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ABSTRACT

A recently proposed reduced-gravity model of the warm-water branch of the middepth meridional over-

turning circulation in a rectangular basin with a circumpolar connection is extended to include time

dependence. The model describes the balance between gain of warm water through northward Ekman ad-

vection across the circumpolar current, loss of warm water through eddy fluxes southward across the current,

net gain or loss of warm water through diabatic processes north of the current, and changes in the thickness of

the warm-water layer. The steady solutions are the same as those found previously, when the previous pa-

rameterization of diabatic fluxes is used. Time-dependent solutions are considered for the approach of the

solution to a new equilibrium when the forcing or parameters are abruptly changed and then held fixed. An

initial adjustment occurs through a combination of boundary and equatorial adjustment, followed by plan-

etary wave propagation. The longer-term adjustment to equilibrium consists primarily of the slow change in

eastern boundary thickness of the warm layer, which controls the mean depth of the entire layer. An ap-

proximate analytical solution of the time-dependent equations yields an explicit expression for the intrinsic

time scale of the long-term adjustment, which depends on the eddy and diabatic flux parameters and on the

equilibrium solution toward which the time-dependent solution adjusts. Numerical solutions are also con-

sidered with a second, advective–diffusive diabatic flux parameterization. These solutions differ quantita-

tively but not qualitatively from those with the original parameterization. For the range of parameter values

considered, the adjustment time scale has dimensional values of several decades to more than a century, but

the meridional flux of warm water may respond to changes in external parameters or forcing much more

rapidly than this time scale for equilibration of the eastern boundary thickness and thermocline structure.

1. Introduction

The ocean’s large-scale meridional overturning circula-

tion is an important element of the earth’s climate system.

Our understanding of basic aspects of this circulation, such

as the processes and quantities that determine its intrinsic

adjustment time scales, remains extremely limited. Here,

these intrinsic dynamical time scales are studied in an ide-

alized model of the middepth (Reid 1981) meridional

overturning circulation. This middepth cell, which lies be-

tween the wind-driven midlatitude cells of the upper ther-

mocline and the abyssal flow at the deepest levels, includes

the northward flow of warm thermocline waters from the

Southern Hemisphere to the northern subpolar gyre and

the compensating southward flow of North Atlantic Deep

Water from northern subpolar latitudes to the South-

ern Hemisphere.

The model discussed here focuses on the warm,

northward-flowing thermocline waters and the associated

wind-driven, upper-thermocline gyre structure; the com-

pensating southward middepth flow is not represented

explicitly. The formulation extends the simple, reduced-

gravity model of the warm-water branch recently pro-

posed by Samelson (2009) to allow time dependence of the

thickness of the warm-water layer. The temporal adjust-

ment of the resulting model is studied under conditions in

which external forcing parameters are abruptly changed

and then held fixed. The steady dynamics of the Samelson

(2009) model reflect balances similar to the scaling argu-

ments proposed by Gnanadesikan (1999) and Johnson

et al. (2007), in which the warm-water volume and flux are

established through a balance between gain of warm water

through Ekman advection across a circumpolar current,
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loss of water through eddy fluxes southward across the

circumpolar current, and net gain or loss of warm water

through diabatic processes north of the circumpolar current

(e.g., Deacon 1937; Stommel and Webster 1962; Veronis

1978; Tziperman 1986; Warren 1990; de Szoeke 1995;

Toggweiler and Samuels 1995). The extended, time-

dependent model presented here allows temporal changes

in the thickness of the warm-water layer so that the volume

and flux of warm water can evolve dynamically.

2. Model

The model formulation and notation follows Samelson

(2009), except that, following the standard planetary

geostrophic approximation for a reduced-gravity verti-

cal structure, the local rate of change of layer thickness

is retained in the mass balance. Thus, the warm-water

branch of the meridional overturning circulation is repre-

sented by a single homogeneous layer of depth h, subject

to the direct action of wind stress and resistance from

a linear friction, on a b plane in a rectangular domain

fxW , x , xE, yS , y , yNg (Fig. 1). The corresponding

zonal and meridional momentum equations are given by

�f y5�gh
x
� ru1t x(x, y)/h and (1)

fu5�gh
y
� ry1ty(x, y)/h, (2)

and the mass conservation equation is

h
t
1(hu)

x
1(hy)

y
5W(x, y), (3)

where t 5 (tx, ty) is the kinematic wind stress, r is a

constant friction coefficient, and the form of W re-

mains to be specified. A second, more minor differ-

ence from the formulation of Samelson (2009) is that

a second, alternative form of W is considered here,

in addition to the original form; both are described

below. The geometry is basic: a rectangular basin with

vertical sidewalls that extends across the equator, at

y 5 0, into both hemispheres. Periodic zonal boundary

conditions allow a zonally reentrant representation of

FIG. 1. (a) Schematic model cross section, showing model warm-layer depth z 5 2h (thick solid line) and

equivalent diabatic forcing depth z 5 2h* (dashed line) vs dimensionless latitude y and depth z. The model cir-

cumpolar current flows through a circumpolar gap y1 , y , y2, 2hs , z , 0 (dotted line), at which the eastern and

western boundary conditions are periodic and which extends beneath the current to the sill depth z 5 2hs. The

vertical isopycnals of the model circumpolar current associated with the warm layer (thin solid lines) fill the upper

portion of the circumpolar gap to the depth z 5 2hm, which lies above the sill, where hm
2 is equal to the zonal mean of

h2 at y 5 y2. There are three types of transport into and out of the warm layer (arrows): the northward near-surface

Ekman transport TEk and southward interior eddy flux Te across the gap and the vertical diabatic fluxes W(x, y) across

the base of the warm layer; the latter typically include both upwelling at midlatitudes and downwelling at high

northern latitudes. The domain for the time-dependent model is y2 5 20.6 , y , yN 5 1. Figure and original caption

text from Samelson (2009).
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a circumpolar current in a narrow band of high Southern

Hemisphere latitudes, y1 , y , y2 , 0.

The momentum equations (1) and (2) may be solved

for the vector transport hu 5 (hu, hy),

hu5A
r
�g

2
$h2 1t

� �
, (4)

where

A
r
5

1

f 2 1r2

r f

� f r

� �
(5)

and $ is the horizontal gradient operator. Conditions on

the normal velocity component u � n at the boundary

thus lead to a differential equation around the bound-

ary, which relates the normal and tangential derivatives

of h (Salmon 1986). Along the contiguous rigid bound-

ary, the standard no-normal-flow condition u � n 5 0 is

applied. This is supplemented by representations of

Ekman and eddy fluxes of warm water across the open

boundary of the warm layer at y 5 y2, the southern edge

of the warm layer and the northern edge of the cir-

cumpolar current. As in Samelson (2009), an analytical,

zonally symmetric, geostrophic circumpolar current can

be introduced in the region y1 , y , y2, at the southern

edge of the warm-water layer, to complete the model’s

large-scale thermal structure.

The Ekman transport per unit longitude across y 5 y2

is given by

V
Ek

5�
tx(y

2
)

f
2

, (6)

where f2 5 f(y2). A simple prescription of the eddy flux

Ve of warm water across y 5 y2 is adopted,

V
e
5�a

e
h2

m, (7)

where ae is a constant of proportionality and hm
2 is the

zonal mean of the squared depth of the warm-water layer

on the north side of the current, at y 5 y2; Ve is thus

independent of longitude x. The primary motivation

for the prescription (7) is analytical convenience, but it

may also be interpreted as the zonally averaged depth

integral of fluxes proportional to isopycnal slopes zr /Lacc,

where zr ranges from 0 to hm in a local, stratified rep-

resentation of the warm layer and Lacc is a fixed width

for the circumpolar current; the latter interpretation

shows the connection to the linear gradient-flux schemes

that are widely used to parameterize eddy fluxes in large-

scale numerical models. In the solutions considered

here, h(x, y2) is itself nearly independent of x, so a local

prescription Ve 5 2aeh(x, y2)2 would yield a nearly

identical flux.

With the conditions (6) and (7) at y 5 y2 and the no-

normal-flow condition along the rigid boundary, (4) may

be solved to obtain u(x, y) from a given h(x, y). The

remaining equation (3) then determines ht, once the

diabatic velocity W(x, y) is specified in terms of h. Here,

W is first taken to be proportional to the difference of

the square of the layer thickness h and an imposed

function h
*
2(x, y), as in Samelson (2009):

W(x, y)5�a
w

[h2(x, y)�h2
*(x, y)], (8)

where aw is a given constant of proportionality and h
*
2 is

a given function of x and y. A second form is also briefly

explored,

W
k
(x, y)5

k

h(x, y)
, (9)

where k is a given constant with the dimensions of

a diffusivity. The form (9) is motivated by the scaling for

the vertical advective–diffusive balance in the thermo-

dynamic equation,

w
›T

›z
5k

›2T

›z2
!W

k

DT

d
5k

DT

d2
, (10)

according to which Wk 5 k/d (Welander 1971) and is the

parameterization employed by Gnanadesikan (1999),

Johnson et al. (2007), Allison (2009), and Allison et al.

(2011, manuscript submitted to J. Mar. Res). The rela-

tion between (8) and (9) is discussed below in section 5.

The equations may be made dimensionless using the

same dimensional scales as in Samelson (2009): hori-

zontal length scale L 5 5000 km, depth scale H 5

1000 m, gravitational acceleration g 5 9.8 m s22, den-

sity r0 5 1027 kg m23, Coriolis parameter f0 5 1024 s21

and its meridional gradient b0 5 2 3 10211 m21 s21,

wind stress scale t* 5 0.1 N m22, horizontal velocity

scale U 5 t*/(r0f0H*) 5 1023 m s21, and time scale

Tadv 5 L/U. The scale for volume transport is then

UHL 5 5 3 106 m3 s21. The resulting dimensionless

equations have the same form as the dimensional equa-

tions, with the parameters g, h
*
2, ae, aw, and r scaled by

f0UL/H, H2, U/H, U/(HL), and f0, respectively. A density

difference Dr/r0 5 1023 is assumed, giving a dimension-

less value g 5 20.

The spatial structure of the forcing functions is the

same as in Samelson (2009): the imposed wind stress t is

taken to be purely zonal,
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tx 5

t
0

cos
3py

2
, y

3
5�1

3
, y , y

N
5 1

t
0

cos
3py

2
1 t

1

1

2
1� cos

p(y� y
3
)

y
2
� y

3

� �
, y

2
# y , y

3
5�1

3
,

8>><
>>: (11)

and t y 5 0, and the squared equivalent thickness func-

tion h
*
2(y) for the diabatic forcing north of the circum-

polar channel is given by

h2
*(y)5

h2
0�dh2

Ny6, 0 ,y,y
N

51

h2
0, y

2
,y,0,

0, y
S
,y,y

2
.

8><
>: (12)

The dimensionless domain has xW 5 0, xE 5 1, y2 5

20.6, yN 5 1, and f 5 0 at y 5 0. For numerical solution,

the equations were discretized on a 51 3 81 grid and

solved by a simple second-order Runge–Kutta scheme,

with a tridiagonal matrix solver for the differential

equation around the boundary.

Steady-state solutions of these equations may be obtained

by setting ht 5 0 and solving for h(x, y). With the choice

(8) for W, the steady-state equations have the same form

as those solved by Samelson (2009). The analysis here

focuses on the time-dependent adjustment to these steady

states, in response to abruptly changed forcing or pa-

rameter values, which are then held fixed until the new

steady solution is reached.

3. Numerical solutions

a. Initial state

A sequence of two time-dependent numerical solu-

tions with different, fixed parameters illustrates the ba-

sic characteristics of the evolution of the system toward

steady state. The sequence is initialized with the steady

solution for a third set of parameters, which, except for

the friction parameter r, are the same as the first steady

solution described by Samelson (2009). This initial state

has weak midlatitude upwelling and equatorially sym-

metric zonal wind forcing. For the first time-dependent

solution, the Northern Hemisphere cooling parameter

is abruptly increased and then held fixed. This solu-

tion models the large-scale, time-dependent response

of the warm-water branch of middepth meridional over-

turning to increased deep-water formation at the high

latitudes of the Northern Hemisphere. For the second

time-dependent solution, after the system reaches the

modified steady state with increased Northern Hemi-

sphere cooling, the Southern Hemisphere winds at the

latitude of the model circumpolar current are abruptly

increased and then held fixed. This solution models the

large-scale, time-dependent response of the warm-

water branch of middepth meridional overturning to

increased Southern Hemisphere wind forcing. For these

solutions, the form (8) is used for the diabatic velocity

W(x, y).

The initial state is obtained for dimensionless pa-

rameter values t0 5 21, t1 5 0, dhN
2 5 4, aw 5 2, ae 5 1,

h0
2 5 1, g 5 20, and b 5 1. To enhance stability of the

numerical integration scheme, the frictional parameter

is increased in the vicinity of the equator so that the

constant r in (1) and (2) is replaced by r̂(y) 5 r0 1

(r
eq
� r

0
) exp(�y2/2L2

r ). For the solutions discussed here,

the corresponding dimensionless parameter values are

r0 5 0.05, req 5 0.25, and Lr 5 0.1. The initial state thus

differs from the first solution discussed by Samelson

(2009) only by this stronger, spatially variable friction

r̂(y), which replaces the previous constant value r 5 0.02.

The basic characteristics of the first steady solution

discussed by Samelson (2009; Figs. 2, 3) are maintained

in this modified numerical solution, with some minor

differences because of the stronger friction. There are

wind-driven subtropical gyres in both hemispheres and a

wind-driven subpolar gyre in the Northern Hemisphere,

with the accompanying deformations of the warm-layer

thickness h (Fig. 2a). The zonally integrated meridional

flow V(y), where

V(y)5

ðx
E

x
W

hy dy, (13)

is northward at all latitudes in the warm layer (Fig. 2c).

The northward Ekman transport across the circumpolar

current is partially compensated by opposing eddy

transport of warm water so that the overturning flow at

the southern edge of the warm layer is roughly one-half

of the northward Ekman transport. This overturning

flow travels northward to the Northern Hemisphere

subpolar gyre, where it cools and sinks. There is weak

subtropical and tropical upwelling (Fig. 2b), so the north-

ward warm-water transport increases northward and

the high-latitude Northern Hemisphere downwelling

is slightly more than the partially compensated Ekman

transport into the southern edge of the warm layer

(Fig. 2c). The layer thickness increases westward from

the eastern boundary in the interior of the subtropical

gyres, resulting in slightly decreased diabatic upwell-

ing toward the west, and decreases westward in the
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subpolar gyre. Because of the larger friction, the mid-

latitude thickness h is slightly smaller and the weak

midlatitude upwelling is consequently slightly stronger

than in the Samelson (2009) r 50.2 solution (Fig. 2b).

Similarly, the large value of req results in relatively viscous

equatorial dynamics, but this does not cause dramatic

changes in the solution structure.

b. Adjustment to strong NH cooling

For the first time-dependent numerical solution, the

Northern Hemisphere cooling is abruptly intensified

by changing the diabatic forcing parameter dhN
2 from

dhN
2 5 4 to dhN

2 5 6 at time t 5 0 and then holding it fixed

at the new value. The initial state for this calculation is

FIG. 2. Steady dimensionless numerical solution with (aw, ae) 5 (2, 1), t0 5 21, t1 5 0, h0 5 1, dhN
2 5 4: (a) h(x, y)

[contour interval (CI) 5 0.01; maximum contour labeled]; (b) W(x, y) (CI 5 0.05 for W . 0, 1 for W # 0); and (c) V( y)

vs latitude y.

FIG. 3. Steady dimensionless numerical solution with (aw, ae) 5 (2, 1), t0 5 21, t1 5 0, h0 5 1, dhN
2 5 6: (a) h(x, y)

(CI 5 0.01; maximum contour labeled); (b) W(x, y) (CI 5 0.1 for W . 0, 1 for W # 0); and (c) V(y) vs latitude y.
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the steady solution described above (Fig. 2). Except for

this change to dhN
2 and the increased, spatially variable

friction, the parameters for the time-dependent solution

are again the same as for the first steady solution de-

scribed by Samelson (2009; Figs. 2b, 3a,c).

The final state from this time-dependent adjustment

again has the standard subtropical and subpolar-gyre

thickness structure, downwelling in the northern sub-

polar gyre, and northward meridional transport at all

latitudes (Fig. 3). Relative to the initial state (Fig. 2),

it has enhanced meridional warm-water transport and

Northern Hemisphere sinking (Fig. 4). There is stronger

subtropical and tropical upwelling than in the initial

state, so the northward warm-water transport increases

northward by roughly one-third from the circumpolar

current latitudes to the Northern Hemisphere subpolar-

gyre boundary (Fig. 4c), with strong cooling and sinking

in the northern part of the subpolar gyre. There is a mean

decrease in the warm-layer thickness (Fig. 4a), relative

to the initial state, which supports the subtropical and

tropical upwelling (Fig. 4b). This decrease also reduces

the southward eddy transport across the circumpolar

current so that the net inflow at y 5 y2 is increased rela-

tive to the initial state (Fig. 4c). Thus, the greater over-

turning and Northern Hemisphere sinking induced by the

intensified Northern Hemisphere cooling is supported

by a combination of increased net inflow across the cir-

cumpolar current and weak, broad upwelling.

The time-dependent adjustment from the initial to the

final state proceeds in several stages, which in general

outline are familiar from previous analyses of large-

scale adjustment, such as that of Kawase (1987). There

are essentially two distinctive time scales, the planetary

wave basin-crossing time Tpwave ’ 2L/cR (where cR 5

2bgh/ f2; see section 4), and the long-term advective

adjustment time scale Tadv ’ L/U. For characteristic

scales as above, Tpwave corresponds to dimensional times

of several years to a decade and Tadv is on the order of

a century or longer.

On short time scales t � Tpwave, there is a zonally

symmetric increase in Northern Hemisphere cooling

and sinking (W , 0) and a corresponding zonally sym-

metric decrease in layer thickness, which extends

southward along the western boundary to the equator

(Fig. 5). The enhanced divergence of the northward

transport, which supplies the enhanced northern sink-

ing, is supported by this southward extension of the

region of decreasing layer thickness. An eastward pen-

etration along the equator of the leading edge of the

disturbance is visible in the height field during this pe-

riod (Fig. 5a). Note that, for a given subpolar-gyre west-

ern boundary disturbance, the propagation southward

along the western boundary is effected by the solution of

the differential equation around the boundary that re-

sults from the no-normal-flow condition, which supports

the steady, damped model representation of Kelvin-

type coastal boundary wave dynamics (see appendix).

On the longer but still short (t ’ Tpwave� Tadv) time

scales of planetary wave basin-crossing times, the

familiar zonal slope of the layer thickness associated

FIG. 4. Differences of final and initial states from the first time-dependent adjustment, to the state in Fig. 3, with

(aw, ae) 5 (2, 1), t0 5 21, t1 5 0, h0 5 1, dhN
2 5 6: (a) Dh(x, y) (CI 5 0.005; maximum contour labeled); (b) DW(x, y)

(CI 5 0.05 for DW . 0, 1 for DW # 0); and (c) DV( y) vs latitude y.
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with the Sverdrup balance is established (Fig. 6). The

pathway of the signal eastward along the equator to

the eastern boundary, then poleward along the east-

ern boundary, and westward via planetary waves is

apparent in the height disturbance field during this

period (Fig. 6a).

Finally, on the full (t ’ Tadv) adjustment time scale,

the mean layer thickness evolves toward the equilibrium

FIG. 5. Difference of instantaneous dimensionless numerical solution at t 5 0.0035 (dimensional t ’ 0.5 yr) from

initial state for the first time-dependent adjustment, toward the state in Fig. 3, with (aw, ae) 5 (2, 1), t0 5 21, t1 5 0,

h0 5 1, dhN
2 5 6: (a) Dh(x, y) (CI 5 0.001; maximum contour labeled); (b) DW(x, y) (CI 5 0.001 for W . 0, 1 for W #

0); and (c) DV( y) vs latitude y.

FIG. 6. Difference of instantaneous dimensionless numerical solution at t 5 0.03 (dimensional t ’ 5 yr) from initial

state for the first time-dependent adjustment, toward the state in Fig. 3, with (aw, ae) 5 (2, 1), t0 5 21, t1 5 0, h0 5 1,

dhN
2 5 6: (a) Dh(x, y) (CI 5 0.002; maximum contour labeled); (b) DW(x, y) (CI 5 0.02 for W . 0, 1 for W # 0); and (c)

DV( y) vs latitude y.
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state, whereas the horizontal structure of the layer thick-

ness variations remains roughly constant. In view of the

analytical solution discussed below, it is natural to measure

this change in mean layer thickness in terms of the eastern

boundary layer depth hE 5 h(xE, y). This adjustment is

essentially an exponential decay, with a time scale of

order 0.2, corresponding to dimensional times of several

decades (Fig. 7a). As demonstrated below by an ap-

proximate analytic solution, it is the eddy and diabatic

flux parameters, along with the steady solution itself,

that determine this adjustment time scale.

c. Adjustment to strong SH winds

For the second time-dependent numerical solution,

the high-latitude Southern Hemisphere winds are

abruptly intensified, by changing the wind forcing pa-

rameter t1 from t1 5 0 to t1 5 0.5 at time t 5 0 and then

holding it fixed at the new value. The initial state for this

calculation is the steady solution that is the final state of

the first time-dependent numerical solution (Fig. 3).

Except for the increased value of t1, the parameters for

this second time-dependent solution are the same as for

the first time-dependent solution.

The final state from this time-dependent adjustment

(Fig. 8) is similar to the original initial state (Fig. 2), but

with a larger meridional overturning circulation. As in

the original initial state, there is weak midlatitude and

equatorial upwelling (Figs. 8b,c), with the meridional

overturning circulation strengthening progressively north-

ward toward the Northern Hemisphere subpolar gyre

so that the high-latitude Northern Hemisphere down-

welling is slightly greater than the partially compensated

Ekman transport into the southern edge of the warm

layer. The latter is nearly twice that for the original ini-

tial state because of the increased Southern Hemisphere

winds. Relative to the initial state for the time-dependent

adjustment, the additional meridional transport diver-

gence for the final state is nearly constant with latitude

(Fig. 9c). Thus, the additional Ekman transport into the

warm layer, from the intensified Southern Hemisphere

winds, is balanced by a nearly uniform decrease in the

weak midlatitude upwelling, supported by a nearly uni-

form increase of 0.1 units (100 m) in the layer thickness

(Figs. 9a,b). There is a small region in the western part of

the Southern Hemisphere subtropical gyre, in which this

decrease is sufficient to cause local downwelling; this is

probably not physically realistic, but it has only a small

effect on the solution.

As in the previous case of cooling, the time-dependent

adjustment from the initial to the final state for the in-

tensified Southern Hemisphere winds proceeds in sev-

eral stages (Kawase 1987). On short time scales, t �
Tpwave, there is a zonally symmetric increase in the

thickness of the Southern Hemisphere subtropical gyre

because of Ekman convergence from the intensified

winds. This signal extends northward along the western

boundary to the equator, although the extension is less

dramatic than in the cooling case, because the forced

response itself directly affects the subtropical gyre (Fig. 10).

An enhanced convergence of the northward transport,

induced by the enhanced northward Ekman transport

at y 5 y2, extends northward to the equator and into

the Northern Hemisphere. An eastward penetration

along the equator of the leading edge of the distur-

bance is again visible in the height field during this

period (Fig. 10a).

On the longer but still short (t ’ Tpwave� Tadv) time

scales of planetary wave basin-crossing times, with Tpwave

again corresponding to dimensional times of several years

to a decade, the zonal slope of the layer thickness is again

established (Fig. 11). The pathway of the signal is again

eastward along the equator to the eastern boundary, then

poleward along the eastern boundary, and westward via

planetary waves.

FIG. 7. Eastern boundary thickness hE vs time t from numerical

solutions (thick solid line) for time adjustment to the solutions in

(a) Fig. 3 and (b) Fig. 8. Results for the analytical solution (29)–(32)

are also shown (thin solid). The time evolution described by the

functional form (31), with m given by (29), but with initial and final

values hE(0) and hEs taken from the numerical solution is in-

distinguishable from the numerical solution in this plot. For the

numerical solutions, the meridional mean of hE(y, t) is shown; the

corresponding standard deviation of hE(y, t) from the meridional

mean at each time was approximately 0.002.
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Finally, on the full (t ’ Tadv) adjustment time scale,

the mean layer thickness again evolves toward the

equilibrium state, whereas the horizontal structure of

the layer thickness variations remains roughly constant.

This adjustment is again exponential, with a time scale

on the order of 0.2, corresponding to dimensional times

of several decades (Fig. 7b).

4. Asymptotic analysis

a. Approximate solution

The main object of the asymptotic analysis is to derive

an approximate solution for the approach to steady state

of the time-dependent solution with fixed forcing and

parameter values. This analysis extends the results of

FIG. 8. Steady dimensionless numerical solution with (aw, ae) 5 (2, 1), t0 5 21, t1 5 0.5, h0 5 1, dhN
2 5 6: (a) h(x, y)

(CI 5 0.01; maximum contour labeled); (b) W(x, y) (CI 5 0.05 for W . 0, 1 for W # 0); and (c) V( y) vs latitude y.

FIG. 9. Differences of final and initial states from the second time-dependent adjustment, to the state in Fig. 8, with

(aw, ae) 5 (2, 1), t0 5 21, t1 5 0.5, h0 5 1, dhN
2 5 6: (a) Dh(x, y) (CI 5 0.002; maximum contour labeled); (b) DW(x, y)

(CI 5 0.02); and (c) DV(y) vs latitude y.
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Samelson (2009), which gave analytical approximations

for the corresponding steady-state solutions, which were

accurate when the friction coefficient r and a parameter

proportional to aw were both small. One additional

condition is necessary to obtain the reduced equation in

the present case: namely, the cross-basin propagation

time scale for the reduced-gravity planetary waves must

be short compared to the time scale for approach of the

large-scale solution toward steady state. With an addi-

tional approximation that the volume of the warm-water

layer can be estimated from the product of the eastern

boundary thickness hE and the basin area, an explicit

FIG. 10. Difference of instantaneous dimensionless numerical solution at t 5 0.0035 (dimensional t ’ 0.5 yr) from

initial state for the second time-dependent adjustment, toward the state in Fig. 8, with (aw, ae) 5 (2, 1), t0 5 21, t1 5

0.5, h0 5 1, dhN
2 5 6: (a) Dh(x, y) (CI 5 0.001; maximum contour labeled); (b) DW(x, y) (CI 5 0.01); and (c) DV(y) vs

latitude y.

FIG. 11. Difference of instantaneous dimensionless numerical solution at t 5 0.03 (dimensional t ’ 5 yr) from initial

state for the second time-dependent adjustment, toward the state in Fig. 8 with (aw, ae) 5 (2, 1), t0 5 21, t1 5 0.5, h0 5 1,

dhN
2 5 6: (a) Dh(x, y) (CI 5 0.002; maximum contour labeled); (b) DW(x, y) (CI 5 0.01); and (c) DV(y) vs latitude y.
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analytical solution can be readily obtained that describes

the approach to steady state and its dependence on the

forcing and parameter values.

As r / 0, with ty 5 0, the no-normal-flow condition

and (2) together imply that the eastern boundary depth

hE of the warm layer is constant along the boundary and

thus can depend only on time t,

h(x5x
E

, y, t)5h
E

(t). (14)

It is the eastern boundary depth that appears naturally in

the steady-state solutions, because it controls the mean

value of the layer thickness h and so is determined by the

warm-water volume balance that closes the steady prob-

lem (Samelson 2009; see also de Szoeke 1995; Johnson

et al. 2007). It will similarly play a central role in the time-

dependent solution derived here.

As r / 0, again, the momentum equations (1) and (2)

may be divided by f and substituted into the mass con-

servation equation (3), yielding the modified, nonlinear

long planetary wave equation,

h
t
� bg

f 2
hh

x
1a

w
h2 5a

w
h2

*�W
Ek

, (15)

where

W
Ek

5
ty

f

� �
x

� tx

f

� �
y

. (16)

Now, suppose that h2 may be written as

h2(x, y, t)5h2
E(t)1D2

0(x, y), (17)

where D0
2(x, y) is a function to be determined, and

substitute this expression into (15) to obtain

h
E

h

dh
E

dt
� bg

2f 2
(D2

0)
x
1a

w
h2

E 1a
w

D2
0 5a

w
h2

*�W
Ek

.

(18)

Because dhE/dt should be less than H/T 5 HU/L 5

1000 m/100 yr 5 7 m yr21, whereas typical midlatitude

values of WEk are on the order of 30 m yr21, it is con-

sistent to neglect dhE/dt in (18). This is equivalent to the

assumption that the time scale for adjustment of hE is

long compared to the basin-crossing time at the long

planetary wave speed cR 5 2bgh/ f 2. In this case, the

function D0
2(x, y) is determined to first order by the

steady-state balance,

(D2
0)

x
� lD2

0 5 l(h2
E � h2

*)1
2f 2

bg
W

Ek
, (19)

where l 5 2 f2aw/(bg). In addition, if aw is small enough

that l(xE 2 xW)� 1, the terms proportional to aw in (19)

may also be neglected (Samelson 2009), yielding

h(x, y, t)5[h2
E(t)1D2

0(x, y)]1/2,

D2
0(x, y)5

2f 2

bg

ðx

x
E

W
Ek

(x9, y) dx9. (20)

Thus, the instantaneous structure of h(x, y, t) may be

rationally approximated in this limit by the familiar steady-

state, adiabatic, wind-driven Sverdrup theory, provided

that the instantaneous value hE(t) of the eastern boundary

thickness is known.

An equation for the rate of change of hE may be obtained

by integrating the mass conservation equation (3) over the

extent of the warm-water layer. With the boundary con-

ditions (6) and (7) on transport across y 5 y2, this yields

ðy
N

y2

ðx
E

x
W

h
t
dx dy5T

Ek
1T

e
1

ðy
N

y2

ðx
E

x
W

W(x, y) dx dy, (21)

where

T
Ek

5(x
E
�x

W
)V

Ek
, T

e
5(x

E
�x

W
)V

e
. (22)

Thus, provided that ›(t x/f )/›y 5 0 at y 5 y2 so that hm
2 5

hE
2 , as in Samelson (2009), it follows that

ðy
N

y2

ðx
E

xW

h
t
dx dy5(x

E
�x

W
)(V

Ek
�a

e
h2

E)�a
w

(x
E
�x

W
)

3(y
N
�y

2
)[h2

E 1D
2

0(y
2
, y

N
)� h

2

*(y
2
, y

N
)],

(23)

where

D
2

0(y
a
, y

b
)5

1

(y
b
�y

a
)(x

E
�x

W
)

ðy
b

y
a

ðx
E

x
W

D2
0(x, y) dx dy and

(24)

h
2

*(y
a
, y

b
)5

1

y
b
�y

a

ðy
b

y
a

h2
*(y9) dy9. (25)

For ht 5 0, (23) yields the steady-state solutions of

Samelson (2009), whereas, in general,

ðy
N

y2

ðx
E

x
W

h
t
dx dy5h

E

dh
E

dt

ðy
N

y2

ðx
E

x
W

1

h
dx dy. (26)

The latter integral depends on hE and is not easily evaluated

analytically. However, a reasonable first approximation for

the relatively large-scale thicknesses H 5 1000 m of the

warm-water layer is

ðy
N

y2

ðx
E

x
W

1

h
dx dy’

1

h
E

(x
E
�x

W
)(y

N
�y

2
). (27)
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That is, the effective average of the wind-driven de-

formations D0
2(x, y) over the warm-layer extent may be

taken to be small relative to the eastern boundary

thickness hE.

The resulting ordinary differential equation for the

evolution of hE is

dh
E

dt
1mh2

E 5mh2
Es, (28)

where the parameter m is given by

m5
a

e
1a

w
(y

N
�y

2
)

y
N
�y

2

(29)

and hEs is the steady solution of Samelson (2009),

h2
Es 5

V
Ek
�a

w
(y

N
�y

2
)[D

2

0(y
2
, y

N
)�h

2

*(y
2
, y

N
)]

a
e
1a

w
(y

N
�y

2
)

.

(30)

Equation (28) is nonlinear but may be readily solved for

hE(t),

h
E

(t)5h
Es

1Dh
E

2h
Es

exp(�2mh
Es

t)

2h
Es

1Dh
E

[1�exp(�2mh
Es

t)]

� 	
,

(31)

where the constant DhE is the difference of the initial

value of hE(t) from hEs,

Dh
E

5h
E

(0)�h
Es

. (32)

Thus, the time-dependent solution approaches the steady

solution exponentially, with decay time scale

T
MOC

5
1

2mh
Es

. (33)

b. Discussion

The approximate analytical solution in (29)–(31) has

several immediate implications. First, under conditions

of steady forcing and parameter values, the approach to

the unique steady-state solution is monotonic; despite

the nonlinearity, there are no oscillations and no mul-

tiple equilibria. Second, the nonlinearity does cause

a dependence of the approach time scale TMOC [(33)] on

the steady-state solution value of the eastern boundary

thickness, such that the approach to solutions with rel-

atively larger eastern boundary thicknesses will be rel-

atively faster. Third and perhaps most important, the

approach time scale Tm is directly proportional to the

eddy flux and diabatic parameters ae and aw.

Despite the approximations involved, the analytic

solution accurately describes the time-dependent ad-

justment of both of the numerical solutions described in

the preceding section (Fig. 7). A small error is incurred if

the analytic solution is used to determine the steady-

state values of hE. If the functional form (31), with m

given by (29), is used with the initial and final values of

hE taken from the numerical solution, the resulting time

evolution of hE reproduces closely that from the nu-

merical solution (Fig. 7).

The parameterizations of eddy and diabatic fluxes

used here are crude, so the estimates of adjustment time

scale for the thermocline structure, as represented by

the layer thickness, may not be quantitatively accurate.

The primary significance of the results is the qualitative

demonstration of the direct dependence of the adjust-

ment time scale on these parameterizations. This result

should be robust and should not depend on the particular

parameterizations chosen here. Similar dependencies of

adjustment time scale on parameterized processes can

therefore be anticipated in much more sophisticated nu-

merical models of global ocean circulation, such as those

used in coupled climate system models.

A related extension of the scaling arguments of

Gnanadesikan (1999) and Johnson et al. (2007) to in-

clude time dependence has recently been proposed by

Allison (2009) and L. C. Allison et al. (2010, personal

communication). Although the form of the scaling so-

lution is different in detail, the qualitative result is

similar. Namely, the adjustment time scale for the large-

scale, middepth ocean thermocline—framed in terms of

the spin-up of the circumpolar current, rather than the

warm-water volume as here—is found as here to depend

on the eddy and diapycnal flux parameters.

It is important to note that, although (29)–(31) describe

the intrinsic time scale of thermocline adjustment asso-

ciated with the middepth meridional overturning, the

adjustment of the northward flux of warm water that

composes the warm-water branch of the middepth over-

turning may occur more rapidly. For example, almost half

of the change in northward flux occurs during the first half

year in the Northern Hemisphere cooling case (Figs. 4c,

5c) and even more in the Southern Hemisphere winds

case (Figs. 9c, 10c). This is due to the strong control ex-

erted on the meridional flux of warm water by changes in

external forcing or parameters, and it is also due to the

essentially instantaneous development of meridional flow

in the western boundary layer. In the Northern Hemi-

sphere cooling case, the effect on W of the instantaneous

change in h
*

is comparable in magnitude to that due to

the adjustment of h. In the Southern Hemisphere winds

case, the instantaneous change in TEk is generally larger

than the change in W or Te that is due to the adjustment of
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h. These rapid local changes in warm-water volume for-

mation and flux are communicated zonally by long

planetary waves and meridionally by western boundary

dynamics on shorter time scales than the basin-wide ad-

justment of the eastern boundary depth. Thus, the vol-

ume and heat fluxes associated with the warm-water

branch of meridional overturning may respond much

more rapidly than the thermocline structure.

5. Advective–diffusive midlatitude diabatic flux

An alternative form for the diabatic flux parameteriza-

tion is Wk 5 k/h, as given in (9). This form is motivated by

scaling for heat diffusion through the subtropical main

thermocline and is less appropriate for the cooling and

sinking regions of the Northern Hemisphere subpolar gyre.

Thus, a combination Ŵ of the two forms, which retains

the original (8) in the subpolar gyre, is considered here,

Ŵ(x, y)5A(y)W(x, y)1[1�A(y)]W
k
(x, y), (34)

where

A(y)5
1

2
1� tanh

y�y
SP

Dy

� �� �
(35)

so that A(y) 5 1 south of the subpolar gyre (y , ySP) and

A(y) 5 0 in the subpolar gyre (y . ySP), where Dy� 1 is

a transition distance that is small compared to the gyre scale.

For the solutions considered above, the deviations Dh

of h in the low and middle latitudes from a reference

value hr are generally small, Dh/hr # 0.1. Thus, Wk may

be approximated by

W
k
5

k

h
’

k

h
r

1� Dh

h
r

� �
. (36)

Similarly, the original form (8) of W in the tropical and

subtropical regions may be approximated by

W 5�a
w

(h2�h2
*)’�a

w
(h2

r �h2
* 12h

r
Dh). (37)

Thus, the two parameterizations will be essentially

equivalent if

a
w

5
k

2h3
r

and h* 531/2h
r
. (38)

The dimensional scale for the corresponding diffusivity

k is UH2/L 5 2 3 1024 m2 s21, so appropriate values of

the dimensionless k for the subtropical main thermo-

cline are 0.05 # k # 0.5. By (38), for hr ’ 1, the equiv-

alent range of values for aw would be 0.025 # aw # 0.25.

This is substantially smaller than the value aw 5 2 used

in the solutions above. However, the larger value is ar-

guably appropriate for the warm-to-cold conversion in

the subpolar gyre and thus was retained in the solutions

above. Although the scaling leading to the form Wk is

crude, this comparison does hint that the intensity of

midlatitude diabatic exchange may be exaggerated in

those solutions.

Numerical solutions with the modified diabatic flux Ŵ

from (34) are qualitatively similar to those with the orig-

inal flux (8) but have some quantitative differences. With

k 5 0.05, corresponding to a dimensional k 5 1025 m2 s21,

and all other parameters as in the second solution dis-

cussed above (dhN
2 5 6, t1 5 0), the time scale for ap-

proach to equilibrium is more than doubled (Fig. 12)

because of the weaker midlatitude diabatic fluxes. To

maintain numerical stability, the friction parameter r0

is increased from 0.05 to 0.06 for this solution, but this

has a negligible impact on the adjustment time scale and

only a small effect on the steady solution. The layer

thickness for the resulting k 5 0.05 steady solution is

shallower, with little diabatic upwelling in the tropics

and subtropics so that the meridional overturning trans-

port is nearly equal to the net flux into the warm layer

across the circumpolar current (Fig. 13). Because the layer

is shallower than in the previous solution (Fig. 8), the

FIG. 12. Eastern boundary thickness hE vs time t from numerical

solutions for time adjustment with the modified diabatic flux Ŵ

(thick solid line) defined in (34) and with the original W (thin line)

defined in (8). The initial state and all other parameters are as in the

first time-dependent adjustment, from the state shown in Fig. 2 to

that shown in Fig. 3, except that r0 is increased to 0.06 for the solution

with the modified Ŵ. The analytical solution, (40) and (41) with a1 5

0, for hE(t) is also shown (dashed–dotted line). The time evolution

described by the functional form (31), with m given by the modified

form (40) with a1 5 0 but with initial and final values hE(0) and hEs

taken from the numerical solution, is shown (dashed) but is nearly

indistinguishable from the numerical solution in this plot.
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southward eddy transport is reduced, and this net flux is

larger than in the previous solution. Consequently, the

total overturning flux of warm water into the Northern

Hemisphere subpolar gyre is close to that in the solution

with t1 5 0.5 (Figs. 13c, 8c). The pattern of sinking in the

Northern Hemisphere subpolar gyre, where the diabatic

flux parameterization is unchanged and the squared layer

thicknesses differ only slightly relative to the large nega-

tive value of h
*
2, is very similar in the two calculations.

The form in (9) leads (essentially as in Gnanadesikan

1999) to a cubic equation in the approximate solution,

which is less convenient for analysis than the original

form in (8). However, it is straightforward to include

both the weak midlatitude diabatic fluxes and the more

rapid high-latitude diabatic exchange time scale by

generalizing the original form in (8) of W to allow aw to

take different, constant values for y , ySP and y , ySP so

that, following (34),

a
w

(y)5A(y)a
1
1[1�A(y)]a

2
. (39)

For Dy� 1, this modified model is essentially no more

complex than the original model and allows a similar

analysis. For the approximate analytical solution, the

only resulting changes are to the quantities derived from

the area integral of W in (21). Equation (28) and the

solution in (30) take the same form, but now with

m5
a

e
1a

1
(y

SP
�y

2
)�a

2
(y

N
�y

SP
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y
N
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2

and (40)
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V
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2
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2

0(y
SP

, y
N

)� h
2

*(y
SP
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a
e
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1
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SP
� y

2
)� a

2
(y

N
� y

SP
)

. (41)

If a1� a2 in (40) and (41), as suggested by the scaling

from k, the diabatic fluxes will be dominated by the high-

latitude part, proportional to a2. In this limit, similar to

the case with flux Ŵ and small k, the small midlatitude

diabatic fluxes will have little effect on the adjustment

time scale m and eastern boundary depth hEs. Thus, with

the additional simplification a1 5 0, the approximate

solutions (40) and (41) provide an accurate estimate of

the time-dependent adjustment to equilibrium for the

solution with W 5 Ŵ (Fig. 12). The corresponding modi-

fied values (40) and (41) of m and hEs are m 5 1.0375

and hEs 5 0.67, relative to the values of m 5 2.625 and

hEs 5 0.92 for the original analytical solution with uniform

aw 5 2. This results in the longer, modified time scale

FIG. 13. Steady dimensionless numerical solution with the modified diabatic flux Ŵ defined in (34) and k 5 0.05,

(aw, ae) 5 (2, 1), t0 5 21, t1 5 0, h0 5 1, dhN
2 5 6: (a) h(x, y) (CI 5 0.02; maximum contour labeled), (b) W(x, y) (CI 5

0.04 for W . 0, 1 for W # 0); and (c) northward warm-layer transport V(y) vs latitude y.
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TMOC 5 0.7, corresponding to a dimensional time of more

than a century, relative to the original value TMOC 5 0.25,

with a dimensional time of only several decades (Figs. 7a,

12). This longer, modified time scale appears to be some-

what shorter than the dimensional adjustment time scales

of 103 yr from the related work by Allison (2009) and L. C.

Allison et al. (2010, personal communication). The dif-

ference may be the lack of a subpolar-gyre diabatic flux

representation in the latter work, the effect of which in the

present model would be to reduce m by setting a2 5 0, with

a1� 1, so that the adjustment time scale is primarily de-

pendent on ae alone.

6. Summary

A simple model of the warm-water branch of the

middepth meridional overturning cell (Samelson 2009)

has been extended here by restoring the local time rate

of change of the layer thickness in the mass conservation

equation, consistent with the planetary geostrophic ap-

proximation for large-scale dynamics, to explore the

time-dependent response to changes in external forcing

or parameters. Numerical solutions for two adjustment

scenarios were considered, first to intensified Northern

Hemisphere cooling and then to intensified Southern

Hemisphere winds. An analytical solution gives an ex-

plicit expression for the thermocline adjustment time

scale, which depends on diabatic and eddy flux param-

eters and on the final steady state. Much of the adjust-

ment of the meridional flux of warm water may occur

much faster than this time scale as an essentially in-

stantaneous response to changes in forcing or parame-

ters followed by relatively rapid adjustment through

boundary, equatorial, and planetary waves. For the so-

lutions considered here, the dimensional time scale for

planetary wave adjustment is several years, whereas that

for thermocline adjustment is several decades to a cen-

tury or more.

The specific adjustment scenarios considered here

were chosen as illustrative on general grounds rather

than as representative of changes in large-scale ocean

forcing that may be anticipated to occur over the next

century in association with predicted global climate

change. In addition, the anticipated climate-related

changes in large-scale forcing are expected to occur on

time scales of decades to centuries, comparable to the

intrinsic model adjustment time scale so that, for those

conditions, it would be more appropriate to analyze the

model response to time-dependent forcing parameters

rather than the time-dependent adjustment to equilib-

rium for fixed forcing parameters that is described here.

Nonetheless, some aspects of the model response under

those changing conditions can be inferred from the

existing analysis. General considerations and some

global climate models suggest that changes in large-scale

ocean forcing are likely to include increased freshwater

flux into the northern North Atlantic, as well as related

regional surface warming, and increasing Southern

Hemisphere westerlies near the latitudes of the Ant-

arctic Circumpolar Current. The former can be repre-

sented in the present model as a reduced tendency for

Northern Hemisphere cooling, a change opposite of the

first adjustment scenario (Figs. 2–4). The latter may be

represented by a change in wind forcing similar to the

second adjustment scenario (Figs. 8, 9).

The analysis of steady solutions indicates that both of

these representative changes for anticipated future

forcing conditions would tend to induce in the model an

increase in the eastern boundary thickness hE and thus

a warming and deepening of the midlatitude and tropi-

cal thermocline and an increase in southward eddy

fluxes of warm water across the circumpolar current.

The reduced Northern Hemisphere cooling would cause

an increase in hE in response to reduced northward

warm-water transport into the Northern Hemisphere

subpolar gyre, leading to convergence at lower latitudes.

This deepening reduces the diabatic upwelling and in-

creases the southward eddy transport across the cir-

cumpolar current, resulting in a state with larger hE and

reduced meridional overturning. The increased Southern

Hemisphere winds also induce in the model an increase in

hE, again representing a warming and deepening of the

midlatitude and tropical thermocline. In this case, how-

ever, the meridional overturning transport increases at all

latitudes (Fig. 9c). Thus, these two anticipated changes in

large-scale forcing have opposite effects on the strength

of the model midlatitude overturning transport. For the

increased Southern Hemisphere winds, the associated

increase in meridional overturning transport conver-

gence is spread nearly uniformly across all latitudes so

that the increased Southern Hemisphere Ekman trans-

port is balanced primarily by decreased interior upwelling

(Fig. 9b). With the weaker and presumably more realistic

midlatitude diabatic fluxes described by (34), this mid-

latitude convergence would be decreased in favor of me-

ridional transport into the subpolar gyre and increased

cross-hemisphere overturning. The main short-term changes

would be an increase in the meridional convergence of

the midlatitude and tropical overturning transport, tem-

porally correlated to the forcing with a lag of only a few

years, which would in turn slowly force a deepening of the

midlatitude and tropical thermocline on the longer (de-

cades to centuries) adjustment time scale TMOC.

The present model and analysis focus entirely on the

dynamics of the warm-water branch and its interaction

with surface forcing. The interface at the base of the
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warm layer in the present model can be taken to rep-

resent an isothermal surface around 78–108C, which

outcrops on the equatorward flank of the Antarctic

Circumpolar Current and extends well into the North

Atlantic subpolar seas. With this model, it is not possible

to address questions regarding the interaction of the deep

return flow with the warm-water flow or the pathways of

the warm-water flow through the warmer, stratified

midlatitude gyres and upper thermocline. A more com-

plete model would include a representation of upper-

thermocline structure in the midlatitudes and tropics,

with a two-layer or multilayer system replacing the pres-

ent, single, homogenous warm layer. The formulation and

analysis of such a model would require attention to the

treatment of layer outcrops (Huang and Flierl 1987), which

would likely preclude analytical solution and thus sub-

stantially limit the conceptual accessibility of the model.

However, such an approach would have the advantage of

allowing a more complete representation of the dynamics

and structure of the midlatitude and tropical components

of the warm-water branch of the middepth overturning, as

well as the interaction of the warm-water flow with the

deeper return flow.
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APPENDIX

Frictional Boundary Layers

Some elementary aspects of the boundary layers sup-

ported by the model equations in (1)–(3) are briefly sum-

marized here. Related analyses include those by Killworth

(1985), Salmon (1986), and Winton (1996). It is assumed

that t and W may be neglected in the boundary layers.

For the steady problem (ht 5 0), the equation for the

transport streamfunction (e.g., Samelson 2009) has the

standard exponential western boundary layer, with decay

scale r/b. The no-normal-flow condition at the western

boundary leads to a momentum balance resembling that

of a Kelvin wave,

�f y’�gh
x
, ry’�gh

y
, (A1)

with the linear damping term replacing the tangential

acceleration. The tangential velocity y may be elimi-

nated to give the condition

rh
x
1fh

y
50 on x5x

W
, (A2)

which, along with analogous conditions on the other

boundaries, is a differential equation that must be solved

along the boundary (Salmon 1986); the numerical im-

plementation used here follows Samelson and Vallis

(1997), where (A2) is written in terms of the components

of $h2 instead of $h. In the present case, as in Samelson

(2009), the condition hy 5 VEk is imposed in the mo-

mentum condition (A1) and (A2) at the southern

domain boundary y 5 y2, in place of the strict no-

normal-flow condition (A2) that would apply at a rigid

boundary. [Note that, because the inviscid definition

(6) of VEk is used, this induces a small zonal thickness

gradient hx ; r2 � 1 at y 5 y2 in the numerical solu-

tions.] The sum of VEk and the eddy flux Ve are im-

posed at y 5 y2 as the southern boundary condition for

the mass balance equation (3), but Ve is not included

in the equivalent to (A2), because the associated dy-

namics are not resolved; tests indicate that the solutions

are not sensitive to these details of the southern boundary

momentum equation.

The boundary differential equation, (A2) and its ana-

logs, is coupled to the interior through the normal de-

rivative of h and the constraint arising from an integration

around the boundary of (A2) and its analogs, divided by

f, in which the integral of the tangential derivative of

h vanishes exactly. In the case of steady flow (e.g.,

Samelson 2009), the interior equations and the boundary

equation can be solved simultaneously through an itera-

tive process. In the case of unsteady flow, the combined

system can support propagating boundary disturbances

analogous to those discussed by Killworth (1985) and

Winton (1996); these propagating disturbances are not

Kelvin-type waves, which as noted above appear only in

steady, damped form, but involve instead a combination

of frictional and geostrophic-advective effects.

The local structure of the western boundary solution

for h can be deduced from (A1), (A2), and the expo-

nential boundary layer solution for the transport stream-

function. The latter translates into a similar exponential

boundary layer for h2 so that

h2 ’ h2
I 1(h2

B�h2
I )exp �b

r
(x�x

W
)

� �
, (A3)

where hB and hI are the local boundary and interior values

of h, respectively, which may vary with y on scales much

larger than r/b. With (A2) and f 5 by, this means that

dh2
B

dy
’

1

y
(h2

B�h2
I ), (A4)

which can be integrated directly from an arbitrary point

y 5 y
*

to y, giving
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h2
B 5y

h2
B(y*)

y*
�
ðy

y*

h2
I

~y2
d~y

" #
. (A5)

Thus, hB
2 will be approximately linear in y in regions

where ›hI/›y ’ 0. Near the equator (i.e., for jyj � yeq 5

req/b; recall that r ’ 0.25 for jyj # 0.1 in the numerical

solutions), the momentum balance may be taken to be

ageostrophic,

u’�g

r
$h, (A6)

leading in the steady case to a potential flow =2h 5

0 and, in view of the western boundary condition u 5 0,

to penetration of the boundary value of h into the

equatorial interior. Alternatively, an approximate bal-

ance resembling that of a damped equatorial Kelvin

wave follows if the zonal flows are presumed sufficiently

strong to be balanced geostrophically. Thickness ad-

vection may become significant in either the western or

equatorial boundary layers if the tangential velocities

become sufficiently large.
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