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Oomycetes are an important group of organisms with a variety of ecological roles sim-

ilar to fungi. Although many are well-studied plant pathogens known for their devas-

tating effects on agricultural systems, most are little-studied saprobes and parasites

of plants and animals in nearly every ecosystem on earth. The advent of affordable

and high-throughput sequencing technologies have resulted in new opportunities for

the study of microbial communities, including oomycetes, as well as new challenges

associated with analyzing and visualizing the vast amount of data produced. This

thesis describes new tools developed for the analysis and visualization of microbial

communities, with an emphasis on oomycetes, and studies into the communities of

oomycetes and fungi associated with Rhododendron.

The widespread adoption of high-throughput molecular community ecology meth-

ods is making large data sets classified by taxonomic information common, but addi-



tional tools to analyze and visualize these data are needed. Taxonomic classifications

are hierarchical, making them much more difficult to analyze compared to typical tab-

ular data. There are many R packages that use taxonomic data to varying degrees

but there is currently no cross-package standard for how this information is encoded

and manipulated. We developed the R package taxa to provide a robust and flexible

solution to storing and manipulating taxonomic data in R and any application-specific

information associated with it. It is meant to be a foundation for other packages to

build on, so that diverse packages dealing with taxonomic information can be inte-

grated seamlessly. One package that is built on top of taxa is metacoder. Metacoder

is an R package for plotting and manipulating data classified by a taxonomy, like the

abundance data associated with metabarcoding. Its primary feature is the novel tree-

based visualization called “heat trees” that is used to depict data for every taxon in a

taxonomy using color and size. Heat-trees provide a more informative alternative to

pie charts or stacked bar charts for visualizing communities. Metacoder also provides

various functions to do common tasks in microbiome research with data stored in

the taxmap format supplied by the taxa package. Both of these packages are open

source, version controlled, have unit tests that help detect bugs, and include extensive

documentation.

Although metabarcoding methods for fungal and bacterial communities are well-

developed at this point, no standard and reliable method for oomycete metabarcoding

exists. Every currently proposed method for oomycete metabarcoding has at least one

flaw; some produce too long an amplicon for Illumina sequencers, some target only

a subset of oomycete diversity, some have unacceptable levels of non-target amplifi-



cation, and some have technical difficulties that make the PCR reactions unreliable.

We developed a new method for oomycete metabarcoding targeting the rps10 gene

and an associated reference database. Compared to one of the more popular methods

currently being used, our method has better taxonomic resolution, less non-target

amplification, and a more reliable PCR reaction. A reference database of rps10 se-

quences for many genera of oomycetes was developed for use in assigning taxonomic

classifications to metabarcoding data. Finally, a website was created to host the

database that supports searching the database and conducting BLAST searches.

Rhododendron is a major ornamental crop in the Pacific Northwest and is known

to host both mycorrhizal symbionts and plant pathogens such as Phytophthora ramo-

rum. The fungal and oomycete microbiome in the rhizosphere of rhododendrons from

Oregon nurseries was sequenced and differences among cultivars, growth conditions,

and nurseries were analyzed. Few oomycetes were found, but this might have been

partially due to limitations of the metabarcoding method used. Fungal species found

were mostly saprobes and mutualists. Nurseries that grew plants in containers and

in-field had a significantly higher diversity of fungi than those that only grew plants in

containers. Microbiome composition differed significantly among growth conditions

and nurseries, but not among cultivars. This body of work provides novel insights

into oomycete communities and novel tools for molecular community ecology that

might be of broader interest.
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Chapter 1: Introduction

1.1 Oomycete ecology literature review

1.1.1 Introduction to oomycetes

Oomycetes are members of the Stramenopiles-Alveolata-Rhizaria (SAR) supergroup

and are closely related to diatoms (McCarthy & Fitzpatrick, 2017). They inhabit

nearly every environment on earth (Davis, 2016) and are important components

of many ecosystems. They are characterized by sexual survival structures called

oospores, the presence of cellulose in their cell walls, and by having biflagellate

zoospores. Many oomycetes have coenocytic hyphae and others, particularly marine

parasites, are holocarpic, meaning the entire organism is converted to reproductive

prologues at the end of its life cycle. Oomycetes have ecological roles similar to fungi,

ranging from saprophytic to obligate parasitic lifestyles, but with a greater proportion

of pathogenic and parasitic species. They used to be placed in the kingdom fungi,

but recent phylogenetic and ultrastructural studies have confirmed, as has long been

suspected, that the two groups are not closely related and morphological similarities

are due to convergent evolution.

Oomycetes are thought to have evolved from marine parasites and transitioned to

land with their hosts. Many of the most basal clades of oomycetes are holocarpic par-

asites of marine algae, such as Eurychasma (Gachon, Strittmatter, Müller, Kleinteich,
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& Küpper, 2009). The oldest fossils that are unambiguously oomcyetes are 400 million

years old, but their origins are thought to be much earlier (Hansen, Reeser, & Sutton,

2012). Phylogenetic clock estimates place the divergence of oomycetes and diatoms

around 500 million years ago and the divergence among major oomycete lineages

around 100 million years ago (Matari & Blair, 2014). Although the oomycetes, as the

group is currently delineated, seem to be monophyletic, there are many well-known

oomycete families and genera that recent phylogenetics studies have demonstrated

to be paraphyletic and the ooymcete taxonomy is likely to change much in the near

future. Traditional oomycete taxonomy has grouped them into two “galaxies”: The

“perosporaleans”, which include many well-known plant pathogens, and the “sapro-

legnians”, which include animal pathogens and many poorly-characterized saprobes

(Spring et al., 2018). Modern phylogenetic studies indicate that the order of diver-

gence of major oomycete groups is as follows: the basal marine parasites, such as

Eurychasma, the Saprolegniales (aquatic parasites of animals), the Albuginales (the

white rust plant pathogens), and a clade containing Pythium, Phytophthora and the

downy mildews, which are mostly plant pathogens (McCarthy & Fitzpatrick, 2017).

There are many excellent reviews on specific economically important oomycete

pathogens and reviews on the phylogeny and taxonomy of oomycetes (Kamoun et

al., 2015; Phillips, Anderson, Robertson, Secombes, & Van West, 2008; Thines, 2014;

Tyler, 2007). Pathogenic species such as Phytophthora infestans (Akino, Takemoto,

& Hosaka, 2014; Andrivon, 1996; Fry et al., 2015), the cause of the great potato

famine, and Plasmopara viticola (Gessler, Pertot, & Perazzolli, 2011), the cause of

grape downy mildew, have been studied extensively. There is also much literature,
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some dating back to the mid 1800’s, discussing the classification of oomycetes based

on morphological and, more recently, genetic differences (Dick, 1969; McCarthy &

Fitzpatrick, 2017; Sparrow, 1976). However, relatively little is known about the

ecology of the vast majority of oomycetes that are minor pathogens in natural systems,

aquatic saprobes, or marine parasites, although in some cases these organisms are the

most influential members of their ecological niche (Leafio, Jones, & Vrijmoed, 2000).

Therefore, this review will focus primarily on what relatively little is known about

the ecology, diversity, and distribution of oomcyetes as a whole and how they relate

to human activities.

1.1.2 Reproduction

Reproduction is as varied and complex as other traits of the oomycetes, but general

similarities exist, particularly the formation of oospores, the sexual structure that

give oomycetes their name, and flagellated zoospores, the water-dependent dispersal

agent that most differentiate oomycetes morphologically from fungi. One or more

oospores, which are thick-walled sexual structures, are produced inside oogonia when

fertilized by a “male” hypha called an antheridium. Some oomycetes are homothallic,

meaning that a pure culture can sexually recombine with itself and produce oospores,

whereas other are heterothallic, meaning that two different strains are needed for sex-

ual reproduction. Oospores function as both a mechanism of sexual reproduction and

as a resistant resting spore. Oospores can germinate into either a hypha, which might

produce a sporangium, or form a vesicle from which zoospores are formed. Sporangia
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are typically less resistant and might detach and function as dispersal agents in air or

water, particularly in terrestrial pathogens (Jung et al., 2017). The contents of the

sporangia are cleaved into many smaller propagules called zoospores. In some species

the zoospores mature inside the sporangium and swim out through an openening at

the tip, such as in Phytophthora, but in others, they mature in a protoplasmic mass

that is ejected outside the sporangium, as is typical for Pythium species (Rocha et al.,

2014). Zoospores are short-lived mobile propagules that use flagella to find suitable

hosts or substrates. They usually have two flagella, a smooth “whiplash” flagellum

that faces away from the direction of movement and a hairy “tinsellated” flagellum

that faces towards the direction of movement. The presence of zoospores with these

two types of flagella is the defining feature of the Heterokonts, a group that includes

oomycetes, diatoms, golden algae, and brown algae. Once a zoospore finds a suitable

substrate, or after a fixed amount of time, it encysts and forms a hyphal-like pro-

jection. In pathogens, this is a structure called an appressorium that penetrates the

cell wall of the host using a combination of cell wall degrading enzymes and physical

pressure. In some species, such as those in Saprolegnia, zoospores can encyst and

create a second generation of zoospores, a phenomenon called “polyplanetism” (Van

West, 2006). Many basal aquatic groups of oomycetes are holocarpic, meaning that

the entire thallus, usually restricted to a single cell and more globular than hyphal in

shape, is converted to reproductive prologues at the end of its life cycle.
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1.1.3 Dispersal

Oomycetes vary greatly in their strategies and potential for dispersal and dormancy.

Pathogenic and parasitic species often depend on hosts with annual life cycles, such

as annual plants, and thus must tolerate periods when a host is not available (Spring

et al., 2018) and even saprophytic species in soil must tolerate reduced activity in

winter in temperate climates. Oomycetes have three general strategies for dispersal:

zoospores, sporangia or oospores, and vertical transmission of pathogens via seed.

Zoospores of Olpidiopsis and Pythium were found to be infective for up to 7 days

(Klochkova, Shim, Hwang, & Kim, 2012; Martin & Loper, 1999) in moist condi-

tions, although zoospores of other oomycetes such as Myzocytiopsis, encyst almost

immediately (Glockling & Beakes, 2000). Zoospores are attracted to their preferred

substrate (Leafio et al., 2000) or host (Tyler, 2007) by chemical signals and actively

swim towards it, a process known as chemotaxis. In some oomycetes, particularly the

plant pathogenic downy mildews and some Phytophthora species, entire sporangia

or oospores will detach at maturity and are dispersed by air (Bock, Jeger, Fitt, &

Sherington, 1997; Hansen et al., 2012) or water (Misra, Sharma, & Mishra, 2008).

In addition, some parasitic species, particularly biotrophs like the downy mildews,

are transmitted between generations via resting structures in seeds (Lava, Heller, &

Spring, 2013; Lebeda & Cohen, 2011). Oospores are particularly resistant structures

that allow oomycetes to tolerate adverse conditions for a long time. Depending on

the species, oospores have been recorded to be viable for up to 13 years, although

durations of 2 to 10 years are more common (Davis, 2016; Martin & Loper, 1999;
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Sakr & others, 2014). Marine oomycetes tend to have less resistant structures since

their environment is much more consistent than terrestrial habitats (Klochkova, Shin,

Moon, Motomura, & Kim, 2016).
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Figure 1.1: Taxonomic distribution of traits discussed in this review.
Node size corresponds to the number of publications mentioning each
taxon. Taxa in the smaller plots are green when the trait is present
in at least one source. The larger tree functions as a legend for the
smaller trees. Letters in smaller plots are the first letter of the taxon
name. Only taxa mentioned in at least two publications are included.
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1.1.4 Nutrition

Similar to fungi, nutritional modes range from free living saprobes to obligate par-

asites and representatives of oomycetes can be found that use every strategy for

gaining nutrition except autotrophy, although their ancestors were likely at least par-

tially photosynthetic (Figure 1.1). There are obligate parasites of terrestrial plants,

aquatic algae, nematodes, diatoms, arthropods, and even other oomycetes. Others

are necrotrophic pathogens, including some of the most damaging agricultural and

aquacultural pests. Yet others, perhaps the majority, are opportunistic pathogens

and saprobes in nearly every ecosystem.

1.1.4.1 Biotrophs and obligate pathogens

Well-known obligate pathogens and parasites include the white rusts, the downy

mildews, and various holocarpic parasites of algae and nematodes. The two major

groups of oomycete obligate pathogens are the white rusts, in the family Albugi-

naceae, and the downy mildews, which are distributed in three monophyletic groups

containing at least 19 genera and 700 species (Jung et al., 2017; Thines & Choi, 2016).

Obligate parasitism is thought to have evolved independently in the two groups (Ploch

et al., 2011). Of the downy mildews, the genera Peronospora and Pseudoperonospora

are the largest. Downy mildews are generally highly host-specific and usually can

only reliably reproduce on a single host species, so much so that downy mildew tax-

onomy has traditionally been based largely on differences in host species. Thanks

to molecular techniques, many downy mildews species that at first appeared to be
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generalists, such as Basidiophora entospora, are now thought to be cryptic species

complexes, with each species specific to a single host (Sökücü & Thines, 2014). The

family Albuginaceae contains many white rust pathogens of Crassicaea, Asterales,

Convolvulaceae, and grasses (Choi, Shin, & Thines, 2009; Thines, Telle, Choi, Tan,

& Shivas, 2015). Albugo candida is a obligate pathogen of Brassicaceae, and is un-

usual in that it seems to be a generalist infecting more than 10 genera of Brassicaceae,

whereas most oomycete obligate pathogens are highly-host specific (McMullan et al.,

2015). In contrast to the downy mildews, the white rusts can reproduce without

high levels of humidity since they produce spores below the epidermis of their hosts

(Spring et al., 2018). Obligate parasites of marine and terrestrial nematodes and ro-

tifers include the holocarpic genera Chlamydomyzium and Haptoglossa. Haptoglossa

is particularly interesting due to its unique and complex “gun cell” that forcefully

injects a needle-like structure into its host to began the infection process (Glockling

& Beakes, 2000). Apart from a few rare exceptions, these obligate pathogens can

not be collected in pure culture and many holocarpic species only infect a single cell

at a time, so the diversity of these organisms is probably underestimated (Lebeda &

Cohen, 2011; Spring et al., 2018).

1.1.4.2 Necrotrophs, hemibiotrophs, and opportunistic pathogens

The oomycetes also include many necrotrophic and hemibiotrophic pathogens, which

weaken or kill their host and then live saprophytically on the remains while they

reproduce or produce resting spores. Many of these are also weakly saprophytic
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outside of a host (Jung et al., 2017). The best known examples of oomycetes with

this lifestyle are species in the genus Phytophthora that primarily infect terrestrial

plants (Jung et al., 2017). Unlike the obligate pathogens, necrotrophic oomycetes can

often infect a wide range of hosts (Spring et al., 2018). For example, Phytophthora

palmivora can infect at least 200 different plant species (Derevnina et al., 2016) and

Phytophthora ramorum can infect at least 100 plant species (Grünwald, Garbelotto,

Goss, Heungens, & Prospero, 2012). Many Pythium and some Phytophthora are

known for killing seedlings as they emerge, a pathology known as “damping off”

(Cuenca, 2016), or feeding on the fine roots of plants without necessarily killing them,

exemplifying their intermediate nature between saprotroph and pathogen. Species

of Saprolegnia are necrotrophic on various animals, including fish, crustaceans, and

amphibians (Davis, 2016; Holt et al., 2018). Virulence of Saprolegnia infections varies

greatly depending on the health of the host and the strain of Saprolegnia. For example,

in some cases, Saprolegnia parasitica seems to be a mostly saprotrophic opportunistic

pathogen of salmon, mostly affecting wounded or otherwise stressed fish, but can at

other times cause death quickly on its own (Van West, 2006).

1.1.4.3 Saprobes

Perhaps the most under appreciated nutritional mode for oomycetes is saprotrophy,

but in terms of diversity it could easily be the most common, considering the rel-

atively little research that has been done on oomycete saprobes and saprobes in

general (Blackwell, Letcher, & Powell, 2015). Most oomycetes in aquatic ecosystems
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are thought to be saprotrophic (Jung et al., 2017; Nam & Choi, 2019). Species of the

genera Sapromyces and Pythiogeton are freshwater saprobes (Blackwell et al., 2015;

Jee, Ho, & Cho, 2000). In a survey of freshwater saprobes collected from decaying

plant fragments, 119 oomycete species were found, with the species Aphanomyces lae-

vis, Saprolegnia litoralis, and Pythium rostratum being the most common (Czeczuga,

Mazalska, Godlewska, & Muszyńska, 2005). In mangrove swamps, members of the

genus Halophytophthora are thought to be the most common colonizers of fallen leaves

and the principle decomposers in this ecosystem (Leafio et al., 2000; Newell & Fell,

1992). Some species of Pythium such as Pythium oligandrum are dedicated saprobes

and can often out-compete pathogenic species in agricultural systems (Martin &

Loper, 1999). Various less well-characterized genera of free-living saprobes in soil

are known, such as Geolegnia, but have not been studied extensively (Steciow et al.,

2013). Recent DNA-based surveys have recovered many unknown oomycete sequences

from environments with little to no apparent disease symptoms, suggesting oomycete

saprobes might be more common than is currently thought (Hansen et al., 2012).

1.1.5 Host diversity

1.1.5.1 Terrestrial Plants

Representatives of oomycetes infect nearly every form of life on earth, ranging

from algae to mammals, but are most well known for their ability to cause disease

in terrestrial plants. Monocots such as grasses are infected by the graminicolous
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downy mildews, including Sclerospora graminicola (Thines et al., 2015). Asteraceae,

Caryophyllales, Convolvulaceae and Brassicales, are parasitized by the white rusts

and the downy mildews (Choi et al., 2009; Rost & Thines, 2012; Wallace, Salgado-

Salazar, Gregory, & Crouch, 2018) Gymnosperms, such as Japanese larch are infected

by Phytophthora species like Phytophthora ramorum (Grünwald et al., 2012). Some

mosses, such as Physcomitrella patens, can be infected with oomycetes and develop

disease symptoms (Ponce de León, 2011).

1.1.5.2 Marine plants and algae

Like most other ancient groups of organisms, oomycetes evolved in the oceans and

later migrated to land and, although their ancestors were likely photosynthetic, they

lost their chloroplasts and became primarily parasites and saprobes, so it is not sur-

prising that most forms of aquatic organisms are hosts for at least some oomycetes.

Brown, green, and red algae are all infected by members of the genera Olpidiopsis

(Klochkova et al., 2016; Sekimoto, Klochkova, West, Beakes, & Honda, 2009; West,

Klochkova, Kim, & Loiseaux-de Goër, 2006) and Atkinsiella (Nakamura & Hatai,

1994). Additionally, brown algae are infected by the genera Anisolpidium (Gachon

et al., 2017; Garvetto, Perrineau, Dressler-Allame, Bresnan, & Gachon, 2020) and

Eurychasma (Gachon et al., 2009; Tsirigoti, Beakes, Hervé, Gachon, & Katsaros,

2015). Diatoms are infected by Olpidiopsis (Klochkova et al., 2016; Sekimoto et al.,

2009), Lagenidium (Spies et al., 2016), and Ectrogella (Garvetto et al., 2020). There

is even a record of a species of oomycete, Lagenidium nodosum, infecting cyanobacte-
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ria (Dick, 2001). These examples listed above include every major group of primary

producers in the world’s oceans and emphasizes the vast influence oomycetes have on

the largest ecosystem on earth.

1.1.5.3 Aquatic animals

Like aquatic plants, aquatic animals ranging from fish to rotifers are also infected by

diverse oomycetes. Infections of crustaceans are particularly well known and, oddly

enough, they are infected by some of the same genera that infect algae. Shrimp

and lobsters are infected by members of the genera Haliphthoros (Fisher, Nilson, &

Shleser, 1975; Tharp & Bland, 1977), Halioticida (Hatai, 2012; Holt et al., 2018), and

Lagenidium (Holt et al., 2018). Additionally, shrimp are infected by some Pythium

species (Hatai, 2012). Crabs are known to host species of Plectospira (Atkins, 1954)

and Atkinsiella (Holt et al., 2018; Nakamura & Hatai, 1995). Opportunistic infections

in fish, particularly of wounds, are caused by species in the genera Saprolegnia (Davis,

2016; Van West, 2006), Pythium (Martin & Loper, 1999), Aphanomyces (Blazer et

al., 2002; Derevnina et al., 2016), and Dictyuchus (Rattan, Muhsin, & Ismail, 1978).

Rotifers, which are common microscopic multicellular filter feeders, are infected by the

genera Aquastella (Molloy et al., 2014) and Atkinsiella (Nakamura & Hatai, 1995).

There is also some evidence that gastropods can be infected by some oomycetes,

such as infection of abalone by Halioticida noduliformans (Derevnina et al., 2016).

Considering that most of these hosts for which oomycete infections are known have

been studied primarily due to their relevance to humans as common foods, it is likely
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that many other aquatic animals also are infected by oomycetes.

1.1.5.4 Terrestrial Animals

Many terrestrial animals are also infected by oomycetes, including some mammals.

Various mammals are infected by at least six species of oomycetes, including Pythium

insidiosum (Spies et al., 2016) and Lagenidium giganteum (Vilela, Humber, Tay-

lor, & Mendoza, 2019). Pythium insidiosum is known to infect humans, causing

a subcutaneous vascular disease called pythiosis insidiosii (Mendoza, Hernandez, &

Ajello, 1993). There are many records of amphibians being infected with oomycetes.

Amphibian eggs and young are infected and often killed by Saprolegnia infections

(Fernández-Benéitez, Ortiz-Santaliestra, Lizana, & Diéguez-Uribeondo, 2008). In

some cases, adults stressed by pollution or other causes are also affected, such as in-

fection of salamanders by Saprolegnia parasitica (Ruthig, 2009). Nematodes also are

infected by oomcyetes, although relatively little research has been done on the subject,

considering the abundance of nematodes and their large impact on most ecosystems.

Nematodes are known to be infected by species of the holocarpic genera Myzocytiopsis

(Glockling & Dick, 1997), Gonimochaete, Haptoglossa (Glockling & Beakes, 2000),

Lagenidium (Spies et al., 2016), and Chlamydomyzium (Beakes, Glockling, & James,

2014). These oomycetes are particularly abundant in wet soils or in water near land

(Glockling & Beakes, 2000). Finally, insects are known to be infected by Lagenidium

and Leptolegnia (Pelizza, LASTRA, Becnel, Bisaro, & Garcia, 2007). It seems the

same pathogens that infect mammals can also infect nematodes, suggesting that com-
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plex multi-lost life cycles are possible (Spies et al., 2016). Like oomycete infections of

aquatic animals, most the research on terrestrial oomycete infections has been done

on hosts relevant to humans, so the overall diversity of animal hosts as a whole is

probably much greater than is currently appreciated.

1.1.6 Effects on agriculture and aquaculture

1.1.6.1 Terrestrial pathogens

Oomycetes are most well known for their devastating effects on agriculture. Both

the pathogens and the hosts they infect are highly diverse. Some pathogens that kill

young seedlings as they emerge, an effect known as “damping off”, are various species

of Pythium on corn and soybean (Radmer et al., 2017), Aphanomyces euteiches on

various legumes (Gaulin, Jacquet, Bottin, & Dumas, 2007), and Globisporangium

on ornamental crops in greenhouses (Cuenca, 2016). Downy mildews are a partic-

ularly diverse group of related obligate pathogens including Plasmopara viticola on

grape (Gessler et al., 2011), Plasmopara halstedii on sunflower (Sakr & others, 2014),

Sclerospora graminicola on maize (Spring et al., 2018), Peronosclerospora sorghi on

sorghum (Spring et al., 2018), Pseudoperonospora cubensis on cucumber (Savory et

al., 2011), Peronospora belbahriion on basil, and Hyaloperonospora species on bras-

sicaceous crops (Thines & Choi, 2016). The genus Phytophthora is particularly de-

structive to agriculture and includes the potato late blight pathogen Phytophthora

infestans (Andrivon, 1996) and the pathogens Phytophthora colocasiae and Phytoph-
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thora palmivora that cause devastating losses on many tropical crops in developing

countries. Other pathogens include Albugo candida, the cause of white rust on Bras-

sica crops (McMullan et al., 2015), and Plectospira species pathogenic on tomato and

sugarcane (Jeronimo, Jesus, Rocha, Goncalves, & Pires-Zottarelli, 2017).

Many oomycete pathogens of woody plants have been known to devastate nurs-

eries and threaten long-lived managed forest ecosystems. Phytophthora ramorum is

an emerging pathogen causing sudden oak death in the US and sudden larch death

in the United Kingdom and has also severely damaged some parts of the nursery and

timber industry there (Brasier & Webber, 2010; Grünwald, LeBoldus, & Hamelin,

2019). It has also affected parts of the nursery industry in the western United States

(Grünwald et al., 2012). Rhododenron and other woody ericaceous plants are partic-

ularly susceptible and act as vectors when asymptomatic plants are moved between

nurseries. Holm oak decline in the traditional dehesa silvopastoral ecosystem of Por-

tugal has been attributed to Phytophthora cinnamomi, although other factors are

likely important contributors (Clara, Almeida Ribeiro, & others, 2013). Black pod

disease of Theobroma cacao, the plant used to make chocolate, is caused by Phy-

tophthora megakarya or Phytophthora palmivora and is currently one of the factors

limiting production in some regions (Akrofi, 2015).

Most of the damage caused by terrestrial oomycetes is due to pathogens introduced

from distant places on the globe (Hansen et al., 2012). These pathogens are thought

to do relatively little harm to ecosystems they are native to, when the source of

such pathogens is known (Studholme et al., 2019). The pathogen that causes grape

downy mildew in Europe, Plasmopara viticola, is native to North America, where
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is infects wild Vitis species. Ironically, it was probably introduced to Europe when

cuttings from American grape were used to replant vineyards destroyed by phylloxera,

an insect pathogen of grape (Gessler et al., 2011). A related pathogen that causes

downy mildew of cultivated sunflower, Plasmopara halstedii, was also moved from the

United States to France in the 1960’s, where is causes losses of up to 50% (Sakr &

others, 2014). Perhaps the best known example of the devastating effects an exotic

pathogen can have on agriculture is Phytophthora infestans, which was moved from its

native range in Central Mexico to Ireland, where it caused the Great Potato Famine,

leading to the death and displacement of over a million people (Yoshida et al., 2013).

1.1.6.2 Aquatic pathogens

Although terrestrial oomycete pathogens are the most well studied, much of oomycete

diversity is aquatic and some of these organisms cause damage to aquaculture. The

recently characterized oomycete Halioticida noduliformans was found to cause up to

90% mortality in young cultured abalone (Muraosa, Morimoto, Sano, Nishimura, &

Hatai, 2009). Halioticida noduliformans has also been found to infect the eggs of Eu-

ropean lobster (Holt et al., 2018) and Haliphthoros milfordensis has been linked with

the death of farmed American lobster (Fisher et al., 1975). Mortality in commercially

harvested crustaceans, including crab, lobster, and shrimp have been linked to La-

genidium (Holt et al., 2018). Saprolegnia and Aphanomyces have caused large die-offs

of freshwater crayfish in Europe (Holt et al., 2018). Various oomcyetes infect farmed

seaweed and can cause losses of up to 30% (Tsirigoti et al., 2015). Olidiopsis causes
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the disease “red rot” in the farmed red algae Porphyra, one of the seaweeds used for

wrapping sushi, among other uses (Klochkova et al., 2012). The disease “winter kill”

of catfish caused by Saprolegnia parasitica can reduce yields by up to 50% and can

kill up to 22% of salmon returning to rivers to spawn, further threatening these fish

already suffering from habitat loss (Van West, 2006). With the increasing demand for

fish, shellfish, and seaweed, aquaculture has become one of the fastest growing food

industries, greatly increasing the relevance of aquatic oomycete pathogens (Derevnina

et al., 2016; Gachon et al., 2017).

1.1.6.3 Potential for biocontrol

Although most well-known oomycetes are dreaded pathogens, a few have potential

applications for biocontrol of other pests. Some species of the genus Lagenidium

are deadly pathogens specific to mosquito larva and have long been studied in the

hopes of creating an effective biocontrol for mosquitos, which transmit deadly human

diseases (Kerwin, 2007). A commercial biocontrol made with the species Lagenid-

ium giganteum marketed as Laginex was available until several cases of infection of

another strain of Lagenidium giganteum in dogs prompted the Environmental Pro-

tection Agency to deregister the product (Vilela et al., 2019). Leptolegnia chapmanii

is also thought to have potential to control mosquitos (Pelizza et al., 2007; Seymour,

1984). Oddly enough, some oomycetes have potential as biocontrols for other closely

related oomycetes. Some studies have shown that treatments with Pythium oligan-

drum reduce damping off of tomato seedlings caused by Pythium ultimum as much as
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treatments by metalaxyl, a leading treatment for oomycete pathogens in agriculture

(Martin & Loper, 1999). Considering almost all major groups of life are infected

by oomycetes and many oomycetes are highly host-specific, there might be other

undiscovered opportunities for oomycete-based biocontrol.

1.1.7 Effects on natural ecosystems

Although oomycetes are mostly known for the great damage they cause to agricul-

ture, they also have a significant impact on natural ecosystems. Where oomycetes

are native, they are often minor pathogens and parasites of a large variety of plants

and animals. In contrast, exotic oomycetes can cause extensive damage to forested

ecosystems (Hansen et al., 2012; Jung et al., 2018) and can significantly alter ecosys-

tem composition and functioning, which is a particular concern for iconic landscapes,

such as New Zealand’s Kauri trees which are threatened by Phytophthora agathidicida

(Davis, 2016). Some are also harmless saprobes that contribute to the mineralization

of detritus and in some environments, such as mangrove swamps, where they are

the principal decomposers (Bennett & Thines, 2019). Saprobes and minor pathogens

likely have a larger cumulative effect on ecosystems, although much less is known

about these organisms than their more destructive relatives.



20

1.1.7.1 Terrestrial pathogens

The impact of oomycetes on terrestrial ecosystems, particularly forests, are the

most well studied among impacts on natural systems. In the last few decades, the

pathogen Phytophthora ramorum has caused extensive death of oak species in the

Western United States and of Japanese larch in the United Kingdom (Grünwald

et al., 2012). Since the 1990’s Phytophthora ramorum has been causing massive

die-offs of Notholithocarpus densiflorus (tanoak) and Quercus agrifolia (coast live

oak) in California (Rizzo, Garbelotto, & Hansen, 2005). Phytophthora cinnamomi

is associated with widespread die-back of Eucalyptus marginata (jarrah) trees and

associated understory vegetation, particularly on waterlogged soils after logging

(Shearer & Tippett, 1989). Some researchers have questioned the evidence that

die-back of Eucalyptus marginata is in fact caused by Phytophthora cinnamomi, even

though the pathogen is often found in association with dying trees, but the death

of associated understory vegetation at least seems attributable to the pathogen

(Davison, 2015). Phytophthora agathidicida has caused the death of many of the

iconic and culturally-significant Kauri trees of New Zealand (Davis, 2016). Kauri

trees are large and impressive trees once extensively logged for lumber and to clear

land for farming and the relatively few ancient kauri trees that remain are now under

threat due to Phytophthora agathidicida. Although agricultural diseases of annual

crops often get the greatest attention, invasive diseases of long-lived trees in natural

systems are much harder to control and have the potential to permanently alter

entire landscapes.
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1.1.7.2 Aquatic pathogens

Oomycetes also include many important aquatic pathogens of amphibians, fish, and

arthropods in both marine and freshwater ecosystems, although these are less studied

than terrestrial pathogens (Rasconi, Jobard, & Sime-Ngando, 2011). These pathogens

usually have the greatest effect on the eggs and larval stages of their host, but some-

times can also affect adults. For example, the eggs of the American bullfrog, Rana

catesbeiana can be killed by members of Saprolegnia and related oomycetes (Ruthig,

2009). These pathogens are particularly damaging to hosts weakened by pollution

or warmer temperatures and such combinations of factors could be contributing to

the drastic decline in amphibian populations around the world (Ruthig, 2009). Lob-

ster and crayfish, along with other invertebrates, are hosts to a variety of oomycete

pathogens including species of Lagenidium, Haliphthoros, Halocrusticida, and Atkin-

siella, among others (Holt et al., 2018). For some hosts, such as the American lobster

(Homarus americanus), oomycetes are thought to be one of the leading causes of

death of larva (Holt et al., 2018). Freshwater crayfish are known to be infected by

species of Saprolegnia and Aphanomyces, and outbreaks of disease caused by these

pathogens have devastated natural populations of crayfish in Europe (Holt et al.,

2018). Saprolegnia is also known to infect fish. Saprolegnia parasitica infections of

minor wounds in salmon have been known to kill up to 22% of fish returning to rivers

to spawn and might be contributing to the widespread decline of salmon (Van West,

2006). Oomycetes, such as Eurychasma dicksonii, are also well-known pathogens of

brown algae, which make up the majority of biomass in some in temperate shores (Ga-
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chon et al., 2009). In contrast to the many oomycetes that have rather narrow host

ranges, Eurychasma dicksonii infects almost all species of brown algae that have been

tested (at least 45 species (Tsirigoti et al., 2015)), making this species particularly

important for ecosystems where brown algae are abundant (Gachon et al., 2009). Fi-

nally, some oomycetes, such as Ectrogella species infect diatoms, which are important

primary produces in many aquatic ecosystems (Garvetto et al., 2020). Outbreaks of

disease caused by Ectrogella perforans has caused up to 99% mortality in populations

of the diatom Licmophora in the United States (Garvetto et al., 2020).

1.1.7.3 Saprobes

Perhaps the least well-characterized ecological group of oomycetes is the saprobes

of aquatic and terrestrial ecosystems, although what is known suggests that they

play a major part in the recycling of nutrients in some ecosystems (Czeczuga et al.,

2005). In mangroves and salt marshes, species of Halophytophthora play a major

role as decomposers of fallen leaves (Bennett & Thines, 2019). In estuaries and

salt marshes, the genera Phytopythium, Salisapilia, Salispina, and Calycofera are

also abundant (Bennett & Thines, 2019). Oomycetes of the genera Aphanomyces,

Saprolegnia, and Pythium, have also been found to be common decomposers of plant

debris in freshwater ecosystems (Czeczuga et al., 2005). In soil, species of Pythium are

the primary saprobes for some soils with high water contents (Martin & Loper, 1999).

Considering the recent findings of many unknown oomycetes not associated with

disease (Jung et al., 2018), the diversity and importance of saprotrophic oomycetes



23

is likely greatly underestimated.

1.1.8 Priorities for future research

Considering the abundance, diversity, and impact of oomycetes on ecosystems and

human welfare, relatively little is known about them compared with other groups of

organisms. This is partially due to their microscopic nature, our inability to readily

culture them, and, for some groups, a lack of distinguishing morphological traits.

Because of these challenges, the taxonomy of many groups, which is still largely based

on inconsistent morphological features, has been in constant flux and in some cases

remains quite uncertain (Hatai, 2012; Muraosa et al., 2009; Telle, Shivas, Ryley,

& Thines, 2011). The same organisms might have three different names in three

different studies, making it so only experts in that group of organisms have a hope of

reconciling that information. This is particularly problematic since the only definitive

descriptions of some oomycetes are quite old and use outdated concepts and names.

Additionally, many oomycetes cannot be grown in pure culture, since they rely on

a host for reproduction. This makes studying oomycetes and consolidating findings

from multiple studies particularly challenging (Choi, Thines, Tek, & Shin, 2012).

However, modern molecular techniques might make it possible to overcome some

of these difficulties. In the era of whole genome sequencing, rapid progress on the

molecular taxonomy of oomycetes is to be expected (Baxter et al., 2010; Haas et al.,

2009; Tyler, 2001).

In order to facilitate the study of these important organisms, a comprehensive
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phylogenetics-based taxonomy for oomycetes and culture-independent tools for iden-

tification, such as barcoding and metabarcoding, are needed. Studies revising the

taxonomy of oomycetes using phylogenetics are becoming increasingly common, but

some findings will require drastic changes if each taxon is to correspond to a mono-

phyletic evolutionary clade. For example, all of the 19 genera and at least 700 species

of downy mildews, including many well-known pathogens, are in the clade contain-

ing all Phytophthora species, another group containing many important pathogens

(Jung et al., 2017). Renaming taxa in either group would be a major change, re-

quiring an international consensus. Many species of Pythium, another important

and well-studied group, have recently been redistributed to four new genera: Glo-

bisporangium, Ovatisporangium, Elongisporangium, and Pilasporangium (Uzuhashi,

Hata, Matsuura, & Tojo, 2017). Several other taxa were recently found to be non-

monophyletic, including Halophytophthora (Yang & Hong, 2014), Achlya (Spencer &

others, 2002), and Myzocytiopsis (Glockling & Beakes, 2006). Such changes will likely

cause confusion in the short term, but as molecular identification techniques become

increasingly, they will facilitate the study of oomycetes into the future.

Molecular techniques for species identification, both for individual samples and

communities as a whole, have revolutionized the study of fungal and bacterial ecology

and biodiversity, but such techniques have been applied much less to oomycetes and

are less refined where they have been applied. One of the main benefits of molecular

identification techniques is the ability to detect pathogens without culturing, which is

important for obligate pathogens that are impossible to culture (West et al., 2006) or

don’t always cause symptoms (Lava et al., 2013). These techniques also are usable by
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people who are not experts at morphology-based identification, greatly expanding the

proportion of researchers able to study oomycetes. Techniques like metabarcoding are

particularly powerful since they allow for an entire community of related organisms

to be identified at once. This has the potential to finally uncover the extent of

oomycete diversity in natural ecosystems that has been only hinted at by previous

research. However, in order for techniques like metabarcoding to yield useful results,

public databases of reference sequences assigned to a reliable taxonomy are required.

Currently reference databases for oomycetes lag far behind those for bacteria and

fungi. If reliable taxonomic and molecular methods for identification are developed,

the resulting increase in information could parallel the remarkable advancement of

fungal and bacterial ecology in recent years.

1.2 Metabarcoding of oomycetes: tools and analysis

1.2.1 Introduction to metabarcoding

Metabarcoding is a powerful high-throughput sequencing technique used to identify

multiple organisms at once using the DNA sequence of a particular gene (Taberlet,

Coissac, Pompanon, Brochmann, & Willerslev, 2012). The first step is extracting

DNA from a sample containing an unknown mixture of organisms, such as soil, water,

or tissue (Figure 1.2). A gene is chosen with a sequence variable enough in the taxon

of interest to distinguish species-level differences (ideally) and flanked by conserved

regions for which PCR primers can be designed. PCR is then used to amplify the
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gene using primers specially designed to match all organisms in the taxonomic group

of interest. This produces a mixture of amplicons intended to represent the diversity

of organisms in the community. The amplicons are then sequenced using a high-

throughput sequencing instrument like the Illumina MiSeq. One or more FASTQ files

are produced by the sequencer containing the sequences of a subset of the amplicons.

These sequences and associated quality scores are the starting point for computational

analysis.

Figure 1.2: Visual summary of the metabarcoding method.

1.2.2 Computational analysis of metabarcoding data

The first step in the computational analysis of metabarcoding data typically involves

clustering similar sequences together, assigning taxonomic classifications to clusters,

and compiling the counts of reads in each cluster for each sample in an abundance
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matrix. First, primer sequences and low-quality regions of the reads are filtered out.

If paired-end sequencing is used, the pairs of reads are merged into a single sequence

and any that cannot be merged are filtered out. Then some form of clustering is used

to group similar sequences together. The main two approaches are clustering into

Operational Taxonomic Units (OTUs) and Amplified Sequence Variants (ASVs).

Table 1.1: Types of algorithms used in OTU clustering

Clustering method Cluster grouping criteria Cluster size

Complete-linkage All sequences are more similar than the

threshold

Smallest

Average-linkage The mean pairwise dissimilarity is less than

the threshold

Medium

Single-linkage At least one pair of sequences are more

similar than the threshold

Largest

Clustering into OTUs is the older of the two methods and is intended to cluster se-

quences into groups that approximate species-level differences. A clustering threshold

in terms of percent sequence similarity is chosen, based on the taxon and gene used

in the study, and sequences more similar to each other than this clustering threshold

are grouped together into clusters called OTUs (Taberlet et al., 2012). There are

three main clustering approaches that vary in how the clustering threshold is ap-

plied: complete-linkage (a.k.a., farthest neighbor clustering), average-linkage (a.k.a.,

unweighted pair group method with arithmetic mean), and single-linkage (a.k.a.,
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nearest neighbor clustering) (Table 1.1). The OTU method is useful for approximat-

ing diversity of communities in terms of number of species and helps to mitigate the

effects of sequencing error by clustering erroneous sequences with the “real” sequence

they are derivatives of. However, some errors are large enough not to be nullified by

OTU clustering, so OTU-based methods often overestimate diversity (Edgar, 2017).

Another problem is that OTU-based methods produce results that cannot be com-

pared across studies, since OTU clusters are emergent properties of the data set and

method used (Callahan et al., 2016). The ASV-based method is meant to address

these shortcomings of OTU-based methods.

ASVs are a new approach that uses a model of sequence mutation to cluster se-

quences based on their abundance and the abundance of similar sequences (Callahan

et al., 2016). The likelihood of specific transformations needed to convert more abun-

dant sequences to less abundant sequences is calculated and if the resulting p-value

is below a threshold the lower abundance sequences are clustered with the higher

abundance sequence. The intent of this method is to correct errors accumulated dur-

ing the PCR and sequencing steps, yielding only the original templates amplified by

the PCR. ASVs therefore, unlike OTUs, attempt to represent only real biological se-

quences, making ASVs comparable across studies, although uncorrected errors might

still exist. It also does a much better job avoiding the error-induced inflation of ap-

parent diversity that is typical of OTU-based methods. However, these sequences do

not represent species-level differences as OTUs do, so diversity statistics derived from

ASVs must be interpreted somewhat differently. Although OTU-based methods are

still much more popular, the advantages of the ASV methods will likely make them
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the standard method in the future.

Once similar sequences are grouped together into OTUs or ASVs, they are typi-

cally used to calculate diversity statistics to characterize samples and the differences

between samples. Diversity in the ecological sense is intuitively understood as the

complexity of one or more samples of a community of organisms. There are many

ways to quantify this complexity so that communities can be compared objectively.

The two main categories of methods are known as alpha diversity and beta diversity

(Whittaker, 1960). Alpha diversity measures the diversity within a single sample and

is generally based on the number and relative abundance of taxa at some rank (e.g.,

species or OTUs). Beta diversity also uses the number or relative abundance of taxa

at some rank, but measures variation between samples. In other words, an alpha di-

versity statistic describes a single sample and a beta diversity statistic describes how

two samples compare. There are numerous statistics commonly used for both alpha

and beta diversity, some of which incorporate abundance information or phylogenetic

relatedness of the species analysed, or both (Figures 1.3 and 1.4). These statistics are

often the basis for other analyses and visualizations, like ordination, and are often

used to present the primary findings of metabarcoding research.
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Figure 1.3: Alpha diversity statistics used in community ecology.

Figure 1.4: Beta diversity statistics used in community ecology.

After sequences are grouped into OTUs or ASVs, the representative sequence for

each cluster is assigned a taxonomic classification by comparing them to reference

database sequences. Two of the more popular methods used to assign a taxonomy to

sequences are BLAST (Altschul, Gish, Miller, Myers, & Lipman, 1990) and the Naive

Bayesian Classifier (Wang, Garrity, Tiedje, & Cole, 2007). When BLAST is used,

the taxonomy of the top BLAST hit is used as the taxonomy for the representative

sequence. Determining which hit is the best is often done using the e-value or a

combination of coverage and percent identity. One downside of this method is that

there is no per-rank confidence measure, making it difficult to determine how much
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confidence to have in taxonomic classifications. This can be addressed by using

somewhat arbitrary thresholds for e-value, coverage, or percent-identity for each rank

or picking multiple top BLAST hits and and only reporting information for the ranks

for which all the hits agree for a given query sequence. This problem is better handled

by the Naive Bayesian Classifier, which assigns a bootstrap value to each rank in the

taxonomic classification for each sequence. The sequence is broken up into K-mers

and the number of shared K-mers with reference sequences are used to pick the closest

reference sequence. This process is repeated many times with random sub samples

of the K-mers to produce the bootstrap values for each rank. Although this method

produces more robust taxonomic classifications, it is often so conservative relative to

BLAST-based methods that it has not been adopted extensively outside of bacterial

metabarcoding, where the reference databases are more well-developed (Tedersoo,

Drenkhan, Anslan, Morales-Rodriguez, & Cleary, 2019).

The taxonomy of the sequence clusters is the primary end-product of most

metabarcoding research, so robust tools for analyzing data in a taxonomic context

are needed. The hierarchical natural of taxonomic classifications combined with

the scale of metabarcoding data makes taxonomic information difficult to analyze

and visualize. Although the R programming language has extensive support for

metabarcoding and ecological research, it has no packages dedicated to analyzing

taxonomic information. We created the R packages taxa (Foster, Chamberlain, &

Grünwald, 2018) and metacoder (Foster, Sharpton, & Grünwald, 2017) to fill this

gap. The taxa package provides all-purpose classes and methods for manipulating

taxonomic data. It is meant to provide a robust basis for other more specialized
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packages to build upon, hopefully encouraging the creation of an ecosystem of

compatible packages. One such package is metacoder, which provides functions for

visualizing data in a taxonomic context and functions to do commonly-needed tasks

in metabarcoding research using the classes provided by the taxa package. The

primary contribution of the metacoder package is a visualization method we call

“heat trees” that uses color and size to plot data on a taxonomic tree. Heat trees

are uniquely well-suited for depicting data from metabarcoding research, such as

taxon abundance and differential taxon abundance between experimental factors.

This provides an alternative to stacked bar charts, which are commonly used for the

same purpose, but are not well suited for hierarchical data with many classes. Both

packages can also be used for any type of hierarchical data, such as geography and

gene ontology (Foster et al., 2017). These packages provide additional functionality

to the already very flexible R ecosystem.

1.2.3 Oomycete metabarcoding

We used a range of approaches to characterize oomycete biodiversity associated with

terrestrial plants including an ITS-based method and a novel rps10 -based method.

The composition of plant microbiomes influences important agricultural processes

such as nutrient absorption and plant health. Plant genotype and environment affect

the microbiome, but the nature and relative importance of these effects are not well

understood. We evaluated the effect of host genotype, nursery, and production system

(potted versus in-ground planting) on the composition of the fungal and oomycete rhi-



33

zosphere microbiome of rhododendrons in Oregon nurseries (Foster, Weiland, Scagel,

& Grünwald, 2020). Rhizosphere and roots were sampled from randomly selected,

potted and in-ground plants of 3 host cultivars at 4 nurseries. ITS1 amplicons were

sequenced using the Illumina MiSeq. We found fewer oomycetes than expected and

the ITS1-based method proved to have numerous shortfalls including an unreliable

PCR reaction that required extensive optimization to avoid non-target amplification.

To address this issue, our succeeding studies that used oomycete metabarcoding em-

ployed a new rps10 -based method.

Although metabarcoding methods for fungi and bacteria are well-developed and

often used, oomycete metabarcoding methods are still quite experimental and not yet

widely used. Traditionally, the detection and identification of oomycetes has relied

on culturing from baits or infected plant material. For other groups of microorgan-

isms, such as fungi and bacteria, the culture-independent high-throughput sequencing

technique metabarcoding has replaced such techniques in many cases, but metabar-

coding has only rarely been applied to oomycete communities due to a lack of an

effective locus, primers, and a reference database designed for the purpose. Here we

present work demonstrating that the mitochondrial gene rps10 could be used to al-

low for improved metabarcoding of oomycete communities compared with the current

ITS-based technique. The protocols and resources presented here should allow for a

more effective and less biased way of characterizing oomycete communities compared

with currently available ITS-based methods, potentially improving the detection and

control of the many damaging pathogens in this group of organisms.
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2.1 Abstract

The taxa R package provides a set of tools for defining and manipulating taxonomic

data. The recent and widespread application of DNA sequencing to community com-

position studies is making large data sets with taxonomic information commonplace.

However, compared to typical tabular data, this information is encoded in many dif-

ferent ways and the hierarchical nature of taxonomic classifications makes it difficult

to work with. There are many R packages that use taxonomic data to varying degrees

but there is currently no cross-package standard for how this information is encoded

and manipulated. We developed the R package taxa to provide a robust and flexible

solution to storing and manipulating taxonomic data in R and any application-specific

information associated with it. Taxa provides parsers that can read common sources

of taxonomic information (taxon IDs, sequence IDs, taxon names, and classifications)

from nearly any format while preserving associated data. Once parsed, the taxonomic

data and any associated data can be manipulated using a cohesive set of functions

modeled after the popular R package dplyr. These functions take into account the

hierarchical nature of taxa and can modify the taxonomy or associated data in such

a way that both are kept in sync. Taxa is currently being used by the metacoder and

taxize packages, which provide broadly useful functionality that we hope will speed

adoption by users and developers.
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2.2 Introduction

The R statistical computing language is rapidly becoming the leading tool for sci-

entific data analysis in academic research programs (Tippmann, 2015). One of the

reasons for R’s popularity is how easy it is to develop and install extensions called R

packages, relative to other programming languages. There are now more than 10,000

packages on the Comprehensive R Archive Network (CRAN), over 1,300 packages on

Bioconductor (Gentleman et al., 2004), and countless more on GitHub.

The recent increases in the affordability and effectiveness of high-throughput se-

quencing has led to a large number of ecological datasets of unprecedented size and

complexity. The R community has responded with the creation of numerous pack-

ages for ecological data analysis and visualization, such as vegan (Oksanen et al.,

2013), phyloseq (McMurdie & Holmes, 2013), taxize (Chamberlain & Szöcs, 2013),

and metacoder (Foster et al., 2017). Taxonomic information is often associated with

these large data sets and each package encodes this information differently. Some

store taxonomic classification as a table with ranks as columns (e.g. phyloseq), some

store it as simple character vectors (i.e. plain text) or column/row names, leaving it

up to the user to decide on the details on how taxa in the classification are distin-

guished (e.g. vegan), and some store it as a list of tables with one classification in each

table (e.g. taxize). Since each package tends to have a unique focus, it is common

to use multiple packages on the same data set but converting between formats can

be difficult. Considering how recently these large taxonomic data sets have become

commonplace, it is likely that many more packages that use taxonomic information
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will be created.

Without a common data standard, using multiple packages with the same data set

requires constant reformatting, which complicates analyses and increases the chance

of errors. Package maintainers often add functions to convert between the formats of

other popular packages, but this practice will become unsustainable as the number of

packages dealing with taxonomic data increases. Even if a conversion function exists,

doing the conversion can significantly increase the time needed to analyze very large

data sets, like those generated by high-throughput sequencing. In addition, not all

formats accommodate the same types of information, so conversion can force a loss

of information.

The sources of taxonomic data, typically online databases, also vary in how they

are encoded. Reference sequence databases used in ecology research often have taxon

names in the headers separated by some character, but the details differ. For exam-

ple, the popular Greengenes database (McDonald et al., 2012) for prokaryotic 16S

sequences encodes classifications as follows:

k__Bacteria; p__Cyanobacteria; c__Synechococcophycideae...

In contrast, the SILVA database (Yilmaz et al., 2014) uses:

Bacteria;Proteobacteria;Gammaproteobacteria...

And the Ribosomal Database Project (RDP) (Cole et al., 2014) has the ranks and

taxon names intermixed with the same separator:

Root;rootrank;Fungi;domain;Ascomycota...
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These minor differences, while not a problem for humans to understand, mean

that different code must be used to read each type. Also, this information is often

intermixed with other information in the same header, like the sequence ID or de-

scription of the organism further complicating parsing. In other cases, a classification

might not be supplied at all, but just a taxon name (e.g. Homo sapiens), sequence

ID, or taxon ID, as is done in sequences downloaded from GenBank:

>AC005336.1 Homo sapien chromosome 19

In this case the classification must be looked up using tools like the taxize pack-

age, but to do that the relevant information must be extracted from the rest of the

header.

Taxa is a new R package that defines classes and functions for storing and ma-

nipulating taxonomic data. It is meant to provide a solid foundation on which to

build an ecosystem of packages that will be able to interact seamlessly with minimal

hassle for developers and users. It also provides highly flexible functions to read in

data (i.e. parsers) from diverse formats, allowing it to be used with the ever-changing

and proliferating selection of file formats used by biologists. The classes in taxa are

designed to be as flexible as possible so they can be used in all cases involving taxo-

nomic information. Complexity ranges from low level classes used to store the names

of taxa, ranks, and databases to high-level classes that can store multiple data sets

associated with a taxonomy. In particular, the taxmap class is designed to hold any

type of arbitrary, user-defined data associated with taxonomic information, making

its applications limitless. In addition to the classes, there are associated functions

for manipulating data based on the dplyr philosophy (Wickham, Francois, Henry,
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Müller, & others, 2015). These functions provide an intuitive way of filtering and

manipulating both taxonomic and user-defined data simultaneously. In combination

with flexible parsers and classes, this allows for taxa to be used to subset complicated

data/files based on their associated taxonomic information.

2.3 Methods

2.3.1 Implementation

The basic classes. Taxa defines some basic taxonomic classes and functions to

manipulate them (Figure 2.1). The goal is to use these as low-level building blocks

that other R packages can use. The database class stores the name of a database and

any associated information, such as a description, its URL, and a regular expression

matching the format of valid taxon identifiers (IDs):
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Figure 2.1: A class diagram representing the relationship between
classes implemented in the taxa package. Diamond-tipped arrows in-
dicate that objects of a lower class are used in a higher class. For exam-
ple, a database object can be stored in the taxon_rank, taxon_name,
or taxon_id objects. A standard arrow indicates that the lower class is
inherited by the higher class. For example, the taxmap class inherits the
taxonomy class. An asterisk indicates that an object (e.g. a database
object) can be replaced by a simple character vector. A question mark
indicates that the information is optional.
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taxon_database(
name = "ncbi",
url = "http://www.ncbi.nlm.nih.gov/taxonomy",
description = "NCBI Taxonomy Database",
id_regex = "*")

#> <database> ncbi
#> url: http://www.ncbi.nlm.nih.gov/taxonomy
#> description: NCBI Taxonomy Database
#> id regex: *

The classes taxon_name, taxon_id, and taxon_rank store the names, IDs, and

ranks of taxa and can include a database object indicating their source:

taxon_name("Poa", database = "ncbi")
#> <TaxonName> Poa
#> database: ncbi
taxon_rank(name = "species", database = "ncbi")
#> <TaxonRank> species
#> database: ncbi
taxon_id(12345, database = "ncbi")
#> <TaxonId> 12345
#> database: ncbi

All of the classes mentioned so far can be replaced with character vectors in the

higher-level classes that use them. This is convenient for users who do not have or

need database information. However, using these classes allows for greater flexibility

and rigor as the taxa develops; new kinds of information can be added to these

classes without affecting backwards compatibility and the database objects stored in

the taxon_name, taxon_id, and taxon_rank classes can be used to verify the integrity

of data, even if data from multiple databases are combined. These classes are used to

create the taxon class, which is the main building block of the package. It stores the
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name, ID, and rank of a taxon using the taxon_name, taxon_id, and taxon_rank

classes. The taxa class is simply a list of taxon objects with a custom print method

(i.e. the function controlling how it is displayed when printed to the console).

The hierarchy and taxonomy classes. The taxon class is used in the

hierarchy and taxonomy classes, which store multiple taxa (Figure 2.1). The

hierarchy class stores a taxonomic classification composed of nested taxa of

different ranks (e.g. Animalia, Chordata, Mammalia, Primates, Hominidae, Homo,

sapiens). Each taxon is stored as a taxon object in a list in the order they appear

in the classification, from most inclusive to most specific. The hierarchies class is

simply a list of hierarchy objects with a custom print method. The hierarchies

class has the convenience of each hierarchy being independent, making it easy to

subset by index or name, but it could also waste memory by storing multiple copies

of the more coarse taxa (e.g. Animalia) that are likely to appear in many hierarchy

objects. The taxonomy class is a more memory-efficient alternative that can store

the same information.

The taxonomy class stores multiple taxa in a tree structure representing a taxon-

omy. The individual taxa are stored as a list of taxon objects and the tree structure

is stored as an edge list representing subtaxa-supertaxa relationships. The edge list

is a two-column table of taxon IDs that are automatically generated for each taxon.

Using automatically generated taxon IDs, as opposed to taxon names, allows for mul-

tiple taxa with identical names. For example, Achlya is the name of an oomycete

genus as well as a moth genus. It is also preferable to using taxon IDs from particular

databases, since users might combine data from multiple databases and the same ID
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might correspond to different taxa in different databases. For example, “180092” is

the ID for Homo sapiens in the Integrated Taxonomic Information System, but is

the ID for Acianthera teres (an orchid) in the NCBI taxonomy database. The tree

structure of the taxonomy class uses less memory than the same information saved

as a table of ranks by taxa, since the information for each taxon occurs in only one

instance. It also does not require explicit rank information (e.g. “genus” or “family”).

The taxmap class. The taxmap class inherits the taxonomy class and is used

to store any number of data sets associated with taxa in a taxonomy (Figure 2.1).

A list called “data” stores any number of lists, tables, or vectors that are mapped

to all or a subset of the taxa at any rank in the taxonomy. Therefore, the raw data

used to make the object (and any other data associated with it) can be included in

the taxmap object itself in its original form. In the case of tables, the presence of a

“taxon_id” column containing unique taxon IDs indicates which rows correspond to

which taxa. Lists and vectors can be named by taxon IDs to indicate which taxa their

elements correspond to. When a taxmap object is subset or otherwise manipulated,

these IDs allow for the taxonomy and associated data to remain in sync. The taxmap

also contains a list called “funcs” that stores functions that return information based

on the content of the taxmap object. In most functions that operate on taxmap

objects, the results of built-in functions (e.g. n_obs), user-defined functions, and the

user-defined content of lists, vectors, or columns of tables can be referenced as if they

are variables on their own, using non-standard evaluation (NSE). NSE is a technique

used to make functions more convenient to use by interpreting things like variable

names in a function call differently than they would be outside the function call or in
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other functions not using NSE. Any value returned by the all_names function can

be used in this way. This greatly reduces the amount of typing needed and makes

the code easier to read.

Manipulation functions. The hierarchy, hierarchies, and taxa classes

have a relatively simple structure that is easily manipulated using standard index-

ing (i.e. using [, [[, or $), but the taxonomy and taxmap classes are hierarchical,

making them much harder to modify. To make manipulating these classes easier,

we have developed a set of functions based on the dplyr data manipulation philos-

ophy. The dplyr framework provides a consistent, intuitive, and chain-able set of

commands that is easy for new users to understand. For example, filter_taxa and

filter_obs are analogs of the dplyr filter function used to subset tables.

One aspect that makes dplyr convenient is the use of NSE to allow users to refer

to column names as if they are variables on their own. The taxa package builds on

this idea. Since taxmap objects can store any number of user-defined tables, vectors,

lists, and functions, the values accessible by NSE are more diverse. All columns from

any table and the contents of lists/vectors are available. There are also built-in and

user-defined functions whose results are available via NSE. Referring to the name of

the function as if it were an independent variable will run the function and return its

results. This is useful for data that is dependent on the characteristics of other data

and allows for convenient use of the magrittr %>% piping operator. For example, the

built-in n_subtaxa function returns the number of subtaxa for each taxon. If this was

run once and the result was stored in a static column, it would have to be updated

each time taxa are filtered. If there are multiple filtering steps piped together using



45

%>%, a static “n_subtaxa” column would have to be recalculated after each filtering

to keep it up to date. Using a function that is automatically called when needed

eliminates this hassle. The user still has the option of using a static column if it is

preferable to avoid redundant calculations with large data sets.

Unlike dplyr’s filter function, filter_taxa works on a hierarchical structure and,

optionally, on associated data simultaneously. By default, the hierarchical nature of

the data is not considered; taxa that meet some criterion are preserved regardless of

their place in the hierarchy. When the subtaxa option is TRUE, all of the subtaxa of

taxa that pass the filter are also preserved and when supertaxa is TRUE, all of the

supertaxa are likewise preserved. For example,

filter_taxa(my_taxmap, taxon_names == 'Fungi', subtaxa = TRUE)

would remove any taxa that are not named “Fungi” or are not a subtaxon of

a taxon named “Fungi”. By default, steps are taken to ensure that the hierarchy

remains intact when taxa are removed and that user-defined data are remapped to

remaining taxa. When the reassign_taxa option is TRUE (the default), the subtaxa

of removed taxa are reassigned to any supertaxa that were not removed, keeping

the tree intact. When the reassign_obs option is TRUE (the default), any user-

defined data assigned to removed taxa are reassigned to the closest supertaxa that

passed the filter if such a taxon exists. This makes it easy to remove parts of the

taxonomy without losing associated information. Finally, if the drop_obs option is

TRUE (the default), any user-defined data assigned to removed taxa are also removed,

allowing for subsetting of user-defined data based on taxon characteristics. The many

combinations of these powerful options make filter_taxa a flexible tool and make
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it easier for new users to deal with the hierarchical nature of taxonomic data. For

example, if the drop_obs option is TRUE (the default) and the reassign_obs option is

FALSE, then any user-defined data assigned to taxa are removed even if a supertaxon

is preserved. If the drop_obs option is FALSE, and the reassign_obs option is FALSE,

then data associated with removed taxa is assigned a taxon ID placeholder of NA,

but not removed. The function sample_n_taxa is a wrapper for filter_taxa that

randomly samples some number of taxa. All of the options of filter_taxa can

also be used for sample_n_taxa, in addition to options that influence the relative

probability of each taxon being sampled.

Other dplyr analogs that help users manipulate their data include filter_obs,

sample_n_obs, and mutate_obs. filter_obs is similar to running the dplyr func-

tion filter on a tabular, user-defined dataset, except that there are more values

available to NSE and lists and vectors can also be subset. The drop_taxa option

can be used to remove any taxa whose only observations have been removed dur-

ing the filtering. The sample_n_obs function is a wrapper for filter_obs that

randomly samples some number of observations. Like sample_n_taxa, there are op-

tions to weight the relative probability that each observation will be sampled. The

mutate_obs function simply adds columns to tables of user-defined data.

Mapping functions. There are also a few functions that create mappings be-

tween different parts of the data contained in taxmap or taxonomy objects. These are

heavily used internally in the functions described already, but are also useful for the

user. The subtaxa and supertaxa functions return the taxon IDs (or other values)

associated with all subtaxa or supertaxa of each taxon. They return one value per
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taxon. The recursive option controls how many ranks below or above each taxon

are traversed. For example, subtaxa(obj, recursive = 3) will return information

for all subtaxa and their immediate subtaxa for each taxon. The recursive option

also accepts a simple TRUE/FALSE, with TRUE indicating all subtaxa of subtaxa, etc.,

and FALSE only returning immediate subtaxa, but not their descendants. By de-

fault, subtaxa and supertaxa return taxon IDs, but the value option allows the user

to choose what information to return for each taxon. For example, subtaxa(obj,

value = "taxon_names") will return the names of taxa instead of their IDs. Any

data available to NSE (i.e. in the result of all_names(obj)) can be returned in this

way.

The functions roots, stems, branches, and leaves are a conceptual set of func-

tions that return different subsets of a taxonomy. A “root” is any taxon that does

not have a supertaxon. A “stem” is a root plus all subtaxa before the first split in

the tree. A “branch” is any taxon that has only one subtaxon and one supertaxon.

Stems and branches are useful to identify since they can be removed without losing

information on the relative relationship among the remaining taxa. “Leaves” are taxa

with no subtaxa. By default, these options return taxon IDs, but also have the value

option like subtaxa and supertaxa, so they can return other information as well. For

example, leaves(obj, value = "taxon_names") will return the names of taxa on

the tips of the tree.

In the case of taxmap objects, the obs function returns information for observa-

tions associated with each taxon and its subtaxa. The observations could be rows

in a table or elements in a list/vector that are named by taxon IDs. This is used
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to easily map between user-supplied information and taxa. For example, assuming a

taxonomy with a single root, the value returned by obs for the root taxon will contain

information for all observations, since they will all be assigned to a subtaxon of the

root taxon. By default, row/element indices of observations will be returned, but the

obs function also accepts the value option, so the contents of any column or other

information associated with taxa can be returned as well.

The parsers. Taxonomic data appear in many different forms depending on

the source of the data, making parsing a challenge. There are two main sources of

variation in how taxonomic data are typically stored: the type of information supplied

(e.g. a taxon name vs. a taxon ID) and how it is encoded (e.g. in a table vs. as part

of a string). In addition, there might be additional user-specific data associated with

the taxa that need to be parsed. These data might be associated with each taxon in

a classification (e.g the taxon ranks) or might be associated with each classification

(e.g. a sequence ID). In many cases, both types are present. This complexity makes

implementing a generic parser for all types of taxonomic data difficult, so parsers are

typically only available for specific formats. The taxa package introduces a set of

three parsing functions that can parse the vast majority of taxonomic data as well as

any associated data and return a taxmap object.

The parse_tax_data function is used to parse taxonomic classifications stored

as vectors in tables that have already been read into R. In the case of tables, the

classification can be spread over multiple columns or in a single column with char-

acter separators (e.g. “Primates; Hominidae; Homo; sapiens”) or a combination of

the two. Other columns are preserved in the output and the rows are mapped to
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the taxon IDs (e.g. the ID assigned to “sapiens” in the above example). For both

tables and vectors, additional lists, vectors or tables can be included and are as-

signed taxon IDs based on some shared attribute with the source of the taxonomic

data (e.g. a shared element ID or the same order). This makes it possible to parse

many data sets at once and have them all mapped to the same taxonomy in the

resultant taxmap object. Data associated with each taxon in each classification

can also be parsed and included in the output using regular expressions with cap-

ture groups identifying the information to be stored and a key corresponding to

the capture groups that identifies what each piece of information is. For example,

"Hominidae_f_2;Homo_g_3;sapiens_s_4" would use the separator ";", the regular

expression "(.+)_(.+)_(.+)", and the key c(my_taxon = "taxon_name", my_rank

= "taxon_rank", my_id = "info"). The values of the key indicate what the infor-

mation is (a taxon name and two arbitrary pieces of information) and the names of

the key (e.g. "my_rank") determine the names of columns in the output.

If only a taxon name (e.g. Primates) or a taxon ID for a reference database

(e.g. the NCBI taxon ID for Homo sapiens is 180092) is available in a table or vector,

then the classification information must be queried from online databases and the

function lookup_tax_data is used. lookup_tax_data has all the same functionality

of parse_taxa_data in addition to being able to look up taxonomic classifications

associated with taxon names, taxon IDs, and NCBI sequence IDs. If the data are

embedded in a string (e.g. a FASTA header), then the function extract_tax_data

is used instead. extract_tax_data has the functionality of parse_tax_data and

lookup_tax_data, except that the information is extracted from raw strings using a
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regular expression and a corresponding key, the same way that data for each taxon

in a classification is extracted by parse_tax_data. Together, these three parsing

functions can handle every combination of data type and format presented in Figure

2.2 and many variations of those formats.
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Figure 2.2: A table for determining how to parse different sources of
taxonomic information using the taxa package. The rows correspond
to the common sources of taxonomic information: full taxonomic clas-
sifications encoded in text, taxon IDs from a database, taxon names
(a single rank), and NCBI sequence IDs. The columns correspond to
the different formats the information can be encoded in: as a simple
vector, as columns in a table, and as a piece of a complex string (e.g.
a FASTA header). In the case of tables and complex strings, other
information associated with the taxa can be preserved in the parsed
result, as is done in the "use cases" example below. Any one cell in the
table shows how to parse a given taxonomic information source in a
given format using one of the three parsing functions: parse_tax_data,
lookup_tax_data, extract_tax_data.
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2.3.2 Operation

Taxa is an R package hosted on CRAN, so only an R installation and internet con-

nection are needed to install and use taxa. Once installed, most of the functionality

of the package can be used without an internet connection. R can be installed on

nearly any operating system, including most UNIX systems, MacOS, and Windows.

The minimum system requirements of R and the taxa package are easily met by most

personal computers. The amount of resources needed will depend on the size of data

being used and the complexity of analyses being conducted. The package can be

installed by entering install.packages("taxa") in an interactive R session. The

development version can be installed from GitHub using the devtools package:

library(devtools)
install_github("ropensci/taxa")

For users, the typical operation of the software will involve parsing some kind

of input data into a taxmap object using a method demonstrated in Figure 2.2.

Alternatively, a dependent package, such as metacoder, might provide a parser that

wraps one of the taxa parsers or otherwise returns a taxmap object. Once the data

is in a taxmap object, the majority of a user’s interaction with the taxa package

would typically involve filtering and manipulating the data using functions described

in Table 2.1 and applying application-specific functions in other packages, such as

metacoder (Figure 2.3).
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Figure 2.3: The result of the example analysis shown in the text.
Records of plant species occurrences in Oregon are downloaded from
the Global Biodiversity Information Facility (GBIF) using the rgbif
package (Chamberlain, 2017). Then a taxa parser is used to parse the
table of GBIF data into a taxmap object. A series of filters are then
applied. First, all occurrences that are not from preserved specimens
as well any taxa that have no occurrences from preserved specimens are
removed. Then, all taxa at the species level are removed, but their oc-
currences are reassigned to the genus level. All taxa without names are
then removed. In the final two filters, only orders within Tracheophyta
with greater than 10 subtaxa are preserved. The metacoder package is
then used to create a heat tree (i.e. taxonomic tree) with color and size
used to display the number of occurrences associated with each taxon
at each level of the hierarchy.
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Table 2.1: Primary classes and functions found in taxa.

Function Description

taxon A class that combines the classes containing the name,

rank, and ID for a taxon.

taxa A simple list of taxon objects in an arbitrary order.

hierarchy A class that stores a list of nested taxa constituting a

classification.

hierarchies A simple list of hierarchy objects in an arbitrary order.

taxonomy A class that stores a list of unique taxon objects and a

tree structure.

taxmap A class that combines a taxonomy with user-defined,

tables, lists, or vectors associated with taxa in the

taxonomy. The taxonomic tree and the associated data

can then be manipulated such that the two remain in

sync.
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Function Description

supertaxa, subtaxa A “supertaxon” is a taxon of a coarser rank that

encompasses the taxon of interest (e.g. Homo is a

supertaxon of Homo sapiens). The “subtaxa” of a taxon

are all those of a finer rank encompassed by that taxon.

For example, Homo sapiens is a subtaxon of Homo. The

supertaxa/subtaxa function returns the

supertaxa/subtaxa of all or a subset of the taxa in a

taxonomy object. By default, these functions return

taxon IDs, but they can also return any data associated

with taxa.

roots, leaves,

stems, branches

Roots are taxa that lack a supertaxon. Likewise, leaves

are taxa that lack a subtaxon. Stems are those taxa from

the roots to the first split in the tree. Branches are taxa

with exactly one supertaxon and one subtaxon. In

general, stems and branches can be filtered out without

changing the relative relationship between the remaining

taxa. By default, these functions return taxon IDs, but

they can also return any data associated with taxa.



56

Function Description

obs Returns the information about every observation from an

user-defined data set for each taxon and their subtaxa.

By default, indices of a list, vector, or table mapped to

taxa are returned.

filter_taxa,

filter_obs

Subset taxa or associated data in taxmap objects based

on arbitrary conditions. Hierarchical relationships among

taxa and mappings between taxa and observations are

taken into account.

arrange_taxa,

arrange_obs

Order taxon or observation data in taxmap objects.

sample_n_taxa,

sample_n_obs,

sample_frac_taxa,

sample_frac_obs

Randomly sample taxa or observation data in taxmap

objects. Weights can be applied that take into account

the taxonomic hierarchy and associated data.

Hierarchical relationships among taxa and mappings

between taxa and associated data are taken into account.

Since taxa provides highly flexible parsers, it is usually possible to convert data

from other packages to taxa classes, enabling manipulation of that data by taxa

functions or packages that build upon taxa, like metacoder. For example, using the

general-use parsers provided by the taxa package, metacoder supplies specialized and

easy to use parsers for the following formats: taxonomy files produced by mothur,
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biom files produced by QIIME and MEGAN, newick files, objects from the phyloseq

package, phylo objects from the ape package, and fasta files from the Greengenes

(McDonald et al., 2012), RDP (Cole et al., 2014), SILVA (Yilmaz et al., 2014), and

UNITE databases (Kõljalg et al., 2013). We have not encountered any text-based file

format containing taxonomic information that can be described using regular expres-

sions that the taxa parsers cannot read. For classes from other packages that inherit

list, vector, or data.frame, conversion is not needed to include that information in

a taxmap object, since the manipulation functions such as filter_taxa will handle

them correctly as is.

2.4 Use case

Taxa is currently being used by metacoder and we are working on refactoring parts of

taxize to work seamlessly with taxa as well. Both taxize and metacoder provide

broadly useful functions such as querying databases with taxonomic information and

plotting taxonomic information, respectively. We hope that having these two packages

adopt the taxa framework will encourage developers of new packages to do so as

well. Regardless, the flexible parsers implemented in taxa (Figure 2.2) allow for data

from nearly any source to be used. The example analysis below uses data from the

package rgbif (S. A. Chamberlain & Boettiger, 2017; S. Chamberlain et al., 2017),

even though rgbif was not designed to work with taxa. This example shows a few of

the benefits of using taxa. The function occ_data from the rgbif package returns

a data.frame (i.e. table) of occurrence data for species from the Global Biodiversity
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Information Facility (GBIF) with one row per occurrence. The table has one column

per taxonomic rank from kingdom to species.

# Look up plant occurrence data for Oregon
library(rgbif)
occ <- rgbif::occ_data(stateProvince = "Oregon",

scientificName = "Plantae")

This format returned by rgbif::occ_data is a variant on the format described

in Figure 2.2, row 1, column 2, except that there is only one rank per column instead

of all ranks being concatenated in the same column (the parser accepts any number

of columns, each of which could contain multiple ranks delineated by a separator).

# Parse data with taxa
library(taxa)
obj <- parse_tax_data(occ$data, class_cols = c(22:26, 28),

named_by_rank = TRUE)

In the taxmap object returned by parse_tax_data, the original table returned by

occ_data is stored as obj$data$tax_data, but an extra column with taxon IDs for

each row is prepended.

> print(obj)
<Taxmap>
626 taxa: aab. Plantae ... ayc. NA
626 edges: NA->aab, aab->aac ... aml->ayc
1 data sets:

tax_data: # A tibble: 500 x 103
taxon_id name key decimalLatitude
<chr> <chr> <int> <dbl>
1 amm Racomitriu... 1.70e9 44.2
2 amn Orthotrich... 1.68e9 NA
3 amo Didymodon ... 1.67e9 45.7
# ... with 497 more rows, and 99 more
# <<< List of additional columns ommited >>>
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The data are then passed through a series of filters piped together. The

filter_obs command removes rows from the occurrence data table not correspond-

ing to preserved specimens, as well as any corresponding taxa that no longer have

occurrences due to this filtering. The multiple calls to filter_taxa that follow

demonstrate some of the different parameterizations of this powerful function. By

default, taxa that don’t pass the filter are simply removed and any occurrences

assigned to them are reassigned to supertaxa that did pass the filter (e.g. occurrences

for a deleted species would be assigned to the species’ genus). When the supertaxa

option is set to TRUE, all the supertaxa of taxa that pass the filter will also be

preserved. The subtaxa option works the same way. Finally, the filtered data are

passed to a plotting function from the metacoder package that accepts the taxmap

format. The plot is a taxonomic tree with color and size used to display the number

of occurrences associated with each taxon (Figure 2.3).
# Plot number of occurrences for each taxon
library(metacoder)
obj %>%

filter_obs("tax_data", basisOfRecord == "PRESERVED_SPECIMEN",
drop_taxa = TRUE) %>%

filter_taxa(taxon_ranks != "specificEpithet") %>%
filter_taxa(! is.na(taxon_names)) %>%
filter_taxa(taxon_names == "Tracheophyta", subtaxa = TRUE) %>%
filter_taxa(taxon_ranks == "order", n_subtaxa > 10,

subtaxa = TRUE, supertaxa = TRUE) %>%
heat_tree(node_label = taxon_names,

node_color = n_obs, node_size = n_obs,
node_color_axis_label = "# occurrences")

Note the use of columns in the original input table like “basisOfRecord” being used

as if they were independent variables. This is implemented by NSE as a convenience
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to users, but they could also have been included by typing the full path to the vari-

able (e.g. obj$data$tax_data$basisOfRecord or occ$data$basisOfRecord). This

is similar to the use of taxon_ranks and taxon_names, which are actually func-

tions included in the class (e.g. obj$taxon_ranks()). The benefit of using NSE

is that they are reevaluated each time their name is referenced. This means that

the first time taxon_ranks is referenced in the example code it returns a different

value than the second time it is referenced, because some taxa were filtered out. If

obj$taxon_ranks() is used instead, it would fail on the second call because it would

return information for taxa that have been filtered out already.

2.5 Conclusions

While taxa is useful on its own, its full potential will be realized after being adopted

by the community as a standard for interacting with taxonomic information in R.

A robust standard for the commonplace problems of data parsing and manipulation

will free developers to focus on specific novel functionality. The taxa package already

serves as the foundation of another package called metacoder, which provides func-

tions for plotting taxonomic information and parsing common file formats used in

metagenomics research. Taxize, the primary package for querying taxonomic infor-

mation from internet sources, is also being refactored to be compatible with taxa. We

hope the broadly useful functionality of these two packages will jump start adoption

of taxa as the standard for taxonomic data manipulation in R.
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2.6 Data and software availability

Install in R as install.packages("taxa")

Software available from: https://cran.r-project.org/web/packages/taxa/

index.html

Source code available from: https://github.com/ropensci/taxa

Archived source code available from: https://doi.org/10.5281/zenodo.

1183667

License: MIT

2.7 Funding statement

This work was supported in part by funds from USDA Agricultural Research Service

Projects 2027-22000-039-00 and 2072-22000-039-15-S to NG and an rOpenSci grant

to ZF.

The funders had no role in study design, data collection and analysis, decision to

publish, or preparation of the manuscript.

https://cran.r-project.org/web/packages/taxa/index.html
https://cran.r-project.org/web/packages/taxa/index.html
https://github.com/ropensci/taxa
https://doi.org/10.5281/zenodo.1183667
https://doi.org/10.5281/zenodo.1183667


62

Chapter 3: Metacoder: An R package for visualization and

manipulation of community taxonomic diversity data

Zachary S. L. Foster, Thomas J. Sharpton, and Niklaus J. Grünwald

Published in:

PLoS computational biology, 2017, 13:2

DOI: 10.1371/journal.pcbi.1005404



63

3.1 Abstract

Community-level data, the type generated by an increasing number of metabarcoding

studies, is often graphed as stacked bar charts or pie graphs that use color to repre-

sent taxa. These graph types do not convey the hierarchical structure of taxonomic

classifications and are limited by the use of color for categories. As an alternative,

we developed metacoder, an R package for easily parsing, manipulating, and graph-

ing publication-ready plots of hierarchical data. Metacoder includes a dynamic and

flexible function that can parse most text-based formats that contain taxonomic clas-

sifications, taxon names, taxon identifiers, or sequence identifiers. Metacoder can

then subset, sample, and order this parsed data using a set of intuitive functions that

take into account the hierarchical nature of the data. Finally, an extremely flexible

plotting function enables quantitative representation of up to 4 arbitrary statistics

simultaneously in a tree format by mapping statistics to the color and size of tree

nodes and edges. Metacoder also allows exploration of barcode primer bias by inte-

grating functions to run digital PCR. Although it has been designed for data from

metabarcoding research, metacoder can easily be applied to any data that has a hier-

archical component such as gene ontology or geographic location data. Our package

complements currently available tools for community analysis and is provided open

source with an extensive online user manual.
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3.2 Introduction

Metabarcoding is revolutionizing our understanding of complex ecosystems by cir-

cumventing the traditional limits of microbial diversity assessment, which include

the need and bias of culturability, the effects of cryptic diversity, and the reliance

on expert identification. Metabarcoding is a technique for determining community

composition that typically involves extracting environmental DNA, amplifying a gene

shared by a taxonomic group of interest using PCR, sequencing the amplicons, and

comparing the sequences to reference databases (Cristescu, 2014). It has been used

extensively to explore communities inhabiting diverse environments, including oceans

(De Vargas et al., 2015), plants (Coleman-Derr et al., 2016), animals (Douglas et al.,

2012), humans (Huttenhower et al., 2012), and soil (Gilbert, Jansson, & Knight,

2014).

The complex community data produced by metabarcoding is challenging conven-

tional graphing techniques. Most often, bar charts, stacked bar charts, or pie graphs

are employed that use color to represent a small number of taxa at the same rank

(e.g. phylum, class, etc). This reliance on color for categorical information limits the

number of taxa that can be effectively displayed, so most published figures only show

results at a coarse taxonomic rank (e.g. class) or for only the most abundant taxa.

These graphing techniques do not convey the hierarchical nature of taxonomic clas-

sifications, potentially obscuring patterns in unexplored taxonomic ranks that might

be more biologically important. More recently, tree-based visualizations are becom-

ing available as exemplified by the python-based MetaPhlAn and the corresponding
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graphing software GraPhlAn (Segata et al., 2012). This tool allows visualization of

high-quality circular representations of taxonomic trees.

Here, we introduce the R package metacoder that is specifically designed to ad-

dress some of these problems in metabarcoding-based community ecology, focusing

on parsing and manipulation of hierarchical data and community visualization in R.

Metacoder provides a visualization that we call “heat trees” which quantitatively

depicts statistics associated with taxa, such as abundance, using the color and size

of nodes and edges in a taxonomic tree. These heat trees are useful for evaluating

taxonomic coverage, barcode bias, or displaying differences in taxon abundance be-

tween communities. To import and manipulate data, metacoder provides a means of

extracting and parsing taxonomic information from text-based formats (e.g. reference

database FASTA headers) and an intuitive set of functions for subsetting, sampling,

and rearranging taxonomic data. Metacoder also allows exploration of barcode primer

bias by integrating digital PCR, which simulates PCR success using alignments be-

tween reference sequences and primers. All this functionality is made intuitive and

user-friendly while still allowing extensive customization and flexibility. Metacoder

can be applied to any data that can be organized hierarchically such as gene ontology

or geographic location. Metacoder is an open source project available on CRAN and

is provided with comprehensive online documentation including examples.
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3.3 Design and implementation

The R package metacoder provides a set of novel tools designed to parse, manipu-

late, and visualize community diversity data in a tree format using any taxonomic

classification (Figure 3.1). Figure 3.1 illustrates the ease of use and flexibility of

metacoder. It shows an example analysis extracting taxonomy from the 16S Riboso-

mal Database Project (RDP) training set for mothur (Schloss et al., 2009), filtering

and sampling the data by both taxon and sequence characteristics, running digital

PCR, and graphing the proportion of sequences amplified for each taxon. Table 3.1

provides an overview of the core functions available in metacoder.
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Figure 3.1: Metacoder has an intuitive and easy to use syntax. The
code in this example analysis parses the taxonomic data associated
with sequences from the Ribosomal Database Project 16S training set,
filters and subsamples the data by sequence and taxon characteristics,
conducts digital PCR, and displays the results as a heat tree. All
functions in bold are from the metacoder package. Note how columns
and functions in the taxmap object (green box) can be referenced within
functions as if they were independent variables.
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Table 3.1: Primary functions found in metacoder.

Function Description

extract_taxonomy Parses taxonomic data from arbitrary text and returns a

taxmap object containing a table with rows corresponding

to inputs (i.e. observations) and a table with rows

corresponding to taxa.

heat_tree Makes tree-based plots of data stored in taxmap objects.

Color, size, and labels of tree components can be mapped

to arbitrary data. The output is a ggplot2 object.

primersearch Executes the EMBOSS program primersearch on

sequence data stored in a taxmap object. Results are

parsed, added to the input taxmap object and returned.

mutate_taxa,

mutate_obs,

transmute_taxa,

transmute_obs

Modify or add columns of taxon or observation data in

taxmap objects. mutate * adds columns and transmute *

returns only new columns.

select_taxa,

select_obs

Subset columns of taxon or observation data in taxmap

objects.
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Function Description

filter_taxa,

filter_obs

Subset rows of taxon or observation data in taxmap

objects based on arbitrary conditions. Hierarchical

relationships among taxa and mappings between taxa and

observations are taken into account.

arrange_taxa,

arrange_obs

Order rows of taxon or observation data in taxmap

objects.

sample_n_taxa,

sample_n_obs,

sample_frac_taxa,

sample_frac_obs

Randomly subsample rows of taxon or observation data in

taxmap objects. Weights can be applied that take into

account the taxonomic hierarchy and associated

observations. Hierarchical relationships among taxa and

mappings between taxa and observations are taken into

account.

subtaxa,

supertaxa,

observations,

roots

Returns the indices of rows in taxon or observation data

in taxmap objects. Used to map taxa to related taxa and

observations.

3.3.1 The taxmap data object

To store the taxonomic hierarchy and associated observations (e.g. sequences) we

developed a new data object class called taxmap. The taxmap class is designed to
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be as flexible and easily manipulated as possible. The only assumption made about

the user’s data is that it can be represented as a set of observations assigned to a

hierarchy; the hierarchy and the observations do not need to be biological. The class

contains two tables in which user data is stored: a taxonomic hierarchy stored as an

edge list of unique IDs and a set of observations mapped to that hierarchy (Figure

3.1). Users can add, remove, or reorder both columns and rows in either taxmap table

using convenient functions included in the package (Table 3.1). For each table, there

is also a list of included functions that create a temporary column with the same name

when referenced by one of the manipulation or plotting functions. These are useful

for attributes that must be updated when the data is subset or otherwise modified,

such as the number of observations for each taxon (see n_obs in Figure 3.1). If this

kind of derived information was stored in a static column, the user would have to

update the column each time the data set is subset, potentially leading to mistakes

if this is not done. There are many of these column-generating functions included

by default, but the user can easily add their own by adding a function that takes a

taxmap object. The names of columns or column-generating functions in either table

of a taxmap object can be referenced as if they were independent variables in most

metacoder functions in the style of popular R packages like ggplot2 and dplyr. This

makes the code much easier to read and write.
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3.3.2 Universal parsing and retrieval of taxonomic information

Metacoder provides a way to extract taxonomic information from text-based formats

so it can be manipulated within R. One of the most inefficient steps in bioinformatics

can be loading and parsing data into a standardized form that is usable for computa-

tional analysis. Many databases have unique taxonomy formats with differing types

of taxonomic information. The taxonomic structure and nomenclature used can be

unique to the database or reference another database such as GenBank (Benson, Ca-

vanaugh, Clark, Karsch, & DJ, 2013). Rather than creating a parser for each data

format, metacoder provides a single function to parse any format definable by regular

expressions that contains taxonomic information (Figure 3.1). This makes it easier

to use multiple data sources with the same downstream analysis.

The extract_taxonomy function can parse hierarchical classifications or retrieve

classifications from online databases using taxon names, taxon IDs, or Genbank se-

quence IDs. The user supplies a regular expression with capture groups (parentheses)

and a corresponding key to define what parts of the input can provide classification

information. The extract_taxonomy function has been used successfully to parse

several major database formats including Genbank (Benson et al., 2013), UNITE

(Kõljalg et al., 2013), Protist Ribosomal Reference Database (PR2) (Guillou et al.,

2012), Greengenes (DeSantis et al., 2006), Silva (Quast et al., 2012), and, as illus-

trated in Figure 3.1, the RDP (Maidak et al., 1996). Examples for each database are

provided in the user manuals.
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3.3.3 Intuitive manipulation of taxonomic data

Metacoder makes it easy to subset and sample large data sets composed of thou-

sands of observations (e.g. sequences) assigned to thousands of taxa, while taking

into account hierarchical relationships. This allows for exploration and analysis of

manageable subsets of a large data set. Taxonomies are inherently hierarchical, mak-

ing them difficult to subset and sample intuitively compared with typical tabular

data. In addition to the taxonomy itself, there is usually also data assigned to taxa in

the taxonomy, which we refer to as “observations”. Subsetting either the taxonomy or

the associated observations, depending on the goal, might require subsetting both to

keep them in sync. For example, if a set of taxa are removed or left out of a random

subsample, should the subtaxa and associated observations also be removed, left as

is, or reassigned to a supertaxon? If observations are removed, should the taxa they

were assigned to also be removed? The functions provided by metacoder gives the

user control over these details and simplifies their implementation.

Metacoder allows users to intuitively and efficiently subset complex hierarchi-

cal data sets using a cohesive set of functions inspired by the popular dplyr data-

manipulation philosophy. Dplyr is an R package for providing a conceptually consis-

tent set of operations for manipulating tabular information (Wickham et al., 2015).

Whereas dplyr functions each act on a single table, metacoder’s analogous functions

act on both the taxon and observation tables in a taxmap object (Table 3.1). For

each major dplyr function there are two analogous metacoder functions: one that

manipulates the taxon table and one that manipulates the observations table. The
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functions take into account the relationship between the two tables and can modify

both depending on parameterization, allowing for operations on taxa to affect their

corresponding observations and vice versa. They also take into account the hierarchi-

cal nature of the taxon table. For example, the metacoder functions filter_taxa

and filter_obs are based on the dplyr function filter and are used to remove rows

in the taxon and observation tables corresponding to some criterion. Unlike simply

applying a filter to these tables directly, these functions allow the subtaxa, supertaxa,

and/or observations of taxa passing the filter to be preserved or discarded, making

it easy to subset the data in diverse ways (Figure 3.1). There are also functions

for ordering rows (arrange_taxa, arrange_obs), subsetting columns (select_taxa,

select_obs), and adding columns (mutate_taxa, mutate_obs).

Metacoder also provides functions for random sampling of taxa and correspond-

ing observations. The function taxonomic_sample is used to randomly sub-sample

items such that all taxa of one or more given ranks have some specified number

of observations representing them. Taxa with too few sequences are excluded and

taxa with too many are randomly subsampled. Whole taxa can also be sampled

based on the number of sub-taxa they have. Alternatively, there are dplyr analogues

called sample_n_taxa and sample_n_obs, which can sample some number of taxa

or observations. In both functions, weights can be assigned to taxa or observations,

influencing how likely each is to be sampled. For example, the probability of sampling

a given observation can be determined by a taxon characteristic, such as the number

of observations assigned to that taxon, or it could be determined by an observation

characteristic, like sequence length. Similar to the filter_* functions, there are pa-
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rameters controlling whether selected taxa’s subtaxa, supertaxa, or observations are

included or not in the sample (Figure 3.1).

3.3.4 Heat tree plotting of taxonomic data

Visualizing the massive data sets being generated by modern sequencing of complex

ecosystems is typically done using traditional stacked barcharts or pie graphs, but

these ignore the hierarchical nature of taxonomic classifications and their reliance

on colors for categories limits the number of taxa that can be distinguished (Figure

3.2). Generic trees can convey a taxonomic hierarchy, but displaying how statistics

are distributed throughout the tree, including internal taxa, is difficult. Metacoder

provides a function that plots up to 4 statistics on a tree with quantitative legends

by automatically mapping any set of numbers to the color and width of nodes and

edges. The size and content of edge and node labels can also be mapped to custom

values. These publication-quality graphs provide a method for visualizing community

data that is richer than is currently possible with stacked bar charts. Although there

are other R packages that can plot variables on trees, like phyloseq (McMurdie &

Holmes, 2013), these have been designed for phylogenetic rather than taxonomic trees

and are therefore optimized for plotting information on the tips of the tree and not

on internal nodes. There is also a set of python scripts called GraPhlAn that can

make similar tree-based visualizations. GraPhlAn has better annotation abilities than

metacoder, supports edge length for phylogenetic trees, and can plot a variety of node

shapes. However, metacoder’s heat tree function can plot multiple trees per graph,
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use different layout algorithms, automatically transform raw data to color/size for

quantitative display with a scale bar, and optimize the size range of nodes to avoid

crowded or sparse graphs.

Figure 3.2: Heat trees allow for a better understanding of community
structure than stacked bar charts. The stacked bar chart on the left
represents the abundance of organisms in two samples from the Human
Microbiome Project. The same data are displayed as heat trees on
the right. In the heat trees, size and color of nodes and edges are
correlated with the abundance of organisms in each community. Both
visualizations show communities dominated by firmicutes, but the heat
trees reveal that the two samples share no families within firmicutes
and are thus much more different than suggested by the stacked bar
chart.

The function heat_tree creates a tree utilizing color and size to display taxon

statistics (e.g., sequence abundance) for many taxa and ranks in one intuitive graph

(Figure 3.2). Taxa are represented as nodes and both color and size are used to repre-

sent any statistic associated with taxa, such as abundance. Although the heat_tree

function has many options to customize the appearance of the graph, it is designed

to minimize the amount of user-defined parameters necessary to create an effective
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visualization. The size range of graph elements is optimized for each graph to mini-

mize overlap and maximize size range. Raw statistics are automatically translated to

size and color and a legend is added to display the relationship. Unlike most other

plotting functions in R, the plot looks the same regardless of output size, allowing the

graph to be saved at any size or used in complex, composite figures without changing

parameters. These characteristics allow heat_tree to be used effectively in pipelines

and with minimal parameterization since a small set of parameters displays diverse

taxonomy data. The output of the heat_tree function is a ggplot2 object, making

it compatible with many existing R tools. Another novel feature of heat trees is the

automatic plotting of multiple trees when there are multiple “roots” to the hierar-

chy. This can happen when, for example, there are “Bacteria” and “Eukaryota” taxa

without a unifying “Life” taxon, or when coarse taxonomic ranks are removed to aid

in the visualization of large data sets (Figure 3.3).
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Figure 3.3: Heat trees display up to four metrics in a taxonomic con-
text and can plot multiple trees per graph. Most graph components,
such as the size and color of text, nodes, and edges, can be automati-
cally mapped to arbitrary numbers, allowing for a quantitative repre-
sentation of multiple statistics simultaneously. This graph depicts the
uncertainty of OTU classifications from the TARA global oceans sur-
vey. Each node represents a taxon used to classify OTUs and the edges
determine where it fits in the overall taxonomic hierarchy. Node di-
ameter is proportional to the number of OTUs classified as that taxon
and edge width is proportional to the number of reads. Color repre-
sents the percent of OTUs assigned to each taxon that are somewhat
similar to their closest reference sequence (>90% sequence identity). a.
Metazoan diversity in detail. b. All taxonomic diversity found. Note
that multiple trees are automatically created and arranged when there
are multiple roots to the taxonomy.
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3.4 Results

3.4.1 Heat trees allow quantitative visualization of community diversity data

We developed heat trees to allow visualization of community data in a taxonomic

context by mapping any statistic to the color or size of tree components. Here, we

reanalyzed data set 5 from the TARA oceans eukaryotic plankton diversity study

to visualize the similarity between OTUs observed in the data set and their closest

match to a sequence in a reference database (De Vargas et al., 2015). The TARA

ocean expedition analyzed DNA extracted from ocean water throughout the world.

Even though a custom reference database was made using curated 18S sequences

spanning all known eukaryotic diversity, many of the OTUs observed had no close

match. Figure 3.3 shows a heat tree that illustrates the proportion of OTUs that

were well characterized in each taxon (at least 90% identical to a reference sequence).

Color indicates the percentage of OTUs that are well characterized, node width in-

dicates the number of OTUs assigned to each taxon, and edge width indicates the

number of reads. Taxa with ambiguous names and those with less than 300 reads

have been filtered out for clarity. This figure illustrates one of the principal advan-

tages of heat trees, as it reveals many clades in the tree that contain only purple

and orange lineages, which indicate that the entire taxonomic group is poorly repre-

sented in the reference sequence database. Of particular interest are those clades with

predominantly purple and orange lineages that also have relatively large nodes, such

as Harpacticoida (in Copepoda on the left). These represent taxonomic groups that

were found to have high amounts of diversity in the oceans, but for which we have
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a paucity of genomic information. Investigators interested in improving the genomic

resolution of the biosphere can thus use these approaches to rapidly assess which taxa

should be prioritized for focused investigations.

3.4.2 Flexible parsing allows for similar use of diverse data

Metabarcoding studies often rely on techniques or data that may introduce bias into

an investigation. For example, the specific set of PCR primers used to amplify ge-

nomic DNA and the taxonomic annotation database can both have an effect on the

study results. A quick and inexpensive way to estimate biases caused by primers is

to use digital PCR. Metacoder can be used to explore different databases or primer

combinations to assess these effects since it supplies functions to parse divserse data

sources, conduct digital PCR, and plot the results. Figure 3.4 shows a series of

heat tree comparisons that were produced using a common 16S rRNA metabarcod-

ing primer set and digital PCR against the full-length 16S sequences found in three

taxonomic annotation databases: Greengenes (DeSantis et al., 2006), RDP (Maidak

et al., 1996), and SILVA (Yilmaz et al., 2014). These heat trees reveal subsets of the

full taxonomies for these three databases that poorly amplify by digital PCR using

the selected primers. As a result, they indicate which lineages within each of the

taxonomies may be challenging to detect in a metabarcoding study that uses these

primers. Importantly, different sets of primers likely amplify different sets of taxa, so

investigators interested in specific lineages can use this approach in conjunction with

various primer sets to identify those that maximize the likelihood of discovery and re-
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duce wasted sequencing resources on non-target organisms. However, these heat trees

do not indicate whether one database is necessarily preferable over another, as they

differ in the structure of their taxonomies, as well as the number and phylogenetic

diversity of their reference sequences. For example, most of the bacterial clades that

do not amplify well in the SILVA lineages are unnamed lineages that are not found

in the other databases, indicating that they warrant further exploration.
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Figure 3.4: Flexible parsing and digital PCR allows for comparisons of
primers and databases. Shown is a comparison of digital PCR results
for three 16S reference databases. The plots on the left display abun-
dance of all bacterial 16S sequences. Plots on the right display all taxa
with subtaxa not entirely amplified by digital PCR using universal 16S
primers. Node color and size display the proportion and number of
sequences not amplified respectively.
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3.4.3 Heat trees can show pairwise comparisons of communities across treatments

One challenge in metabarcoding studies is visually determining how specific sub-sets

of samples vary in their taxonomic composition. Unlike most other graphing software

in R, metacoder produces graphs that look the same at any output size or aspect

ratio, allowing heat trees to be easily integrated into larger composite figures without

changing the code for individual subplots. Using color to depict the difference in read

or OTU abundance between two treatments can result in particularly effective visual-

izations, especially when the presence of color is made dependent on a statistical test.

To examine more than two treatments at once, a matrix of these kind of heat trees

can be combined with a labeled “guide” tree. Figure 3.5 shows application of this idea

to human microbiome data showing pairwise differences between body sites. Coloring

indicates significant differences between the median proportion of reads for samples

from different body sites as determined using a Wilcox rank-sum test followed by a

Benjamini-Hochberg (FDR) correction for multiple testing. The intensity of the color

is relative to the log-2 ratio of difference in median proportions. Brown taxa indicate

an enrichment in body sites listed on the top of the graph and green is the oppo-

site. While the original study (Huttenhower et al., 2012) showed abundance plots,

our visualization provides the taxonomic context. For example, Haemophilus, Strep-

tococcus, and Prevotella spp. are enriched in saliva (brown) relative to stool where

Bacteroides is enriched (green). We also see that in the Lachnospiraceae clade several

genera shown in both green and brown taxa are differentially abundant. These ob-

servations are consistent with known differences in the human-associated microbiome
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across body sites, but heat trees uniquely provide an integrated view of how all levels

of a taxonomy vary for all pairs of body sites.
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Figure 3.5: Scale-independent appearance facilitates complex, compos-
ite figures. This graph uses 16S metabarcoding data from the human
microbiome project study to show pairwise comparisons of microbiome
communities in different parts of the human body. All graph com-
ponents, including text, have the same relative sizes independent of
output size, unlike most graphical packages in R, making it easier to
create composite figures entirely within R. The gray tree on the lower
left functions as a key for the smaller unlabeled trees. The color of each
taxon represents the log-2 ratio of median proportions of reads observed
at each body site. Only significant differences are colored, determined
using a Wilcox rank-sum test followed by a Benjamini-Hochberg (FDR)
correction for multiple comparisons. Taxa colored green are enriched
in the part of the body shown in the row and those colored brown are
enriched in the part of the body shown in the column. For example,
Haemophilus, Streptococcus, Prevotella are enriched in saliva (brown)
relative to stool where Bacteroides is enriched (green).



85

3.4.4 Other applications

The taxmap data object defined in metacoder can be used for any data that can be

classified by a hierarchy. Figure 3.6, for example, shows an analysis of votes cast in the

2016 US Democratic party national primaries organized by geography. The heat tree

reveals distinct patterns such as a sweep by Clinton in the South and a split on the

West coast, with California predominantly voting for Clinton while Washington and

Oregon predominantly voted for Sanders. Another potential application is displaying

the results of gene expression studies by associating differential expression with gene

ontology (GO) annotations. Figure 3.7 shows the results of a RNA-seq study on the

effect of glucocorticoids on smooth muscle tissue (Himes et al., 2014). All biological

processes influenced by at least one gene with a significant change in expression are

plotted. The authors of the study find that genes involved in immune response are

influenced by the glucocorticoid treatment. Viewing these results in a heat tree shows

not only the specific immune process affected (the branch on the middle right), but

also the more general phenomena they constitute; regulation of high level phenomena,

like immune system function, can be explained by specific processes like “lymphocyte

homeostasis” and these specific processes are put into the context of the phenomena

they contribute to. This is more informative than simply reporting the results for a

single level of the GO annotation hierarchy or discussing the effects of genes one at a

time.



86

Figure 3.6: Metacoder can be used with any type of data that can be
organized hierarchically. This plot shows the results of the 2016 Demo-
cratic primary election organized by region, division, state, and county.
The regions and divisions are those defined by the United States census
bureau. Color corresponds to the difference in the percentage of votes
for candidates Hillary Clinton (green) and Bernie Sanders (brown). Size
corresponds to the total number of votes cast. Data was downloaded
from https://www.kaggle.com/benhamner/2016-us-election/.
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Figure 3.7: Another alternate use example: Visualizing gene expres-
sion data in a GO hierarchy. The gene ontology for all differentially
expressed genes in a study on the effect of a glucocorticoid on airway
smooth muscle tissue. Color indicates the sign and intensity of aver-
aged changes in gene expression and the size indicates the number of
genes classified by a given gene ontology term.

3.5 Availability and future directions

The R package metacoder is an open-source project under the MIT License. Sta-

ble releases of metacoder are available on CRAN while recent improvements can be
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downloaded from github (https://github.com/grunwaldlab/metacoder). A man-

ual with documentation and examples is provided. This manual also provides the

code to reproduce all figures included in this manuscript.

We are currently continuing development of metacoder. We welcome contribu-

tions and feedback from the community. We want to make metacoder functions and

classes compatible with those from other bioinformatic R packages such as phyloseq,

ape (Paradis, Claude, & Strimmer, 2004), seqinr (Charif & Lobry, 2007), and taxize

(Chamberlain & Szöcs, 2013). We might integrate more options for digital PCR and

barcode gap analysis, perhaps using ecoPCR (Ficetola et al., 2010) or the R packages

PrimerMiner (Elbrecht & Leese, 2017) and Spider (Brown et al., 2012). We are also

considering adding additional visualization functions.

https://github.com/grunwaldlab/metacoder
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4.1 Abstract

The microbiome of agricultural crops influences processes such as nutrient absorp-

tion, drought stress, and susceptibility to pathogens. Interactions between a plant’s

genotype and its environment influence the composition of the microbiome, but these

interactions are not well understood. We compared how the fungal and oomycete mi-

crobiomes of rhododendrons from Oregon nurseries differed among cultivars, growth

conditions, and nurseries. Roots were sampled from randomly selected container and

field-grown plants of three cultivars of Rhododendron at four nurseries. The internal

transcribed spacer 1 (ITS1) barcode was sequenced with the Illumina MiSeq using

two sets of primers specific to fungi and oomycetes, respectively. Sequences were used

to infer community composition using VSEARCH and a custom reference database

combining curated fungal and oomycete sequences. Comparisons of diversity and

community composition were conducted in R using the vegan and metacoder pack-

ages. Organism lifestyle was inferred using the FUNGuild database. Few oomycetes

were found and fungal communities were dominated by saprobes and mutualists.

Nurseries that grew plants in containers and in-field had a significantly higher diver-

sity of fungi than those that only grew plants in containers. Microbiome composition

differed significantly among growth conditions and nurseries, but not among cultivars.

This suggests that, among these cultivars of Rhododendron, environment is important

in structuring the root microbiome, but cultivar is not.
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4.2 Introduction

Given major advances in microbiome research, it might soon become possible to en-

gineer the microbiome of plants to improve nutrient absorption and health. Plants

influence the composition and function of their microbiome by selectively recruiting a

subset of the microbes from the surrounding environment that tend to provide bene-

fits to the host (Berendsen, Pieterse, & Bakker, 2012). Plant genotype can affect this

process, influencing the composition of the microbiome (Bálint et al., 2013; Panke-

Buisse, Poole, Goodrich, Ley, & Kao-Kniffin, 2015; Wagner et al., 2016). Different

cultivars of maize are known to respond differently to inoculation with the nitrogen-

fixing bacteria Azospirillum; in some cultivars, addition of Azospirillum is equivalent

to 100 kg ha-1 of nitrogen, whereas other cultivars are unaffected (Salamone, Döbere-

iner, Urquiaga, & Boddey, 1996). Different cultivars of wheat and grape have been

observed to harbor distinct microbiomes (Bokulich, Thorngate, Richardson, & Mills,

2014; Sapkota & Nicolaisen, 2015). For fermentation substrates like grapes, the mi-

crobiome has additional relevance due to its effects on the sensory qualities of the

finished product (Swiegers, Bartowsky, Henschke, & Pretorius, 2005). Common gar-

den experiments of wild plants also suggest that the fungal microbiome differs among

genotypes of the same species (Bálint et al., 2013; Wagner et al., 2016). There is

evidence that microbiome differences in natural stands of European beech correlate

more with genotypic differences than with geographical distance (Cordier, Robin,

Capdevielle, Desprez-Loustau, & Vacher, 2012). Agricultural management practices

have a major influence on the plant environment, which determines which microbes
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can be recruited and which pathogens will be present. For example, how a nursery

recycles irrigation water could influence the community of oomycete pathogens (Re-

dekar, Eberhart, & Parke, 2019). Given a mechanistic understanding of the factors

required to assemble a microbiome and achieve certain functions, one can envision a

future where direct management of the plant microbiome can improve crop produc-

tion. However, before a microbiome can be managed it has to be well characterized

including how different hosts, cultivars, and production conditions can affect the mi-

crobiome.

High-throughput sequencing allows for rapid, affordable, and comprehensive char-

acterization of the diversity found in microbial communities compared with sequenc-

ing by cloning or culturing (Ji et al., 2013). For example, obligate symbionts and

pathogens that have important implications for agriculture are difficult to culture

and are therefore less likely to be detected by traditional culture-based microbial

surveys (Yarza et al., 2014). New techniques, such as metabarcoding (i.e., ampli-

con metagenomics) and shotgun metagenomics, rely only on sequencing mixtures of

PCR products or raw genomic DNA derived from environmental samples of com-

plex communities, such as soil, and are therefore less biased by organismal lifestyle.

Metabarcoding is a particularly powerful technique that involves extracting DNA from

complex samples, amplifying a common barcode gene with PCR, and sequencing am-

plicons using high-throughput sequencing (Taberlet et al., 2012). Sequences can then

be used to estimate community diversity and compared with reference databases to

estimate community composition (Cole et al., 2009). However, metabarcoding also

has its own set of biases, such as differential PCR efficiency and limited taxonomic
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resolution (Nichols et al., 2018). Recently, there have been attempts to use metabar-

coding to characterize the communities and the distribution of pathogenic organisms,

such as Phytophthora spp. in agricultural settings (Prigigallo et al., 2016; Riddell et

al., 2019).

Rhododendron is a major ornamental crop in the Pacific Northwest and is known

to host both mycorrhizal symbionts and plant pathogens (Farr, Esteban, & Palm,

1996; Knaus, Fieland, Graham, & Grünwald, 2015; Parke & Grünwald, 2012; Parke,

Knaus, Fieland, Lewis, & Grünwald, 2014). The nursery and greenhouse industry is

a leading agricultural sector in the Pacific Northwest, with gross sales in Oregon of

$948 million in 2017 and rhododendrons are one of the leading ornamental plants sold.

Plants in the family Ericaceae, including Rhododendron, are known to form a distinct

type of mutualism with fungi known as ericoid mycorrhizae. Ericoid mycorrhizae

are known to aid their host in nutrient absorption and survival in poor and polluted

soils (Cairney & Meharg, 2003). Rhododendrons in nurseries are also known to be

vectors of the sudden death pathogen Phytophthora ramorum (Gruenwald, Goss, &

Press, 2008; Werres et al., 2001) and other oomycetes such as Phytophthora plurivora

(Weiland et al., 2018). The presence of well-known mutualists and multiple pathogens

combined with its economic importance make Rhododendron a good system to study

the effects of management and cultivar on phytobiome composition (Jones, Benson,

& others, 2001).

Root pathogens and symbionts described on rhododendron include both fungi and

oomycetes. Oomycete pathogens generally cause root rot or damping off. Commonly

found oomycetes on Rhododendron include Phytophthora plurivora, Phytophthora cin-
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namomi, and Pythium cryptoirregulare (Weiland et al., 2018). Fungal pathogens in-

clude Cylindrocladium scoparium, Cylindrocladium theae, Rhizoctonia solani, Armil-

laria mellea, and Thielaviopsis basicola (Dreistadt, 2001; Jones et al., 2001). Common

ericoid mycorrhizal fungi isolated from ericaceous plants include ascomycetes such

as Rhizoscyphus ericae, Oidiodendron maius, and dark septate endophytes, such as

Phialocephala fortinii. Some basidiomycetes also occur, including Clavaria and mem-

bers of the order Sebacinales (Dighton & Coleman, 1992; Vohnı’k & Albrechtová,

2011; Vohnı’k, Albrechtová, Vosátka, & others, 2005).

The goal of this study is to characterize the fungal and oomycete root microbiome

of Rhododendron in Oregon nurseries and determine what factors might influence its

composition. Therefore, we evaluated the relative importance of host genotype, envi-

ronment, and management practices on structuring Rhododendron microbiomes in the

rhizosphere using high-throughput sequencing. Specifically, we used metabarcoding

to survey fungal and oomycete rhizosphere communities from three cultivars in four

nurseries. We tested the hypothesis that microbiomes would differ among cultivars,

nurseries, and production systems (container versus field-grown). We also expected

to detect well-known Rhododendron pathogens, such as Phytophthora cinnamomi or

Phytophthora plurivora, and well-known Rhododendron symbionts, such as Rhizoscy-

phus ericae or Phialocephala fortinii (Jones et al., 2001; Knaus et al., 2015; Parke et

al., 2014; Weiland et al., 2018). Our work provides novel insights into the makeup

of oomycete and fungal communities in Rhododendron roots and is one of the few

studies to apply Illumina sequencing to oomycete metabarcoding.
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4.3 Materials and methods

4.3.1 Sample collection

The rhizosphere of Rhododendron was sampled to determine the effect of nursery,

production system (container versus field-grown plants), and cultivar. Plants that ap-

peared healthy were sampled in four nurseries from three cultivars in the Willamette

Valley, Oregon, United States during May 2014. The nurseries varied in size and

management practices. Nurseries A and B grew plants in both field and container

systems while nurseries C and D grew plants only in containers. Both field-grown and

container-grown plants were sampled. Rhododendron cultivars Nova Zembla (RHS

58), Roseum Elegans (RHS 58), and PJM (ARS874) were sampled in all nurseries

and in both growing conditions. Five plants were sampled at random from each combi-

nation of nursery, cultivar, and production system (i.e., field-grown versus container-

grown). Two nurseries only grew the selected cultivars in containers, so field-grown

plants were only sampled from the other two nurseries. Each sample consisted of four

equally-sized subsamples, each roughly 50 cm3, taken from opposite sides of the root

ball. Root balls were sampled by hand using sterile gloves and transported to the lab

on ice. In the case of field-grown plants, a hand trowel was used to expose the root

ball on four sides and this trowel was sterilized between plants by rinsing in distilled

water and 10% bleach.
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4.3.2 Sample processing

Root ball samples were broken apart by hand using sterile gloves and excess dirt or

potting media was shaken off to obtain rhizosphere samples. Gloves were changed

between samples to avoid cross-contamination. Each frozen rhizosphere sample was

ground by hand using a clean mortar and pestle with liquid nitrogen. Mortars and

pestles were autoclaved for 1 h and soaked in 10% bleach for at least 4 h between

uses (Prince & Andrus, 1992). Ground rhizosphere samples were stored at -80°C in

prechilled Falcon tubes (Corning, MA) until DNA extraction of approximately 150

mg of the sample using the Fast DNA Spin Kit (MP Biomedicals, Santa Ana, CA).

The samples were not allowed to thaw at any time during this process.

4.3.3 PCR

We characterized both fungal and oomycete diversity using two internal tran-

scribed spacer 1 (ITS1) primer pairs specific to each group. The fungal

PCR used primers ITS1F (5’ TCGTCGGCAGCGTCAGATGTGTATAA-

GAGACAG NC AAACTTGGTCATTTAGAGGAAGTAA 3’) and ITS2 (5’

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG GCTGCGTTCTTCATC-

GATGC 3’) (White, Bruns, Lee, Taylor, & others, 1990). The bold sequences are the

Illumina adapters and the italic sequence is a spacer added to increase the annealing

temperature to what is recommended in the Illumina 16S sample preparation guide

(Illumina Inc., San Diego, CA). The spacer was designed to be complementary to

fungal DNA based on alignments of the primer to a random selection of sequences
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downloaded from GenBank. Each reaction consisted of 1× PCR buffer, 0.2 mM

dNTP mixture, 1 µM of each primer, 0.15 µl of GeneScript Taq polymerase (Gen-

Script, Piscataway, NJ), and 2 µl of template DNA extract in a total volume of 15 µl.

The thermocycler profile was 3 min at 94°C, followed by 30 cycles of 30 s at 94°C, 45

s at 60°C, and 1 min at 72°C with a final elongation for 7 min at 72°C. The oomycete

PCR was seminested and used ITS6 (GAAGGTGAAGTCGTAACAAGG) and ITS4

(TCCTCCGCTTATTGATATGC) without the MiSeq adapters followed by ITS6

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGKGAAGGTGAAGTCG-

TAACAAGG) and ITS7 (GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA-

GAGCGTTCTTCATCGATGTGC) with the MiSeq adapters (Sapkota et al., 2015).

The reactions for the first PCR consisted of 1× PCR buffer, 1.5 mM MgCl2, 0.2

mM dNTP mixture, 0.2 µM of each primer, 0.04 units Platinum Taq polymerase

(ThermoFisher Scientific, Waltham, MA), and 7.5 µl of template DNA extract in a

total volume of 15 µl. The thermocycler profile was 2 min at 94°C, followed by 25

cycles of 30 s at 94°C, 30 s at 60°C, and 1 min at 72°C with a final elongation for 2

min at 72°C. The second PCR had the same reaction composition and thermocycler

profile, except that 1.5 µl of a 1:10 dilution of the first PCR was used as the template.

4.3.4 Sequencing

The pooled oomycete and fungal libraries were sequenced on the Illumina MiSeq

(Illumina) at the Center for Genome Research and Biocomputing (CGRB) at Oregon

State University. Fungal and oomycete PCR products were mixed in equal volumes



98

and used by the CGRB Core Lab to create sequencing libraries. In brief, the mixture

of PCR products was cleaned with AMPure XP beads (Beckman Coulter, Brea, CA).

Sample indexes were added using the Illumina Nextera XT kit and cleaned again with

AMPure XP beads. The samples were then quantified using an Agilent Bioanalyzer

(Agilent, Palo Alto, CA), diluted to the same concentration, and pooled. A total of

25% PhiX was added to the pooled samples to correct for low diversity sequence bias.

This library was then run on the CGRB’s Illumina MiSeq using 250 bp paired-end

sequencing.

4.3.5 Data analysis

An abundance matrix of operational taxonomic units (OTUs) versus samples was

generated in order to compare the diversity and composition of the different culti-

vars, nurseries, and management practices. Primers and low-quality sequences were

removed with cutadapt (Martin, 2011). Any sequences with greater than 10% mis-

match to the primers or more than two “N” ambiguity codes were filtered out. All

sequences from the ends of each read that had a phred score of less than 20 were

removed. VSEARCH (Rognes, Flouri, Nichols, Quince, & Mahé, 2016) was then

used to merge forward and reverse reads. Pairs with less than 15 bp overlap or

more than three mismatches were filtered out. Unique reads were found using the

derep_fulllength command and singletons were filtered out. Predicted chimeric

sequences were filtered out using the uchime_denovo command. The remaining se-

quences were then clustered into OTUs using the cluster_size command at 99 and
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97% to approximate species-scale differences for oomycetes and fungi respectively.

Finally, the usearch_global command was used to assign taxonomic classifications

to OTUs by comparing them to a custom reference database composed of the UNITE

database (Kõljalg et al., 2005) for fungi, and Phytophthora-ID (Grünwald et al.,

2011), Phytophthora-DB (Park et al., 2008), and the sequences from Robideau et al.

(2011) for oomycetes. OTUs with less than 10 reads were filtered out. The taxonomy

assigned to OTUs was used to infer organism lifestyle using FUNGuild (Nguyen et

al., 2016). The FUNGuild results presented are those for OTUs that had at least

a 97% identity with the reference sequence supplying the taxonomy and that were

considered “Probable” or “Highly probably” by FUNGuild.

The diversity of communities was compared with alpha (diversity within a sample)

and beta (the compositional dissimilarity between two samples) diversity statistics

and ordination techniques using the R packages vegan (Dixon, 2003), taxa (Fos-

ter et al., 2018), and metacoder (Foster et al., 2017). The inverse Simpson index

was calculated for each sample as a measure of alpha diversity and the Bray-Curtis

index was calculated for each pair of samples as a measure of beta diversity. Dif-

ferences in alpha diversity among factors were determined using a Tukey’s honest

significant difference (HSD) test following analysis of variance (ANOVA). Differences

in beta diversity were visualized using nonmetric multidimensional scaling (NMDS)

using the metaMDS function from vegan (Kruskal, 1964). Permutational multivariate

analysis of variance (PERMANOVA), as implemented by the adonis function in the

vegan package, was used to test which factors (cultivars, nurseries, and management

practices) might be important for explaining differences in beta diversity (Anderson,
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2001). PERMANOVA is a nonparametric approach allowing partitioning of variance

among factors, analogous to a factorial ANOVA. All factors and interactions were

included in the model.

To test for taxa with differential abundance between factors, nonparametric

Wilcoxon rank-sum tests (Mann & Whitney, 1947) with a false discovery rate (FDR)

correction for multiple tests were performed on the median read proportions for each

taxon, at all taxonomic ranks. The results were visualized with differential heat

trees using metacoder. For experimental factors that had more than two types (i.e.,

cultivar and nursery), differential abundance tests were conducted for each pairwise

combination of types.

4.3.6 Data availability

All supplementary materials including R scripts to reproduce the analysis and fig-

ures, FASTQ files, and the OTU abundance matrix were deposited at Open Science

Framework. The raw MiSeq sequences are also deposited in NCBI’s Sequence Read

Archive (BioProject PRJNA561631).

4.4 Results

4.4.1 Sequencing

Raw reads were filtered and grouped into OTUs to simulate species-level differences.

After processing the raw sequences with VSEARCH, a total of 3,120,565 reads were
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assigned to OTUs. At the primer removal step, approximately 6.3% of the reads were

derived from the oomycete primers and 93.7% of the reads were derived from the

fungal primers. After quality filtering, 3.6% of the reads were assigned to oomycetes

and 96.4% of the reads were assigned to fungi. The number of raw reads per sample

ranged from 8,869 to 82,015. There were 1,915 OTUs in the raw data and 731

remaining after removing OTUs with fewer than 10 reads. The number of OTUs per

sample ranged from 68 to 259 for raw counts and from 29 to 98 for filtered counts.

4.4.2 Alpha diversity

Differences in alpha diversity (i.e., the diversity within a sample) were determined

using ANOVA followed by a Turkey’s HSD test. Overall, differences in alpha diver-

sity among factors were small or not significant (Figure 4.1). There were minor, but

significant, differences in diversity among the three cultivars. Nursery B had signif-

icantly higher alpha diversity than the others. Although there was no difference in

alpha diversity between container-grown and field-grown plants, the species diversity

of container-grown plants in nurseries that also grew plants in-field was greater than

from container-grown plants in nurseries that only grew rhododendrons in containers

(P < 0.05). The same analyses were done at the OTU and genus levels with similar

results.
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Figure 4.1: Alpha diversity of the combined fungal and oomycete
species in the Rhododendron rhizosphere in different cultivars (Nova
Zembla, PJM, and Roseum Elegans), nurseries (A, B, C, and D), nurs-
ery types (plant grown in containers and field soil versus nurseries grow-
ing only in container soil), and production systems (container versus
field-grown). Letters represent significantly different distributions as
determined by analysis of variance followed by a Tukey’s honest signif-
icant difference test.

4.4.3 Beta diversity

Differences in rhizosphere community composition correlated with differences in nurs-

ery and production system, but not with differences in cultivar. NMDS revealed

distinct communities associated with each combination of production system and
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nursery when using two (Figure 4.2) or three dimensions. Production systems (e.g.,

container versus field-grown) separated communities based on axis NMDS1, whereas

axis NMDS2 separated nurseries (Figure 4.2). There was little, if any, clustering as-

sociated with cultivar. PERMANOVA supported the NMDS results, showing highly

significant associations between community similarity and production system (R2 =

0.149; P < 0.001) or nursery (R2 = 0.234; P < 0.001) (Table 4.1). Cultivar was also

significantly correlated, but the effect size was small (R2 = 0.025; P = 0.001). The

same analysis on other levels of the taxonomic hierarchy (e.g., OTU, species, genus,

and family) showed similar results.

Figure 4.2: Two-dimensional nonmetric multidimensional scaling of
Bray-Curtis distances between samples based on operational taxonomic
unit relative abundance for both oomycetes and fungi. Ellipses repre-
sent 95% confidence intervals, assuming a multivariate t-distribution.
Samples colored by A, container versus field-grown Rhododendron, B,
the four nurseries sampled, and C, the three Rhododendron cultivars
sampled.
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Table 4.1: Results of permutational multivariate analysis of variance
(PERMANOVA) of Bray-Curtis distances between samples.

Factor R2 P

Cultivar 0.025 0.0012

Production system 0.149 0.0001

Nursery 0.234 0.0001

Cultivar × production system 0.025 0.0007

Cultivar × nursery 0.076 0.0001

Production system × nursery 0.045 0.0001

Cultivar × production system × nursery 0.028 0.0003

Residuals 0.418 -

Only the comparison between container and field-grown samples indicated sig-

nificant differences in median read abundance for numerous taxa, as determined by

Wilcoxon rank sum tests followed by a false discovery rate correction (Figure 4.3).

Taxa with a greater proportion of reads assigned to them in field-grown samples

than container-grown samples include: Phialocephala fortinii, Cladophialophora

chaetospira, Galerina atkinsoniana, Solicoccozyma terrea, and Trichoderma crassum.

Taxa with a higher read abundance in container-grown samples than in field-grown

samples include: Coniochaeta lignicola, Lecythophora fasciculata, Pleurostoma

richardsiae, Sporothrix lignivora, and Exophiala hetermorpha. No significant differ-

ences between experimental factors were observed for any oomycete taxa, probably

due to the infrequency of detecting individual oomycete taxa relative to the number
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of samples for each factor.

Figure 4.3: Differential heat tree (i.e., taxonomic tree) showing signifi-
cant differences in median read proportion between fungal operational
taxonomic units found in the rhizosphere from container-grown (green)
versus field-grown (brown) Rhododendron. Significance was determined
using Wilcox rank-sum tests with a false discovery rate correction for
multiple comparisons. Only taxa that appear in at least five samples
are shown.
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4.4.4 Organismal diversity

Saprobes and beneficial fungi dominated the fungal and oomycete communities in

rhododendron roots, according to FUNGuild results. Most sequence reads were as-

signed to saprobes and beneficial organisms. Pathogens were much less common than

either saprobic or beneficial fungi. The three most common putative mutualists were

OTUs matching reference sequences (>99.5% identity) for Lecythophora fasciculata,

Trichoderma pubescens, and Phialocephala fortinii, appearing in 74, 68, and 53% of

samples, respectively. The 10 most common saprobes occurred individually in 38

to 18% of samples and included OTUs that matched reference sequences (>99.5%

identity) of Xenopolyscytalum pinea, Humicola grisea, Cladophialophora chaetospira,

Scytalidium lignicola, and Trichocladium opacum. We also found taxa typically asso-

ciated with ericaceous plants to be common, including taxa in the genera Rhizoscy-

phus, Meliniomyces, Oidiodendron, Pezoloma, Hymenoscyphus, Phialocephala, and

the order Sebacinales (Figure 4.4). Trichoderma (some with purported biocontrol

properties) and the saprophytic genera Galerina and Mortierella were also common

and diverse.
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Figure 4.4: A heat tree (i.e., taxonomic tree) of fungal taxa with un-
ambiguous classifications found in at least five samples. Edge width
is proportional to the number of samples a given taxon was found in.
The color and size of nodes is the relative standard deviation of opera-
tional taxonomic unit read proportions and the mean read proportion,
respectively. Cooler colors indicate less variation between samples and
hotter colors indicate more.

Putative plant pathogens were generally much less common than saprobes or

mutualists. Some potential fungal pathogens found include Pestalotiopsis unicolor,

Pestalotiopsis rhododendri, and Ophiostoma bragantinum, which were found in 23,
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10, and 8% of samples, respectively. The genus Microbotryum was also found. There

were much fewer OTUs assigned to oomycetes than fungi and these OTUs occurred in

much fewer samples than the common fungal OTUs. Due to the nature of oomycete

ITS1 sequences, OTUs that differ by more than 1% in sequence identity from their

closest reference sequences are very likely different species than the one assigned

and even exact matches do not always resolve individual species (Redekar et al.,

2019). The reference sequences that were matched well (>99% identity) by the most

common oomycete OTUs include Pythium irregulare, Pythium sylvaticum, Phytoph-

thora cactorum, Phytophthora citricola, and Phytophthora infestans. These putative

pathogens appeared in 11 to 2% of samples. Less frequently, sequences matching

Pythium macrosporum and Pythium dissotocum were found. Other OTUs found had

no close match to a reference sequence or occurred in only one sample. These likely

represent either technical error or species not in the reference database.

4.5 Discussion

The environment of plants has a strong influence on the composition, and therefore

function, of the microbiome (Bonito et al., 2014; Wagner et al., 2016). The plants

sampled in this study differed by nursery and production system (container versus

field-grown), both of which constitute different environments that are expected to

change the composition of associated microbiomes. Of all the factors tested, pro-

duction system and nursery were the two best predictors of differences in the root

microbiome according to NMDS (Figure 4.2) and PERMANOVA (Table 4.1). The
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effect of production system is likely due in part to the difference in growing media:

container-grown plants were grown in nearly 100% Douglas fir bark chips whereas

field-grown plants were grown in soil. Surprisingly, there was no significant difference

in alpha diversity between the two types of production systems (Figure 4.1). We

expected that field soil would support a more diverse community of fungi than a pot-

ting mix largely composed of bark and that would be reflected in the diversity of the

rhizosphere community. However, it could be that rhododendrons select a subset of

the bulk soil community, as happens in other plants (Uroz, Buée, Murat, Frey-Klett,

& Martin, 2010), and that both environments have more diversity than is selected,

even if the potting media is less diverse. Since we did not analyze bulk soil samples,

we cannot confirm this. It could also be that the soil in the fields had relatively little

organic matter and thus supported less saprotrophic diversity than the potting mix

that was almost entirely organic matter. The composition of rhizosphere commu-

nities also varied among nurseries (Figure 4.2), even though production system was

the dominant effect. For example, the container-grown plants from nurseries A and

B clustered together in NMDS ordination, as to a lesser degree did the field-grown

plants. This suggests that there could be microbiomes characteristic of container-

grown and field-grown plants regardless of where they are grown, even though the

location also has an effect. If this is true, it would mean that cultivation practices

can have predictable effects on the microbiome of Rhododendron and that there is

potential for optimizing these practices to maximize the benefits received from the

microbiome. However, a study of a much greater number of nurseries, representative

of a larger geographical area and greater diversity of cultivation practices, would be
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needed to verify that this result applies to nursery-grown Rhododendron in general.

In many agricultural plant species, slight genotypic differences influencing inter-

actions with the plant’s microbiome can have a large impact on plant productivity

(Salamone et al., 1996). Surprisingly, we observed little, if any, differences between

the microbiome compositions of the three cultivars of Rhododendron sampled (Figure

4.2). This suggests that either the cultivars we selected are not very distinct genotyp-

ically or that their differences are not relevant for structuring the microbiome under

the conditions sampled. If the microbiomes of other cultivars of Rhododendron are

similarly indistinct, attempts at breeding for beneficial microbial communities will

likely be ineffective. A study of the perennial herb Boechera stricta revealed an asso-

ciation between genotype and leaf microbiome but no association between genotype

and root microbiome, although a genotype by environment interaction was signifi-

cant (Wagner et al., 2016). In our results, interactions between environmental factors

(production system and nursery) and cultivar were also more significant than cultivar

alone according to PERMANOVA, but the effect size was small relative to the envi-

ronmental factors alone (Table 4.1). In addition, the relative effects of environment

and genotype can be different for bacteria and fungi (Bonito et al., 2014), so it is

possible that bacterial communities, which we did not characterize, have a stronger

association with genotype.

Saprobes and symbionts are the most ubiquitous organisms observed in the

Rhododendron rhizosphere. Some of the most commonly observed organisms, Humi-

cola grisea and Cladophialophora chaetospira, have been isolated from Rhododendron

in other studies and Trichoderma opacum has been isolated from other ericaceous
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plants (Bruzone, Fehrer, Fontenla, & Vohnı’k, 2017; Kowalik, Kierpiec-Baran, &

Duda-Franiak, 2015; Vano, Sakamoto, Inubushi, & others, 2011). Cladophialophora

chaetospira has been observed to form intracellular structures in root cells of

Rhododendron, similar to ericoid mycorrhizae (Vano et al., 2011). Scytalidium

lignicola is an anamorphic ascomycete generally found in wood or compost and is

related to pathogens of Citrus and Manihot (Büttner, Gebauer, Hofrichter, Liers,

& Kellner, 2018). The common ericoid mycorrhizal fungus Pezoloma ericae (aka

Hymenoscyphus ericae) was found often (Vrålstad, Schumacher, & Taylor, 2002).

Ericoid mycorrhizal fungi, such as Pezoloma ericae, have been previously reported

on Rhododendron and as root endosymbionts shown to aid in the breakdown of

organic debris, releasing mineral forms of nutrients that are available to the plant

host (Smith & Read, 2010). The dark septate endophyte Phialocephala fortinii

was also common and is known to aid in the breakdown of organic compounds,

potentially leading to increased growth (Narisawa & others, 2017). The commonly

found genus Trichoderma is known to contain many plant rhizosphere symbionts

with biocontrol applications (Harman, 2006). The frequent occurrence of individual

beneficial symbionts and saprobes combined with the negative results of differential

taxon abundance analysis among nurseries and cultivar suggest that there might be

a subset of the fungal community that is typical of Rhododendron.

Plant pathogens were much less common than saprobes and mutualists. The most

common pathogen found was Pestalotiopsis unicolor (99.6% identity), which appeared

in 23% of samples. The genus Pestalotiopsis contains a diverse group of anamor-

phic plant pathogens that causes a variety of diseases such as leaf spots, blights,
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and cankers in many agricultural hosts, including blueberry (Maharachchikumbura,

Hyde, Groenewald, Xu, & Crous, 2014). An OTU similar to Pestalotiopsis rhododen-

dri (99.1% identity) was also observed in 9% of samples. Pestalotiopsis rhododendri

was originally described on Rhododendron sinogrande in 2013 in China (Zhang, Ma-

harachchikumbura, Tian, Hyde, & others, 2013). The only oomycete pathogen that

was commonly predicted and had a high sequence similarity to its reference was

an OTU matching Pythium irregulare, which occurred in 11% of samples. The next

most common Pythium observed was Pythium sylvaticum, occurring in 3% of samples.

Oddly, an OTU matching Phytophthora infestans was also found in 3% of samples.

However, it should be noted that we only sequenced ITS1 and even with the entire ITS

sequence, it is not always possible to differentiate oomycetes species, so even a 100%

sequence match to a reference sequence does not necessarily imply that an OTU is

from that species. In particular, Pythium irregulare has the same sequence as Pythium

cryptoirregulare and Phytophthora infestans has the same sequence as Phytophthora

andina, Phytophthora mirabilis, and Phytophthora ipomoeae in this region of the ITS

(Redekar et al., 2019). The OTU matching Phytophthora infestans could also be from

an undescribed species, considering that the known species sharing a sequence with

Phytophthora infestans are not known to occur on Rhododendron. The rare OTU

classified as Phytophthora citricola could also be Phytophthora plurivora, which was

found to be common in diseased rhododendrons in Oregon (Carleson, Fieland, Scagel,

Weiland, & Grünwald, 2018). Notably, we did not detect some pathogens commonly

found when sampling symptomatic tissue, such as Phytophthora syringae and Phy-

tophthora citrophthora (Parke et al., 2014). We found a rare OTU in two samples
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that most closely matched Phytophthora cinnamomi with 98.9% sequence identity,

but for the previously mentioned reasons, this level of similarity does not indicate

that Phytophthora cinnamomi was actually present. We also found fewer Phytoph-

thora species compared with some other oomycete metabarcoding studies, which find

around 20 species total, albeit in diseased plants for a greater diversity of sites (Prigi-

gallo et al., 2016; Riddell et al., 2019). The relative infrequency of pathogens and the

different pathogens found compared with some previous research is probably due to

sampling apparently healthy plants, whereas many studies target symptomatic plants

(Weiland et al., 2018).

This study used high-throughput amplicon sequencing to characterize how the

oomycete and fungal rhizobiome of rhododendrons in Oregon nurseries is structured

by plant cultivar and environmental factors. The overall diversity of samples varied

little between production system, nursery, and cultivar, although plants in nurseries

that had both container and in-field production systems were significantly more di-

verse than those in nurseries that only grew plants in containers. The differences

between the compositions of microbiome communities were correlated with produc-

tion system and nursery, but not cultivar. Communities were dominated by saprobes

and symbionts. This study provides novel insights into potential factors influenc-

ing the rhizosphere microbiome of rhododendrons in nurseries, and more generally,

how plant genotype and environment impact the makeup of the rhizobiome of woody

plants.
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Chapter 5: Rps10: a new barcode for high throughput amplicon

sequencing of oomycete communities

5.1 Abstract

Oomycetes are a group of eukaryotes related to brown algae and diatoms, many

of which cause disease in plants and animals. Improved methods are needed for

rapid and accurate characterization of oomycete communities. With the unique order

of tRNA coding regions flanking the mitochondrial rps10 gene it was possible to

design oomycete-specific primers that may be useful for oomycete metabarcoding. We

evaluated the utility of this locus with a mock community and environmental samples

using MiSeq Illumina sequencing. The amplification primers described herein are

predicted to amplify all oomycetes tested, but analysis of sequence data from a mock

community revealed that some biases are present. Simulated PCR and sequencing of

environmental samples indicates the proposed rps10 -based technique results in less

amplification of non-target organisms than the ITS1-based method. We also provide

a new website with a rps10 reference database and all protocols needed for oomycete

metabarcoding. Our results indicate that the rps10 locus has greater taxonomic

resolution for the oomycetes tested than the ITS1 locus and the primers proposed

result in less non-target amplification.
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5.2 Introduction

Oomycetes are microscopic eukaryotes related to brown algae and diatoms that of-

ten cause disease in plants and animals (Baldauf, Roger, Wenk-Siefert, & Doolittle,

2000; Yoon, Hackett, Pinto, & Bhattacharya, 2002). They include highly destructive

pathogens with major impacts on agriculture (Fry, 2008), aquaculture (Phillips et

al., 2008), and natural ecosystems (Cahill, Rookes, Wilson, Gibson, & McDougall,

2008; Grünwald et al., 2019). Oomycetes are primarily known for causing agricul-

tural diseases, such as potato late blight caused by Phytophthora infestans, implicated

in the Irish Potato Famine (Fry, 2008). Other well-known oomycete genera include

Aphanomyces euteiches, responsible for damping off and root rot of legumes (Gaulin

et al., 2007), and Pythium species that cause damping off and root rot on a large

variety of agricultural and horticultural crops (Martin & Loper, 1999). In addition

to agriculture, invasive oomycete pathogens have detrimental effects on forests, man-

aged landscapes, and aquatic ecosystems. Forests in North America and Europe

have suffered significant tree mortality due to sudden oak and larch death respec-

tively, caused by Phytophthora ramorum (Brasier & Webber, 2010; Gruenwald et al.,

2008). Eucalyptus forests in Australia are experiencing massive dieback caused by

the invasive Phytophthora cinnamomi (Burgess et al., 2017) and seedlings in natural

ecosystems regularly suffer damping off, which is frequently associated with Pythium

species (Augspurger & Wilkinson, 2007). Some oomycetes are also major pathogens

of fish, such as Saprolegnia parasitica, and are of great concern in aquaculture (Van

West, 2006).
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Improving methods to quickly, accurately, and economically characterize oomycete

communities would be useful for controlling and understanding this important, but

relatively understudied, group of organisms. While many specific oomycete pathogens

are well known for the extensive damage they cause to natural ecosystems (Wills,

1993) and agriculture, oomycete diversity as a whole is much less well character-

ized than other microbes, such as fungi and bacteria. This is due, in part, to the

challenge of collecting samples during periods when oomycetes are active, isolating

them from diverse host and substrate materials (e.g., water, soil, plant and animal

tissues), culturing on an assortment of media, and identifying species using morpho-

logical characteristics. Methods relying on DNA sequencing are increasingly being

used to complement or replace these traditional techniques. Standardized regions of

DNA known as “barcodes” are sequenced and compared to ever-growing collections

of reference sequences from known isolates (Choi et al., 2015). These regions should

ideally vary enough between closely related taxa to provide species-level identifica-

tions. When used on individual isolates, this process is known as “barcoding” and

when used on collections of unknown organisms in an environmental sample, such as

soil or plant tissue, it is known as “metabarcoding” (Taberlet et al., 2012).

Culture-independent DNA-based methods like metabarcoding have the potential

to overcome many of challenges associated with characterizing oomycete communi-

ties (Tedersoo et al., 2019) as has been demonstrated with fungi (Nilsson et al., 2018;

Schoch et al., 2012) and bacteria (Bukin et al., 2019; Tringe & Hugenholtz, 2008).

Reliable metabarcoding methods for fungi, bacteria, and archaea have enabled the

discovery of major undescribed groups of microorganisms (Fuhrman, McCallum, &
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Davis, 1992; Orchard et al., 2017) and revealed a previously unexpected diversity of

microbes associated with almost every habitat and multicellular organism on earth. In

order for metabarcoding of oomycetes to be effective, a region of DNA not only must

identify species-level differences, but also needs to be small enough for high through-

put sequencing and be flanked by regions conserved in oomycetes but diverged in

other organisms, so primers can be designed to amplify all oomycetes, and, ideally,

nothing else (Cristescu, 2014). In addition, a curated database of high quality refer-

ence sequences of the barcode region must be publicly available so that environmental

sequences produced by metabarcoding can be assigned a taxonomic classification.

There have been several attempts to create DNA barcodes for the identification

of oomycetes (Choi et al., 2015; Robideau et al., 2011; Yuan, Feng, Zhang, & Zhang,

2017), but the most popular, the first internal transcribed spacer of the ribosomal

DNA (ITS1), has insufficient taxonomic resolution to identify many oomycetes to

the species level (Redekar et al., 2019) and currently available primers amplify other

organisms (Coince et al., 2013) as well or only amplify some oomycetes (Legeay et al.,

2019). Among the first primers used for barcoding individual oomycete isolates were

ITS6 and ITS4 (Cooke, Drenth, Duncan, Wagels, & Brasier, 2000). These primers

were designed to amplify the entire ITS region from pure cultures and were effective

for phylogenetic research. Since ITS6 and ITS4 produces an amplicon too long for

the most commonly used high throughput sequencing methods, they were used in

a semi nested PCR with ITS6 and ITS7 to amplify only the ITS1 locus in early

metabarcoding attempts. However, this technique resulted in as little as 5.3% of

the OTUs (57% of the reads) recovered being assigned to oomycetes (Coince et al.,
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2013). Sapkota & Nicolaisen (2015) proposed increasing the annealing temperature

to increase specificity to oomycetes and reported 60% of OTUs (95% of the reads)

being assigned to oomycetes using the higher annealing temperature. However, there

is concern that these more restrictive PCR conditions could exclude some taxa and

the requirement that labs fine-tune their PCR conditions is not ideal (Riit et al.,

2016). Also, nested PCR protocols are problematic for use with metabarcoding since

they increase the chance for contamination, increase the chance of sequence errors and

chimera formation due to additional PCR cycles, and add to the cost of lab reagents.

Riit et al. (2016) developed primers targeting the ITS1 and ITS2 regions without the

need for a semi-nested approach and could assign 22% and 29% of OTUs (25% and

30% of reads) to oomycetes respectively. Additional mismatches to plants and fungi

likely make these primers more specific to oomycetes with less strict PCR conditions,

but there is still substantial room for improvement.

The rps10 gene exhibits interspecific variability in the genus Phytophthora and has

been useful for delineating species and estimating phylogenetic relationships in the

genus (Martin, Blair, & Coffey, 2014). More recent analysis with the gene and flank-

ing sequences extracted from assembled oomycete mitochondrial genomes revealed a

similar level of interspecific sequence diversity at the taxonomic level of class, making

it useful for understanding the evolutionary relationships among oomycetes at large

(F. Martin, unpublished). In the process of working with the assembled mitochon-

drial genomes, a conserved order of tRNAs flanking the rps10 gene that was unique to

oomycetes was observed (tRNA-Phe, rps10, tRNA-Arg, tRNA-Gln, tRNA-Ile). De-

signing amplification primers from conserved regions of tRNA-Arg and tRNA-Ile am-
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plified sequencing template from a range of oomycetes evaluated. While this locus was

useful for phylogenetic analysis and as a barcode for species identification, at approx-

imately 600bp (varies depending on the taxon) it was not suitable as a metabarcode

locus for Illumina sequencers. Recently, Yuan et al. (2017) also noted the sequence

divergence of the mitochondrial rps10 locus (among others) for 14 oomycete taxa and

suggested the locus as a candidate barcode for oomycete barcoding.

In this study, we propose primers for rps10 suitable for oomycete metabarcoding

on the Illumina MiSeq and compare their effectiveness to a semi-nested method to am-

plify ITS1 similar to the one proposed by Sapkota & Nicolaisen (2015). By compiling

a curated reference database of rps10 sequences, simulating PCR, and metabarcod-

ing environmental samples and a mock community, we compared the specificity and

taxonomic resolution of each method. We also developed a companion website to host

the rps10 reference database and all protocols needed for researchers to immediately

apply this method to oomycete metabarcoding.

5.3 Materials and methods

5.3.1 Primer design

Sequence alignments of amplicons generated using rps10 amplification primers an-

nealing in flanking tRNA-Arg and tRNA-Ile (Martin et al., 2014) or extracted from

assembled mitochondrial genomes (F. Martin, unpublished) representing 16 oomycete

genera and 92 taxa were searched for highly conserved regions flanking the rps10 gene
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that would generate an amplification template suitable for MiSeq analysis. In partic-

ular, we searched for pairs of potential primer binding sites that would (1) result in an

amplicon length of less than 500bp and would therefore be appropriate for short-read

sequencing using platforms like the Illumina MiSeq, (2) be conserved in all known

oomycete sequences, and (3) not match the sequences of other organisms, particu-

larly fungi and plants (Cristescu, 2014). Sequences were aligned with Clustal Omega

(Sievers et al., 2011) and inspected in Geneious v8.1.9 (Biomatters, Auckland, New

Zealand). Forward and reverse primers were designed for the highly conserved flank-

ing regions in the trnF and trnR genes (Figure 5.1). Potential primers were evaluated

with OligoAnalyzer (Owczarzy et al., 2008) to assess their melting temperatures, CG

content, and problematic secondary structures, such as dimers and hairpins.

Figure 5.1: Details on the location of the 40S ribosomal protein S10
(rps10 ) locus in the circular, mitochondrial genome of oomycetes. The
rps10 locus, using the example of Phytophthora sojae, is flanked by
several tRNAs. Two sets of primers are shown in blue for the primers
for amplification of the sequence found in the reference database, and
red for the primers for the rps10 metabarcode locus suitable for high
throughput sequencing of the 400-550bp amplicon. More details on the
primers are provided in Table 5.1.
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5.3.2 Simulated PCR

To test the newly developed primers for taxonomic specificity, coverage, and species

resolution, we used mitochondrial genomes of 121 oomycete species, 38 non-oomycete

stramenopiles, 19 fungi from different families, and four Rickettsia species. Rick-

ettsia spp. were included because segments of their genomes resemble mitochondrial

genomes (Andersson et al., 1998). We conducted simulated PCR using all oomycete

and non-oomycete sequences to predict the sensitivity and specificity of the primers

using Geneious v8.1.9 (Biomatters, Auckland, New Zealand) with the following pa-

rameters: no mismatches allowed, SantaLucia (1998) formula and salt correction,

50nM concentration of oligos, and 0.6mM dNTPs. The results were analyzed and

visualized in a taxonomic context using the R packages taxa (Foster et al., 2018) and

metacoder (Foster et al., 2017).

5.3.3 Isolate and environmental DNA collection

In order to test for amplification and species resolution, we collected 12 oomycete DNA

samples from different laboratories in the USA (see acknowledgments). In addition,

we cultured 12 oomycete isolates on media amended with PARP or appropriate host

tissue (Jeffers, Martin, & others, 1986) and extracted DNA using various protocols

depending on isolate origin. We then created a synthetic community by pooling DNA

from each of the 24 oomycetes for a per species final concentration of 2ng/µL, with

the exception of Saprolegnia diclina and Phytophthora pluvialis. The concentration

of DNA measured represented all the DNA in the sample, so DNA extracts from
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infected plant tissue (for obligate pathogens) also include an unknown proportion of

plant DNA.

To test for non-target amplification, we obtained DNA extracted from Panama

soils (Schappe et al., 2017) in addition to DNA extracted from soils, canopy drip

water, and needles collected from the Wind River research forest plot in southern

Washington, USA. DNA from soil was extracted following a previously reported pro-

tocol (Schappe et al., 2017). DNA from needles and canopy water, collected from

under the canopy drip line of old growth Pseudotsuga menziesii trees, was extracted

using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA), following the man-

ufacturer’s instructions. Water samples were collected by filtering up to 1L of water

dripping through tree canopies on 0.45µm filters and extracting DNA from the filters.

5.3.4 DNA amplification and high-throughput sequencing

DNA from the synthetic community and from environmental samples was amplified

with both the newly developed rps10 method and the ITS1 method to generate

amplicons for high-throughput sequencing. Negative PCR controls were included in

both assays. The rps10 assay is a multiplex PCR reaction comprising two forward

rps10 primers (rps10_F_Conserved and rps10_F2_Conserved) and seven reverse

rps10 primers (rps10_R1 through rps10_R7). All amplifications of the rps10 locus

were carried out using the QIAGEN Type-it Mutation Detect PCR Kit (QIAGEN,

206343, Valencia, CA). Multiplex PCR reactions were performed in 35.0µL with 14ng

template DNA and 1X final buffer concentration. Final primer concentrations were
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0.2µM except for rps10_F_Conserved which has a single degenerate base (Y = C, T)

representing two primers and was therefore added at a final concentration of 0.4µM.

Amplifications were run in a Veriti thermal cycler (Life Technologies, Grand Island,

NY) with an initial denaturation at 95°C for 5 minutes, followed by 35 cycles of 95°C

for 30 seconds, 58°C for 3 minutes, and 72°C for 30 seconds, and a final extension at

60°C for 30 minutes.

ITS1 was amplified following a semi-nested protocol similar to a previously pub-

lished one using the ITS6/ITS4 primer set and the ITS6/ITS7 primer set (Sapkota &

Nicolaisen, 2015). The initial PCR reaction was performed in 1X PCR buffer (with

1.5mM MgCl2), 1.5mM MgCl2, 0.2mM dNTP mix, 0.2µM of each primer (ITS6 and

ITS4), and 2 U/rxn of Platinum Taq (#10966018, ThermoFisher Scientific). The non-

proofreading Platinum Taq was used since previous efforts to use various proofreading

Taqs resulted in unacceptably-strong amplification of plant DNA using these primers

(unpublished data), possibly due to the 3’ to 5’ exonuclease activity of proofreading

taqs removing bases at the 3’ end of the ITS7 primer that are divergent in plants

(Sapkota & Nicolaisen, 2015). DNA (2.6ng/µl, except for P. pluvialis at 1.27ng/µl

and S. diclina at 0.7ng/µl) was added to each reaction for a total volume of 15µL.

The second PCR reaction was identical to the first with the following exceptions:

Template was 1.0µL of the initial PCR reaction, primers were ITS6 and ITS7, and

the total reaction volume was 25µL. Both ITS1 PCR amplifications were conducted

in a Bio-Rad T100 thermocycler (Bio-Rad, Hercules, CA, USA) under the following

thermal cycling conditions: 2 minutes at 94◦C, 25 cycles of 30 seconds at 94◦C, 30

seconds at 60◦C, 1 minutes at 72◦C, and a final extension of 2 minutes at 72◦C. The
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protocol differs from that of Sapkota & Nicolaisen (2015) in that the first PCR had

25 cycles instead of 15 and that the annealing temperatures of the PCR were raised

from 55◦C and 59◦C to 60◦C for both. These changes were based on an optimization

of the PCR for a previous experiment (Foster et al., 2020) that was necessary to avoid

non-target amplification.

Rps10 amplicons as well as amplicons from the second ITS1 PCR reaction were

cleaned, ligated to Illumina Nextera XT indices and adapters, and then purified

and pooled following Illumina’s protocols (Illumina, 2013). Sequencing was done on

the Illumina MiSeq platform with 300bp paired-end reads at the Center of Genome

Research and Biocomputing at Oregon State University.

5.3.5 The rps10 database and associated website

A curated reference database was developed for assigning taxonomic classifications

to sequences generated from the metabarcoding primers. The database is composed

of manually curated sequences from online databases, sequences contributed from

other labs, sequences extracted from whole mitochondrial genomes, and sequences

produced from known isolates for this study. Species classification was confirmed by

cox1 or ITS sequence analysis and compared to vouchered specimens in GenBank.

To generate sequences for the reference database, we modified previously reported

amplification primers (Martin et al., 2014) by the addition of degenerate bases. This

protocol results in an amplicon that includes one of the metabarcoding primer binding

sites, so that the effectiveness of that primer can continue to be evaluated as more
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sequences are added. We could not find a suitable site that would allow the other

primer to be included. Amplification of the rps10 database amplicon was conducted

in 25.0µL with 0.025 U/µL, GenScript Taq (GenScript, Cat. No. E00007), 1X Taq

Buffer, 0.2µM dNTPs, 1.5mM MgCl2, 2.0ng DNA, 0.5µM of each primer (Prv9r-M

and Prv9f-M). Thermal cycling was performed using a Veriti thermal cycler (Life

Technologies, Grand Island, NY) with an initial denaturation at 94°C for 3 minutes,

followed by 35 cycles of 94°C for 30 seconds, 55°C for 45 seconds, and 72°C for 45

seconds, and a final extension at 72°C for 7 minutes. This is the suggested protocol

for future researchers to use to contribute sequences to the reference database.

To host the rps10 database and laboratory protocols, the website www.oomycetedb.org

was created. The website is a combination of static HTML produced from Rmark-

down documents (Xie, Allaire, & Grolemund, 2018) and interactive R Shiny

applications (Chang, Cheng, Allaire, Xie, & Mcpherson, n.d.). Lab protocols can be

viewed on the website or downloaded as printer-friendly PDFs. Users can download

all or a specific subset of the database based on a search term. Users can also BLAST

their own sequences against the database, view the results online, and download

the results in any format BLAST can output. Updates to the database are released

on this website with a unique version number and old versions will continue to be

available. All tools on the website can be used with any version of the database

so that researchers can reproduce analyses. All source code and documents for the

website are available on Github at https://github.com/grunwaldlab/OomyceteDB.

https://github.com/grunwaldlab/OomyceteDB
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5.3.6 Abundance matrix preparation

An ASV abundance matrix with associated taxonomic annotations was created from

MiSeq reads using cutadapt (Martin, 2011) and the R package dada2 (Callahan

et al., 2016). Primer sequences were trimmed from reads using cutadapt. Reads

were then filtered out using the filterAndTrim command of dada2 if they were

expected to contain 2 or more errors, based on their quality scores. Reads were

also truncated at the first instance of a quality score less than 4 and any reads

that were then shorter than 50bp were removed. Error rates were estimated and

used to infer ASVs using the learnErrors and dada commands. This is intended

to distinguish sequencing and PCR errors from true biological sequences, but does

not cluster sequences into species-level differences like OTU-based approaches do

(Callahan et al., 2016). ASV read pairs were merged using the mergePairs function

and predicted chimeras were removed using removeBimeraDenovo. Any sequences

less than 50bp long were also removed. A taxonomic classification was assigned to

each ASV using the RDP Naive Bayesian Classifier algorithm implemented in the

assignTaxonomy command (Wang et al., 2007). The algorithm assigns a bootstrap

value to each taxonomic rank for each classification, providing a kind of confidence

measure for which taxon in the reference database is most similar. Each ASV was

also optimally aligned to the best-matching reference sequence to calculate a percent

identity using the pairwiseAlignment function from the biostrings R package

(Pages, Aboyoun, Gentleman, & DebRoy, 2009).

ASVs were clustered into OTUs using VSEARCH (Rognes et al., 2016) to create
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an OTU abundance matrix, in addition to the ASV abundance matrix. To inform the

choice of clustering thresholds for each locus, ASVs present in the mock community

were clustered at thresholds ranging from 90% to 100% in 0.1% increments and the

number of resulting OTUs recorded. Thresholds were chosen that best reproduced

the number of species used in the mock community and conformed with previous

experience using ITS1 as an oomycete barcode. Rps10 samples were clustered at

the 97% threshold and ITS1 samples were clustered at the 99% clustering thresholds.

Taxonomy was assigned to OTUs using the same methods as taxonomy was assigned

to ASVs.

5.3.7 Mock community

The inferred composition of the mock community based on sequencing results was

compared with the composition of species put into the mock community to evalu-

ate the performance of the rsp10 and ITS1-based methods. For this analysis, only

ASVs/OTUs representing at least 30 reads were used. ASVs/OTUs that were found

in the mock community samples were classified as “expected”, “near expected”, or

“non-target”. ASVs/OTUs were considered “expected” if their taxonomic assignment

matches a member of the mock community. ASVs/OTUs assigned to other taxa but

had at least 99% sequence identity to a mock community sequence were classified

as “near expected”. Otherwise they were classified as “non-target”. The numbers

of reads and species found in each of these categories were then calculated for each

locus. A single representative ASV for each unique taxonomic annotation was used
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to construct bootstrapped neighbor-joining trees for each locus using the ape package

(Paradis et al., 2004). Reference database sequences for ASVs that did not exactly

match their closest reference sequence were included in the tree as well. Reference

database sequences for species that were put into the mock community, but not de-

tected were also included in the tree. This makes it apparent which taxa were not

amplified and which amplified but had incorrect taxonomic classifications.

5.3.8 Non-target amplification

ASVs/OTUs associated with environmental samples were used to assess non-target

amplification. Since our reference databases do not contain many non-target se-

quences, ASVs/OTUs in this analysis were assigned an alternative taxonomic classi-

fication using BLAST against the NCBI nucleotide database (Altschul et al., 1990).

Although NCBI taxonomic annotations can be unreliable (Nilsson et al., 2006), we

only considered kingdom-level portions of the taxonomy, which we considered more

likely to be correct. The best BLAST hit was chosen for each ASV/OTU based on

the E-value and percent identity of the matching region. BLAST hits with an E-value

less than 0.001 were not considered. Using the taxonomy associated with the best

BLAST hit, ASVs were grouped into “Oomycetes”, “Fungi”, and “Other” categories.

They were considered “Unknown” when no acceptable BLAST hit was found. The

proportions of reads, ASVs, and OTUs in each category for each locus were then

compared to evaluate which locus had more non-target amplification.
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5.3.9 Taxonomic resolution

The ability of each locus to distinguish different taxa was evaluated by comparing the

distribution of bootstrap scores of ASV taxonomic assignments and pairwise align-

ments of the reference database sequences. The bootstrap values are those assigned

by the RDP Naive Bayesian Classifier algorithm implemented by the assignTaxonomy

command of dada2 and measure how consistent the taxonomic assignment is for a

given reference database when parts of the sequences are subsampled. The name of

the specific reference database sequence was included as part of the taxonomy of each

reference sequence, as a “rank” below species, so bootstrap values were also generated

for which reference sequence matched, which is useful for when there are multiple ref-

erence sequences for the same species. The distribution of bootstrap values for mock

community samples for the genus, species, and reference database sequence ranks

were compared for ITS1 and rps10. The portion of the reference database sequences

that was predicted to be amplified by each primer was aligned using MAFFT (Katoh,

Kuma, Toh, & Miyata, 2005) and all pairwise differences in sequence identity were

calculated using the ape package. Reference sequences with the complete amplicon

were used, as determined by the presence of primer binding sites, using a modified

version of matchProbePair function from the Biostrings package that allows for

ambiguity codes. Reference sequences were also included if they aligned to at least

90% of one of the predicted amplicon, in which case the portion aligned to the ampli-

con was used. For each locus, the distributions of the percent identity of each species

to the closest sequence from a different species was compared to assess taxonomic
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resolution and lists of indistinguishable species were generated.

5.4 Results

5.4.1 Development and validation of primers for the rps10 region

New primers were developed for specific amplification of oomycetes using the rps10

region (Table 5.1; Figure 5.1). Simulated PCR with the oomycete-specific forward

“rps10-F” and reverse “rps10-R” primer sets amplified the rps10 mitochondrial gene

with no mismatches on any of 121 oomycetes sequences analyzed (Figure 5.2). The

forward primer rps10-F has 40% GC content, a mean melting temperature of 59.8◦C,

and a predicted maximum homodimer delta G of -63.9 kcal/mole, while the reverse

primer rps10-R has 31% CG content, a mean melting temperature of 58.2◦C, and

a predicted maximum homodimer delta G of -9.83 kcal/mole. The difference be-

tween the primer melting temperature is predicted to be 1.6◦C. The predicted max-

imum heterodimer delta G between rps10-F and rps10-R is -5.41 kcal/mole. The

rps10 locus-specific primers were predicted to amplify a sequence of median length of

481bp (including primers), with Albugo laibachii producing the shortest with 448bp,

and Peronospora tabacina producing the longest with 513bp. Compared with pre-

dicted ITS1 amplicons, rps10 amplicons have less variation in length. For other

Stramenopiles, fungi, and Rickettsia, the rps10 primers were predicted not to bind

anywhere in the whole mitochondrial genome under the amplification conditions se-

lected (Figure 5.2).
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Table 5.1: Primer sequences used in this study.

Primer Sequence (5’-3’)

rps10_F_Conserved TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GTTGGTTAGAGYAAAAGACT

rps10_F2_Conserved TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GTTGGTTAGAGTAGAAGACT

rps10_R1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ATGCTTAGAAAGATTTGAACT

rps10_R2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ATACTTAGAAAGATTTGAACT

rps10_R3 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ATGCTTAGAAAGACTTGAACT

rps10_R4 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ATGCTTAGAAAGACTCGAACT

rps10_R5 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ATGCCTAGAAAGACTCGAACT

rps10_R6 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ATGTTTAGAAAGATTCGAACT

rps10_R7 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ATGCTTAGAAAGATTCGAACT

rps10_DB_F GTTGGTTAGAGYARAAGACT

rps10_DB_R RTAYACTCTAACCAACTGAGT

ITS6 GAAGGTGAAGTCGTAACAAGG

ITS4 TCCTCCGCTTATTGATATGC

ITS7 AGCGTTCTTCATCGATGTGC
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Figure 5.2: Heat tree showing specific amplification of oomycetes for
the rps10 barcode using primers rps10-F and rps10-R predicted by
simulated PCR. In green are all the taxa predicted to be successfully
amplified with the new rps10 locus-specific primers. The analysis in-
cludes unrelated organisms to demonstrate specificity.
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5.4.2 Metabarcoding of the mock community

Sequencing of a mock community composed of 24 oomycete species suggests that

the rps10 provides a more accurate reconstruction of community composition (Fig-

ure 5.3). Both methods resulted in more ASVs than were assembled in the mock

community, but the rps10 results were closer to the true count with no non-target

ASVs (Figure 5.3A). The ASVs detected by rps10 were all assigned to species present

in the mock community or to closely related taxa with nearly identical sequences,

whereas many ASVs generated from ITS1 were assigned to taxa not present in the

mock community. Many of these unexpected ASVs generated by ITS1 were within

99% sequence identity to a species in the mock community (i.e., “near expected”), but

some were more different (i.e., “non-target”). The “near expected” and “non-target”

ASVs accounted for a large proportion of the reads generated by the ITS1-based

method (Figure 5.3B). Although more ASVs were found than there were species in

the mock community, the taxa these ASVs were assigned to did not account for all

the species included in the mock community, since multiple ASVs were assigned to

some taxa and some taxa were undetected (Figure 5.3C). Although both methods

failed to detect some taxa, rps10 detected more of the expected species than ITS1.
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Figure 5.3: The abundance of ASVs, reads, and successfully detected
species in the sequenced mock community, using the ITS1 and rps10
loci. Sequences were considered "expected" when they were assigned to
a taxon included in the mock community, "near-expected" when they
were assigned to another taxon but had at least a 99% identity match
to a species in the mock community, and "non-target" otherwise. The
dotted line indicates the number of mock community species expected.

A neighbor-joining tree of ASVs in the mock community representing each unique

taxonomic assignment, along with selected reference sequences, suggested that rps10

is somewhat better at reconstructing the mock community than ITS1, and that both

methods might miss or misclassify some taxa (Figure 5.4). For example, with the

ITS1 analysis there were three taxa misidentified as a closely related species and four
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species listed that were not present. This compares with only two species misidentified

as a closely related taxa in the rps10 analysis. After taking into account obvious

taxonomic misclassifications, we could not detect sequences similar to Aphanomyces

euteiches or Plasmopara halstedii using rps10. Rerunning the analysis with minimal

read quality filtering (data not shown) revealed that reads for Plasmopara halstedii

were present but were filtered out by our rather stringent quality filtering used for this

analysis. Using ITS1, we could not detect sequences similar to Pythium oligandrum.

The ITS1-based method also resulted in a few unexpected ASVs with low-confidence

taxonomic classifications, whereas the rps10 -based method did not.
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Figure 5.4: Bootstrapped neighbor-joining tree of the sequenced mock
community and some selected reference sequences for the ITS1 (A) and
rps10 (B) loci. Only one ASV per unique species is shown. Species
names in black and red are ASV sequences and those in grey and pink
are selected reference database sequences. Grey species are the closest
reference sequences for each ASV that was assigned to a member of
the mock community but did not have an exact sequence match. Pink
species are reference sequences for members of the mock community
not found. Red species are ASVs assigned to species not included in
the mock community. Numbers in parentheses at the end of the species
names are the bootstrap values for the taxonomic assignment.

5.4.3 Non-target amplification of environmental samples

Sequencing of environmental samples from water, soil, and plant material suggested

that the rps10 barcode resulted in less non-target amplification, in terms ASV, OTU,

and read counts (Figure 5.5). Most of the ASVs generated from rps10 were assigned

to oomycetes and these ASVs accounted for nearly all of the reads (Figure 5.5). Many
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of the rps10 ASVs could not be assigned to a taxon based on BLAST searches against

the NCBI nucleotide database, particularly for the plant-derived samples, although

they accounted for a low proportion of the total reads. Since the rps10 locus is not

fully represented in taxonomic databases, these could represent unknown oomycetes.

When these unknown ASVs were clustered into OTUs, they accounted for a larger

fraction of the total OTUs, indicating that many of these unknown ASVs are at least

somewhat diverse. In contrast, relatively few of the ITS1 ASVs were assigned to

oomycetes and these accounted for a little over half of the reads and a small fraction

of the OTUs and ASVs. Most of the non-target ITS1 ASVs, OTUs, and reads were

assigned to fungi.
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Figure 5.5: Target vs non-target amplification using oomycete-specific
primers for the ITS1 and rps10 loci displayed as counts of ASVs, OTUs,
and reads from a variety of environmental samples, grouped into soil,
water, and plant tissue samples. ASV sequences were given a coarse
taxonomic assignment based on BLAST searches against the NCBI
nucleotide sequence database. Those assigned "Unknown" did not have
a match with an E-value of at least 0.001. Sequences in "Other" include
plant, animal, bacterial, and protist sequences.
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5.4.4 Taxonomic resolution

Bootstrap scores for taxonomic classifications and neighbor-joining trees of ASVs

in mock community samples were higher for rps10 amplicons than ITS1 amplicons

(Figure 5.6). The taxonomic classification bootstrap scores from the RDP Naive

Bayesian Classifier implemented in dada2 at the reference sequence and species level

were higher for rps10 amplicons than ITS1 amplicons. Scores at the genus rank

and the coarser taxonomic ranks were nearly always 100 (the highest score) for both

methods. The bootstrap scores for the neighbor-joining trees of the mock community

sequences were also higher in rps10 than in ITS1. The branch lengths of the tree

were also higher for rps10 than ITS1 (Figure 5.4), suggesting that rps10 sequences

from different taxa are generally more diverged from each other than sequences from

different taxa for ITS1.
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Figure 5.6: The distribution of bootstrap scores for the taxonomic as-
signment of ASVs in the mock community for the ITS1 and rps10 loci.
The RDP Naive Bayesian Classifier "Reference", "Species", and "Genus"
scores refer to the ability to consistently assign ASVs to a particular
reference sequence, species, or genus respectively when the data is re-
sampled. The neighbor-joining tree scores quantify how consistent the
branching pattern of the resulting tree is when the data is resampled.

The number of base pairs differentiating the amplified region of the most similar

species in the reference databases also indicate that the rps10 amplicon differentiates

closely related taxa more effectively than ITS1. Over 50% of the predicted ampli-

cons derived from unique species in the ITS1 references database shared an identical

amplicon with a different species whereas only about 12% for species in the rps10
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database did (Figure 5.7). In addition, over 50% of the species in the rps10 database

were distinguished from their most closely related species by 5 or more base pairs,

whereas less than 5% of the ITS1 species were. When ASVs from the mock com-

munity were clustered into OTUs at a range of clustering thresholds, it was found a

clustering threshold of 97% for rps10 ASVs and 98.5% for ITS1 ASVs resulted in the

correct number of sequences.
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Figure 5.7: The distribution of the smallest inter-species distances for
predicted amplicons for each species in the rps10 and ITS1 databases.
Only sequences with unambiguous, species-level taxonomic classifica-
tions that contain the entire amplicon are included. Zero differences
for a species mean that at least one other different species is predicted
to have an identical amplicon.
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5.5 Discussion

Effective methods for studying microbial communities without the need for culturing

and manual identification have greatly increased understanding of bacterial and fun-

gal communities in recent decades, but methods for studying oomycetes communities

are still being developed. Specific oomycete pathogens have important, and occa-

sionally catastrophic, effects on agriculture and natural ecosystems, but relatively

little is known about this group of organisms as a whole and their distribution and

function in nature. Metabarcoding has the potential to accelerate our understanding

of oomycete biodiversity and distribution. A few methods have been proposed for

metabarcoding of oomycetes, but have not yet been widely implemented, partly due

to high levels non-target amplification, limited taxonomic resolution of the loci used,

and incomplete reference databases. Here we propose a new method for oomycete

metabarcoding with an associated reference database and compare its effectiveness

to another ITS1-based method.

Our results suggest that the rps10 locus has much greater taxonomic resolution

than ITS1, but cannot uniquely distinguish all species even so. Pairwise alignments

of the predicted amplicons from reference database sequences indicate that over 50%

of species tested in the ITS1 database share their exact sequence with at least one

other different species (Figure 5.7). Assuming the species tested are representative

of oomycete diversity, this suggests that many of the species-level taxonomic assign-

ments of oomycete microbiome experiments using ITS1 could be wrong, unless a

method is used that provides confidence measures for each rank in the classification,
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like the RDP Naive Bayesian Classifier. However, such methods are usually not used

in fungal and oomycete microbiome research, since they rarely yield confident results

at the species level (Tedersoo et al., 2019). Since all sequencing methods have some

degree of error, a single base pair difference could be considered insufficient to dis-

tinguish species. If 2bp differences are required to reliably distinguish species, the

proportion of species not able to be uniquely identified by ITS1 increases to around

75%. In contrast, only 12% of rps10 species shared their exact sequence with at

least one other species and this increases to 20% of species if a 2bp difference is

required. The rps10 sequences of 70% of species are separated from the most sim-

ilar sequence from a different species by 5 or more base pairs, indicating that most

species tested can be confidently assigned taxonomy with rps10 even in the presence

of significant sequencing error. Comparisons of bootstrap scores of the taxonomic

assignments of the mock community species using the RDP Naive Bayesian Classi-

fier and bootstrapped neighbor-joining trees suggest that the rps10 method typically

results in more confident taxonomic assignments (Figure 5.6). The confidence of the

taxonomic assignment of the RDP Naive Bayesian Classifier is influenced by the refer-

ence database and since the two loci have different reference database characteristics,

these comparisons must be interpreted with caution. However, only bootstrap values

for members of mock community were included in this analysis and all these species

are in both databases, which should minimize this bias somewhat. These results are

corroborated by the lower optimal clustering threshold of 97% for rps10 versus 98.5%

for ITS1, suggesting the average difference between sequences from different species

is greater in rps10. Although rps10 cannot be used to identify all species, it is much
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better than the currently used ITS1.

The rps10 method proposed here is predicted to amplify almost all oomycetes,

but sequencing of a mock community revealed biases still exist. Simulated PCR of

121 rps10 reference database sequences with primer binding sites indicated that the

proposed primers should be able to amplify all species tested (Figure 5.2). However,

when a mock community of 22 isolates was sequenced, one or two isolates were not

detected, depending on the quality filtering settings used (Figure 5.4). We could

find no reads matching Aphanomyces euteiches and the few reads that matched Plas-

mopara halstedii were removed during quality filtering. The sample for Plasmopara

halstedii was a mixture of plant and pathogen DNA, with pathogen DNA most likely

much less than plant, and this could be responsible for the lower read depth rela-

tive to other oomycetes included in the analysis. These two species might be biased

against somewhat by having unusually long amplicons (Nichols et al., 2018) of 489bp

and 491bp respectively, but Plasmopara obducens was detected even though it had a

longer amplicon length of 492bp. When the DNA extracts of Aphanomyces euteiches

and Plasmopara halstedii used in the mock community were amplified individually,

they produced bright bands on a gel, suggesting that their absence in the metabar-

coding results was due to biases in sequencing depth in the context of an oomycete

community rather than an inability of the method to detect them individually. The

ITS1 method yielded sequences at least somewhat similar to all of the species in

the mock community although they were misclassified at a much higher rate and

numerous unexpected sequences were also present. Therefore, when judging by the

number of correct classifications alone, without manual interpretation of the results,
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the rps10 method outperformed the ITS1 method (Figure 5.3). This measure is per-

haps more relevant to metabarcoding studies, since manual curation of taxonomic

classifications is not practical for most studies. Further research will be needed to

verify these findings and determine if the proposed rps10 primers are effective at

detecting Aphanomyces species when in a mixture of other organisms.

Simulated PCR and sequencing of environmental samples suggests that the pro-

posed rps10 -based method results in far less amplification of non-target organisms

than the ITS1-based method. Simulated PCR using the rps10 reference database

indicates that all oomycete sequences tested should be amplified by the proposed

primers and that no non-target sequences, even other stramenopiles, should be am-

plified (Figure 5.2). However, the results of this analysis only apply to the taxa tested,

and as new species are sequenced and discovered, new biases will likely become ap-

parent. We could not compare the rps10 to the ITS1 method using simulated PCR

because we could not find publicly-available ITS1 sequences with primer binding sites

for many of the species tested in the rps10 analysis. This is probably because most

ITS1 reference sequences were produced with at least one of these primers or similar

ones with overlapping binding sites (Bellemain et al., 2010). However, other analyses

suggest that the ITS1 method produces more non-target amplification. When the

same environmental samples were sequenced with both methods, 88% of ITS1 ASVs

and 40% of ITS1 reads were assigned to non-target sequences, compared to 40% and

3% respectively for rps10 (Figure 5.5). Other studies using this method have reported

similar results, such as Coince et al. (2013), where only 5% of OTUs found were as-

signed to oomycetes. Although Sapkota & Nicolaisen (2015) describes increasing the
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specificity of the primers to oomycetes by raising the annealing temperature, we still

observed much non-target amplification using the ITS1 method, even though we used

an annealing temperature 1°C higher than was recommended in Sapkota & Nicolaisen

(2015).

The proposed method is appropriate for use with the Illumina MiSeq and should

reduce biases from multiple sources when used for metabarcoding, compared to the

ITS1-based method we tested. A single PCR step should reduce the chance of con-

tamination and lower the cost of reagents compared with the nested PCR of the ITS1

method. The rps10 amplicon also has much less variation in length, which should

reduce the amount of read count bias (Nichols et al., 2018). Although the sequenced

rps10 amplicon of some oomycetes is near the upper limit for MiSeq 300bp paired-end

sequencing, we were able to amplify and merge the paired-end reads of Plasmopara

obducens, the longest amplicon in the mock community and the 5th longest in the ref-

erence database. Less amplification of non-target organisms should reduce the need

to optimize PCR conditions as well as improve amplification efficiency of target or-

ganisms due to reduced competition for primers. This is an improvement compared to

the ITS1 method, which is very sensitive to the chosen annealing temperature of the

PCR. All resources needed to use apply this method to metabarcoding oomycete com-

munities using the Illumina MiSeq, including lab protocols and a reference database

for taxonomic classification of results, are provided at www.oomycetedb.org.

The global diversity of oomycetes is still largely unknown, with little knowledge of

where invading species come from or their habitat ranges, both natural and invaded.

This is underlined by results from our environmental samples, where most of the
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OTUs found had less than 90% similarity to a reference sequence, meaning OTUs

could only be classified at the genus or family level. This is partially because the

rps10 reference database is incomplete and because many, if not most, oomycetes

that occur in natural ecosystems have not yet been described. There are thousands

of oomycete specimens in herbariums around the world. A collaborative effort to

sequence rps10 barcodes from a wider range of oomycetes is in progress and will

improve the accuracy and usefulness of this barcode. To be able to confirm the

species classification it is important to also provide the cox1 or ITS sequence of the

isolates under study. We encourage the oomycete community to assist with this by

uploading sequences of their oomycete isolates to www.oomycetedb.org (Table 5.2).
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Table 5.2: Overview of the number of species currently available in the
rps10 reference database.

Genus Number of species

Achlya 1

Albugo 1

Aphanomyces 13

Bremia 3

Halophytophthora 4

Hyaloperonospora 1

Perofascia 1

Peronosclerospora 4

Peronospora 72

Phytophthora 509

Phytopythium 11

Plasmopara 4

Pseudoperonospora 3

Pythium 103

Salisapilia 4

Saprolegnia 3

Thraustotheca 1

Total 739
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To conclude, the proposed rps10 method provides a superior alternative to the

ITS1 method we tested. Oomycetes are an extremely important but relatively under-

studied group of organisms. Understanding their diversity and distribution will be

helpful in understanding future outbreaks of destructive pathogens like Phytophthora

ramorum and Phytophthora infestans as well as characterizing the role of the less

destructive majority of oomycetes present in natural ecosystems. Whatever method

is used, it is important that an effective method be developed to efficiently charac-

terize oomycete communities. Currently, metabarcoding using Illumina sequencing

is the most cost-effective technique (Tedersoo et al., 2019). We hope the method

presented here will facilitate new insights into oomycete diversity and biology, just

as robust methods for metabarcoding of fungi and bacteria have revolutionized our

understanding of these organisms in recent decades.

5.6 Data availability

A curated rps10 database is available at www.oomycetedb.org for downloading with

open access protocols. We encourage submission of new species to the database

to improve this resource for the community (see instructions online). The version-

controlled code for the analysis presented here is available at https://github.com/

grunwaldlab/rps10_barcode.

https://github.com/grunwaldlab/rps10_barcode
https://github.com/grunwaldlab/rps10_barcode
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Chapter 6: Conclusion

6.1 The impact of molecular methods in community ecology

Microbial community ecology has advanced at an unprecedented rate in recent

decades, largely due to culture-independent molecular methods such as metabarcod-

ing and shotgun metagenomics. It is now clear that the vast majority of microbial

diversity has been overlooked until recently, including entire phylum-level groups

of organisms living in poorly-characterized habitats (Brown et al., 2015; Hug et

al., 2016). Since most of this diversity does not appear to be culturable, many

of these microbes might exist in complex interconnected communities that will

remain difficult to study experimentally. The discovery that nearly all macroscopic

animals and plants are actually “super organisms” (Berg & Raaijmakers, 2018;

Boursnell, 1950; Mendes et al., 2011; Vandenkoornhuyse, Quaiser, Duhamel, Le Van,

& Dufresne, 2015) with essential communities of microbes forces us to reconsider

organisms that were thought to be well-characterized, including ourselves (Arnold et

al., 2003; Hosokawa, Kikuchi, Nikoh, Shimada, & Fukatsu, 2006; Rodriguez et al.,

2008; Rosshart et al., 2017). In order to fully understand the health and reproduction

of plants and animals, we must also understand the complex community of microbes

that inhabit them and have co-evolved with them from their beginning. Health

for plants and animals is no longer as simple as killing all “germs”. Now we must
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consider which microbes are dangerous and which are beneficial and under what

conditions. Nutrition is no longer as simple as standardized daily amounts of a

variety of chemicals. Now microbe-mediated bioavailability and nutrient-microbe

interactions must be considered. All these are complex interactions that will likely

take centuries to elucidate if not longer.

Most of the recent advances in microbial community ecology have been associated

with the study of bacteria and fungi (Walters et al., 2016). Bacterial ecology in partic-

ular has seen the greatest advances and molecular tools for studying bacteria are the

most developed. Massive collaborative projects such as the earth microbiome project

(Gilbert et al., 2014) have revealed complex communities of bacteria in environments

ranging from the surface of Antarctic snow pack (Michaud et al., 2014) to bare basalt

at the bottom of the ocean (Santelli et al., 2008). The human microbiome project

has revealed that most of the gene diversity associated with humans is actually en-

coded by symbiotic microbes (Peterson et al., 2009). Studies of the microbiome of

plants, particularly crop plants, has now become commonplace. Many researchers

hope advances in the understanding of microbiomes of agricultural plants will allow

engineering microbial communities to suppress disease and promote nutrition in order

to find sustainable replacements for artificial pesticides and fertilizers.

For this reason, elucidating the interacting effects of environment and host geno-

type on microbiome composition has been a priority (Lundberg et al., 2012; Van-

denkoornhuyse et al., 2015). In general, current research suggests that the environ-

ment is the main driver of fungal and bacterial community composition in plants,

but plant genotype also has an effect, especially as an interaction with environmental
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differences. In our study on how the fungal and oomycete microbiome of Rhododen-

dron varies with genotype and environment, we found that environment was the main

driver and genotype had very little effect. For those systems where genotype is shown

to have an effect, there is hope that plants could eventually be bred to encourage ben-

eficial microbiomes. Even in systems where genotype does not have a distinct effect,

there is potential to engineer microbes that could be applied to plants as biocontrols

or as symbionts useful for making nutrients available to plants. If environmental

conditions have a predictable effect on microbiome structure, then the environment

could also be manipulated to result in a favorable microbiome composition.

6.2 The state of oomycete metabarcoding

While bacterial and fungal metabarcoding methods are mostly well developed at this

point, methods to metabarcode oomycete communities are still quite experimental

and no standard method exists. There have been various primers proposed based

on modifications to fungal ribosomal primers, but these have either targeted only a

small fraction of oomycete diversity (Legeay et al., 2019), have targeted regions with

insufficient variation to distinguish species-level differences (Redekar et al., 2019),

have produced an amplicon too long for Illuminia sequencers, or have had other

technical difficulties. We recently developed metabarcoding primers for the rps10

gene that should allow for the identification of the vast majority of oomycetes using

an amplicon short enough to be sequenced on the Illumina MiSeq platform. We

evaluated the relative performance of our rps10 -based method with a current ITS1-
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based method by sequencing both a mock community of known organisms and diverse

environmental samples. Our results indicate that the rps10 method produces fewer

non-target sequences, fewer erroneous sequences, and has better ability to distinguish

closely related species. Along with the sequencing primers, we have also compiled a

manually curated database of reference sequences that can be used to assign taxonomy

to sequences produced by the rps10 method. To host this database, a website was

created where any version of the database can be downloaded or searched. We hope

this resource will be a major improvement in the methods used for characterizing

oomycete communities.

6.3 The state of oomycete ecology

Although oomycete are present in nearly every ecosystem on earth and include some

of the most devastating pathogens, they have been studied much less than bacteria

and fungi (Davis, 2016). Major groups of oomycetes are barely known, although

there is evidence that they are diverse and abundant in some ecosystems. Most well

known are the terrestrial pathogens of plants, including Phytophthora, Pythium, and

the downy mildews (Akino et al., 2014; Gessler et al., 2011). However, there are

also diverse oomycete pathogens of other organisms that are less well known, such

as those infecting algae (Sekimoto et al., 2009), fish (Van West, 2006), crustaceans

(Tharp & Bland, 1977), diatoms (Klochkova et al., 2016), rotifiers (Molloy et al.,

2014), nematodes (Glockling & Dick, 1997), and mammals (Spies et al., 2016). Even

less studied are the various saprophytic oomycetes in aquatic and moist terrestrial
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ecosystems (Blackwell et al., 2015). Some of these, such as pathogens of algae and

diatoms affect the main primary producers in many ecosystems, making their influ-

ence on the ecosystem as a whole potentially quite large. Similarly, oomycetes are the

primary saprobes in some ecosystems, such as Halophytopthora in mangrove swamps

and Pythium in some moist soils (Bennett & Thines, 2019). In the past, the relatively

few researchers studying oomycetes and the difficulty of morphological identification

has slowed research into oomycete communities and restricted the focus to a few

economically important pathogens (Hatai, 2012; Muraosa et al., 2009; Telle et al.,

2011). Now however, molecular tools have lowered the barrier to entry for microbial

ecologists and phylogeneticists to include oomycetes in their studies.

Molecular methods for oomycete community ecology are still in their infancy, but

there is progress being made. As more attention is given to phylogenetic studies of

oomycetes, much of the oomycete taxonomy will likely be revised in the near fu-

ture. There are many studies of the phylogeny of economically important groups

of plant pathogens, but less work has been done on relationships between major

oomycete groups as a whole. A robust and stable taxonomy will be invaluable for

classifying results of community ecology studies and a taxonomy that mirrors phy-

logeny will be the most useful for molecular methods. In addition, curated reference

databases of sequences from known organisms are crucial to make use of methods like

metabarcoding and metagenomics. It is likely that many new species and entirely new

groups of oomycetes will be discovered as molecular community ecology techniques

like metabarcoding are increasingly applied to natural habitats.
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6.4 The need for modular open source tools

The study of biology has benefited greatly from the use of computers and program-

ming languages, but as the complexity and scale of analyses increase, it is increasingly

important that programs are modular, open source, and include extensive documenta-

tion. The ideal form of these modular tools are functions in programming languages

or executable scripts with defined inputs and outputs. Since these modular tools

are usually designed to be used in an automated fashion in scripts, their use vastly

improves reproducibility of published research when the scripts are published with

the results. Examples include packages for R and command line functions used in

Linux/Unix systems. This kind of modularity allows tools to be chained together to

make more complex tools and analyses customized for the problem being addressed.

Such analyses and tools usually take the form of plain text files that are easily ex-

amined and can be run with a single command once the proper software is installed.

This allows for a level of reproducibility not possible with “point and click” software,

since the order of specific commands cannot typically be recorded and redone in an

automated fashion. Modular tools reduce redundant effort for programmers since

many complex tools require components that might not be the primary focus of the

software. Instead of each program implementing separate solutions to these common

problems, a single well-developed tool for that specific purpose can be used by mul-

tiple softwares. For example, the R package readr focuses on reading different types

of file formats into R and is used by hundreds of other packages that would otherwise

have to implement this functionality individually. This also makes these tools more
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intuitive for users, since this tends to make different tools behave the same way when

they do the same task. Such tools are most useful as open source code, since this

allows programmers to build complex tools from more simple tools, which can then

be used by even more complex tools, without the need to negotiate with the owners

of the software.

All computational tools used for research should ideally be open source and ver-

sion controlled to ensure maximum reproducibility and potential for reuse. If the

researcher has a question about the details of how a specific function works or sus-

pects a bug in the code, only open source software can be examined manually to

address the issue. For proprietary software, the specific implementation of a func-

tion might be considered important intellectual property and will not likely be made

available by the owners of the software. In addition, the implementation of features

might change between versions without the knowledge of the researcher, leading to

unexplained differences in results. It is common practice in open source software to

be version controlled, so researchers can rerun analyses with the original version used

if needed. The owners of proprietary software might stop maintaining widely used

software, which could lead to bugs that can make the software unusable over time.

In contrast, open source software can always be adopted by new maintainers if it

is abandoned by the original creators. Finally open source software is typically free

to use, so its use does not discriminate against poorer countries and allows anyone

to attempt to reproduce results of a study regardless of wealth. This is particularly

important for research that is used to inform public policy since it allows researchers

and informed citizens to verify that an analysis was done correctly without paying
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for software they would not otherwise need.

The tools metacoder and taxa presented here are examples of this kind of soft-

ware. They were designed to be modular flexible tools rather than ready-made

pipelines. Taxa in particular is meant to be a building block for other packages to use

rather than a stand-alone tool set, although it can also function as such. Metacoder

is structured as a set of discrete modular operations commonly needed to analyze

metabarcoding data, rather than implementing ready-made analyses. This is meant

to make it more flexible and useful by other packages. Both packages are open source,

version controlled, and come with extensive included and online documentation.

6.5 The need for collaborative projects

The data produced by microbial community research are particularly challenging

to analyze statistically and draw consistent conclusions from, but these difficulties

might be addressed by massive collaborative studies with many samples to better

capture complex ecological phenomena. Microbial communities often have hundreds

to thousands of species in a single sample and associated with each species in each

sample is a read count. Each species found in a study can be thought of as a variable

and a single study rarely has more than a few hundred samples. Trying to draw

inferences based on thousands of variables with hundreds of samples is not possible

using most statistical techniques, so summary statistics are often analyzed instead,

such as the alpha and beta diversity of samples. While summary statistics might

reveal interesting patterns, they are often not what is most relevant to the biology
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of the system and the priorities of the researcher. However, massive collaborative

projects with dozens of labs might be able to sequence tens of thousands of samples

and reveal patterns associated with complex ecological interactions among groups of

microbes. Such studies could reveal things like the influence of host genotype on

microbiome composition, which microbes are beneficial or damaging to which host

under what conditions, or which assemblages of microbes are best suited for particular

ecological functions, like biodegradation of pollutants. Knowledge of this kind would

be useful for agriculture, biotechnology, and human health, among other areas. For

subjects as complicated as microbial ecology, progress will likely be slow and inefficient

as long as studies are restricted to single labs and a time span of only a few years.
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