

AN ABSTRACT OF THE THESIS OF

Benjamin M. Weiss for the degree of Honors Baccalaureate of Science in Mechanical
Engineering presented May 19, 2011. Title: A Graphical Method of Computing Offset Curves.

Abstract approved:

 Mike Bailey

Computation of offset curves is an operation critical to many computer-aided design

and manufacturing (CAD/CAM) applications. Though simple on the surface, differences between

the straightforward mathematical definition and the demands of CAD/CAM environment in the

formulation and expression of an offset curve create a problem for which only complicated,

approximate solutions are presently available. This thesis explores one of the newest methods

of offset curve computation, using graphics hardware to directly compute the offset curve for

arbitrary input geometry. Linear segments of the input curve are represented as meshes in 3D

space, and the rendering process is used to create a field of depth values from which the offset

curve is extracted as an isoline. This results in significant performance enhancements over

previous, similar methods. Combined with a quantification of the errors involved in a graphical

approach, these advances bring the technique closer to industrial readiness. Algorithm

performance is shown to be linear with respect to geometric complexity of the input curve.

Key Words: Offset curve, General-purpose GPU programming, Loop elimination

Corresponding e-mail address: bweiss.ben@gmail.com

©Copyright by Benjamin M. Weiss
May 19, 2011

All Rights Reserved

A Graphical Method of Computing Offset Curves

by

Benjamin M. Weiss

A PROJECT

submitted to

Oregon State University

University Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Mechanical Engineering

Presented May 19, 2011
Commencement June 2011

Honors Baccalaureate of Science in Mechanical Engineering project of Benjamin M. Weiss

presented on May 19, 2011.

APPROVED:

Mentor, representing Computer Science

Committee Member, representing Mechanical Engineering

Committee Member, representing Mechanical Engineering

Dean, University Honors College

I understand that my project will become part of the permanent collection of Oregon State

University, University Honors College. My signature below authorizes release of my project to

any reader upon request.

Benjamin M. Weiss, Author

ACKNOWLEDGEMENT

The author would like to gratefully acknowledge the incredible investment, encouragement, and

support of my parents over the last twenty-three years. Without your patient nourishing of the

gifts and talents God has given me, none of this would be. Additionally, my thanks go to Mike’s

consistent and fruitful mentorship in my life. The glory goes to God alone!

TABLE OF CONTENTS

 Page

Introduction ... 1

Problem Description and Applications .. 2

Previous Work .. 8

Offset Curves .. 8

Graphical Approaches .. 13

Our Approach ... 18

Preparation .. 19

Rendering ... 20

Data Extraction .. 23

Error Analysis ... 26

Error Source 1: Discretization of Input Geometry ... 27
Error Source 2: Cone Approximation Error .. 28
Error Source 3: Valleys between Cones .. 29
Error Source 4: Resolution of the Pixel Grid .. 30
Error Source 5: Floating Point Roundoff .. 32
Numeric Error Estimation .. 32

Results and Discussion ... 35

Offset Curve Results ... 35

Error Visualization .. 37

Algorithmic Performance ... 40

Discussion .. 45

Unexpected Results and Lessons Learned ... 46

Future Work ... 49

Refinements and Improvements ... 49

New Avenues of Investigation ... 51

Conclusions .. 53

Bibliography ... 54

LIST OF FIGURES

Figure Page

1. An example of several offset curves. (Lee, Kim, and Elber, 1998) ... 1

2. Source curve (black) and an offset curve (gray). .. 2

3. SolidWorks 2009 2D Offset function generates offset curves (the SolidWorks
program and trademark are owned by Dassault systems) .. 3

4. Two segments of a polyline produce a cusp. (a) Exact offset without any trimming.
(b) Offset adjusted by extending source lines. (c) Offset adjusted by inserting an
arc. .. 4

5. NC milling machine cutting a pocket. The tool follows a path that is the offset of
the desired pocket contour (Morrow, 2008). .. 4

6. A pocket machining example. (a) The pocket to be machined and roughing tool.
(b) Plan view of the pocket. (c) The mathematically correct offset curve defining
the tool path; cutter geometry is overlaid in blue. (d) The actual desired tool path. 5

7. A cubic B-Spline with curvature less than the offset distance (dark curve) and
mathematically correct offset (Elber 1997) ... 5

8. A deposition modeling example. (a) The model to be fabricated. (b) One slice of
the model, hollowed to conserve plastic. (c) The hollowing operation,
implemented as a mathematically correct offset curve of the profile. (d) The
correct result. ... 6

9. Cobb's method illustrated; dashed curve is the generator curve (Elber, 1997) 10

10. Voronoi Diagram primitives and associated distance meshes. (Figure modified
from Hoff et al. 1999). .. 13

11. Voronoi diagram and its associated distance mesh (viewed along the +D axis),
Hoff, et al. (1999) ... 14

12. Parallel curve construction of a Lemniscate (light curve) with a compass and
straight edge, from Wilson (1897). .. 15

file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137422
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137423
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137424
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137424
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137426
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137426
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137428
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137428
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137430
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137431
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137431
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137432
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137432
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137433
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137433

LIST OF FIGURES (Continued)

13. (a) Distance function representation of a point, as described in Li, et al. (2009). (b)
A curve represented as a sequence of points in x-y-d space. Figure modified from
Li, et al. (2009). ... 15

14. Figure from Li, Zhou, and Chan (2009) showing how varying the extents of the
viewing volume (front and back clipping planes) changes the perceived offset
distance. ... 16

15. (a) A single cone drawn on the input curve. It has a height and base diameter of
2d, extending d above and below the xy plane. (b) A series of cones drawn on the
input curve. (c) The cones cut at z=0. (d) The extracted offset viewed from the top. 21

16. A graphical offset drawn (a) just with cones and (b) with cones and tents. 22

17. A schematic of the geometry rendered and results obtained for a single line
segment (a) without tents and (b) with tents. ... 23

18. Marching squares examples. (a) A simple example. Two edges exhibit a sign
change; the two points are linearly interpolated to form a segment of the offset
curve. (b) A more complex case. Four intersections are detected; the interpolated
value of the center point is used to determine which pairs to connect. 24

19. Offset curve extraction from (a) color data and (b) height data, zoomed in. In (b),
grey pixels are geometry with a depth value less than zero.. 26

20. Discretization error. Original (green) curve segment is approximated by linear
(blue) segment. .. 27

21. Error introduced by offsets of linear approximation of more complex functions
over short areas. (a) Error before offsetting. (b) Offsetting operation. (c) Error
after offsetting. .. 28

22. Cone approximation error illustrated, viewed from above ... 28

23. Valley error illustrated as the difference between orange curve (desired result)
and blue curves (rendered geometry). .. 29

24. Worst case discretization error visualized. Grey lines represent grid lines travelling
through pixel centers. Orange line is the discretized output curve, and blue
represents a cusp condition. .. 30

file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137435
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137435
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137435
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137441
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137441
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137442
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137442
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137442
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137443
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137444
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137444

LIST OF FIGURES (Continued)

25. Marginal features (those with minimum dimension less than the grid spacing) can
be either (a) fully resolved, (b) unresolved, or (c) partially resolved, depending on
grid placement. Blue dotted lines are the exact offset curves, green lines represent
extracted offset, and blue squares are pixels with associated depth values. 31

27. The shortest distance between a point and a Bézier curve. .. 33

26. Visualization of offset error. Pink represents gouging error; blue represents
undercut. Errors are magnified 100X. .. 33

28. An offset (teal) of a Bézier curve (red) ... 35

29. Local loop elimination. ... 36

30. Global loop elimination. ... 36

31. Error, magnified 50 times, of a curve offset (a) before and (b) after enabling tents. 37

32. Error plotted (magnified 100X) in (a) the base case, (b) with fewer input curve
segments, and (c) with fewer polygons per cone. ... 38

33. Two frames of the same portion of a cusp at different resolutions. (a) 300x300
pixels; (b) 600x600 pixels ... 39

34. Results for a marginal feature (minimum size less than 2w). (a) Nearly correct.
(b) Badly truncated. (c) Several phantom curves. Grid lines represent edges of
squares used for isoline extraction. ... 39

35. Error plot (magnified 100X) for the base case used to evaluate scaling
performance. .. 40

36. Algorithm speed vs. the number of curve input points; linear fit (R² = 0.9953)
overlaid. Error bars represent a 95% confidence interval. .. 41

37. (a) Offset error plotted against curve discretization points. (b) Error plot
(magnified 100X) of the offset at 1000 pts .. 42

38. Algorithm speed vs. the number of polygons in each cone. Error bars represent a
95% confidence interval. .. 42

file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137446
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137446
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137446
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137446
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137447
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137448
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137448
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137449
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137456
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137456

LIST OF FIGURES (Continued)

39. (a) Offset error plotted against number of cone polygons. (b) Error plot (magnified
100X) of the error at 2000 polygons per cone. .. 43

40. Algorithm speed vs. buffer resolution; quadratic trend line overlaid. Error bars
represent a 95% confidence interval. .. 44

41. (a) Relationship between buffer resolution and offset error. (b) Error plot
(magnified 100X) of the error at 1000x1000 buffer. ... 44

42. A simple slot creates difficulties for the graphical approach. .. 46

43. Initially unexplained error bars that varied with position. .. 47

44. The vertical path taken by a cutter in a pocket is described by the Minkowski sum
boundary of the pocket and the inverse-tool. (Choi, 1998) .. 51

45. The Minkowski sum boundary of an ellipse and a cursive "H". (Lee, Kim, and Elber
1998). ... 51

file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137463
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137464
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137465
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137465
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137466
file:///E:/Doc/My%20Documents/School/cc/Thesis/Writeup/Draft.14.docx%23_Toc294137466

A Graphical Method of Computing Offset Curves

INTRODUCTION

Drawing offset curves is a task so visually intuitive that children have been doing it for

millennia. Take a shape, then draw a line around it, a constant distance away from the original

line. Repeat a few times, like in Figure 1, and the curve

starts to look rounder and less sharp; continue still further

and the shape slowly becomes a circle. The visual intuition

present in six-year-olds can solve a problem that, though

easy to formulate mathematically, has eluded a concise,

clean algorithmic implementation for engineering

applications.

In the following pages, we explore a graphical technique for offsetting curves. By

utilizing the ability of 3D graphics to trick our eyes into believing an illusion, we can effectively

and quickly compute good approximations for offset curves. In order to do this, the problem

must first be fully defined, then explored in the context of existing published solutions. Next, our

approach is described in detail, including an assessment of the errors involved. The results and

performance are presented, verified, and discussed, with an eye towards eliminating the

remaining barriers that keep a graphical solution from being widely used in commercial and

industrial offset curve approximation applications.

Figure 1. An example of several offset
curves. (Lee, Kim, and Elber, 1998)

 2

PROBLEM DESCRIPTION AND APPLICATIONS

Offset curve creation is a deceptively simple geometry problem. A straightforward

mathematical definition for the construct exists, but the results are not useful to engineering

applications. In this chapter, we will first explore the mathematical definition of exact offset

curves, then present a series of examples from engineering applications which demonstrate

both the utility of offset curves and the inadequacy of the purely mathematical definition,

leading to the definition of the “global” offset curves described in subsequent sections.

An exact offset curve (or parallel curve)

consists of the curve obtained when each point

on the original (or progenitor) curve is moved a

fixed distance along its normal (Figure 2). This

definition is described mathematically for a

regular parametric curve as:

 () () ̂() (1)

where d represents the offset distance and ̂() represents the unit asdf normal vector,

defined in the plane as:

 ̂()
 () ̂ () ̂

√ () ()
 (2)

where () and () are the x and y components of () (Elber 1997). Mathematically, this

presents no difficulties for regular parametric curves, where the regularity condition requires

that ̂() be well-defined on the curve and nowhere is (() ()) (). In practice,

complications arise because a polynomial () gives rise to a parallel curve that is not in general

Figure 2. Source curve (black) and an offset curve
(gray).

 3

polynomial or even rational. Thus, an offset curve is significantly more mathematically complex

than its progenitor curve.

The applications of offset

curves in engineering practice point

out several additional limitations of

this definition. Applications in the

mechanical engineering world,

including CAD, CAM and rapid

prototype manufacturing, require an

offset curve definition not quite as

mathematically straightforward as given above and motivate the definition of global offset

curves.

In the world of computer-aided design (CAD), offset curves form a valuable tool when

constructing 2D sketches; their three-dimensional cousins, offset surfaces, are frequently used

in thickening and shelling operations. Figure 3 shows a form of offset curve that many CAD

applications find valuable. Instead of a single output curve, the offset is bidirectional, meaning

both the mathematical offset d and the complementary offset –d are computed, and caps have

been applied to the endpoints to close the curve.

In the more general case of a polyline curve, segments that begin or end without

continuous first derivatives produce a cusp. When offset, the resulting curves do not intersect

and a post-processing step must re-connect the results (Figure 4). Some methods, such as Liu, et

al. (2007) do this by extending or trimming the lines, as in Figure 4b. While this is effective, it

creates geometry in the offset that is more than d away from the progenitor curve, deviating

significantly from the mathematical definition. An alternative is to add a circular arc of radius d,

Figure 3. SolidWorks 2009 2D Offset function generates offset
curves (the SolidWorks program and trademark are owned by
Dassault systems)

 4

centered at the intersection of the source curves, that smoothly connects the two exact offset

curves. By doing this, we maintain the mathematical definition, with the direction of ̂() being

ambiguous at the cusp point.

 (a) (b) (c)
Figure 4. Two segments of a polyline produce a cusp. (a) Exact offset without any trimming. (b) Offset adjusted by

extending source lines. (c) Offset adjusted by inserting an arc.

Computer-aided manufacturing (CAM), which converts CAD models into code that can

be run on numerical control (NC) machines to fabricate parts, also finds applications for offset

curves. In the case of an NC mill machining a pocket out of a block of material, the CAM

software translates the desired solid geometry into a series of tool paths. The NC mill follows

the tool paths to produce the desired part. In this case, the profile of the pocket defines the

source curve, and the path the tool

with cutter radius d must follow is the

one-sided offset curve of the pocket

(Figure 5).

This application points out

another deviation of an offset curve

from its mathematical definition.

Consider a pocket which is to be roughed out by a cutter with a radius larger than the keyway,

Figure 6a. The engineering intent is clearly to cut only those areas of the final pocket that can be

accessed with the blunt, fast tool, then to return later with a smaller tool and cut the fine

features. However, the mathematical offset of the pocket gives a curve that is clearly

Figure 5. NC milling machine cutting a pocket. The tool follows a
path that is the offset of the desired pocket contour
(Morrow, 2008).

 5

undesirable (Figure 6c). Such a tool path would gouge other parts of the pocket during cutting,

deforming the final geometry. Instead, the desired result is an offset curve that eliminates the

loops caused by small features, as in Figure 6d.

 (a) (b)

 (c) (d)

Figure 6. A pocket machining example. (a) The pocket to be machined and roughing tool. (b) Plan view of the
pocket. (c) The mathematically correct offset curve defining the tool path; cutter geometry is overlaid in blue. (d)

The actual desired tool path.

The cause of the undesired result in the example above is present in parametric curves

as well. In this case, a loop appears in the

mathematical offset whenever the instantaneous

radius of curvature of the curve is less than the

offset distance (Figure 7). This phenomenon is

referred to as a local intersection.

A third application highlights one additional deviation from the mathematical definition

that most engineering applications of offset curves demand. In the process of rapid prototyping,

Figure 7. A cubic B-Spline with curvature less than
the offset distance (dark curve) and mathematically
correct offset (Elber 1997)

 6

be it by lithography, deposition, or 3D printing techniques, layers of material are deposited or

hardened one after another until the final part is formed. Because the material deposited is

expensive and it takes time to harden/deposit it, it is common practice to hollow the model in

the pre-processing step prior to fabrication, reducing the total volume of plastic used.

 (a) (b)

 (c) (d)

Figure 8. A deposition modeling example. (a) The model to be fabricated. (b) One slice of the model, hollowed to
conserve plastic. (c) The hollowing operation, implemented as a mathematically correct offset curve of the profile.

(d) The correct result.

Consider the model in Figure 8a. As described by Ganesan and Fadel (1994), in the

process of fabricating it, the geometry is sliced, then the slices are hollowed with an offset curve

algorithm. For the center section, the mathematical offset curve gives the result shown in Figure

8c. At best, this error is ignored by the shelling operation; at worst, an error occurs (SolidWorks

2009 refuses to directly shell a model like this). The desired output is instead what is shown in

Figure 8d. As in the CAM example above, the result is a deviation from the purely mathematical

formulation due to a visually obvious defect in the result, splitting the resulting curve in two and

producing two cusp points. This kind of defect appears in curves whenever they intersect or get

 7

within 2d of themselves. Unlike in local intersection, these situations, referred to as global

intersections, resolving this error creates two offset curves as the result, significantly increasing

the complexity of the output.

This technique is expanded upon by Park (2005) to create uniform-thickness geometry

even in the presence of sloping walls. In doing so, he develops a theory similar to that described

below, then reduces the problem back to a series of 2D offset computations, the specific

algorithm for which he does not explore.

Engineering applications frequently need three modifications on the exact offset curve

for their applications. Offset curves should be augmented to extend around the ends of the

curve, such that cusps on polyline curves are handled in an intuitive manner. Loops produced in

the offset curve due to areas of the source with curvature less than the offset distance need to

be eliminated. Finally, intersections in the offset curve due to necking regions in the source

model are to be removed, splitting the offset into two output curves. In the following chapter,

we explore the ways this problem of generating these global offset curves has been solved in

the literature.

 8

PREVIOUS WORK

Offset Curves

The algebraic complexity of the mathematical offset, as well as the need for many

additional tweaks and manipulations, makes directly implementing this approach impractical. A

wide variety of alternative methods have been developed to approximate the offset curve while

maintaining the desired engineering characteristics. Generally, this process is broken down into

offset computation, which deals with defining new polynomial parametric functions that closely

mimic the exact offset curve, and curve trimming, which eliminates the unwanted loops and

splits the resulting curve appropriately for engineering applications. This section will provide a

brief overview of the previous work in offset curve approximation using this approach, as well

several methods for directly generating the global (fully-trimmed) offset curve directly.

Table 1. Selected offset computation methods compared.

Source Input Output Method Notes

Parametric Manipulation Methods

Cobb, 1984 B-Spline B-Spline Shift the control knots
of the B-Spline by the
offset distance

Always under-estimates
the offset

Coquillart,
1987

B-Spline B-Spline Shift the control knots
based on normal of the
closest point and
curvature

Expands Cobb’s
method; exactly offsets
linear and circular
segments

Tiller and
Hanson, 1984

B-Spline B-Spline Shift the edges of the
control polygon by d

Remains one of the
most efficient
algorithms (control
points/tolerance; Elber,
1997)

Elber and
Cohen, 1991

B-Spline B-Spline
(more
complex)

Based upon one of the
above; locally
estimates error and
subdivides accordingly

Exactly resolves offsets
of circles

 9

Source Input Output Method Notes

Hoscheck and
Wissel, 1988;
Hoscheck,
1988

Spline Spline of
arbitrary
degree

Use parameter
transformations;
nonlinear optimization
to set control points on
output curve

Least-squares
optimization bridges
parametric and
interpolation
approaches

Interpolation Methods

Klass, 1983 Cubic
Spline

Cubic
Spline

Interpolate curvatures
and tangents of the
exact offset curve at
the endpoints with a
cubic Hermite spline

Stability issues

Pham, 1983 Arbitrary B-Spline Use curve fitting and
sample offset points to
approximate the offset

Restricted to the
information contained
in the sample points

Piegl and
Tiller, 1998

Arbitrary NURBS Generate sample
points based on
curvature, interpolate
to a NURBS curve of
arbitrary order, then
remove knots until
tolerance is exceeded

Better guarantees of
linearity than Pham,
1983

Other Methods

Lee, Kim, and
Elber, 1996

Para-
metric

Para-
metric
(higher
degree)

Convolve the source
curve with a
polynomial
approximation of a
circle, producing a new
polynomial curve with
order between two
and five times greater

Significant increase in
order of the output
curve; error introduced
from parameterization
of a circle.

Liu, et al.,
2006

Polyline Lines and
arcs

Offset each
component, patching
the results together
again by extending or
adding elements

Very common in
commercial CAD/CAM
packages; complex
branching in algorithm
required to cover all the
cases. Produces a
trimmed, global offset

Chaing, 1991 Arbitrary Polyline
curve

Map the input curve
onto a 2D, fixed grid,
then compute the
distance field
iteratively over the
entire grid. Extract the
offset curve by finding
d in the grid

Requires large amounts
of memory and
computation time;
must discretize original
curve onto grid, adding
error. Produces a
trimmed, global offset

 10

Source Input Output Method Notes

Kimmel and
Bruckstein,
1993

Arbitrary Polyline
curve

Initialize a function φ
on a 2D grid such that
φ(x,y,0) = 0 along the
input curve, then
update it in the grid
using techniques from
computational fluid
dynamics. Extract the
result as an isoline of
φ(x,y,d) = 0

Requires greater
computation time;
produces a trimmed,
global offset

Traditional methods used to approximate offset curves fall roughly into two main

categories, those that use the geometry and topology of the base curve to manipulate the

control points of parametric curves (B-Splines are especially popular) to produce an offset

approximation, and those that use sample points from the exact offset curve to feed an

approximation method that fits a curve to the offset. Table 1 summarizes a few representative

methods, for a more complete survey and analysis the reader is referred to Maekawa (1999),

Elber, Lee, and Kim (1997), and Pham (1992). The 1980’s saw a great deal of progress in both

these areas. Parametric manipulation is most simply described by Cobb (1984), whose algorithm

simply shifts the control knots of the source curve by d in a

direction normal to the curve, as shown in Figure 9. This

simplistic manipulation results in a consistent under-estimation

of the offset, creating significant errors. Over the following few

years, several papers addressed these shortcomings, with Tiller

and Hanson’s (1984) still relatively simple method remaining one

of the most efficient in terms of total control knots needed to

achieve an offset of a given tolerance in many situations (Elber,

1997).

Figure 9. Cobb's method
illustrated; dashed curve is the
generator curve (Elber, 1997)

 11

Interpolation methods, instead of relying on the control knots of the progenitor curve,

sample two or more points on the actual offset curve (computed using Equation (1), then fits a

parametric function to them to obtain the offset approximation. A simple case is found in the

work of Klass (1983), which samples the source curve at the end points, obtaining location,

slope, and curvature information of the offset curve, then uses this data to fit a cubic spline to

estimate the actual offset. Error is again a problem, and over the succeeding years the method

was refined to produce solutions that are both accurate to an arbitrary tolerance and efficient in

the number of knots and curves produced. Elber concluded that least-squares-based

interpolations of sample points in the offset curve in general provide the most efficient fit for a

given tolerance.

Industry CAD/CAM systems have for many years simply broken down the input

geometry into lines and arcs, offset each piece individually, and then patched the results back

together again. Though not as general as methods that use arbitrary parametric or spline input

curves, the majority of industry-driven design consists only of simple combinations of arcs and

lines.

The fundamental shortfall in all of these approaches lies in their inability to handle local

or global intersections and eliminate loops appropriately. The literature approaches this

problem either by trimming the offset curves produced by one of the methods above or by

seeking entirely different representations of the problem that do not give rise to the undesirable

features. Newton’s approximation allows intersections to be located to within a specified error

tolerance, but requires good initial estimates of the intersection location. Beyond this, even

local trimming methods are difficult to implement; just one offset curve can interfere with itself

in any of seven distinct ways, meaning most algorithms must individually handle many branches

(Wallner, 2001). Elber and Cohen’s (1991) approach is perhaps the most elegant: local

 12

intersections are detected by watching the sign of the tangent vector of the offset curve,

consistently detecting most loops created through parametric manipulation. No attempt is

made to handle global intersections, however. More mathematically rigorous approaches are

taken by Maekawa, Cho and Patrikalakis (1997) and Seong, Elber, and Kim (2006), both of which

correctly find intersection points and removing the undesired geometry at the cost of increased

complexity.

Elimination of loops, both globally and locally, has been well-studied in the context of

industrial applications, in which the input is restricted to lines and arcs. In general, trimming of

these curves occurs either by use of a Voronoi diagram (Held, 1991; Lai, 2006) or some form of

search algorithm (Hansen and Arbab, 1992; Choi and Park, 1999). Both work well enough for

most straightforward engineering applications, but scale poorly with geometric complexity and

require messy algorithms to implement.

As an alternative to these approaches, a variety of methods that forsake the

intermediate step of an exact offset curve and attempt to directly generate the global offset

have been proposed. Chaing, Hoffmann, and Lynch (1991) propose mapping the input curve to a

finite, rectangular 2D grid, then propagating the distance function across the grid iteratively

until the contents converge to the shortest distance from each point to the curve. By walking

along the cells containing d, the offset curve is produced. In a related method, Gurbuz and Zeid

(1995) estimated the offset by estimating the combined profile of a closed ball run along the

curve’s length, also in a discrete, ordered space. Kimmel and Bruckstein (1993) also use a

discrete grid, instead borrowing tools from fluid dynamics to model the distance function as a

steady-state property in the 2D domain, whose distribution is described by a differential

equation such that the resulting property field describes the minimum distance to the

progenitor curve. Walking an isoline along the resulting “level set” function extracts the offset. A

 13

disadvantage of these methods, as well as the technique described below, while they

automatically produce global offset curves, lies in the large amounts of data required to

represent the resulting curve.

In summary, a great deal of work has been done in the area of offset curve

approximation. Good estimates exist for offsetting arbitrary parametric input curves in any of

several ways. Computing global offset curves which correctly handle both local and global offset

intersections proves much more difficult, giving rise to several discrete approaches that directly

compute the global offset. We note that a method for giving good initial estimates of

intersection locations to a Newton’s Method-type search tool would significantly ease the

difficulty of the problem.

Graphical Approaches

The advent of the modern graphics processor, driven mainly by the demand of the

consumer gaming industry, has created a new platform for computation and the solution of

many non-gaming problems. The incredible power presented by the platform, with dedicated

hardware designed specifically to perform highly-parallel functions on vertexes and pixels on

their way to the screen, has long been recognized as an interesting new way to approach old

problems. The rise of general-purpose graphics

processor programming (GPGPU), spurred by the

introduction of non-graphics interfaces such as

NVIDIA’s CUDA and Khronos Group’s OpenCL, has

moved from a sidelined science practiced by a

select few in their basement to a mainstream

Figure 10. Voronoi Diagram primitives and
associated distance meshes. (Figure modified
from Hoff et al. 1999).

 14

approach to problem solving, gaining traction in the corporate and research worlds.

Voronoi diagrams, used in loop-

elimination approaches (above) as well as in

many other environments, have taken

advantage of this new approach. Hoff, et al.

(1999) describes a “distance mesh” method for

computing Voronoi diagram of a set of

geometric primitives in 2D. Each component is represented by a simple 3D mesh such that the

out of plane direction, labeled D in Figure 10, grows with the distance away from the primitive.

Looking down the +D axis, two meshes will intersect when they are equidistant from their

respective primitives, defining the new edge on the Voronoi diagram. By coloring the different

meshes differently, we can obtain a diagram that estimates the precise Voronoi diagram to

within an arbitrary precision (Figure 11), given appropriate selections of mesh density and

screen resolution.

The graphics hardware and rendering process allow solutions like this to take advantage

of the visual intuition that video games and other 3D applications require to trick our eyes into

believing depth exists on the screen. To make a realistic 3D scene, the rasterizer must be able to

rapidly interpolate quantities across the pixels covered by each of many millions of triangles,

deceiving our eyes into thinking that bodies are single, solid objects rather than many small

pixels. Additionally, the depth buffer allows only those objects closest to the viewer to be shown

in the scene, catering to our physical intuition regarding occlusion. Hoff’s work takes advantage

of both of these hardware-implemented abilities to interpolate depth values across the

polygons of the distance mesh as well as to occlude pixels associated with the parts of the mesh

that fall behind (i.e. at greater distance from) the eye as others.

Figure 11. Voronoi diagram and its associated
distance mesh (viewed along the +D axis), Hoff, et al.
(1999)

 15

This visual intuition has been

the basis for constructing offset curves

by hand for centuries. The oldest

reference to the subject found was an

1897 manuscript from Wilson’s

Theoretical and Practical Graphics,

which describes the manual

construction of a “parallel curve” using a compass. A series of arcs with radius d are constructed

from successive points on the base curve. The offset curve lies tangent to all these arcs, and

global and local loops are removed through visual intuition.

This method of constructing offset curves was brought into the 21st Century and GP-GPU

computing by a paper Li, Zhou, and Chan (2009), which describes a method of reformulating the

problem using graphics hardware. As with Hoff, et al. (1999), a point in the plane is drawn as the

tip of a cone that extends upwards into the distance direction, as shown in Figure 13.

 (a) (b)
Figure 13. (a) Distance function representation of a point, as described in Li, et al. (2009). (b) A curve represented

as a sequence of points in x-y-d space. Figure modified from Li, et al. (2009).

Arbitrary input lines are discretized, and then a cone is drawn at each vertex. They adjust the

distance of the offset by manipulating the front and back clipping planes, removing geometry

with a depth greater than the offset, as in Figure 14. By changing the depth of the clipping plane,

offset curves at varying distances from the camera can be produced.

Figure 12. Parallel curve construction of a Lemniscate (light
curve) with a compass and straight edge, from Wilson (1897).

 16

Li, et al. go on to describe a method of

offseting curves lying on an arbitrary surface

by mapping the u-v coordinates of several

sample offset curves on the mesh onto a new

surface that exists in the u-v-d space, then

interpolating the surface from the sampled

curves. An offset is constructed by

intersecting the plane with a plane horizontal to u-v at the height of the desired offset.

The advantage of this approach is the automatic removal of all loops. In a manner

similar to Chaing, Hoffmann, and Lynch (1991), it maps the curve and solution onto a discrete

grid (the screen), and because the cones just overlap when the distance between any two line

segments is less than 2d, no edge is extracted in that region and the loop is automatically

removed. Adjusting the offset distance becomes trivially easy, not even requiring the re-

formulation of the distance mesh, so generating families of offset curves is very straightforward.

Because it utilizes the graphics pipeline for computation, the algorithm can be run in real time

for most systems.

Disadvantages of this approach also exist, however. Because the resulting curve is a

collection of closely-spaced points, it is less than ideal for engineering applications where data

proliferation is an issue. If many offsets are present in a model, the amount of information

required to fully define it grows very quikly to intractable levels (Lee, Kim and Elber, 1998).

Additionally, no error metric is available for this method; in order to apply it to a real-world

situation, a relationship must be established between error and computation parameters.

Neither of these shortcomings are addressed by Li, et al..

Figure 14. Figure from Li, Zhou, and Chan (2009)
showing how varying the extents of the viewing
volume (front and back clipping planes) changes the
perceived offset distance.

 17

So, although graphical approaches have been suggested for computing offset curves

along with a variety of related problems, the current state of the field leaves significant gaps in

our understanding of these methods. An opportunity exists to address some of the

shortcomings in Li, et al. while applying some of the techniques developed in other similar

GPGPU applications to this situation.

 18

OUR APPROACH

The body of research on global offset curve approximations has grown quite extensive

over the last three decades. In this work, we seek to extend the state of the art by implementing

and exploring our own graphical offset approximation. This chapter describes the motivation for

this project, continuing with a thorough description of the methodology employed to obtain our

results. Finally, an error estimate will be presented for the approximation method.

 Stemming ultimately from Wilson’s 1897 work, we saw opportunities to combine the

ideas of Hoff, et al. (1999) in their graphical approach to Voronoi diagrams, which utilize the

mathematical intuition developed by tricking our eyes into believing two-dimensional objects

have depth. The methods of Hoff, et al. and Li, et al. effectively use the rendering process to

automatically detect and eliminate loops, we wished to extend their approach not only to

eliminate loops but to increase the accuracy of the offset. In other CAM applications involving

graphics processing, such as Inui and Ohta (2007), the depth buffer data is queried directly to

obtain the cutting surface needed for surface machining. We believed the depth buffer, which

modern hardware allows to be both large and high-precision, could be queried in our

application as well.

The data from the buffer could be processed in a manner similar to the method

proposed by Kimmel and Bruckstein (1993), which traces an isoline through a level set function

evaluated over a rectangular grid to obtain the offset curve, using the depth buffer as the height

field to be traced. The height field is effectively a discrete representation of an implicit

parametric equation that represents the shortest distance between each vertex and the line

segment. Extracting data from such a field is very similar to calculating the set of points needed

to define a level set function in a more traditional sense. The difference lies in how the field of

 19

points is generated: instead of relying on mathematics or iterative approaches like Kimmel and

Buckstein, we use the graphics hardware.

Although developed independently, the method we developed is similar to that of Li, et

al. (2009), with several important exceptions. First, our use of depth buffer data to interpolate

the resulting curve allows much higher accuracies in the output than their approach. Secondly,

we extend the concept by adding “tents” similar to Hoff, et al. (1997; Figure 10) between the

points along the curve. Finally, we present an analysis of the error sources involved in the

offsetting operation.

Any graphical offset algorithm can be cleanly broken down into three steps:

preparation, rendering, and data extraction. The following sections will define and explore each

of these steps as implemented in our method. This chapter will conclude with discussions on the

error sources present in this method and approaches used to mitigate those errors.

Preparation

The preparation stage of the offsetting process revolves mainly around importing and

discretizing the geometry. Discretization of the geometry to be processed into finite line

segments is a critical aspect of the approach; error is inevitably introduced in this step. One of

the beauties of graphical approximation, however, is that error-bounded discretization schemes

exist which can display almost any kind of geometry. It doesn’t matter if the input is a series of

lines, a spline curve, or even an implicit mathematical construct, if it’s possible to find a set of

points that describe the geometry to an arbitrary precision, it can be used. This is in contrast to

most discretization schemes, which are designed to work primarily with one kind of input curve.

As mentioned above, commercial CAM systems frequently handle only lines and circular arcs,

 20

converting other geometry into this representation before processing. Spline approximation

methods such as Tiller and Hansen (1984) require the input to be a parametric plane curve,

requiring other approximation methods to be utilized when different curve types are

encountered or converting other geometry into a spline approximation. For simplicity, our test

application is designed to offset only a single cubic Bézier curve.

Converting all input geometry into linear segments tends to balloon the amount of

information required to represent a shape. It is important, therefore, that the algorithm be able

to handle very large input datasets without significant computational cost. Because the

offsetting and loop elimination operations are implemented as graphics rendering problems, the

entire process occurs in linear time. Thanks to the gaming industry, the graphics pipeline

routinely accepts hundreds of thousands of polygons per frame, making it robust for most

industry problems, especially if real time performance is not required.

Rendering

The rendering step of the process entails drawing the geometry to the screen. The

viewing volume is configured to be orthographic, viewing down the –z axis, and defined to be

large enough in model coordinates to view the entire expected offset. The viewing volume

should be just slightly larger than the expected offset curve; any larger and unnecessary time is

expended analyzing irrelevant pixels. Determining the bounding box of most reasonable 2D

geometry is straightforward, and expanding this bounding box by a bit more than the offset

distance provides a good guarantee that the result will optimally fill the viewing volume. In the z

direction, the viewing volume is restricted to a region one unit high, spanning the interval

[-0.5, 0.5].

 21

Geometry is placed into the scene in the form of a cone at every vertex. As in Hoff, et al.

(1999), the cone’s vertex lies coincident with the source curve in the x-y direction, with sides

that slope down at a constant angle. The cone is drawn with its vertex at z = 0.5 and with a

height of 1.0, and a base radius of 2.0. The cone is then scaled by 2d in all three dimensions in

the model transformation matrix (Figure 15 a, b). In this way, were the image sliced by a plane

at z = 0, the union of the intersected curves would give an approximation of the offset of

distance d (Figure 15c).

 (a) (b)

 (c) (d)

Figure 15. (a) A single cone drawn on the input curve. It has a height and base diameter of 2d, extending d above
and below the xy plane. (b) A series of cones drawn on the input curve. (c) The cones cut at z=0. (d) The extracted

offset viewed from the top.

 22

One significant drawback of this method can be seen in Figure 16. When the input curve

is not discretized with sufficiently small granularity, the cones provide a poor estimate of the

offset in the valleys between them, creating a significant error. To combat this, we again follow

the lead of Hoff, et al. (1999) by implementing “tents” between the discrete vertices. In this

way, the method of Li, et al. (2009) is fundamentally extended. Instead of estimating the offset

by creating the offset of a series of points, we estimate the offset of a series of straight lines,

allowing straight segments to be drawn with far fewer polygons and providing significant

advantages in the error analysis presented below. A schematic of the change and its

consequences in output geometry is presented in Figure 17.

 (a) (b)

Figure 16. A graphical offset drawn (a) just with cones and (b) with cones and tents.

 23

Figure 17. A schematic of the geometry rendered and results obtained for a single line segment (a) without tents

and (b) with tents.

Data Extraction

The third, and most difficult, step of the offsetting process requires taking the height

field produced by the rendering process above and extract the offset curve. To do this, the data

is first retrieved from the framebuffer as an array of 32-bit float depth buffer values, scaled

between the near and far clipping planes. The desired offset surface is the set of points for

which depth is equal to zero, and extracting a set of points that lie along this transition can be

achieved through the use of a marching squares isoline generation algorithm. This widely-used

approach is the two-dimensional recasting of the marching cubes algorithm. The subsequent

paragraphs give a brief overview of this process.

Extracting the resulting geometry in this way, we effectively use the depth buffer as the

discrete representation of an implicit function for distance from the source curve. Extracting a

level set out of this implicit function creates the offset curve. Unlike other level set offset

(a) (b)

 24

approaches, however, the level set function comes from the rendering pipeline instead of

continuous mathematical manipulations of the source geometry.

In this approach, the height field is broken into squares, with known values at each

corner. For each squares, edges are evaluated to detect sign changes (i.e. does an isoline of

height 0 pass through this edge?). Whenever a sign change is detected, linear interpolation

between the vertices determines the location of a point on the isoline, see Figure 18a.

 (a) (b)
Figure 18. Marching squares examples. (a) A simple example. Two edges exhibit a sign change; the two points are

linearly interpolated to form a segment of the offset curve. (b) A more complex case. Four intersections are
detected; the interpolated value of the center point is used to determine which pairs to connect.

For a continuous dataset, the isoline must enter and leave the squares either not at all, twice, or

four times. In the latter case, two parts of the isoline must pass through the squares, and the

four points are connected in two lines. To determine which pairs are connected, the estimated

value at the center of the cell is determined through bilinear interpolation, then compared to

one of the vertices. If the sign of the center and the vertex are the same, they both lie on the

same side of the isoline and the pairing should be made so as to not divide them, as shown in

Figure 18b.

Marching squares by itself returns a long list of line segments, but the application

demands a list of contiguous line segments. Thus, we need to order the offset segments into

0.53 -0.14

-1.4 -0.30

0.53

-1.4 0.30

-0.18

-0.14

 25

loops, with each line adjacent to its neighbors. To accomplish this, the marching squares

algorithm is modified to first generate all the grid intersection points on the offset curve, storing

them in an array that is overlaid on the original geometry. Then, the space is iterated over a

second time, and each time an edge is detected, it is recursively followed all the way around the

loop, following the path from one square to the next until the entire loop is extracted. In each

square, the new offset line is constructed from the interpolated vertices as described above,

then added to a list of output lines and flagged “ignore” to avoid further processing.

The result is a list of contiguous line segments that reflect the exact offset curve to a

level of precision much better than the size of a pixel. This contrasts strongly with the approach

taken by Li, et al. (2009), which looks only at color change at the edge of the drawn object,

providing an accuracy on the order of the pixel size and requiring proportionately more memory

to obtain a similar error bounds. Figure 19 illustrates this tradeoff; note that the grid used to

evaluate the offset curve is shifted by 0.5 pixel both horizontally and vertically to match the

“vertex at the corner” layout required by marching squares.

 26

 (a) (b)

Figure 19. Offset curve extraction from (a) color data and (b) height data, zoomed in. In (b), grey pixels are
geometry with a depth value less than zero.

Error Analysis

One of the biggest gaps that needs to be closed before this kind of graphical

approximation to offsets can find a place in industrial applications is the analysis of the error

sources inherent in the algorithm. The ultimate goal is to have a realistic, algebraic expression

for the upper bound on the error given a simulation environment. This can then be inverted to

specify an appropriate value of the relevant variables while ensuring the entire process

maintains an error less than the allowable process error.

 27

Five major sources of error are present in this approach. In the following subsections,

each of these sources of error will be addressed and quantified where possible. For the

purposes of illustrating and understanding the errors involved, this section assumes the

progenitor curve is any smooth, continuous parametric plane curve, though these principles can

be easily extended to non-smooth input curves. Finally, a brief description of the numeric error

estimator used to validate the results will be presented.

Error Source 1: Discretization of Input Geometry

Because our approach reduces all input

geometry to line segments, any non-linear input curve

will create error in the discretization step. Whenever a

linear approximation for a function is used, higher-order

derivatives are truncated and curvature information is

lost, introducing error. Thankfully, discretization into

linear segments is a popular operation, and most

geometries possess good, error-bounded subdivision schemes. In the case of Bézier curves, de

Casteljau’s method provides a fast, recursive, error-bounded discretization.

The effect this approximation has on the offset curve is the real quantity of interest,

however. A little geometry can demonstrate that the error in the discretization described above

is identical to the expected error in the offset, all other things being equal. Allowing only that

the source curve is continuous and smooth in the first derivative, without loops in the

discretization area, we can draw a picture of a linear approximation of a short section of curve

like that in Figure 21a. The Mean Value Theorem guarantees that at least one point on the

original line has the same slope as the linear approximation, and calculus tells us that the

maximum deviation from the flat line must occur at such a point. When the offset operation is

Figure 20. Discretization error. Original
(green) curve segment is approximated
by linear (blue) segment.

 28

applied (Figure 21b), both curves shift

a distance d along their normals.

However, since at the maximum point,

the normal to the curve and the

normal to the approximation are

aligned, the offset distance and

direction is the same in both cases.

Since the distance between the two

points remains unchanged, the

discretization error of the offset is the

same as the discretization error of the

source curve (Figure 21c). In this way,

the error metric used in the original

discretization process can be directly

applied to the error introduced in the

output curve due to discretization.

Error Source 2: Cone Approximation Error

Because the graphics pipeline is only capable of

drawing simple geometric primitives (points, lines, and

triangles), more complex objects such as cones are

approximated by a set of triangular primitives, and this

approximation produces error. This error has been

treated in Hoff, et al. (1999). His error estimate can be

stated as

(a)

(b)

(c)

Figure 21. Error introduced by offsets of linear approximation
of more complex functions over short areas. (a) Error before
offsetting. (b) Offsetting operation. (c) Error after offsetting.

d

εC

θ

Figure 22. Cone approximation error
illustrated, viewed from above

 29

 ((

)) (3)

where is the maximum error, d is the circle’s radius (in this case, the offset distance) and θ is

the angle subtended by a single triangular primitive. Alternatively, the error estimate in (3) can

be expanded to relate to N, the number of primitives used to represent a single cone:

 ((

)) (4)

Error Source 3: Valleys between Cones

A third source of error occurs in the region

of the offset between cones when tents are not

used. Illustrated in Figure 23, this error magnitude

εV can be evaluated in terms of the offset distance

d and the distance between the two cone centers

s, and is found to be

 √ (

)

 (5)

This error metric presents difficulties

because depending on the discretization scheme used on the original curve, the distance

between successive points (s) may not have a known upper bound. This makes it much harder to

predict, for arbitrary input geometry, what the error will be when using a given discretization

scheme.

To resolve this issue, the concept of tents was introduced, which offsets the line

segment itself instead of just the end points and removes all valley errors entirely.

s

d

εV

Figure 23. Valley error illustrated as the difference
between orange curve (desired result) and blue
curves (rendered geometry).

 30

Error Source 4: Resolution of the Pixel Grid

A fourth source of error, one which is unique to a rendering approach to the offset

problem, occurs due to the resolution of the pixel grid. The grid resolution affects the maximum

length of the output lines, creating a new discretization error, as well as the minimum size of

features that can be resolved. Each of these error sources will be treated in the following

paragraphs.

For a grid with spacing w, the worst case error that does not leave the grid square is

shown in Figure 24. Without leaving the cell and changing the resulting topology, the exact

offset curve can deviate by no more than √ .

Figure 24. Worst case discretization error visualized. Grey lines represent grid lines travelling through pixel centers.

Orange line is the discretized output curve, and blue represents a cusp condition.

Due to the nature of the marching squares algorithm, it is possible for the offset to exit

and re-enter the square on the same side without being detected. Thus, only features that have

a minimum dimension larger than w are guaranteed to be resolved. For features with minimum

size less than w, one of three cases can occur, as illustrated in Figure 25. In Figure 25a, the

feature overlaps with a gridline along its entire length, and the curve is fully resolved. This is the

best case. Figure 25b shows a marginal feature that falls entirely between horizontal grid lines.

Because the marching squares algorithm assumes a linear function between datapoints, it

w

εP
w

 31

cannot detect the double sign change in the two vertical edges and the entire feature is not

resolved.

An example of the third alternative is shown in Figure 25c. In this case, the marginal

feature lies diagonally on the grid, but the change in the depth function is again too rapid for the

linear approximation assumed by the marching squares algorithm to correctly handle. As a

-0.159 1.09

0.015 -0.232

0.605

2.15

0.987 2.341.43

0.879

2.25

-0.575-0.8530.797

0.179

(a) (b)

(c)

Figure 25. Marginal features (those with minimum dimension less than the grid spacing) can be either (a) fully
resolved, (b) unresolved, or (c) partially resolved, depending on grid placement. Blue dotted lines are the exact
offset curves, green lines represent extracted offset, and blue squares are pixels with associated depth values.

0.53 -0.14

0.68 0.03

0.89

0.92

-0.53 -0.86

1.26 1.18

0.17

2.15

1.37 1.322.80

 32

result, when the center square is processed, the interpolated midpoint depth inconsistently

predicts the actual depth value and causes the two lines to connect the wrong pair of vertices.

The result obtained contains aspects of the intended geometry, however an additional,

erroneous output curve has been created. This phantom curve is topologically correct except for

one edge, which may or may not share the same cell as the associated erroneous edge on the

main result curve. Note also that phantom curves can surround more than one pixel, and more

than one phantom curve can be present per cusp.

Because the exact location of marginal features with respect to screen pixels makes it

possible to entirely miss them, the magnitude of this error can be bounded in only one axis. The

algorithm may omit any feature of minimum size less than w, but the length of this feature is,

under the right circumstances, theoretically unbounded.

Error Source 5: Floating Point Roundoff

The final error source present in this algorithm occurs due to the floating point storage

used for geometry and depth data. Because the graphics pipeline operates on 32-bit floating

point values for locating geometry, interpolating depth values between fragments, and storing

values in the depth buffer, the results of any graphical offsetting algorithm will be limited by the

resolution of a 32-bit float.

Numeric Error Estimation

In order to estimate and visualize the error produced by the graphical offsetting process,

a numeric error approximation was developed. This metric does not provide an exhaustive or

guaranteed accurate error analysis, but does provide a good estimate in most cases and allows

easy visualization of the relative error between cases. An example result is shown in Figure 26.

 33

In order to estimate error, the

graphical offset curve was obtained, then

each vertex and the center point of each

line was checked for error by evaluating the

distance between the point and the nearest

point on the progenitor curve. If the

distance is less than the offset distance,

gouging error occurred (shown in pink in

Figure 26); if it is greater, undercut error

occurred (shown in blue in Figure 26). The

error was then plotted as a line originating at the point tested and travelling along the line

between the point and the closest point on the original Bézier curve, scaled by a user-defined

factor for visibility.

The process of determining the smallest

distance between a point and a Bézier curve, used at

each test point described above, was accomplished in

two steps. First, the discretized curve was searched for

changes in sign of the derivative of the distance

function, seeking locations along the curve closest to

the point in question. For each sign change, the t

value for the corresponding spot on the original Bézier curve was obtained, then used as an

initial guess in a Newton’s method estimation of the nearest zero crossing of the function

 (()) (6)

Figure 26. Visualization of offset error. Pink represents
gouging error; blue represents undercut. Errors are
magnified 100X.

Figure 27. The shortest distance between
a point and a Bézier curve.

 tB

 d t

dt

B

P

 t B P

 34

where ()is the parametric function defining the Bézier curve and is the offset point (see

Figure 27). ‖ () ‖ is at an extreme when it is perpendicular to

 , the tangent to the Bézier

curve at that point. When the two vectors are perpendicular, their dot product is zero, so

utilizing Newton’s method to zero Equation (6) gave the value of t for which ‖ () ‖ gave a

maximum or minimum distance between the curve and the point . The output distance was

obtained by taking the minimum of ‖ () ‖ for each change in slope of the distance

function in the discretized curve, the value of ‖ () ‖ obtained when the Newton’s method

approximation is seeded with the end points, and the distance between the end points

themselves and . In all cases, t values outside the range used by the parametric curve were

culled.

The result of this algorithm was an error estimate that related a large number of test

points on the final output curve to the original, mathematically-defined Bézier progenitor curve.

In this way, error induced by all error sources, from curve discretization to screen resolution,

appear in the error estimate.

 35

RESULTS AND DISCUSSION

In this chapter, the results and performance of our graphical approximation to offset

curves is presented, accompanied by appropriate discussion. First, results are presented

demonstrating basic offsetting and loop removal capabilities, followed by a series of error plots

describing the experimental error obtained for various simulation scenarios. The next section

describes the experimental algorithmic performance of our method. Following these results,

advantages and disadvantages of this approach are discussed, and the chapter concludes with a

discussion of unexpected results obtained and lessons learned.

Offset Curve Results

We began with a simple offset of a Bézier

curve, Figure 28. As expected, the offset curve

tracked nicely with the original, producing both

interior and exterior offsets, as well as circular caps

around the end points. This behavior is the most

easily obtained result for a graphical approach, and

separating the caps, interior, and exterior curves in

post-processing should be straightforward.

Local loop elimination functionality is shown in Figure 29, in which the Bézier was given

a curvature much smaller than the offset distance. This produces a cusp where the two exact

offset curves intersect (see Figure 7). As predicted, the loop is correctly eliminated, though the

Figure 28. An offset (teal) of a Bézier curve (red)

 36

cusp is not fully resolved once it drops below the resolution limit. Elsewhere, however, the

output curve traces the exact offset with a precision much higher than the rendering resolution.

Figure 29. Local loop elimination.

Figure 30 shows an example of global loop elimination. Graphically, this problem is

solved in a manner identical to local loop elimination, except the output geometry includes two

curves instead of one.

Figure 30. Global loop elimination.

 37

Error Visualization

The ability to visualize the error changes that occur when varying the computation

parameters was key to our understanding of error sources. Enabling tents, for example, resulted

in a profound reduction in error, as shown in Figure 31. It is clear in places of wider

discretization that the valley between the cones is producing a comparatively large amount of

error. The caps at the ends show very little error due to a large number of polygons making up

the cones. In the crook of the curve, a small amount of undercutting error occurs in the region

where the near-cusp drops below the resolvability limit.

 (a) (b)

Figure 31. Error, magnified 50 times, of a curve offset (a) before and (b) after enabling tents.

Figure 32a shows the error plot produced by relatively high quality settings. For this

image, the curve was discretized into 60 linear segments, cones were represented with 125

triangles each, and the window used in rendering the offset geometry was 600x600. Tents were

enabled for all three images. By decreasing the number of progenitor curve line segments to 25,

the error increased as shown in Figure 32b. Note that as predicted, the discretization error

shows itself most prominently when the curvature per line segment is comparatively high (these

curves are discretized by stepping a constant Δt). Also, the direction of the error tracks with the

 38

direction of curvature. In concave regions, the discretization causes undercut in the output

geometry, while in convex regions, the opposite occurs. If instead the number of triangles per

cone was decreased to 60, the plot changed to look like Figure 32c. In this case, the error

appears on the caps, and convex portions of the offset curve, anywhere cones dominate the

visible geometry.

 (a)

 (b) (c)

Figure 32. Error plotted (magnified 100X) in (a) the base case, (b) with fewer input curve segments, and (c) with
fewer polygons per cone.

Varying the resolution of the computation buffer has relatively little effect on the bulk

error but directly affects the resolution of marginal features. Figure 33 shows the same cusp

 39

extracted at two different resolutions. As the resolution increases, the larger features of the

offset remain unchanged, but cusp, which near the tip drops below the grid resolution in size, is

much better resolved at higher resolutions.

 (a) (b)
Figure 33. Two frames of the same portion of a cusp at different resolutions. (a) 300x300 pixels; (b) 600x600 pixels

As a result of this inability to resolve cusp regions exactly, the marching curves algorithm

produces a variety of interesting, albeit wrong, results. Figure 34 shows that the result can vary

drastically depending on the interaction between the grid and the curve itself. Outside of these

marginal areas, however, the solution is remarkably insensitive to grid resolution; low-error

offset approximations can be obtained from buffer sizes as small as 300x300 while maintaining

accuracies on the order of 0.1% (error / offset distance).

 (a) (b) (c)

Figure 34. Results for a marginal feature (minimum size less than 2w). (a) Nearly correct. (b) Badly truncated. (c)

Several phantom curves. Grid lines represent edges of squares used for isoline extraction.

 40

Algorithmic Performance

In order to gauge the effectiveness of the

algorithm in scaling to larger systems, a series of

three tests was performed, each one scaling a

simulation parameter about a base case. The

density of points on the discretized Bézier curve,

the number of polygons in the cone

approximation, and the resolution of the pixel grid

were all evaluated. To emphasize trends in the

scaling, the base case was chosen to be a

comparatively rough set of conditions (20 curve

points, 50 triangles/cone, and 200x200 resolution). Figure 35 shows the test geometry used,

which contains a single marginal feature in the “crook” of the elbow, along with the error plot in

the base case. By changing one parameter at a time, we obtain a quantitative measure both of

the performance of the algorithm as well as the effect that variable has on error. The following

pages will explore the results of this evaluation.

Figure 35. Error plot (magnified 100X) for the
base case used to evaluate scaling performance.

 41

Figure 36. Algorithm speed vs. the number of curve input points; linear fit (R² = 0.9953) overlaid. Error bars

represent a 95% confidence interval.

Figure 36 shows the relationship between execution time and the number of points

placed in the Bézier curve discretization. Overlaid on the graph is a second-degree polynomial fit

to the curve. Because the coefficient on the n² term is negligible, we can confidently conclude

that the algorithm scales linearly with input geometry complexity. Not only is the relationship

O(n), the coefficient is quite small: increasing the number of vertices by an order of magnitude

from 100 to 1000 just doubles the computation time. Since most 3D applications routinely

throw hundreds of thousands of polygons at the graphics card and expect real-time

performance, rendering operations have grown to scale very well with geometric complexity.

In addition to tracking speed, Figure 37 shows the effect changing the number of

discretization points has on error. Error is plotted as the absolute positional error divided by the

offset radius, expressed as a percentage, for maximum gouging error, maximum undercut error,

and root-mean-square (RMS) average error. As is clearly visible in the graph, other error sources

take over quite quickly (due to the low quality settings of the base case), and discretization

affects all three error types (undercut, gouging, and mean error) to a similar degree.

30

35

40

45

50

55

60

65

70

75

0 100 200 300 400 500 600 700 800 900 1000

Compute Time (ms)

Curve Discretization Points

 42

 (a) (b)

Figure 37. (a) Offset error plotted against curve discretization points. (b) Error plot (magnified 100X) of the offset
at 1000 pts

Figure 38. Algorithm speed vs. the number of polygons in each cone. Error bars represent a 95% confidence

interval.

Varying the complexity of the cone model is also predicted to affect performance. As

shown in Figure 38, however, no clear trend is visible, even for very large polygon counts. It is

possible that the relatively small number of cones created so little additional geometry that the

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

0 100 200 300 400 500 600 700 800 900 1000

Error / Offset Dist (%)

Curve Discretization Points

Max Undercut Error

Max Gouge Error

RMS Error

30

35

40

45

50

55

60

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Compute Time (ms)

Cone Polygons

 43

rendering pipeline never saw enough load to create a performance difference. Rendering cones

with moderately high polygon counts should not negatively affect performance.

 (a) (b)
Figure 39. (a) Offset error plotted against number of cone polygons. (b) Error plot (magnified 100X) of the error at

2000 polygons per cone.

The cone polygon relationship with error present in Figure 39 resembles the trend seen

in Figure 37: the error contribution is only significant at relatively small polygon counts. It is

notable that the polygon count has absolutely no effect on the undercut error term, which

occurs in the concave “elbow” region of the offset curve. In this area, the tents cover all cone

geometry and the density of polygons on the cones does not affect any of the final offset

geometry in that area.

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

0.80%

0.90%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Error / Offset Dist (%)

Cone Polygons

Max Undercut Error

Max Gouge Error

RMS Error

 44

Figure 40. Algorithm speed vs. buffer resolution; quadratic trend line overlaid. Error bars represent a 95%

confidence interval.

Figure 40 reports the relationship between the screen resolution and algorithm

performance. Due to the fact that the curve extraction algorithm requires iterating over every

pixel in the output buffer, we anticipate an O(n²) relationship with respect to resolution, one

which is clearly seen in Figure 40.

 (a) (b)
Figure 41. (a) Relationship between buffer resolution and offset error. (b) Error plot (magnified 100X) of the error

at 1000x1000 buffer.

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

Compute Time (ms)

Resolution (pixels²)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

0 200 400 600 800 1000

Error / Offset Dist (%)

Resolution (pixels²)

Max Undercut Error

Max Gouge Error

RMS Error

 45

Resolution has a profound impact on the maximum undercut error (Figure 41a).

Because the maximum undercut error occurs at the marginal feature in the crook of the elbow,

as the resolution changes, the grid intersects the corner in various ways, creating a highly-

unpredictable relationship. As resolution continues to go up, the feature becomes fully resolved

and error converges to a single value. Note that the gouging and RMS errors are both almost

totally unaffected by resolution. Thus, if a better method of detecting marginal features were

present, reducing the maximum undercut error significantly, very low resolutions would be

easily attainable. One could then zoom in only on the regions containing marginal features, re-

render a small part of the original window, and maintain strong performance.

Discussion

Using a graphical approximation such as the one presented here has some significant

advantages over the alternatives presented in the literature. Instead of requiring complex logic

and expensive search operations to find and eliminate local and global loops, this approach

allows direct and automatic elimination of unwanted offset geometry. Additionally, it is fast,

taking advantage of the parallel processing capabilities of the GPU for generation of the depth

field used to create the offset.

A graphical approach also has several significant limitations that must still be overcome

before it can be a viable option for industrial applications. Prior to this work, the error analysis

available for this method has been almost totally lacking in the literature, and further

refinements of the method will still be required before a full understanding of the error involved

in marginal features is finalized. This is critical; NC pocket machining applications frequently

involve pockets sized just large enough to accommodate the tool cutting the pocket. Were the

 46

engineer to wish to cut the slot in Figure 42 with an 8 mm

diameter endmill, the tool path would be a single, straight

line. A straight line is a loop of infinitely small thickness;

the current graphical approach would entirely miss this

solution because it is well below the resolution threshold.

A second shortcoming that must be overcome is

the separation of the output curve into offsets on each

side and caps on the end. Although NC applications need the entire offset in many cases, most

CAD systems want the user to be able to choose how much of the offset chain he gets.

Finally, commercial CAD packages are concerned about data proliferation: a graphical

approach such as this produces a great many output points, even for simple input geometry.

Storing and further processing such large amounts of data is prohibitively resource-intensive.

This graphical approach should be combined with an interpolation algorithm such as Piegel and

Tiller’s (1998) to reduce the quantity of data returned by fitting higher order curves to the offset

points.

Unexpected Results and Lessons Learned

Implementing and exploring a new graphical approximation to the offset curve problem

has proven a challenging and at times daunting task. I have learned much, from algorithm design

and debugging to effective literature search techniques to explaining the project in a way a first

grade teacher can understand. Along the way, several of the results genuinely surprised me,

observations that undid misconceptions and caused a great deal of consternation until fully

understood.

Figure 42. A simple slot creates
difficulties for the graphical approach.

 47

In one instance, the numeric error analysis

function was reporting unexplained errors that

shifted with location on the screen (Figure 43).

After several days of consternation and a great

deal of debugging, I discovered that the root cause

was an incorrect assumption regarding the exact

size of the viewing volume. The working,

unjustified assumption, upon which the offset

extraction algorithm had been built, was that the

viewing volume started at the center of the first pixel on each edge. Instead, a little math and a

few code tweaks demonstrated that the unexplained error went away entirely when the viewing

volume started at the edge of the first pixel instead of the center. The further away the curve

moved from the origin, the more that 0.5 pixel error influenced the result, creating location-

dependent error variations. This revelation reinforced one of the key lessons learned in the

project: when using the GPU for more than just graphics, details matter. A 0.5 pixel error may

not ruin a video game, but the moment one begins to rely on the numeric accuracy of the

rendering transformation, “close enough” isn’t sufficient.

A second unexpected result reinforced one of the key complexities with extracting

useful information from a discrete field such as the depth buffer. The phantom loops

phenomenon was a highly unexpected result, one that took several months to fully understand

and explain. It was a very long trail of debugging and failed hypotheses that led to the

explanation presented above; in part because the author assumed an algorithm with such wide

application as marching squares should not be the cause of such a blatantly erroneous result.

Figure 43. Initially unexplained error bars that
varied with position.

 48

The results presented here, both good and bad, represent only a small fraction of the

test cases examined. The above discussion attempts to place these results in the context of the

broader application for an algorithm such as this, as well as explore its limitations. The next

chapter further expands on several ways of mitigating these drawbacks and bringing this

method closer to industry utility.

 49

FUTURE WORK

The scope of this project precludes a great deal of additional avenues of exploration to

further understand and optimize this algorithm. In this chapter, a brief overview of several

avenues of future pursuit will be given. The future work on this problem falls mainly into two

arenas: refinements to the existing method to improve performance and expansions on the

technique to address new problems.

Refinements and Improvements

As mentioned above, several refinements are needed before this approach can be

utilized in any practical sense. The three most necessary refinements, in our opinion, are

marginal feature detection and refinement, curve tracing and parameterization, and curve

subdivision.

Detecting marginal features remains a major challenge. Several clues have been

observed that could possibly lead to effective methods for locating features that are not fully

resolved. We note that small changes in grid resolution have significant effects on the resulting

topology in regions of marginal features, while the vast majority of the curve remains

unaffected. If these changes could be detected, two or three closely related resolutions could be

attempted and the marginal features located. After locating them, portions of the scene could

be re-rendered, dynamically subdividing the output curve until the desired precision is met.

An alternative approach to marginal features is to revise the marching squares

approach. Instead of using a strictly linear approximation, if both depth and slope information

were obtained from the rendering process, perhaps with the use of a fragment shader, the

 50

linear interpolations present in marching squares could be replaced with quadratic estimators

that would more correctly discern the sub-pixel variations present in the output.

Curve tracing, or fitting a higher-order curve to the points obtained from the graphical

offset operation is needed to reduce data proliferation. Several algorithms using a smaller

number of test points have been proposed (see Interpolation Methods in Table 1); one should

be selected and adapted for this application. Alternatively, a variety of other methods provide

algorithms specifically designed to fit functions to large datasets of points, see for example

Goshtasby (2000). An important aspect of curve fitting is cusp detection – a good

parameterization will not try to fit a smooth curve over a cusp point; several aspects of the

graphical approach make locating cusp points relatively straightforward. Two possible avenues

for exploration include finding cusps in the same process that detects marginal features (most

cusps appear as marginal features when rendered), and taking the offset of the offset, then

searching for pixels covered by the original curve but not the offset. A cusp point will occur on

the nearest point in the offset curve.

The final important area for further investigation involves trimming the offset curve into

caps, inner, and outer offsets. This problem might be approached by determining the progenitor

curve’s normal at the beginning and end of the line, then slicing the offset curve in that region

by intersecting the normal at the end points. An alternative, more graphical approach is to color

the cones drawn on the ends of the curve differently, then instruct the curve extraction

algorithm to break the line when the color changes.

 51

New Avenues of Investigation

The fundamental concept employed in this problem to obtain offset curves has

possibilities in a wide variety of related fields. Three areas of expansion present themselves.

Doubtless, more abound, but these examples show the flexibility of the rendering process for

solving more complex problems.

In the first, one of the beauties of the graphical approximation used here is the spatial

flexibility of the rendered geometry. In a traditional offset, the size of the cones rendered

remains constant everywhere, but this need not be the case. A variable-radius offset could be

easily obtained by changing the size of the cones and tents along the input line’s length. Such a

feature could have applications in variable-radius fillets in CAD, slope-controlled offset distance

to obtain uniform wall thickness in rapid

prototype hollowing operations, and

elsewhere.

A similarly easy tweak to the

graphical approximation allows the

computation of Minkowski sum

boundaries, the superset of geometric

functions to which offset curves belong.

The Minkowski sum boundary of two

shapes is the curve obtained when loops

are eliminated from their convolution,

see Figure 44. An offset curve is a

Minkowski sum boundary of the input

Figure 44. The Minkowski sum boundary of an ellipse
and a cursive "H". (Lee, Kim, and Elber 1998).

Figure 45. The vertical path taken by a cutter in a pocket
is described by the Minkowski sum boundary of the
pocket and the inverse-tool. (Choi, 1998)

 52

curve and a circle of radius d. In NC machining, the Minkowski sum boundary between the tool

profile and the pocket elevation defines the curve the cutter should walk vertically in the

machining process.

A third direction for further expansion involves correlating these methods with the more

complex 3D offset surface problem. It is possible to directly expand the techniques discussed

here to a third dimension, however, rendering it on GPU hardware directly becomes much more

difficult. Nevertheless, a software, 4D rendering environment could be easily set up, and the

method adapted to offset surfaces. In the world of sculped sufrace machining, offset surfaces

are a critical player in determining tool paths.

 53

CONCLUSIONS

This project has sought to explore the applications of graphics hardware to generating

offset curve approximations in a way that obtains results desirable to many practical

applications without requiring the complex algorithms and limitations found in most existing

methods. A graphical method was reviewed in the context of the larger body of research, both

in offset curve computation by other means, and in similar applications of graphics processing in

related problems. Approaches utilized in several other papers were developed and synthesized

into a method that expands directly on the work of Li, et al. (2009). The new graphical method

was described in great detail, and an attempt was made to quantify the error sources present.

The results of the method were described and discussed, with special emphasis on the

remaining areas of exploration needed to turn this approach into a reality feasible for use in

commercial systems. Graphical approximation methods for offset curves are relatively new to an

ancient field but have the potential to become an elegant, fast, error-bounded method for

computation of offset curves in a variety of applications.

 54

BIBLIOGRAPHY

Chiang, C.-S., Hoffmann, C., and Lynch, R. How to compute offsets without self-intersection.
Purdue University, Dept. of Computer Science: West Lafayette, Ind., 1991.

Choi B. and Park, S. “A pair-wise offset algorithm for 2D point-sequence curve,” Computer-Aided
Design, vol. 31, no. 12, pp. 735-745, 1999.

Choi, B. Sculptured surface machining : theory and applications. Dordrecht ;;London: Kluwer
Academic, 1998.

Cobb, E. “Design of sculptured surfaces using the B-spline representation,” Ph. D., University of
Utah, 1984.

Coquillart, S. “Computing offsets of B-spline curves,” Computer-Aided Design, vol. 19, no. 6, pp.
305-309, 1987.

Elber, G. and Cohen, E. “Error bounded variable distance offset operator for free form curves
and surfaces,” International Journal of Computational Geometry and Applications, vol. 1,
no. 1, pp. 67-78, 1991.

Elber, G., In-Kwon, L., and Kim, M.-S. “Comparing offset curve approximation methods,”
Computer Graphics and Applications, IEEE, vol. 17, no. 3, pp. 62-71, Jun. 1997.

Ganesan, M. and Fadel, G. M. “Hollowing rapid prototyping parts using offsetting techniques,”
Proceedings of the Fifth International Conference on Rapid Prototyping. Dayton, OH,
1994.

Goshtasby, A. A. “Grouping and parameterizing irregularly spaced points for curve fitting,” ACM
Transactions on Graphics, vol. 19, no. 3, pp. 185-203, 2000.

Gurbuz, A. “Offsetting operations via closed ball approximation,” Computer-Aided Design, vol.
27, no. 11, pp. 805-810, 1995.

Hansen, A. and Arbab, F. “An algorithm for generating NC tool paths for arbitrarily shaped
pockets with islands,” ACM Transactions on Graphics, vol. 11, no. 2, pp. 152-182, 1992.

Held, M. “A geometry-based investigation of the tool path generation for zigzag pocket
machining,” The Visual Computer, vol. 7, no. 5-6, pp. 296-308, 1991.

Hoff, K. E., Keyser, J., Lin, M., Manocha, D., and Culver, T., “Fast computation of generalized
Voronoi diagrams using graphics hardware,” in Proceedings of the 26th annual
conference on Computer graphics and interactive techniques - SIGGRAPH ’99, Not
Known, 1999, pp. 277-286.

Hoschek, J. “Spline approximation of offset curves,” Computer Aided Geometric Design, vol. 5,
no. 1, pp. 33-40, 1988.

 55

Hoschek, J. and Wissel, N., “Optimal approximate conversion of spline curves and spline

approximation of offset curves,” Computer-Aided Design, vol. 20, no. 8, pp. 475-483,
1988.

Inui, M. and Ohta, A. “Using a GPU to Accelerate Die and Mold Fabrication,” IEEE Computer
Graphics and Applications, vol. 27, no. 1, pp. 82-88, 2007.

Kimmel, R. and Bruckstein, A. “Shape offsets via level sets,” Computer-Aided Design, vol. 25, no.
3, pp. 154-162, 1993.

Klass, R. “An offset spline approximation for plane cubic splines,” Computer-Aided Design, vol.
15, no. 5, pp. 297-299, 1983.

Lai, Y.-L., Wu, J. S.-S., Hung, J.-P., and Chen, J.-H., “A simple method for invalid loops removal of
planar offset curves,” The International Journal of Advanced Manufacturing Technology,
vol. 27, no. 11-12, pp. 1153-1162, 2005.

Lee, I., Kim, M., and Elber, G. “Polynomial/Rational Approximation of Minkowski Sum Boundary
Curves,” Graphical Models and Image Processing, vol. 60, no. 2, pp. 136-165, 1998.

Lee, I., Kim, M., and Elber, G., “Planar curve offset based on circle approximation,” Computer-
Aided Design, vol. 28, no. 8, pp. 617-630, 1996.

Li, C. L., Zhou, G., and Chan, C. W. “A Graphical Approach to Approximate Offset Computation,”
in 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization,
Tianjin, China, 2009, pp. 217-221.

Liu, X., Yong, J., Zheng, G., and Sun J., “An offset algorithm for polyline curves,” Computers in
Industry, vol. 58, no. 3, pp. 240-254, 2007.

Maekawa, T. “An overview of offset curves and surfaces,” Computer-Aided Design, vol. 31, no. 3,
pp. 165-173, 1999.

Maekawa, T., Cho, W., and Patrikalakis, N. M. “Computation of Self-Intersections of Offsets of
B zier Surface Patches,” Journal of Mechanical Design, vol. 119, no. 2, p. 275, 1997.

Morrow, D. “The 220 Clock,” 25-Aug-2008. [Online]. Available:
http://www.ldrider.ca/cnc/clock08/clock08.htm. [Accessed: 12-May-2011].

Park, S. “Uncut free pocketing tool-paths generation using pair-wise offset algorithm,”
Computer-Aided Design, vol. 33, no. 10, pp. 739-746, 2001.

Pham, B. “Offset approximation of uniform B-splines,” Computer-Aided Design, vol. 20, no. 8,
pp. 471-474, 1988.

Pham, B. “Offset curves and surfaces: a brief survey,” Computer-Aided Design, vol. 24, no. 4, pp.
223-229, 1992.

 56

Piegl, L. A. and Tiller, W., “Computing offsets of NURBS curves and surfaces1,” Computer-Aided

Design, vol. 31, no. 2, pp. 147-156, 1999.

Seong, J., Elber, G., and Kim, M. “Trimming local and global self-intersections in offset
curves/surfaces using distance maps,” Computer-Aided Design, vol. 38, no. 3, pp. 183-
193, 2006.

Tiller, W. and Hanson, E., “Offsets of Two-Dimensional Profiles,” IEEE Computer Graphics and
Applications, vol. 4, no. 9, pp. 36-46, 1984.

Wallner, J. “Self-intersections of offset curves and surfaces,” International Journal of Shape
Modeling, vol. 7, no. 1, p. 1, 2001.

Willson, F. N. Theoretical and practical graphics: an educational course on the theory and
practical applications of descriptive geometry and mechanical drawing. The author,
1897.

