult Silver Salmon Runs and Resulting Progeny
Table 17. Gonparis Creet, 1955-59 Brood Years.

Year of Parent Run	Size of Parent Run (Humbere of Fish)				Resultant Outmigration (Numbers of Fish) $1 /$			$\begin{aligned} & \text { Year } \\ & \text { of } \end{aligned}$
(Brood Fegr)	Males	Jacke	Femaie:	Total	Fingeringa	Smolts	Tota?	Outnioratio
1955	67	81	26	174	219	2,996	3,215	1956-57
2956	46	149	29	226	1,964	1,847	3,811	1957-58
1957	53	89	67	209	975	1,013	1,993	1958-59
1958	30	100	40	170	398	1,661	1,459	1959-60
1959	14	44	45	103	236	3,226	3.494	1960-61
1960	9	70	8	87	13,148 3/	4,110	17,258	1961-62
1961	8	55	26	79				

[^3]Gnat Creelc besed on estimated egg deposition weir counts of juveniles and counts of returning jacks and adults is presented in Table 18. The counts of adult males, jacks, and females are belfeved to be accurate although some fish may have returned from the occasional. spawners in the small area available below the veir or strays from other streams. The fingerling counts for zero-aged fish that migrated between emergence in the spring and November 15 of the same year are subject to errors of varying magnitude but probably not as great as that indicated in Table 4 for fall chinook fry and fingerlingse The smolt counts are accurate for the 1956 and 1957 brood years that migrated when thare wes no spill of consequence over the dam in April and May 1958 and 1959. In 1961 a liberation of 30,000 3-monthwoli, hatcherymeared fingerlings was made into the pond outlet at the newlymconstructed OGC hatchery. The 30,000 stocking rate was derived by productivity and stream-aize relationships by Wallis (1961). It was desired that these fish not be affected by any mark and the objective was to determine if any gross differences would result in the subsequent smolt count which had previously varied from about 1,000 to 3,200 with an average of about $2,000 \mathrm{or} 1_{0} 5 \%$ of the average maximum egg deposition. From the results in Tabie 18 the number of fingerising nigrants in creased nearly 7-fold over the earlier maximum count, and the yearling smalt count was $l_{0} 27$ tinee higher then the previous meximm count. The average survival of fingerlings (reared 3 months in a hatchary) to yeerling migrants was determined to be approximately 10% at Minter Creak (Salo and Bejliff, 1958)。 The average amolt survival (1955m59) of 2,029 fram 47 femates indicates we noight have expected $\frac{3,029(8)}{41}$ or Iess than 4001960 -brood anolta from the 8 females placed above, This suggests that 3,700 of the 4,100 counted might have been contributed froen the hatchary liberation. Scales were collected from a random sample of nigranta but were not analyzed for this report. From data in Table 18 the returning jacks and adults have averaged only 122% of

$\begin{aligned} & \text { Year of } \\ & \text { Parent Run } \\ & \text { (Brood Yeax) } \end{aligned}$	No. of Fomales Above Weir	```Calculated Egg Deposition```	Finqerling SuryivaNumber Per Centof Eggs		Smolt SuryivalNumberPer Cent of Egga		Roturn	Adulta	cks Excl 1	ded)		
					No. of Adult Males and Females	Per Cent of Parent Femeles	Per Cent of Bggs	Per Cent of Smolta				
1955	26	89, 254	219	0.2			2,996	3.3	70	269	0.08	2.3
1956	29	92,144	1896	2.1	1,847	2.0	59	203	0.06	3.2		
1957	67	219,076	975	0.4	1,013	0.5	17	25	0.01	1.7		
1958	40	121,916	398	0.3	1,061	0.9	24	60	0.02	2.3		
1959	45	137,510	236	0.2	3,226	2.3	81	180	0.06	$2.52 /$		
1960	8	27.591	13.148 3	47.7	4×1103	14.9	\pm	\pm	0	\pm		
$\begin{aligned} & \text { Total } \\ & \text { (1955-59) } \end{aligned}$	207	659,900	3,792		10,143		251					
Average (1955-59)	41	131,980	758	0.6	2,029	1.5	50	122	0.04	2.5		

[^4]the parent females. In order to maintain the runs we should expect 200% or 1 male and 1 female to return to apawn for each parent female. The average return of adults only to Cnat Creek has been 50 or 2.5% of the avarage number $(2,029)$ of smolts counted. The possibility of incomplete juvenile counts at the weir indicates that smolt survival may be somewhat higher than this, and the return of adults would be correspondingly lower.

An attempt was made to deternine if any relationship existed between the Columbia River comercial gillmet catch, the number of Gnet Greek adults and a runoff index-similar to that used by Smoiker (1953)-two years earlier. The derivation of the index was given previousily and is 1isted in Table 19 with estimates of the total catches in the lower Columbia River two years later. Although the data are insufficient for statistical analysis, a general relationship between the commercial catch and total water quantity is apparent sinoe the higheat catch is accompanded by the highest munoff index 2 years earlier and the lowest catch is accompanied by the lowest water quantity index 2 years earlier. Ifo relationship uas present between the number of Gnat Greek adults and the manoff index two years earlier.

Steelhead Trout
Although the study of steelhead was not included in the original Gnat Greek project objectives, some intaresting information was obtained. The total numbers of adult steelhoad returning to the weir from 1955-62 are 1isted in Table 20. The spawned-out adults that returned downstrean were also counted; the percentage aurvival avaraged 57.5\% and varied between 11.5 and 81.3%. The adult run varied between 41 and 262 IIsh and avaraged 123. An average of 1.467 migrants was produced of which 104 ware zero-aged fish (Table 21).

A use of the randiom aampling device shown previously (Figure 13) was tested as to the accuracy of a 20% sanple in portraying the size composition

Table 19. A Comperison of Calumbia River Gill-Net Catches and Gnat Creek Adults wi.th Runoff Index Two Years Earlier.

Year	Commeraial Gq7iollet Cateh 72			Gnat	Gnat Greek
	$\mathrm{Hagh}_{\text {a }}$	Oregon	Total	Adults	Runofr 2 Years Bofore
1958	6,152	12,645	18,797	70	67.62
1959	3,770	11,039	14,809	59	39.21
1960	3,499	12,933	16,432	17	56.10
1961	11,900	28,996	40,896	24	81.82
1962	-	-	\cdots	$312 /$	49.62

1/ Fran Washington Department of Fisheries (1962) and IBM recordsa 2 Heorly complete counts.

> Table 20_{0} Thwabers of Adult Steelhead Counted at Gnat Creek Weir During Upstream M1Gration and Survival after Spawing, 1955-62.

$\begin{aligned} & \text { Calendar } \\ & \text { Year } \end{aligned}$	Nuphbers		Per Cent of Upstream Migrants Captured at Domstream Hoir.
	Upstreasm	Doynstream	
1955-56	262	213	81.3
1956-57	234	154	65.8
1957-58	60	30	50.0
1958-59	174	53	46.5
1959-60	88	10	11.4
1960-61	42	6	1 ro6
1961-62	65	37.	47.2
Total	864	497	
7milear Average	123.4	71.0	57. 5

Table 21. Thmbers of Wild Juvonile Steelhead Outmigrants Trapped at Gnat Greek Heir, January 1, 1956 June 25, 1962.
$\left.\begin{array}{lccc}\hline \begin{array}{c}\text { Calendar } \\ \text { Year_ }\end{array} & \begin{array}{c}\text { Age Group } \\ 0\end{array} & \text { Age Groups } & \text { Total } \\ \hline 1956 & 286 & I_{9} & \text { In and IIT }\end{array}\right]$
of all steelhead juveniles that migrated during the spring of 1961. The results of the sample lengths are compared graphioally in Figure 22 ufth the lengths for all fish caught of age groups I, II, and III combined. By using these sampling data and by furthar examination of the scelos in the sarmie, the age composition of the downstream Juveniles could have been determined. Although insufficient time was available for working up these data prior to prepering this roport, steelhoad age-length data and ear-lier material on chinook and silver salmon have been sumarized in a sunnsury report of Gnat Greek Weir Operations, June 1958-Jume 1959 by Thowas $\mathrm{E}_{\text {。 Kruse. }}$ It was shown that extent of overlapping lengths provented separation of steelhead into brood years from length-frequency distributions.

A sumary of steelhoad marking experiments is ahown in Table 22. The primary objective of marking steelheed was to identify Gnat Creek fish and determine the mumbers of subsequent returning adults, larked OGC hatchary fish of the 1960 brood (as well as unsorked fish) escaped dounstream from

Table 22. Sunnary of Information Relating to Steelhoad

Brood	Stook	Mark	Numbera	Date of	Roturns to Gnat Croek	
Year $1 /$			Roleaged	Roleage	Numbers Recovered	Year of Recovary
1955	Natural	Ad	1,630	$3 / 23-6 / 12 / 57$	$\begin{array}{r} 2 \\ 59 \\ \frac{10}{72} \end{array}$	$\begin{aligned} & 1958 \\ & 1959 \\ & 1960 \end{aligned}$
1958	Natural	D-Ad	25	$\begin{aligned} & \text { 10/10/58 } \\ & 10 / 2 / 59 \end{aligned}$	0	1959-62
1957-58		Ad-IP	64	$10 / 20 / 59$	1	1962
1957-58		Ad-RP	892	$\begin{aligned} & 4 / 1-6 / 60- \\ & 1 / 15 / 61 \end{aligned}$	36	1961~62
1960	Onat Greek Hatchery	By $\mathrm{Ad}-\mathrm{BV}$ Ad-IM Ad-RM LPmonly $\mathrm{IP}=\mathrm{only}$ Total	$\begin{array}{r} 3 \\ 18 \\ 152 \\ 27 \\ 20 \\ 20 \\ 1 \\ \hline 222 \end{array}$	2/18-9/6/61	-	-
1960	Big Creek Hatchery	RV	1,015	5/24/61	-	-

[^5]other anticipated markinc experiments. A Fray-leelcin scoop trap was tosted at Gnat Creek with $I_{p} 015$ hatcherywreared juveniles (6.5 inches long and about 9 fish/Lbo) of the 1960 brood being mariced RV and Iiberated 200 feet upstream from the trap on llay 24,2961 . It was found that sone of these fish oould swim back out of the scoop trap at stroen velocities of $3.0-3.5$ feet per second. The best operating velocities are highor than this. Additional deo tails of adult steolhead recoveries were presented in the Operational Studies annual progress report for 196\%. Out of 65 adults that returned in the 1961 run, 42 had a variety of different marks, and 36 of these ware Ad-RP。 Another side experiment using steelhead was conducted at Gnat Greek between December 1955 and June 1958 to compare the use of spaghetti with Petersen tags; the formar ware more satisfactory from the standpoint of tag 10ss. These data heve been summarized in a typed namusaript (Kruse, 1959)。

Miscellaneous Species

Counts of adult and juvenile cutthroat trout, lamprey (Entosphenys tridentatus), and cottids (Cottus sp_{0}) are tabulated in Table 23. The numbers of adult cutthroat trout declined fram 583 in 1955-56 to 125 in 1959-60. but increased to 254 in 2\% I~62. In some years nore Iannarey adults vere counted going downstrean than were counted going upstrear. This was due to their ability to cling to the dam and pass over the weir without entering the upstream trape

SUMMARY AID COHCLUSIONS

Gnat Creek drains a 22-aquaremile axea. Flows fluctuated between 1,300 and 7 cofoso between the start of the project in October 1.955 and its temination in June 1962. A partiallywassablo cascade located 3 intles above the weir prevented passage of adult nigrants during low flows. A modern

Table 23. Miscellaneous Species of Fish Enumerated at Gnat Creek Weir, October 1, 1955-June 30, 1962.

Species	1955-56		1956-57		1957-58		1958-59	
	Up	Down	Up	Down	02	Down	Un	Down
Cutthroat								
Adulta	583	96	554	87	355	15	142	13
Juveniles	3	2,329	14	2,706	5	1,694	8	1,631
Lamprey								
Adults	1,773	1,022	378	959	2,880	1,502	457	624
Juveniles	-	4,345	-	4,566	-	1,796	-	1,368
Cottids	-	1,231	-	477	-	330	-	135
	U0	Down	Un	Down	U0	Doym		
Cutthroat								
Adults	115	1	186	24	254	49		
Juveniles	-	1,405	3	1,592	-	1,546		
Iampray								
Adulte	178	269	173	897	355	210		
Juveniles	-	859	-	3,549	-	1,687		
Cottids	∞	180		363		233		

hatchery was constructed near this location in the sunmer of 1960. The problom of adequately sampling the mambers of juvenile fish going over the dam during floods was not entirely solved although substantial effort vas expended. Data from sampling traps on the dam during fall chinook migration suggest that 86% of the estimated total chinook migrants from Jamary through April went over the spilluay. Data are presented to show that in certain years no spill took place during the major migration poriod for juvenile silver salmon and steelhead trout in ipril and loy. The adult counts are considered to be accurate and the average number and range of mature fish (jacks included) of each species vas 39 (2-88) fall chinook, $149(79-224)$ s11vers, and 123 (41-262) stealhead. Juvenile production was besed on voir counts. Kany of the chinook fry had visible yolk sacs and appeared to be dislodged. Based on a 6-year avarage, 71% of the yearling silvers migrated in the month of Kay and 90% migrated in April and May. Most smolits migrated between 6 polio and midnight when counted on May 9 and 10,1962 . The avarage lengths of 7,878 smolts from 6 brood years averaged 11409 mm with 95% confidence limits of $87.8-14,2.0 \mathrm{~mm}$. Yearlings from individual brood years had average lengths that ranged from 101-121 min. Average weights and condition factors are presented for one group of migrantso

An estimate of the silver salmon potential egg deposition at Gat Creek was based on the individual egg counts of 20 females caught in the lover Columbia Rivar commercial fishery. This sample contained two fish from each inch in length from 22 to 32 inches. The regression of fecundity on length was linear and the equation for the calculated egg content wesz $\hat{\mathrm{y}}=2390433$ (X) - 3,345.033. The calculated ege deposition at Gnat Greek varied batreen 27,591 for 8 females to 219,076 for 67 females. The avarage estimated eur vival to yearling mifrants was $1_{0} 5$ of the ocmputed egg deposition and varied between 0.5 and 3.3\%. If complete counts of yearlinga had been obtained these survival figures may heve been somewht higher. Survival. rates of 0.5 and 2.0% for two brocd years are from accurate counts. On the
average, 2.5% of the smolts counted returned to the weir as adults (jacks ase cluded). Complete emuneration of snolts would tend to lowar this figure.

From accurate counts of hatcherymreared, mariked chinook fingerlings liberated between April and June 3 miles upstrean, fresh-water aurvivals of $50-88 \%$ ware obtained with half the numbers reaching the weir within 2 to 5 days after liberation. Host of the surviving edults (08) returned to the strean from a yearling release. One marking experiment (631 silver salmon) was undertaken to make a comparison between hatchery and wild yearlings. The survival rates of these two groups vere similar using total actual recoveries since about 5 times as many wild fish were originally marked.

A comparison of the average lengths of merked and urmarked silver salmon that returned to Onat Creek Weir from 1956 through 1961 uas made. Twom hundred twenty-seven marked fish averagsd 20.34 Inches and 412 urmarked fish averaged 22.50 inches. A t-test of the means indicated the difference wos significant at the 5\% level.

The total Columbia Rivor comercial gillmenet catches and a runoff inder at Gnat Creek two years sarlier (from the type of relationship established in western Washington by Dr. Snoker) suggests a possible relationship but insufficient data were avajlable for a statistical test. No relationship between Gnat Creek adults and the index was apparent.

The production of juveniles from varying mubers of adults is presented for chinook and silver salmon and staelhead and cuthroat trout, Productivity and survival rates for silver salmon was related to the calenlated egg depo sition, $0+$ and smolt counts, and adults in the progeny run from the numbers of smolts counted.

ACKIJONLEDGIETMS

Funds for the project and other assistance were provided by tho $U_{0} S_{0}$ Fish and Wildiffe Service, Bureau of Commercial Fishories, under the Columbia River Fishery Development Program. Acknowledgment is clue to Alphonse Kermerich (BCF) for his help and coordination and the OFC Enginearing and Fish Gulture Divisions for their assistance and cooperation. Project perm somnel who worked on the Gnat Creek studies at various times were Chester Nattson, Ernest Joffries, William Sweeney, Robert McQueen, Thonas Kruse, James Haas, Larry Hreha, and Truman Cumaingso Larl Pulford and other OFC personnel gave their time and energies when added help was needed. Nelvin Collins and Larry Hreha aided with the tabulation of data. Jack N_{0} Van Nyning and Robert Gunsolus revieved the final report.

Chapman，Donald W_{o} ，John F_{0} Corliss，Robert W_{0} Phillips，and Robert I_{0} Demory． 196I．Sumary report A lisea watershed study，Oreg．State Univ．Agrice Expt．Sta．Kisc．Paper 110： 52 po

Heas，James Bu，and Thomas E．Kruse．196I．Gnat Greek Weir studies．Oreg． Fish Come appraisal of project results annurl progo repe，prooosped， 28 62 po

Haas，James $B_{o,}$ and Raymond A_{o} Willis．1962．Hahkeena natural rearing study of silver salnon．Oneg．Fish Commo，annual progo repo，processed， 31 po

Hoar，William S．1951．The behaviour of chum，pink，and coho salmon in re－ lation to their scaward migration．Jour．Fisholes．Bd．Canada 8（4）： 241－263．

Hreha，Larry N_{∞} ，and Raymond A_{0} Willis．1962．Gnat Creek WeIr studies．Oreg． Pish Comino anmual procress report，processed， 13 po

Kruse，Thomas E．1959．A comparison of spaghetti and Petersen tags used in steelhead trout at Gnat Creek，Oregon．Typed namuscript．

Marr ${ }^{2}$ Jolin Co 19／4e Age，length and weight of three species of Columbia River salmon（Oncorhmohus kota，$\underline{Q}_{\text {－gorbuscha }}$ and $\underline{0}_{\text {－kisutah）．Oreg．}}$ Fish Commo Contr．10：157－197．

Keehan，William R_{s} ，and Donald B_{0} Siniffo 1962s A study of the downstream migrations of anadromous fishes in the Taku River，Alaska．Trans．Amer． Fish．Soc．，91（4）：399m407．

Miller，Richard B．1957a．Permanence and size of home territory in streamm dwelling cutthroat trout．Jour．Fish．Res．Bd．Canada，14（5）：687－691．
195% ．The role of competition in the martality of hatchery trout．Jour．Fish．Res．Bd．Canada，15（1）：27－45．

Cakley，Arthur Lo 1962．Oregon coastal salmon spawning ground surveys for 191．Oreg．Fish Cormiog processed repe， 10 po

Salo，Eernest O_{s} ，and William Baylifi．1958．Artificial and netural produco tion of silver salmon，Oncorbrachus kisutch，at Minter Creek，Washington． Wash．Dept．of Fish．Resoarch Bull．4： 76 po

Shapavalor，Leo，and Alan Co Tait．1954．The life histories of the steelhead rainbow trout（Galmo zairdineri gairdneri）and silvar solmon（Oncorgynchus kisutch）uith speciel reference to Waddell Creok，Callfornia，and recom－ mendations rezarding their managoment．Calif．Dept。Fish and Came，Fish Bull．98， $375 \mathrm{p}_{0}$

Smoker，William $A_{\text {。 }}$ 1953．Stream flow and silvar salmon production in western Washington．Wash。Dept，of Fish。Fish．Pesearch Papers 1（1）： 5－12。

Wallis, Joe. 296I. A biological basis for stocking streans and ponds with silver salinon. Oreg. Fish Corme, processed repe, 16 po

Washington State Department of Pisheries. 1961. Washington State Department of Fisheries, 70th annual repart for 1960. 232 p.

Wickett, W. Percy. 2951. The coho salmon population of Nile Creek. Fisho Res. Bd. Canada Prose Repts. Pecific Sta. 89: 88-89.

W11lis, Raymond A_{0} 1954. The length of time that silver salmon spent before death on the spawning grounds at Spring Creek, Wilson River, In 1951-52. Oreg. Fish Comin. Res. Briofs 5(1):7.0.5.

Appendix Table I. Length-Frequency Tabulation of Marked and Unmarked Wild Silver Salmon Adults at Gnat Creek, 1956-57.

Fork Length (in Inches)	Adult Males Jacks(20" and Over)(Under 20")			Females		Total		$\begin{aligned} & \text { Combined } \\ & \text { Total 2/ } \end{aligned}$
				M	Unm.	M.	Unm.	
	M. Unm. ${ }^{1 / 2}$	M	Unm.					
12		2				2		2
13			1				1	1
14		7	2			7	2	9
15		18	6			18	6	24
16		14	16			14	16	30
17		10	34			10	34	44
18		5	26			5	26	31
19		2	5			2	5	7
20	3						3	3
21	1						1	1
22	3				2		5	5
23	1				0		1	1
24	3				1		4	4
25	5				2		7	7
26	5				6		11	11
27	6				1		7	7
28	9				21		20	20
29	2				4		6	6
30	3				3		6	6
31	1				1		2	2
32	1				1		2	2
Total	43	58	90		32	58	165	223(148)

I/ $M=$ Marked; Unm. $=$ Unmarked.
2/ On 12/12/56 1 unmarked male, no length given; not listed in above tabulations.
On 12/12/56 1 unmarked fish, no sex given; not listed in above tabulations.
3/ Jacks. included in total, are listed separately in parentheses.

Appendix Table II. Length-Frequency Tabulation of Marked and Unnarked Wild Silver Salmon at Gnat Creek, 1957-58.

1/ Jacks, included in total, are listed separately in parentheses.

Appendix Table III. Length-Frequency Tabulation of Marked and Unmarked Wild Silver Salmon Adults at Gnat Creek, 1958-59.

If Eight additional fish with no length, sex, or ínspected for marks not included.
2) Jacks, included in total, are listed separately in parentheses.

Appendix Table IV. Length-Frequency Tabulation of Marked and Unmarked Wild Silver Salmon Adults at Gnat Creek, 1959-60.

Fork Length (in Inches)	Adult Males				Females		Total		Combined Total
	(2011	$\text { and } O v$			M.	Unm.	M.	Unm.	
	$\mathrm{M}_{\text {。 }}$	Onm.	M。	Unin.					
12									
13				1				1	1
14			3				3		3
15			1	4			1	4	5
16			4	9			4	9	13
17			1	10			1	10	11
18				5				5	5
19			2	3			2	3	5
20		1						1	1
21		2			1	1	1	3	4
22	1	1				1	1	2	3
23		1			1		1	2	2
24	1				1	2	2	2	4
25		1			1	3	1	4	5
26	1	1			4	7	5	8	13
27		1			1	3	1	4	5
28					2	7	2	7	9
29		2				4		6	6
30		1				5		6	6
31						2		1	2
32									
33									
Total	3	11	11	32	21	34	25	77	102

Appendix Table V. Length-Frequency Tabulation of Merked and Unmarked Wild Silver Salmon Adults at Gnat Creek, 1960-61.

Fork Length (in Inches)	Adult Males (20" and Ove		$\begin{gathered} \text { Jacks } \\ \text { (Under } 20^{\prime \prime} \text {) } \end{gathered}$		Ferales		Total		$\begin{aligned} & \text { Combined } \\ & \text { Total } \end{aligned}$		
			M.	Unm.	M.	Unm.					
	M_{\sim}	Onm.			N.	Unm。					
11				1				1	1		
12								0	0		
13			2	1			2	2	3		
14			2	1			2	2	3		
15			5	3			5	3	8		
16			6	7			6	7	13		
17			4	9			4	9	13		
18			4	9			4	9	13		
19			3	12			3	12	15		
20	1			1			1	1	2		
21		1						1	1		
22		1						1	1		
23									0		
24		1				1		2	2		
25	1			1			1	1	2		
26									0		
27	1				1	2	2	2	4		
28									0		
29									0		
30		1				2		3	3		
31		1				2		3	3		
Total	3	5	26	45	1	7	30	57	87		

Appendix Table VI. Length-Frequency Tabulation of Marked and Dnmarked Wild Silver Salmon Adults at Gnat Creek, 1961-62.

Fork Length (in Inches)					Females		Total		$\begin{aligned} & \text { Combined } \\ & \text { Total } \end{aligned}$
					M.	Unin.	M.	Unm.	
	N_{0}	Unm.	M.	Onm.					
13			1				1		1
14			3	1			3	1	4
15			$?$	3			7	3	10
16			11	2			11	2	13
17			6	6			6	6	12
18			5	2			5	2	7
19			2	6			2	6	8
20		2						2	2
21									0
22									0
23		1						1	1
24									0
25	1				1		2		2
26									0
27		1			1	3	1	4	5
28	1	1			2	4	3	5	8
29		1			2	2	1	3	4
30						1		1	1
31						1		1	1
32									0
Total	2	6	35	20	5	11	42	37	79

Appendix Table VII. Length-Frequency Distribution of Adule Fall Chinook Salmon in

Fork Length	Males					Females				Sox Unknown		Total
In Inches	D	D-LM	D-RM	RM	RV	D	D-LM	D-RM	GV	D	D-LM	
22						1				1	1	3
27					1		1					2
28												0
29												0
30		2					2					3
31												0
32		2					2					3
33	2	2				1	3					7
34		2					2					3
35	1	1					2		1			5
36		2	1			1	1	1				6
37		2		1								3
38												0
39			1					1				2
40	1											1
Total	T	10	2	$\overline{2}$	I	$\overline{3}$	$\overline{13}$	2	1	1	1	38

[^0]: 1. $\mathrm{H}=$ hatchary $\mathrm{H}=$ ulld.
 2. Bro meleased at hicharay bridge located 3 miles above neir; BW $=$ below voiro
 veiro For example, 50% of the 19,436 migranta marked IP were recaptured at the weir within 3 days after

 5/ Single fin recoveries in the fisheries have little or no significance. 7/ IAttile White, Spring Creek, and Big Creek hatcheries.

[^1]: 1) Gin $=$ Commercir], $\mathrm{Sp}_{0}=$ Sport, $\mathrm{R}=$ Random, $\mathrm{S}=$ Selected.

 3/ Partial count of adults at time of writing in 1962 .

[^2]: $1 /$ Wil11s, $R_{0} A_{0}, 1955_{0}$ Dounstrean migration studies of silver and chinook

[^3]: $1 /$ Counts represent minimun numbers since some fish are known to bypass countine facilities at the welr and eseape over the diam when volumes exceed $150-200 \mathrm{cof} \mathrm{f}_{\mathrm{s}}$ 。

 Novembar 15 arbitrarily solected as the dato to asparats fingoringa from amolts.
 of the $13,148,23,046$ were of hatchery origing being larger in size and differsnt in coloration while 102 were wild.

[^4]: Does not include fingerlings or amolts pasaing over spillway when flows exceeded 135-150.
 Partial count of adults in 1962.
 3/ Primarily hatohery fish.

[^5]: 1 Brood year as determined by length-frequency data except for the hatchery fish.

