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Using remotely-sensedmetrics to identify regions containinghigh animal diversity and/or specific animal species
or guilds can help prioritize forestmanagement and conservation objectives across activelymanaged landscapes.
We predicted avian species richness in twomixed conifer forests, MoscowMountain and Slate Creek, containing
different management contexts and located in north-central Idaho.We utilized general linear models and an AIC
model selection approach to examine the relative importance of a wide range of remotely-sensed ecological
variables, including LiDAR-derivedmetrics of vertical and horizontal structural heterogeneities of both vegetation
and terrain, and Landsat-derived vegetation reflectance indices. We also examined the relative importance
of these remotely sensed variables in predicting nesting guild distributions of ground/understory nesters, mid-
upper canopy nesters, and cavity nesters. All top models were statistically significant, with adjusted R2s ranging
from 0.05 to 0.42. Regardless of study area, the density of the understory was positively associated with total
species richness and the ground/understory nesting guild. However, the relative importance of ecological
predictors generally differed between the study areas and among the nesting guilds. For example, for
mid-upper canopy nester richness, the best predictors at Moscow Mountain included height variability
and canopy density whereas at Slate Creek they included slope, elevation, patch diversity and height
variability. Topographic variables were not found to influence species richness at Moscow Mountain but
were strong predictors of avian species richness at the higher elevation Slate Creek, where species richness
decreasedwith increasing slope and elevation. A variance in responses between focal areas suggests that we
expand such studies to determine the relative importance of different factors in determining species
richness. It is also important to note that managers using predictive maps should realize that models
from one region may not adequately represent communities in other areas.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Biodiversity is central to ecosystem functioning worldwide (Hooper
et al., 2005). As human influences on the environment continue to grow,
understanding and quantifying the factors driving biodiversity have
received increased attention to support management and conservation
efforts (Vitousek, Mooney, Lubchenco, & Melillo, 1997). Although
numerous factors can affect biodiversity, vegetation structure is fre-
quently identified as an important driver at the local scale (Farley,
Ellis, Stuart, & Scott, 1994; Goetz, Steinberg, Dubayah, & Blair, 2007;
MacArthur & MacArthur, 1961; Sallabanks, Haufler, & Mehl, 2006).
stems and Society, Oregon State
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geler).
Greater vegetation structural complexity is thought to maintain
higher biodiversity across a range of taxonomic groups by providing
a variety ofmicroclimates andmicrohabitats (Carey, 1998;MacArthur &
MacArthur, 1961;Müller & Brandl, 2009; Verschuyl, Hansen, McWethy,
Sallabanks, & Hutto, 2008; Vierling et al., 2011). Different aspects of
vegetation structuremay be important towildlife species for life history
needs, such as reproduction, cover from predation and weather, and
foraging (Bradbury et al., 2005).

Light Detection and Ranging (LiDAR) is an effective technique for
acquiring fine-resolution, three-dimensional vegetation structure data
relevant to the study of animal diversity, yet with wider spatial extent
than field-based measures (Hyde et al., 2005; Müller, Stadler, &
Brandl, 2010; Vierling, Vierling, Gould, Martinuzzi, & Clawges,
2008; Vierling et al., 2011). The well-documented relationships
between bird diversity and field-sampled vegetation structure

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2014.02.006&domain=pdf
http://dx.doi.org/10.1016/j.rse.2014.02.006
mailto:jody.vogeler@oregonstate.edu
http://dx.doi.org/10.1016/j.rse.2014.02.006
http://www.sciencedirect.com/science/journal/00344257


14 J.C. Vogeler et al. / Remote Sensing of Environment 147 (2014) 13–22
(MacArthur & MacArthur, 1961; MacArthur, Recher, & Cody, 1966)
have made this taxonomic group a focus of many studies exploring
the relationship between LiDAR-derived three-dimensional vegetation
structure in modeling wildlife habitat associations (Clawges, Vierling,
Vierling, & Rowell, 2008; Goetz et al., 2007; Müller et al., 2010). The
diversity of birds is of particular interest in a wide array of studies,
owing to the importance of birds as indicators of ecological function
and degradation (Carignan & Villard, 2002).

While many of the studies utilizing LiDAR data to examine bird
diversity relationships agree with previous findings indicating that
some metric of foliage height diversity is a strong predictor of bird
diversity (e.g. MacArthur & MacArthur, 1961; MacArthur et al., 1966),
there is great variability in the metrics included. Some studies utilize
LiDAR in addition to other sources of remotely sensed data (Clawges
et al., 2008; Goetz et al., 2007; Jones, Arcese, Sharma, & Coops, 2013),
while others incorporate LiDAR metrics alone (e.g. Lesak et al., 2011;
Müller et al., 2010) in their analyses. Additionally, the studies have
been conducted in a variety of different forest types (Mueller &
Vierling, 2014), and there are a diversity of non-LiDARmetrics incorpo-
rated in the studies. For example, Flaspohler et al. (2010) incorporated
the size of forest fragments in their study of Hawaiian bird diversity,
and the incorporation of landscape characteristics such as patch size,
patch shape, and horizontal heterogeneity of vegetation structure are
limited in the existing LiDAR-based studies of bird diversity. It is impor-
tant to consider additional environmental characteristics in these stud-
ies because although vertical vegetation structure is undoubtedly an
important influence on avian diversity in some communities, the re-
sponses of bird communities to vegetation structure may also be influ-
enced by a variety of ecological variables such as topographic
gradients (Rompré, Robinson, Desrochers, & Angehr, 2007), landscape
patterns (Saab, 1999), and management regimes (Twedt, Wilson,
Henne-Kerr, & Hamilton, 1999).

Our main objective was to explore local species richness patterns
in western North America, where only two studies have examined the
relationships between LiDAR structure and bird diversity in conifer-
dominated forests (Clawges et al., 2008; Jones et al., 2013). These stud-
ies have shown that LiDAR-derived variables are useful predictors of
species richness, and our objective was to expand upon these studies
in two fundamentalways. First, few studies have simultaneously includ-
ed vertical and horizontal structural heterogeneities, terrain, and vege-
tation reflectance features within the same analysis of bird species
richness. Second, although a few LiDAR-based studies have grouped
avian species by broad habitat associations (Goetz et al., 2007; Jones
et al., 2013), the use of forest-specific nesting guilds for examining
LiDAR-derived forest structure relationships has yet to be explored.
Finally, it is important to determinewhether the same ecological variables
that are important in onemixed-coniferous forest might differ in another
mixed-coniferous forest. Our objectives therefore were to model total
species richness and nesting guild richness (ground/understory nester,
mid-upper canopy nester, and cavity nester) using a wide variety
of environmental metrics, and to compare the relative importance
of metrics in predicting species richness between two different
study areas of mixed-coniferous forest.

2. Methods

2.1. Study areas

We sampled two study areas in north-central Idaho: Moscow
Mountain and the Slate Creek drainage. Moscow Mountain is a
~20,000-ha peninsula of mixed conifer forest bordered on three
sides by agricultural lands located ~20 km northeast of the city of
Moscow, Idaho (46°49′N, 116°50′W). The majority of ownership
belongs to private industrial logging companies with additional
minority ownership of lands divided among the University of Idaho
Experimental Forest, the City of Troy watershed, and small private
landowners. Forest tree species include Western red cedar (Thuja
plicata), Grand fir (Abies grandis), Douglas-fir (Pseudotsuga menziesii),
Ponderosa pine (Pinus ponderosa), Western larch (Larix occidentalis),
Lodgepole pine (Pinus contorta),Western hemlock (Tsuga heterophylla),
Engelmann spruce (Picea engelmannii), Western white pine (Pinus
monticola), and Subalpine fir (Abies lasiocarpa). Themanaged landscape
is a mosaic of forest successional stages with the majority of the
landscape ranging from recently logged to mature multi-story, with
a small proportion of old multi-story stands (Falkowski, Evans,
Martinuzzi, Gessler, & Hudak, 2009), and elevations ranging from
816 to 1242 m.

The Slate Creek study area is located on public land held by the
National Forest Service within the Salmon River Ranger District of the
Nez Perce National Forest of central Idaho (45°38′N, 116°2′W). In this
landscape, our study focused upon a subset of the National Forest in
the Slate Creek drainage ~30,000 ha in extent, with elevations ranging
from 1125 to 2250 m. Higher elevation survey locations were located
in the Gospel Hump Wilderness. Slate Creek includes the same tree
species as Moscow Mountain, but with different relative proportions
(dominant species at Moscow Mountain were Western red cedar and
Grand fir while Douglas-fir and Lodgepole pine were dominant at
Slate Creek). Slate Creek differs from Moscow Mountain in that it has
larger topographic gradients and is less intensively managed with the
full range of successional stages represented and a greater proportion
within late-seral stages. While the Moscow Mountain study area is
situated along the forest-agricultural land ecotone at the western
extreme of the coniferous forest belt of north-central Idaho, the Slate
Creek study area occurs within this coniferous forest belt.

2.2. Bird surveys and richness calculations

We randomly selected point count locations from study area
maps stratified by forest structure. We used handheld Garmin Global
Positioning System (GPS) units in conjunction with aerial photographs
to locate the predetermined sample points in thefield. Due to the 4-year
gap between LiDAR acquisition and bird surveys at Slate Creek, sample
sites within recently disturbed forest stands were relocated to an
alternative random location within that stratum.

Avian point count surveyswere conducted in theMoscowMountain
and Slate Creek study areas during the breeding seasons of 2009 and
2010, respectively following Vogeler, Hudak, Vierling, and Vierling
(2013). Each of the 151 survey sites on Moscow Mountain and 164
survey sites at Slate Creek were visited twice during the season to
increase the likelihood of detecting the majority of breeding bird
species. Each survey point was separated by at least 250 m, and we
used 8-minute variable-radius point countmethods, where all bird indi-
viduals identified by sight or sound were recorded and distances were
estimated (Reynolds, Scott, & Nussbaum, 1980). A single observer
(Vogeler) conducted the point counts at Moscow Mountain in 2009
while two observers were used at Slate Creek for the 2010 surveys
(Vogeler plus one technician). For the 2010 Slate Creek survey with
two observers, there was intensive pre-season training to calibrate
species identification and distance estimation between the observers.
Additional details on the point count methodology used in this study
can be found in Vogeler et al. (2013).

Point specific species richness was calculated using the birds that
were detected within 75m from the point count center. Recent stud-
ies have shown that low detectability at this spatial scale can be
attributed to low occurrence and not the product of detectability
issues (Dorazio, Royle, Soderstrom, & Glimskar, 2006, but see
Alldredge, Pollock, Simons, & Shriner, 2007), including one study oc-
curring in a geographic region with comparable forest structure
(Verschuyl et al., 2008). To reduce the bias of rare species that may
only be passing through the site, we adjusted our species richness
values by removing any species with fewer than three independent
detections during the season. Individuals recorded while flying
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over the site were also removed (Reynolds et al., 1980). Partial identifi-
cations were excluded, e.g. UNWA (unknown warbler), to include only
confident identifications in the species richness calculation. Point
counts from both visits to each survey site were pooled, and the total
number of unique species observed in the 75 meter radius survey site
was recorded as the total species richness for that location. Three
nesting guild delineations were used in this study following the
methods of Salek, Svobodova, and Zasadil (2010): ground and under-
story;mid-upper canopy; and cavity.We compiled nest location prefer-
ences for all species detected using Birds of NorthAmerica (2013). Guild
specific species richnesswas calculated using the samemethods as total
species richness for the 75 meter radius scale at each survey location.

2.3. LiDAR and Landsat data

Airbornemultiple-return discrete LiDAR data were utilized to derive
all vegetation structuremetrics. Data acquisition occurred at Slate Creek
and MoscowMountain in the summers of 2006 and 2009, respectively.
Both LiDAR surveys were conducted by Watershed Sciences, Inc.
(Corvallis, OR) with a Leica ALS50 system with point densities of ≥4
points/m2. The Moscow Mountain and Slate Creek flights had average
vertical accuracies of 4.3 cm and 8.8 cm, respectively. Ground returns
were classified using the Multiscale Curvature Classification (MCC)
algorithm (Evans & Hudak, 2007) then subsequently interpolated
into a 1-m digital terrain model (DTM). The DTM was subtracted
from the all-return data to calculate canopy heights, which were
then binned into 20m× 20m grid cells for the purpose of calculating
height-based statistical metrics including height maximum, mean,
and standard deviation. See Evans, Hudak, Faux, and Smith (2009)
for a complete list of canopy metrics that can be generated from
the LiDAR height distributions. Although there was a 4 year gap be-
tween the LiDAR acquisition and the collection of field data at Slate
Creek, Vierling, Swift, Hudak, Vogeler and Vierling (2014) found that a
6 year gap between LiDAR acquisitions and the collection of bird field
data changed the mapped output of total species richness in the non-
harvest areas of Moscow Mountain by b1 species (out of 23), and the
Slate Creek sites were similar to the non-harvest areas used in the
Vierling et al. (2014) study.

Single-date Landsat 5 TM images were used to create a normalized
difference vegetation index (NDVI) map for the study areas. Seto,
Fleishman, Fay, and Betrus (2004) andBailey et al. (2004) demonstrated
the use of single date Landsat-derived NDVI measures in species
richness models. We selected Landsat 5 images from the 2009 and
2010 summer seasons with minimal cloud cover and post snow melt:
resultant image dates were July 3, 2009 (Moscow Mountain; path/row
43/27; 0% cloud cover) and August 5, 2010 (Slate Creek; path/row
45/28; 3% cloud cover). The image dates represent late growing
season reflectance from the landscapes as opposed to the early
season reflectance characteristic of the habitat during the period
when birds are selecting breeding habitat. Due to cloud cover and
snow patches, images from earlier in the season were not suitable
for reliable extraction of model metrics. The higher elevations at
Slate Creek and the persistence of snow later into the season at this
study area help to justify the image acquisition a month later than
the lower elevation Moscow Mountain study area.

Calibration parameters for each Landsat 5 band were acquired from
the metadata file accompanying the image downloaded from USGS
in order to calculate at-sensor reflectance; at-surface reflectance
was achieved using the band minimum dark subtraction method.
We derived NDVI following Tucker (1979).

Model metrics derived from LiDAR and Landsat were calculated for
the bird survey locations using zonal statistics in ArcGIS for the local
75 meter radius plot in order to match the scale of the avian response
variables. At the 20 m × 20 m pixel size of the LiDAR-derived
topographic, vertical, and the horizontal structure metrics, approxi-
mately 37 whole pixels and 23 partial pixels were weighted in the
75 meter buffer metric extraction, with total counts varying as a
function of where in the center pixel the point count location was
located. The 30 m resolution of the Landsat-derived NDVI map
included approximately 13 whole and 12 partial pixels in metric
calculations, which are exact counts that also depended on survey
location in the center pixel.

2.4. Predictive modeling and statistical analyses

After the removal of point count locations with noise disturbance
capable of affecting bird detections, inclementweather thatmay impact
bird behavior, or errors involved in the maps derived from remotely
sensed variables (such as cloud cover in the Landsat images), a total of
142 points at Moscow Mountain and 134 points at Slate Creek were
used in the statistical analyses. We utilized general linear models to
explore relationships between bird species richness and a variety of
remotely-sensed forest metrics. We included seven variables in our
modeling framework and broadly categorized them into the following
four groups: vertical forest structure, horizontal forest structure,
topographic characteristics, and vegetation greenness (Table 1).

LiDAR data accommodates the extraction of a variety of height and
density metrics, although we only wanted to include a few to represent
vertical forest structure in this analysis. As a form of preliminary
variable selection we utilized the free search procedure in HyperNiche,
a non-parametric habitat modeling software, to determine the single
best LiDAR structure predictor for each study area-specific response
variable from a suite of LiDAR height and density metrics. The local
linear estimates within HyperNiche selected the proportion of returns
within stratum 2 (1.0–2.5 m above ground), which represents the den-
sity of vegetation in the understory, as the best LiDAR vertical structure
predictor for all Slate Creek response variables. Understory density
(Ustory) was also selected as the best single predictor for Moscow
Mountain total species richness (TSR) and the ground/understory
nesting guild (GSR1), while canopy density (Canopy) best predicted
the mid-/upper-canopy nesting guild (GSR2) and the cavity nesting
guild species richness (GSR3). Many of the previous LiDAR-based
studies examining avian communities have identified the importance
of vertical height diversity in predicting bird diversity. Therefore, we
choose to include the standard deviation of height (HSD) as a third
vertical structure variable to facilitate comparisons of our findings
with those of previous studies. While other variables such as canopy
height may also influence avian diversity, the model selection process
identified the metrics of greatest influence at our study areas.

In order to address “horizontal” forest patch diversity, we also
included the diversity of forest classes in our modeling approach. We
created an eight-level classification of both landscapes by combining
LiDAR-derived mean height and canopy density classes mapped at 20
m spatial resolution (Fig. 1). We overlaid 75 meter radius buffers
surrounding our point count locations onto the 8-level classification
map in ArcGIS, and then utilized FRAGSTATS (McGarigal, Cushman,
Neel, & Ene, 2002) to calculate the Shannon Diversity Index of patches
among these different forest classes within the buffered area. This
patch diversity metric (Patch) was included in the models to represent
horizontal forest patch diversity. LiDAR also provides digital terrain
models (DTMs) which we used to extract mean elevation (Elev) and
mean slope (slope; Table 1).

General linear models were created in the statistical software
program, R (R Development Core Team, 2012) to test for significant
relationships among the response variables (bird species richness,
guild-specific richness) and a variety of remotely sensed forest metrics.
We used a variance inflation factor (VIF) threshold of b3 to ensure that
highly correlated variables were not included in the modeling process
(Montgomery, Peck, & Vining, 2006). For ourmodel selection approach,
we calculated Akaike information criterion (AIC; Akaike, 1973) values
for a candidate set of 25 models including a global model containing
all predictor variables, and an intercept only model. AIC values were



Table 1
Descriptions of LiDAR and Landsat-derived metrics included in predictive models for total and guild specific species richness at two mixed conifer study areas in Idaho.

Predictor variables (75 m radius scale) Abbrev. Metric description

Vertical structure (LiDAR)
Canopy height standard deviation Height_σ Standard deviation of mean canopy heights
Understory density Ustory Percentage of LiDAR returns between 1 and 2.5 m
Canopy density Canopy Mean density of LiDAR returns above 2 m

Horizontal structure (LiDAR)
Patch diversity Patch Shannon diversity of patches classified using mean canopy height and density classes

Topographic (LiDAR)
Slope Slope Mean slope calculated from digital terrain model (DTM)
Elevation Elev Mean elevation extracted from LiDAR-derived DTM

Vegetation greenness (Landsat)
Normalized Difference Vegetation Index NDVI Mean normalized difference vegetation index indicative of vegetation greenness
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then ranked to determine themodel with the lowest AIC value for each
of the species richness response variables; any model within 2 units of
the lowest AIC value was considered a competing model (Burnham &
Anderson, 2002).We calculated Akaike weights to compare the relative
support of eachmodel and importance values for individual parameters
Fig. 1. LiDAR-derived forest classification utilizingmean canopyheight anddensitymetrics for a)M
moderate (41–70%); and high (71–100%). The three classes ofmean height include: low (0–5m);
heightmetrics created a 9-level classification, but the absence of the class characterized by low den
(Figure in color for print and web versions).
for explaining the variance of the data (Johnson & Omland, 2004). The
Akaike weights can be considered to represent the probability of a
model given the data, with weights summing to 1 across candidate
models, and can be utilized to calculate more robust parameter
estimates and weighted standard errors (Johnson & Omland, 2004).
oscowMountain, andb) Slate Creek. Canopydensitywas divided into 3 classes: low (0–40%);
moderate (6–15m); and high (16 m—max height). The combination of the three density and
sity and highmean height from the landscape resulted in an 8-level patch classificationmap.
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We mapped species richness across the two study landscapes
(~50,000 ha combined) to visualize landscape patterns in species
richness and to demonstrate the practical utility of ourmodels for forest
managers. The ArcGIS focal mean and standard deviation functions
were applied to filter the 20 m LiDAR metrics of selected variables
within the circular neighborhood of 3 cells surrounding every pixel,
producing output rasters that matched the scale of the 75 meter radius
point count survey plots in the field. To simulate the patch diversity
metric that had been generated in FRAGSTATS, a variety function was
applied to the 8-level canopy structure classification map, which was
then rescaled to match the range of the patch metric calculated across
the bird survey plots. Using the aforementioned prediction layers,
the best model could then be applied to the study areas by applying
the predict function within the yaImpute package (Crookston & Finley,
2008) in R.

Due to the strong differences between the relatively lower elevation
forests of MoscowMountain that are surrounded by agriculture and the
more rugged Slate Creek landscape embedded within a larger forest
matrix, we created separate models for each of the two study areas.
Our site-specific model development allowed for a better understand-
ing of whether the same forest characteristics are strong predictors of
forest bird richness regardless of the surrounding landscape and eleva-
tion, although the site specific modeling approach did not provide large
enough datasets for independent validation data. Therefore we utilized
leave-one-out-cross-validation (LOOCV), a procedure that omits one
observation at a time in the models to use as validation data, in order
to calculate prediction errors for the top models for each response
variable and study area. To better understand the differences in the
model variables between the study areas, we conducted Welch's
two-sided t-tests in R to test for significant differences between
study area predictive variable means as well as the mean species
richness response variables.
3. Results

3.1. Study area comparisons

A total of 78 avian species were detected in the variable-radius
point counts during the two year study. Forty species occurred in both
study areas in addition to 25 species unique to Moscow Mountain
and 13 species unique to Slate Creek (Supplementary Table S1).
The ground/understory nesting guild represented 44% and 36% of
the species at Moscow Mountain and Slate Creek, respectively. At
Moscow Mountain, 30% of the bird species nested in the mid-/upper
canopy compared to 36% at Slate Creek. Cavity-nesters comprised 26%
of Moscow Mountain species and 28% of Slate Creek species.
Table 2
Comparison of means and 95% confidence intervals (in parentheses) for response and
predictor variables included in models for the Moscow Mountain and Slate Creek study
areas. Total species richness (TSR) and guild specific species richness values
(ground/understory nesters:GSR1; mid-upper canopy nesters:GSR2; cavity nesters:
GSR3) represent the number of unique species identified within a 75 meter radius at survey
locations. All predictor variables were derived from LiDAR data with the exception of the
Landsat-derived NDVI.

Moscow Mountain Slate Creek

Response
variables

TSR 10.070 (9.587, 10.554) 9.209 (8.736, 9.682)
GSR1 4.803 (4.454, 5.152) 3.448 (3.196, 3.700)
GSR2 3.183 (2.921, 3.446) 3.948 (3.692, 4.204)
GSR3 1.761 (1.583, 1.938) 1.791 (1.627, 1.955)

Predictor
variables

Height_σ 3.260 (3.014, 3.507) 3.239 (2.998, 3.481)
Ustory 6.847 (6.163, 7.531) 5.072 (4.500, 5.644)
Canopy 50.248 (46.444, 54.052) 60.523 (57.687, 63.360)
Patch 0.955 (0.888, 1.022) 0.939 (0.878, 1.001)
Slope 7.713 (7.018, 8.408) 11.513 (10.289, 12.736)
Elev 963.148 (947.722, 978.574) 1720.006 (1682.150, 1757.863)
NDVI 0.744 (0.729, 0.759) 0.366 (0.355, 0.376)
Significant differences between response variable means between
Moscow Mountain and Slate Creek included a higher mean GSR1 at
the former, while Slate Creek exhibited a significantly higher mean
GSR2 (Table 2). In our examination of differences in mean ecological
variables between the study areas, significantly highermeanunderstory
densities and NDVI values were observed at Moscow Mountain, while
Slate Creek had significantly higher canopy density, slope, and elevation
(Table 2). The significantly higher NDVI atMoscowMountainmay be in
part due to the fact that this Landsat image was acquired closer to peak
green-up, or over a month sooner (3 July 2009) than at Slate Creek
(5 August 2010).

3.2. Total species richness and nesting guild richness

LiDAR-derived vertical structure variables were significant predic-
tors of total species richness at both the Moscow Mountain and Slate
Creek study areas, although their predictive strength and relative
importance compared to the other ecological variables varied between
Moscow Mountain and Slate Creek (Fig. 2). Although top models were
significant for all response variables, model performance varied
between the two study areas and species richness response variables,
with adjusted R2s ranging from 0.05 to 0.42 (Table 3).

Understory density had the highest relative importance for TSR
on Moscow Mountain as determined by parameter Akaike weights
(0.934), although NDVI was also a significant predictor (Table 4).
At Moscow Mountain, TSR increased with increasing values of both
understory density and vegetation greenness (Table 4). Understory
density was also a significant predictor of TSR at Slate Creek, although
other significant relationships were observed among the ecological
variables (Table 4). The following variables were found to significantly
influence TSR at Slate Creek: understory density, canopy density, slope,
and elevation (Table 4). TSR at Slate Creek decreased at higher eleva-
tions and with steeper slopes, and increased with greater understory
densities (Table 4). The standard deviation of heights was selected in
top models for all species richness response variables at both Moscow
Mountain and Slate Creek (Table 3), but was a relatively weak predictor
compared to other variables formost of the response variables (Table 4).
Top models for total species richness had an adjusted R2 of 0.15 for
Moscow Mountain and 0.32 for Slate Creek. Total species richness
predictive maps were created using the best model for each study
area (Fig. 3).

Model performance was found to be among the highest for the
ground/understory nesting guild species richness at both study
areas with adjusted R2 values of 0.26 and 0.42 for Moscow Mountain
and Slate Creek, respectively (Table 3). Understory density exhibited
significant positive relationships with the ground/understory nesting
guild species richness at both Moscow Mountain and Slate Creek,
while canopy density was negatively associated with GSR1 at both
study areas (Table 4). The Landsat-derived NDVI was also highly
correlated with GSR1 at Moscow Mountain, with higher values of
NDVI associated with higher GSR1 values. In addition to the understory
and canopy density metrics at Slate Creek, elevation was also found
to have a significant influence on GSR1, where GSR1 decreased with
higher elevations (Table 4).

The relative importance of ecological variables varied for the
mid-/upper-canopy nesting guild at the two study areas (Fig. 2).
A strong positive relationship was observed between GSR2 and
canopy density at Moscow Mountain, while slope was the only sig-
nificant predictor of GSR2 at Slate Creek where GSR2 decreased
with increasing slopes (Table 4). Model performance was higher at
Moscow Mountain with an adjusted R2 of 0.28 compared to 0.09
for the top Slate Creek GSR2 model (Table 3).

The model R2
adj values for cavity nesting species richness were the

lowest of the response variables for both Moscow Mountain and Slate
Creek at 0.06 for both study areas (Table 3). GSR3 decreased with
increasing canopy density at Moscow Mountain. At the Slate Creek
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Fig. 2. Relative importance of LiDAR and Landsat forest characteristics in the prediction of response variables as defined in Table 1. Variance explained equates to the adjusted R2 values
for the associated candidate models. The LiDAR- and Landsat-derived ecological predictor variable groups and their associated variables included in the candidate models are: vertical
(understory density, canopy density, and standard deviation of height); horizontal (patch diversity); topographic (slope and elevation); and greenness (NDVI). Global models include
all model metrics.
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study area, GSR3 increased with understory density, although not
quite significant at the 0.05 confidence threshold (Table 4).

4. Discussion

4.1. Vertical structure

Vertical forest structure metrics were significant predictors for
species richness patterns at both study areas, appearing in top models
for all of the total and nesting guild-specific response variables. The
density of the understory exhibited a strong positive influence on
Table 3
Adjusted R2 values and model selection results for top models for total bird species richness (T
models for the MoscowMountain (MM) and Slate Creek (SC) study areas. Models represent th
be considered to represent the probability of a model given the data, with weights summing to
leave-one-out-cross-validation approach for all competing models.

Response variable Study area Competing models

TSR MM Ustory, NDVI
Height_σ, Ustory, NDVI
Ustory, Patch, NDVI,

SC Height_σ, Ustory, Canopy, Slope, Elev, Patch
Height_σ, Ustory, Canopy, Slope, Elev, patch, NDVI

GSR1 MM Height_σ, Ustory, Canopy, NDVI
SC Height_σ, Ustory, Canopy, Slope, Elev, Patch

Height_σ, Ustory, Canopy, Slope, Elev, Patch, NDVI
GSR2 MM Height_σ, Canopy

Canopy
SC Slope, Elev, Patch

Height_σ, Slope, Patch
Height_σ, Slope, Elev, Patch

GSR3 MM Canopy
Height_σ, Canopy

SC Ustory
Height_σ, Ustory
Height_σ, Ustory, Canopy, Slope
Ustory, NDVI
multiple species richness patterns including total species richness
and the ground/understory nesting guild at Moscow Mountain and
all of the Slate Creek richness variables with the exception of the
mid-upper-canopy nesting guild. Previous studies have also noted
the importance of this understory layer for bird diversity (Clawges
et al., 2008; Hagar, Dugger, & Starkey, 2007). Jones et al. (2013)
also found promise in utilizing the LiDAR-derived strata specific
densitywith density in theunderstory significantly predicting the forest
guild species richness. Throughfield-based efforts, Clawges et al. (2008)
observed that the understory vegetation in the 0.5–2.0 meter foliage
layer, comparable to our understory strata, was predominately
SR) and guild-specific response variables condensed from the original set of 25 candidate
ose with the lowest AIC value and those with a delta AIC score b2. The Akaike weights can
1 across candidate models. Mean square prediction errors (MSE) were calculated using a

R2 p-Value AIC ΔAIC Akaike weights Prediction error

0.152 b0.001 690.797 0 0.403 7.642
0.152 b0.001 691.921 1.125 0.230 7.680
0.147 b0.001 692.659 1.862 0.159 7.735
0.318 b0.001 612.833 0 0.674 5.593
0.314 b0.001 614.588 1.754 0.281 5.667
0.263 b0.001 580.118 0 0.866 3.501
0.418 b0.001 423.423 0 0.527 1.364
0.421 b0.001 423.640 0.217 0.472 1.36
0.281 b0.001 492.843 0 0.452 1.882
0.276 b0.001 494.821 1.978 0.168 1.854
0.086 0.002 485.211 0 0.315 2.171
0.078 0.003 486.335 1.124 0.180 2.188
0.085 0.004 486.376 1.165 0.176 2.195
0.064 0.001 418.952 0 0.376 1.106
0.060 0.005 420.484 1.53 0.175 1.113
0.049 0.006 368.253 0 0.185 0.906
0.054 0.010 368.631 0.378 0.153 0.908
0.061 0.017 369.574 1.322 0.096 0.908
0.042 0.022 370.228 1.975 0.069 0.919

image of Fig.�2


Table 4
Global generalized linear model results (all predictor variables included) modeling avian species richness using remote sensing-derived ecological variables. Weighted parameter
estimates and standard errors calculated using parameter Akaikeweights (Burnham&Anderson, 2002); confidence intervals calculated at the 95% level. Starred parameters are significant
in the global model at the p-value level of: *** ≤ 0.001; **0.01; *0.05.

Moscow Mountain Slate Creek

Parameter estimate Standard error Confidence interval Parameter estimate Standard error Confidence interval

Total bird species richness (TSR)
Intercept 5.246 4.002 (−2.318, 12.810) 16.252 3.415 (9.798, 22.706)***
Height_σ −0.152 0.173 (−0.479, 0.175) 0.339 0.232 (−0.099, 0.777)
Ustory 0.211 0.058 (0.101, 0.321)** 0.161 0.077 (0.015, 0.307)*
Canopy −0.003 0.019 (−0.039, 0.033) −0.036 0.016 (−0.066, −0.006)*
Patch 0.434 0.741 (−0.966, 1.834) 1.257 0.900 (−0.444, 2.958)
Slope 0.064 0.064 (−0.057, 0.185) −0.101 0.034 (−0.165, −0.037)**
Elevation −0.004 0.003 (−0.010, 0.002) −0.004 0.001 (−0.006, −0.002)**
NDVI 7.600 2.879 (2.159, 13.041)* 1.622 3.357 (−4.723, 7.967)

Understory and ground nesting guild species richness
Intercept −2.079 1.759 (−5.404, 1.246) 8.893 1.625 (5.822, 11.964)***
Height_σ −0.090 0.115 (−0.307, 0.127) 0.114 0.112 (−0.098, 0.326)
Ustory 0.177 0.352 (−0.488, 0.842)*** 0.090 0.037 (0.020, 0.160)**
Canopy −0.035 0.010 (−0.054,−0.016)** −0.037 0.008 (−0.052, −0.022)***
Patch 0.254 0.510 (−0.710, 1.218) 0.082 0.442 (−0.753, 0.918)
Slope 0.034 0.041 (−0.043, 0.111) −0.019 0.017 (−0.051, 0.013)
Elevation 3.915 0.002 (3.911, 3.919) −0.003 0.001 (−0.004, −0.002)***
NDVI 9.442 3.601 (2.636, 16.248)*** 2.138 1.645 (−0.971, 5.247)

Mid- and upper-canopy nesting guild species richness (GSR2)
Intercept 1.413 0.556 (0.362, 2.464)* 4.731 1.655 (1.603, 7.859)**
Height_σ 0.212 0.089 (0.044, 0.380) 0.180 0.134 (−0.073, 0.433)
Ustory 0.017 0.033 (−0.045, 0.079) 0.024 0.045 (−0.061, 0.109)
Canopy 0.037 0.005 (0.028, 0.046)*** 0.001 0.010 (−0.018, 0.020)
Patch 1.157 0.317 (0.558, 1.756) 0.685 0.489 (−0.239, 1.609)
Slope 0.024 0.035 (−0.050, 0.090) −0.054 0.020 (−0.092, −0.016)**
Elevation −0.001 0.002 (−0.005, 0.003) −0.001 0.001 (−0.002, 0.000)
NDVI 6.568 1.335 (4.045, 9.091) 0.023 2.136 (−4.014, 4.060)

Cavity nesting guild species richness (GSR3)
Intercept 2.680 0.575 (1.593, 3.767)** 1.579 0.524 (0.589, 2.569)
Height_σ −0.054 0.067 (−0.181, 0.073) 0.092 0.069 (−0.038, 0.222)
Ustory −0.019 0.023 (0.062, 0.024) 0.061 0.026 (0.012, 0.110)
Canopy −0.012 0.004 (−0.020, -0.004)* −0.002 0.006 (−0.013, 0.009)
Patch −0.140 0.316 (−0.737, 0.457) 0.063 0.352 (−0.051, 0.001)
Slope b0.001 0.023 (−0.004,−0.043) −0.025 0.014 (−0.051, 0.001)
Elevation −0.002 0.001 (−0.004,−0.000) −0.001 0.001 (−0.002, 0.000)
NDVI −1.359 1.627 (−4.434, 1.716) −0.225 1.356 (−2.788, 2.338)
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comprised of woody shrubs, seedlings, and saplings. In addition to pro-
viding nesting substrates for the understory nesting guild, previous
studies note the importance of a shrub layer for promoting invertebrate
production, an important breeding season food source for many bird
species (Diaz, 2006; Hagar et al., 2007).

The role of foliage height diversity has been noted elsewhere to be
an important influence on local species richness, but canopy height
variability in our study was not a consistently strong predictor of bird
species richness. Goetz et al. (2007) observed a negative effect on bird
species richness in areas with lower height variability. Flaspohler et al.
(2010) also found positive relationships between the standard devia-
tion of canopy height and bird species richness. While forest height
diversity may undoubtedly be important for avian diversity in some
study areas, our results suggest that other LiDAR-derived structure var-
iablesmay be driving species richness in our study. For instance, canopy
complexity may also be correlated with other forest characteristics
that may influence avian communities, such as snag abundance, forest
succession stage, and disturbance history (Falkowski et al., 2009;
Martinuzzi et al., 2009).

The responses to canopy density were not the same for all guilds or
within the same guild across the study areas. For instance, on Moscow
Mountain, there was a positive relationship between canopy density
and the mid-/upper-canopy nesting guild. Increased canopy density
may represent greater availability of foraging and nesting substrates
and/or greater amounts of cover to protect from predators (Franzreb,
1983). However, canopy density did not appear in the top models for
the mid-/upper canopy nesting guild on Slate Creek and the R2 values
were all b0.09 compared to R2 values of 0.28 for Moscow Mountain,
which indicates that other variables were likely more important in
influencing the species richness of this nesting guild. Approximately
70% of the species in this guild were found at both study areas, and
therefore, differences between the two areas are not likely due to
fundamentally different communities that respond to different forest
structures. However, there are multiple variables at multiple spatial
scales that we did not include in our analysis, and our results suggest
that birds at the Slate Creek study area were sensitive to those of
other variables.

4.2. Horizontal structure

Horizontal vegetation structure has been found to affect bird
communities by increasing the spatial complexity of the habitat
(Hansen, McComb, Vega, Raphael, & Hunter, 1995; Sallabanks et al.,
2006). Patch diversity was included in top models within our study,
but was not a strong predictor compared to other model metrics.
While mostly positive relationships were exhibited by the richness
response variables and patch diversity, the confidence intervals includ-
ed zero. The positive relationshipwith patch diversity, while weak, may
be a positive response to the “patchiness” of the forest. Even localized
heterogeneity, caused by phenomena such as tree fall, can create gaps
in the forest canopy, potentially providing diversity in the local habitat
(Bergen, Gilboy, & Brown, 2007). The diversity of patch types in an area
can provide a greater availability of nesting and foraging opportunities
than in one patch type alone, as well as introduce additional foraging



Fig. 3. Total species richness predictive maps for a) Moscow Mountain and b) Slate Creek
created using top competing models for both study areas selected using AIC model
selection. The Moscow Mountain predictive map utilizes the LiDAR-derived understory
density and Landsat-derived NDVI. The variables included in the top model for Slate
Creek are all LiDAR-derived and include: standard deviation of forest height; understory
density; canopy density; slope; elevation; and horizontal patch diversity.
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opportunities created by the meeting of two different patch types
(Flaspohler, Temple, & Rosenfield, 2001; Salek et al., 2010). Studies
agree that wildlife often select habitat at multiple spatial scales.
4.3. Topographic

Topographic variables not found to influence species richness at
Moscow Mountain were strong predictors of avian species richness in
the higher elevation Slate Creek. Slope was found to have a significant
negative relationshipwith total species richness andmid-/upper-canopy
nesting guild species richness at Slate Creek. In addition to a significantly
higher mean slope, there was also a much larger range of slope
values observed at Slate Creek, with extremely steep slopes observed
at a few of the survey locations. Slope has previously been found to
have negative relationships with bird diversity and species distribu-
tion (Diaz, 2006), which may be related to the influences of slope on
vegetation composition and structure (Martinuzzi et al., 2009).

Elevation was also a significant predictor for both total species
richness and the ground/understory nesting guild. We noted a pattern
of lower total species richness at higher elevations, which has also
been reported by previous studies (Terborgh, 1977), although the
exact shape of the curve of that relationship has been debated
(Rahbek, 1997). Many of the previous examinations of species diversity
along elevation gradients have covered a broad range of elevations and
vegetation zones (Rahbek, 1997; Terborgh, 1977), as opposed to the
localized landscape level analyses of the Slate Creek area included
in this study. It is likely that elevation had a negative influence on
total species richness through reduced productivity and changes in
forest complexity and composition along the elevation gradient
(Terborgh, 1977).
4.4. Vegetation greenness

The Landsat-derived NDVI representing vegetation greenness
was found to be an important predictor of total species richness and
the ground/understory nesting guild at Moscow Mountain. NDVI is a
metric often used in studies evaluating the relationship between species
distributions or richness and vegetation productivity across broad
spatiotemporal scales (e.g. Evans, James, & Gaston, 2006; Hurlbert &
Haskell, 2003; Pettorelli et al., 2005; Seto et al., 2004). We found signif-
icantly higher NDVI at MoscowMountain compared to Slate Creek, and
NDVI was a more important predictor of total species richness at
Moscow Mountain compared to Slate Creek (Verschuyl et al., 2008).
Our findings are not entirely consistent with Verschuyl et al. (2008),
who found that in energy-limited sites, forest productivity showed a
significant positive relationship with bird species richness. However,
differences in the range of NDVI values between the two studies
might partially explain the different results. One of the study sites in
Verschuyl et al. (2008) had a narrow range of NDVI values, and did
not show a significant relationship between NDVI and bird species
richness, similar to our Slate Creek results. Goetz et al. (2007) also
used Landsat-derived NDVI metrics in modeling bird species richness
in the eastern deciduous forests of Maryland, and found that NDVI did
not significantly increase the predictive strength of the models over
the use of structure variables alone. Because of an abundance of cloud
cover and/or snow patches in the Landsat images that coincided with
the onset of the avian breeding season, our analysis was restricted to
utilizing images from the end of the breeding seasons. Thus, the site
phenology represented by our NDVI maps may be somewhat discon-
nected from the landscape to which bird species first responded when
selecting breeding sites, although still reflecting relative differences
among survey sites within the same landscape. The significantly higher
NDVI at the Moscow Mountain landscape may in part be due to an
image acquisition date a month earlier than Slate Creek.

4.5. Comparisons between study areas and among nesting guilds

The differences in patterns of biodiversity between the study
areas may reflect changes in responses of bird communities to their
landscape with gradients of productivity, elevation, patch metrics,
and management history. Differences between the relative impor-
tance of variables for predicting total bird species richness and
guild specific species richness between landscapesmay also be indic-
ative of the complex relationships between forest birds and their
habitats that go beyond the explanatory variables directly measured
by LiDAR. Previous LiDAR-based studies examining bird diversity
have limited their examinations to one study area, which limits
the comparison of results along gradients of landscape patterns
and management intensities. While our results suggest that larger
landscape structure and context may impact diversity patterns and
the importance of LiDAR-derived local vegetation structure, future
studies should explore these relationships across larger geographic
gradients where LiDAR and bird diversity datasets are available.

While the variance explained by our models was in the low to
moderate range, our model R2 values were comparable to previous
studies examining avian richness in structurally diverse forests in the
same geographic region usingfield-based vegetation samplingmethods
(R2 ~ 0.19; Sallabanks et al., 2006), as well as other studies examining
forest avian diversity utilizing LiDAR data (e.g. Goetz et al., 2007: R2

~ 0.29; Clawges et al., 2008: R2 ~ 0.14; Lesak et al., 2011: R2 ~ 0.20).
We have no such data with which to compare our nesting guild specific
results, in which the R2 values ranged from b0.06 for the cavity nesting
guild to 0.42 for the ground/understory nesters in Slate Creek. Our
results, in addition to the above studies, suggest that there is a
need to explore further the relative importance of other factors
(e.g. snag availability for cavity nesters) that influence local species
diversity in combination with additional variables.
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Predictive maps for species distributions and diversity patterns
have great value for multiple management and conservation ef-
forts. Applications include but are not limited to: regional and
local forest management planning; tradeoff analyses between po-
tential management scenarios; prioritizing conservation efforts to
critical habitat patches or diversity hotspots; and ecosystem ser-
vice analyses. As with any modeling/mapping effort, it is important
to use such products with caution ensuring that limitations of the
data are well understood and considered before application.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.rse.2014.02.006.
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