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Spin-bath relaxation times T of Ce3 + :CaF2 immersed in liquid

helium have been measured in external magnetic fields ranging from

approximately I to 20 kG. In an effort to heat the spin system of the

Ce ions, the field was rapidly increased by superimposing a field

increment (A H kG) in a time interval of the order of

102 p.sec on the dc background field. The full range of magnetic

field values was achieved by varying the dc background field. The

return to equilibrium at the bath temperature (,,,2 K)was determined

by monitoring the instantaneous paramagnetic Faraday rotation of the

Ce3+ ions. The results indicate that the spin-lattice coupling between

the Ce ions and the CaF
2

lattice is very strong. In samples contain-

ing 0.5, 1.0, and 3.0 at. % Ce3+ with the field applied parallel either

to the crystal [1001 or [111] axis the spin-lattice relaxation time T
1

is



less than 0.1 msec for all temperatures and fields examined. This

result cannot be interpreted in terms of commonly known relaxation

processes.

The overall return to equilibrium (spin-bath relaxation) at the

bath temperature proceeds in an exponential fashion for fields in the

range 515 kG with characteristic time constants of 1 to 10 msec. It

has been shown that under certain conditions a strongly coupled spin-

phonon system whose common relaxation to the temperature of the

liquid helium bath is limited by the rate of energy exchange across the

crystal-bath interface (Kapitza limitation) exhibits an exponential

time dependence. In order that such relaxation times not be incor-

rectly identified as the spin-lattice relaxation time it is imperative

that their magnetic field dependence be examined. The spin-bath

relaxation time takes the form T= r
k
Cc, where rk is the Kapitza resis-

tance per unit crystal-bath interfacial area and Cc is the total heat

capacity of the crystal. Investigation of the spin-bath relaxation of

Ce
3+

:CaF
2

has allowed:

(1) An order of magnitude of the Kapitza resistance per unit

interfacial area, rk, for CaF2 to be determined as 10°K/Watt at

Tee- 2°K, which is somewhat larger than that of most other dielectrics

measured to date.

(2) The Schottky specific heat of the 3% Ce3+ spin system to be

estimated by assuming that all samples examined possess effectively



the same value of rk. This then yields, as an example, C /Nk i-Y- 0.05

at H/T = 7 kG/°K. It follows from this that the field switching method

can serve as a dynamic means for examining the "Schottky specific

heat" of any strongly coupled spin-phonon system as long as the

Kapitza limitation exists between the host crystal and the helium bath.

(3) The lattice heating resulting in a crystal temperature rise,

ST, to be estimated for the extreme case of Cs Cc >> C
L'

where

Cs and CL are respectively the spin and phonon heat capacities. The

maximum value of ST so observed was 0. 2°K. As a result of this, the

possibility arises that the field switching method could serve as a

means of contactless heating of dielectrics through the intermediary

of doped paramagnetic impurities.

Additionally, it is felt that much of the scatter in "spin-lattice"

relaxation times appearing in the literature for which only a tempera-

ture dependence has been investigated may arise from insufficient

consideration having been given to the role of the surface boundary

re sistance.
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THERMALLY LIMITED SPIN-BATH RELAXATION OF
TRIVALENT CERIUM IONS IN CALCIUM FLUORIDE

1. INTRODUCTION

Assume that an experimental arrangement can be visualized to

consist of three parts--a spin system, a lattice (phonon) system, and

a bath (heat reservoir) as illustrated in Fig. 1. Besides the constant

temperature of the bath (TB), Ts and TL are designated to be the

respective temperatures of the spin and phonon systems. It is our

intention to investigate the propagation of energy from the source of

disturbance through the spin system into the heat reservoir. A study

of the rate at which Ts, via certain processes, returns to TB after

the system has been disturbed will be the subject of this work. Since

the complete relaxation process is inherently a two-step one, the rate

of energy transfer between spins and bath depends on the coupling not

only between spins and phonons but also between phonons and bath.

Therefore, depending on the strength of coupling between the systems,

the experimentally measurable spin-bath relaxation time, T, will be

largely determined by whether T1, the spin-lattice relaxation time, or

Tph'
the phonon lifetime, is longer,

Disturbance ---->-
Spins

Ts

Spin- Lattice

Interaction

Phonons

TL

Phonon-Bath

Interaction

Bath

TB

Figure 1. Schematic representation of the energy flow from the spin
system through the phonon system to the bath.



In a more realistic picture one should separate the lattice

system into hot phonons and thermal phonons and be aware of the

presence of other spin speCies between which cross-relaxation might

occur. By hot phonon we mean those excess phonons with energies

approximately equal to the spin energy level spacings. Figure 2 indi-

cates that hot phonons can relax by either transferring their energy

to the bath directly, or they can pass it on to other phonons by inter-

phonon processes. Figure 1 thus implies that inter-phonon coupling

is stronger than the hot phonon-bath coupling. Different spin species

in our case may appear in the forms of clusters or different Zeeman

species (i.e., spins of different spectroscopic splitting factors, the

g values). Since the exchange interaction between rare-earth ions in

a crystal is in general fairly weak, we do not expect any serious

clustering effect. The cross-relaxation between Zeeman species

also seems unlikely because of the relatively large difference in their

g-values and since the method of disturbing spins affects all spins.

The most general situation is illustrated in Fig, 2,

Spins
> >

A Spin-Lattice
Cross Vi '
Relaxation A

Spins

B
Interaction

Hot

Phonon Phonon-Bath

vInter-PhononA Coupling

Thermal
Phonon Interaction

Bath

Relaxation diagram showing all possible processes. Those
not occurring in our system are indicated by dashed lines.



In our investigation, the spin system was heated by rapid field

switching through adiabatic magnetization. Since the entrophy of a

simple spin system at kT >> g f3H (where (3 is the Bohr magneton) is

a linear function of H/T, the final adiabatic spin temperature can be

given by T
f

= (H
f
/H.)T where H

f
and H. are respectively the final and

initial external magnetic fields. The rise of temperature is ST = Tf

TB = (AH/H.)T
B

, where AH = Hf - Hi. This heating technique was

first described by Kalbfleisch (1, 2) and Daniels and Rieckhoff (3).

The subsequent return to the equilibrium bath temperature (TB)

revealed in the differential spin population was monitored by observing

the instantaneous paramagnetic Faraday rotation of the ion. The fact

that the Faraday rotation can be used to detect changes in spin popula-

tion was first predicted by Kastler (4). A theory including various

types of disturbance was developed by Opechowski (5). The influence

of paramagnetic resonance on the Faraday rotation was first detected

by Daniels and Wesemeyer (6) in neodymium ethylsulphate (NdES).

Subsequently Daniels and Rieckhoff (3), and also Rieckhoff and

Griffiths (7), used the effect to measure the spin-lattice relaxation

time of NdES by microwave pulsing. Griffiths and Glattli (8) employed

the same technique to study spin-lattice relaxation phenomena in PrES.

Other work on rare-earth ethylsulphates has been done by combined

methods of Faraday effect and periodic field pulsing (1, 9, 10).



The trivalent cerium ion, Ce3+, was chosen to constitute the

spin system for the work described in this thesis. The reasons are

the following:

(1) It has the simplest atomic and nuclear structure of para-

magnetic ions in the rare-earth group, having one unpaired electron

in the 4-f subshell and a nuclear spin of zero, the latter fact precludes

any hyperfine interaction and should simplify the spin-lattice part of

the overall relaxation a great deal.

(2) It is a Kramers ion of which the Zeeman energy levels are

fully controllable by an external magnetic field and whose coupling

with the lattice is expected to be weak (this implies very long spin-

lattice relaxation times could be anticipated).

(3) The system possesses appreciable paramagnetic Faraday

rotation which is necessary in view of the technique we employ.

(4) The field dependence of the spin-phonon-bath relaxation of

Ce3+ c CaF
2

immersed in liquid helium has never been investigated.

The Ce 3+ ion is doped into a CaF
2

crystal as an impurity.

Electron paramagnetic resonance (EPR) spectroscopic study of this

system was first reported by Baker et al. (11). The temperature

dependence of the spin-lattice relaxation time of Ce3 +°CaF2 as well as

other rare-earth ions in CaF
2

was measured by Bierig et al. (12),

Zapasskii et al. (13, 14, 15) made an intensified study of spin-lattice

relaxation of Dy3+ in CaF
2

and also the CaF
2

:Dy3+ system. Both
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temperature and field dependent spin-lattice relaxation of Tm2+ :CaF2'

SrF2, and BaF2 were reported by Sabisky et al. (16). Our work was

mainly concentrated on the field dependence of spin-bath relaxation

processes of Ce3+:CaF
2

in various concentrations of Ce3+ ion and

crystallographic orientations. The necessity of a field dependent

study of this system (and others) lies in the fact that any of the

common spin-lattice relaxation processes, especially the direct

process, arising from crystal field theory cannot be identified solely

by temperature dependence unless there is also an indication of cor-

rect field dependence. During the experiment, an EPR spectrum of

each of the Ce 3+:CaF
2

crystals was first taken to identify the site

symmetry of the ion, which is necessary in the calculations of spin-

lattice relaxation times and spin specific heats. The optical calibra-

tion of each crystal involving the measurement of the Faraday rotation

of the ion versus the field at nearly constant temperatures then

followed. This enabled us to obtain the maximum response signal in

the observation as well as linearity of response at each field switching

as detailed in Chapter 3. The results indicate a very strong spin-

lattice coupling such that TL is almost the same as Ts over a wide

range of the values of magnetic field with the two temperatures sub-

sequently relaxing to TB together, The process appears to be limited

by the phonons at the boundary of the crystal, due to acoustic mis-

match between it and the liquid helium.



In 1941 Kapitza (17) observed the existence of a small tempera-

ture difference, S T, between the wall of a metal and the bulk of liquid

helium (at TB) caused by a boundary resistance, the Kapitza resis-

tance Rk, to the flow of thermal current across the surface. The

processes causing heat exchange between a solid body and helium II

were discussed by Khalatnikov (18), Challis et al. (19) and others.

Fairly detailed reviews on this topic have been given by Pollack (20)

and, most recently, by Challis (21). For small 6T (6T << TB), Rk

can be defined by 6T = Rkf, where f is the thermal current density.

If one equates the time rate of change of the internal energy of the

combined spin-lattice system (which we will call crystal for short) to

the Kapitza limited thermal current and solves the differential equa-

tion under the assumption that the spin specific heat is much greater

than the phonon specific heat, one finds that the boundary resistance

limited spin-bath relaxation time T can be given by T = RkCc/S,

where C is the heat capacity of the crystal and S is the crystal-bath
c

interfacial area. The dependence of Ton Rk was first proposed by

Van den Broek et al. (22) in their work on spin-lattice relaxation in

rare-earth ethylsulphate. Glqttli (23) utilized the preceding ideas to

measure Rk between CeES and liquid helium II. A related theoretical

analysis, based on the Kapitza resistance, of the experimental data

for PrES measured by Griffiths et al. (8) was also reported in the

same year by Atsarkin (24).



Our results indicate that the spin-bath relaxation process of

our system (Ce3+x70:CaF )is limited by the Kapitza resistance. In

all crystals, the T's were found to be proportional to Rk. The meas-
_

ured Rk's are of the order of 100 cm2 °K /watt (for a crystal with

interfacial area S".`"10 cm2
) and appear to be independent of mag-

netic field at fixed temperature within the range of applicability of the

Kapitza resistance model. Our results also show clearly that relaxa-

tion measurements made at a given magnetic field present all the

appearance of true spin-lattice behavior. The correct identification

of the processes taking place can only be made when the response of

the relaxation times over an extensive field range is examined.

Chapter 2 of this thesis summarizes theoretical background

relevant to the present study. Chapter 3 deals with some details of

interest in connection with the experimental apparatus and procedures.

In Chapter 4 the experimental data are presented and discussions are

given in Chapter 5. The last chapter, Chapter 6, contains a summary

of conclusions drawn from the foregoing chapters.
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2. THEORETICAL BACKGROUND

2-1. Trivalent Cerium as an Impurity in CaF2

(1) The Ce 3+ Ion

Cerium,
58

Ce
140, is the first element of a series of 14

elements whose 4f-subshell is incomplete. The series is known as

the first inner transition series or rare-earth elements. The Cerium

atom has an electronic configuration (l s2 )(2s
2

2p
6 )(3s

2
3p

6
3d

10
)

2 6 10 1 2 6 1 2(4s 4p 4d 4f )(5s 5p 5d )(6s ) which becomes a trivalent ion by

losing the 3 electrons in the 5d and 6s subshells. The unpaired 4f

electron is optically and magnetically active and is responsible for the

ground 2FF term. In the case of the free ion, the F term is further

split by the spin-orbit interation into 2F
5

2and F
7

with the former

lying lower and the separation between them being approximately

2253 cm 1 (25).

(2) The Host Crystal, CaF2

Calcium fluoride has a crystalline structure (26) which can be

visualized as a cubic lattice of fluorine ions in which every other body

center is occupied by a divalent calcium ion. The lattice constant a is

5.4527 X at 25°C and 5.4355 X at 6.4°K (27). Trivalent cerium ions

enter the crystal by substituting for Ca2+ ions and in so doing create



the need of a charge compensation mechanism which, in turn, changes

the point group symmetry at the site of Ce3+ (11, 26). The most

common method of such compensation is achieved by placement of a

F ion in one of the six nearest-neighbor interstitial sites at a dis-

tance a/2 as shown in Fig. 3. The presence of the extra F

changes the crystal field symmetry at the Ce 3+ site from cubic (Oh)

to tetragonal (C4v). A less common but still possible way is by

insertion of a F at (a/2, a/2, a/2); an even lower site symmetry,

trigonal (C3v), is then felt by the Ce3+ ion.

(3) Ground State of Ce3+ in CsE2 Crystal Field Treatment

From the electronic configuration of the cerium ion we readily

see that the 4f electron, like those of the other rare-earth ions, is at

least partially shielded from outside influences by those electrons in

the 5s and 5p subshells. As a result the crystal field interaction is

considerably reduced from that found in the other transition ions of

the 3-d group and thus becomes much weaker than the spin-orbit

interaction in such a way that the total angular momentum J remains

nearly a good quantum number. This then allows us to restrict our

consideration to the ground J manifold, 2
F512

To approach the problem by crystal field treatment we first

write down the Hamiltonian of the system; Ce3+ ion situated in



a/2

I

/I
//

1

[

F \\
(1) \ - - -

\

0

O Ce3+

Ca2+

F-

C4

[1001

Figure 3. Crystal structure of CaF2 and site symmetries of Ce3+. The figure shows Oh symmetry of
Calf site, C4v symmetry of Ce3+ site when F- is at position (1), and C3v symmetry of

Ce3+ when F- is at position (2).



certain crystal site symmetry:

=
0

+ V
c

,

where JC,
0

is the free ion energy including spin-orbit interaction and

V
c

is the weak crystal field perturbation. Assuming no overlapping

of paramagnetic ion wavefunctions onto the ligands, Vc
satisfies

2Laplace's equation, v V
c

= 0, and has a general solution expressible

by spherical harmonic functions Y (1°) .n

V = E Anm rn Ym (
c nn, m

If we examine matric elements such as <JmJ IV > the proper-

ties of which are determined by <LmL jVc ILmL> with L = 3 for a 4f

electron, we see that non-zero elements occur only for even integer

values of n and terminate at n = 6, Actually, if the calculation is

restricted to within the J = 5/2 manifold, the resultant maximum

value of n is 4. Hence Vc takes the form

m n m
Vc = Z An r Yn

n=0,2, 4

The perturbation, V , must also reflect the symmetry of the crystal

field. If a tetragonal (C4v) field symmetry is assumed, the 4-fold

rotations in C4v require m = 0,4, 8, . Thus, Vc can be further

simplified to

V =A0 +A0r2Y 0
+ AOr4Y0 +A4r 4Y 4 +A 4r4Y

4
4

.
c 0 2 2 4 4 4 4 4
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Rather than evaluate the matrix elements of V c
directly, it is more

common to employ the operator equivalent method developed by

Stevens (28). Following his method, we first cast Yn into Cartesian

coordinates, then use the total angular momentum operators to

replace the coordinate operators. The substitution needs only

numerical corrections plus consideration of the hermiticity of the

angular momentum representation of the crystal field interaction V .

Thus

2 2 4 2 2 4 4 4 2 2 4
V

c
= A 2(3z -r ) + A

4(35z
-30r z +3r ) + A 4(x - x y +y )

A 0 A
implies V

c
= A0

2<r
2 >x20O

2
+ A4<r

4 0O>x + A
4 <r4 >x 04 where4 4 4 4.4 '

AO AO r0
z

= 3J 2 - 3(3+1), 04 = 35J - i 30J(J+1)-2 5] JZ
z

- 63(3 +1) + 3J2 (J+1)2,

A4 1 4 404 = y (J+-J_), and the parameter x2 and x4 are just Stevens' a arid

R (28). For Ce 3+, a= x2 = -2 /35 and p = x4 = 2 /7x45. Note that the

0constant term A
0

in V
c

has been dropped and the last term is a linear

-combination of Y4
4

and Y44
. xn

common to lump <rn>, and

AnTri together and call Bn171
xnAn

m<rn> the crystal field parameter,

which can be obtained experimentally from optical absorption meas-

urements. Finally we write V
c

as

0 AO AOVc = B2 02 + B
4

04 +

When ordinary static perturbation theory is employed, Vc partially

removes the degeneracy in J = 5/2 manifold by splitting it into three

doublets. This is consistent with the result predicted both from



Kramers' theorem (29)

energy shifts and wave

Energies

E3 = E
0

(J= 5 /2) +

E
2

= E
0

(J=5/2) +

and crystal point group considerations.

functions can be listed as follows:

Wave functions

e+ cos0 11E3/2> - sine I ; 5 /2 >

E ± 1/2>

cos° 1;5/2> + sine ± 3 / 2 >

0

E
1

= E
0

(J=5/2) + E

±
4 2,1/2

where I=4(B°-15B ) - 6[(B°+20B
0)2 + 20 ) ,

+ 2 4 2 4 (B4

= -8(B0 - 15B04 ) ,

r- 0and tan20 = 2,/5B 44 / (B2 + 20B
4)

13

When a magnetic field H is applied the doublets are split by an amount

proportional to H. The relation AE = gpH, where AE is the energy

spacing and p is the Bohr magneton, defines g, the spectroscopic

splitting factor. Suppose H is applied parallel to the crystal C4v axis

(taken as z-axis), the splitting of the lowest ground doublet is

DE = 2ApH< alJz la> = g, pH = 2ApH<b lJz jb , where la> and lb> are

the wave vectors of El with Ja> taking the bottom signs, and A= 6/7

is the Lande splitting factor. This yields = A(4cos20+1). On the

other hand, if H is perpendicular to the z-axis, the splitting becomes

AE 2ApH< a IJ)c lb> = 2ApH< a IJy lb> = gj_ p H, which yields

gj_ = 1-5-singe. The experimental values of g (11) are go

0. 00 3 and gi = 1. 396 ± 0.002, Employing these values

for go (0) and gi (0), we found tan20 /..? 1.15, which, in

= 3. 0 38 ±

and relations

turn, yields
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the calculated values of g; gli = 3.11 and g1 = 1.45. The energy

spacing di = E2-E1 d 110 cm-1 and 6,2 = E3-E1 579 cm-1 has been

recently measured by Manthey (30) from fluorescence. We shall show

this in Fig. 4. Using the known values of tan20, andand Az, we found

the values of crystal parameters from eq's. (2-1-1, 2, 3) B2 = -5.02

-1 , B40cm = -1. 33 cm -1, and B44 = -8.14 cm-1.

When the Ce 3+ ion is situated in a trigonal (C3v) crystal field

symmetry, the perturbation assumes the form (31)
"0 3 "3Vc = B2 02 + B4 04 + B4 04 .

Similar calculations then give g11 = 3A = 18/7-'21- 2.57 and g1 =A = 6/7

/2 0.86, which are to be compared with the experimental values (31)

gli = 2. 38 ± 0.03 and gi< 0.1.

The perturbation describing the undistorted cubic (Oh) crystal

field symmetry may be written as (31)
0 AO A 0 AO

V
c

= B4(04 + 5044 ) + B6(06 - 2106).

Under the action of V
c

the ground J = 5/2 manifold splits into a doublet

(I-
7 8

) and a quartet (1- ), the latter being lower in energy (32). Allowed

transitions within the split quartet when H is parallel to a crystal C4

axis yield g = 7A/3 = 2 and 11A/3 3.14 which are to be compared

with the experimental values (33) g = 2.00 and 3.1 ± 0.1.

In the foregoing calculation we have assumed complete ionic

binding in the crystal and used the so-called "point charge" crystal
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field theory. This model gives fairly good qualitative account of the

magnetic properties of these paramagnetic ions. Although the molecu-

lar field theory makes the model more realistic and renders closer

agreement with experiments in some aspects, it plays no role in the

magnetic behavior of these ions.

Additionally, it should be noted that at liquid helium tempera-

tures only the lowest Kramers degenerate state will have appreciable

population. Thus all we need to concern ourselves with is this state

and transitions arising from it.

2-2. Spin-Lattice Relaxation

Since paramagnetic ions (spins) are imbedded in a crystal host,

any change of spin temperature must ultimately be felt by the lattice

and some relaxation process must take place to re-establish thermal

equilibrium between these two systems. Two major relaxation

mechanisms have been proposed. Both have suggested that the domi-

nant spin-lattice coupling is via a thermal modulation of well known

static interactions. The first was given by Waller (34) based on di-

polar interaction between neighboring paramagnetic ions. Modulation

of the dipolar interaction (r../r-3) by lattice vibrations provides the

coupling between the spin system and the lattice. This mechanism was

found not feasible to account for the relaxation of magnetically dilute

salts. The second mechanism based on the interaction of the
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paramagnetic ion with the dynamic crystalline field was suggested by

Kronig (35), examined in detail by Van Vleck (36), and more recently,

by Mattuck et al. (37) for the 3-d group, and Orbach (38) for the rare-

earth group, Since our experiment deals with diluted rare-earth

ions, we shall concentrate on the second mechanism, and follow

Orbach's phenomenological approach in its theoretical treatment,

The Hamiltonian describing the electronic ground state may be

taken as 5-C= + (1-0 + , the terms representing the spin-orbit,
so

crystal field, and Zeeman interactions, respectively. Here we have

ignored nuclear effects. As we have stated in §2-1, when an ion is

placed in a crystal, spatial isotropy is destroyed by various inhomo-

geneous electric fields. The free ion energy levels hence are split,

In the rare-earth ions the spin-orbit splitting (t\,10
3 cm-1 .

) con-

siderably much greater than the crystal field splitting (")10 2 cm
-1

),

Al' ..., so that the total angular momentum J stays nearly a

good quantum number. Each of the crystal field split levels of a J

manifold is therefore expressed by some linear combination of the

z-axis projection of J, namely {JJ, Jz>). For ions with an odd num-

ber of electrons each of these states has at least Kramers degeneracy

(29). For ions with an even number of electrons, some of the states

may be singlets, but we assume that a magnetic doublet lies lowest.

The degeneracy of the ground doublet is then lifted by Riz. We have

called these states la> and Ib> and shall call the other final excited
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states jc >, , etc. Their Zeeman spacing, 6, is in general

of the order of 1 cm 1, A typical energy level diagram of this sort

is shown in Fig. 4 (not necessarily to scale).

As a result of the point charge approximation, tte6 satisfies the

Laplace equation and can be expanded in this manner:

= Bm n mn
n, m r Yn (r) , 2 -2- 1)

where we have taken the origin to be at the paramagnetic ion. We

shall take t to be the coordinate of a ligand ion and expand Brnn ( ) in a

Taylor's series about the ligand equilibrium position t
0

. In other

words, consideration of thermal fluctuations of the lattice allows us

to write down Bn (t ) in following form:

Bn ) = Bnin
0 n( ) + (a B/a )

0 0 )m

+ (1/2)(a2Bmn t)0(t + (2-2-2)

The quantity -y when divided by yields the lattice thermal strain

e , therefore eq. (2-2-1) is expressible by E's if eq. (2-2-2) is

employed

= E B111( )rnY+ E E (aB ) rnYm
n 0 nni nITIM

0 n
n, m n,m

+ (1/2)Eel
2

B n
m /Doti) rn

Yn
m

+

n, m

which is commonly written as = V +R; +W' + . The first
c c c c

mterm, V E Bn )rnYn = E V n , is simply the static crystal
n,m n, m
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field interaction introduced in §2-1. The second term, X'

E n , mE n
(aB /at)

0
rn

Yn
m

m-E E V , is the lowest time-dependent
n, n

component of ae, to first order in the effective thermal strain E and is

responsible for the one-phonon direct process, the two-phonon real

excitation Orbach process, and the higher order two-phonon virtual

2
1

excitation Raman process, The third term, ,7-e =-: EE'
n , m
z V({)

2
Bn

m /
c

nav)ornYnin Ee' E VTX1
, is the fluctuation in of second order in

n, m n c

the effective thermal strain and contributes also to the higher order

two-phonon Raman process. In the above expressions of the dynamic

crystal field interaction, the approximations Bn (t 0) -t ( aB /at )0

1 ti(aBm/atati)
0 ra

are made under the assumption B() cc

-(p+1), where p is not large enough to alter the order of magnitude of

the final results.

(1) The Direct Process

In the direct process, the transition between spin states la> and

lb> is accompanied by absorption or emission of a single phonon of

energy S as illustrated in Fig. 5(A). The direct process spin-lattice

relaxation rate, T l-1d
, calculated by first-order time dependent

perturbation theory under dynamic crystal field interactionJe' is

given by (39) as

Tld- 1 = (3/2Trpv
5
-.1-1)(45frh)

3 '<aln,mE Vm lb> 2coth(6/2kT), (2-2-3)
n
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Figure 5. Schematic diagrams to illustrate: (A) the direct process,
(B) the Orbach process, and (C) the Raman process.
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where p is the mass density of the crystal, v is an average phonon

velocity, 5 is the Zeeman energy spacing between spin states la>

and lb>, and V
n

's are components of the static crystal field inter-

action. In the case of a Kramers doublet, invariance of the

Hamiltonian under time-reversal requires that matrix elements of

the crystal field interaction <al E Vm lb> vanish identically, and
n, rn n

we must take account of the admixture of la> and lb> with l > and

-4 -4

ld>, at an energy Al, produced by the Zeeman perturbation A3H J.

The relaxation rate in this case becomes (39)

A

T ld-
1

= (3/2Trp v5f1)(6/-h)
3(2(AH/A

1
)
2
[< a Ih J lc> <c InEm nV lb>

+ <al E Vm1c><clit-111b ]2coth(5/2kT). (2 -2 -4)
n, m n

Since 5= 13gH, when H is not too high at liquid helium temperatures,

6 <<2kT, eq. (2-2-4) can be expressed by

T ld
- 1 2 2 A ->

= (12kg (3 A hrpv5
la

4
A

2)[<alhoJlc><c E V lb>
1 n, m n

+ <al E Vrnic><c --fib>] 2. TH4n,m n

A'TH4
, (2 -2 -4)'

where A' is the right-hand side of eq. (2-2-4)', excluding TH4, and

h is defined by H = Hh. The direct one phonon relaxation rate,

Tld -1, for Kramers ions is thus characterized by a fourth power

field and a first power temperature dependence.
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(2) The Orbach Process

In cases where the crystal field splitting Al is less than the

maximum phonon energy keD' OD being the Debye temperature,

relaxation between la> and lb> may proceed by a two-step process

involving real transitions to and from an excited state lc> accom-

panied by the absorption and emission of two phonons having energies

of the order of Al as indicated in Fig. 5(B). The relaxation rate for
-the Orbach process, T , has been found (39) to be

lo
1

Tlo-1 = (3/2Trpv5
-t.)(A

1
/S) 31<al

nEm nV ac 12. exp(-A /kT)
, 1

B exp(-Al/kT). (2_2 -5

,In the case of a Kramers ion, 1 alE Vm.
lc>1

2 must be replaced byn,m n
,E 1<al E Vm lc>i 2 where the sum extends over all excited states atn, m n

energy Al.

(3) The Raman Process

The Raman process involves the simultaneous absorption of a

phonon of energy 61 and emission of another of energy 62 = 61+6,

along with a transition of the spin from lb> to la>. Figure 5(C)

illustrates this inelastic phonon scattering induced spin flip. The

Raman relaxation rate has two contributing components. One is

computed from first-order time dependent perturbation theory with a

second-order perturbation in strain The result is (39)
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(9x6 ! )/4 Tr3p2v10)(k/31)7 1<a I Em V111 lb> I2T7 CT7. (2 -2 - 6)

The other is calculated from second-order time dependent perturba-

tion theory with a first-order perturbation in strain 3 . The result

is (39)

(9x6 ! /4 Tr3p
2v10A2 )(k/5.) 7 1<a i E Vm ic>

1 n, m n
rn'<ci tV

'
lb>I 2 CuT7

.
nr, n

-1
The two components are added to give the relaxation rate T 1R

(C+C")T 7 for non-Kramers ions at low temperatures.

(2 -2 - 7

For Kramers ions in the low temperature region the rate of the

first component is replaced by (39)

2 2 9
(9!'n rr

3p v 10
1

4
)(1c/.-5) 1<a. Vn, m n

m c>

(2-2-8)

The second component contains a factor (2A.(3H/A 1)2 and is much

smaller than the first component. Thus the rate is commonly giFen

by C'T 9 only.

To summarize, we represent the total relaxation rate for

Kramers ions, such as Ce3+, by the summation of the rates of three

common processes

1 -1
T1

1 = Tld Tlo1 + T 1R
= ATH4 + B exp(-6, /kT)

+ C'T 9
. (2-2-9)
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In the above expression not all three terms are competing at all times.

For example, at liquid helium temperatures, the field dependent

first term, T -1
1d'

usually dominates.

Most recently, Bernstein et al. (40) have reviewed the preced-

ing common processes and rederived their relaxation rates by utiliz-

ing a description of lattice dynamic in terms of normal modes of

vibration transforming as spherical harmonics. Their results also

show the conventional field and temperature dependencies of these

relaxation rates as anticipated.

2-3. Rate Equations for Spin-Phonon-Bath Relaxation

If the characteristic time T of the spin-bath relaxation is

determined mainly by phonon processes, the relaxation is said to be

phonon limited and the spin-lattice relaxation is often partially or

totally hidden by them. This phenomena is known as the "phonon

bottleneck" and was first recognized by Van Vleck (41). Analyses

which are valid under certain bottleneck conditions have been

reported by Faughnan et al. (42) as well as many others (39, 43, 44).

In Stoneham's thermodynamic approach (43) a pair of linearized

equations describing the transfer of heat from the spin system to the

bath was written in the following manner:

dU dT C

T1
dt

s
Cs dt

s
T1 L Ts) (2 -3 -1)
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dU dTL C

dt CL dt T
= (Ts - TL) +T

(T
B

T
L

2-3-2)
1 ph

where Us and UL are the internal energy densities of the spin and the

phonon systems, T and. TL are their respective temperatures, and

Cs = au
s

/a T
s

and CL = a UL /a TL are the corresponding specific

heats. T1 and T are the characteristic times describing the thermal
ph

coupling between the systems and are defined by

dTs T-T
s L

dt T1
and

dTL TL -TB

dt ph

Therefore T1 is the usual spin-lattice relaxation time and T is the
Ph

phonon lifetime in the absence of the spin system. It should be noted

that the above coupled linear equations (2-3-1) and (2-3-2) are valid

only under the assumptions TB -'%," T and g(31-1 <<2kT and have been

written in various essentially equivalent forms by other authors (39,

42). Solutions of these equations, based on C >> CL, exhibit two

time constants, T' and T

T' = T (l+cr) -1
,ph

where 0- E Cs T
ph

/CL T1, corresponding to the short time constant

associated with equalization of Ts and TL, and

T"-se. T
1(1+o-

)

being the long time constant associated with the relaxation to TB of

the equalized Ts and TL. In the extreme case where a" >> 1 or

T >>T' we can assign a temperature Tc common to both spin and
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phonon systems in the crystal and use one equation with one charac-

teristic time T to describe the evolution of crystal temperature T

into TB

dUc
c _c;

dTc Tc-TB

dt c dt T

where Cc = Cs+CL = 8U
c

/8 T
c

is the total heat capacity of the crystal.

We proceed to find the explicit form of Twhen the relaxing process is

limited by the Kapitza resistance R
k.

From the definition of Rk

(Chapter 1) and the equation of continuity of thermal current, we have

dUc Tc-TB T
c

-TB d(T
c

-T
B

)

=-C = - fs - Cdt c T Rk c dt

or ---(T -T C R (TO -TB) (2 -3- 3)
dt c B

c k

The solution of which is readily seen to be

Tc-TB = A exp(-St/Cc Rk) = A exp(-t/T)

where A is an arbitrary constant of t and T E Cc RkiS is the Kapitza

limited spin-bath relaxation time. If at the end of field switching the

crystal has a temperature Tc, the time evolution of Tc is

Tc = TB + (T* T
B

) exp (-t/T) .
c

(2-3-4)

It is clear that at t = 0, T = T*, and at t , with T
c c

behaving exponentially during the relaxation.
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2-4. Faraday Rotation

Since the knowledge of Faraday rotation is indispensable to our

experimental method and data analysis, we felt it is relevant to

incorporate a brief survey of the theory in this chapter.

By Faraday rotation we mean the rotation of the plane of

polarization of linearly polarized light upon traversing a dielectric

medium in the presence of a magnetic field H. An empirical equation

depicting the rotation in length x may be given by (I) = VHx. The factor

of proportionality is the Verdet constant to be associated with each

medium and frequency of light. The kinematic origin of the rotation

is a kind of double refraction in which the stable modes of polarization

are right and left circularly polarized waves. Taking the direction of

incidence as the x-axis and considering a plane (Y-polarized) wave of

amplitude D, we visualize the problem as a linear oscillation decom-

posed into two circular oscillations with ie` i2) //E as the

respective left and right circular polarization unit vectors each pro-

pagating through the medium with different wave vector k = n+
+

When these waves emerge from the medium of thickness x, their

resultant, after recombining, is

[ '.4_exp(icot-iwn+x/c) + eA exp (iwt-iwn_x/c)

= (D /1 2 ) CE exp[-iw (n -n )x/2c] + exp[ (n+-n_)x/2c])

exp[icat-ic.4(n
+

+n
-
)x/2c]

= 1Dii exp ii(u.)t-kx) , (2-4 - 1)
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where DD (which is real) is the polarization unit vector of the emerging

wave and takes the form:

= cos [w(n+-n_)x/2c] + 2sin[w(n+-n_)x/2c]

= 9cos o + A.
. (2-4-2)

Therefore, the emergent wave is again a plane polarized wave but

with its plane of polarization rotated through an angle 0 = w(n+- _)x/

2c. The rotation per unit length per unit field strength is thus

V (n - )/2c

Classical considerations based on Larmor's theory and a simple

atomic model yield the so-called Becquerel formula (45)
eHx do

2mc2 dw
(Z-4-3)

A quantum mechanical treatment, by use of the Kramer s-Heisenberg

dispersion relation (46) and taking into account the effect of magnetic

field on the energy states of the atom, has been applied by Rosenfeld

(47) and others. The results of Rosenfeld show, for the case of

multiple widths small compared to kT, that when the incident fre-

quency is far removed from any resonance the rotation can be

expressed as a sum of terms of two types which are respectively

independent of and inversely proportional to the temperature and are

usually called the diamagnetic and paramagnetic parts of the Faraday

rotation. The diamagnetic terms can be cast into eq. (2-4-3) if the

dispersion relation is employed. A general expression of
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paramagnetic rotation in a crystal containing a Kramers ion has been

given by Kramers (29). Theory for rare-earth ions in crystals was

treated by Van Vleck et al. (48) by employing Kramers' result and by

taking into account the influence of crystalline field upon the ions.

The theory has also been reviewed more recently by Bloembergen

et al. (49). The diamagnetic rotation arising from the Zeeman effect

and in general being over-shadowed by the paramagnetic rotation at

low temperature (48) has been ignored in their treatments and the

dominant paramagnetic rotation has been given by

oc Ern. exp(-mg(iH/kT) , (2-4-4)
P m

provided that only the ground J multiplet is occupied. Although the

most general theory probably is the one given by Shen (50) who

generalized the Kramers-Heisenberg dispersion relation by consider-

ing all multipole transitions and not just the electric dipole transition,

his result essentially merges into the Kramer& expression (29) and

hence eq. (2-4-4) when the incident frequency is not close to resonance.

The quantity summed over m in eq. (2-4-4) gives rise to a

Brillouin function B (x), where x = gpH/kT. Therefore, 4 can be

cast into being directly proportional to the magnetization, <M >

of the system. If one introduces a proportionality constant, 4 (s, (4,1 ),
co

known as the saturation rotation and associated with each medium

characterized by the sample index, incident frequency, co, and

length of traversal, 1, eq. (2-4-4) becomes



P
= 4, (s, cu, 1)Bj(x)

00
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(2 -4-5)

When the temperature is so low that only a ground doublet is populated,

the Brillouin function reduces to tanh(x/2), and under conditions where

H/T << 2k/g (3 , 4 is a linear function of HIT.

The dependence of 4, on s (the sample) at given w and 1

requires further specification. The saturation rotation,4, , as treated

by Shen (50), essentially shows a linear dependence on the magnetic

ion concentration N and a functional dependence both on the average

index of refraction <n> and the optical frequencies between all pos-

sible transition states. The possible transition states take into

account the influence of the crystalline field but ignore the presence

of the magnetic field. The Zeeman energy here is considered as a

perturbation on the crystalline field and its contribution to the rota-

tion is negligibly small. In this regard, if a system consists of

several spin species each with effective spin 1/2, eq. (2-4-5) can be

given by

p
=

co
c. tanh(gi. (3 H/2kT)

i
(2 -4 -6)

where c. and g. are respectively the relative spin concentration and

g value of the ith spin species with respect to a given field orientation.
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3. EXPERIMENTAL SETUPS AND PROCEDURES

3-1. Apparatus and Procedures for Measuring
Sein-Bath Relaxation Times

(1) Apparatus

The apparatus is quite similar to that used in the investigation

of the magnetic properties of hollow cylindrical superconductors (51)

and paramagnetic relaxation of CaF
2

:Ce 3+ initiated by flux jumping

(52) by Griffiths. Detailed descriptions of the main features of the

apparatus as well as the experimental procedure shall be given in this

and following sections.

(i) The Dewar System: The dewar is of a convoluted four wall

design as shown in Fig. 6 and is capable of holding about 10 liters of

liquid helium in its inner section and approximately the same amount

of liquid nitrogen in its outer section. This design avoids the intro-

duction of any nitrogen bubbles into the light path with subsequent

degradation of the signal. The dewar has an overall length of 124 cm

and an average outer diameter of 20 cm. A superconducting solenoid

holding the sample in its geometrical center is attached to a stainless

steel connecting tube which in turn is attached to a steel disc with a

window cut in its center. The disc houses an 0-ring and seals the

dewar from the top and in addition supports the solenoid. A small
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vacuum cell was built on the disc in order to avoid frosting which

would block off the optical transmission. Electrical connections to

the solenoid and the AH-coil (both to be described later), helium

feed throughs and connection to the vapor pressure thermometer are

all on the disc. The foregoing items mentioned with the exception of

the dewar itself have been put together into one piece and are referred

to as "head and solenoid mount, " The details are depicted in Fig. 7,

which shows that light is allowed to pass freely along the cylindrical

symmetry axis.

(ii) The Pumping System: Figure 6 also shows the pumping

system used in conjunction with the dewar system. A Varian (921-

0007) vacion pump is employed to bring the pressure of the dewar

wall down to a fraction of 10-7 torr and to pump a Wallace and

Tiernan He4 vapor pressure sensitive thermometer which measures

the temperature of the liquid helium by indicating its vapor pressure.

An Edwards ED 500 high vacuum pump is used to pump the helium

vapor in the inner dewar and hence control the temperature.

Normally it took about 20 min to pump the liquid helium down to the

X -point from 4.2o K. The lowest attainable temperature was about

1.70°K.

(iii) The Field Producing Devices: The dc external magnetic

field was produced by a superconducting solenoid (American
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35

Magnetics) capable of generating fields up to 56 KOe (an equivalent

unit, Kilo-gauss (KG), is also used throughout the text) with a field

constant of 971.411 0e /amp. The physical dimensions and weight are

Tr (1.83)2 x 8.75 inch3 with an 1.55 inch clear bore and 13.75 lb.,

respectively. The solenoid was energized by a Varian X4101 power

supply which can supply regulated current (from 0 to 25 amp) by two

selective ramp modes (increase and decrease) in suitable discrete

ramp times (5, 10, 25, 50, 100, 250, 500, and 1000 min).

The 0H -coil (field jumping coil) was made by winding three

layers of 0.014" diameter Westinghouse HI-120 superconducting wire,

each containing about 178 turns, on a black hollow lucite cylinder of

about 1.1 cm outer diameter and 8.0 cm long thus producing a field

constant of 95.64 0e/amp. Under normal operating conditions, it was

energized by current of only a few amperes so as to generate a field

jump of a few hundred oersteds on top of the static field provided by

the main solenoid. The H-coil was coaxially situated in the bore of

the main solenoid and the position was so adjusted that the sample was

located at the center of both, the Ali-coil and the main solenoid.

This ensures parallelism and uniformity of the fields acting on the

sample. The detailed structure of this part is also shown in Fig. 7.

For the purpose of rapid switching we built a very simple R-L circuit

as indicated in Fig. 8. Six 12 volt batteries were connected in series

to provide a 72 volt errif. When switch S4 is closed, the current
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surges through variable resistors Ri and Rz and inductor L, thus

energizing the OH -coil. The current was measured by a Simpson

1701 dc ammeter, the value of which when multiplied by the AH-coil

field constant gives the H-field. By varying the resistance we were

able to switch currents varying from zero to approximately 12 amp

corresponding to 1150 Oe. As the resistance decreases the R-L

time constant Trl increases, so that in the large current region (low

resistance values) Trl may become too long to be an effective field

switching time. In most of the experimental cases we switched a

current of under 8 amp, and, in fact, most of the switching was done

at a value of about 3 amp. As indicated in Fig. 8 when S5 is closed,

the R -L load is shorted and the field in L decays with a longer time

constant as shown in Fig. 9. Finally, the voltage across R2 is taken

to trigger the oscilloscope.

(iv) The Optical System: The optical system contains a light

source, filters, lenses, prisms, and a polarizer-analyzer combina-

tion. A schematic diagram of their arrangement is shown in Fig. 10,

which also includes the field producing device just described and the

signal detection system to be described later. The light source was

an air-cooled Hanovia (901B-11) 200 Watt Hg-Xe arc lamp housed in a

Schoeffel Instrument (LH 150) lamphousing and operated by a Schoeffel

Instrument (LPS 251) lamp power supply capable of achieving 10 amp

maximum output. Light emerges from the lamp by passing through
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an Oriel Optics (B-32-40) arc lamp collimator, mounted on the light

housing, and is filtered by a suitable Corning Glass C. S. series

filter, before being polarized. The transmitted wavelengths of some.

C. S. series filters are given in the following table.

Table 1. List of Corning C. S. series filters.

C. S. No. Transmitted wavelengths
(X)

Dimensions
WxHxT

(inche s)

3-110 5780 (yellow) 2 x 2 x 0.25

4-102 5461 (green) 2 x x 0.50

5-74 4358 (blue) 2 x 2 x 0.20

5-62 4047 (purple) 2 x 2 x 0.43

7-83 3654 (indigo) 2 x 2 x 0.25

After being filtered, the nearly monochromatic light is polarized by a

1 cm2 cross-section Glan-Thompson polarizer, and then undergoes

internal reflection with a gimbals-mounted prism, which results in

the beam being deflected through 90°. The light is then allowed to

traverse the crystal. In order to focus the light beam at this point a

divergent lens of focal length f = -1.33 m is placed about 1.5 cm in

front of the nozzle of the collimator which is approximately 77 cm

distant from the prism face. While transversing the crystal, the

light suffers a rotation of its plane of polarization and upon emerging

is picked up and again deflected through 90° by a prism atop the

dewar. Finally, the light is analyzed by a 1 cm
2 cross-section
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analyzer (Karl Lambrecht Crystal Optics) and is focused into an RCA

6217 photomultiplier through a converging lens of focal length f

20.0 cm. The distance between the prism face and the photomulti-

plier is about 39 cm. Small distance adjustment is allowed for and

must be done before each run in order to obtain the best experi-

mental conditions.

(v) Signal Detection: The signal detection system showing in

Fig. 10 mainly consists of a photomultiplier, an oscilloscope, and a

X-Y recorder. The change of intensity of the plane polarized light

has a cosine squared dependence on the angle of rotation since the

rotation is monitored by a polarizer and analyzer pair. It is the

photomultiplier that is responsible for converting incident intensity

into a voltage signal, The RCA 6217 photomultiplier was powered by

twelve 90 volt telegraph batteries connected in series. The anode

load was provided by a 10 kc2 resistor across which a 0.001 p.f

condenser was connected to eliminate high frequency noise. The RC

time constant is 10 ii.sec, and thus for the examination of relaxation

times down to the order of 0.1 msec no distortion should be encoun-

tered. The voltage across the 10 kr1 resistor was then taken as the

output to be fed into either a Hewlett-Packard 7005B X-Y recorder for

crystal calibration or a Tektronix 547 oscilloscope for spin-bath

relaxation time measurement. If the X-Y recorder was employed,
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we normally sent the signal to the signal channel of a Princeton

Applied Research 120 lock-in amplifier for better results, the output

of which was in turn sent to the y-axis of the recorder. The x-axis

was driven by a voltage signal provided either by a Hewlett-Packard

428B clip-on ammeter or by the Varian superconducting solenoid

power supply. The signals of both were proportional to the energiz-

ing current to the main solenoid generated by the power supply. The

reference channel of the lock-in amplifier was connected to a

Princeton Applied Research 125 light chopper operating at 667 Hz,

which generates an ac signal and at the same time provides the

reference signal for the amplifier. The oscilloscope is equipped with

a type 1A1 dual-trace plug-in unit so that it can be used to display

both traces of relaxation (photomultiplier output) and A H rise

simultaneously when triggered. The traces were photographed by a

Hewlett-Packard 196B oscilloscope camera using polaroid 47 (3000

ASA equivalent) film,

(vi) The Samples: The crystals were provided and cut by

Optovac Inc., North Brookfield, Mass. 01535. Their impurity con-

centration, size (roughly 3/8 in. dia. x 1 in, cylinder), and cut can

be compared from Table 2. Since we will encounter each of the

samples so many times throughout the text, we will, from here on,
3+call them only by their impurity concentration (Ce at. %) and
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Table 2. List of the Ce :CaF
2

crystals used as samples.

Ce3+ Impurity
Concentration

Orientation of
Cylindrical

Axis

Physical Dimensions
diameter

(mm)
x length

(mm)

3 [10o] 9.7 26.7

1 [ loo] 9. 6 25.7

1 [III] 9. 5 26.5

0.5 [loo] 9.7 28.1

0.5 [111] 9. 8 27.8

crystallographic orientation. For example, the 3%, HI/ [100] crystal

will refer to the one containing 3% Ce 3+ with its cylindrical axis cut

parallel to the crystal [100] direction along which the H field is

applied.

(2) Procedure

(i) Preparation: Successful data collection depends critically

on the following steps. Therefore, they must be done before each

run is scheduled.

a) The head and solenoid mount of the dewar is first removed

from its position for mounting the crystal, the Ll H-coil, as well as

the solenoid itself, and for connecting all the electronic leads. At

the same time the inner dewar is cleaned. After these things have

been done, the whole section is put back into the dewar. Plugs on
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the head then relay the connections to the electronic instruments

outside the dewar. The liquid and gaseous helium transfer pipe and

tubing are mounted afterward. Coarse inspection of the sealing of

the dewar system then is done. This is accomplished by pumping the

system down until the vapor pressure sensitive thermometer indicates

a temperature of less than 1 oK (pressure less than 10 microns) and

then checking the needle. If the needle of the thermometer indicates

no significant rise of temperature during a period of a few hours or so,

the dewar can be considered to be well sealed. Otherwise leak detec-

tion must be done and the necessary corrections made.

b) Detection of the signal depends on proper alignment of the

optics. While the alignment must be done ahead of each run, small

adjustments, however, may be needed during the run. Prisms and

lenses play the most crucial roles in this stage, especially the

gimbals-mounted prism. Often tremendous care and patience have

to be taken in aligning these particular optical elements.

c) The walls of the dewar must be pumped down to at least

10-7 torr in order for it to serve as a good liquid nitrogen and helium

vessel. Meanwhile the vapor pressure gauge is also pumped to the

proper pressure (1 micron or less).

d) Sufficient time is allowed to warm up the electronic
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instruments. Some of them require calibration and this must be done

before data taking.

e) The inner dewar must be precooled by filling it to a depth of

several inches with liquid nitrogen and allowing it to boil off over

night. Next day (the day a run is scheduled) the inner dewar is

flushed by dry helium through a "pump-out and fill" procedure which

is repeated about five times. The liquid transfer starts soon after

the inner dewar is well flushed. It normally takes one and one-half

to two hours to make a complete transfer. The amount of liquid

helium used is about 20 liters, since about half of that is used to

bring down the temperature of the system from slightly higher than

liquid nitrogen temperature to liquid helium temperature. After

transferring, the end of the transfer tube is sealed and the helium

vapor pressure is reduced by pumping. The A. -point is reached after

approximately 20 min of pumping below which temperature the liquid

becomes a superfluid with so great a thermal conductivity that no

boiling takes place in the bulk of the liquid, thus eliminating any major

disturbances to the light beam.

(ii) Calibration of the Crystal and the A H-Coil

a) Calibration of the crystal was done with the aid of the X-Y

recorder. The x-axis of the plot represents the solenoid current (or

magnetic field) and the y-axis indicates the cosine squared function of
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the paramagnetic Faraday rotation. The resultant curve is then con-

verted into one of rotation versus HIT such as Figs. 21-23 displayed

in §4-2. This piece of information is necessary for the A H-coil

calibration and for the correct analyzer setting to be described later.

The same procedure was repeated for all samples and wavelengths

available at known temperatures.

b) Calibration of the OH -coil was also done by the aid of a

cos 20 versus H/T plot on the X-Y recorder. We initially let the

recorder pen reside at a point "i" on the curve corresponding to field

H. as indicated in Fig. 11, then switched a known current Ic to ener-

gize the A H-coil so that the pen moved to a point "f" off the curve.

We then project "f" on to the curve at the point "f"' corresponding

to a field Hf. The change in field AH = Hf -Hi was, of course, caused

by the AH-coil current Ic. The field constant of the A H-coil is

equal to AH/Ic with the polarity in this case being antiparallel to that

of the steady dc field. This procedure was repeated for different Ic's

and the AH-coil field constant was taken from the slope of the A H

versus I
c

curve so generated.

(iii) Measurement of Spin-Bath Relaxation Times: Field depen-

dent data of relaxation times were collected by switching to different

Hf's to disturb the spin populations at known temperature and observ-

ing the subsequent relaxation traces. When these traces were



Figure 11.

H/T (arbitrary scale)
2cos 0 Curve used in calibration of Cs,H-coil.
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displayed on the oscilloscope screen, the y-axis depicted the output

signal of the photomultiplier which is proportional to the cosine

squared of the Malus angle,6 = - a,
where 4 and .4)a are respec-

tively the Faraday rotation and the angle of the transmission plane of

the analyzer, i.e., the analyzer setting, both measured from the

plane of the polarizer. The x-axis was the time base. Suppose a

trace was seen to relax from V. to V1, where V's are the signal

heights, the instantaneous signal V(t) can be described by

V(t) = V
0

CQS
z

9 (t) = V0cos2 [04) (t)-4)] (3-2-1)

with the initial and final conditions satisfying V(0) = V. = V
0

coszO.

and V(oo) = V
f = V

0
coszee respectively. Since 4 (t) is proportional to

n(t), the instantaneous spin population difference, the trace indirectly

provides the information of n = n(t) through eq. (3-2-1), i.e., 4)(t) =

cos- \r (t)
0

+ 4a . If fortunately the dependence of non t is

exponential, the decay time can be drawn from the slope of the semi-

logarithmic plot of n (or it is the same, 4)) versus t. The time con-

stant so obtained will be interpreted as the relaxation time associated

with the final field value, Hf = -FAH. In the case where n(t) con-

sists of several exponential decays of very different time constants,

there is still hope of resolving that one having the longest relaxation

time. The relaxation initiated in this fashion may proceed from an

initial condition of complete saturation. = 0), partial saturation
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(H. > 0 and AH > 0) or negative saturation (H. > 0 and 2s1-1 < 0),, To

analyze a trace from the oscilloscope screen we always need to know

the temperature, the time base, the value of Is used to produce H.,

and the coil current lc used to initiate L H. The relaxation time, T,

so acquired from the photograph taken, then merely provides a single

point on the curve of a T versus H plot. In order to cover a wide

range of magnetic field we have to repeat the same procedure of

picture taking and analyzing at each selected value of H at a fixed

temperature.

To obtain the plot of n(t) or 4)(0 versus t from the foregoing

description of functional conversion for each trace taken would be a

formidable job since we had so many pictures to be done. An alter-

native method which simplifies the analyzing yet yields no significant

distortion was taken. The method used approximates eq. (3-2-1) by

V(t) = - V0[4(t) f 4a - n /4 -0.5] , where 4's are to be measured in

radians. This enabled us to analyze n(t) or 4(t) directly from V(t),

e., the trace itself, without committing any functional conversion

first. We shall show that under certain circumstances such an

approximation is justified, Suppose we can manage to arrange the

H-field together with the analyzer setting 4)a such that while the

field switching causes the additional rotation ,6,4 = (I) - (1) 30° the

condition (4)
f

4)+ .)/2 - 4)a = 45o is also fulfilled. These then require

0. = 4. - a P.=-' 30o and Of = 4f - it. a
60o as calculated from the initial
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and final conditions of eq. (3-2-1). Bearing this in mind we proceed

to examine the straight line whose slope is given by the tangent to the

cosine square curve at 0 = 45o as shown in Fig. 12. This straight line

is seen to be in excellent agreement with the curve defined in the

angular range 0E (30Q, 60°) and thus can be taken to approximate the

cosine squared curve, regardless of the actual functional form of

0(t) without causing any serious error. A concrete example is shown

in Fig. 13 by taking 0(t) = 600 - 30°exp(-t/T), The exact normalized

trace obeys V(t)/V
0

= cos2 [60Q-30°exp(-t/T) which relaxes from

V(0 ) /Vo -= cos 230o = 0.75 to V(00)/V0 = cos
2600 = 0.25 nearly

exponentially. Its linearlized form V(t) /V0 7-0.2382 + 0.5236 exp

(-t/T), obtained from the line equation V(t) = V0 [4)(t) -14)a Tr/4-0.5],

decays from V(0 )/V0 = 0.7618 to V(00)/V0 = 0.2382 exponentially with

the time constant T and is to be compared with the exact trace. The

difference in the traces is about 4. 7% at the extremes and is about of

the same order as the attendant noise imposed on the signal. Such a

linearization can be achieved without any difficulties since i H and

(I>a are fully experimentally controllable and (I)i can be obtained from a

ct versus I-1/T curve as given in the next chapter.

3-2. The Electron Paramagnetic Resonance Spectrometer

The apparatus employed to obtain the EPR spectra consisted of

a helium dewar and a standard Varian E-9 EPR spectrometer with a
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modified resonance cavity and low frequency modulation coils. The

resonance cavity consists of a simple wave guide section with a silver-

plated end piece (iris) and with a teflon rod for impedance matching

as described by Gordon (53). The cavity was operated in the TE102

mode, and the sample in it is located at the narrow side about 1/4 of

the total cavity length from the reflection end so that the microwave

1-1 field is always perpendicular to the external magnetic field. The

modulation coils were mounted outside of the helium dewar producing

an ac modulation field parallel to the external field. The spectrome-

ter itself consists of the following basic elements:

(1) E-101 Microwave Bridge: The bridge contains a microwave

circuit (frequency range: 8.8 9.6 GI-Iz ), a Klystron power supply,

a preamplifier and automatic frequency control and serves the function

of detecting the EPR signal reflected from the sample cavity.

(2) E-3425 Electromagnet with a power supply, a cooling system,

and a control unit (E-203) whose 9 in. diameter poles provide a

uniform (10-4 gauss /c 3 ) variable (0/,-, 9KG) field for experimental

use. The bottom tip of the helium dewar containing the cavity is

centered in this magnet gap.

(3) E-204 Low Frequency Modulation Unit: The unit contains a

transmitter and a receiver. The former drives the cavity signal

from the detector crystal and preamplifier in the bridge and converts
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it to a dc voltage for the recorder Y-axis.

(4) E-80A Recorder: The recorder displays the EPR spectrum as

a function of time. The recording time may be selected in incre-

ments from 30 secs to 16 hrs.

The experimental procedure was routine. The sample was first

mounted in the cavity. The cavity was then recoupled to the wave

guide. After inserting the guide and cavity into the dewar and con-

necting the guide to the microwave bridge, liquid N2 was poured into

the outer dewar with the inner dewar being pre cooled by helium

exchange gas. Then liquid helium was transferred. It normally took

2-3 liters (dewar capacity 1 liter) of helium Operation of E-9

spectrometer system included system turn on, bridge tuning, modula-

tion frequency selection, field control and recorder settings on the

console, and spectra taking. For the field alignment and the change

of field orientation, the sample can be rotated about a horizontal axis

from outside of the dewar for about -+ 45° from vertical. The external

field, together with the modulation field, was rotatable ± 95° about

a vertical axis.
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4. EXPERIMENTAL RESULTS

4-1. EPR Spectra

EPR spectra reveal information on crystal site symmetry which

is essential to the calculation of spin-lattice relaxation times and spin

specific heats, and hence are essential in our analysis of experimental

data. In this section we present six spectra of Ce3 +:CaF2, having

different Ce 3+ concentrations and crystallographic orientations, taken

at sample temperatures of approximately 1.4o
K,

Figure 14 shows the spectrum of the 1% crystal with Hil [100]

taken at a frequency of vo = 9. 345 GHz. The spectrum consists of

two intense resonances, corresponding to g11 = 3.07 and gj_ = 1.39

due to the tetragonal site symmetry. The presence of two g values

arises from the fact that the axial direction of the tetragonal distor-

tion occurs along a cube edge. Therefore, for the case of the external

magnetic field being applied along a [100] direction one-third of the

tetragonal sites will find their axial direction parallel to that of the

field while two-thirds will have their axial direction located in the

plane perpendicular to H. Weak additional resonances also showed up

at fields around 2. 70, 3. 30, and 5, 64 KG, respectively. The struc-

ture centered at H 3.30 KG (g 2.02) may be associated with some

complexing involving sites of cubic symmetry (g = 2.00) or minor
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contamination from DPPH tracer or 3-d ions (most likely in the

cavity) and the other two structures are probably caused by the

presence of sites of lower symmetries in the crystal. The results of

the spectrum are comparable to those reported by other authors (11,

31). Figure 15 is the same spectrum except with H 11[11/30] and was

taken to confirm the identification of the tetragonal sites by following

the changes in g for the three non-equivalent sites of tetragonal

variety. Three main resonances, g = 1.39, 1.90, and 2.80, of the

tetragonal site symmetry were present together with weak additional

resonances. The calculated g values using g1 = 1.396 and go = 3.038

(11) are 1.40, 1. 94, and 2.74.

Figure 16 shows the spectrum of the 1% crystal with Hi/ [111]

and vo = 9, 317 G.Hz. Calculation based on the previous g values (11)

predicts one resonance of g = 2.09 (H = 3.138 KG) for the tetragonal

site symmetry. The spectrum indicated three intense resonances,

corresponding to g = 2.09, 2. 11, and 2.13, arising from imperfect

field alignment along the crystal [111] axis. In spite of the appear-

ance of weak additional resonances, the spectrum indicated the strong

domination of the tetragonal sites. It is interesting to point out that

the resonance occurring at H = 2.77 KG (g11 = 2.40) can be associated

with the trigonal site symmetry with the field along its C3 axis and

that occurring near H = 5.64 KG as seen in the 1%, H// [100] case

also appeared here. The dc drift of the recorder level appearing in
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the spectrum is due to a temporary mismatch of the reference and

signal phase in the lock-in amplifier.

Figure 17 gives the result of 0, 5% crystal with H// [1001 and

0
= 9. 325 GHz. The spectrum shows almost the same resonances

when compared with its 1% counterpart. The effect of lower impurity

concentration smears out the weak resonance near H = 5.64 KG and

renders a weaker resonance intensity and hence a clearer spectrum.

The two major resonances equivalent to = 3.05 and g1 = 1.40 are

of course due to the tetragonal site symmetry. Other weak reso-

nances are probably caused by the same reasons as stated in the

case of the 1% crystal.

The spectrum of the 0.5% crystal with HU [1111 and v0 = 9. 317

GHz appears in Fig. 18 exhibiting three close intense resonances

corresponding to g = 2.00, 2.07, and 2.10. The first resonance was

contributed by the DPPH tracer used for microwave tuning and field

calibration, which was not used in the other cases. The rest of the

resonances could be ascribed to the imperfect alignment of the field

along the crystal Dill axis in a tetragonal site symmetry. A per-

fectly oriented field was expected to yield g = 2.09 as stated in the

description of Fig. 16. When compared to its 1% counterpart (Fig.

16) we see the structure occurring near H = 5.64 KG was not present

in this case but the contribution from the trigonal site symmetry

= 2.40) still showed up and the spectrum possessed an overall



Figure 18. EPR spectrum of 0.5% Ce 3+:CaF
2'

ae[111].

1.5

Tetragonal Colm.)lex

F,u 3.07

Tetra7onal Corr.dex

g, 1.39

3.0
g =2.44 KG

Figure 19. EPR spectrum of 3% Ce3+:CaF , He[100].

58



59

weaker resonance intensity. It should be noted that the trigonal con-

tribution when H is applied along [100] axis yields g = 1.39 and hence

is overshadowed by the strong resonance of gi= 1.39 arising from the

tetragonal site symmetry. Therefore the 1-1/1[111] case renders an

excellent opportunity of observing the existence of the trigonal sites,

although the spectrum indicates its contribution is negligible.

The spectrum of the 3% crystal with H //[ 10Q] and v = 9. 316

GHz is given in Fig. 19. The resonance of g = 2.13 (H 3.12 KG)

was the most intense one but was not identifiable with any crystal site

symmetry higher than trigonal. The structures around g11 = 3.07

(H = 2.17 KG) and gu.. = 1.39 (H = 4.79 KG) apparently can be asso-

ciated with the complexing of the tetragonal site symmetry. The

resonance occurring at g = 2.44 (H 2.73 KG) is seen enhanced in

this case as compared to its lower impurity concentration counter-

parts. The high field structure is seen not only enhanced but also

broadened. The resonance band covers fields from Ha--` 5.0 to 6.2 KG

as seen from other runs with a higher range setting. The overall

anomaly of this spectrum indicates that the system has entirely dif-

ferent paramagnetic nature from the 1% and 0. 5% systems, i. e. , the

spectrum is not merely respectiyely three and six times the resonance

intensity of the 1% and 0.5% cases but must be ascribed to the

presence of lower site symmetries and stronger ion-ion interactions

due to higher concentration.
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The minor resonances in each case, though unidentified, can not

serve the purpose for cross-relaxation since their lines are in

general too far removed from our lines of interests. Also their

Faraday rotation will be small itself due to low concentration if they

are rare-earth ions and almost zero due to the orbital angular

momentum quenching if they are 3-d ions.

4-2. Rotatory Dispersion and Faraday Rotation
of Ce3 + :CaF2

The paramagnetic Faraday rotation per unit length of Ce 3+ :CaF
2

in various Ce3+ concentrations and magnetic field orientations was

measured at different wavelengths in the visible range. The disper-

sion curves are shown in Fig. 20. It is seen that greater rotation

occurs at the shorter wavelengths and that the amount of rotation is

roughly proportional to the Ce 3+ concentration. In order to acquire

the greatest sensitivity available we picked 3654 X as our working

wavelength through the entire experiment. The low-energy side of the

nearest absorption band (30) associated with the J = 5/2 multiplet at

liquid helium temperatures starts at approximately 3250 X which is

3402 cm-1 away from 3654 X. Therefore, there should be no prob-

lem of disturbing the spin populations of the ground states of J = 5/2

in the 4f term. In other words, at this frequency, the paramagnetic

Faraday rotation should be still proportional to the magnetization of
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the system. We shall see this in Figs. 21 and 22.

Figure 21 gives the results of rotation measurements on the 1%

crystal with H//[100] and H//[111]. In the former case, the spin

system consists of two Zeeman species, namely gj_ = 1.396 and

g,, = 3.038 with the former weighted twice as much as the latter.

Theoretically the rotation is to be expressed by addition of two

Brillouin functions (eq. (2-4-6) ):

= 400a [ (2 /3)tanh(g± PH/2kT) (1/3)tanh(g10 (3H/2kT) . (4-2-1)

Again, here and below 4) is to stand for the saturation rotation per
oo

cm of the system. Since our maximum field attainable was far below

the saturation value, 4a cannot be determined accurately. Neverthe-

less, a representative value can be given by 4a 1110o. Points

calculated with this value are shown at H/T = 5, 8, and 10 KG/°K in

Fig. 21 with "x" signs. In the H/4 1111 case, the spin system is of a

sole species with g = 2.092. The rotation is expressible by

= tanh(g pH /2kT ) , (4-2-2)

where (1)b takes the value 940o and points calculated from it are shown
oo

with "" signs in the same figure at the same H/T values.

The results of rotation measurements on the 3% Ce3+:CaF
2

with H//[100] appear in Fig. 23 while Fig. 22 gives those on the 0.5%

crystals for both field orientations. Testing points resulting from

respectively
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(4-2-3)

(4-2-4)

at H/T = 5, 8, and 10 KG/°K for 0.5%, Hll[100] and Hil[111] crystals

are shown in Fig. 22 with "x" and "" signs upon the results of

rotation measurements on these systems. Here we have taken 4)c=
oo

478° and 4)d = 424°.

According to the consideration given in §2-4, we should have

seen 4)a =
b

= 24)c = 24) , but this is not quite the case and their
co co 00 00

deviation varies from 10% to 15% depending on the paramagnetic

systems being compared. We do not believe this to arise from the

magnetic anisotropy of 4) rather from the combined effects of

deviation in N, i.e., variation of the nominal. concentration 1%, 0. 5 %,

etc., a possible slight misalignment of the crystal in its holder with

respect to the field direction, presence of spin species not accounted

for, and deviations in c,, the relative spin populations, appearing in

front of the hyperbolic tangents.

4-3. Field De endent S in-Bath Relaxation Times

(1) Kapitza Boundary Resistance Limited Spin-Bath
Relaxation Times of 1% Ce34:CaF2,HU[100] Crystal

The spin-bath relaxation times T (H) have been measured as a

function of the field H at temperatures around 2°K, employing the
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techniques described in Chapter 3. The results are shown in Fig. 24

(a plot of equivalent data at a fixed temperature via suitable normaliza-

tion taking into account the nature of the Kapitza resistivity on

temperature will produce a, more sharply defined dependence of T on

H alone). Each of the points shown in the figure was obtained from a

relaxation trace at known H and T, such as shown in Fig. 25 together

with its signal height versus time plotted on semi-logarithmic scales.

The relaxation traces obtained at fields roughly between 5 KG and

15 KG in general showed exponential response and displayed only one

well defined relaxation time as seen from the trace analyzing (semi-

logarithmic plot) and Fig. 26(A) where the trace was taken at a much

faster time base. Data points in Fig. 24 (as well as Figs. 27, 28,

and 29) showing error bars came from particularly noisy relaxation

traces. The error bars are estimates of the range of relaxation

times from these traces. The remaining data points represent traces

with sufficient low noise levels for obtaining accurate relaxation

times. The two dashed curves (T vs. H) are generated from T =

Cc(H)rk(T) (§ 2-3), using respectively rk = 1.28 x 106 °K sec/erg

for T = 1.99°K and 0.90 x 10-6 o sec/erg for T = 2.06°K (§ 5-2(2) ),

and known Cc(H). Although a single trace presents all the appearance

of true spin-lattice behavior, Fig. 24 shows that the aggregated

relaxation times tend to lengthen as the external field increases in

such a way that it cannot be accounted for by any common spin-lattice



Figure 24. Field dependent spin-bath relaxation times of 1%, H/ /[ 100] crystal
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(A) 1%, Hil[100] crystal; Hf=Hi + LH = 0.971 + 0.300 KG;
T=2.00°K; T. B. =0.2 msec/div

( B) 0.5%, H II [100] crystal; Hf=1-li + L,H = 0.0 + 0.669 KG;
T=2.04°K; T. B. =0.2 ms /div

Figure 26.
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relaxation processes. The shape of the increment is reminiscent of

the Schottky specific heat curve for this kind of crystal at low fields.

Furthermore, the results resemble those obtained from Kapitza

limited CeES by Glatt li (23). Putting all these facts together, we

believe that the best interpretation of our results is obtained by

assuming that the return to equilibrium of this system is limited by

the phonon-bath coupling through the Kapitza boundary resistance.

This model also predicts exponential response of the traces and an

increase of relaxation times with the heat capacity of the crystal.

The values of the Kapitza resistance per unit surface area, rk,

associated with the assumed model are calculated and applied to the

problem in the next chapter.

(2) Results of Other Concentrations and Crystallographic
Orientations of Crystals

The field dependent relaxation times of the 1%, H11[111]

crystal are shown in Fig. 27 (note that here the data were collected at

one common temperature). Figure 28 demonstrates the results of

the 3%, H //[ 100] crystal. Relaxation times of the 0. 5 %, H11[100] and

H11[111] crystals appear in Fig. 29, where many points taken both at

low (< 5 KG) and high ( > 15 KG) fields were rejected for reasons to

be discussed in the next chapter. It will be seen that the limits on

field strength which occur in the case of 0. 5% impurity can be relaxed

for the higher concentrations.
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5. DISCUSSION

5-1. Spin-Lattice Relaxation Times

(1) Calculation of Spin-Lattice Relaxation Times of
Common ProcessesDynamic Crystal Field Treatment

(i) As is discussed in Chapter 2, the ground state J = 5/2 multi-

plet of the Ce3+ ion splits into three Kramers doublets when situated

in a CaF
2

crystal at a, site which exhibits tetragonal symmetry.

These doublets are designated as follows:

Energy Spacing
(from ground doublet)

A2

A
1

Wave Vectors

= cosi) 1-173/2> - sine 1+5/2>

/2,>

= sine 14-3/2> + cose 1±5/2>

The wave vectors l a > , lb> , , If> -diagonalize the Zeeman per

turbation Apg . T when H is applied in the z-direction and hence are

the zeroth order vectors. In order to make use of eq. (2-2-3) we need

to consider the first order wave vectors of the ground doublet. When

only an admixture within the J = 5/2 multiplet is considered, these

can be given by

lal> = la> - 2A(3Hsin20

A2
f> and lb'> - lb

2A131-Isin20
A2
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The replacement of la> and lb> by lal> and Ibl> respectively in eq.

(2-2-3) essentially leads to eq. (2-2-4), if higher order terms in H

are ignored. The term I <a IV
c

lb> I
2 hence is replaced by

,2
1<a'

c
1131>i = (ZA(3HsinZe /02)2 Z I <a IVTT1 le

n, m
a

f 1Vnin lb>
2

2 5 , rn. 3 3 m 5
= (2ApHsin2OLA, Z j<-- > - < V 1>

n, m n 2 2 n 2

(2A(3Hsin20 , )2 IMm 12n, m n
(5-1-1)

m 1m 1 111 Imiwhere Vn = gn B13n,,,n and the normalizing factors, g , are given

by Scott et al. (39). The Orn's are operators in ,1+ , z
and are defined

n

Am
oA-

M
OA

M
o
AO "

O
0 Amby on +

n
=

n
, in >0; =

n
. The 0 's are the operators

given by Baker et al. (54). Here V
n

s in V
c

are treated incoherently

in the evaluation of the matrix elements. This is allowed from the

consideration of the time incoherence of the various lattice modes and

the random fluctuation of the thermal strains (39). The matrix

elements in eq. (5-1-1) vanish for all n and m except n = 2, 4 and

m = -1. For example we take

-1 1 0 5 -1 3 3 5

MZ g2 B2 (<-2 <-21°2 12-> )

Since the explicit form of 8- 1 is [3 + ] and < 1 1 3
2 -2 °2 >

3 A-1 5
-<-2 1°2 1-2> =

1 2 1 0 2we have IM2 I = 20 ig_B = 0.12 x 105 cm 2, if
2

0g2 and B2 are taken t
1o be 4. 90 (39) and -5.02 cm (§2-1), respec-

tively.
1 0

tively. A similar calculation leads to IM4
1

L2 I 121/ 5g
4

B
4

I

2 = 1.02 x
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5 -2 m 2 m,210 cm . The sum of all non-vanishing 1Mn
thus is 1M

n, m n
, -1 2 -1 2 - 2
11\42 1 + 1M

4
1 = 1.14 x 105 cm .

Recalling eq. (2 -2- 3), we have the relaxation rate of the direct

process

, ,

Tld = (3k(i2g,I2 /Trpv
5

-h
4 )1<a' IV clb'>1

2
THZ

2 2
= (3k13 /Trp v

5
-h.

4)
(2Apsin20 /A )2 I 1M

m12-
T H .

2 n, rn n
(5-1-2)

Taking p = 3.18 gm/cm3, v = 4 x 105 cm/sec, gll
= 3.038, A = 6/7,

sin20 = 0.7546,
2

= 579 cm 1 0 2 -1), and E 1Mnil z = 1.14 x 105
n, m

-2 -1 -1 1- 6cm , we evaluate Tld from eq. (5-1-2) to find Tld 1.26 x 10

(°K
4 - 1gauss . sec) TH4. Typically, if we take T = 2°K and H =

10 KG, we have T1d 2.52 sec-1 or Tld '2-1- 0.40 sec.

If instead, H is applied perpendicular to the crystal z-axis, the

first order perturbed wave vectors for the lowest doublet have the

form

11'> = 11> + (-1-2A.(Hsin0 /A 1)13> - (-/-A(3Hcos20 /2,6,2)16>

12 '> = j2> - (12A3Hsine/A1)14> (JA(3Hcos20/2,6,2)15>

where 11> , 12> , j6> are the zeroth order wave vectors just like

la> , lb> , jf> in the 1-1//z case. The matrix element of

V = E Vm thus is
c n, m /1

<1' IV
c

121> = (-1/2A(3Hsin0 )[-<11Vc 14> + <31V c12,>] +

O(A
1 ) + 0(H2)

to be ignored
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and the square of it 1<1' IV c12'>12 = (1-2-ApHsine /A )z E 1M
m 2

1 n,rn
where E 1mn112 = z 1_<111/11114> + < 31Vm12>12 3, 4 x 10

5 cm-2.
n,m n n, m

Equation (5-1-2) now should bear the following form

-1 5 4 m
Tld = (3k (32g

2 /Trp v -11 Hi2ApHsine /6, )2 E 1M 1 TH4 . (5 -1 -3)
_L 1 n, m n

-1The rate, Tld, as calculated by taking g1= 1. 396 and A = 110 cm 1

1

(§2-1) from eq. (5-1-3), is 3. 35 x 10- 16 (oK. gauss4. sec) 1 TH4 which

at T = 2°K and H = 10 KG yields Tld 0. 15 sec and thus is slightly

shorter than that for the H //z case.

(ii) We next calculate the relaxation rate of the Orbach process,
-T11 for the H //z case from eq. (2-2-5)

T10 =
3 /Al 3 1<a1Vm ic 12 + 1V

m 2]

2Trp v5f). 45" 'n' m n,m

exp(-A ikT) ,

where E 1<a1VnlIc>12 and E 1<a 1Vm 1d>12 have numerical values
n, m n n, m n

equal to 5.47 x 10 4 -2cm and 8. 47 x 104 cm 2, respectively. Employ-

ing the values of p , v, and Al we have used in the previous calcula-

tion, T1 is found to be
10

1
T10 6.87 x 10 11 exp(-A

1
ikT) sec-1

Since at 2°K, A
11

/kT '-`e. 80 and exp(-6, /kT),--,10- 35, the Orbach

process takes too long to contribute as a relaxation mechanism. The

situation is also true for the HI z case.
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, ,

(iii) After calculating and substituting E 1<a IV lc>1
n, m

1<c 1Vm lb>12 4.6 x 1010 cm-4 7.27 x 10-54 erg4 into
n, m

eq. (2-2-8), the relaxation rate of the Raman process, T1R, for the

H//z case can be given by

k() Z IVnT-1 - 9!h. 9 2

1R 3 2 10 4 h n,rn
lr p v Al

E )< c ivm IlD>12 4. 95
-6

x 10 (sec -1 -oK 9)T
n, m

At 2 °K, T
1

1

R
2. 35 x 10 -3 sec -1 which amounts to T

1R
400 sec.

The other case, H1z, gives approximately the same order of magni-

tude.

(2) Upper Limit of Spin-Lattice Relaxation Time

In the foregoing chapter we have stated that relaxation times in

the high field region cannot be explained on the basis of spin-lattice

processes discussed here. The above calculation on T ld , T10,
and

T1R further confirms this point. In the low field region, say H < 1

KG, the phonon system should serve as a good reservoir for the spins

and thus provide.an excellent opportunity to observe the spin-lattice

behavior. However, the change in the relaxation trace occurring

within the time of field switching as indicated in Fig. 26(B) clearly

shows that the L/R time constant (e%/0. 1 cosec) can not be shorter
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than the spin-lattice relaxation times of our system, i.e., the true

spin-lattice relaxation time must be < 0.1 cosec.

Although very long relaxation times due to the direct process for

the Kramers ion Dy3+ have been observed and reported (13), the hidden

spin-lattice relaxation times of our system are much too rapid to be

in agreement with the results of the calculation.

5-2. Kapitza Limited Process and the
Limitation of the Model

(1) Heat Capacity of the Crystal

The contributions of both spin and phonon systems to the heat

capacity of the crystal are essential to the discussion of the Kapitza

resistance Rk.

(i) Estimation of the phonon specific heat was made by employ-

ing Debye's T3 law (55) and by taking OD = 505
oK for CaF2 at helium

temperatures (56). An explicit equation can be written as

CL = 5.833 x 1010(T /0 )3 erg / oK. mole . (5-2-1)

Since the impurity concentrations and size of the crystals are differ-

ent, the number of moles n in each crystal are not the same. To

calculate n, we first weighed the crystal to obtain the weight Wc

which is then divided by the formula weight of the crystal of specific

impurity concentration WF to yield the value of n. Multiplication of
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CL from eq. (5-2-1) by n at a given temperature they gives the heat

capacity of the phonon system.

(ii) The specific heat of the spin system requires information on

the total number of spins N, distributed over a presumed two-level

system, and the g values of each spin species present. For the case

where H/4111] we have only one species and the specific heat can be

expressed by

,
Cs = Nk(gpx/k)2exp(gpx/k) / [exp(gpx/k) + 1]2 (5-2-2)

where x = H/T and g = 2.09 for the tetragonal site symmetry. How-

ever, there are two spin species in the 11//[ 100] case and we have

instead

Cs = (2Nk/3)(g113x/k)2exp(g13x/k) /[exp(gipx/k) + 1]2

+ ( Nk/3)(gli px/k)aexP(g11 Px/k)
/[exp(gli px/k) + 1]

(5-2-3)

where g1 = 1.396 and gll = 3.038 for tetragonal site symmetry. To

evaluate N all we need to do is multiply n by N0, Avogadro's number,

and the impurity concentration percentage in the crystal. We list n,

CL, and N for each crystal in Table 3.
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Table 3. List of heat capacity and total spin number for each crystal.

Crystal
n

(moles)

CL

(erg / °K)

N

2(10 0 spins)

3.0%, HII[100] 0.0772 301.1 (2.05°K) 13.948

1.0%, [100] 0.0743 294.1 (2, 06 °K) 4.475

0.5%, W[100] 0.0810 320.6 (2.06°K) 2.439

1.0%, Hi/[111] 0.0747 291.4 (2,05°K) 4.499

0.5%, P111[ 111] 0.0799 316.2 (2.06°K) 2.406

(2) Kapitza Resistance

The experimental values of T together with the calculated heat

capacities of the crystal at specific values of the field and temperature

allow us to estimate the Kapitza resistance per unit surface area,

rk = Rk/S, from the relation T = C
c

R
k c

/S = C rk
(§ 2-3). These r 's

are then taken and plotted against H within the region of applicability

of the model to examine their constancy in the field. The results are

shown in Figs. 30 and 31 for the cases of 1% and 0.5% impurity con-

centrations. The plot of the 3% case is precluded by the complexity

of the Schottky specific heat of the spin system due to the presence of

vague and complex g values in its EPR spectrum (Fig. 19). The

average values of rk of the two 1% crystals may be summarized as

shown in Table 4. The field constancy of rk in both 0.5% crystals as

indicated in Fig. 31 is fairly poor and the reason for it is probably

due to the temperature lag in the helium vapor thermometer, In
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Table 4, Values of rk of the 1% crystals.

1% Crystal
rk

(10-6 oK sec/erg)

I 1.28 + 0.08 (1.99°K)

0.90 + 0.05 (2.06°K)

1,01 ± 0,03 (2.05°K)

other words, at high fields and low liquid He level the constant heating

of liquid He (this implies a continuously rising TB) from joule losses

in non-superconducting element of the electric current carrier should

not be neglected and the true TB should be recorded as the average

T right before and after field switching and not just the temperature

recorded before the action. Such a lagging in temperature response

means the phonon band we employed to calculate rk is actually slightly

higher than what it was. Moreover, while rising, the higher TB also

causes a smaller value of rk to be operative which in turn generates

a shorter T. Accordingly, the rk calculated from the registered

trace and temperature is likely to be smaller than its true value and

the scattering of rk toward lower values to be worsened as the fields

go to higher values. Assessment of the true values of rk for the 0. 5%

crystals hence is of difficulty. The average rk, despite its physical

meaning, can be given respectively as 1.76 and 1.91 (in units of

106 °K sec/erg) at T 2.06°K for the Hil[111] and H //[ 100]
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crystals. It follows then from facts concluded from Figs. 30 and 31

that a reasonable value of rk should fall in (1 2) x 10-6 °K sec/erg

for all crystals used at temperatures near 2°K.

(3) Lower Field Limit of the Model

(i) There are two facts which govern the lower field limit of

the model. We first consider eq. (2-3-3). This equation is valid

under the assumptions T
B

^J Ts and 0" F- C s
T ph/CLT1 >> 1. Although

T ph
T1 might be true (but we do not know by exactly how much), at

low fields, Cs becomes so small compared to C that the condition
L

a- >> 1 ceases to hold thus causing the breakdown of the model. Ip

order to maintain this condition, our experimental data of the 1%

crystal suggest that we take Cs /CL 2.5, which. at T = 2°K requires

an external field of 4.5 KG and 3.0 KG for the 0. 5% and 1% cases,

respectively.

(ii) Another factor we need to consider is the validity of

TB >> ST (or Ts '2--1 T
c

TB). To do this we need to estimate the

value of ST and then compare it with TB. Let us take H. to be the

initial field and H
f

= H. + DH to be the final field after pulsing is

applied to a two-level spin system with population numbers N anda

Nb(= N - N
a)

for the ground and excited states respectively. The

difference in spin population when H = Hi is given by



2n= N
a

-N
b

= Ntanh(gpH. / kTB)

and when H = Hf is given by

n' = Na - Nb = Ntanh(g(3Hi/2kTB) .

The number of spin flips is thus given by

An = (n'-n)/2 = (N/2)[tanh(g(3Hf/2kTB)

- tanh(g (3H. /2kTB)

86

(5-2-4)

(5-2-5)

(5-2-6)

Since most of these flips occur at H Hf, the energy transferred

from the crystal to the bath is approximately DE= g pHE An. Strong

spin-lattice coupling suggests that the crystal reaches a uniform

higher temperature T* in a time internal much shorter than the spin-
e

bath relaxation time T. Thus at the end of field switching the rise in

temperature can be given as

ST = T* - T
B

Ae/C
c

= gpHf On /Cc ,
c

(5-2-7)

where An is given by eq. (5-2-6). If it so happens that even under

the condition C
s
>>CL for gpH/kTB is sufficiently small, eq. (5-2-7)

can be expressed by

ST
Ng pi-if gpHi kTB

2 2kT
B

2kTB Nk gpHf

T
(5-2-8)
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where we have used the explicit form of the heat capacity of the

spin system

Nk(g pHf /kTB )
2 exp(g (3Hf /kT )

J

gpH 2

2Cs
I exp(g (3Hf /kTB ) + 11 B

and the small argument approximation of the hyperbolic tangent.

Since we need at least a certain level of AH to get enough change in

rotation and eq. (5-2-8) requires larger Hf for smaller ST at a fixed

value of AH, we are limited as to how small we can make Hf and still

guarantee ST << TB.

While eq. (5-2-8) imposes the condition for determining the

lower limit of field, the experimental traces themselves also render

the criterion for such a limit. Suppose a trace taken from the screen

has the shape as indicated in Fig. 32 displaying the relaxing situation

of our problem as discussed in §2-3 (actual traces have been found

with this general form).

As the rotation is proportional to the difference in spin popula-

tion, from eq. (5-2-4), the initial rotation 4)i of the system is

a4).= Ntanh(g (3 H. /2 kT ) a Ng (3 Hi /2kT
B B

where aN is the saturation rotation and the approximation is made

under the condition g(3Hi/2kTB << 1. Similarly, the rotation at the

end of the time interval At ti T1, i.e., t = tf, can be given as

$4)f = aNtanh(g (3Hf /2kT*c) ^ pHf /2kT*c ,
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Figure 32. Schematic trace of the spin-phonon-bath relaxation in the
case of phonon bottleneck occurring.

and the ultimate rotation as

4f, = aNtanh(g (3Hf kTB ) aNg /ZkTB .

The change in signal heights AV and AV' associated with ,,4 ) r7,- f--4)i

and A4' F:
f, - are AV = V(cos

2
(1)f-cos

24i) -V(4)f-4)i) and AV'

V(cosz
f' -cos 2

4)
f)'="--

-V(4)
fc

-4f), respectively. Besides their definition,

. and 4f' satisfy the relation (4) f'+4).)/2-4) a
45o, where 4a is the

analyzer setting, so as to linearlize the cosine squared function as

described in § 3-1(2). We define the heating factor y by

H .AV' Ac.' Elf ) /HS HL
AV Aci) T7- T* TcB c B

H£ T* - H£ TB H
f

*(T - T
B

)
c c

H£ H T* H T - H.T*f B f B c
> 0N (5-2-9)

If the lattice is really pulled up in temperature in keeping with our

hypothesis and model, the heating factor y must be large (AV'>> AV)



and in the extreme case Y -J? oo or Hf TB - H.T* = 0. This then
C

amounts to

(H.
1

+ aH)TB = (TB + 6T)H.

AH AH AHor ST = T =H B - AH TB
Hf

>>AH> H TB

89

(5-2-10)

which is exactly the same expression as eq. (5-2-$) found previously.

It is also interesting to examine the general expression for the lattice

(phonon band) temperature rise in the case of bottleneck occurring.

In terms of "Y, T* can be written as

T*c = + 1)HfTB /(Hf Hi) ,

and the temperature rise hence. can be given by

ST = T* - T
B

= AHTB /RH1/ `1) +
c

We see in the extreme case 11 --).co, 6T reduces to our previous result

ST ""/ 6211- T AH
>H1. B > AH Hf B

Now taking the field that generates 6T -1"--f 10% of TB for a

specific AH as the lower limit of the model, we found H1 3 KG and

7 KG for the 1% (AH t**- 0. 3 KG) and 0.5% (AH 0.7 KG) crystals,

respectively. Signal responses taken at these limits in general show

single well defined exponential traces and hence are experimentally

verified. The limit for the 3% crystal can be pushed down even further

(Hf '-`2 1.5 KG) due to the application of smaller aH.
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(4) The Upper Field Limit of the Model

(i) The existence of an upper field limit arises partially from

the non-linearity of the Faraday rotation as a function of H/T. As

described in § 3-1(2)(iii) the analyzer setting 4>a is obtained from

(0a:= + M) - each the

additional rotation as the result of the constant AH pulsing. Although

we have worked out 4). from the calibration curve, we have left &

uncalibrated thinking it would not be important due to its smallness.

The uncalibrated rotation due to AH generates an offset in the analyzer

setting which in turn causes the signal to shift from its maximum

response as well as to display non-exponential behavior at high fields.

A typical trace of this sort is shown in Fig. 33. Traces of this

nature were discarded in the analysis. Taking the 0.5%, H//[ 111]

crystal as an example, a coil current of Ic = 7.7 amp will generate

AH = 0.737 KG. AO produced by this Ali at Hi = 0 KG is 30° as we

have designed, whereas at H. = 14.571 KG it is only 21°. In the latter

case, the analyzer setting for the experiment was set at 300 behind

the rotation of H. (537°), i.e., at 5070, since we had taken 64 = 30°

for H.'s,all H.' , whereas the correct setting should be 50Z 0 if the cali-
f

brated value of .,(1)(=210) was taken. The error for higher concentra-

tions was somewhat reduced, especially for the 3% case. Therefore,

our high field limits should be around Hf = 15 KG for the 0.5% crystal,



91

Aith404*(4Fo'

1

-2

0

H = 18.458 KG, T. B. = 5 msecidiv

= 0.677 KG

TIME C msec )

5 10 15 20 25
Figure 33. Typical relaxation trace obtained from 0.5%, H II [100]

crystal displaying non- exponential response. The tan-
gents drawn to the curve at t=0 and 20 msec are to show
that no single slope is obtainable.
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17 KG for the 1% crystal and 20 KG for the 3% crystal.

(ii) Recalling eqs. (2-3-1, 2) which are reached under the

assumptions &I' << TB and g pH <<ZkT, we see that the field limit

imposed by the latter condition can probably be set to gr3F1/2kT = 0.5

(about 8% off of its hyperbolic tangent value). Therefore,we have the

high field limit H kTig p 14 KG for all cases when taking T 2°K

and g 2.

5-3. Temperature Dependence of the Kapitza Resistance

Systematic measurement of the temperature dependence of rk

has not been attempted due to the small temperature range (only some

fraction of a degree under the X-point of He 4) available for our experi-

ment. Nevertheless, rk measured at two different temperatures (1. 99

and 2.06°K) within this range for the 1%, H11[1001 crystal does show a

temperature dependence as indicated in §5-2(2). We list them with

other rk's obtained in this range in the following table, where we have

used "o" to indicate the value of a single measurement taken at the

lower field margin (Hf = 2.73 KG) and "x" the average value of a

number of measurements. It should be noted that the errors on single

measurement values arise from the error in T (note that rk = T /C
c)

associated with the attendant noise imposed on the trace. This has

an entirely different meaning from the average deviation of the mean

of collective measurements. However, we considered the "o" points
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Table 5. Values of rk of the 1% crystals at different
temperature s.

T
rk

(°K) (10
6 °K. sec/erg)

1.80 2.43 ± 0.23

1.85 1.97±0.12
1.90 1.88 ± 0.09
1.95 1.65 IF 0.10

1.96 1.31 ± 0.09

1.99 1.28 ± 0.08

2.00 1.34 ± 0.07

2.05 1.01 ± 0.03

2.06 0.90 ± 0.05

Remarks

0

0

0

0

0

only as reference in determining the temperature behavior of rk. The

plot of ln(rk) versus ln(T) is given in Fig. 34. Its slope, m, is about

-(7.5 ± 2.0), The result obtained by Glg.ttli (23) for the case of CeES

is that 2.6 m 5-4.2. In his experiment, a much more accurate

determination of m was possible because of the larger temperature

range utilized. Results on other dielectrics such as quartz measured

by Challis et al. (19) and Kuang (57), and lithium fluoride by Johnson

et al. (58) reveal an m never larger than 4. In addition to the experi-

mental results, the now-existing theories of Khalatnikov (18) and

Challis et al. (19) predict that rk varies with T 3 4.2and T , respec-

tively. All these facts favor taking the lower value of our m,

-5.5, although higher values are not definitely precluded. Taking
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m = -5.5 with T given in units of °K, rk(T) calculated from Fig. 34

yields the following expression

rk(T) RK/S = 50.65 x 10 -6
T

-5.5 °K. sec/erg , (5-3-1)

which at T = oK is 1.12 x 10 6 °K sec /erg and equivalent to Rk =11.2

x 10-7 oK cm sec/erg = 11.2 o
K. cm2 /Watt, if S is taken to be

1 cm2.

According to Khalatnikov's theory (18), the most important

mechanism for the heat exchange between a solid body and the liquid

helium II is the radiation of the thermal vibration (sound) from the

vibrating surface of the solid and the expression for the Kapitza

resistance Rk per unit interfacial area S for a solid of density p and

transverse velocity c t'
in contact with helium II of density p' and

velocity of sound c' is
3

Rk
6T

15h
3p c trk

S Sf 3
16ir

5
k

4p 'c'FT S
(5-3-2)

where f = Q/S, 6 is the heat flow, and F is a function of the ratio of

transverse to longitudinal sound velocities and is about 1.5 (or

slightly larger) for most solids. Since p c
t
3 p v

3
= 4Trk

3
MOD/3

3,

where v is the average velocity of sound and M is the molecular

weight, eq. (5-3-2) can be re-expressed by, when S = 1 cm2,

3 4
3 3

rk
,ra,/,, isp 'ctFT0c mo D

(5-3-3)

Quartz has OD = 469 °K (59) which is very close to 505 °K for CaF
2
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Figure 35. Schottky specific heat of 3%, Ha[ 100] crystal.
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Rk=----' 2.4 cm
2 oK/Watt at T = K (19), and a very close molecular

weight 60.1 gm/mole to 78.1 gm/mole for CaF2. Assuming they take

the same value of F, rk of CaF2 calculated from eq. (5-3-3) by the

aid of Rk of SiO2 yields the value 2.4 x (78.1/60.1) x (505/469)
3

3.9oK/Watt. This value is about three times as small as our meas-

ured rk 11.2 °K /Watt and is probably due to different surface con-

ditions (over which we have little control), the not so well-matched

temperature dependence of our rk, and the incompleteness of the

acoustic mismatch theory.

5-4. Specific Heat of the Spin System in the

3% Ce3+:CaF Crystal

So far, we have not discussed the 3% crystal because of the lack

of detailed knowledge about its Schottky specific heat. We now pro-

ceed to determine it from the known rk of the 1% crystals. The

average rk for the 1%, HI/[100] crystal at T = 2.06°K is 0.90 x 106

°K sec/erg and that for the H//[111] crystal at T = 2.05°K is 1.01 x

-6 °10 K. sec/erg. Since the majority of the T's of the 3%, H11[ 100]

crystal are measured at T = 2.05 oK, we therefore assume rk 1 x

6-0
10 K sec/erg is a reasonable value for this crystal. Assuming

that the present model applies, the specific heat of the spin system

can be calculated from Cs=Cc -CL = (T /rk
)-C L

at 2.05°K. The

result (Cs/Nk vs. H/T) is given in Fig. 35.
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6. CONCLUSIONS

In light of the results and discussions of the spin-bath relaxation

study on Ce3+ x at. %:CaF2, the following conclusions were reached:

(1) The spin-lattice relaxation time, T1, of Ce :CaF2 is

extremely rapid (< 100 p.sec at T 2°K in fields higher than 300 gauss

for all samples used), an observation which the theory of common

relaxation processes does not predict. Becker et al. (60) have

explained the anomalous phonon effects on specific heat and rapid spin-

lattice relaxation in concentrated CeES using a thermodynamic

Green's function approach for incoherent spins and phonons. While it

seems doubtful that our system of Ce 3+:CaF
2

satisfies all the condi-

tions necessary for a proper application of this method; nevertheless,

a start has been made theoretically to explain the unexpected rapid

spin-lattice relaxation of trivalent cerium.

(2) Incorrect identification of spin-bath relaxation time, T, with

spin-lattice relaxation time T1 can be made unless a sufficient

examination of field dependence is made, since the return to equilib-

rium of a strongly coupled spin-phonon system experiencing Kapitza

limitation proceeds in an exponential fashion within the range of field

and temperature examined in this thesis.
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(3) The experimental method provides us with a means of deter-

mining the rise in lattice temperature during the relaxation process

as described in §5-2(3)(ii). An explicit example giving the order of

magnitude of the temperature rise, ST, of the 1% crystals can be taken

by setting Hi = 10 KG (this is in the region of Y 00 ) and PH = 0. 3

KG at TB = 2°K. In this case ST is approximately equal to (LH/H.)T
B

0.06°K (i.e., 3% of TB).

(4) As the result of item (3), the possibility arises that the

field switching method may serve as a means of contactless heating of

dielectrics through the intermediary of implanted paramagnetic

impurities.

(5) Different methods of establishing thermal contact between

the host crystal and reservoir (different surface conditions) can give

rise to much of the variation seen by different investigators in relaxa-

tion time measurements on a given system. The relaxation times

(T vs. T) of Ce 3+:CaF
2

measured by Bierig et al. (12) show an overall

faster T than ours. Their samples were mounted on a high heat con-

ducting sapphire tube connected to a microwave cavity which was

itself in contact with the reservoir by means of helium exchange gas.

Others have mounted samples directly to the cavity.
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(6) Regardless of a poorly defined rk
= k

(T), a rather good

relative dependence of Cs( c_-/ Gc = T/rk) at fixed T on magnetic field

can be determined. The Schottky specific heat, Cs/Nk, of the 3%

Ce3+ spin system in CaF
2

so determined was found to be 0.05 at a

H/T value of 7 KG/°K. Thus, the Schottky specific heat for any

complicated system with known rk which obeys the conditions of rapid

spin-lattice relaxation in the range of H/T where Cc -=', Cs >>CL can

be measured by our dynamic method.

(7) The CaF
2

crystal exhibits a somewhat larger Kapitza

resistance Rk (c=1 11 cm20K/Watt for S7-- 1 cm2) than dielectrics

examined hitherto. This could be ascribed to the relatively higher

OD and the degree of roughness of our crystal surface.

Some recommendations for future research can be suggested

on the basis of our experimental method:

(1) It seems natural that similar studies can be extended to

other rare-earth ions if the sensitivity of the apparatus is improved.

Indeed, the divalent europium ion, Eu2+, in CaF
2

could be done with

the present setup. This system is known to possess a fairly large

paramagnetic Faraday rotation (61). Eu2+ is a Kramers ion having a

ground state 8S
7 /2

and being divalent is spared the complications

arising from charge compensation when doped into CaF2. The
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complications, however, in this case are two-fold; first, it is difficult

to obtain a pure Eu2+ -doped crystal without the presence of Eu3+

(ground state 7F
0

which exhibits only diamagnetic Faraday rotation

not detectable by our apparatus), and secondly, the ground state of

Eu2 +:CaF2 is an octet, all levels of which in moderate magnetic field

are populated at liquid helium temperatures.

(2) Lee (62) has recently formulated the thermodynamic pro-

perties of spin-phonon interactions in a paramagnetic system in a

self-consistent manner using a variational principle for the free

energy. A phase transition qualitatively similar to a structural

phase transition should occur at a temperature T
0

determined by the

strength of the spin-phonon coupling, characterized by a parameter

, and the Zeeman energy spacing, g(3 H0. For a given 2 > 1, which

corresponds to a strong coupling conditipn, they are related by
-2 = tanh(g(3H

0
/2kT

0
). Although his treatment seems to predict

that such a phase transition will occur for all systems as long as their

spin-lattice coupling is strong, the effect has so far been found only

in few rare-earth compounds (63). Another consequence of Lee's

results is that the spin specific heat, C/Nk, rises from T = 0°K to a

peak at To' abruptly drops off to the value of the normal Schottky

specific heat and continues for T >To with the tail of the unperturbed

Schottky specific heat. If now C /Nk is plotted against H/T for a given
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T and one sees that the specific heat obeys the unperturbed

Schottky curve at low fields until the value of H defining T
0

(i.e.,

H = (H
0

/T
0

1 2
)T = (2k T /g(3) tan h ( ) at T) is reached. It then

suddenly jumps to a higher point and subsequently decreases from

there on as H increases. It is, therefore, noteworthy that our experi-

mental method could quite possibly map out the specific heat as a

function of H at fixed T in an effort to detect the discontinuity (sudden

enhancement in C /Nk) associated with the crystal (structural) phase

transition.

(3) To gain a more precise knowledge of the temperature depen-

dence of Rk for CaF
2

as well as its absolute magnitude, a series of

experiments should be conducted on crystals whose surfaces have

been prepared under well controlled conditions. Such results will be

important for any accurate determination of the actual temperature of

CaF
2

under conditions of thermal conduction at liquid helium

temperatures.
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