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Water scarcity and extreme weather present substantial risks for agricultural 

production on the U.S. West Coast. Farmers adapt to water supply uncertainties and 

climate risks by changing water application rates, adjusting irrigated acres, adopting 

more efficient irrigation technology, and altering crop mix. Many policy options are 

available to attain sustainable agricultural development. The federal crop insurance 

program (FCIP) is a primary risk management tool for U.S. agriculture. Improving 

the design of risk management policy necessitates a deeper theoretical understanding 

and credible empirical measurement of production decisions connected with land and 

water use. To this end, we first examine the impact of water scarcity and climate 

variability on adaptive land use and irrigation strategies. We then investigate how 

alternative risk management policies affect production decisions. 

We analyze how water availability, water supply institutions, and climate 

affect agricultural producers’ land and water use decisions. We first present a 

theoretical model to characterize farmers’ behavior in the presence of climate risk and 

water availability uncertainty. From the model, we derive the conditions for optimal 

production decisions and identify key parameters affecting land allocation, irrigation 

technology adoption, and water application rates. We then estimate a system of 

equations jointly to investigate how farmers adapt to different climate and water 

conditions with detailed irrigation and climate data for producers located in the states 



 
 

 

of California, Oregon, and Washington. The estimation results add to our 

understanding of producers’ adaptations to risks and contributes to improving water 

resource management.  

Crop insurance may affect harvested acreage and yield by influencing 

producers’ behavior such as land allocation and input use. Although specialty crops 

are a major source of farm income, especially on the U.S. west coast, they have not 

received as much attention as field crops in previous empirical studies. We assess the 

effect of moral hazard and adverse selection associated with the federal crop 

insurance program on the acreage and yield of major specialty crops in California. An 

econometric method that expands the switching regression model is developed to 

assess the effect. Results suggest that federal crop insurance can change specialty 

crop growers’ production responses to climate and soil conditions. The moral hazard 

effect tends to increase the acreage and yield of the specialty crops, while the adverse 

selection effect tends to have the opposite effect. The overall effect of the federal crop 

insurance program on acreage and yield of specialty crops is found to be moderate. 
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Chapter 1 Introduction 

1.1 Motivation and Objective 

Agriculture is the largest water user on the U.S. West Coast, accounting for 

over 90% of human water consumption (USDA 2017). Water scarcity and extreme 

weather cause substantial economic losses to agricultural producers in the region. For 

example, the 2014 Central Valley drought reduced surface water availability by 6.6 

million acre-feet in California, resulting in $2.2 billion economic losses to agriculture 

(Howitt et al. 2014). Water scarcity and extreme weather also impose significant 

stress on the environment and ecosystems on the West Coast, which in turn reduces 

agricultural productivity (Hoekstra 2014; IPCC 2014; Li et al. 2019). For example, to 

cope with demand for irrigation during the 2014 Central Valley drought, groundwater 

extraction increased by 5 million acre-feet, which lowered the groundwater level, 

deteriorated groundwater quality, and increased risk of land sinking. In addition, a 

deadly salmon parasite thrived in the drought and infected nearly all the juvenile 

Chinook salmon in the Klamath River in Northern California before they migrate to 

the ocean. The economic and environmental damages from drought and other extreme 

weather are anticipated to be more severe and frequent in the current context of 

climate change (Bates et al. 2008; Howitt et al. 2014).  

Population increase, economic growth, and physical limit to water supply will 

lead to reduced water resources per capita on the West Coast. The influence of 

increasing population on water shortage is four times as important as the influence of 

water availability due to long-term climatic change (Kummu et al. 2010). Both over 

allocation of surface water and overdraft of groundwater contribute to uncertainty in 

water supply. California has allocated five times more surface water than the average 

annual streamflow (Grantham and Viers 2014), causing disputes over water 

ownership during times of water scarcity. Before the Sustainable Groundwater 

Management Act (SGMA) was passed in 2014, groundwater in California was an 

unregulated open access resource subject to the tragedy of the commons (Hardin 

1968). NASA’s GRACE satellite mission data shows that water reserves have 

significantly declined since 2003 in twenty-one of the thirty-seven largest aquifers in 
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the world, mainly in the most prolific agricultural regions, such as the Central Valley 

of California (Richey et al. 2015).  

Climate change intensifies water scarcity in a variety of ways and complicates 

the challenges faced by western agricultural producers. Changing patterns of 

precipitation and rising temperature are expected to decrease snowpack, cause earlier 

snowmelt runoff, increase the risk of winter flooding, and reduce spring and summer 

stream inflows on the U.S. West Coast, which will impact surface water availability 

(Hayhoe et al. 2004). In 2017, California had record level of precipitation after over 

five years of drought, with April snowpack approaching 200% of the normal level 

(NASA 2017). Agriculture is a climate-sensitive industry. Climate change and 

associated changes in water supply can affect the quantity (i.e. yield) and quality of 

agricultural products and alter agricultural landscape. For example, warmer 

temperature may shift ripening of wine grapes in California 1-2 months earlier, 

generating degraded quality and lower market value (Hayhoe et al. 2004; Jackson et 

al. 2011). Irrigated cropland decreased by about 0.8 million acres in the US from 

2007 to 2012, with most of the decline occurring in the western states due to drought 

(USDA 2017). 

Many policy options are available to cope with production risks and attain 

sustainable agricultural development, such as water pricing policy, institutional 

reforms, market-based mechanisms, and water use regulations. Some of them are 

complements. For example, an appropriate legal setting regarding water rights and 

flexible institutional arrangements may enhance participation in water trading 

(Libecap 2011; Li et al. 2018; Regnacq et al. 2016; Rosegrant and Bingswanger 

1994). Other policy options are substitutable. For example, irrigation technology 

adoption can be a substitute of changing water price or water quota rates to reach 

similar level of water conservation (Dinar and Yaron 1990).  

The federal crop insurance program (FCIP) is a primary risk management tool 

for US agriculture (Glauber 2013). Crop insurance can influence farmers’ production 

behaviors through several channels. First, premium subsidies add to expected revenue 
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for crop production. As such, subsidized crop insurance may create incentives for 

farmers to expand crop production to marginal lands (Claassen et al. 2017). Second, 

crop insurance reduces the riskiness of growing covered crops relative to other crops, 

thus potentially affecting farmers’ crop mix (Wu 1999; Goodwin et al. 2004; Walters 

et al. 2012). Finally, crop insurance reduces farmers’ production risk by cutting off 

the lower tail of the revenue distribution and therefore may change the use of risk-

altering input such as fertilizer and pesticides (Babcock and Hennessy 1996; Young et 

al. 2001; Goodwin and Smith 2013). Both field crop and specialty crop producers 

have been increasingly relying on crop insurance for agricultural risk protection since 

1990 (Lee and Sumner 2013). The USDA has been expanding coverage of the FCIP 

to more crops and regions. For example, cropland enrolled in the FCIP increased 

from 83.5 million acres to 296.3 million acres, with total liabilities growing from 

$11.2 billion to $119.6 billion from 1993 to 2013 (RMA 2013).  

Adapting irrigation management is one of the primary mechanisms for the 

society to cope with water scarcity and climate change (Howden 2007). Farmers are 

exposed to uncertainties and risks associated with water, climate and price variability. 

To maintain profitability, they are incentivized to conserve water and alter production 

practices. Irrigated agricultural producers could respond to risks and policies in 

several major ways: (1) changing water application rates, (2) adjusting irrigated acres, 

(3) adopting more efficient irrigation technology, and (4) altering crop mix. 

Improving water management policy design necessitates a deeper theoretical 

understanding and credible empirical measurement of the impacts of water scarcity 

and climate variability on adaptive production decisions connected with agricultural 

land and water use.  

The objective of this study is twofold: first to examine the impact of water 

scarcity and climate variability on adaptive production decisions on the West Coast 

(California, Oregon and Washington), including cropland allocation, water use, and 

irrigation technology adoption decisions; and second to examine how alternative risk 

management policies affect farmers’ production decisions. Specific research 

questions are: 
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1. How do water supply uncertainties and climate risks affect farmers’ land 

and water use decisions? 

2. How does the federal crop insurance provision affect the harvested acreage 

and yield of specialty crops?  

1.2 Research Summaries 
This study consists of two essays that address these research questions. In the 

following, I provide a brief overview of each chapter.  

In Chapter 2, we conduct both theoretical and empirical analysis to identify 

the major economic, climate, and institutional factors influencing farmers’ production 

decisions on the U.S. West Coast. We first construct a farm-level theoretical model to 

characterize producers’ behavior under water and climate risks at both the extensive 

margin (adjustments to irrigated share of cropland) and intensive margin (adjustments 

to water application rate). In particular, we capture production risks associated with 

extreme weather, such as drought, frost, and extreme heat. A formula of sufficient 

statistics representing optimal production decisions and key parameters in the 

adaptation strategies are derived. The conceptual framework informs empirical 

estimation and generates valuable insights into how farmers in irrigated agricultural 

production systems would respond and adapt to water scarcity and climate change.  

Based on the theoretical model, we then conduct an empirical analysis to 

measure the relative importance of various economic, climate, and institutional 

factors influencing farmers’ land and water use decisions, focusing on five major 

categories of crops in this region (forage, orchard/vineyard, potato, rice, and wheat). 

This study combines irrigation data from the Farm and Ranch Irrigation Survey 

(FRIS) developed by the USDA in 2013 and 2018, with climate data developed by 

the PRISM Climate Group at Oregon State University. With the unique crop-specific 

and growing-season-specific data of key water and climate variables, we estimate a 

farm-level modelling system. The estimation results add to our understanding of 
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producers’ adaptation to water scarcity, climate variability and institutional changes, 

and contributes to improving water resource management.  

The FCIP is important to agricultural risk management. It affects producer 

behavior such as cropland allocation and input use. The effects of crop insurance on 

field crops have been well analyzed in previous empirical studies, whereas the effects 

on specialty crops have received much less attention, although specialty crops are a 

major source of farm income, especially on the West Coast. Therefore, in Chapter 3, 

we address the question how federal crop insurance provision affects the harvested 

acreage and yield of specialty crops. Specifically, we investigate into two questions: 

a) what are the main factors determining the provision of federal crop insurance to a 

specialty crop in a county? and b) how does the federal crop insurance availability 

affect the acreage and yield of specialty crops? We develop a simultaneous equation 

system for the models of federal crop insurance provision for specialty crops and their 

acreage and yield responses. The model is estimated with an econometric method that 

expands the standard endogenous switching regression model. This study provides a 

comprehensive treatment of moral hazard and adverse selection effects in insurance 

markets. Estimation results add to our understanding of the impacts of federal crop 

insurance provision on agricultural economies and inform the development of the 

FCIP for specialty crops. 
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Chapter 2  

 

Mitigating Water Scarcity and Climate Risks: Adaptive Agricultural 
Land Use and Irrigation Strategies on the U.S. West Coast 

 

Abstract: This paper analyzes how water availability, water supply institutions, and 

climate affect agricultural producers’ land and water use decisions. We first present a 

theoretical model to characterize farmers’ behavior in the presence of climate risk and 

water availability uncertainty. From the model, we derive the conditions for optimal 

production decisions and identify key parameters affecting land allocation, irrigation 

technology adoption, and water application rates. We then estimate a system of 

equations jointly to investigate how farmers adapt to different climate and water 

conditions with detailed irrigation and climate data for producers located in the states 

of California, Oregon, and Washington. Results suggest that water scarcity reduces 

irrigated share of selected crops and expands dryland production. Water scarcity 

encourages adoption of efficient irrigation technology sprinkler and drip, especially 

for crops with low adoption rates. Federal surface water supply makes farms irrigate 

more cropland and apply more water per acre. Climate risks, including excessive 

moisture, extreme heat, spring freeze and frost, and drought significantly influence 

irrigation strategies. The impact varies across crops. Weather conditions critically 

affect adaptations. Higher precipitation level decreases irrigated share and water 

application rates; whereas higher maximum temperature increases water application 

rates and discourages technology adoption. 

 

Key words: water scarcity, climate variability, cropland allocation, water use, 

irrigation 
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2.1 Introduction 
Adapting irrigation management is one of the primary mechanisms for the 

society to cope with water scarcity and climate change (Howden 2007). Farmers 

adapt to uncertainties and risks by changing water application rates, adjusting 

irrigated acres, adopting more efficient irrigation technology, and altering crop mix. 

Improving water management policy design necessitates a deeper theoretical 

understanding and credible empirical measurement of the impacts of water scarcity 

and climate variability on adaptive production decisions connected with agricultural 

water use. This chapter attempts to fulfill this need by addressing the following 

question: how do water supply uncertainties and climate risks affect farmers’ 

cropland allocation, water application rates, and irrigation technology adoption for 

major crops on the West Coast (California, Oregon, and Washington)?  

We identify specific climate risks for crop production, compile a 

comprehensive crop-specific dataset on key water and climate variables, distinguish 

between long-run and short-run responses, and estimate a system of equations on 

farmers’ adaptations simultaneously for major field and specialty crops. Results 

suggest that water scarcity reduces irrigated share of selected crops and expands 

dryland production. We observe more elastic responses for crops with high surface 

water price (potato) or high groundwater pumping cost (forage and wheat). Water 

scarcity encourages adoption of efficient irrigation technology sprinkler and drip, 

especially for crops with low adoption rates (forage and wheat). Bureau of 

Reclamation provides more secured water supplies and subsidizes water use. Farms 

receiving water from BOR allocate 2.6% more cropland to irrigated production and 

use 11%~18% more water per acre than farms obtaining water elsewhere. Extreme 

weather events present key determinants of irrigation strategies. Excessive moisture 

risk discourages technology adoption for forage and wheat, encourages adoption for 

orchard/vineyard, and decreases water application rates for all crops. Extreme heat 

risk increases irrigated share and reduces technology adoption for forage and wheat. 

Orchard/vineyard producers mitigate freeze damage by using efficient irrigation 

technology and increasing water application rates. Wheat producers adapt to drought 
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by irrigating a larger share of land, adopting efficient technology, and applying less 

water per acre. Weather expectations and observations are also critical to adaptations. 

Higher precipitation level reduces demand for irrigation, thus decreasing irrigated 

share and water application rates. Whereas high evaporative loss in hot weather 

increases water application rates by 2%~5% and decreases technology adoption by as 

much as 4%, given a 1°F increase in maximum temperature.  

In Section 2, we provide some background information about previous 

research, our contributions to existing literature, and unique features of study region. 

In Section 3, we introduce the conceptual framework that models producers’ behavior 

under water and climate risks and discuss major findings from a comparative statics 

analysis. In Section 4, we present an econometric implementation that measures the 

relative importance of various determinants of adaptation strategies. We present the 

empirical framework for modelling adaptations, discuss data source, expand on 

variable construction process, and identify model specifications and estimation 

methods. In Section 5, we interpret estimation results and provide policy implications. 

Section 6 concludes this chapter.  

 

2.2 Background 

2.2.1 Previous Studies  
The effect of water scarcity and climate change on agriculture has been a 

focus in agricultural water resource economic research. Previous studies investigate a 

wide range of agricultural impacts. For example, Deschenes and Greenstone (2007) 

and Schlenker and Roberts (2009) examine the impacts of temperature, a type of 

short-run weather realizations, on crop yields and agricultural profits. Massetti and 

Mendelsohn (2011), Mendelsohn et al. (1994), Schuck et al. (2005), and Schlenker et 

al. (2007) find that expected climate and water supply variations alter land values. 

There are many studies measuring the economic impacts (e.g. producer surplus, 

profits) of agricultural water supply reductions and climate change. They conclude 

that the adverse impacts can be mitigated by good institutions, water pricing policies, 
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and water market policies (Chen et al. 2001; Howden and Jones 2001; Kahil et al. 

2016; Mejias et al. 2004; Sunding et al. 2002). 

This analysis builds on previous research on how water availability and 

climate determine adaptation strategies. The existing literature on irrigation 

technology adoption is extensive and well developed (Dinar and Zilberman 1991; 

Green et al. 1996; Green and Sunding 1997; Lichtenberg 1989; Schuck and Green 

2001; Shrestha and Gopalakrishnan 1993; Xu et al. 2018). Carey and Zilberman 

(2002), Caswell and Zilberman (1986), Connor et al. (2009), and Li et al. (2019) 

provide consistent evidence that the choice of irrigation technology depends on 

economic and physical conditions, such as well depth, soil quality, uncertainty in 

water supplies or water prices, access to water market etc. It is widely recognized that 

variable climate conditions are associated with different technical efficiency, which 

critically affect producers’ irrigation technology choices. Dinar and Yaron (1990) 

find that higher temperature encourages adopting drip irrigation to offset the effect of 

higher evaporation rates. Negri and Brooks (1990) find that higher temperature 

discourages the adoption of water-saving technologies such as micro-sprinkler and 

solid-set sprinkler due to their high evaporative losses. Fleischer et al. (2011) find that 

Israel producers completely substitute capital (i.e. investment in water-saving 

irrigation technology) for a warmer climate. Frisvold and Deva (2013) compare the 

performance of gravity and sprinkler irrigation and find that sprinkler irrigation has 

higher adoption rates in regions with more rainfall and intense rain events than in 

drier climate.  

Apart from irrigation technologies, other adaptation strategies include 

changing cropland allocations, altering crop mix, and adjusting irrigated acres. 

Surface water is an allocable input in agricultural production. In response to reduction 

in water supply and increases in water prices, farmers can reduce either cropland 

allocated to relatively low-value and water-intensive crops or irrigated acreage. The 

adjustments are more elastic at the crop level than at the farm level (Manning et al. 

2017; Moore and Negri 1992; Moore et al. 1994; Sunding et al. 2002). For example, 

Sunding et al. (2002) find reduced acreage and scale of production in water-intensive 
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crops, such as pasture, alfalfa, and wheat. The magnitude of the impacts depends 

primarily on the allocation of reductions among water users and water trading. 

Manning et al. (2017) find that agricultural producers in the western US respond to 

expected surface water supply variations through planting fewer acres of irrigated 

corn. Connor et al. (2009) find that the primary short-run response to a reduction in 

water supply is to decrease irrigated acres. Second, farmers adjust crop type and 

water use in response to long run climate expectations and short run weather 

realizations. Connor et al. (2009) find that in the long run and under a severe climate 

change scenario (a 4°C temperature increase) farmers choose to switch from 

perennial crop to annual crop production. Peck and Adams (2012) find that farmers 

adapt to climate change by adopting new crop varieties in the short run and investing 

in supplemental water supplies in the long run. Manning et al. (2017) find that 

producers respond to annual weather fluctuations by concentrating the application of 

available water to a subset of planted acreage to maintain high yields.  

Relatively few studies have analyzed how water use and irrigation decisions 

respond to the risk of extreme weather events. Two notable exceptions are Olen et al. 

(2016) and Schuck et al. (2005).  Olen et al. (2016) examine farm-level irrigation 

decisions and find that producers of orchards and vineyards are more likely to choose 

sprinkler irrigation and apply additional water to mitigate damage from drought, 

severe heat, or freeze. Schuck et al. (2005) find that to maintain crop yield, a larger 

share of farms adopt more technically efficient irrigation systems in response to 

droughts. Given that famers make land and water use decisions jointly (Howitt et al. 

2014, 2015; Moreno and Sunding 2005; Sunding et al. 2002; Pfeiffer and Lin 2014), 

it is important to understand how the uncertainties in water availability and climate 

affect water use, land use, and irrigation decisions simultaneously. This paper 

complements literature by examining extreme weather events that are closely related 

to the volatility of water supplies and responsible for crop failure, and by modelling 

various adaptation strategies simultaneously.  
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2.2.2 Contributions  
This study has several desirable features compared with existing literature. 

First, it is a farm-level, crop-specific analysis. The West Coast is one of the ten 

USDA Farm Production Regions, with significant spatial and temporal variations. 

There are many microclimates even within a small area due to the complex 

topography. The existing literature has focused on the effect of water supply 

uncertainties and climate risks on crop yield or output, as well as water management 

from the perspective of administrative agency at the macroscale (Deschenes and 

Greenstone 2007; Fischhendler and Heikkila 2010; Rosegrant and Binswanger 1994; 

Saleth and Dina 2000; Saleth 2004; Schlenker and Roberts 2009). The effect of 

climate risks on an individual farmer’s land and water use decisions has received 

much less attention, due to lack of detailed farm-level data. Our micro-level 

modelling system attempts to explore how individual farmers with heterogeneous 

portfolios adapt to production risks. The crop-specific specification captures 

susceptibility of individual crops to alternative extreme weather events. For example, 

fruit blossoms can be damaged by spring freeze, making freeze risk one of the top 

drivers of crop loss for orchard/vineyards. As such, variation of freeze dates is a 

significant determinant of fruit tree growers’ responses, since irrigation can be used to 

mitigate freeze damage. Furthermore, this system models the impacts of water 

scarcity and climate variability on cropland allocation, water use, and irrigation 

technology adoption decisions simultaneously. This approach presents a holistic 

framework to investigate individual famer’s adaptation mechanisms and assess the 

magnitude of water scarcity and climate change effects. Estimation results provide 

valuable implications to promote development of efficient agricultural policies.  

Second, the model explicitly distinguishes whether the decisions involved is a 

short-run or long-run response. Some of farmers’ adaptations are short-run decisions, 

while others involve long-run investment. For example, in the short run, farmers can 

adjust water application rates or irrigated acres during the growing season in response 

to observed weather and water conditions. An array of climate statistics is developed 

for each month and season to represent observed variations of the agricultural 
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growing season. However, it often entails long-run, quasi-irreversible capital 

investment to change irrigation technology or to convert from an annual crop to a 

perennial crop. Long-run decisions are more likely to respond to climate and water 

scarcity expectations, which can be represented by long-run averages for an array of 

climate statistics.  

Third, this analysis differentiates annual crop and perennial crop. A perennial 

crop will be non-bearing or non-mature in the first several years, which may result in 

variations in water use. Lastly, this study examines specialty crop producers’ 

behavior under risks and uncertainties. Specialty crops are a major source of farm 

income, especially on the West Coast. But they are not as well analyzed as field crops 

in literature. Also, there may be unique risks for growing specialty crops. For 

example, many specialty crops are perishable, making them susceptible to placement 

risk (Schieffer and Vassalos 2015). Finally, the 2014 Farm Bill authorizes the Risk 

Management Agency (RMA) to expand crop insurance to more specialty crops and 

more counties. Liability of specialty crops grew from around $7 billion in 2000 to 

almost $15 billion in 2014, accounting for 13.6% of total crop insurance liability in 

2014 (FCIC 2015). More research about the impact of water supply uncertainties and 

climate risks on specialty crop producers’ behavior can promote development of 

efficient agricultural policies.  

2.2.3 Study Region  
There are many microclimates even within a small area on the West Coast due 

to the complex topographic features. For example, the Cascade Range extends from 

northern California through Oregon and Washington to southern British Columbia. It 

creates a barrier between the maritime climate influences from the west and the 

continental climate influences from the east. This region’s proximity to the Pacific 

Ocean and prevailing westerly winds bring substantial precipitation to the western 

slopes. However, as the air advances across the mountain top with little moisture left, 

the eastern slopes are cast in a shadow of dryness, which is geographically known as 

a rain-shadow effect (Ernst 2000). Besides, temperatures are mild throughout a year 

to the west of the Cascade Range. While the east side has larger annual variations, 
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with colder winter and hotter summer. The Columbia River Basin is a vast 

agricultural production area extending across eastern Washington and northern 

Oregon, and through the Cascade Range. Irrigated crops such as potatoes, vegetables, 

and fruits appear on floodplains flanking the Columbia River. Agriculture is more 

rainfed oriented on higher-lying landscapes where there is no easy access to 

irrigation, and some of these upland fields are dormant in dry summer.  

We focus on five crops/crop types: forage, orchard/vineyard, potato, rice, and 

wheat. These agricultural commodities are selected based on their acreage, water use, 

and sales receipts in each state of the West Coast. The selected crops account for 

22%-54% of state cash receipts in 2018 (Economic Research Service, 2019). Some of 

the major crops in the orchard/vineyard category include grapes, almonds, apples, 

pears, and cherries. They rank among top five products in this category in terms of 

cash receipts by state (Economic Research Service, 2019). Figure 2-1 provides a 

visualization of the spatial distribution of selected crops across the West Coast. 

Orchard/Vineyard production is concentrated in the Columbia River Basin and west 

Oregon and California. The Columbia River Basin is a leading production region for 

apples, cherries, and pears. A more favorable and milder climate contributes to the 

popularity of wine grapes in west Oregon and west California. Almonds are popular 

in the middle of California, the San Joaquin Valley in particular because of better 

soils, less rainfall, and warmer temperatures. Rice production is almost exclusively 

concentrated in the Sacramento Valley in California. Potato and wheat production are 

concentrated in areas to the east of the Cascade Range, the Columbia River Basin in 

particular. Forage production, especially alfalfa is also concentrated in east Cascade 

Range due to the warm temperatures and well-drained soils. South California and the 

San Joaquin Valley are also top producing regions for alfalfa hay.  
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Figure 2-1. Spatial distribution of selected crops across the West Coast 

 

2.3 The Theoretical Model 

2.3.1 The Optimization Problem 
Consider a multioutput producer, who makes production decisions, including 

cropland allocation, input use, and irrigation technology adoption to maximize his 

expected utility, subject to a land use constraint and a water availability constraint.  

max
𝐿𝐿𝑖𝑖𝑖𝑖,𝑟𝑟𝑖𝑖𝑖𝑖,𝑎𝑎𝑖𝑖𝑖𝑖,𝑧𝑧𝑖𝑖𝑖𝑖

𝐸𝐸[𝑈𝑈𝑖𝑖(∑ 𝜋𝜋𝑖𝑖𝑖𝑖𝑖𝑖 �𝐿𝐿𝑖𝑖𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖𝑖𝑖, 𝑧𝑧𝑖𝑖𝑖𝑖�𝜃𝜃, 𝜀𝜀�)], 

                                      s.t. ∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐿𝐿𝑖𝑖, 
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                                      ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝐸𝐸[𝑊𝑊𝚤𝚤��� |𝜀𝜀], 

                                      0 ≤ 𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 1,                                                           (2-1) 

where 𝜋𝜋𝑖𝑖𝑖𝑖 = [𝑃𝑃𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖, 𝜃𝜃� − 𝑐𝑐𝑖𝑖𝑖𝑖(𝜀𝜀)𝑟𝑟𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖 − 𝜔𝜔𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖]. Profit from 

growing each crop equals the revenue (𝑃𝑃𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖(∙)) minus costs from water use 

(𝑐𝑐𝑖𝑖𝑖𝑖(𝜀𝜀)𝑟𝑟𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖), non-water input use (𝜔𝜔𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖), and the equipment and installation 

costs of the efficient irrigation system (𝑡𝑡𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖), which is independent land allocated to 

each crop. Parameters and variables are defined in Table 2-1. Subscript 𝑖𝑖 is dropped 

henceforth to simply notation.  

 

Table 2-1. Definitions of Parameters and Variables in the Optimization Problem 
 

Parameter Explanation 

𝑖𝑖 Index of farm 
𝑗𝑗 Index of crop 
𝜃𝜃 A random variable reflecting uncertainty associated with climate change 
𝜀𝜀 A random variable reflecting uncertainty associated with water scarcity 
𝐿𝐿𝑖𝑖𝑖𝑖  Land allocated to crop 𝑗𝑗 
𝐿𝐿𝑖𝑖 Total cropland 
𝑟𝑟𝑖𝑖𝑖𝑖  Crop-specific per-acre water application rate 
𝑊𝑊𝚤𝚤��� Exogenous water use constraint 
𝑎𝑎𝑖𝑖𝑖𝑖  Irrigation efficiency 
𝛼𝛼𝑖𝑖 Arrow-Pratt measure of risk aversion 
𝑃𝑃𝑖𝑖𝑖𝑖  Output price 
𝑐𝑐𝑖𝑖𝑖𝑖  Water price 
𝜔𝜔𝑖𝑖𝑖𝑖  Price of non-water input 
𝑧𝑧𝑖𝑖𝑖𝑖  Crop-specific per-acre non-water input use 
𝑡𝑡𝑖𝑖 Cost of irrigation 
𝛽𝛽𝑖𝑖 Output elasticity of efficient water use 
𝛾𝛾𝑖𝑖 Output elasticity of non-water input 
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Now we introduce specific functional forms and assumptions to examine the 

impacts of water scarcity and climate risks on optimal adaptation strategies. 

Specifically, we assume 

                                              𝑈𝑈(𝜋𝜋|𝜃𝜃, 𝜀𝜀) = −𝑒𝑒−𝛼𝛼𝛼𝛼,                                      (2-2) 

                                              𝑓𝑓𝑖𝑖 = (𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖)𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝛾𝛾𝑖𝑖𝑒𝑒𝜃𝜃.                                       (2-3) 

Equation (2-2) presents a Von Neumann-Morgenstern utility function that exhibits 

constant absolute risk aversion (Morgenstern and Von Neumann 1953). It takes the 

form so that we can transform the optimization problem into maximizing the certainty 

equivalent 𝐸𝐸[𝜋𝜋] − 1
2
𝛼𝛼𝛼𝛼𝑎𝑎𝑟𝑟[𝜋𝜋] (see Appendix A1 for derivation). This specification 

offers substantial mathematical tractability, simplifies calculation, and facilitates 

understanding how the marginal cost of risk bearing influences optimal decisions, 

which we will discuss later. Equation (2-3) gives a Cobb-Douglas production function 

on the average yield of crop 𝑗𝑗 with uncertainty (Feldstein 1971). It reveals the relation 

between output and input use, including water application rates, irrigation technology, 

and non-water input. 𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖 represents average effective water application rates.1 We 

assume that a producer chooses the share of land adopting the efficient irrigation 

technology. A larger share implies a higher average irrigation efficiency 𝑎𝑎𝑖𝑖, which in 

turn increases the productivity of water and increases output. Sum of output 

elasticities of inputs 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖 is assumed to be positive but smaller than 1 to guarantee 

decreasing returns to scale in agricultural production. We also assume decreasing 

marginal productivity of input use to maintain concavity.  

                                                           
1 Let 𝑠𝑠𝑖𝑖 denote the share of land adopting the efficient irrigation technology. For the rest 1 −
𝑠𝑠𝑖𝑖, the producer chooses between the less efficient technology with share ℎ𝑖𝑖 and dry land 
production with share 1 − ℎ𝑖𝑖. The water use efficiencies for the efficient and baseline 
technology are 𝛿𝛿ℎ𝑖𝑖𝑖𝑖ℎ and 𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙, respectively. The average water use can be expressed as 
𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖𝛿𝛿ℎ𝑖𝑖𝑖𝑖ℎ + 𝑟𝑟𝑖𝑖�1 − 𝑠𝑠𝑖𝑖�ℎ𝑖𝑖𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙 + 0 ∗ �1 − 𝑠𝑠𝑖𝑖� ∗ �1 − ℎ𝑖𝑖� = 𝑟𝑟𝑖𝑖𝑠𝑠𝑖𝑖�𝛿𝛿ℎ𝑖𝑖𝑖𝑖ℎ − ℎ𝑖𝑖𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙� + 𝑟𝑟𝑖𝑖ℎ𝑖𝑖𝛿𝛿𝑙𝑙𝑙𝑙𝑙𝑙. 
The right hand side informs the average effective water application rate as an increasing 
function of 𝑠𝑠𝑖𝑖. Therefore, for simplicity we use a continuous variable 𝑎𝑎𝑖𝑖 to indicate the 
relative efficiency of water use and rewrite the right hand side as 𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖. 
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 Assume there is price-taking behavior and no uncertainty in output price. Let 

water price 𝑐𝑐𝑖𝑖(𝜀𝜀) = 𝑐𝑐𝑖𝑖 + 𝜀𝜀2, where 𝐸𝐸(𝜀𝜀) = 0 and 𝛼𝛼𝑎𝑎𝑟𝑟(𝜀𝜀) = 𝜎𝜎𝜀𝜀2. There is no 

assumption imposed on the distributional form of 𝜀𝜀, which creates flexibility for the 

model as it proceeds. This specification implies that water scarcity increases expected 

water price. Assume the production uncertainty associated with climate change 𝜃𝜃 

follows a normal distribution, 𝜃𝜃~𝑁𝑁(0,𝜎𝜎2). From this assumption, we derive that 

revenue for growing each crop 𝑃𝑃𝑖𝑖𝐿𝐿𝑖𝑖𝑓𝑓𝑖𝑖(∙) follows a log normal distribution. 𝜋𝜋 = ∑ 𝜋𝜋𝑖𝑖𝑖𝑖  

is normally distributed with mean 𝐸𝐸[𝜋𝜋] and variance 𝛼𝛼𝑎𝑎𝑟𝑟[𝜋𝜋].2 Accordingly we 

calculate the distributional statistics of 𝜋𝜋 as 𝐸𝐸[𝜋𝜋] = ∑ [𝑃𝑃𝑖𝑖𝐿𝐿𝑖𝑖�𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖�
𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝛾𝛾𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
− (𝑐𝑐𝑖𝑖 +𝑖𝑖

𝜎𝜎𝜀𝜀2)𝑟𝑟𝑖𝑖𝐿𝐿𝑖𝑖 − 𝜔𝜔𝑖𝑖𝑧𝑧𝑖𝑖𝐿𝐿𝑖𝑖 − 𝑡𝑡𝑎𝑎𝑖𝑖] and 𝛼𝛼𝑎𝑎𝑟𝑟[𝜋𝜋] = 𝑒𝑒𝜎𝜎2(𝑒𝑒𝜎𝜎2 − 1)∑ [𝑃𝑃𝑖𝑖𝐿𝐿𝑖𝑖�𝑟𝑟𝑖𝑖𝑎𝑎𝑖𝑖�
𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝛾𝛾𝑖𝑖]2𝑖𝑖 .3 The 

objective function can be expressed as an increasing function of the certainty 

equivalent 𝐸𝐸[𝜋𝜋] − 1
2
𝛼𝛼𝛼𝛼𝑎𝑎𝑟𝑟[𝜋𝜋]: 𝐸𝐸[𝑈𝑈(𝜋𝜋|𝜃𝜃, 𝜀𝜀)] = −𝑒𝑒−𝛼𝛼�𝐸𝐸[𝛼𝛼]−12𝛼𝛼𝛼𝛼𝑎𝑎𝑟𝑟[𝛼𝛼]�. Therefore, the 

risk premium is 𝑅𝑅 = 1
2
𝛼𝛼𝛼𝛼𝑎𝑎𝑟𝑟[𝜋𝜋].  

Solving the optimization problem (2-1), we obtain:  

𝑟𝑟𝑖𝑖∗ = 𝜆𝜆𝛽𝛽𝑖𝑖
(1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖)(𝑐𝑐𝑖𝑖+𝜎𝜎𝜀𝜀2+𝜂𝜂)

,                                       (2-4) 

  𝑧𝑧𝑖𝑖∗ = 𝜆𝜆𝛾𝛾𝑖𝑖
𝜔𝜔𝑖𝑖(1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖)

,                                               (2-5) 

𝑎𝑎𝑖𝑖∗:𝑃𝑃𝑖𝑖𝑟𝑟𝑖𝑖∗
𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖∗

𝛾𝛾𝑖𝑖�1 − 𝛽𝛽𝑖𝑖 − 𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖∗
𝛽𝛽𝑖𝑖𝜆𝜆𝛽𝛽𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
− �𝑃𝑃𝑖𝑖𝑟𝑟𝑖𝑖∗

𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖∗
𝛾𝛾𝑖𝑖�1 − 𝛽𝛽𝑖𝑖 −

𝛾𝛾𝑖𝑖��
2
𝑎𝑎𝑖𝑖∗

2𝛽𝛽𝑖𝑖+1𝛼𝛼𝑒𝑒𝜎𝜎2�𝑒𝑒𝜎𝜎2 − 1�(𝑡𝑡 + 𝜏𝜏) = 𝜆𝜆2𝛽𝛽𝑖𝑖,             (2-6) 

𝐿𝐿𝑖𝑖∗ = (1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖)(𝑡𝑡+𝜏𝜏)

𝜆𝜆𝛽𝛽𝑖𝑖
𝑎𝑎𝑖𝑖∗,                                      (2-7) 

                                                           
2 We can also derive the joint distribution of (𝜃𝜃, 𝜀𝜀) and the conditional distribution of 𝜀𝜀.  
3 The covariance of revenue from different crops are assumed to be zero for simplicity.  
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where 𝑎𝑎𝑖𝑖∗ is characterized by the implicit function in equation (2-6) and 𝜆𝜆, 𝜂𝜂, and 𝜏𝜏 are 

the shadow prices assigned to the land, water supply, and share constraint, 

respectively. Detailed derivations and explanations are provided in Appendix A2.  

2.3.2 A Comparative Analysis 
An assessment of the impact of water availability and climate change on 

production decisions requires a clear and direct measure of risks. In this study, an 

increase in risks is reflected by an increase in risk premium. At a given risk aversion 

level 𝛼𝛼, changes in risks can be attributed to changes in variability of climate 𝜎𝜎2 or 

variability in water supply 𝜎𝜎𝜀𝜀2. In the following we discuss some comparative statics 

results and implications.  

2.3.2.1 Impact of Climate Risks 

(1) We find that climate variability encourages technology adoption for a 

producer with high irrigation efficiency and for a crop with high market value.  

First, the sign of the marginal effect 
𝜕𝜕𝑎𝑎𝑖𝑖

∗

𝜕𝜕𝜎𝜎2
 is determined by the magnitude of the 

optimal irrigation efficiency 𝑎𝑎𝑖𝑖𝑖𝑖∗  compared to a threshold level 𝑎𝑎𝚥𝚥� , where 𝑎𝑎𝚥𝚥� =

1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖
𝛿𝛿𝛽𝛽𝑖𝑖𝛾𝛾𝑖𝑖

�
�4𝑒𝑒𝜎𝜎

2
−1�𝜆𝜆

�3𝑒𝑒𝜎𝜎2−1�𝑃𝑃𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�
�

1
𝛽𝛽𝑖𝑖
�𝜔𝜔𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�

𝜆𝜆𝛾𝛾𝑖𝑖
�

𝛾𝛾𝑖𝑖
𝛽𝛽𝑖𝑖 (𝑐𝑐𝑖𝑖 + 𝜎𝜎𝜀𝜀2 + 𝜂𝜂). When 𝑎𝑎𝑖𝑖∗ < 𝑎𝑎𝚥𝚥� , 

𝜕𝜕𝑎𝑎𝑖𝑖
∗

𝜕𝜕𝜎𝜎2
< 0; 

otherwise, when 𝑎𝑎𝑖𝑖∗ > 𝑎𝑎𝚥𝚥� , 
𝜕𝜕𝑎𝑎𝑖𝑖

∗

𝜕𝜕𝜎𝜎2
> 0. The detailed derivation is presented in Appendix 

A3. The implication is that for a producer who adopts the efficient irrigation 

technology for a smaller share of land and thus having a lower irrigation efficiency, a 

more variable climate tends to discourage adoption, indicating the efficient irrigation 

technology as a risk-increasing input for him. The producer initially self-selects to a 

low adoption rate due to some inherent features that may reduce irrigation efficiency. 

For example, the cropland may have low water-holding capacity or the water salinity 

is high. In this case, the expectation of increasing climate risks makes him more 

concerned with the effectiveness of technology and hence less willing to invest in 

technology adoption. In contrast, if the adoption rate is high above the threshold level, 
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increasing climate variability incentivizes the producer to increase the use of the 

efficient irrigation technology, in an effort to mitigate the adverse impacts of climate 

change. Under this circumstance, the water-saving irrigation technology is a risk-

reducing input. It improves the relative efficiency of water use, reduces the effects of 

climate change such as uncertain rainfall on production, and reduces the implicit cost 

of risks.  

Second, under climate change technology adoption favors crop with high 

market price. The threshold is mainly affected by the output elasticities, output and 

input prices, and shadow prices of the constraints. In particular, the threshold level is 

negatively impacted by output price, which suggests a low threshold for a crop with 

high market value. Hence there is a higher probability that optimal irrigation 

efficiency is above the threshold. Consequently, producer is more likely to increase 

adoption given a more variable climate. This result is very straightforward in that 

producer chooses to invest in a crop that can bring high marginal returns. This result 

can also be understood using second order derivatives. 
𝜕𝜕2𝑎𝑎𝑖𝑖

∗

𝜕𝜕𝜎𝜎2𝜕𝜕𝑃𝑃𝑖𝑖
> 0, meaning that 

producer increases adoption more (or reduces adoption less) for a crop with high 

market price.  

(2) In response to increasing climate risks, a producer allocates more land to a 

crop that he predominantly grows, and that has high output price or low water price.  

First, climate change makes a producer grow more of a crop that is already 

dominant in his production. The sign of the marginal effect 
𝜕𝜕𝐿𝐿𝑖𝑖

∗

𝜕𝜕𝜎𝜎2
 is influenced by the 

optimal land allocation 𝐿𝐿𝑖𝑖∗ relative to a threshold level, which is defined as 𝐿𝐿𝚥𝚥� =

�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�
2

𝜆𝜆𝛽𝛽𝑖𝑖
2𝛾𝛾𝑖𝑖

�
�4𝑒𝑒𝜎𝜎

2
−1�𝜆𝜆

�3𝑒𝑒𝜎𝜎2−1�𝑃𝑃𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�
�

1
𝛽𝛽𝑖𝑖
�𝜔𝜔𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�

𝜆𝜆𝛾𝛾𝑖𝑖
�

𝛾𝛾𝑖𝑖
𝛽𝛽𝑖𝑖 (𝑐𝑐𝑖𝑖 + 𝜎𝜎𝜀𝜀2 + 𝜂𝜂)(𝑡𝑡 + 𝜏𝜏). Below the 

threshold, a producer self-selects to allocates less land to a certain crop because of 

some inherent reasons. More uncertainties in climate decreases marginal productivity 

of land even more and hence incentivize him to reduce the planted acreage of the crop 
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(
𝜕𝜕𝐿𝐿𝑖𝑖

∗

𝜕𝜕𝜎𝜎2
< 0). Above the threshold, the producer chooses to largely produce crop 𝑗𝑗. 

𝜕𝜕𝐿𝐿𝑖𝑖
∗

𝜕𝜕𝜎𝜎2
>

0, meaning he continues to expand production of crop 𝑗𝑗 in accordance with the 

increase in technology adoption. Intuitively, the producer predominantly grows a 

certain crop as a result of self-selection. For instance, he either has more farming 

experience for this crop or he is expecting more economic returns. In response to 

more climate risks, he would increase the share of land planted to the crop he has 

more confidence in.  

We can also interpret these results using the shadow price of the land 

constraint 𝜆𝜆. As shown in Appendix A3, the threshold level 𝐿𝐿𝚥𝚥�  is negatively 

associated with a threshold for the shadow price �̅�𝜆. When the plated acreage 𝐿𝐿𝑖𝑖∗ is 

small for crop 𝑗𝑗 (i.e. 𝐿𝐿𝑖𝑖∗ < 𝐿𝐿𝚥𝚥�), the marginal benefit of land use is high (i.e., 𝜆𝜆 > �̅�𝜆), 

and producer switches to grow a dominant crop. Whereas when the shadow price of 

land is below �̅�𝜆, land is not much of an “expensive” resource, so producer tends to 

expand production given an expectation of more climate risks. 

Second, climate change makes a producer allocate more land to a crop with 

high market price and low water price. The threshold level 𝐿𝐿𝚥𝚥�  decreases with output 

price. That is, for a high-value crop, threshold is lower, optimal planted acreage 𝐿𝐿𝑖𝑖∗ is 

more likely to go beyond the threshold, wherefore the producer is more likely to 

increase its planted acreage given climate change. From a second order derivative 

perspective, it implies the producer expands production more (or cuts production less) 

for a crop with high market price. In addition, a higher water price 𝑐𝑐𝑖𝑖 for a crop 

increases the threshold, thus making the producer more likely to reduce its acreage. It 

makes intuitive sense in that with increasing production risks, producer grows less of 

a crop with more expensive water supply.  

(3) The impact of climate variability on water application rates is 

indeterminate. A producer increases water application rates if he adjusts technology 

adoption more than he adjusts planted acreage. 



21 
 

 

Irrigation efficiency and total volume of water use are substitutes as 

agricultural inputs. The first order conditions inform that 𝑎𝑎𝑖𝑖∗(𝑡𝑡 + 𝜏𝜏) = (𝑐𝑐𝑖𝑖 + 𝜎𝜎𝜀𝜀2 +

𝜂𝜂)𝐿𝐿𝑖𝑖∗𝑟𝑟𝑖𝑖∗. It means the opportunity cost for technology adoption (left hand side) should 

achieve the same results as spent on applying more water (right hand side). From this 

condition we have 
𝜕𝜕𝑎𝑎𝑖𝑖

∗/𝜕𝜕�𝜎𝜎2�

𝑎𝑎𝑖𝑖
∗ =

𝜕𝜕𝐿𝐿𝑖𝑖
∗/𝜕𝜕�𝜎𝜎2�

𝐿𝐿𝑖𝑖
∗ +

𝜕𝜕𝑟𝑟𝑖𝑖
∗/𝜕𝜕�𝜎𝜎2�

𝑟𝑟𝑖𝑖
∗ . Detailed derivation is presented 

in Appendix A4. It means if a producer improves irrigation efficiency by adopting 

better technology in response to climate risks, he can equivalently increases the 

absolute amount of water use to maintain the same level of productivity.  

As such, if there is relatively more adjustments in technology adoption than in 

land use (
𝜕𝜕𝑎𝑎𝑖𝑖

∗/𝜕𝜕�𝜎𝜎2�

𝑎𝑎𝑖𝑖
∗ >

𝜕𝜕𝐿𝐿𝑖𝑖
∗/𝜕𝜕�𝜎𝜎2�

𝐿𝐿𝑖𝑖
∗ ), producer increases water application rates (

𝜕𝜕𝑟𝑟𝑖𝑖
∗

𝜕𝜕𝜎𝜎2
> 0) 

to compensate for the difference. Specifically, there are two cases when water 

application rates increase. First, when technology adoption and cropland allocation 

change in opposite direction (
𝜕𝜕𝑎𝑎𝑖𝑖

∗/𝜕𝜕�𝜎𝜎2�

𝑎𝑎𝑖𝑖
∗ > 0 >

𝜕𝜕𝐿𝐿𝑖𝑖
∗/𝜕𝜕�𝜎𝜎2�

𝐿𝐿𝑖𝑖
∗ ), producer increases 

technology adoption and reduces planted acreage. Both adjustments save him water 

so that he can apply more water per acre. Intuitively it means the producer 

concentrates water use to a smaller share of land to maintain high yields. Second, 

when they change in the same direction with more adjustments in technology 

adoption (
𝜕𝜕𝑎𝑎𝑖𝑖

∗/𝜕𝜕�𝜎𝜎2�

𝑎𝑎𝑖𝑖
∗ >

𝜕𝜕𝐿𝐿𝑖𝑖
∗/𝜕𝜕�𝜎𝜎2�

𝐿𝐿𝑖𝑖
∗ > 0 or 0 >

𝜕𝜕𝑎𝑎𝑖𝑖
∗/𝜕𝜕�𝜎𝜎2�

𝑎𝑎𝑖𝑖
∗ >

𝜕𝜕𝐿𝐿𝑖𝑖
∗/𝜕𝜕�𝜎𝜎2�

𝐿𝐿𝑖𝑖
∗ ), better efficiency 

(when both positive) saves the producer water even though he needs to distribute 

water to a larger area. With more water available he can meet the irrigation 

requirements for more cropland and meanwhile increase the water application rates.  

2.3.2.2 Impact of Water Scarcity 

Reductions in water supply are specified to increase expected water price by a 

magnitude of its variance 𝜎𝜎𝜀𝜀2. Now we examine the effects of more expensive water 

supply on adaptation strategies.  
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(1) We find that water scarcity reduces water application rates.  

Water scarcity influences production behavior by changing water price. With 

this specification, the shadow prices for land and water supply constraints 𝜆𝜆 and 𝜂𝜂 are 

not affected by water scarcity. Therefore, we can easily derive the marginal effect on 

water use as 
𝜕𝜕𝑟𝑟𝑖𝑖

∗

𝜕𝜕𝜎𝜎𝜀𝜀2
= − 𝜆𝜆𝛽𝛽𝑖𝑖

�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖��𝑐𝑐𝑖𝑖+𝜎𝜎𝜀𝜀2+𝜂𝜂�
2 < 0. It suggests that as the uncertainty in 

water supply increases, producers cut the volume of water applied per-acre. This 

makes intuitive sense in that as water becomes more expensive due to reduced supply, 

producers have lower demand.  

(2) Water scarcity encourages technology adoption for a producer with low 

irrigation efficiency and for a crop with high price.  

The sign of the marginal effect 
𝜕𝜕𝑎𝑎𝑖𝑖

∗

𝜕𝜕𝜎𝜎𝜀𝜀2
 depends on the optimal adoption 𝑎𝑎𝑖𝑖∗ 

relative to a threshold level 𝑎𝑎𝚥𝚥𝜀𝜀���. When 𝑎𝑎𝑖𝑖∗ < 𝑎𝑎𝚥𝚥𝜀𝜀���, 
𝜕𝜕𝑎𝑎𝑖𝑖

∗

𝜕𝜕𝜎𝜎𝜀𝜀2
> 0; otherwise, 

𝜕𝜕𝑎𝑎𝑖𝑖
∗

𝜕𝜕𝜎𝜎𝜀𝜀2
< 0. Detailed 

derivation is presented in Appendix A5. When a producer adopts the irrigation 

technology for a small share of land and uses water in a less efficient way, he 

responds to more expensive water supply by improving irrigation efficiency. Higher 

water price discourages him from using water. To maintain productivity, he 

substitutes with technology to offset the reduction in average effective water 

application rates. Whereas a producer with high irrigation efficiency is more likely to 

decrease investment in technology given water supply uncertainty. Since we assume 

decreasing marginal productivity, additional investment in technology adoption is not 

necessarily covered by the benefit (i.e. marginal product value) from increasing 

adoption. In other words, increasing adoption may cause loss in net returns. 

Therefore, higher water price drives him to reduce adoption.  

Second, under water shortage technology adoption favors crop with high 

market price. 
𝜕𝜕2𝑎𝑎𝑖𝑖

∗

𝜕𝜕𝜎𝜎𝜀𝜀2𝜕𝜕𝑃𝑃𝑖𝑖
> 0, meaning if a crop has higher price, it is more likely that 
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𝜕𝜕𝑎𝑎𝑖𝑖
∗

𝜕𝜕𝜎𝜎𝜀𝜀2
> 0. Given more limited water supply, a producer is more willing to increase 

adoption (or less willing to reduce adoption) of the efficient irrigation technology for 

a high-value crop. This result is also straightforward in that capital investment favors 

a crop that can bring high marginal returns.  

(3) In response to water scarcity, a producer allocates more land to a crop that 

is not largely produced. The expansion in acreage increases with output price.  

The threshold level is correspondingly defined by 𝐿𝐿𝚥𝚥𝜀𝜀�  (or 𝜆𝜆𝜀𝜀� ). When 𝐿𝐿𝑖𝑖∗ < 𝐿𝐿𝚥𝚥𝜀𝜀�  

(𝜆𝜆 > 𝜆𝜆𝜀𝜀� ), land has a high marginal productivity. Hence, a producer has an incentive to 

expand production of the crop. When 𝐿𝐿𝑖𝑖∗ > 𝐿𝐿𝚥𝚥𝜀𝜀�  (𝜆𝜆 < 𝜆𝜆𝜀𝜀� ), the production scale is 

sufficiently large. An extra unit of land cannot bring enough benefit to cover the extra 

cost of input use. Under this circumstance, if a producer expects increasing water 

price, he responds by decreasing planted acreage, in accordance with decreased water 

application rate and decreased technology adoption. This reduction in acreage goes to 

crops that are not massively produced (i.e. with small 𝐿𝐿𝑖𝑖∗), implying a more diversified 

crop portfolio.  

Likewise, informed by the second order derivatives, the acreage reduction 

tends to happen to a crop with low output price. That is, water scarcity makes 

producers concentrate on limited cropland and more expensive water supply to high-

value crops.  

2.3.3 Summary: Key Parameters 
Climate change and water scarcity are anticipated to affect irrigated 

agriculture production on the West Coast. In response, producers can adapt by 

altering land allocations, adjusting water application rates, and adopting efficient 

irrigation technologies. This analysis constructs a theoretical framework to explore a 

multioutput producer’s adaptive strategies under uncertainties. Comparative statics 

results are summarized in Table 2-2. There are several interesting findings.  
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Table 2-2. Comparative Statics Analysisa 
 

Parameters Sign (
𝜕𝜕𝑎𝑎𝑖𝑖

∗

𝜕𝜕(∙)
) Sign (

𝜕𝜕𝐿𝐿𝑖𝑖
∗

𝜕𝜕(∙)
) Sign (

𝜕𝜕𝑟𝑟𝑖𝑖
∗

𝜕𝜕(∙)
) 

Climate variability 𝜎𝜎2 (+) if 𝑎𝑎𝑖𝑖∗ > 𝑎𝑎𝚥𝚥�  (+) if 𝐿𝐿𝑖𝑖∗ > 𝐿𝐿𝚥𝚥� , i.e. 𝜆𝜆 < 𝜆𝜆̅ (+) if 
𝜕𝜕𝑎𝑎𝑖𝑖

∗/𝜕𝜕(∙)

𝑎𝑎𝑖𝑖
∗ >

𝜕𝜕𝐿𝐿𝑖𝑖
∗/𝜕𝜕(∙)

𝐿𝐿𝑖𝑖
∗  

Water availability 𝜎𝜎𝜀𝜀2 (−) if 𝑎𝑎𝑖𝑖∗ > 𝑎𝑎𝚥𝚥𝜀𝜀��� (−) if 𝐿𝐿𝑖𝑖∗ > 𝐿𝐿𝚥𝚥𝜀𝜀� , i.e. 𝜆𝜆 < 𝜆𝜆𝜀𝜀�  (−)  

Note: a Differentiate the optimal solutions and/or first order conditions with respect to each parameter. The 
detailed derivation and proof are provided in Appendix A3-A5. 

 

First, climate variability and water scarcity have opposite impacts on 

irrigation technology adoption. As an agricultural input, more efficient irrigation 

technology improves the relative efficiency of water use, mitigates crop damage from 

climate risks such as uncertain rainfall, and reduces the implicit cost of risk bearing. 

Meanwhile, it requires irreversible capital investment, generating a marginal cost that 

is not necessarily paid back by its marginal product value especially under 

uncertainties. There are two cases when a producer chooses to increase adoption. 1) If 

he has a high irrigation efficiency and anticipates a more variable climate, he will 

manage risk exposure by applying the technology to a larger share of cropland. 2) If 

he has a low adoption rate and expects increasing water price, he will enhance the use 

of technology to improve irrigation efficiency and compensate for reduced water 

supply. Under both circumstances, the producer is more likely to invest in technology 

adoption (or less likely to cut investment in technology adoption) for a crop with high 

market price.  

Second, cropland allocation responds to climate variability and water scarcity 

in opposite ways as well. Consider a producer who predominantly grows a certain 

crop. 1) On one hand, large production scale is a result of self-selection; meanwhile 

low shadow price indicates land as a “cheap” resource. If he expects more climate 

risks, he increases the share of land allocated to this crop and decreases the scale of 

other crops that he does not massively grow. 2) On the other hand, due to decreasing 

marginal productivity, an extra unit of land does not guarantee high marginal benefit. 

If he expects water shortage, he decreases planted acreage of this crop and instead 
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diversifies crop portfolio. In both cases, production risks make him expand 

production scale of a crop with high price.  

Lastly, in response to climate variability, a producer increases water 

application rates if he adjusts technology adoption more than he adjusts planted 

acreage. Irrigation efficiency and total volume of water use are substitutes in 

agricultural production. 1) If he increases adoption and decreases scale, higher 

efficiency and less water demand saves him water so that he increases water 

application rates. 2) If he increases adoption more than he increases scale, the water 

saved by increasing irrigation efficiency is more than enough to cover the irrigation 

demand for a larger area, so that he increases water application rates. Whereas water 

scarcity leads to a decline in water application rates, regardless of the characteristics 

specific to producer or crop.  

 

2.4 The Empirical Analysis 

2.4.1 Empirical Model 
Building on the theoretical framework, we perform an empirical analysis of 

farmers’ adaptive land allocation and irrigation practices conditional on water scarcity 

(S), water supply institutions (I), climate and weather conditions (C), farm 

characteristics and farmer demographics (D), and expected output and input prices 

(P). As informed by equations (2-4)~(2-7), S and C include measurements of climate 

and water availability risks, and D each farm’s unique property and personal 

characteristics. Hence, the empirical models of interest are: 

𝐷𝐷𝑅𝑅𝐷𝐷𝑖𝑖𝑡𝑡  = 𝑔𝑔(𝑺𝑺𝒊𝒊𝒊𝒊, 𝑰𝑰𝒊𝒊𝒊𝒊,𝑪𝑪𝒊𝒊𝒊𝒊,𝑫𝑫𝒊𝒊𝒊𝒊,𝑷𝑷𝒊𝒊𝒊𝒊),                                     (2-8) 

                               𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡
𝑖𝑖  = ℎ𝑖𝑖(𝑺𝑺𝒊𝒊𝒊𝒊, 𝑰𝑰𝒊𝒊𝒊𝒊,𝑪𝑪𝒊𝒊𝒊𝒊,𝑫𝑫𝒊𝒊𝒊𝒊,𝑷𝑷𝒊𝒊𝒊𝒊),                                    (2-9) 

𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡
𝑖𝑖  = 𝑙𝑙𝑖𝑖(𝑺𝑺𝒊𝒊𝒊𝒊, 𝑰𝑰𝒊𝒊𝒊𝒊,𝑪𝑪𝒊𝒊𝒊𝒊,𝑫𝑫𝒊𝒊𝒊𝒊,𝑷𝑷𝒊𝒊𝒊𝒊),                                   (2-10)  
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𝐴𝐴𝑅𝑅𝑖𝑖𝑡𝑡
𝑖𝑖  = 𝑚𝑚𝑖𝑖(𝑺𝑺𝒊𝒊𝒊𝒊, 𝑰𝑰𝒊𝒊𝒊𝒊,𝑪𝑪𝒊𝒊𝒊𝒊,𝑫𝑫𝒊𝒊𝒊𝒊,𝑷𝑷𝒊𝒊𝒊𝒊),                                   (2-11)   

where  

𝐷𝐷𝑅𝑅𝐷𝐷𝑖𝑖𝑡𝑡 = share of total harvested cropland allocated to dryland crops in farm 𝑖𝑖 and 

year 𝑡𝑡,  

𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡
𝑖𝑖  = share of total harvested cropland allocated to irrigate crop 𝑗𝑗 in farm 𝑖𝑖 and year 

𝑡𝑡,  

𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡
𝑖𝑖  = irrigation technology adoption choice of crop 𝑗𝑗 in farm 𝑖𝑖 and year 𝑡𝑡,  

𝐴𝐴𝑅𝑅𝑖𝑖𝑡𝑡
𝑖𝑖 = per-acre water application rate of crop 𝑗𝑗 in farm 𝑖𝑖 and year 𝑡𝑡.  

For this study, 𝑗𝑗 = 1, … ,5 is an index of crop/crop typ. 𝑡𝑡 = 2008, 2013 

indexes year. We include 𝑗𝑗 = 0 in equation (2-9) to represent the share of cropland 

allocated to irrigate all other non-selected crops. Equations (2-8) and (2-9) jointly 

characterize a producer’s land use decisions by modelling share of irrigated cropland 

vs dry land, and how irrigated cropland are allocated to individual crop. Equations (2-

9), (2-10), and (2-11) define a producer’s irrigation strategy specific to selected crops, 

including share of land irrigated, technology adoption, and water use.  

Water availability S is measured by both economic and physical variables. 

The economic variable measuring water availability includes cost of off-farm surface 

water. The physical variables include a) depth to groundwater; and b) pump capacity 

for irrigation, i.e., well water discharge rate. We calculate the per-acre cost of off-

farm surface water as an economic indicator of surface water availability. We use 

average depth to well water at the start of irrigation season to represent groundwater 

pumping cost. It is a weighted average of well water depth for all wells pumped, with 

weights measured by the share of pump capacity discharge from each well in total 

pump capacity. Variations in pump capacity also translate into changing groundwater 

availability. It is calculated as an average well water discharge rate for each farm.  
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We construct several variables to measure the nature of surface water supply 

institutions, denoted as vector I. Water supply institutions affect farmers’ water 

availability and costs and therefore influence their land use and irrigation decisions. 

We include a variable for whether some/all off-farm surface water is supplied by 

federal agencies, specifically the U.S. Bureau of Reclamation (BOR). We also 

include an interaction term of BOR surface water supply and water price to examine 

how institutions affect farmers’ response to water scarcity.  

Vector C includes county-level climate and weather variables. Different crops 

are sensitive to different types of extreme weather, such as excess moisture, extreme 

heat, spring freeze, and drought. We assume farmers make decisions based on both 

long-run expected climate conditions and short-run observed weather conditions. For 

example, irrigation technology adoption decision is made before the growing season 

conditional on climate expectations. While water application rates is a short-run 

response that can be adjusted during the growing season conditional on realized 

weather conditions. Therefore, we develop crop-specific climate risk measurements, 

climate expectations, and weather realizations. For example, excessive moisture risk 

is captured by a 30-year precipitation variability. Expected precipitation level is 

formulated as a 5-year average during specific months. While average precipitation in 

each production year represents realized precipitation level.  

Farm characteristics and farmer demographics D includes land characteristics 

that may affect land use and irrigation decisions, such as cropland quality. We also 

control for farm size. We develop a variable for tenure to characterize the 

demographic feature of farmer, which is calculated as the share of land owned in total 

acreage operated. We also include a state identifier in D as there may be different 

policies varying across states.  

Vector P includes the expected output prices at the time when the planting 

decisions are made, measured by lagged market prices. Both winter wheat and spring 

wheat are grown in Oregon and Washington4. We use wheat price in general to 

                                                           
4 California grows winter wheat only.  
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represent this category. Price of the orchard/vineyard category is represented by a 

weighted average price for the top sales perennial crops in each state. We include the 

input prices farmers pay at the start of the growing season, such as the indexes of 

prices paid for commodities, services, interest, taxes, and wage rates.  

More detailed variable construction process and description are available in 

the following data section. 

2.4.2 Data 

2.4.2.1 Data Source 

This analysis uses farm-level cross-sectional data on water and climate for the 

states of California, Oregon, and Washington. Our dataset is obtained from three 

main sources. The first one is the Cause of Loss (COL) data collected by the U.S. 

Department of Agriculture Risk Management Agency (USDA-RMA). The COL data 

report the county-level causes and timing of crop loss for all insured commodities 

under the federal crop insurance program (FCIP). The COL data provide a 

comprehensive summary of insurance information (e.g., total premium, subsidy, 

liability, indemnity, loss ratio, coverage category (i.e. buy-up or CAT)) associated 

with each insured commodity and insurance plan, as well as detailed information 

about the year and month when the loss occurs. The FCIP is the primary risk 

management tool for U.S. agriculture (Glauber 2013; Shi et al. 2019), making the 

COL data a reliable source to evaluate the relative risks for agricultural production.  

With the COL data, we analyze the specific causes and timing of crop loss, as 

captured by indemnity payments, by state and by crop using historical data files from 

1989-2018 (USDA-RMA 2019). We summarize the key adverse climate and weather 

conditions influencing each of the five crops/crop type. Figure 2-2 provides a visual 

presentation that there are various risks for growing each crop at each of the three 

states. In Table 2-3, each cell identifies the specific timing of climate or weather risks 

that affect production. Two percentages in parentheses represent the share of specific 

indemnity payments in total weather-related indemnity payments and the ratio of 
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specific indemnity payments to total liabilities, respectively. For example, forage 

production in California is susceptible to excessive moisture from December to 

March. Indemnified losses caused by excess moisture accounts for 77% of all 

weather-relevant indemnities and 33% of total liabilities. As shown in Table 2-3, the 

top causes of crop loss on the West Coast are excess moisture, heat, freeze and frost, 

and drought. For a particular crop and location, these major causes comprise 48%-

77% of total weather-related indemnity payments and at least 13% of insurance 

liability for each crop, indicating that climate and weather variability imposes a 

significant risk to agricultural production. 
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Figure 2-2. Various risks for growing each crop by state 
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Table 2-3. Top Drivers of Crop Loss for Selected Crops on the West Coast 1989-2018 
 

  Excess Moisture Heat Freeze and Frost Drought 

Forage 
CAa Dec-Mar (77%, 33% b)    
ORa June-Aug (25%, 7%) June-Oct (31%, 9%)   
WAa     

Orchard/Vineyard 
CA Feb-May (26%, 9%) Mar-Aug (24%, 8%) Mar-May (18%, 6%)  
OR June-Aug (12%, 4%)  Mar-May (41%, 15%)  
WA June-Aug (9%, 3%)  Mar-May (39%, 15%)  

Potato 
CA Apr-July (12%, 3%) May-Aug (36%, 9%)   
OR May-Oct (29%, 9%) May-Aug (31%, 9%)   
WA May-Oct (18%, 6%) May-Aug (45%, 15%)   

Rice 
CA Mar-May (76%, 28%)    
OR     
WA     

Wheat 
CA Dec-May (26%, 13%)   Dec-May (48%, 25%) 
OR  May-July (16%, 6%)  Mar-Aug (60%, 24%) 
WA  May-July (13%, 3%)  Mar-Aug (43%, 10%) 

Note: a State abbreviation, CA, OR, and WA stand for California, Oregon, and Washington, respectively. 
 b In parentheses are two percentages with the former representing the share of indemnified loss caused by each 
factor in total weather-related indemnity payments, and the latter representing the ratio to total liabilities. 

 

The COL analysis suggests that different crops are sensitive to different types 

of extreme weather. The losses also reflect the self-selection of producers choosing 

different crops in different locations. To develop measures of climate risks that are 

truly exogenous, we generate county-level climate and weather variables specific to 

individual crop using climate data developed from the PRISM system, capturing both 

spatial and temporal variations of important climate variables on the West Coast. 

PRISM datasets are recognized world-wide as the highest-quality spatial climate 

datasets currently available and provide the USDA with their official 30-year digital 

climate maps (Daly 2006; Daly et al. 2012; 2008; 2002; Daly et al. 1994). The 

PRISM system produces continuous, digital grid estimates of daily, monthly, yearly, 

and event-based climatic parameters. Our climate data for each county is extracted 

using an agricultural land mask so that data does not include mountainous area or 

other non-agricultural lands. A unique feature of our climate data is that they reflect 

both expected climate and observed weather conditions. As mentioned in the last 

section, long run adaptations are responsive to climate expectations while short run 

adjustments are affected by weather realizations. Hence, we develop recent 5-year 

averages for an array of climate statistics for each month of the year to represent 
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long-run expectations, and an array of climate statistics for each month and season for 

short-run observations. 

Finally, the USDA Farm and Ranch Irrigation Survey (FRIS) is the primary 

data for characterizing the variability in water availability, water supply institutions, 

farm characteristics, farmer demographics, water use, and irrigation technology 

adoption across farms on the West Coast. This study generates a representative 

sample of farms on the West Coast with data in production years 2013 and 2018 (the 

two most recent surveys). The West Coast is one of the ten USDA Farm Production 

Regions. The FRIS provides the most comprehensive profile of irrigation in the U.S. 

because it is delivered to all irrigated farms as a supplement to the Census of 

Agriculture. It contains detailed farm-level data on water sources (e.g., groundwater 

and surface water), water supply institutions, farm characteristics, farmer 

demographics, and a variety of irrigation management practices, including technology 

adoption, water use, water recycling and reclamation, and whether irrigation was used 

to mitigate damage from extreme weather such as freeze and heat stress.  

Variables complementing the FRIS data and PRISM data are developed from 

other sources. We obtain the commodity price and input price data from USDA 

National Agricultural Statistics Service (NASS). It provides state-level price received 

in each marketing year for potato, rice, wheat, and forage. We rank commodities in 

orchard/vineyard category by cash receipts in 2018, select top 3 crops in this category 

for each state, and calculate weighted averages to represent category price, with 

weights measured by the relative cash receipts. Output prices are adjusted for 

inflation with 1982-1984 as base year. All input prices are normalized by the index of 

prices paid by farmers for commodities, services, interest, taxes, and wage rates at the 

start of the growing season (USDA 2014). Cropland quality variables are generated 

from the 1997 Natural Resources Inventory and the 2011 National Land Cover 

Database. Specifically, we collect GIS data on the amount of land in Land Capability 

Class 1-8 and use a shape file for agricultural land from the National Land Cover 

Database to construct a variable for the amount of agricultural land in each of the 
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eight Land Capability Classes. Lower Land Capability Class values indicate higher 

quality soils with less use restrictions and better suitability for agricultural production. 

2.4.2.2 Variable Construction and Description 

Table 2-4 presents detailed explanations for the variables. We quantify excess 

moisture risk as precipitation variability. For example, excess moisture from 

December to March is identified as a primary cause of loss for forage in California. 

We construct average of monthly standard deviation of precipitation over the 

previous 30 years. These monthly mean standard deviations are then averaged across 

specific months, i.e. December to March to capture variability. For each crop/county 

combination, we also calculate 5-year mean precipitation averaged over specific 

months to represent the expectation of precipitation in the long run. Short run 

production decisions are affected by short run weather realizations. As such, we 

create mean precipitation averaged over specific months in each production year to 

represent short-run precipitation levels.  
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Table 2-4. Definitions for Dependent and Independent Variables 
 

Dependent Variables 
Dry land share, 𝐷𝐷𝑅𝑅𝐷𝐷𝑖𝑖𝑡𝑡  Share of dry land production in total harvested acreage [0,1]a 
Irrigated share, 𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡

𝑖𝑖  Crop-specific share of irrigated land harvested in total harvested acreage [0,1]a 
Technology adoption, 𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡

𝑖𝑖  Crop-specific adoption of efficient irrigation technology (0/1)b 
Water application rate, 𝐴𝐴𝑅𝑅𝑖𝑖𝑡𝑡

𝑖𝑖  Crop-specific quantity of water applied (acre-feet per acre) 
Independent Variables 

Water scarcity, S 
    Surface water cost Price of off-farm surface water ($1000 per acre-foot) 
    Well water depth Depth to well water at the start of irrigation season (1000 feet) 
    Pump capacity well water discharge rate (1000 GPM) 
Water supply institutions, I 
    BOR Off-farm surface water supplied by the BOR (0/1) 
    BOR*Surface water cost Interaction term of BOR surface water supply and water price 
Climate and weather, C 
    Excessive moisture risk 30-year mean of monthly standard deviation of precip. averaged over specific months (inches) 
    Extreme heat risk 30-year mean of monthly standard deviation of daily max. temperature averaged over specific months (°F) 
    Spring freeze and frost risk Median of last spring freeze date over 30 years (days) 
    Drought risk Percentage of months when actual precip. smaller than average precip. by one std. dev. over 30 years [0,1] 
    Precipitation, expected 5-year average of monthly mean of precip. averaged over growing season (inches) 
    Precipitation, observed monthly mean of precip. of the year averaged over growing season (inches) 
    Max. temperature, expected 5-year average of monthly mean of daily max. temperature averaged over growing season (°F) 
    Max. temperature, observed monthly mean of daily max. temperature of the year averaged over growing season (°F) 
Farm characteristics and farmer demographics, D 
    Cropland quality Share of cropland in Land Capability Classes 1, 2, or 3 [0,1] 
    Scale Total acreage of land that could be used for crops without additional improvement (1000 acres) 
    Tenure Ratio of land owned relative to the total land owned, rented, and leased [0,1] 
Prices, P 
    Output price 1-year lagged output price of the marketing year  
    Input price Indexes of price paid for commodities, services, interest, taxes, and wage rates 

Note: a The shares add to 1, altogether characterizing a producer’s cropland allocation decision.  
 b Benchmark is gravity (0); efficient technology is sprinkler and drip (1). 

 

Extreme heat risk is characterized by variability in daily maximum 

temperature. We first calculate the standard deviation of daily maximum temperature 

for a specific month over a 30-year period, then calculate the average of standard 

deviation across specific months. For each crop/county combination, we also 

construct a 5-year average of monthly mean daily maximum temperature averaged 

across months to represent expectation and calculate the monthly mean of daily 

maximum temperature (averaged across months in a given year) to represent the 

maximum temperature condition in a year.  
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Spring freeze presents a considerable risk to orchard/vineyard production on 

the West Coast. We use 32°F as the break point for freeze data. We generate a 30-

year median of the date when the last spring freeze occurred on agricultural land to 

measure the expected spring freeze risk for growing orchard/vineyard in a county.  

Lastly, we treat drought risk as a relatively high probability of extremely low 

precipitation, which is captured by the left tail of precipitation distribution. We use 

the percentage of months during which precipitation is below the average 

precipitation by more than the standard deviation throughout a 30-year period to 

represent drought risk for producing wheat in a county. 

Table 2-5 reports summary statistics for the dependent variables. We have 

4480 farms in total that irrigate at least one of the selected crops, with 1646 

observations from 2013 FRIS and 2834 from 2018.5 Irrigation is an essential 

component of farming practices in our sample. On average, a representative producer 

allocates 5.2% of cropland to dryland crops, 74.7% to irrigate selected crops, and 

20.1% to irrigate other non-selected crops. Irrigated share is relatively large for 

producers irrigating forage and orchard/vineyard and small for potato and wheat. 

More than 90% of orchard/vineyard and potato farms adopt the efficient irrigation 

technology, sprinkler and drip. Adoption rates are lower for forage and wheat farms. 

There is less variation in water application rates, with forage and rice irrigation using 

more water per acre. All rice is irrigated, exclusively with the benchmark technology, 

gravity. Beside, rice production is almost exclusively concentrated in the Sacramento 

Valley in California. Given these features, there is little variation in dependent 

variables for rice. Therefore, we decide to drop rice from selected crops even though 

rice is a water-intensive crop. 

 

 

                                                           
5 4526 farms in 2013 and 7974 farms in 2018 participate in the survey on the West Coast. Our 
sample represent 36% of producers in the study region.  
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Table 2-5. Descriptive Statistics for Dependent Variables 
 

Note: Reported are sample means. In parentheses are standard deviations.  
 

Table 2-6 reports summary statistics for the independent variables. The unit 

cost of off-farm surface water is highest for orchard/vineyard and lowest for wheat, 

indicating surface water availability is more of a concern for orchard/vineyard 

producers. On the contrary, depth to well water is smallest for orchard/vineyard and 

second largest for wheat, pump capacity smallest for orchard/vineyard and largest for 

wheat. The difference implies relatively lower groundwater pumping cost for 

orchard/vineyard producers; while groundwater is less accessible for wheat 

producers. These distinctions in water scarcity perfectly coincide with the fact that a 

higher proportion of orchard/vineyard and potato farms use groundwater (63% and 

59%, respectively), while a majority of wheat and forage farms use off-farm surface 

water (71% and 64%, respectively). There is a similar pattern in water supply 

institutions. Wheat farms rely heavily on surface water, with 39.3% of them obtaining 

surface water from BOR. While only 17.4% of orchard/vineyard farms receive BOR 

surface water supply. Table 2-3 summarizes the climate risks that are critical to the 

health of each crop. Table 2-6 provides a comparison across crops. For example, 

excessive moisture risk presents more of a threat to orchard/vineyard than to wheat. 

Extreme heat risk is highest for growing potato and lowest for forage. Land quality is 

highest for potato and lowest for wheat. Farm size is significantly larger for potato 

and wheat than other crops. Tenure is highest for orchard/vineyard and lowest for 

wheat, suggesting that farmers growing perennial crops tend to own cropland rather 

Variable (units) 
Irrigated land 

Dry land 
Forage Orchard/Vineyard Potato Rice Wheat Other 

Cropland allocation [0,1]  0.239 
(0.380) 

0.470 
(0.467) 

0.015 
(0.084) 

0.030 
(0.162) 

0.036 
(0.116) 

0.201 
(0.318) 

0.052 
(0.165) 

Technology adoption % Gravity 43 10 5 100 38 -- -- 
% Sprinkler & Drip 57 90 95 0 62 -- -- 

Water application rate (acre-feet/acre) 2.450 
(1.331) 

2.066 
(1.280) 

1.847 
(1.044) 

4.384 
(1.432) 

1.925 
(0.893) -- -- 

Observations 1645 2629 294 170 658 4407 4480 
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than rent or lease from others. Variables without variation are not reported, such as 

input prices. 

 

 Table 2-6. Descriptive Statistics for Independent Variables 
 

Note: a Outliers in water scarcity variables are replaced with the values at 95% percentile. Missing observations are replaced 
with county-level or state-level averages, by assuming that farms in the same county have similar water availability.  

 

Variable (units) 
Forage Orchard/Vineyard Potato Wheat 
Mean 

(Std. Dev.) 
Mean 

(Std. Dev.) 
Mean 

(Std. Dev.) 
Mean 

(Std. Dev.) 
Water scarcitya  

    Off-farm surface water cost ($1000/acre-foot) 0.047 
(0.085) 

0.166 
(0.224) 

0.091 
(0.180) 

0.041 
(0.067) 

    Depth to well water (1000 feet) 0.153 
(0.099) 

0.143 
(0.086) 

0.193 
(0.135) 

0.189 
(0.127) 

    Pump capacity (1000 GPM) 1.154 
(0.506) 

0.971 
(0.561) 

1.175 
(0.527) 

1.255 
(0.521) 

Water supply institutions 

    BOR surface water supply (0/1) 0.291 
(0.454) 

0.174 
(0.379) 

0.270 
(0.445) 

0.393 
(0.489) 

Climate and weather  

    Excessive moisture risk (inches) 22.181 
(24.045) 

36.173 
(20.225) 

17.793 
(10.081) 

13.643 
(20.284) 

    Extreme heat risk (°F) 1.926 
(2.418) 

3.097 
(1.611) 

4.445 
(0.511) 

2.913 
(2.314) 

    Spring freeze and frost risk (days) -- 89.159 
(27.449) -- -- 

    Drought risk [0,1] -- -- -- 0.060 
(0.122) 

    Precipitation, expected (inches) 19.277 
(14.538) 

15.050 
(15.096) 

28.278 
(22.627) 

16.011 
(11.321) 

    Precipitation, observed (inches) 17.835 
(14.429) 

12.082 
(14.254) 

27.101 
(22.095) 

16.012 
(13.210) 

    Max. temperature, expected (°F) 28.284 
(3.850) 

30.174 
(3.468) 

26.513 
(3.560) 

28.995 
(3.908) 

    Max. temperature, observed (°F) 28.947 
(3.515) 

30.321 
(3.244) 

27.314 
(3.335) 

29.762 
(3.580) 

Farm characteristics and farmer demographics  

    Cropland quality [0,1] 0.255 
(0.280) 

0.298 
(0.326) 

0.373 
(0.256) 

0.244 
(0.255) 

    Scale (1000 acres) 2.023 
(5.381) 

1.057 
(3.317) 

3.825 
(7.329) 

3.900 
(6.977) 

    Tenure [0,1] 0.584 
(0.316) 

0.766 
(0.290) 

0.602 
(0.320) 

0.483 
(0.287) 

Price  

    Output price ($/ton) 44.684 
(4.036) 

637.001 
(248.230) 

38.877 
(13.719) 

58.746 
(9.207) 



38 
 

 

2.4.3 Estimation Strategy 

2.4.3.1 A Farm-level Analysis 

The FRIS provides detailed farm-level data on irrigation. However, for 

confidentiality reason the survey doesn’t reveal a farm identifier, which prevent us 

from merging different surveys into a panel. To deal with this situation, we test two 

types of estimation methods. First, we stack the samples from 2013 and 2018 to 

create a pooled cross-sectional dataset and treat farms that might have participated in 

both surveys as independent observations. The model specification of equations (2-

8)~(2-11) takes the form 

𝐷𝐷𝑖𝑖𝑡𝑡
𝑖𝑖  = 𝜷𝜷𝟏𝟏

𝒋𝒋 𝑺𝑺𝒊𝒊𝒊𝒊 + 𝜷𝜷𝟐𝟐
𝒋𝒋 𝑰𝑰𝒊𝒊𝒊𝒊 + 𝜷𝜷𝟑𝟑

𝒋𝒋 𝑪𝑪𝒊𝒊𝒊𝒊 + 𝜷𝜷𝟒𝟒
𝒋𝒋 𝑫𝑫𝒊𝒊𝒊𝒊 + 𝜷𝜷𝟓𝟓

𝒋𝒋 𝑷𝑷𝒊𝒊𝒊𝒊 + 𝑢𝑢𝑡𝑡
𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑡𝑡

𝑖𝑖 , 𝑖𝑖𝑓𝑓 𝐷𝐷𝑖𝑖𝑡𝑡
𝑖𝑖 = 𝐷𝐷𝑅𝑅𝐷𝐷𝑖𝑖𝑡𝑡 , 𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡

𝑖𝑖 ,𝐴𝐴𝑅𝑅𝑖𝑖𝑡𝑡
𝑖𝑖 ,  (2-12) 

𝑃𝑃𝑟𝑟𝑃𝑃𝑃𝑃�𝐷𝐷𝑖𝑖𝑡𝑡
𝑖𝑖 = 1� =

exp�𝜷𝜷𝟏𝟏
𝒋𝒋 𝑺𝑺𝒊𝒊𝒊𝒊+𝜷𝜷𝟐𝟐

𝒋𝒋 𝑰𝑰𝒊𝒊𝒊𝒊+𝜷𝜷𝟑𝟑
𝒋𝒋 𝑪𝑪𝒊𝒊𝒊𝒊+𝜷𝜷𝟒𝟒

𝒋𝒋 𝑫𝑫𝒊𝒊𝒊𝒊+𝜷𝜷𝟓𝟓
𝒋𝒋 𝑷𝑷𝒊𝒊𝒊𝒊+𝑢𝑢𝑡𝑡

𝑖𝑖+𝜀𝜀𝑖𝑖𝑡𝑡
𝑖𝑖 �

1+exp�𝜷𝜷𝟏𝟏
𝒋𝒋 𝑺𝑺𝒊𝒊𝒊𝒊+𝜷𝜷𝟐𝟐

𝒋𝒋 𝑰𝑰𝒊𝒊𝒊𝒊+𝜷𝜷𝟑𝟑
𝒋𝒋 𝑪𝑪𝒊𝒊𝒊𝒊+𝜷𝜷𝟒𝟒

𝒋𝒋 𝑫𝑫𝒊𝒊𝒊𝒊+𝜷𝜷𝟓𝟓
𝒋𝒋 𝑷𝑷𝒊𝒊𝒊𝒊+𝑢𝑢𝑡𝑡

𝑖𝑖+𝜀𝜀𝑖𝑖𝑡𝑡
𝑖𝑖 �

, 𝑖𝑖𝑓𝑓 𝐷𝐷𝑖𝑖𝑡𝑡
𝑖𝑖 = 𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡

𝑖𝑖 ,       (2-13) 

where the superscript 𝑗𝑗 can be ignored when 𝐷𝐷𝑖𝑖𝑡𝑡
𝑖𝑖 = 𝐷𝐷𝑅𝑅𝐷𝐷𝑖𝑖𝑡𝑡. 𝑢𝑢𝑡𝑡

𝑖𝑖 and 𝜀𝜀𝑖𝑖𝑡𝑡
𝑖𝑖  represent year 

fixed effects and the error term, respectively.  

Endogeneity issue and selecting functional forms raise a challenge to 

econometric estimation. First, we deal with endogeneity caused by simultaneity using 

instruments. We use depth to well water at the start of irrigation season to represent 

groundwater availability, which affects and is affected by adaptations. We adopt an 

IV approach to address the simultaneity-induced endogeneity bias given that 

groundwater is a non-exclusive open access good, a farm’s pumping practices bear 

the consequence of neighboring farms’ pumping behavior. Following Irwin and 

Bockstael (2002) and Pfeiffer and Lin (2012), we use average well water depth of 

neighboring farms (i.e. all other farms within the same county) as an instrument for 

well water depth. Pump capacity is similarly instrumented by the average pump 

capacity of neighboring producers. Per-acre cost of off-farm surface water reflects 

surface water availability. Water price is usually treated as exogenous as individual 

farms do not have a significant effect on price. However, we consider the potential 
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endogeneity bias and develop instrumental variables on neighboring farms’ surface 

water cost. 

Second, we identify model specifications and estimators. Specifically, the 

dependent variables 𝐷𝐷𝑅𝑅𝐷𝐷𝑖𝑖𝑡𝑡 and 𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡
𝑖𝑖  jointly model producers’ land use decisions, 

including allocation of cropland between irrigated production and dryland production, 

and allocation of irrigated cropland to individual crops. They are estimated using 

OLS. Since they are specified as shares, we also test a fractional logit (FL) model. In 

addition, the majority of the farms in the sample irrigate at least one of the selected 

crops, generating many zeros in the share of dry land (around 85% of the sample). So 

we also test a Tobit model on dry land share, see the following subsections for 

detailed discussion. Our survey data identifies the primary method of irrigation for 

each crop. The irrigation technology adoption variable 𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡
𝑖𝑖  is estimated as a discrete 

choice model using binomial logit. Water application rates variable 𝐴𝐴𝑅𝑅𝑖𝑖𝑡𝑡
𝑖𝑖  is estimated 

with OLS. 

Third, we address endogeneity resulting from correlation across equations. 

Producers make land and irrigation decisions jointly, which gives rise to correlated 

error terms. So we estimate this system of equations simultaneously using seemingly 

unrelated estimation. 

We implement a 3-stage estimation procedure that sequentially addresses 

these econometric challenges to obtain consistent and efficient estimates.  

1st stage: Regress the endogenous water scarcity variables on all the 

exogenous regressors and instruments with OLS and get predicted values; 

2nd stage: Regress the dependent variables on all the exogenous regressors 

and fitted values of endogenous variables, using selected functional forms and 

estimators 

3rd stage: Estimate producers’ responses as a system. 
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2.4.3.2 A County-level Analysis 

Alternatively, we sacrifice the microscale model for a panel structure. The 

smallest geographic identifier for each surveyed farm is the county they belong to. 

Hence, we aggregate data to county-level for each variable and generate a panel 

dataset. Specific panel construction methods are provided in Table 2-7. We estimate 

the equation system as  

𝐷𝐷𝑐𝑐𝑡𝑡
𝑖𝑖  = 𝜷𝜷𝟏𝟏

𝒋𝒋 𝑺𝑺𝒄𝒄𝒊𝒊 + 𝜷𝜷𝟐𝟐
𝒋𝒋 𝑰𝑰𝒄𝒄𝒊𝒊 + 𝜷𝜷𝟑𝟑

𝒋𝒋 𝑪𝑪𝒄𝒄𝒊𝒊 + 𝜷𝜷𝟒𝟒
𝒋𝒋 𝑫𝑫𝒄𝒄𝒊𝒊 + 𝜷𝜷𝟓𝟓

𝒋𝒋 𝑷𝑷𝒄𝒄𝒊𝒊 + 𝑎𝑎𝑐𝑐
𝑖𝑖 + 𝑃𝑃𝑡𝑡

𝑖𝑖 + 𝜀𝜀𝑐𝑐𝑡𝑡
𝑖𝑖 , ∀ 𝐷𝐷𝑐𝑐𝑡𝑡

𝑖𝑖 ,     (2-14)  

where subscript 𝑐𝑐 indexes county and 𝑎𝑎𝑐𝑐
𝑖𝑖 and 𝑃𝑃𝑡𝑡

𝑖𝑖 represent county and year fixed 

effects, respectively. Compared with the farm-level model, we get to treat unobserved 

heterogeneity but we lose the richness of data by aggregation. Besides, this panel 

specification weakens the interpretation on individual farmer’s heterogeneous 

responses to climate and water conditions.   
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Table 2-7. Panel Construction: Aggregation Methods for Dependent and Independent Variables 
 

Dependent Variables 
Dry land share, 𝐷𝐷𝑅𝑅𝐷𝐷𝑐𝑐𝑡𝑡  Weighted average of dry land share 𝐷𝐷𝑅𝑅𝐷𝐷𝑖𝑖𝑡𝑡 , weight same as above [0,1] 

Irrigated share, 𝐼𝐼𝐼𝐼𝑐𝑐𝑡𝑡
𝑖𝑖  Weighted average of irrigated share 𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡

𝑖𝑖 , weight measured by share of total harvested cropland of each 
farm in the county [0,1] 

Technology adoption, 𝑇𝑇𝑇𝑇𝑐𝑐𝑡𝑡
𝑖𝑖  Share of farms adopting efficient irrigation technology [0,1] 

Water application rate, 𝐴𝐴𝑅𝑅𝑐𝑐𝑡𝑡
𝑖𝑖  Weighted average of water application rate 𝐴𝐴𝑅𝑅𝑖𝑖𝑡𝑡

𝑖𝑖 , weight measured by share of irrigated acreage of each 
farm in total irrigated acreage of the county (acre-feet per acre) 

Independent Variables 
Water scarcity, S 

    Surface water cost Weighted average of cost, weight measured by share of expenditure on surface water of each farm in total 
expenditure of the county ($1000 per acre-foot) 

    Well water depth County average (1000 feet) 
    Pump capacity County average (1000 GPM) 
Water supply institutions, I 
    BOR Share of farms obtaining off-farm surface water from BOR [0,1] 
Climate and weather, C No aggregation needed 
Farm characteristics and farmer demographics, D 
    Cropland quality No aggregation needed 
    Scale County total (1000 acres) 
    Tenure Weighted average of tenure, weight same as that of irrigated share [0,1] 
Prices, P No aggregation needed 

 

The estimation strategy remains same as farm-level analysis except for the 

following aspects, see Table 2-8 for a detailed comparison. First, 𝑇𝑇𝑇𝑇𝑐𝑐𝑡𝑡
𝑖𝑖  is specified as 

the share of farms within a county adopting efficient irrigation technology. So we test 

both OLS and FL on this dependent variable. Second, there are non-linear 

specifications in the second stage for the farm-level model. Therefore, we perform a 

seemingly unrelated estimation on the system using a 2-step GLS approach and adjust 

the variance-covariance matrix to get the correct standard errors in the third stage. 

However, at county-level, we have the option to use OLS for all dependent variables 

in stage 2. This allows using MLE for seemingly unrelated regression, where the 

estimators are iterated to convergence. The estimates from GLS and MLE are 

asymptotically equivalent, but not numerically identical. Lastly, we perform a two-

way fixed effects estimation on this panel.  
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Table 2-8. A Comparison of Estimation Methods 
 

 Pooled Data Models Panel Data Models 

Dependent variables 𝐷𝐷𝑅𝑅𝐷𝐷𝑖𝑖𝑡𝑡 , 𝐼𝐼𝐼𝐼𝑖𝑖𝑡𝑡
𝑖𝑖  𝑇𝑇𝑇𝑇𝑖𝑖𝑡𝑡

𝑖𝑖  𝐴𝐴𝑅𝑅𝑖𝑖𝑡𝑡
𝑖𝑖  𝐷𝐷𝑅𝑅𝐷𝐷𝑐𝑐𝑡𝑡 , 𝐼𝐼𝐼𝐼𝑐𝑐𝑡𝑡

𝑖𝑖  𝑇𝑇𝑇𝑇𝑐𝑐𝑡𝑡
𝑖𝑖  𝐴𝐴𝑅𝑅𝑐𝑐𝑡𝑡

𝑖𝑖  

Estimation 
methods 

1st stage OLS OLS 

2nd stage OLS/FL/Tobit Binomial logit OLS OLS/FL/Tobit OLS/FL OLS 

3rd stage Seemingly unrelated regression GLS Seemingly unrelated regression MLE 
Fixed effects Year County, year 
Obs. 4481 239 

 

2.4.3.3 Identifying the Best Model Specifications and Estimators  

We perform several tests to determine the best model specifications and 

estimation methods and assess the robustness of estimation results. First, we test 

different estimators on the equations of dry land production and irrigated share, 

including OLS, FL, and Tobit (only for dry land share). Table 2-9 provides a detailed 

comparison across different estimators for dry land share. In the case of OLS 

regression, we report parameter estimates, standard errors, and significance levels 

from a 3-stage estimation. In the cases of nonlinear models, we run first two steps of 

estimation, perform post-estimation predictions, calculate the marginal effects and 

their standard errors using numerical derivatives, as reported in Table 2-9. We then 

run the third stage estimation using coefficients from previous stages, adjust their 

standard errors, and report significance levels. We prefer the significance of 

coefficients that are adjusted by seemingly unrelated regression over the significance 

of marginal effects for the following reasons: 1) from a technical perspective, 

marginal effects are nonlinear functions of all the parameter estimates and 

explanatory variables; and 2) marginal effects are estimated with a nonstandard vce 

(delta method standard error), they cannot be adjusted by seemingly unrelated 

regression. 
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Table 2-9. A Comparison between Three Estimators for the Share of Dry Land Production 
 

Note: *, **, and *** denote significance at the 10, 5, and 1 percent levels, respectively. The values reported are 
coefficient estimates from OLS regression, marginal effects from Fractional Logit model, and marginal effects from 
Tobit model, respectively. In parentheses are standard errors.  

 

Variable (units) 
OLS Fractional Logit Tobit 
Coef. 

(Std. Err.) 
dy/dx 

(Std. Err.) 
dy/dx 

(Std. Err.) 
Water scarcity 

    Off-farm surface water cost ($1000/acre-foot) -0.014 
(0.022) 

-0.035 
(0.029) 

-0.260** 
(0.117) 

    Depth to well water (1000 feet) 0.154*** 
(0.053) 

0.097** 
(0.044) 

0.601*** 
(0.192) 

    Pump capacity (1000 GPM) 0.001 
(0.008) 

-0.001 
(0.008) 

0.011 
(0.032) 

Water supply institutions 

    BOR surface water supply (0/1) -0.026*** 
(0.006) 

-0.031*** 
(0.012) 

-0.146*** 
(0.041) 

    BOR*surface water cost 0.045 
(0.033) 

0.074 
(0.081) 

0.435 
(0.293) 

Climate and weather 

    Excessive moisture risk (inches) -2.07E-4 
(2.56E-4) 

7.06E-5 
(0.000) 

-0.002 
(0.001) 

    Extreme heat risk (°F) -0.012 
(0.021) 

0.002 
(0.018) 

0.071 
(0.083) 

    Spring freeze and frost risk (days) 0.002*** 
(0.001) 

0.001 
(0.001) 

0.004 
(0.003) 

    Drought risk [0,1] 0.715*** 
(0.216) 

0.545*** 
(0.152) 

2.717*** 
(0.704) 

    Precipitation, expected (inches) 0.003*** 
(0.000) 

0.001 
(0.000) 

0.007*** 
(0.001) 

    Max. temperature, expected (°F) -4.02E-4 
(0.001) 

-0.006*** 
(0.002) 

-0.036*** 
(0.009) 

Farm characteristics and farmer demographics 

    Cropland quality [0,1] 0.012 
(0.012) 

0.007 
(0.014) 

0.009 
(0.057) 

    Scale (1000 acres) 0.002*** 
(0.001) 

0.001*** 
(0.000) 

0.011*** 
(0.003) 

    Tenure [0,1] -0.037*** 
(0.010) 

-0.035*** 
(0.011) 

-0.217*** 
(0.045) 

Year: 2018 0.021*** 
(0.006) 

0.023*** 
(0.008) 

0.114*** 
(0.033) 

State: OR -0.018 
(0.041) 

-0.019 
(0.036) 

-0.349** 
(0.159) 

State: WA -0.023 
(0.018) 

-0.010 
(0.024) 

-0.253*** 
(0.086) 

Hausman Test of the Null Hypothesis that the Difference in Coefficients Is Not Systematic 
𝜒𝜒2 Test Statistic -- 126.84 
Prob > 𝜒𝜒2 -- 0.00 
Result -- Rejected at 1% level of confidence 
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The marginal effects from FL and Tobit have different magnitudes but same 

signs except for two estimates that are statistically insignificant. We perform a 

Hausman specification test to see whether there is systematic difference between 

them and find that FL estimator is consistent and efficient, while Tobit is inconsistent. 

The parameters from OLS and the average marginal effects from FL are very close in 

magnitude and don’t switch signs except for three insignificant estimates. Since we 

cannot adjust the standard errors of marginal effects with SUR, a simple OLS model 

is more desirable as it requires less assumption and treatment. This conclusion holds 

for the share equations of selected crops and other crops.  

Second, we test the performance of instruments. The parameter estimates for 

instruments from the first stage regression are mostly statistically significant, 

indicating them as relevant to the endogenous variables. Besides, the instruments pass 

weak identification tests. The Stock-yogo F-stats (Kleibergen-Paap rk Wald stats for 

county-level) are greater than 10, which supports that we choose strong and adequate 

instruments and technically overcome the endogeneity issue.  

 

2.5 Estimation Results 

2.5.1 Evidence from Farm-level Analysis 

2.5.1.1 Adaptation to Water Scarcity and Climate Risks: Land Use 

Table 2-10 reports the marginal effects of water scarcity and climate risks on 

cropland allocation. First, intensified water scarcity, measured by increasing surface 

water price and groundwater pumping cost, reduces irrigated share of selected crops 

and expands dryland production. We observe more elastic response to water scarcity 

in selected crops with high water price. Summary statistics show that potato 

producers pay high surface water and groundwater cost and irrigate the smallest share 

of land, indicating water as a less accessible or affordable input. If they expect a 1% 

increase in surface water price, they reduce irrigated share of by 1.5%. Wheat and 

forage production are heavily dependent on surface water. They have the lowest 
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surface water costs while paying more for groundwater extraction. Increasing surface 

water price doesn’t significantly affect irrigated share of wheat and forage. However, 

reduced groundwater availability discourages farmers from irrigating wheat and 

forage. A 1% increase in well water depth and pump capacity decreases the irrigated 

share of both crops by 0.1%. Irrigation is essential to orchard/vineyard production. 

They irrigate the largest share of land, predominantly using groundwater. Besides, it 

is more costly to adjust their irrigated share given the perennial nature and sunk cost. 

As such, water scarcity doesn’t have a significant effect on the irrigated share of 

perennial crops. Overall, these reductions in irrigated share of selected crops go to 

either dryland crops or other crops. Expansion in dryland production is intuitive in 

that water scarcity lessens water demand. Producers switch to irrigate other crops 

plausibly due to the relative profitability. There may be some non-selected crops that 

are less water-intensive or have higher marginal productivity in land and water use, 

making it more profitable to expand their irrigated acreage.  
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Table 2-10. OLS Parameter Estimation Results for the Share of Dry Land Production and Irrigated Cropland 
 

Note: *, **, and *** denote significance at the 10, 5, and 1 percent levels, respectively. In parentheses are standard errors. 
 

Second, BOR surface water supply increases the total share of irrigated 

cropland but does not affect producers’ land use response to water scarcity. BOR 

indicates water rights seniority as BOR is instrumental in the early development of 

Variable (units) Dry Land 
Irrigated Land 

Forage Orchard/Vineyard Potato Wheat Other 
Water scarcity 

    Off-farm surface water cost ($1000/acre-foot) -0.014 
(0.022) 

0.075 
(0.133) 

0.027 
(0.042)  

-0.162*** 
(0.055) 

0.075 
(0.185) 

0.078** 
(0.036) 

    Depth to well water (1000 feet) 0.154*** 
(0.053) 

-0.608*** 
(0.131) 

0.010 
(0.127) 

-0.126 
(0.112) 

0.020 
(0.109) 

-0.164** 
(0.073) 

    Pump capacity (1000 GPM) 0.001 
(0.008) 

-0.031 
(0.022) 

-0.005 
(0.017) 

-0.001 
(0.028) 

-0.064** 
(0.028) 

0.044*** 
(0.012) 

Water supply institutions 

    BOR surface water supply (0/1) -0.026*** 
(0.006) 

-0.078*** 
(0.022) 

-0.080*** 
(0.022) 

0.042 
(0.043) 

-0.069*** 
(0.019) 

0.105*** 
(0.014) 

    BOR*surface water cost 0.045 
(0.033) 

0.068 
(0.242) 

0.136 
(0.099) 

0.076 
(0.706) 

0.109 
(0.253) 

-0.307*** 
(0.081) 

Climate and weather 

    Excessive moisture risk (inches) -2.07E-4 
(2.56E-4) 

-0.002** 
(0.001) 

0.002*** 
(0.001) 

-0.008 
(0.007) 

0.001 
(0.001) 

0.003*** 
(0.000) 

    Extreme heat risk (°F) -0.012 
(0.021) 

0.143** 
(0.061) 

0.009 
(0.031) 

0.026 
(0.040) 

0.241*** 
(0.076) 

-0.103*** 
(0.033) 

    Spring freeze and frost risk (days) 0.002*** 
(0.001) -- -3.93E-4 

(0.000) -- -- -0.002*** 
(0.001) 

    Drought risk [0,1] 0.715*** 
(0.216) -- -- -- 0.031 

(0.115) 
0.719** 
(0.264) 

    Precipitation, expected (inches) 0.003*** 
(0.000) 

-0.005*** 
(0.001) 

-0.007*** 
(0.001) 

0.002 
(0.003) 

-0.003* 
(0.002) 

0.004*** 
(0.001) 

    Max. temperature, expected (°F) -4.02E-4 
(0.001) 

-0.017*** 
(0.004) 

0.017*** 
(0.001) 

0.004 
(0.006) 

-0.006 
(0.006) 

0.014*** 
(0.002) 

Farm characteristics and farmer demographics 

    Cropland quality [0,1] 0.012 
(0.012) 

-0.004 
(0.041) 

0.077*** 
(0.028) 

2.73E-5 
(0.067) 

-0.034 
(0.054) 

9.76E-5 
(0.022) 

    Scale (1000 acres) 0.002*** 
(0.001) 

-0.014*** 
(0.003) 

-0.016*** 
(0.003) 

0.001 
(0.001) 

-0.003*** 
(0.001) 

0.007*** 
(0.001) 

    Tenure [0,1] -0.037*** 
(0.010) 

0.185*** 
(0.028) 

0.289*** 
(0.028) 

-0.025 
(0.045) 

0.070*** 
(0.028) 

-0.210*** 
(0.018) 

Price 

    Output price ($/ton) -- 0.027*** 
(0.003) 

5.27E-5 
(0.000) 

0.002 
(0.003) 

0.007* 
(0.004) -- 

Year: 2018 0.021*** 
(0.006) 

0.237*** 
(0.033) 

0.034 
(0.033) 

0.024 
(0.045) 

0.121 
(0.080) 

-0.074*** 
(0.012) 

State: OR -0.018 
(0.041) 

-0.620** 
(0.308) 

0.201* 
(0.121) 

0.034 
(0.107) 

-1.029*** 
(0.374) 

0.205*** 
(0.063) 

State: WA -0.023 
(0.018) 

-0.018 
(0.053) 

0.200* 
(0.111) 

0.111 
(0.097) 

-0.971*** 
(0.350) 

0.155*** 
(0.030) 

R-squared 0.21 0.82 0.88 0.56 0.64 0.39 



47 
 

 

irrigated agriculture in western U.S. under the prior appropriation doctrine (Moore 

1991). BOR distributes water according to a priority-based sharing system, which 

follows the chronological order in which water rights are established. At times of 

water shortage, water right seniority guarantees an advantage to receive water from 

BOR over juniors. Senior water right holders can irrigate more acreage of land and 

are less likely to have curtailed allotment while junior holders tend to predominantly 

bear the costs of water scarcity (Brent 2017; Burness and Quirk 1979; Hutchins 1968, 

1977; Libecap 2011; Li et al. 2017, 2018; Schlenker et al. 2007; Xu and Li 2016). 

Therefore, farms receiving water from BOR have more secured surface water 

supplies. Results suggest that BOR supply significantly reduces dry land share by 

2.6%, which is a 50% reduction relative to average dry land share. Specifically, farms 

getting water from BOR allocate more cropland to irrigate other crops. However, 

water supply institutions do not have a significant effect on changing farmers’ land 

use responses to water scarcity except making irrigated share of other crops more 

sensitive to water shortage. Given $100 higher water cost, farms with BOR supply 

allocate 2.02% less cropland to irrigate other crops than farms without BOR supply.   

Third, climate and weather have a mixed but significant influence on land use 

decisions. Different crop producers adapt in different ways to various climate risks. 1) 

As shown in Table 2-3, forage production is susceptible to excessive moisture and 

extreme heat. Given a perception of increasing excessive moisture risk, forage 

producers are concerned with crop loss and reduce irrigated share. A higher 

probability of extreme heat increases the needs for irrigation to avoid crop failure, 

hence increasing its irrigated share. 2) Excessive moisture, extreme heat, and spring 

freeze and frost are responsible for crop loss in orchard/vineyard production. 

Excessive moisture increases water availability and enables expanding irrigated share 

at a lower cost, making orchard/vineyard producers increase irrigated share. They 

respond to extreme heat by increasing irrigated share as there is more demand for 

irrigation. Spring freeze and frost risk switches farms from irrigated production to dry 

land production, but does not have a discernible impact on orchard/vineyard even 

though it presents a critical threat to the health of orchard/vineyard. 3) Potato 
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production is vulnerable to excessive moisture and extreme heat. Potato producers are 

concerned with crop loss and reduce irrigated share given a perception of increasing 

excessive moisture risk. Whereas they increase irrigated share if anticipating a higher 

probability of extreme heat. 4) Excessive moisture, extreme heat, and drought are 

major causes of loss for wheat producers. Similar to orchard/vineyard farmers, they 

expand irrigated share if expecting more excessive moisture and extreme heat risks. 

In response to drought risk, wheat farms increase the irrigated share to guarantee 

productivity, but the positive effect is insignificant.  

Likewise, different crop producers adapt in different ways to various weather 

expectations. More precipitation in the growing season implies less demand for 

irrigation to maintain crop yield. If a producer expects a 1-inch increase, he reduces 

irrigated share by 0.3%~0.7%, depending on which crop he irrigates. On average, he 

allocates 0.3% more land to dryland production. On the other hand, more 

precipitation indicates more recharge of surface and ground water. Increased water 

availability results in an increasing irrigated share of other crops by 4%. Similarly, if 

a producer expects higher maximum temperature, he irrigates more land in an effort 

to offset the effect of high evapotranspiration rates in hot climate. Irrigated share of 

orchard/vineyard rises by 1.7% in response to a 1°F increase. In contrast, forage 

producers might be concerned with evapotranspiration loss and low irrigation 

efficiency. They adapt by allocating 1.7% less cropland to irrigate forage.  

Cropland quality has a positive effect on the irrigated share of perennial crops, 

indicating that cropland is a complement of irrigation as agricultural inputs. Better 

cropland quality (e.g. better water-holding capacity) results in better performance of 

irrigation and higher productivity of water. Perennial crop producers expand irrigated 

area as they expect more economic returns from investing in irrigation on high quality 

land. Farm size has a negative impact on the irrigated share of selected crops and 

positive on other crops, suggesting that larger farms have a more diversified crop 

profile. Besides, large farms have more dry land probably due to high marginal 

operation costs. Tenure has a positive effect on irrigated share, suggesting that 

landownership encourages investing in irrigation to get long-run benefits. Lastly, 
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driven by higher expected output price, producers irrigate more cropland to increase 

productivity and profits. If output price is higher by 1%, irrigated share of forage and 

wheat rises by 1.2% and 0.4%, respectively.  

2.5.1.2 Adaptation to Water Scarcity and Climate Risks: Irrigation 
Technology Adoption 

Table 2-11 reports the marginal effects of water scarcity and climate risks on 

the probability of efficient irrigation technology adoption. Coefficient estimates are 

reported in Appendix A-6. The irrigation technology equation correctly predicts 

adoption in at least 78% of observations for all crops, indicating equation (2-13) fits 

the observed data well. Predicted probabilities of adoption are identical to observed 

mean values in Table 2-5. The marginal effects suggest that both water scarcity and 

climate variability play an important role in technology adoption decisions.  
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Table 2-11. Marginal Effects on Probability of Efficient Irrigation Technology Adoption 
 

Note: The benchmark is gravity irrigation technology. Sprinkler and drip are efficient technologies. We first perform a 
seemingly unrelated regression (SUR) and obtain the significance level of the coefficient estimates, as shown in the 
table. *, **, and *** denote significance at the 10, 5, and 1 percent levels, respectively. We then perform post-
estimation predictions and calculate the marginal effects using numerical derivatives. In parenthesis are standard errors. 
We do not report the significance level of marginal effects because marginal effects are estimated with a nonstandard 
vce (delta method standard error), they cannot be adjusted with SUR. From a technical perspective, marginal effects are 
non-linear functions of all the parameter estimates and explanatory variables. So we prefer the significance of 
coefficients that are adjusted by SUR over the significance of marginal effects. 

  

Variable (units) Forage Orchard/Vineyard Potato Wheat 
Water scarcity 

    Off-farm surface water cost ($1000/acre-foot) 1.894*** 
(0.297) 

0.141** 
(0.059)  

0.600** 
(0.401) 

0.629 
(0.633) 

    Depth to well water (1000 feet) 0.030 
(0.175) 

0.251** 
(0.133) 

-0.137** 
(0.112) 

0.526** 
(0.279) 

    Pump capacity (1000 GPM) 0.058** 
(0.025) 

0.012 
(0.019) 

0.079** 
(0.040) 

0.074 
(0.052) 

Water supply institutions 

    BOR surface water supply (0/1) 0.058** 
(0.027) 

-0.075*** 
(0.019) 

0.004 
(0.039) 

-0.094** 
(0.040) 

    BOR*surface water cost -1.459*** 
(0.392) 

0.545 
(0.209) 

0.146 
(0.923) 

0.394 
(0.661) 

Climate and weather 

    Excessive moisture risk (inches) -0.001 
(0.001) 

0.002** 
(0.001) 

-0.004 
(0.007) 

-0.003* 
(0.002) 

    Extreme heat risk (°F) -0.250** 
(0.080) 

-0.015 
(0.036) 

0.044 
(0.044) 

-0.065 
(0.177) 

    Spring freeze and frost risk (days) -- 0.001 
(0.000) -- -- 

    Drought risk [0,1] -- -- -- 0.947** 
(0.384) 

    Precipitation, expected (inches) 0.003 
(0.002) 

-3.42E-4 
(0.001) 

-4.14E-4 
(0.003) 

0.011 
(0.006) 

    Max. temperature, expected (°F) -0.041*** 
(0.006) 

-0.004 
(0.004) 

-0.020 
(0.010) 

-0.023* 
(0.012) 

Farm characteristics and farmer demographics 

    Cropland quality [0,1] 0.030 
(0.048) 

0.043 
(0.033) 

0.059 
(0.096) 

-0.207 
(0.126) 

    Scale (1000 acres) -0.001 
(0.002) 

0.031*** 
(0.007) 

0.006* 
(0.004) 

-0.001 
(0.002) 

    Tenure [0,1] -0.047 
(0.032) 

-0.006 
(0.023) 

-0.021 
(0.046) 

0.100** 
(0.049) 

Price  

    Output price ($/ton) -0.033** 
(0.014) 

-2.32E-4 
(0.000) 

0.005 
(0.005) 

0.036* 
(0.020) 

Year: 2018 -0.244** 
(0.109) 

-0.020 
(0.047) 

0.099 
(0.075) 

0.410** 
(0.051) 

State: OR 0.693** 
(0.025) 

-0.092 
(0.306) 

0.103 
(0.320) 

0.678 
(0.452) 

State: WA 0.266*** 
(0.051) 

-0.130 
(0.320) 

0.074 
(0.325) 

0.754 
(0.334) 

Predicted Probability 0.57 0.90 0.95 0.62 
Correct Prediction  78% 88% 94% 83% 
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First, farms switch to the water-saving technology to improve technical 

efficiency if they have a higher degree of water shortage. Both surface water and 

groundwater scarcity encourage producers to adopt the efficient irrigation technology 

sprinkler and drip. A $10 higher surface water price increases the probability of 

adoption by 0.1%-1.9%. Reducing the measures of groundwater availability by 1% 

results in higher probability of adoption by less than 0.1% for all crops. The margin is 

comparatively larger for forage and wheat. A plausible explanation is the relative low 

adoption rates for these crops (57% and 62%, respectively), implying more variation 

in data. This is consistent with our theoretical finding that when a producer has low 

adoption rate and uses water in a less efficient way, he responds to more expensive 

water supply by improving irrigation efficiency. Higher water price discourages 

forage producers from using water. To maintain productivity, they substitute with 

technology to compensate for the decline in effective water use.  

Second, BOR surface water supply has a mixed effect on technology 

adoption. Forage farms with BOR supply are 5.8% more likely to adopt the efficient 

technology, while orchard/vineyard and wheat farms have a lower probability of 

adoption by 7.5% and 9.4%, respectively. Furthermore, BOR supply makes forage 

producers less responsive to water scarcity, i.e. it disincentivizes technology adoption. 

A $10 rise in surface water price increases the probability of adoption by 1.9% and 

0.5% for farms without and with BOR supply. Farms with BOR supply are less likely 

to adopt efficient technology because of the relatively secured surface water supplies 

guaranteed by the institution. Consequently, they feel it less necessary to adjust 

irrigation decisions as much.    

Third, technology adoption is more responsive to climate risks than to 

expected weather conditions. Besides, climate and weather have a more significant 

effect on technology adoption for forage and wheat than orchard/vineyard and potato, 

due to high adoption rates and fewer variations for the latter two crops. Excessive 

moisture risk, as measured by a higher variability in precipitation increases the 

probability of adoption for orchard/vineyard while decreases that for wheat. This is 

consistent with our theoretical finding that climate variability incentivizes a crop 
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producer with high adoption rates to increase the use of the efficient technology, 

while discourages adoption for a producer with low adoption rates. 90% of 

orchard/vineyard farms use the efficient technology as a risk-reducing input. It 

improves the relative efficiency of water use, reduces the adverse effects of climate 

change on production, and reduces the implicit cost of risks. Whereas wheat farms 

self-select to a relatively low adoption rate (62%) due to some inherent features that 

may reduce irrigation efficiency. For instance, their cropland may have low water-

holding capacity or the water salinity is high. In this case, the expectation of more 

variable precipitation makes them more concerned with the effectiveness of 

technology and hence less willing to invest in technology adoption. This also explains 

the effect of extreme heat risk on adoption. Extreme heat increases evaporative loss 

and reduces irrigation efficiency, thus significantly discouraging adoption for forage, 

a crop with a low adoption rate of 57%. Orchard/vineyard producers mitigate crop 

damage from spring freeze and frost risk by adopting efficient irrigation technology. 

Likewise, wheat farms adapt to drought by switching to the water-saving technology. 

A 1% increase in drought risk leads to a higher probability of adoption by 0.9%. 

Finally, higher expected maximum temperature discourages farmers from adopting 

efficient technology. A 1°F increase in maximum temperature decreases adoption 

probability by 4.1% and 2.3% for forage and wheat farms, respectively. Previous 

studies find that evaporative losses from the sprinkler irrigation are approximately 

15% in warmer environments (Finkel and Nir 1983; Negri and Brooks 1990). Out of 

the concern that evapotranspiration causes economic loss, producers are less willing 

to invest in technology.  

Farm size has a positive impact on technology adoption for orchard/vineyard 

and potato, as large farms are more likely to be able to afford the initial investment in 

better irrigation equipment and other input cost. Tenure has a positive impact on 

technology adoption for wheat, as landownership creates incentives for investing in 

irrigation facilities to get long-run returns. Lastly, if output price is higher by 1%, 

probability of adoption decrease by 1.5% for forage and increases by 2.1% for wheat, 

respectively.  
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2.5.1.3 Adaptation to Water Scarcity and Climate Risks: Water 
Application Rates 

Table 2-12 reports the marginal effects of water scarcity and climate risks on 

water application rates. First, the effect of water scarcity on short-run irrigation 

decisions differs from that on long-run irrigation decisions, and producers adapt to 

surface water and groundwater scarcity in different ways. Potato farms have the 

highest surface and ground water costs, and the smallest share of irrigated crops, and 

use the least amount of water per acre. Their irrigated share is responsive to water 

scarcity but water application rates are not significantly affected. Nevertheless, other 

selected crops are more water-demanding. Higher surface water price does not change 

their irrigated share but reduces per-acre water application rates. These results 

correspond to the increase in technology adoption, which eliminates the need for 

intensive water use. Greater well depth indicates higher pumping cost and hence 

decreases water application rates, but the effect is not statistically significant. 

Increasing pump capacity increases technology adoption and water application rates. 

In other words, higher engineering cost of pumping groundwater makes it more 

beneficial to improve irrigation efficiency. Producers concentrate available water on 

existing irrigated area to maintain high yields rather than expanding irrigation area.  
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Table 2-12. OLS Parameter Estimation Results for Water Application Rates 
 

Note: *, **, and *** denote significance at the 10, 5, and 1 percent levels, respectively. In parentheses are standard errors. 
 

Second, water supply institutions have a consistent and significant effect on 

water application rates across crops. As the largest surface water supplier in the U.S., 

BOR does not charge interest on project cost repayment and charges producers based 

Variable (units) Forage Orchard/Vineyard Potato Wheat 
Water scarcity 

    Off-farm surface water cost ($1000/acre-foot) -1.097*** 
(0.413) 

 -0.687*** 
(0.140) 

0.016 
(0.439) 

-0.792* 
(0.424) 

    Depth to well water (1000 feet) -0.279 
(0.315) 

-0.009 
(0.316) 

0.140 
(0.453) 

-0.357 
(0.264) 

    Pump capacity (1000 GPM) 0.128** 
(0.062) 

0.161*** 
(0.046) 

-0.172 
(0.112) 

0.023 
(0.060) 

Water supply institutions 

    BOR surface water supply (0/1) 0.294*** 
(0.079) 

0.366*** 
(0.081) 

0.334*** 
(0.135) 

0.209*** 
(0.083) 

    BOR*surface water cost -3.577*** 
(1.056) 

-0.693 
(0.686) 

-6.261*** 
(1.808) 

-3.257*** 
(0.837) 

Climate and weather 

    Excessive moisture risk (inches) -0.003 
(0.003) 

-0.011*** 
(0.003) 

-0.034** 
(0.017) 

-0.008** 
(0.004) 

    Extreme heat risk (°F) -0.045 
(0.210) 

-0.086 
(0.120) 

-0.004 
(0.149) 

0.317 
(0.297) 

    Spring freeze and frost risk (days) -- 0.002 
(0.001) --  

    Drought risk [0,1] -- -- -- -0.615 
(0.457) 

    Precipitation, observed (inches) -1.99E-4 
(0.004) 

-0.006** 
(0.003) 

-0.003 
(0.006) 

-0.002 
(0.005) 

    Max. temperature, observed (°F) 0.120*** 
(0.018) 

0.051*** 
(0.015) 

0.069** 
(0.030) 

0.099*** 
(0.023) 

Farm characteristics and farmer demographics 

    Cropland quality [0,1] 0.120 
(0.150) 

0.189* 
(0.108) 

-0.113 
(0.304) 

-0.338 
(0.244) 

    Scale (1000 acres) 0.006** 
(0.003) 

0.021*** 
(0.006) 

0.014** 
(0.006) 

-0.006* 
(0.003) 

    Tenure [0,1] -0.054 
(0.098) 

-0.066 
(0.084) 

2.38E-4 
(0.153) 

0.242** 
(0.116) 

Price 

    Output price ($/ton) -0.012 
(0.014) 

0.001*** 
(0.000) 

0.003 
(0.014) 

-0.012 
(0.013) 

Year: 2018 -0.189* 
(0.115) 

0.252** 
(0.106) 

-0.012 
(0.182) 

-0.115 
(0.233) 

State: OR -0.450 
(1.055) 

-0.632 
(0.434) 

0.760 
(0.496) 

-1.688 
(1.487) 

State: WA -0.633*** 
(0.187) 

-0.136 
(0.408) 

0.873** 
(0.436) 

-1.490 
(1.380) 

R-squared 0.83 0.77 0.85 0.87 
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on their ability to pay (Moore, 1999). That is, the BOR subsidizes agricultural water 

use. As a result, farms that obtain off-farm surface water from BOR use 11%-18% 

more water per-acre. In this sense, BOR is a successful and effective institution. 

However, BOR does not provide a good institutional design for adapting to water 

scarcity in terms of water use. In fact, it makes water use more responsive to surface 

water price. Farms with BOR supply tend to use too much water per acre due to the 

price advantage. In times of water scarcity, these farms reduce water application rates 

by a larger margin than farms without, even though they have relatively more secured 

water supplies. We infer that there exists other water suppliers, such as some state, 

municipal, or private water projects that don’t necessarily provide price advantages 

but protect producers in certain ways against water scarcity.  

 Third, there is a consistent effect of climate risks and observed weather 

conditions on agricultural water use across crops. Both excessive moisture and higher 

observed precipitation level significantly reduce water application rate as irrigation 

requirements can be easily met. Extreme heat risk doesn’t significantly influence 

water use. Extreme heat increases the irrigated share of forage, which creates the need 

for more water; meanwhile, extreme heat discourages adopting the efficient 

technology for forage, which implies decreasing irrigation efficiency. Forage 

producers have to distribute water to a larger area at a lower efficiency. So they 

choose to reduce water application rates, the effect is insignificant though. While 

observed maximum temperature increases water application rates. In response to a 

1°F increase in maximum temperature, producers use 2%~5% more water per acre to 

offset the evapotranspiration in hot weather. Farmers use irrigation to mitigate 

damage from freeze and frost through soil heat retention and latent heat transfers 

(Longstroth 2012; Vasquez and Fidelibus 2013). Perennial crops producers respond 

to freeze by increasing technology adoption and reducing irrigated share. Both 

adaptations save them water so that they can increase water application rates. That is, 

they concentrate water use to a smaller share of land to maintain high yield if 

expecting more freeze risk. Drought decreases water application rates of wheat farms 
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due to reduced water availability and more adoption of efficient irrigation technology, 

the effect is insignificant though. 

Cropland quality has a positive effect on water application rates of perennial 

crops, which again supports that cropland is a complement of irrigation as agricultural 

inputs. Corresponding to the expansion in irrigated share, perennial crop producers 

expect higher productivity of water on high quality land with better water-holding 

capacity. Therefore, they apply more water per acre to achieve higher yield and 

higher economic returns. Farm scale has a positive effect on water application rates 

for most crops. Large farms find it more profitable to improve irrigation efficiency 

than to expand irrigation area. They can afford and are willing to adopt efficient 

technology and apply more water per acre. Tenure increases water use in a similar 

way. Landownership encourages investment in irrigation to receive returns in the 

future. Lastly, higher price of perennial crops leads to an inelastic response in water 

application rates. Water use rises by 0.4% given a 1% price increase.  

2.5.2 Evidence from County-level Analysis 
Table 2-13 reports summary statistics for the dependent variables at county 

level. They display a similar pattern to farm-level statistics. We have a panel of 239 

counties that irrigate at least one of the selected crops, with 113 observations from 

2013 FRIS and 126 from 2018. Irrigation is an essential component of farming 

practices in our sample. On average, a representative producer allocates 16% of 

cropland to dryland crops, 59% to irrigate selected crops, and 25% to irrigate other 

non-selected crops. Irrigated share is relatively large for producers irrigating forage 

and orchard/vineyard and small for potato and wheat. More than 90% of 

orchard/vineyard and potato farms adopt the efficient irrigation technology, sprinkler 

and drip. Adoption rates are lower for forage and wheat farms. There is less variation 

in water application rates, with forage and rice irrigation using more water per acre. 

For same reasons as farm-level analysis, rice is dropped from estimation. Independent 

variables preserve the same pattern when aggregated to county level. Detailed 

statistics are provided in Appendix A6.   
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Table 2-13. Descriptive Statistics for Dependent Variables 
 

Note: Reported are sample means. In parentheses are standard deviations.  
 

Overall, we compare county-level estimation results with farm-level results 

and find a consistency in farmers’ responses, suggesting that individual farms largely 

preserve the same pattern when aggregated to county level. In terms of sign, 

estimated marginal effects that are significant across both models do not switch signs, 

with only a few exceptions.6 In terms of magnitude, we observe similar level of 

marginal effects in technology adoption. While for land allocation and water 

application rates, producers exhibit more elastic responses to climate and weather 

whereas less elastic responses to water scarcity and water supply institutions. 

Specifically, when aggregated to county level, major differences include: 1) 

producers are less responsive to reduced groundwater availability, especially higher 

pump capacity; 2) water supply institutions are not a key factor influencing 

adaptations; and 3) climate risks and expected or observed weather conditions have a 

larger impact on agricultural land and water use. In the following we expand on the 

county-level results and discuss the differences in detail.  

                                                           
6 For all selected crops, 2 marginal effects from land use equations, 1 from technology 
adoption equations, and 3 from water application rates equations switch signs across models.  

Variable (units) 
Irrigated land 

Dry land 
Forage Orchard/Vineyard Potato Rice Wheat Other 

Cropland allocation [0,1]  0.24 
(0.31) 

0.27 
(0.32) 

0.02 
(0.06) 

0.02 
(0.09) 

0.04 
(0.08) 

0.25 
(0.26) 

0.16 
(0.25) 

Technology adoption [0,1] 0.65 
(0.40) 

0.93 
(0.16) 

0.92 
(0.24) 

0 
(0) 

0.62 
(0.42) -- -- 

Water application rate (acre-feet/acre) 2.33 
(1.10) 

1.76 
(1.16) 

1.42 
(0.96) 

4.18 
(0.69) 

1.76 
(0.72) -- -- 

Observations 172 192 104 19 101 239 239 
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2.5.2.1 Adaptation to Water Scarcity and Climate Risks: Land Use 

Table 2-14 reports the marginal effects of water scarcity and climate risks on 

cropland allocation. First, increasing surface water price diverts farms from irrigated 

production to dryland production. If producers expect surface water price to increase 

by 10%, they reduce irrigated share by 0.1%~0.3%, depending on the crop, while 

expanding dry land share by 0.4%. Variations in groundwater availability or water 

supply institutions do not have a statistically significant effect on land use, except that 

higher pump capacity encourages producers to allocate more land to irrigate potato 

and other crops. Counties comparably have lower input cost as production increases 

than individual farms. Due to economies of scale and their market control, counties 

are not as sensitive to water supply reductions as individual farms. 
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Table 2-14. OLS Parameter Estimation Results for the Share of Dry Land Production and Irrigated Cropland 
 

Variable (units) Dry Land Irrigated Land 
Forage Orchard/Vineyard Potato Wheat Other 

Water Scarcity and institutions 

    Off-farm surface water cost ($1000/acre-foot) 0.485*** 
(0.142) 

-0.524** 
(0.247) 

-0.081 
(0.218) 

-0.138* 
(0.074) 

-0.132 
(0.112) 

-0.301** 
(0.118) 

    Depth to well water (1000 feet) -0.218 
(0.216) 

0.078 
(0.409) 

-0.120 
(0.372) 

0.043 
(0.134) 

0.120 
(0.158) 

0.143 
(0.184) 

    Pump capacity (1000 GPM) -0.041 
(0.042) 

0.085 
(0.073) 

0.021 
(0.060) 

0.074*** 
(0.023) 

0.040 
(0.029) 

0.072* 
(0.038) 

    BOR surface water supply [0,1] 0.102 
(0.092) 

0.012 
(0.164) 

0.046 
(0.167) 

-0.017 
(0.057) 

-0.017 
(0.066) 

-0.088 
(0.121) 

Climate and weather 

    Excessive moisture risk (inches) -0.002 
(0.002) 

-0.002 
(0.002) 

0.014*** 
(0.003) 

0.002 
(0.005) 

0.001 
(0.001) 

1.06E-4 
(0.002) 

    Extreme heat risk (°F) 0.113 
(0.105) 

0.228 
(0.173) 

-0.504*** 
(0.085) 

-0.055** 
(0.027) 

0.211*** 
(0.068) 

-0.283** 
(0.133) 

    Spring freeze and frost risk (days) -0.005 
(0.004) -- 0.005*** 

(0.001) -- -- 0.012** 
(0.005) 

    Drought risk [0,1] -1.474*** 
(0.453) -- -- -- -0.336*** 

(0.097) 
1.387** 
(0.584) 

    Precipitation, expected (inches) 0.003 
(0.002) 

0.001 
(0.004) 

0.004 
(0.004) 

-0.003 
(0.002) 

0.004** 
(0.002) 

6.57E-4 
(0.003) 

    Max. temperature, expected (°F) -0.001 
(0.005) 

-0.030*** 
(0.012) 

0.047*** 
(0.009) 

-0.002 
(0.004) 

0.012 
(0.008) 

0.020*** 
(0.006) 

Farm characteristics and farmer demographics 

    Cropland quality [0,1] 0.269** 
(0.121) 

-0.201 
(0.226) 

0.069 
(0.207) 

0.101 
(0.069) 

0.010 
(0.087) 

0.103 
(0.163) 

    Scale (1000 acres) -1.31E-4 
(0.000) 

-0.001** 
(0.000) 

0.001** 
(0.000) 

3.24E-5 
(0.000) 

2.72E-5 
(0.000) 

2.86E-4 
(0.000) 

    Tenure [0,1] 0.049 
(0.090) 

0.043 
(0.171) 

0.078 
(0.166) 

-0.102* 
(0.059) 

0.006 
(0.069) 

-0.393*** 
(0.125) 

Price 

    Output price ($/ton) -- 0.026*** 
(0.008) 

-1.06E-4 
(0.000) 

0.003* 
(0.002) 

-0.007 
(0.004) -- 

Year: 2018 -0.027 
(0.034) 

0.307*** 
(0.102) 

-0.096 
(0.068) 

0.080** 
(0.033) 

-0.167* 
(0.091) 

0.035 
(0.046) 

State: OR -0.139 
(0.203) 

-1.402 
(0.903) 

-2.276*** 
(0.370) 

0.190*** 
(0.078) 

-0.892*** 
(0.349) 

0.468* 
(0.254) 

State: WA -0.035 
(0.097) 

-0.345** 
(0.164) 

-2.128*** 
(0.340) 

0.263*** 
(0.073) 

-0.831*** 
(0.330) 

0.092 
(0.123) 

R-squared 0.73 0.62 0.66 0.72 0.72 0.86 
Note: In parentheses are standard errors. *, ** and *** denote significance at the 10%, 5% and 1% levels, respectively.  

 

Second, climate and weather have a mixed but significant influence on land 

use decisions. Different crop producers adapt in different ways to various climate 

risks. 1) Forage production is susceptible to excessive moisture and extreme heat. 

Given a perception of increasing excessive moisture risk, forage producers are 

concerned with crop loss and reduce irrigated share. A higher probability of extreme 
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heat increases the needs for irrigation to avoid crop failure, hence increasing irrigated 

share. 2) Excessive moisture, extreme heat, and spring freeze and frost are 

responsible for crop loss in orchard/vineyard production. Excessive moisture 

increases water availability and enables expanding irrigated share at a lower cost, 

making orchard/vineyard producers increase irrigated share. Extreme heat leads to 

high evaporative loss and incentivizes them to reduce irrigated share. 

Orchard/vineyard producers use irrigation to mitigate crop damage from spring freeze 

and frost. If they expect an additional day when the last spring freeze occurs, 

indicating a longer freezing season affecting spring blossoms, they allocate 0.5% 

more land to irrigation. 3) Potato producers adapt in a similar manner, by irrigating 

more land if expecting excessive moisture and less land if expecting extreme heat and 

high evapotranspiration rate. 4) Excessive moisture, extreme heat, and drought are 

major causes of loss for wheat producers. They expand irrigated share if expecting 

more excessive moisture and extreme heat risks. In response to drought risk, wheat 

farms expect reductions in water supply and hence decrease irrigated share.  

Likewise, different crop producers adapt in different ways to various weather 

expectations. If a producer expects more precipitation in the growing season, there is 

less demand for irrigation to maintain crop yield, which results in a shift from 

irrigating selected crops to dry land production. On the other hand, more precipitation 

indicates more recharge of surface and ground water. Increased water availability 

makes producers allocate more land to irrigation. A 1-inch increase in expected 

precipitation level changes the share of each irrigated crop or dryland crop by -

0.3%~0.4%. Similarly, if a producer expects higher maximum temperature, he 

irrigates more land in an effort to offset the effect of high evapotranspiration rates in 

hot climate. Irrigated share of orchard/vineyard rises by 4.7% in response to a 1°F 

increase. In contrast, forage producers might be concerned with evapotranspiration 

loss and low irrigation efficiency. They adapt by allocating 3% less cropland to 

irrigate forage.  

Cropland quality has a positive effect on the share of dryland production and 

irrigated share of most selected crops. With better land quality comes less demand for 
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irrigation, thus increasing dry land share. On the other hand, with better land quality 

also comes better performance of irrigation and higher productivity of water, making 

producers expand irrigated share. Farm scale has a mixed impact on the irrigated 

share of selected crops. Counties with larger farm size tend to irrigate more perennial 

crops and less forage, probably due to the high market price and economic returns 

from irrigating perennial crops. Tenure has a negative effect on irrigated share of 

potato, a crop with the lowest price among selected crops. A plausible explanation is 

that landownership encourages producers to allocate more land to irrigate high-value 

crops. Lastly, driven by higher expected output price, producers irrigate more 

cropland to increase productivity and profits. If output price is higher by 1%, irrigated 

share of forage and potato rises by 1.2% and 0.1%, respectively.  

2.5.2.2 Adaptation to Water Scarcity and Climate Risks: Irrigation 
Technology Adoption 

Table 2-15 reports the marginal effects of water scarcity and climate risks on 

the share of farms adopting efficient irrigation technology in a county. First, 

producers switch to the water-saving technology to improve technical efficiency in 

times of water shortage. Both surface water and groundwater scarcity encourage 

producers to adopt the efficient irrigation technology sprinkler and drip. A $10 higher 

surface water price increases the share of farms adopting the efficient irrigation 

technology by 0.03%~0.2%. Reducing the measures of groundwater availability by 

1% results in a higher share of adoption by 0.01%~0.31% for selected crops. 

However, water supply institutions do not significantly affect technology adoption. 

Again, we observe less elastic and significant responses to water scarcity in counties 

than in individual farms due to economies of scale.  
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Table 2-15. OLS Parameter Estimation Results for the Share of Efficient Irrigation 
Technology Adoption 

 
Variable (units) Forage Orchard/Vineyard Potato Wheat 
Water Scarcity and institutions 

    Off-farm surface water cost ($1000/acre-foot) 0.059 
(0.253) 

0.026 
(0.095) 

0.146 
(0.307) 

0.201 
(0.171) 

    Depth to well water (1000 feet) 0.515 
(0.387) 

0.245* 
(0.143) 

0.224 
(0.575) 

-0.032 
(0.232) 

    Pump capacity (1000 GPM) 0.165** 
(0.075) 

0.038 
(0.026) 

0.289*** 
(0.103) 

0.011 
(0.047) 

    BOR surface water supply [0,1] 0.100 
(0.148) 

-0.041 
(0.060) 

-0.011 
(0.245) 

-0.145 
(0.095) 

Climate and weather 

    Excessive moisture risk (inches) -0.003 
(0.002) 

0.004*** 
(0.001) 

0.044** 
(0.021) 

-0.008*** 
(0.002) 

    Extreme heat risk (°F) 0.586*** 
(0.227) 

0.025 
(0.047) 

0.071 
(0.126) 

-0.346*** 
(0.119) 

    Spring freeze and frost risk (days) -- 0.002*** 
(0.001) -- -- 

    Drought risk [0,1] -- -- -- 0.054 
(0.168) 

    Precipitation, expected (inches) 0.011*** 
(0.004) 

0.002 
(0.001) 

-0.012 
(0.009) 

-0.002 
(0.003) 

    Max. temperature, expected (°F) -0.020 
(0.014) 

0.013*** 
(0.005) 

0.021 
(0.018) 

-0.057*** 
(0.012) 

Farm characteristics and farmer demographics 

    Cropland quality [0,1] 0.074 
(0.212) 

0.014 
(0.076) 

0.046 
(0.300) 

-0.083 
(0.126) 

    Scale (1000 acres) 1.67E-4 
(0.000) 

9.08E-5 
(0.000) 

-6.40E-5 
(0.001) 

3.47E-4 
(0.000) 

    Tenure [0,1] -0.339** 
(0.153) 

-0.077 
(0.059) 

-0.124 
(0.252) 

0.200** 
(0.098) 

Price 

    Output price ($/ton) 0.013 
(0.011) 

7.85E-5 
(0.000) 

-0.013 
(0.009) 

0.033*** 
(0.007) 

Year: 2018 0.130 
(0.114) 

-0.003 
(0.028) 

-0.142 
(0.154) 

0.596*** 
(0.145) 

State: OR -2.618** 
(1.163) 

0.233 
(0.199) 

-0.139 
(0.362) 

2.020*** 
(0.599) 

State: WA 0.413*** 
(0.166) 

0.223 
(0.184) 

-0.197 
(0.344) 

1.993*** 
(0.567) 

R-squared 0.96 1.00 0.92 0.99 
Note: In parentheses are standard errors. *, ** and *** denote significance at the 10%, 5% and 1% levels, 
respectively.  

 

Second, technology adoption are more responsive to climate risks than to 

expected weather conditions. Excessive moisture risk, as measured by a higher 

variability in precipitation increases the share of adoption for orchard/vineyard and 

potato while decreases that for forage and wheat. This results is consistent with our 
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theoretical finding that climate variability incentivizes a crop producer with high 

adoption rates (orchard/vineyard 93% and potato 92%) to increase the use of the 

efficient technology, while discourages adoption for a producer with low adoption 

rates (forage 65% and wheat 62%). We observe the largest impact on technology 

adoption for potato because as a shallow-rooted crop, potato is vulnerable to 

variations in soil moisture and thus highly dependent on sprinkler and drip irrigation. 

The marginal effect of extreme heat risk on technology adoption is different. Extreme 

heat increases evaporative loss and reduces irrigation efficiency, thus significantly 

discouraging technology adoption for wheat producers. On the other hand, forage 

farms switch to the efficient irrigation technology to avoid crop failure from extreme 

heat. Orchard/vineyard producers mitigate spring freeze damage by adopting efficient 

irrigation technology. Given an additional day when spring freeze last occurs, the 

percentage of farms adopting the efficient technology increases by 0.2%. Likewise, 

wheat farms adapt to drought by switching to the water-saving technology. A 1% 

increase in drought risk leads to a higher share of adoption by 5.4%.  

Frisvold and Deva (2013) find that sprinkler irrigation has higher adoption 

rates in regions with more rainfall and intense rain events than in drier climate. 

Similarly, we estimate that higher expected precipitation level encourages forage 

producers to adopt the efficient irrigation technology. A 1-inch increase in expected 

precipitation increases share of adoption by 1.1%. Finally, higher expected maximum 

temperature discourages forage and wheat farms from adopting efficient technology. 

A 1°F increase in maximum temperature decreases percentage of adoption by 2.0% 

and 5.7% for forage and wheat farms, respectively. Previous studies find that 

evaporative losses from the sprinkler irrigation are approximately 15% in warmer 

environments (Finkel and Nir 1983; Negri and Brooks 1990). Out of the concern that 

evapotranspiration causes economic loss, these producers are less willing to invest in 

technology. On the contrary, specialty crop producers increases adoption by 1.3% 

given a 1°F increase in maximum temperature. They respond to warmer temperature 

in an opposite way because a majority of them (79%) adopt drip irrigation 
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technology, while forage and wheat producers prefer sprinkler over drip.7 Previous 

research find that higher temperature encourages drip irrigation to offset the effect of 

higher evaporation rates (Dinar and Yaron 1990; Finkel and Nir 1983; Negri and 

Brooks 1990). Consistently, we estimate a positive effect of maximum temperature 

on technology adoption for specialty crops.  

Tenure has a positive impact on technology adoption for wheat and a negative 

impact for forage. Wheat has a higher market price than forage, suggesting higher 

economic returns. As such, landownership creates incentives for wheat producers to 

invest in irrigation facilities to get long-run benefits. Lastly, if output price is higher 

by 1%, share of wheat farms adopting the efficient technology increases by 1.9%.  

2.5.2.3 Adaptation to Water Scarcity and Climate Risks: Water 
Application Rates 

Table 2-16 reports the marginal effects of water scarcity and climate risks on 

water application rates. First, producers adapt to water scarcity by adjusting irrigation 

strategies, specifically effective irrigation water use. In response to surface water 

shortage, they apply less amount of water per acre; in response to groundwater 

shortage, they adopt better irrigation technology, which improves irrigation efficiency 

and in turn eliminates the need for intensive water use. Intensified surface water 

scarcity, as measured by increasing water price decreases water application rates. 

Given a 10% increase in surface water price of orchard/vineyard and wheat, water 

application rates decline by 1.6% and 0.6%, respectively. Increasing groundwater 

pumping cost, represented by greater well water depth and pump capacity also 

reduces water application rates for most selected crops, but the effect is statistically 

insignificant. In addition, there is a negative impact of BOR surface water supply on 

water application rates. As discussed earlier, BOR subsidizes agricultural water use, 

thus providing a price advantage over other water supply institutions. Therefore 

producers who receive surface water from BOR have higher water application rates 

                                                           
7 Among the orchard/vineyard farms that adopt the efficient irrigation technology, 79% adopt 
the drip technology while 21% adopt the sprinkler technology. The percentages for forage, 
potato, and wheat farms are 2% vs 98%, 28% vs 72%, and 5% vs 95%, respectively.  



65 
 

 

than producers who don’t. However, this institutional advantage disappears when 

aggregated to county level. Forage has the largest average water application rates 

among selected crops. If there is 1% more forage farms receiving water from BOR, 

water application rates decrease by 0.4%.  

 
Table 2-16. OLS Parameter Estimation Results for Water Application Rates 

 
Variable (units) Forage Orchard/Vineyard Potato Wheat 
Water Scarcity and institutions 

    Off-farm surface water cost ($1000/acre-foot) -0.023 
(0.611) 

-5.095*** 
(1.044) 

-0.092 
(1.003) 

-2.488*** 
(0.592) 

    Depth to well water (1000 feet) 1.235 
(0.890) 

-0.337 
(1.343) 

-2.134 
(1.699) 

-0.052 
(0.819) 

    Pump capacity (1000 GPM) -0.068 
(0.176) 

0.290 
(0.246) 

-0.108 
(0.343) 

-0.027 
(0.158) 

    BOR surface water supply [0,1] -0.997*** 
(0.372) 

0.352 
(0.592) 

-0.362 
(0.699) 

-0.510 
(0.350) 

Climate and weather 

    Excessive moisture risk (inches) 0.015*** 
(0.004) 

0.044*** 
(0.014) 

-4.92E-4 
(0.049) 

-0.013** 
(0.006) 

    Extreme heat risk (°F) -1.642*** 
(0.545) 

-2.025*** 
(0.505) 

0.228 
(0.384) 

0.808** 
(0.420) 

    Spring freeze and frost risk (days) -- 0.023*** 
(0.007) --  

    Drought risk [0,1] -- -- -- -2.088*** 
(0.568) 

    Precipitation, observed (inches) -0.009 
(0.006) 

0.035*** 
(0.012) 

-0.053*** 
(0.018) 

-0.009 
(0.007) 

    Max. temperature, observed (°F) 0.166*** 
(0.033) 

0.141*** 
(0.045) 

0.066 
(0.057) 

0.114*** 
(0.040) 

Farm characteristics and farmer demographics 

    Cropland quality [0,1] -1.468*** 
(0.507) 

-0.350 
(0.730) 

1.773** 
(0.902) 

1.384*** 
(0.462) 

    Scale (1000 acres) -0.001 
(0.001) 

0.003* 
(0.001) 

-2.87E-5 
(0.002) 

-0.001 
(0.001) 

    Tenure [0,1] -0.125 
(0.379) 

-0.825 
(0.586) 

-1.167* 
(0.719) 

-0.115 
(0.352) 

Price 

    Output price ($/ton) -0.037 
(0.025) 

0.003* 
(0.002) 

0.006 
(0.034) 

-0.008 
(0.022) 

Year: 2018 -0.681*** 
(0.244) 

0.881*** 
(0.328) 

-0.336 
(0.552) 

0.006 
(0.414) 

State: OR 8.626*** 
(2.783) 

-8.794*** 
(1.992) 

0.933 
(1.121) 

-4.611** 
(2.127) 

State: WA 0.788** 
(0.392) 

-6.507*** 
(1.852) 

1.363 
(1.104) 

-4.252** 
(2.022) 

R-squared 0.98 0.92 0.88 0.96 
Note: In parentheses are standard errors. *, ** and *** denote significance at the 10%, 5% and 1% levels, 
respectively.  
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Second, climate risks and observed weather conditions are major factors 

influencing agricultural water use. Since excessive moisture increases water 

availability, forage producers adapt by increasing water application rates. In response 

to extreme heat, they adopt the efficient technology to avoid crop loss, which in turn 

decreases water application rates. Orchard/vineyard farms adapt in the same way to 

excessive moisture and extreme heat. Besides, they use the efficient irrigation 

technology to mitigate spring freeze damage through soil heat retention and latent 

heat transfers. This adaptation strategy saves them enough water so that they choose 

to apply more water application per acre and achieve high yields. Given an additional 

day when spring freeze last occurs, water application rates for specialty crops 

increase by 1.3%. On the contrary, excessive moisture reduces the demand for 

irrigation water use, hence decreasing water applications rates of wheat farms. Wheat 

farms increase water application rates to offset the effect of evaporative loss if they 

expect more extreme heat risks. They apply less water per acre in response to drought 

due to reduced water supply and more adoption of efficient irrigation technology. A 

1% increase in drought risk leads to a lower water application rate by 1.2%.  

Orchard/vineyard is more water-demanding than potato. If precipitation 

during the growing season is 1 inch higher, which contributes to increasing water 

availability, perennial crop producers increase their water application rates by 2%; 

whereas potato producers decrease by 4% as irrigation requirements can be easily 

met. Observed maximum temperature increases water application rates for all 

selected crops. In response to a 1°F increase in maximum temperature, producers 

apply 5%~8% more water per acre to offset evapotranspiration and maintain 

productivity.  

Cropland quality has a significant and mixed effect on water application rates. 

For potato and wheat, cropland is a complement of irrigation as agricultural inputs. 

With better land quality comes better performance of irrigation and higher 

productivity of water. Therefore, producers are willing to use more water to improve 

yield. For forage production, cropland is a substitute of irrigation. With better land 

quality comes less demand for irrigation and lower water application rates. Farm 



67 
 

 

scale has a positive effect on water application rates for specialty crops. Counties with 

larger farm size are more likely to be able to afford the expenditures on increasing 

water application. Lastly, higher price of the specialty crops leads to an inelastic 

response in water application rates. Water use rises by 0.8% given a 1% price 

increase.   

 

2.6 Conclusion  
Water scarcity and extreme weather present substantial risks for agricultural 

production on the west coast. This paper examines how water availability and climate 

variability affect producers’ adaptive land use and irrigation strategies. We measure 

specific risks for crop production, compile a comprehensive crop-specific dataset on 

key water and climate variables, distinguish between long-run and short-run 

responses, and estimate a system of equations on cropland allocation, irrigation 

technology adoption, and water application rates simultaneously for major field and 

specialty crops. Main empirical findings are as follows. 

Water scarcity reduces irrigated share of selected crops, expands dry land 

production scale, encourages adoption of efficient irrigation technology, and has a 

mixed effect on water application rates. First, we find a more elastic response to water 

scarcity in cropland allocation when water price is high. For producers paying high 

surface water price (e.g. potato), reduced surface water availability diverts them to 

irrigate other crops. For producers paying high pumping cost and are not dependent 

on groundwater (e.g. forage and wheat), reduced groundwater availability diverts 

them to expand dry land production. Second, water scarcity increases adoption of 

efficient irrigation technology sprinkler and drip, by the largest margin for crops with 

low adoption rates (e.g. forage and wheat). Third, producers respond to higher surface 

water price by reducing water application rates. In response to groundwater shortage, 

they adopt better irrigation technology, which improves irrigation efficiency and in 

turn eliminates the need for intensive water use. Finally, we observe more elastic 

responses to water scarcity in individual farms than in counties.   
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Water supply institutions significantly influence adaptations. Farms receiving 

surface water from BOR have more secured water supplies and subsidized water use. 

So they allocate 50% less cropland to dryland crops compared with farms obtaining 

water elsewhere (2.6% vs 5.2%); meanwhile, they use 11%~18% more water per 

acre. An effective institutional design should function in a way that mitigates the 

adverse impact of water scarcity. However, there is no such effect in BOR; if any, it 

only makes producers more sensitive to water scarcity. Farms receiving water from 

BOR tend to use a large amount of water given the price advantage and therefore cut 

on water use by a larger margin in times of water shortage. Moreover, when 

aggregated to county level, most of these institutional influence disappears. Due to 

data limitations, we cannot investigate the effect of other water supply institutions, 

such as state, municipal, or private water projects, which proposes a topic for future 

research.  

Climate risks present a significant determinant of irrigation strategies. The 

effect varies across long-run and short-run responses and across crops. First, 

excessive moisture risk results in significant crop loss for forage, thus reducing its 

irrigated share and discouraging technology adoption. Excessive moisture increases 

water availability and enables expanding irrigated share at a lower cost, making 

orchard/vineyard and wheat farms increase irrigated share. Orchard/vineyard and 

potato producers increase technology adoption whereas wheat producers do not have 

an incentive to adopt as they are concerned with the effectiveness of technology given 

more variable precipitation. For all crops, water application rates decrease as it is 

easier to meet irrigation requirements with excessive moisture. Second, extreme heat 

necessitates increasing irrigated share of forage and wheat to avoid crop failure. Due 

to evaporative loss in hot climate, extreme heat discourages technology adoption for 

forage and wheat producers. Third, spring freeze and frost risk switch farms from 

irrigated production to dry land production. Orchard/vineyard producers mitigate 

freeze damage by using efficient irrigation technology and increasing water 

application rates. Lastly, in response to drought, wheat producers irrigate a larger 
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share of land and are more likely to increase technical efficiency with better 

technology. Meanwhile, they apply less water per acre due to reduced water supply.  

Both expected and observed weather conditions play an essential role in 

producer decisions. On one hand, more precipitation indicates less demand for 

irrigation to maintain crop yield, thus increasing dry land share while reducing the 

irrigated share and water application rates of selected crops. On the other hand, more 

precipitation increases water supply, thus increasing the irrigated share of other crops. 

A 1-inch increase in expected precipitation level changes the share of each irrigated 

crop or dryland crop by -0.7%~0.4%. Likewise, to offset the effect of higher 

evapotranspiration rates in hot weather, producers adapt by increasing irrigated share 

of orchard/vineyard and water application rates for all selected crops. Given a 1°F 

increase in maximum temperature, irrigated share of orchard/vineyard increases by 

1.7% (4.7% at county-level) while water application rates increase by 2%~5% 

(5%~8% at county-level), depending on the crop. On the other hand, producers are 

concerned with high evaporative loss and low irrigation efficiency, and hence low 

economic returns of irrigation investment. A 1°F increase leads to 1.7% (3% at 

county-level) reductions in irrigated share for forage and discourages adoption by 

4.1% and 2.3% (2.0% and 5.7% at county-level) for forage and wheat farms, 

respectively. Finally, we estimate more elastic responses to climate risks and weather 

conditions in counties than in individual farms.  

Cropland is a complement to irrigation as agricultural inputs. Higher land 

quality implies higher productivity of water and thus increases irrigated share and 

water application rates of perennial crops. Large farms are more likely to adopt 

efficient technology and use more water per acre as they can afford the capital 

investment on irrigation equipment and various input costs. Tenure increases irrigated 

share, technology adoption, and water use, indicating that landownership encourages 

investment in irrigation for long-run benefits. Lastly, driven by higher expected 

output price, producers invest in irrigation to improve productivity and profits. They 

expand irrigated share, adopt efficient technology, and increase water application 

rates.  
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Overall, this study shows that agriculture production is vulnerable to water 

scarcity and climate variability. Producers manage risk exposure by changing land 

use decisions and irrigation practices. An effective policy design can affect 

producers’ adaptations, protect them against risks, and ultimately promote sustainable 

resource management and agricultural development. This study can be improved and 

expanded in several aspects. First, we can extend the conceptual model by relaxing 

some assumptions and modifying specifications. We impose several assumptions on 

parameters and functional forms, such as a Von Neumann-Morgenstern utility 

function, a Cobb-Douglas production function with uncertainty, exogenous output 

price, normal distributions of climate risks and profits. These assumptions are not 

essential, but they offer substantial mathematical tractability and facilitate identifying 

the key factors relevant to optimal production decisions. Furthermore, we model the 

discrete choice of technology adoption as a continuous variable for the share of land 

irrigated with the efficient irrigation technology, which is mathematically represented 

by irrigation efficiency. This identification facilitates a quantitative analysis given 

that other choice variables are continuous and that the production decisions are jointly 

made. This approximation can weaken the model’s power in explaining producer 

behavior. It is debatable and it is possible to be extended.  

In addition, we can expand the econometric analysis and provide more 

empirical evidence. For example, we currently use irrigation data from two most 

recent FRIS surveys 2013 and 2018. We can update the dataset with earlier or 

prospective surveys to form a stronger and more balanced panel.  

Last but not least, building on the empirical results, we can evaluate the 

impact of the impact of alternative policy options for encouraging water conservation 

and adoption of efficient irrigation technology. We can identify alternative water 

policies and climate scenarios, e.g., changes in water pricing policies, changes in type 

or frequency of extreme weather patterns, etc. We then apply the modelling system to 

assess the effect of the policy options and climate patterns on cropping patterns and 

irrigation practices. Farmers’ technology adoption in response to climate change (e.g., 

drought, frost, extreme heat) is of particular interest, since there is lack of study in 
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literature about how the risk of extreme weather events affects irrigation decisions. 

To improve the predictability of optimal policy design, we can incorporate various 

scenario specifications and explore the possibility of more intertwined policy 

combinations. Given agriculture’s sensitivity to water scarcity and climate and 

weather conditions, it is meaningful to evaluate irrigated agricultural performance 

under various scenarios. This analysis provides a framework to identify the 

challenges and options for adaptive agricultural management in irrigated production 

systems. It presents an interesting and important topic for future research.    
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Abstract: Crop insurance may affect harvested acreage and yield by influencing 

producers’ behavior such as land allocation and input use. Although specialty crops 

are a major source of farm income, especially on the U.S. west coast, they have not 

received as much attention as field crops in previous empirical studies. This paper 

assesses the effect of moral hazard and adverse selection associated with the federal 

crop insurance program on the acreage and yield of major specialty crops in 

California. An econometric method that expands the switching regression model is 

developed to assess the effect. Results suggest that federal crop insurance can change 

specialty crop growers’ production responses to climate and soil conditions. The 

moral hazard effect tends to increase the acreage and yield of the specialty crops, 

while the adverse selection effect tends to have the opposite effect. The overall effect 

of the federal crop insurance program on acreage and yield of specialty crops is found 

to be moderate. 

 

Key words: specialty crops, insurance supply, moral hazard, adverse selection, 

acreage, yield 
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3.1 Introduction 
The focus of U.S. agricultural policy has shifted from direct price and income 

support towards risk management over the last 20 years (Claassen et al. 2017). With 

the elimination of direct government payments in the 2014 Farm Bill (i.e., the 

Agricultural Act of 2014), the federal crop insurance program (FCIP) has become the 

primary risk management tool for U.S. agriculture (Glauber 2013). Along with the 

growth of the FCIP have come more insurance programs for specialty crops, 

including crop-specific programs introduced in the 1980s and 1990s and the Whole 

Farm Revenue Protection (WFRP) program established by the 2014 Farm Bill. In 

2017, 12.4 million acres of specialty crops were enrolled in the FCIP, with $17.1 

billion of liabilities to the federal government (U.S. Department of Agriculture 2017).  

Crop insurance can influence farmers’ production behaviors through several 

channels. First, premium subsidies add to expected revenue for crop production. As 

such, subsidized crop insurance may create incentives for farmers to expand crop 

production to marginal lands (Claassen et al. 2017). Second, crop insurance reduces 

the riskiness of growing covered crops relative to other crops, thus potentially 

affecting farmers’ crop mix (Goodwin et al. 2004; Walters et al. 2012; Wu 1999). 

Finally, crop insurance reduces farmers’ production risk by cutting off the lower tail 

of the revenue distribution and therefore may change the use of risk-altering input 

such as fertilizer and pesticides, as well as adoption of certain seed technologies 

(Babcock and Hennessy 1996; Goodwin and Smith 2013; Young et al. 2001). 

Although the effects of crop insurance on field crops have been well analyzed 

in previous studies, the effects on specialty crops have received much less attention. 

An objective of this paper is to analyze the effect of federal crop insurance on the 

acreage and yield of specialty crops. The specific research questions for this paper 

are: a) What are the main factors determining the provision of federal crop insurance 

to a specialty crop in a county? and b) How does the federal crop insurance 

availability affect the acreage and yield of specialty crops? To address these 

questions, we construct a simultaneous-equation system consisting of equations of 

federal crop insurance provision for specialty crops and their acreage and yield 
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responses. Crop insurance provision decisions and farmers’ responses intertwine due 

to moral hazard and adverse selection effects, causing endogeneity issues. An 

econometric method that expands the standard endogenous switching regression 

model is developed to address the endogeneity issues and to measure moral hazard 

and adverse selection effects. The method is applied to estimate the effects of federal 

crop insurance provision on acreage and yield of five major types of specialty crops 

in California (apples, wine grapes, dry plums, English walnuts, and dry beans), using 

county-level data from 1980 to 2017. 

This paper focuses on the links between crop insurance and production of 

specialty crops for several reasons. First, the 2014 Farm Bill authorizes the Risk 

Management Agency (RMA) to expand crop insurance to more specialty crops and 

more counties. Liability of specialty crops grew from around $7 billion in 2000 to 

$17 billion in 2017, accounting for 16.1% of total crop insurance liability in 2017 

(FCIC 2019). As such, there is an increasing demand for information about the 

impacts of insurance for specialty crops, and more research on specialty crop 

insurance would help to inform the development of the FCIP for specialty crops. For 

example, one of California’s 2018 Farm Bill recommendations is to “continue 

emphasis on research and development priorities, specifically the Whole Farm 

Diversified Risk Management Insurance Plan” (State of California 2017). Second, as 

mentioned before, specialty crops have not received as much attention as field crops 

in previous empirical studies, but are major sources of U.S. farm income. For 

example, specialty crops account for more than 30% of cash receipts for U.S. crop 

sales in 2014 (USDA-ERS 2016). Besides, consumption of specialty crops is 

conducive to improvement in dietary habits, which is a concern for a growing 

proportion of consumers. Finally, there may be unique risks for growing specialty 

crops. For example, planting perennial crops can be risky because they are 

unproductive for their first several years. Many specialty crops are perishable, making 

them susceptible to placement risk (Schieffer and Vassalos 2015). These distinct risk 

features affect demand for and supply of crop insurance to specialty crops.  
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3.2 Background for the Empirical Analysis 
In this section, we provide some background information for the empirical 

analysis, including a brief description of the evolution of the FCIP and specialty crop 

insurance and a review of previous studies that examine the effect of the FCIP.   

3.2.1 Evolution of the FCIP and Specialty Crop Insurance  

The FCIP has developed significantly since it was first authorized by 

Congress in the 1930s. Until the 1980s, participation in the FCIP had been low. Since 

then Congress has made major changes to the FCIP to encourage participation and 

expand the insurance pool. The Federal Crop Insurance Act of 1980 expanded 

coverage to more crops and regions. In 1994, catastrophic coverage (CAT) was 

created to provide coverage for 50% of the approved yield indemnified at 55% of the 

price election or protected price. The premium for CAT coverage is paid by the 

federal government; however, a producer must pay a $300 administrative fee. CAT 

was so popular that in 1998, shortly after it was first introduced, it covered around 

one thirds of total insured acreage (see Figure 3-1). In the mid-1990s, revenue 

insurance was introduced and has since become the most popular form of insurance. 

The Agricultural Risk Protection Act of 2000 induced significant growth in the size 

and cost of the FCIP. The 2000 farm bill increased premium subsidies for buy-up 

coverage that exceeds the basic CAT coverage. Consequently, the dominance of buy-

up coverage returned, as indicated by the growing participation rate in buy-up 

coverage since 2003 (see Figure 3-1). The 2014 Farm Bill eliminated direct payments 

and introduced “shallow loss” revenue insurance programs for major commodities, a 

margin protection program for dairy, and the Whole Farm Revenue Insurance 

Program. Ever since, the FCIP has become the primary agricultural risk management 

tool in the US. 
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Data source: RMA, Summary of Business Reports and Data, https://www.rma.usda.gov/data/sob.html 

 
Figure 3-1. A comparison between CAT and buy-up coverage 

 

The FCIP has been growing rapidly in the past three decades in terms of 

covered acreage and federal liability (see Figure 3-2).8 From 1993 to 2017, crop land 

enrolled in the FCIP increased from 83.5 million acres to 311.6 million acres, total 

liabilities grew from $11.2 billion to $106.1 billion, total premiums increased from 

$0.75 billion to $10.07 billion, and premium subsidies rose from $0.20 billion to 

$6.36 billion. The USDA is continuing its efforts to expand the role of the FCIP in 

agricultural risk management for crop producers.  

 

                                                           
8 All dollar values in figures, tables, and estimation are adjusted for inflation with 1982-1984 
as base year. 
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Data source: RMA, Summary of Business Reports and Data, https://www.rma.usda.gov/data/sob.html 

 
Figure 3-2. Selected FCIC crop insurance statistics for all crops, 1993-2017 

 

Like field crop producers, specialty crop producers have been increasingly 

relying on crop insurance for risk protection since 1990 (Lee and Sumner 2013). The 

number of specialty crops and regions covered by the FCIP has increased 

significantly over the past three decades. From 1993 to 2017, total liabilities, 

premiums and premium subsidies all increased significantly (see Figure 3-3). 

Covered acreage rose from 2.2 million acres to 12.4 million acres from 1993 to 2017. 

In 2017, 74% of specialty crop acreage was covered (FCIC 2019). Insurance for 

specialty crops has become an important component of the federal crop insurance 

portfolio. The share of specialty crop liability rose from less than 10% in 1993 to 

more than 20% in the early 2000s, and about 16% in 2017 (RMA 2019; FCIC 2019). 

The 2014 Farm Bill authorized the RMA to broaden insurance coverage to more 

specialty crops and more counties. With the RMA’s efforts to expand risk 

management programs for specialty crops, this share is expected to grow.  
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Data source: RMA, Summary of Business Reports and Data, https://www.rma.usda.gov/data/sob.html 
 
Figure 3-3. Selected FCIC crop insurance statistics for specialty crops, 1993-2017 

 

Table 3-1 provides specific information about insurance for the five selected 

crops. Insurance was initially offered to each crop in 1980s. These 5 crops have 

exclusively used yield insurance plans; mostly Actual Production History (APH) but 

there has been very limited use of Supplemental Coverage Option-Yield Protection 

(SCO-YP) starting in 2016. Changes in subsidy rates across time reflect major 

changes in the evolution of the FCIP. For example, the design of CAT in 1994 

induced a significant jump in subsidy rates for all the crops analyzed. The 2000 farm 

bill also increased the amount of subsidies, enabling continued growth in subsidy 

rates. Corresponding to the major program changes, the share of buy-up policies in 

total liability tells the same story as Figure 3-1. During 1980-1994, CAT was not 

available, so 100% of the liability was for buy-up policies. After 1995, buy-up policy 

lost its dominate role in insurance coverage. But this downward trend didn’t last long 

until 2000 when premium subsidy rates for buy-up increased. Farmers were 

incentivized to switch back to buy-up policy ever since, making buy-up regain its 

popularity. All selected crops experienced a similar pattern, with apples and prune 

having the highest buyup liability share and walnuts having the lowest.  

https://www.rma.usda.gov/data/sob.html


86 
 

 

 

Table 3-1. Descriptive Statistics of Insurance for Selected Crops 
 

 Apples Grapes Plums, Dry Walnuts Beans, Dry 
Year when insurance initiated 1988 1980 1986 1984 1982 
Total Liability ($B)a 0.5 15.3 1.8 3.0 0.2 
Total Premium ($M)a 52.3 656.8 251.4 94.4 19.3 
Average Loss Ratioa 1.9 0.6 1.7 0.9 1.8 
# of Counties Covered in 2017 14 26 13 22 18 

Insurance Plans APH APH, 
SCO-YP 

APH,  
SCO-YP 

APH, 
SCO-YP 

APH,  
SCO-YP 

      

Average Subsidy Rate 

1980-1994 0.20 0.23 0.23 0.23 0.22 
1995-2000 0.79 0.82 0.54 0.81 0.81 
2001-2014 0.67 0.74 0.62 0.79 0.79 
2015-2017 0.69 0.63 0.61 0.67 0.63 

       

Buyup Liability Percentage (%) 

1980-1994 100 100 100 100 100 
1995-2000 32 29 67 27 34 
2001-2014 76 56 91 42 58 
2015-2017 92 74 92 49 77 

Note: a For all the counties and years when a crop insurance program is available for the crop. 
 

Furthermore, apples and dry plums are the latest to have insurance product. 

They cover the least number of counties. Even though the subsidy rates became stable 

and similar in recent years, apples and dry plums used to have comparatively lower 

subsidy rates in history. And lastly, apples, dry plums and dry beans have the largest 

loss ratio, implying a higher ratio of indemnity payments. These findings are 

consistent with the fact that apples and dry plums have relatively small scale of 

production compared to other crops, as indicated by the acreage of harvested land in 

Table 3-2. In contrast, grape is the earliest to have insurance policy, has the maximum 

amount of total liability and premium, has the smallest loss ratio, covers more 

counties, and has relatively higher subsidy rate. It is reasonable to say that insurance 

policy favors grapes, which in large owes to the massive and concentrated grape 

production within California. 

 



87 
 

 

Table 3-2. Descriptive Statistics of Variables 
 

 Apples Grapes Plums, Dry Walnuts Beans, Dry 

Number of Observations 697 1,026 497 805 588 

Provision of Insurance (0/1)a 0.25 
(0.43) 

0.54 
(0.50) 

0.69 
(0.46) 

0.61 
(0.49) 

0.57 
(0.50) 

Harvested Acreage (acres) 1,102 
(1,452) 

15,738 
(21,366) 

5,147 
(5,410) 

10,155 
(11,727) 

4,782 
(5,603) 

Harvested Yield (tons/acre) 9.42 
(6.26) 

5.21 
(3.11) 

2.16 
(0.85) 

1.37 
(0.78) 

1.09 
(0.32) 

   Note: The values are sample means. In parentheses are standard deviation. 
             a The RMA’s insurance provision decision (1=supply, 0=no supply). 

 

Based on our review of the history and evolution of the FCIP for specialty 

crops, our study period (1980-2017) can be divided into four subperiods during which 

the insurance program for specialty crops was largely unchanged: 1980-1994, 1995-

2000, 2001-2014, and 2015-2017. Premium subsidies were initiated in the Federal 

Crop Insurance Act of 1980 and were significantly increased in the Federal Crop 

Insurance Reform Act of 1994. CAT, a new and fully subsidized insurance plan, was 

introduced in 1994 to expand coverage. From 2000 to 2014, new premium rates and 

new insurance products were developed to encourage further enrollment. For 

example, the Agricultural Risk Protection Act of 2000 increased premium subsidies 

for buy-up coverage that exceeds the basic CAT coverage (O’Donoghue 2014). The 

2014 farm bill established the WFRP program.  

3.2.2 Previous Studies on Federal Crop Insurance 
Much research focuses on federal crop insurance, but mostly in the context of 

field crops. Some of the research analyzes the demand for crop insurance (e.g., Coble 

et al. 1996; Goodwin 1993; Hazell et al. 1986; Mishra and Goodwin 2003, 2006) or 

producer responses to crop insurance (e.g., Du et al. 2014; Du et al. 2017; Miao et al. 

2016; Quiggin et al. 1993), while others explore the feasibility and design of the 

federal crop insurance program (e.g., Annan et al. 2014; Chambers 1989; Coble et al. 

1997; Coble et al. 2017; Gardner and Cramer1986; Goodwin and Ker 1998; Goodwin 
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2001; Ker and Goodwin 2000; Ker et al. 2016; Nelson and Loehman 1987; Quiggin 

et al. 1993; Skees and Reed 1986; Woodard et al. 2011; Woodard et al. 2012; 

Woodard and Verteramo 2017).  

Many studies also explored the economic and environmental impacts of 

federal crop insurance. In particular, the effect of federal crop insurance on fertilizer 

and pesticides use has received a lot of attention because of its environmental 

implications. Crop insurance may affect fertilizer and pesticides use at both the 

intensive margin (i.e., through changes in application rates) and extensive margin 

(i.e., through changes in land use) (Babcock and Hennessy 1996; Chang and Mishra 

2012; Horowitz and Lichtenberg1993; Mishra et al. 2005; Smith and Goodwin1996; 

Weber et al. 2016). Several studies have estimated the intensive-margin effect of crop 

insurance. Horowitz and Lichtenberg (1993) found that the Midwestern corn farmers 

who purchased crop insurance increased fertilizer use by 19% and pesticide 

expenditure by 21%, while Smith and Goodwin (1996) and Babcock and Hennessy 

(1996) concluded that crop insurance decreased fertilizer and chemical application 

rates. Mishra et al. (2005) found that revenue insurance purchases reduced 

expenditure on fertilizer, but not on pesticide. Chang and Mishra (2012) found that 

crop insurance had a positive effect on fertilizer/chemical expenses and that the effect 

was robust across the entire distribution of fertilizer/chemical expenses. Weber et al. 

(2016) found that expanded crop insurance coverage had little effect on productivity 

(value of production per acre), and fertilizer and chemical use. 

Crop insurance may also affect fertilizer and pesticides use by affecting crop 

mix. Wu (1999) finds that providing crop insurance for corn shifts land from hay and 

pasture to corn, which increases fertilizer and pesticides use at the extensive margin, 

and this effect is of greater importance in affecting total chemical use and 

environmental quality than the effect at the intensive margin. Since the publication of 

this study, many other researchers have estimated the effect of federal crop insurance 

on land allocation, and results suggest that crop insurance subsidies have modest 

impacts on land use at the extensive margin, and that these land reallocations generate 

small to moderate environmental effects, which can be locally significant (Claassen et 
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al. 2011; Goodwin et al. 2004; Lubowski et al. 2006; Miao et al. 2016; O’Donoghue 

et al. 2009; Walters et al. 2012; Weber et al. 2016). For example, in a recent study, 

Claassen et al. (2017) found that federal crop insurance has a small effect on 

conversions of non-cropland to cropland and more significant effects on crop choice 

and crop rotation, and that changes in land use and cropping systems have small to 

moderate effects on soil erosion, nitrogen runoff and leaching, and soil carbon 

sequestration. 

There’s a dearth of literature on the effects of specialty crop insurance. Two 

noticeable exceptions are Richards (2000), who studies the demand for crop insurance 

for California grapes; and Ligon (2011), who estimates the effects of specialty crop 

insurance supply on output and prices of the insured crops. Richards (2000) found 

that premium increases are likely to reduce participation in federal crop insurance 

programs by California grape producers and cause a significant change in coverage 

levels among growers. Ligon (2011) found a significant effect of crop insurance 

supply on the output of perennial crops, and a small but significant effect on the 

prices of insured crops. Lee and Sumner (2013) examined the evolution of insurance 

availability for specialty crops, farmer participation over time, and potential financial 

payoffs to insurance participation. They found that specialty crop growers have a 

lower return on investment in crop insurance, as measured by indemnity-to-premium 

ratios, and lower participation rates than field crop growers.  

A major reason for the lack of study of specialty crop insurance is data 

shortage. Specialty crops are not as widely grown as field crops, which may result in 

fewer observations and less resources devoted to data collection. While research on 

field crops provides some conceptual foundations and empirical guidance, 

implications or findings cannot be easily applied to specialty crops due to their 

distinct product characteristics, production practices, and risk profiles. To inform the 

development of specialty crop insurance policies, there needs to be more research on 

the effects of specialty crop insurance, including the acreage and yield responses of 

specialty crops to federal crop insurance provision. In the next section, we will 

present an empirical model to address this need.  
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3.3 Empirical Model and Estimation 

3.3.1 Empirical Model  
This paper constructs a simultaneous-equation system consisting of crop 

insurance provision for specialty crops and their acreage and yield responses. The 

following equations are used to characterize the Risk Management Agency’s (RMA) 

provision of specialty crop insurance and producers’ acreage and yield responses: 

                                          𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡∗ = 𝑿𝑿𝒊𝒊𝒋𝒋𝒊𝒊
′ 𝝃𝝃 − 𝑢𝑢𝑖𝑖𝑖𝑖𝑡𝑡                                              (3-1) 

                                    𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡 = �
1,    𝑖𝑖𝑓𝑓 𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡∗ > 0
0,   𝑃𝑃𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

                                              (3-2) 

          𝐴𝐴𝑖𝑖𝑖𝑖𝑡𝑡 = ∑ 𝜃𝜃1𝑖𝑖𝑘𝑘 𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡𝐷𝐷𝑡𝑡𝑘𝑘4
𝑘𝑘=1 + ∑ 𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡𝐷𝐷𝑡𝑡𝑘𝑘𝒁𝒁𝒊𝒊𝒋𝒋𝒊𝒊

′4
𝑘𝑘=1 𝜽𝜽𝟐𝟐𝒊𝒊𝒌𝒌 + 𝒁𝒁𝒊𝒊𝒋𝒋𝒊𝒊

′𝜽𝜽𝟑𝟑𝒊𝒊 + 𝜈𝜈𝑖𝑖𝑖𝑖𝑡𝑡          (3-3) 

       𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡 = ∑ 𝛽𝛽1𝑖𝑖𝑘𝑘 𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡𝐷𝐷𝑡𝑡𝑘𝑘4
𝑘𝑘=1 + ∑ 𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡𝐷𝐷𝑡𝑡𝑘𝑘𝑾𝑾𝒊𝒊𝒋𝒋𝒊𝒊

′4
𝑘𝑘=1 𝜷𝜷𝟐𝟐𝒊𝒊𝒌𝒌 + 𝑾𝑾𝒊𝒊𝒋𝒋𝒊𝒊

′𝜷𝜷𝟑𝟑𝒊𝒊 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡          (3-4) 

where  

i = an index of crop (apples, wine grapes, dry plums, English walnuts, and dry beans); 

j = an index of county; 

t = an index of year, with t=1980, …, 2017; 

k = 1, …, 4 indicates the four time periods during which the FCIP for specialty crops 

remains largely unchanged; 

𝐷𝐷𝑡𝑡𝑘𝑘 = a dummy variable for period k, which equals one if year t is in period k and zero 

otherwise;  

𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡∗  = a latent variable for crop insurance supply; 
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𝐼𝐼𝑖𝑖𝑖𝑖𝑡𝑡 = an index indicating whether crop insurance is supplied to crop i in county j             

in year t; 

𝐴𝐴𝑖𝑖𝑖𝑖𝑡𝑡 = harvested acreage of crop i in county j in year t;  

𝐷𝐷𝑖𝑖𝑖𝑖𝑡𝑡 = average yield per harvested acre for crop i in county j in year t; 

𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡,𝑍𝑍𝑖𝑖𝑖𝑖𝑡𝑡,𝑊𝑊𝑖𝑖𝑖𝑖𝑡𝑡 = vectors of independent variables; 

𝑢𝑢𝑖𝑖𝑖𝑖𝑡𝑡 , 𝜈𝜈𝑖𝑖𝑖𝑖𝑡𝑡, 𝜖𝜖𝑖𝑖𝑖𝑖𝑡𝑡 = error terms. 

To identify the independent variables included in 𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡,𝑍𝑍𝑖𝑖𝑖𝑖𝑡𝑡, and 𝑊𝑊𝑖𝑖𝑖𝑖𝑡𝑡, we rely 

on policy guidelines and previous analyses. The RMA makes crop insurance 

provision decisions on a crop-by-crop and county-by-county basis, taking into 

account factors affecting both the demand for crop insurance and the feasibility for 

developing an actuarially fair crop insurance program. Thus, the availability of crop 

insurance for a specialty crop varies not only over time but also cross counties. The 

RMA makes specialty crop insurance provision decisions based on a set of criteria 

(General Accounting Office 1999, Appendix III). First, the crop must be 

“economically significant” in the county. A crop is considered economically 

significant if the total market value of the crop is at least one of the following: 1) $3 

million in the agricultural statistics district where it will be covered (8 in California); 

2) $9 million in the state where it will be covered; 3) $15 million in the RMA 

administrative region (10 nationally); or 4) $30 million nationally. There is a gap 

between when the RMA considers providing an insurance plan to a crop-county and 

when the insurance product is officially offered. The process of offering an insurance 

product usually starts with a pilot program, which is conducted for about three years 

in order for RMA to gain experience and test the program components before it 

becomes more widely available. Thus, we use own-crop values at the county, 

agricultural statistic district, state, and national levels in year t−3 to represent the 

RMA’s expected degree of economic significance for the crop at different spatial 

scales. If a crop’s value is relatively concentrated in an area, the area is more likely to 
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be supplied with insurance. Second, there must be “producer interest.” Producer 

interest is indicated to the RMA through recommendations by RMA regional offices 

as well as high levels of noninsured disaster payments (General Accounting Office 

1999). We use standard deviation of per-acre revenue to represent producer interest. 

The variation in revenue captures the inherent risk of crop production, thus reflecting 

the demand for crop insurance. A larger variation indicates higher production risks, 

implying more producer interest. Third, supplying the policy must be “feasible.” To 

the RMA, supplying an insurance product may be technically infeasible if, for 

example, there are inadequate data to evaluate the actuarial soundness of the product, 

if mechanisms to market the product are lacking, or if the proposed product is too 

complicated (General Accounting Office 1999). In this analysis, feasibility is 

reflected by the length of historical production data available. It provides a direct 

measurement of whether there is enough data to design and assess an insurance 

product. If there is a longer production history in record, it would be easier to 

establish an insurance policy, making crop insurance supply more feasible. 

RMA’s insurance provision decisions consider factors affecting both the 

demand for insurance and the feasibility for developing an insurance program. 

Producer interest directly reflects demand for insurance. Farmers are more interested 

in an insurance product if the specialty crop is risky to produce or is of higher value. 

Technical feasibility and budget constraint represent RMA’s considerations from a 

supplier’s perspective. Therefore, equation (3-1) is a reduced-form equation that 

describes the outcomes of RMA’s crop insurance supply decisions, rather than a 

conventional supply function. 

The independent variables in the acreage and yield response functions (3) and 

(4) can be identified by examining producers’ decision problems that maximize 

expected utility under production risks (Claassen et al. 2011; Goodwin et al. 2004; 

Walters et al. 2012; Weber et al. 2016). Independent variable vectors 𝑍𝑍 and 𝑊𝑊 consist 

of output and input prices, land quality and climate conditions. We also include age 

structure of perennial crops as an independent variable in the harvested acreage and 

yield response equations. The share of non-bearing grape acreage in county j in year t 
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is an explanatory variable in the harvested acreage response equation for grapes 

because non-bearing land is not harvested. The share of bearing, non-mature crop 

land is an explanatory variable in the yield response equation for grapes because non-

mature crops have lower yields than mature crops. 

The dummy variables 𝐷𝐷 in the acreage and yield response equations capture 

major structural and quantitative changes in the FCIP over the study period. As 

mentioned in the section Evolution of the FCIP and Specialty Crop Insurance, 

premium subsidies were initiated in the Federal Crop Insurance Act of 1980 and were 

significantly increased in the Federal Crop Insurance Reform Act of 1994. CAT, a 

new and fully subsidized insurance plan, was introduced in 1994 to expand coverage. 

From 2000 to 2014, new premium rates and new insurance products were developed 

to encourage further enrollment. For example, the Agricultural Risk Protection Act of 

2000 increased premium subsidies for buy-up coverage that exceeds the basic CAT 

coverage (O’Donoghue 2014). The 2014 farm bill established the WFRP program. 

Given the evolution of the insurance program, 4 major time periods are specified as 

1980-1994, 1995-2000, 2001-2014, and 2015-2017. Each represents a period during 

which the insurance program for specialty crops is largely unchanged. With 1980-

1994 as the baseline, three dummy variables can be constructed to reflect how 

changes in the FCIP affect farmers’ insurance participation and production decisions. 

3.3.2 Estimation Methods  
Moral hazard and adverse selection raise a big challenge to the estimation of 

the equation system. Arrow (1984) defines moral hazard as ‘hidden action’ of an 

insured agent, and adverse selection as ‘hidden knowledge’ available to the insured 

agent about his probability of loss. In the context of FCIP, moral hazard occurs when 

an insured farmer adjusts his input use and crop mix to take advantage of the 

insurance policy (Smith and Goodwin 1996; Wu 1999). Adverse selection occurs 

when a farmer who is more likely to suffer from crop loss is also more likely to be 

supplied with crop insurance. The potential loss is based on asymmetric information 

known to the farmer, but unknown to the insurer (Wu 1999).  
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Due to adverse selection, RMA’s decisions to provide crop insurance to 

specialty crops may be endogenous in the acreage and yield response equations. 

Moral hazard also causes endogeneity issue because of simultaneity. Crop insurance 

availability may affect a farmer’s possibility of adjusting cropping patterns. On the 

other hand, farmers’ opportunity to adjust cropping patterns may change possibility of 

being supplied with crop insurance. In this case, a simple OLS estimation of response 

equations would produce biased estimates.  

An endogenous switching regression model is often used to account for moral 

hazard and adverse selection effects. But a standard switching regression model deals 

with simultaneous-equation systems consisting of two equations with correlated 

unobserved error terms (Fuglie and Bosch 1995; Maddala 1983; Wu 1999). To 

estimate the equation system with three equations, an econometric method that 

expands the switching regression model is developed. Assume the error terms 𝑢𝑢𝑖𝑖𝑖𝑖𝑡𝑡, 

𝜈𝜈𝑖𝑖𝑖𝑖𝑡𝑡 and 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡 follow a multivariate normal distribution, i.e., (𝑢𝑢, 𝜈𝜈, 𝜀𝜀)~𝑁𝑁(0,𝛴𝛴), with 

   𝛴𝛴 = �
𝜎𝜎11 𝜎𝜎12 𝜎𝜎13
𝜎𝜎21 𝜎𝜎22 𝜎𝜎23
𝜎𝜎31 𝜎𝜎32 𝜎𝜎33

� 

where 𝜎𝜎11 is normalized to one. 

From equation (3-3), the expected harvested acreage for a particular crop 

(dropping subscripts to simplify notations), given insurance supply, equals    

 𝐸𝐸(𝐴𝐴|𝐼𝐼 = 1) = 𝑫𝑫′𝜽𝜽𝟏𝟏 + 𝑫𝑫′𝒁𝒁′𝜽𝜽𝟐𝟐 + 𝒁𝒁′𝜽𝜽𝟑𝟑 + 𝐸𝐸(𝑣𝑣|𝑢𝑢 < 𝑿𝑿′𝝃𝝃) 

                     = 𝑫𝑫′𝜽𝜽𝟏𝟏 + 𝑫𝑫′𝒁𝒁′𝜽𝜽𝟐𝟐 + 𝒁𝒁′𝜽𝜽𝟑𝟑 − 𝜎𝜎12
𝜙𝜙(𝑿𝑿′𝝃𝝃)
Φ(𝑿𝑿′𝝃𝝃)

                           (3-5) 

where 𝑫𝑫′ = (𝐷𝐷𝑡𝑡1, … ,𝐷𝐷𝑡𝑡4), 𝜽𝜽𝟏𝟏′ = (𝜃𝜃11, … ,𝜃𝜃14), 𝜙𝜙(∙) and Φ(∙) are probability density 

function and cumulative distribution function of the standard normal. Similarly, the 

expected harvested acreage, given no insurance supply, can be derived in a similar 

way: 
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               𝐸𝐸(𝐴𝐴|𝐼𝐼 = 0) = 𝒁𝒁′𝜽𝜽𝟑𝟑 + 𝐸𝐸(𝑣𝑣|𝑢𝑢 ≥ 𝑿𝑿′𝝃𝝃) = 𝒁𝒁′𝜽𝜽𝟑𝟑 + 𝜎𝜎12
𝜙𝜙(𝑿𝑿′𝝃𝝃)

1−Φ(𝑿𝑿′𝝃𝝃)
                 (3-6) 

Combining equations (3-5) and (3-6) gives 

                    𝐸𝐸(𝐴𝐴) = 𝑃𝑃(𝐼𝐼 = 1)𝐸𝐸(𝐴𝐴|𝐼𝐼 = 1) + 𝑃𝑃(𝐼𝐼 = 0)𝐸𝐸(𝐴𝐴|𝐼𝐼 = 0) 

                  = Φ(𝑿𝑿′𝝃𝝃)𝐸𝐸(𝐴𝐴|𝐼𝐼 = 1) + [1 −Φ(𝑿𝑿′𝝃𝝃)]𝐸𝐸(𝐴𝐴|𝐼𝐼 = 0).                  (3-7) 

Substituting (5) and (6) into (7), we obtain the expected acreage equation: 

     𝐸𝐸(𝐴𝐴) = Φ(𝑿𝑿′𝝃𝝃)(𝑫𝑫′𝜽𝜽𝟏𝟏 + 𝑫𝑫′𝒁𝒁′𝜽𝜽𝟐𝟐) + 𝒁𝒁′𝜽𝜽𝟑𝟑.                         (3-8) 

Similarly, we can derive the expected yield equation:  

   𝐸𝐸(𝐷𝐷) = Φ(𝑿𝑿′𝝃𝝃)(𝑫𝑫′𝜷𝜷𝟏𝟏 + 𝑫𝑫′𝑾𝑾′𝜷𝜷𝟐𝟐) + 𝑾𝑾′𝜽𝜽𝜷𝜷𝟑𝟑.                   (3-9)  

A two-stage procedure can be used to estimate this simultaneous-equation 

system (3-1), (3-8), (3-9). In the first stage, the reduced form equation of insurance 

provision (1) is estimated, which provides estimates of 𝜉𝜉. In the second stage, 

equations (3-8) and (3-9) are estimated simultaneously after substituting 𝑿𝑿′𝝃𝝃� for 𝑿𝑿′𝝃𝝃. 

Estimating these two equations simultaneously with full information maximum 

likelihood method (FIML) provides consistent estimates of model coefficients and 

standard errors (Lokshin and Sajaia 2004). 

The effect of crop insurance on acreage can be derived by subtracting (6) from 

(5): 

                      ∆𝐸𝐸(𝐴𝐴) = 𝐸𝐸(𝐴𝐴|𝐼𝐼 = 1) − 𝐸𝐸(𝐴𝐴|𝐼𝐼 = 0) 

                        = (𝑫𝑫′𝜽𝜽𝟏𝟏 + 𝑫𝑫′𝒁𝒁′𝜽𝜽𝟐𝟐) − 𝜎𝜎12 �
𝜙𝜙(𝑿𝑿′𝝃𝝃)
Φ(𝑿𝑿′𝝃𝝃)

+ 𝜙𝜙(𝑿𝑿′𝝃𝝃)
1−Φ(𝑿𝑿′𝝃𝝃)

�,                   (3-10) 

where the first term on the right-hand side measures the moral hazard effect, and the 

rest measures the adverse selection effect, i.e., the difference in harvested acreage 

between an insured farm and a randomly selected uninsured farm with the same 
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characteristics.9 Likewise, the effect of crop insurance on crop yield can be 

decomposed into a moral hazard effect and an adverse selection effect: 

                      ∆𝐸𝐸(𝐷𝐷) = 𝐸𝐸(𝐷𝐷|𝐼𝐼 = 1) − 𝐸𝐸(𝐷𝐷|𝐼𝐼 = 0) 

                        = (𝑫𝑫′𝜷𝜷𝟏𝟏 + 𝑫𝑫′𝑾𝑾′𝜷𝜷𝟐𝟐) − 𝜎𝜎13 �
𝜙𝜙(𝑿𝑿′𝝃𝝃)
Φ(𝑿𝑿′𝝃𝝃)

+ 𝜙𝜙(𝑿𝑿′𝝃𝝃)
1−Φ(𝑿𝑿′𝝃𝝃)

�,                  (3-11) 

In the next section, we discuss the data used to estimate the system of equations and 

the insurance effects. 

 

3.4 Data 
This analysis uses county-level data on crop insurance and crop production for 

the state of California from 1980-2017. The data, in pooled cross-sectional form, 

varies by year, county, and crop. The data is obtained from two main sources. The 

first source is the Summary of Business Reports (1980-2017) by the USDA RMA. 

The reports provide crop-specific information at the county level, such as type of 

insurance plan, number of policies sold, total liability, premium before application of 

subsidies, subsidized premium and total indemnity. The data are used to generate the 

dependent variable in the crop insurance supply equation (3-2). It is a binary variable 

equal to one if insurance is offered to crop i in county j in year t, zero otherwise. The 

data show that whenever an insurance policy was offered, a positive number of 

insurance policies were sold. Therefore, the terms “offering” and “supplying” 

insurance to crop i in county j in year t are used interchangeably. The second major 

source of data is disaggregated agricultural production data (1980-2017) collected by 

California’s Agricultural Commissioners. The production data include crop-specific 

output price, harvested acreage and yield at the county level. A variable construction 

procedure resulted in the insurance and production data for the five crops analyzed in 

                                                           
9 We assume that when aggregating to county level, moral hazard and adverse selection 
effects are pronounced enough and exhibit the same pattern as in producer level. 
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this article: apples, wine grapes, English walnuts, dry plums (i.e., prunes), and dry 

beans (see Appendix A1).  

The crop insurance and production databases, together with data collected 

from other sources, are also used to generate the independent variables for the crop 

insurance supply equation and the acreage and yield response equations. As discussed 

in the last section, the independent variables for the insurance supply equation include 

variables that measure economic significance of the crop, producer interest, feasibility 

to provide crop insurance, and budget of the FCIP. We use own-crop values at the 

county, agricultural statistic district, state, and national levels in year t−3 to represent 

the economic significance of the crop. Data on crop values for apples, wine grapes, 

and dry beans are developed from the U.S. Department of Agriculture’s Crop Values 

Annual Summary. Crop values for other crops are generated by using prices, 

harvested acreages and yields from the Agricultural Commissioners’ data.  

Independent variables included in the acreage and yield response equations 

include input and output prices, crop age structure, climate and weather, and land 

quality. Data on input and output prices comes from the Agricultural Prices 

Summary. To represent the prices paid by farmers at the start of the growing season, 

we collect indexes of input price paid in April for feeds, livestock and poultry, seeds, 

fertilizers, chemicals, fuels, supplies and repairs, autos and trucks, building materials, 

interest on farm real estate and farm non-real estate debt, farm real estate taxes, and 

wage rates. To represent the prices received at the end of the growing season for 

substitutes and complements, we collect indexes of output prices received in October 

for food grain, oilseed, fruit and nuts, vegetables and melons, meat, dairy, and poultry 

and eggs. Because of lack of futures markets and support prices for specialty crop, we 

use the lagged output price (𝑝𝑝𝑡𝑡−1) as the expected price in the harvested acreage and 

yield equations. 

Data on the age distribution of grape vines is obtained from the California 

Grape Acreage Reports, which are published by the California Field Office of the 

USDA NASS. To construct a variable for the quantity of land with bearing, non-
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mature grape vines, which are vines that are 4-6 years old, we add newly planted 

acres in t−3, t−4, and t−5. To construct a variable for the quantity of land with non-

bearing grape vines, which are vines that are 1-3 years old, we add newly planted 

acres in t, t−1, and t−2.  

The 1997 Natural Resources Inventory and the 2011 National Land Cover 

Database are used to generate soil quality variables. Specifically, we collect GIS data 

on the amount of land in Land Capability Class 1-8 and use a shape file for 

agricultural land from the National Land Cover Database to construct a variable for 

the amount of agricultural land in each of the eight Land Capability Classes. Lower 

Land Capability Class values indicate higher quality soils with less use restrictions 

and better suitability for agricultural production. Climate data is collected from the 

PRISM Climate Group’s Data Explorer for every county in California and month of 

the year from 1950 to 2017. Most of the crops we are modelling are orchard and 

vineyard crops. Olen and Wu (2014) found that the most frequent causes of loss for 

insured orchard/vineyard in California were freeze (27%), excess moisture (21%), 

and heat (16%). As such, we selected four major types of climate variables: April 

minimum temperature (frost risk), July maximum temperature (heat risk), mean 

growing season temperature, May precipitation (excess moisture risk). For modelling 

acreage response, we constructed long-term historical climate averages (1950-1979) 

to represent expectations for each risk and the growing season temperature. For 

modelling yield response, we constructed annual deviation to represent observed 

weather conditions. Both soil quality variables and climate variables enter the 

harvested acreage and yield equations (3-3) and (3-4) as independent variables. 

Some descriptive statistics for the dependent variables are given in Table 3-2. 

There is significant variation in insurance supply, harvested acreage, and yield for all 

crops, as indicated by standard deviation.  
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3.5 Estimation Strategies 
In this section, we provide a brief description of the model specifications and 

estimators that we choose to estimate the equation system (3-1)-(3-4). A more 

detailed description of the procedures and justifications for selecting these 

specifications and estimators is given in Appendix A2.  

3.5.1 Federal Crop Insurance Supply 
We test several specifications to determine a) which spatial scales of crop 

values should be included in the model, and b) whether absolute crop values or 

relative shares of crop value are better indicators of economic significance. We find 

that the specification containing absolute crop values at various spatial scales 

provides the best fit model.  

Tests are also performed to determine the appropriate method for estimating 

the insurance equation for each crop. We compare the estimation results from four 

different estimators: pooled probit with unclustered standard errors, pooled probit 

with cluster-robust standard errors, panel probit using random-effect estimator, and 

panel probit using correlated-random-effect estimator (i.e., Mundlak’s approach). 

Table 3-3 provides a detailed comparison across different estimators for dry beans. 

The major findings are as follows: 1) panel probit estimators outperform pooled 

probit estimators. As evidenced by the likelihood-ratio test, pooled probit method 

does not provide consistent estimates because it neglects county-specific effects; it is 

also inefficient when standard errors are not adjusted to solve the problem of serial 

correlation induced by time-invariant county characteristics. 2) random-effect 

estimators perform better than correlated-random-effect estimators. As supported by 

the Hausman specification test, there is no significant correlation between the 

unobserved time-invariant county-specific effects and the regressors, implying the 

random-effect estimator as consistent and more efficient. This conclusion is 

confirmed by a Wald test on the coefficients from the correlated-random-effect 

model. The unobserved heterogeneity is uncorrelated with regressors, indicating 

random-effect estimators as both consistent and efficient. Therefore, the test statistics 
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reveal that the random-effect panel probit estimator is the best estimator for insurance 

supply equation. This conclusion holds for all selected crops.  

 

Table 3-3. A Comparison between Four Estimators of Insurance Supply to Dry Beans 
 

Variable (units) dy/dx 

 Pooled Probit Panel Probit 
Robust unclustered std. error Robust clustered std. error Random effect Correlated random effect 

Economic Significance 

County Value ($B) 37.300*** 
(4.020) 

37.300*** 

(7.390) 
12.300*** 
(4.570) 

6.700 
(23.600) 

Statistic District Value ($B) -0.813 
(1.070) 

-0.813 
(2.760) 

-1.660*** 
(0.435) 

-2.740*** 
(0.390) 

California Value ($B) -3.730*** 
(1.280) 

-3.730** 
(1.760) 

-2.440*** 
(0.015) 

-1.720*** 
(0.041) 

U.S. Value ($B) -0.179 
(0.206) 

-0.179 
(0.180) 

-0.207*** 
(0.000) 

-0.165*** 
(0.000) 

Producer Interest 

Variation of Revenue -0.003*** 
(0.000) 

-0.003*** 

(0.001) 
-0.002** 
(0.001) 

-0.003*** 
(0.001) 

Technical Feasibility 

Length of Historical Production Data 0.006*** 
(0.002) 

0.006 
(0.006) 

0.010* 
(0.005) 

0.003 
(0.006) 

FCIP Budget 

Trend (year) 0.011*** 
(0.003) 

0.011** 
(0.005) 

0.009*** 
(0.003) 

0.008*** 
(0.003) 

Obsv. 588 588 588 588 
R2 0.42 0.42 — — 
Pred. Prob. Of Supply 0.57 0.57 0.55 0.55 
Correct Prediction 82% 82% 87% 90% 
Likelihood-ratio Test of the Null Hypothesis 𝝆𝝆 = 𝟎𝟎  
𝜌𝜌 — — 0.82 0.80 
�̅�𝜒2 Test Statistic — — 165.78 154.77 
Prob >= �̅�𝜒2 — — 0.000 0.000 
Result Rejected at the 1% level of confidence 
Hausman Test of the Null Hypothesis that the Difference in Coefficients Is Not Systematic 
𝜒𝜒2 Test Statistic — — 3.92 
Prob > 𝜒𝜒2 — — 0.270 
Result Not rejected at the 10% level of confidence 
Wald Test of the Null Hypothesis that Unobserved Heterogeneity Is Uncorrelated with Regressors 
𝜒𝜒2 Test Statistic — — 4.55 
Prob > 𝜒𝜒2 — — 0.102 
Result Not rejected at the 10% level of confidence 

Note: In parentheses are Delta-method robust standard errors. *, ** and *** denote significance at the 10%, 5% and 1% levels, respectively.  
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3.5.2 Harvested Acreage and Yield Response Equations 
The model specifications for the harvested acreage and yield equations are 

identified as follows. First, we add interaction terms between the predicted 

probability of insurance provision and explanatory variables in the estimation. These 

interaction terms capture the mechanisms through which farmers’ cropping decisions 

are affected by crop insurance supply. Based on the coefficients on the interaction 

terms, we can assess how acreage and yield respond differently to changes in 

explanatory variables due to provision of crop insurance.  

The harvested acreage equation and yield equation are estimated 

simultaneously. We perform Hausman tests to check if the unobserved error term is 

correlated with the regressors. Test statistics indicate that correlation between the 

county effect and the independent variables results in an endogeneity issue only in the 

yield equation of walnuts and dry beans. We use least squares dummy variable 

estimators to deal with county fixed effects in these equations. For the rest, county 

fixed effects lead to an auto-correlation problem, and they can be treated as random 

parameters. The pooled OLS method with cluster robust standard errors is used to 

address serial correlation. It outperforms the random-effect estimator in that it does 

not require additional assumption on the specific form of the variance-covariance 

matrix and that it allows for arbitrary heteroscedasticity. 

 

3.6 Estimation Results 

3.6.1 Federal Crop Insurance for Specialty Crops  
The estimation results from the model of federal crop insurance provision are 

presented in Table 3-4. The crop insurance provision equation correctly predicts 

supply in at least 80% of observations for all crops, indicating the estimated equation 

(3-1) fits the observed data well. The predicted probability of crop insurance 

provision is close to the observed mean values for all crops. The marginal effects 

indicate that both the demand and supply side of the crop insurance market play a role 

in the RMA’s decisions.  
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Table 3-4. Marginal Effects for the Models of Insurance Supply to Specialty Crops 
 

Variable (units) 
Apples Grapes Plums, Dry Walnuts Beans, Dry 

dy/dx dy/dx dy/dx dy/dx dy/dx 
Economic Significance 

  County Value ($B) -2.320 
(2.200) 

2.390*** 
(0.406) 

-0.840 
(1.610) 

2.720 
(2.190) 

12.300*** 
(4.570) 

  Statistic District Value ($B) 1.880* 
(1.030) 

-0.321*** 
(0.015) 

-2.590*** 
(0.142) 

2.790*** 
(0.062) 

-1.660*** 
(0.435) 

  California Value ($B) 1.160* 
(0.620) 

0.225*** 
(0.000) 

2.000*** 
(0.001) 

-0.191*** 
(0.000) 

-2.440*** 
(0.015) 

  U.S. Value ($B) -0.220*** 
(0.000) 

-0.117*** 
(0.000) — — -0.207*** 

(0.000) 
Producer Interest 

  Variation of Revenue 0.0002*** 
(0.000) 

-0.0004*** 
(0.0002) 

-0.001*** 
(0.000) 

-0.0003 
(0.0003) 

-0.002** 
(0.001) 

Technical Feasibility 

  Length of Historical Production Data 0.005 
(0.005) 

0.019*** 
(0.007) 

0.041*** 
(0.008) — 0.010* 

(0.005) 
FCIP Budget 

  Trend (year) 0.019*** 
(0.004) 

0.010*** 
(0.002) 

0.023*** 
(0.003) 

0.023*** 
(0.003) 

0.009*** 
(0.003) 

Obsv. 697 1,026 497 805 588 
Pred. Prob. Of Supply 0.22 0.53 0.66 0.62 0.55 
Correct Prediction 91% 80% 94% 91% 87% 
Note: Models estimated with robust standard errors. In parentheses are Delta-method standard errors. *, ** and *** denote 
significance at the 10%, 5% and 1% levels, respectively.  
 

 

First, economic significance is a significant determinant of federal crop 

insurance supply to a crop in a county. Higher economic value reflects higher market 

demand for insurance. The economic significance variables that are statistically 

significant are increasingly negative at larger spatial scales, except for dry plums, and 

their coefficients decrease in absolute value. All economic significance variables that 

are statistically significant at the county level are positive and have relatively large 

coefficients, while most of the statistically significant variables at the national level 

are negative and have relatively small coefficients. For example, own-crop value at 

the county level has a positive and significant effect on crop insurance supply for 
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grapes and dry beans. If county value is 10% higher, probability of insurance supply 

for these crop increases by 1.5% and 6.7%, respectively. Own-crop value at the 

agricultural statistic district level has a discernibly positive effect on crop insurance 

supply for apples and walnuts. Therefore, the estimation results support our 

expectation that if a crop’s value is relatively concentrated in an area, the area is more 

likely to be supplied with insurance.  

Second, when revenue from producing a crop displays a larger standard 

variation, either the price or yield or both must be volatile, risk averse producers 

would be more interested in insurance products to manage the risk. Through 

recommendations by RMA regional offices, there is a higher probability of crop 

insurance supply. However, only the variation of revenue for apples has the expected 

positive marginal effect on insurance supply. In fact, the estimated marginal effects 

are very small in magnitude for all crops, with elasticity ranging from -0.35% to 

0.08%. It suggests that variation in revenue has a comparatively indiscernible impact 

on the RMA’s decision to provide insurance.  

Third, we assume that if there is enough data to design and evaluate an 

insurance policy, it would be more technically feasible to offer crop insurance. As 

evidenced by the positive marginal effects of the technical feasibility variable for all 

crops, a longer production history contributes to a higher probability of insurance 

supply. This impact is statistically significant for all crops except for apples.  

Finally, there is evidence that the FCIP’s budget constraint affects crop 

insurance supply to specialty crops. Liability of specialty crops grew from around $7 

billion in 2000 to almost $17 billion in 2017, accounting for 16.1% of total crop 

insurance liability in 2017 (FCIC 2019). The FCIP’s indemnity payment increased by 

more than 650% to nearly $7.5 billion from 1990 to 2011 (Glauber 2013). Premium 

subsidies rose from only $23 million in 1993 to more than $620 million by 2017 

(U.S. Department of Agriculture 2019). This rapid expansion in specialty crop 

insurance is made possible by increasing funding for the federal crop insurance 
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program and is captured by the positive marginal effects of the time trend variable for 

all crops.  

3.6.2 Acreage and Yield Response Functions 
The estimation results from the model of harvested acreage and yield response 

are reported in Table A3 and Table A4, respectively, in the appendix. Panel A of each 

table presents parameter estimates for the interaction terms, and panel B presents 

parameter estimates for the non-interaction terms, thus reflecting the marginal impact 

of each variable in the case of no crop insurance supply. Both the acreage and yield 

response models have high goodness of fit, with R2 ranging from 0.62 to 0.95. 

Several results from the tables are highlighted below. 

First, the estimated results suggest that both harvested acreage and crop yield 

are more responsive to soil and climate variables, than to price variables. Different 

crops may require different soil and climate conditions. In addition, some crops may 

have comparative advantages on low quality land (i.e., more profitable to grow those 

crops), and others have comparative advantages on high quality land. Thus 

interpretation of the coefficients on soil and climate variables must bear these points 

in mind. Input and output prices have no discernible effect on crop production, except 

that an increase in fertilizer price significantly lowers crop yield for apples and 

walnuts. 

Second, the age distribution of grape vines has a statistically significant effect 

on grape acreage and yield. Bearing but non-mature crops have lower yields. Non-

insured farmers with a larger share of non-mature cropland tend to have lower yield 

and smaller harvested acreage. The effect of non-mature cropland shares on yield and 

harvested acreage tends to be smaller in farms with crop insurance.  

Finally, most of the coefficients of the interaction terms are significant at 10% 

level or higher, indicating that crop insurance significantly affects harvested acreage 

and yield by influencing the effect of climate and soil quality on farmers’ production 

decisions. Below, we discuss the acreage and yield effects in detail. 
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3.6.3 Effects of Crop Insurance on Acreage 

Using the estimated models and equations (3-10) and (3-11), we estimate the 

effect of crop insurance on acreage and yield for each of the five crops from 1980-

2017. The average results across counties and the study period are summarized in 

Table 3-5. The first row of the table shows the moral hazard effect on harvested 

acreage of the selected crop. For all the crops, farmers expand harvested acreage 

when crop insurance becomes available to take advantage of the reduced risk. The 

second row of Table 3-5 shows the self-selection effect on harvested acreage. The 

self-selection effect is negative for all crops because farmers who are supplied with 

crop insurance are more likely to suffer from crop losses and therefore tend to harvest 

fewer acreages compared with a randomly selected farmer with the same 

characteristics. Conversely, farmers without crop insurance tend to harvest more 

acreage than a randomly selected farmer with the same characteristics. The moral 

hazard effect dominates the adverse selection effect for apples, grapes and dry plums, 

making the overall effect of crop insurance on acreage of these crops positive. While 

for walnuts and dry beans, the adverse selection effect outweighs the moral hazard 

effect.  
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Table 3-5. Average Effects of Crop Insurance on Harvested Acreage and Yield 
across Counties in California, 1980-2017 

 
 
 Apples Grapes Plums, Dry Walnuts Beans, Dry 

Acreage (acres) 

Moral Hazard Effect 269.8 
(1113.3) 

3179.1 
(1917.5) 

878.1 
(101.4) 

2110.7 
(1045.2) 

247.9 
(796.6) 

Adverse Selection Effect -247.9 
(152.6) 

-1417.1 
(833.0) 

-706.1 
(508.4) 

-2446.8 
(1337.1) 

-610.3 
(513.0) 

Total Acreage Effect (∆𝐸𝐸(𝐴𝐴)) 21.9 
[2.1%] 

1762.0 
[11.2%] 

172.0 
[3.3%] 

-336.1 
[-3.3%] 

-362.4 
[-7.6%] 

Yield (tons/acre) 

Moral Hazard Effect 4.88 
(3.51) 

0.23 
(0.23) 

0.11 
(0.05) 

0.44 
(0.36) 

0.06 
(0.23) 

Adverse Selection Effect -4.02 
(2.47) 

-0.10 
(0.01) 

-0.08 
(0.61) 

-0.47 
(0.25) 

-0.07 
(0.06) 

Total Yield Effect (∆𝐸𝐸(𝐷𝐷)) 0.86 
[9.3%] 

0.13 
[2.5%] 

0.03 
[1.4%] 

-0.03 
[-2.2%] 

-0.01 
[-0.9%] 

Note: In brackets are percent changes in acreage or yield. In parentheses are standard deviations. 
 

If we compare horizontally, the effects vary across the five selected crops. 

This may reflect that each crop has a distinct production practice and risk profile. Our 

data show that the revenues from producing apples, grapes and dry plums have a 

much larger standard deviation than revenues from producing walnuts and dry beans. 

This suggests that it is riskier to produce the first three crops than the last two. 

Therefore, producers of the first three crops are more likely to have some “hidden 

action” in production practices, making the moral hazard effect dominate for these 

crops. The last two crops are less prone to moral hazard, making the adverse selection 

effect dominate for the last two crops. The overall effect of crop insurance on acreage 

and yield is positive for apples, grapes and dry plums, and negative for the other two 

crops. 

Among the first three crops, insurance has the largest influence on grapes. As 

shown in Table 3-1, grape is the first among the three that is covered by a crop 

insurance policy, has the maximum amount of total liability and premium, has the 

smallest loss ratio, covers more counties, and has a relatively higher subsidy rate. Due 
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to the massive and concentrated grape production in California, insurance policy 

favors grapes. With better policy design and higher participation rates, adverse 

selection is less of an issue to grapes. A big, positive moral hazard effect, and a small, 

negative adverse selection effect make grape producers expand harvested acreage to 

the largest extent. 

The estimated acreage response model also reveals the channels through 

which crop insurance affects the harvested acreage of the specialty crops. First, the 

impacts of crop insurance on harvested acreage can manifest through producers’ 

responses to climate variables. Farmers are significantly affected by climate 

conditions when making acreage decisions. However, most of the coefficients for the 

climate variables change signs or significance after crop insurance is offered. For 

example, the estimation results indicate that crop insurance supply changes farmers’ 

responses to frost risk, represented by minimum temperature. Without insurance, 

expectation of more freezing temperature makes farmers harvest fewer acres of 

apples and grapes. With crop insurance, farmers may respond differently to frost risks 

because crop insurance helps protect farmers from such risk. As a result, the effect of 

frost risk on harvested acreage is smaller when crop insurance is available.  

3.6.4 Effects of Crop Insurance on Yield 
Table 3-5 also reports the effect of crop insurance on yield of the five crops. 

Crop yield can increase or decrease under crop insurance, ranging from -0.9%-9.3% 

and depending on the crop. With crop insurance, apples, grapes and dry plums have 

higher harvested yield. While farmers growing walnuts and dry beans have lower 

yield. Crop insurance supply has a mixed effect on yield for the following reasons. 

Farmers may grow on marginal lands, where yield is lower under crop insurance. 

Changes in crop mix, including changing from one crop variety to another, can either 

increase or decrease yield. Farmers may change the rate of replanting perennial crops, 

thereby affecting the age distribution of the orchard and the yield, especially in the 

first several years when the perennial crops are either non-bearing or bearing but non-

mature. Furthermore, crop insurance can affect the use of chemical or labor inputs, 
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but its relation to yield change depends on whether the input is risk-increasing or risk-

decreasing.  

In Table 3-5, we also decompose the total yield effect into a moral hazard 

effect and an adverse selection effect. In response to insurance supply, hidden actions 

lead to higher yield. For all selected crops, counties with crop insurance tend to have 

lower yield than a randomly selected county with the same characteristics. Therefore, 

the resulting aggregate self-selection effect is negative for all crops. Lastly, the total 

effect on crop yield has the same sign as total acreage effect. 

The yield effect of crop insurance supply also varies across the five selected 

crops. Apples and dry plums have unique characteristics that involve riskier 

production practices. They are more prone to hidden action, such as increasing the 

use of risk-increasing input. While grapes have better policy support and higher 

participation rate. They have less severe adverse selection issue. Hence crop 

insurance provision increases average yield for these crops. On the contrary, 

relatively small moral hazard effects and large adverse selection effects lead to 

reduced yield for walnuts and dry beans. The estimated yield response model 

indicates that crop insurance affects yield mainly through climate interaction terms. 

Both precipitation and average temperature have a quadratic relation with yield, with 

the shape depending on crop. Extreme heat has an adverse effect on crop yield. For 

example, grape production is more restricted by maximum temperature than other 

crops. A 1°F increase in maximum temperature is associated with a 4.8% reduction in 

yield. However, crop insurance mitigates the negative impact of extreme heat. With 

crop insurance, farmers have different perceptions on climate risks. Adaptations in 

production behavior make yield less responsive to changes in climate conditions. 

When supplied with crop insurance, grape yield decreases by 3.3% for a 1°F increase 

in maximum temperature. 

3.6.5 Changes in Crop Insurance Effects over Time 
So far we have focused on the average effect of crop insurance over the study 

period. In Table 3-6, we report the effect of changes in crop insurance in the last three 
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periods, which feature different crop insurance programs for specialty crops. Each 

percentage indicates the change in harvested acreage or yield comparing to the period 

before. Compared with the base period 1980-1994, increased premium subsidies and 

benefits associated with enrollment in CAT in 1995-2000 encourage acreage 

expansion for all crops except apples. Policy changes in 2001-2014, including 

reduced premium rates and higher coverage levels, motivated more walnut producers 

to participate in the insurance program, with participation rates increasing from 0.54 

(1995-2000) to 0.68. Walnut producers expand acreage by 32.1%. Besides, apple 

producers respond so strongly to this policy change that by 2014, harvested acreage 

exceeds the level before the decline in 1995. The 2014 farm bill reverses the trend for 

most crops. The WFRP program benefits apple, grape and dry plum producers more 

than others. In fact, the WFRP program attempts to address the adverse selection 

issues by providing a wide variety of coverage levels and enlarging the insurance 

pool (Olen and Wu 2017). This may reflect that apples, grapes and dry plums may be 

less prone to adverse selection problems.  

 

Table 3-6. Effects of Policy Changes in the FCIP on Harvested Acreage and 
Yield, Relative to the Previous Period 

 
 Apples Grapes Plums, Dry Walnuts Beans, Dry 

Acreage (acres) 

1995-2000 -28.3% 2.0% 0.8% 14.0% 3.3% 

2001-2014 1.0% -16.4% -13.1% 32.1% 7.0% 

2015-2017 4.5% 21.9% 11.5% -25.5% -5.1% 

Yield (tons/acre) 

1995-2000 -26.6% 5.8% -1.6% 2.9% 1.5% 

2001-2014 5.5% 12.0% 12.4% 6.8% 3.4% 

2015-2017 4.6% 10.7% 10.1% -7.1% -4.2% 

 

Major policy changes influencing farmers’ participation decisions are also 

manifested in yield changes. The impacts of the policy changes move in the same 
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direction as the total yield effects reported in Table 3-5. Corresponding to the decline 

in harvested acreage, average yield of apples for 1995-2000 declined 27% compared 

with the average yield in the previous period for counties with insurance supply. The 

average yield increased for all crops, apples included, with the changes in crop 

insurance programs in the 2000 farm bill. This upward trend continues in apples, 

grapes and dry plums after the establishment of the WFRP program.  

 

3.7 Conclusion 
Federal crop insurance for specialty crops is important to agricultural risk 

management for many states in the US. Specialty crops are an increasingly important 

contributor to farm income and human health. With the expansion in crop insurance 

programs, policymakers need better information on specialty crop producers’ 

behavior in subsidized insurance markets. However, there is a significant knowledge 

gap in the literature about the impacts of specialty crop insurance on land allocation 

and crop yield.  

This paper analyzes the main factors affecting federal crop insurance supply 

to specialty crops in California and the impact of the supply on the acreage and yield 

of five major types of specialty crops in California (apples, wine grapes, dry plums, 

English walnuts, and dry beans). The analysis provides several interesting results.  

First, both the demand and supply affect the RMA’s decision to provide 

insurance for a specialty crop in a county. Higher economic value of a crop, more 

concentrated production within a county, more technical feasibility, and the FCIP’s 

increasing budget all contribute to a higher probability of crop insurance provision in 

a county.  

Second, crop insurance provision affects farmers’ acreage response to climate 

conditions and soil quality. Crop insurance reduces growers’ financial risks and 

encourages them to expand crop production to areas with less favorable soil and 

climate conditions. Apples and dry plums involve riskier production practices. They 
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are more prone to hidden action. Grapes have better policy support and higher 

participation rate and are less prone to adverse selection problems. Hence crop 

insurance provision increases harvested acreage of these crops. On the contrary, 

smaller moral hazard effect and larger adverse selection effect lead to reduced 

acreage for walnuts and dry beans. 

Third, crop insurance supply can increase or decrease the yield of a specialty 

crop. With crop insurance supply, the average yields of apples, grapes and dry plums 

increase, while the average yields of walnuts and dry beans decrease. These results 

parallel with the changes in harvested acreage. These results may reflect that crop 

insurance encourages crop production on marginal lands (which tends to reduce the 

average yield), but increases the use of risk-increasing input (which tends to increase 

the average yield). 

In response to crop insurance supply, famers may adopt less efficient 

practices, such as growing riskier crops or growing on marginal lands. For all selected 

crops, moral hazard and adverse selection problems lead to discernible acreage and 

yield changes. These acreage and yield responses may cause poor actuarial 

performance of the insurance policy and increase government costs. Some index-

based insurance policies can be effective at mitigating moral hazard and adverse 

selection effects in insurance markets. These policies make payments based on 

objective measurements rather than farm-level or county-level yield. Hence, 

producers’ hidden knowledge about their management practices cannot affect the 

chance of a payment. There will be low levels of information asymmetry. Besides, the 

WFRP program also addresses adverse selection problems in the FCIP by providing a 

wide variety of coverage levels and enlarging the insurance pool (Olen and Wu 

2017).  

Federal crop insurance can significantly affect acreage and yields of specialty 

crops, thus influencing their prices and output. This suggests that crop insurance can 

influence the consumption of specialty crops such as fruits and nuts, which may have 

important public health implications. Changes in land use and fertilizer and pesticides 
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application under crop insurance may also have important environmental 

consequences. A better understanding of the public health and environmental 

implications will lead to a better design of the federal crop insurance program and 

therefore should be an important topic for future research.   
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Chapter 4 Conclusion  
 

Irrigation management is a primary mechanism for improving sustainability of 

water use and coping with climate change in the arid U.S. West (Howden 2007; 

USDA 2016). Many policy options are available to cope with production risks and 

attain sustainable agricultural development. The federal crop insurance program 

(FCIP) is a primary risk management tool for U.S. agriculture (Glauber 2013). 

Improving water and risk management policy design necessitates a thorough 

understanding of the impacts of water scarcity and climate variability on adaptive 

production decisions connected with agricultural land and water use. We conduct 

both theoretical and empirical analysis to identify the major economic, climate, and 

institutional factors influencing production decisions and evaluate producers’ 

responses to risk management policies.  

Chapter 2 examines how water availability and climate variability affect 

producers’ adaptive land use and irrigation strategies. Conceptually, we construct a 

farm-level theoretical model to explore a multioutput producer’s behavior under 

uncertainties. In particular, we capture production risks associated with extreme 

weather, such as drought, frost, and extreme heat. A formula of sufficient statistics 

representing optimal production decisions and key parameters in the adaptation 

strategies are derived. Comparative analysis suggests that climate variability 

encourages technology adoption for a producer with high irrigation efficiency and for 

a crop with high market value. A producer allocates more land to a crop that he 

predominantly grows and a crop with high output price or low water price if he 

anticipates a more variable climate. In response to climate variability, a producer 

increases water application rates if he adjusts technology adoption more than he 

adjusts planted acreage. We find a similar pattern in the effects of water scarcity on 

adaptations. If a producer has a low adoption rate and expects increasing water price, 

he will enhance the use of technology to improve irrigation efficiency and 

compensate for reduced water supply. Due to decreasing marginal productivity of 

input use, a producer chooses to diversify crop portfolio and switches to a crop that he 

does not massively grow given more expensive water supply. The expansion in 



118 
 

 

planted acreage increases with output price. Reductions in water supply cause a 

decline in water application rates, regardless of the characteristics specific to producer 

or crop. 

The conceptual framework informs empirical estimation and generates 

valuable insights into how farmers in irrigated agricultural production systems would 

respond and adapt to water scarcity and climate change. Empirically, we measure 

specific risks for crop production, compile a comprehensive crop-specific dataset on 

key water and climate variables, distinguish between long-run and short-run 

responses, and estimate a system of equations on cropland allocation, irrigation 

technology adoption, and water application rates simultaneously for major field and 

specialty crops. Results suggest that water scarcity reduces irrigated share of selected 

crops and expands dryland production. We observe more elastic responses for crops 

with high surface water price (potato) or high groundwater pumping cost (forage and 

wheat). Water scarcity encourages adoption of efficient irrigation technology 

sprinkler and drip, especially for crops with low adoption rates (forage and wheat). 

Bureau of Reclamation provides more secured water supplies and subsidizes water 

use. Farms receiving water from BOR allocate 2.6% more cropland to irrigated 

production and use 11%~18% more water per acre than farms obtaining water 

elsewhere. Extreme weather events present key determinants of irrigation strategies. 

Excessive moisture risk discourages technology adoption for forage and wheat, 

encourages adoption for orchard/vineyard, and decreases water application rates for 

all crops. Extreme heat risk increases irrigated share and reduces technology adoption 

for forage and wheat. Orchard/vineyard producers mitigate freeze damage by using 

efficient irrigation technology and increasing water application rates. Wheat 

producers adapt to drought by irrigating a larger share of land, adopting efficient 

technology, and applying less water per acre. Weather expectations and observations 

are also critical to adaptations. Higher precipitation level reduces demand for 

irrigation, thus decreasing irrigated share and water application rates. Whereas high 

evaporative loss in hot weather increases water application rates by 2%~5% and 
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decreases technology adoption by as much as 4%, given a 1°F increase in maximum 

temperature. 

Federal crop insurance for specialty crops is important to agricultural risk 

management for many states in the U.S. Specialty crops are an increasingly important 

contributor to farm income and human health. With the expansion in crop insurance 

programs, policymakers need better information on specialty crop producers’ 

behavior in subsidized insurance markets. However, there is a significant knowledge 

gap in the literature about the impacts of specialty crop insurance on land allocation 

and crop yield. Chapter 4 analyzes the main factors affecting federal crop insurance 

supply to specialty crops in California and the impact of the supply on the acreage 

and yield of five major types of specialty crops in California (apples, wine grapes, dry 

plums, English walnuts, and dry beans). Results suggest that both the demand and 

supply affect the RMA’s decision to provide insurance for a specialty crop in a 

county. Higher economic value of a crop, more concentrated production within a 

county, more technical feasibility, and the FCIP’s increasing budget all contribute to a 

higher probability of crop insurance provision in a county. Crop insurance provision 

affects farmers’ acreage response to climate conditions and soil quality. Crop 

insurance reduces growers’ financial risks and encourages them to expand crop 

production to areas with less favorable soil and climate conditions. Crop insurance 

supply can increase or decrease the yield of a specialty crop. With crop insurance 

supply, the average yields of apples, grapes and dry plums increase, while the average 

yields of walnuts and dry beans decrease. 

This study makes several contributions to literature. First, it is a farm-level, 

crop-specific analysis. Our micro-level modelling system explores how individual 

farmers with heterogeneous portfolios adapt to production risks. The crop-specific 

specification captures susceptibility of individual crops to alternative extreme weather 

events. Furthermore, this system models the impacts of water scarcity and climate 

variability on cropland allocation, water use, and irrigation technology adoption 

decisions simultaneously. Second, the model explicitly distinguishes whether the 

decisions involved is a short-run or long-run response. Third, this analysis 
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differentiates annual crop and perennial crop. A perennial crop will be non-bearing or 

non-mature in the first several years, which may result in variations in water use. 

Lastly, this study examines specialty crop producers’ behavior under risks and 

uncertainties. Specialty crops are a major source of farm income, especially on the 

West Coast. But they are not as well analyzed as field crops in literature. Also, there 

may be unique risks for growing specialty crops. The 2014 Farm Bill authorizes the 

RMA to expand crop insurance to more specialty crops and more counties. More 

research about the impact of water supply uncertainties and climate risks on specialty 

crop producers’ behavior can promote development of efficient agricultural policies. 

Overall, this study shows that agriculture production is vulnerable to water 

scarcity and climate variability. Producers manage risk exposure by changing land 

use decisions and irrigation practices. An effective policy design can affect 

producers’ adaptations, protect them against risks, and ultimately promote sustainable 

resource management and agricultural development. This study can be improved and 

expanded in several aspects. First, we can extend the conceptual model by relaxing 

some assumptions and modifying specifications. We impose several assumptions on 

parameters and functional forms, such as a Von Neumann-Morgenstern utility 

function, a Cobb-Douglas production function with uncertainty, exogenous output 

price, normal distributions of climate risks and profits. These assumptions are not 

essential, but they offer substantial mathematical tractability and facilitate identifying 

the key factors relevant to optimal production decisions. Furthermore, we model the 

discrete choice of technology adoption as a continuous variable for the share of land 

irrigated with the efficient irrigation technology, which is mathematically represented 

by irrigation efficiency. This identification facilitates a quantitative analysis given 

that other choice variables are continuous and that the production decisions are jointly 

made. This approximation can weaken the model’s power in explaining producer 

behavior. It is debatable and it is possible to be extended.  

Second, we can expand the econometric analysis and provide more empirical 

evidence. For example, we currently use irrigation data from two most recent FRIS 

surveys 2013 and 2018. We can update the dataset with earlier or prospective surveys 
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to form a stronger and more balanced panel. In addition, building on the empirical 

results, we can evaluate the impact of the impact of alternative policy options for 

encouraging water conservation and adoption of efficient irrigation technology. We 

can identify alternative water policies and climate scenarios, e.g., changes in water 

pricing policies, changes in type or frequency of extreme weather patterns, etc. We 

then apply the modelling system to assess the effect of the policy options and climate 

patterns on cropping patterns and irrigation practices. Farmers’ technology adoption 

in response to climate change (e.g., drought, frost, extreme heat) is of particular 

interest, since there is lack of study in literature about how the risk of extreme 

weather events affects irrigation decisions. To improve the predictability of optimal 

policy design, we can incorporate various scenario specifications and explore the 

possibility of more intertwined policy combinations. Given agriculture’s sensitivity to 

water scarcity and climate and weather conditions, it is meaningful to evaluate 

irrigated agricultural performance under various scenarios. This analysis provides a 

framework to identify the challenges and options for adaptive agricultural 

management in irrigated production systems. It presents an interesting and important 

topic for future research. 

Third, federal crop insurance can significantly affect acreage and yields of 

specialty crops, thus influencing their prices and output. This suggests that crop 

insurance can influence the consumption of specialty crops such as fruits and nuts, 

which may have important public health implications. Changes in land use and 

fertilizer and pesticides application under crop insurance may also have important 

environmental consequences. A better understanding of the public health and 

environmental implications will lead to a better design of the federal crop insurance 

program and therefore should be an important topic for future research. 
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A1 Derivation of Expected Utility 
𝜋𝜋 is normally distributed with mean 𝐸𝐸[𝜋𝜋𝑖𝑖] and variance 𝛼𝛼𝑎𝑎𝑟𝑟[𝜋𝜋𝑖𝑖]. Denote the 

probability density function of 𝜋𝜋𝑖𝑖 as 𝑔𝑔(𝜋𝜋𝑖𝑖). 

 𝐸𝐸[𝑈𝑈𝑖𝑖(𝜋𝜋)] = ∫𝑈𝑈(𝜋𝜋𝑖𝑖)𝑔𝑔(𝜋𝜋𝑖𝑖)𝑑𝑑𝜋𝜋𝑖𝑖 

                  = �(−𝑒𝑒−𝛼𝛼𝛼𝛼𝑖𝑖)
1

�2𝜋𝜋𝑖𝑖𝛼𝛼𝑎𝑎𝑟𝑟[𝜋𝜋𝑖𝑖]
𝑒𝑒
−(𝛼𝛼𝑖𝑖−𝐸𝐸[𝛼𝛼𝑖𝑖])2

2𝛼𝛼𝑎𝑎𝑟𝑟[𝛼𝛼𝑖𝑖] 𝑑𝑑𝜋𝜋𝑖𝑖 

                 =
1

�2𝜋𝜋𝑖𝑖𝛼𝛼𝑎𝑎𝑟𝑟[𝜋𝜋𝑖𝑖]
��−𝑒𝑒−

(𝛼𝛼𝑖𝑖−𝐸𝐸[𝛼𝛼𝑖𝑖]+𝛼𝛼𝑖𝑖𝛼𝛼𝑎𝑎𝑟𝑟[𝛼𝛼𝑖𝑖])2+2𝐸𝐸[𝛼𝛼𝑖𝑖]𝛼𝛼𝑖𝑖𝛼𝛼𝑎𝑎𝑟𝑟[𝛼𝛼𝑖𝑖]−(𝛼𝛼𝑖𝑖𝛼𝛼𝑎𝑎𝑟𝑟[𝛼𝛼𝑖𝑖])2
2𝛼𝛼𝑎𝑎𝑟𝑟[𝛼𝛼𝑖𝑖] �𝑑𝑑𝜋𝜋𝑖𝑖 

                 =
1

�2𝜋𝜋𝑖𝑖𝛼𝛼𝑎𝑎𝑟𝑟[𝜋𝜋𝑖𝑖]
𝑒𝑒−𝐸𝐸[𝛼𝛼𝑖𝑖]𝛼𝛼𝑖𝑖+

1
2𝛼𝛼𝑖𝑖

2𝛼𝛼𝑎𝑎𝑟𝑟[𝛼𝛼𝑖𝑖] ��−𝑒𝑒
−(𝛼𝛼𝑖𝑖−𝐸𝐸[𝛼𝛼𝑖𝑖]+𝛼𝛼𝑖𝑖𝛼𝛼𝑎𝑎𝑟𝑟[𝛼𝛼𝑖𝑖])2

2𝛼𝛼𝑎𝑎𝑟𝑟[𝛼𝛼𝑖𝑖] �𝑑𝑑𝜋𝜋𝑖𝑖 

  = −𝑒𝑒−𝛼𝛼�𝐸𝐸[𝛼𝛼𝑖𝑖]−
1
2𝛼𝛼𝑖𝑖𝛼𝛼𝑎𝑎𝑟𝑟[𝛼𝛼𝑖𝑖]�.                                                                        (A1-1) 

 

A2 Derivations of the Optimal Solutions in Equations (2-4) ~ (2-7) 
 

A Lagrangian function, denoted 𝐿𝐿𝐴𝐴𝑖𝑖, states the optimization problem as:  

𝐿𝐿𝐴𝐴𝑖𝑖 = 𝐸𝐸[𝑈𝑈𝑖𝑖(𝜋𝜋)] + 𝜆𝜆𝑖𝑖�𝐿𝐿𝑖𝑖 − ∑ 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 � + 𝜂𝜂𝑖𝑖�𝐸𝐸[𝑊𝑊𝚤𝚤��� |𝜀𝜀] − ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 � + 𝜏𝜏𝑖𝑖(1 − 𝑎𝑎𝑖𝑖𝑖𝑖),   (A2-1) 

where 𝜆𝜆𝑖𝑖, 𝜂𝜂𝑖𝑖, and 𝜏𝜏𝑖𝑖 are the shadow prices assigned to the land, water supply, and 

share constraint, respectively. The necessary first order conditions for the optimal 

solutions are: 

𝑃𝑃𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖�
𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
− �𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜀𝜀2�𝑟𝑟𝑖𝑖𝑖𝑖 − 𝜔𝜔𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖 − 𝜆𝜆𝑖𝑖 − 𝜂𝜂𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑒𝑒𝜎𝜎

2�𝑒𝑒𝜎𝜎2 −

1�𝑃𝑃𝑖𝑖𝑖𝑖2𝐿𝐿𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖�
2𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖2𝛾𝛾𝑖𝑖,                                                                                                (A2-2) 
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𝛽𝛽𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖−1𝑧𝑧𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑒𝑒
1
2𝜎𝜎

2
− �𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜀𝜀2� − 𝜂𝜂𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑒𝑒𝜎𝜎

2�𝑒𝑒𝜎𝜎2 −

1�𝛽𝛽𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖2𝐿𝐿𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖2𝛽𝛽𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖2𝛽𝛽𝑖𝑖−1𝑧𝑧𝑖𝑖𝑖𝑖2𝛾𝛾𝑖𝑖,                                                                                       (A2-3) 

𝛾𝛾𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖�
𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖−1𝑒𝑒

1
2𝜎𝜎

2
− 𝜔𝜔𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑒𝑒𝜎𝜎

2�𝑒𝑒𝜎𝜎2 − 1�𝛾𝛾𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖2𝐿𝐿𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖�
2𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖2𝛾𝛾𝑖𝑖−1,         (A2-4) 

𝛽𝛽𝑖𝑖𝑃𝑃𝑖𝑖𝐿𝐿𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖−1𝑧𝑧𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑒𝑒
1
2𝜎𝜎

2
− 𝑡𝑡𝑖𝑖 − 𝜏𝜏𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑒𝑒𝜎𝜎

2�𝑒𝑒𝜎𝜎2 −

1�𝛽𝛽𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖2𝐿𝐿𝑖𝑖𝑖𝑖2𝑟𝑟𝑖𝑖𝑖𝑖2𝛽𝛽𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖2𝛽𝛽𝑖𝑖−1𝑧𝑧𝑖𝑖𝑖𝑖2𝛾𝛾𝑖𝑖        ∀ 𝑗𝑗.                                                                          (A2-5) 

These conditions are informative. First, at the optimal solutions, the shadow 

price of each constraint equals the marginal net benefit of each resource, which is 

defined as the expected value of the marginal product of the resource minus extra cost 

of input use and extra risk premium. For example, equation (A2-2) states that the 

optimal acreage allocated to a crop 𝐿𝐿𝑖𝑖𝑖𝑖∗  is such that the shadow price of the land 

availability constraint 𝜆𝜆𝑖𝑖 equals the marginal net benefit of land. The marginal net 

benefit is defined as the difference between expected value of marginal product of 

land (𝑃𝑃𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖�
𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
) and extra cost of water (�𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜀𝜀2�𝑟𝑟𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖), extra cost 

of non-water input (𝜔𝜔𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖), and finally extra risk premium (𝛼𝛼𝑖𝑖𝑒𝑒𝜎𝜎
2�𝑒𝑒𝜎𝜎2 −

1�𝑃𝑃𝑖𝑖𝑖𝑖2𝐿𝐿𝑖𝑖𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖�
2𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖2𝛾𝛾𝑖𝑖). Equation (A2-3) states that the optimal per-acre water use 

of a crop 𝑟𝑟𝑖𝑖𝑖𝑖∗  is determined at the level where the shadow price of the water 

availability constraint 𝜂𝜂𝑖𝑖 equals the per-acre marginal net benefit of water. The 

marginal net benefit is similarly defined as the difference between expected value of 

per-acre marginal product of water (𝛽𝛽𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖−1𝑧𝑧𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑒𝑒
1
2𝜎𝜎

2
) and extra cost of 

water use (𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜀𝜀2), extra per-acre risk premium (𝛼𝛼𝑖𝑖𝑒𝑒𝜎𝜎
2�𝑒𝑒𝜎𝜎2 −

1�𝛽𝛽𝑖𝑖𝑃𝑃𝑖𝑖𝑖𝑖2𝐿𝐿𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖2𝛽𝛽𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖2𝛽𝛽𝑖𝑖−1𝑧𝑧𝑖𝑖𝑖𝑖2𝛾𝛾𝑖𝑖). Equation (A2-5) states that the optimal irrigation 

efficiency 𝑎𝑎𝑖𝑖𝑖𝑖∗  is at the level where the marginal net benefit is equal to its shadow 

price 𝜏𝜏𝑖𝑖.  
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Second, optimal water and non-water input use follow a fixed expansion path 
𝑧𝑧𝑖𝑖𝑖𝑖
∗

𝑟𝑟𝑖𝑖𝑖𝑖
∗ = 𝑐𝑐𝑖𝑖𝑖𝑖+𝜎𝜎𝜀𝜀2+𝜂𝜂𝑖𝑖

𝜔𝜔𝑖𝑖𝑖𝑖

𝛾𝛾𝑖𝑖
𝛽𝛽𝑖𝑖

, which is affected by the output elasticities 𝛽𝛽𝑖𝑖 and 𝛾𝛾𝑖𝑖, non-water 

input price 𝜔𝜔𝑖𝑖𝑖𝑖, water price 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜀𝜀2, and its shadow price 𝜂𝜂𝑖𝑖.  

Third, optimal cropland allocation changes proportionally to the optimal 

adoption of the water-saving irrigation technology. That is, if the producer decides to 

apply more efficient irrigation to a larger share of land, i.e., increase irrigation 

efficiency for a certain crop, he will also allocate more land to this crop. And the 

expansion in the production scale is positively affected by the cost associate with the 

efficient irrigation technology 𝑡𝑡𝑖𝑖 + 𝜏𝜏𝑖𝑖, and limited by sum of output elasticities of 

inputs 𝛽𝛽𝑖𝑖 + 𝛾𝛾𝑖𝑖, shadow price of land 𝜆𝜆𝑖𝑖, and output elasticity of efficient water use 𝛽𝛽𝑖𝑖. 

It makes intuitive sense as if it is more expensive to install the efficient irrigation 

system, the producer will plant more of the crop given the high sunk cost and 

irreversible investment. However, if land is a relatively “expensive” resource, 

meaning a large 𝜆𝜆𝑖𝑖, he will not expand planted acreage as much. 

The conditions generate the optimal solutions:  

𝑟𝑟𝑖𝑖𝑖𝑖∗ = 𝜆𝜆𝑖𝑖𝛽𝛽𝑖𝑖
(1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖)(𝑐𝑐𝑖𝑖𝑖𝑖+𝜎𝜎𝜀𝜀2+𝜂𝜂𝑖𝑖)

,                                    (A2-6) 

𝑧𝑧𝑖𝑖𝑖𝑖∗ = 𝜆𝜆𝑖𝑖𝛾𝛾𝑖𝑖
𝜔𝜔𝑖𝑖𝑖𝑖(1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖)

,                                               (A2-7) 

𝑎𝑎𝑖𝑖𝑖𝑖∗ :𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∗
𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖∗

𝛾𝛾𝑖𝑖�1 − 𝛽𝛽𝑖𝑖 − 𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖∗
𝛽𝛽𝑖𝑖𝜆𝜆𝑖𝑖𝛽𝛽𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
− �𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∗

𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖∗
𝛾𝛾𝑖𝑖�1 − 𝛽𝛽𝑖𝑖 −

𝛾𝛾𝑖𝑖��
2
𝑎𝑎𝑖𝑖𝑖𝑖∗

2𝛽𝛽𝑖𝑖+1𝛼𝛼𝑖𝑖𝑒𝑒𝜎𝜎
2�𝑒𝑒𝜎𝜎2 − 1�(𝑡𝑡𝑖𝑖 + 𝜏𝜏𝑖𝑖) = 𝜆𝜆𝑖𝑖

2𝛽𝛽𝑖𝑖,             (A2-8) 

𝐿𝐿𝑖𝑖𝑖𝑖∗ = (1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖)(𝑡𝑡𝑖𝑖+𝜏𝜏𝑖𝑖)

𝜆𝜆𝑖𝑖𝛽𝛽𝑖𝑖
𝑎𝑎𝑖𝑖𝑖𝑖∗ ,                                   (A2-9) 

where 𝑎𝑎𝑖𝑖𝑖𝑖∗  is characterized by the implicit function in equation (A2-8). 
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A3 Determining the Sign: the Effect of Climate Variability on 

Technology Adoption  

The sign of the derivative is determined in the following way. 
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝜎𝜎2
=

𝑎𝑎𝑖𝑖𝑖𝑖
∗ [�3𝑒𝑒𝜎𝜎

2
−1��𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖

∗ 𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
∗ 𝛾𝛾𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖

∗ 𝛽𝛽𝑖𝑖𝑒𝑒
1
2𝜎𝜎

2
−𝜆𝜆𝑖𝑖�−𝜆𝜆𝑖𝑖𝑒𝑒𝜎𝜎

2
]

2(𝑒𝑒𝜎𝜎2−1)[𝜆𝜆𝑖𝑖𝛽𝛽𝑖𝑖+(1+𝛽𝛽𝑖𝑖)(𝜆𝜆𝑖𝑖−𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖
∗ 𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖

∗ 𝛾𝛾𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖
∗ 𝛽𝛽𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
)]

 is derived from equation (A2-8).  

First, we prove that 
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝛼𝛼𝑖𝑖
> 0. The sign is determined in the following way. 

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝛼𝛼𝑖𝑖
=

𝑎𝑎𝑖𝑖𝑖𝑖
∗ �𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖

∗ 𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
∗ 𝛾𝛾𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖

∗ 𝛽𝛽𝑖𝑖𝑒𝑒
1
2𝜎𝜎

2
−𝜆𝜆𝑖𝑖�

𝛼𝛼𝑖𝑖�𝜆𝜆𝑖𝑖𝛽𝛽𝑖𝑖+�1+𝛽𝛽𝑖𝑖��𝜆𝜆𝑖𝑖−𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖
∗ 𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖

∗ 𝛾𝛾𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖
∗ 𝛽𝛽𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
��

 is derived from equation (A2-

8). 
𝜕𝜕2𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝛼𝛼𝑖𝑖𝜕𝜕𝜆𝜆𝑖𝑖
< 0, which means 

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝛼𝛼𝑖𝑖
 is decreasing in 𝜆𝜆𝑖𝑖. When 𝜆𝜆𝑖𝑖 = 𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∗

𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖∗
𝛾𝛾𝑖𝑖�1 −

𝛽𝛽𝑖𝑖 − 𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖∗
𝛽𝛽𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
,  
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝛼𝛼𝑖𝑖
= 0. Since the second term on the left-hand side of equation 

(A2-8) is positive, 𝜆𝜆𝑖𝑖 < 𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∗
𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖∗

𝛾𝛾𝑖𝑖�1 − 𝛽𝛽𝑖𝑖 − 𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖∗
𝛽𝛽𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
. So 

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝛼𝛼𝑖𝑖
> 0.  

Since 
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝛼𝛼𝑖𝑖
> 0 and the numerator of 

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝛼𝛼𝑖𝑖
 is positive, the denominator of 

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝛼𝛼𝑖𝑖
 is 

also positive. The denominator of 
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝜎𝜎2
 has the same sign with the denominator of 

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝛼𝛼𝑖𝑖
, 

which is also positive. The threshold level 𝑎𝑎𝚤𝚤𝚥𝚥���� =

1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖
𝛿𝛿𝛽𝛽𝑖𝑖𝛾𝛾𝑖𝑖

�
�4𝑒𝑒𝜎𝜎

2
−1�𝜆𝜆𝑖𝑖

�3𝑒𝑒𝜎𝜎2−1�𝑃𝑃𝑖𝑖𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�
�

1
𝛽𝛽𝑖𝑖
�𝜔𝜔𝑖𝑖𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�

𝜆𝜆𝑖𝑖𝛾𝛾𝑖𝑖
�

𝛾𝛾𝑖𝑖
𝛽𝛽𝑖𝑖 (𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜀𝜀2 + 𝜂𝜂𝑖𝑖) is derived by setting 

the numerator of 
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝜎𝜎2
 equal to zero.  

When �3𝑒𝑒𝜎𝜎2 − 1� �𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∗
𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖∗

𝛾𝛾𝑖𝑖�1 − 𝛽𝛽𝑖𝑖 − 𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖∗
𝛽𝛽𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
− 𝜆𝜆𝑖𝑖� − 𝜆𝜆𝑖𝑖𝑒𝑒𝜎𝜎

2 = 0, 

𝜆𝜆𝚤𝚤� = 3𝑒𝑒𝜎𝜎
2
−1

4𝑒𝑒𝜎𝜎2−1
𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∗

𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖∗
𝛾𝛾𝑖𝑖�1 − 𝛽𝛽𝑖𝑖 − 𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖∗

𝛽𝛽𝑖𝑖𝑒𝑒
1
2𝜎𝜎

2
, 𝑎𝑎𝑖𝑖𝑖𝑖∗ = 𝑎𝑎𝚤𝚤𝚥𝚥����.  

When 𝑎𝑎𝑖𝑖𝑖𝑖∗ < 𝑎𝑎𝚤𝚤𝚥𝚥����, i.e. when 𝜆𝜆𝑖𝑖 > 𝜆𝜆𝚤𝚤� , 
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝜎𝜎2
< 0.  
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Otherwise, when 𝑎𝑎𝑖𝑖𝑖𝑖∗ > 𝑎𝑎𝚤𝚤𝚥𝚥����, i.e. when 𝜆𝜆𝑖𝑖 < 𝜆𝜆𝚤𝚤� , 
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝜎𝜎2
> 0.  

 

A4 Determining the Sign: the Effect of Climate Variability on Water 

Application Rates 
The sign of the derivative is complicated by how the shadow price 𝜆𝜆𝑖𝑖 change 

with climate variability. Therefore we take a different approach. We derive from the 

first order conditions that 𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝑡𝑡𝑖𝑖 + 𝜏𝜏𝑖𝑖) = (𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜀𝜀2 + 𝜂𝜂𝑖𝑖)𝐿𝐿𝑖𝑖𝑖𝑖∗ 𝑟𝑟𝑖𝑖𝑖𝑖∗ . From this condition, 

we derive the marginal effect as 
𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝜎𝜎2
= (𝑡𝑡𝑖𝑖+𝜏𝜏𝑖𝑖)

(𝑐𝑐𝑖𝑖𝑖𝑖+𝜎𝜎𝜀𝜀2+𝜂𝜂𝑖𝑖)

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝜎𝜎2
∗𝐿𝐿𝑖𝑖𝑖𝑖
∗ −

𝜕𝜕𝐿𝐿𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝜎𝜎2
∗𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝐿𝐿𝑖𝑖𝑖𝑖
∗ 2 . When 

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝜎𝜎2
∗ 𝐿𝐿𝑖𝑖𝑖𝑖∗ −

𝜕𝜕𝐿𝐿𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝜎𝜎2
∗ 𝑎𝑎𝑖𝑖𝑖𝑖∗ > 0, i.e. when 

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗ /𝜕𝜕𝜎𝜎2

𝑎𝑎𝑖𝑖𝑖𝑖
∗ >

𝜕𝜕𝐿𝐿𝑖𝑖𝑖𝑖
∗ /𝜕𝜕𝜎𝜎2

𝐿𝐿𝑖𝑖𝑖𝑖
∗ >0, 

𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝜎𝜎2
> 0. Otherwise, 

𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝜎𝜎2
< 0.  

Alternatively, we take derivative on both sides of the equation 𝑎𝑎𝑖𝑖𝑖𝑖∗ (𝑡𝑡𝑖𝑖 + 𝜏𝜏𝑖𝑖) =

(𝑐𝑐𝑖𝑖𝑖𝑖 + 𝜎𝜎𝜀𝜀2 + 𝜂𝜂𝑖𝑖)𝐿𝐿𝑖𝑖𝑖𝑖∗ 𝑟𝑟𝑖𝑖𝑖𝑖∗  with respect to 𝜎𝜎2 and get  
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

∗ /𝜕𝜕�𝜎𝜎2�

𝑎𝑎𝑖𝑖𝑖𝑖
∗ =

𝜕𝜕𝐿𝐿𝑖𝑖𝑖𝑖
∗ /𝜕𝜕�𝜎𝜎2�

𝐿𝐿𝑖𝑖𝑖𝑖
∗ +

𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖
∗ /𝜕𝜕�𝜎𝜎2�

𝑟𝑟𝑖𝑖𝑖𝑖
∗ . 

Hence, 
𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖

∗ /𝜕𝜕�𝜎𝜎2�

𝑟𝑟𝑖𝑖𝑖𝑖
∗ =

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗ /𝜕𝜕�𝜎𝜎2�

𝑎𝑎𝑖𝑖𝑖𝑖
∗ −

𝜕𝜕𝐿𝐿𝑖𝑖𝑖𝑖
∗ /𝜕𝜕�𝜎𝜎2�

𝐿𝐿𝑖𝑖𝑖𝑖
∗ . The sign of the marginal effect depends on 

the difference of adaptations in technology adoption and cropland allocation.  

 

A5 Determining the Sign: the Effect of Water Scarcity on Technology 

Adoption 

The sign of the derivative is determined in the following way. 
𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖

∗

𝜕𝜕�𝜎𝜎𝜀𝜀2�
=

𝑎𝑎𝑖𝑖𝑖𝑖
∗ [𝜆𝜆𝑖𝑖

2𝛽𝛽𝑖𝑖−2𝛽𝛽𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖
∗ 𝛽𝛽𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖

∗ 𝛽𝛽𝑖𝑖+1𝑃𝑃𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖
∗ 𝛾𝛾𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�𝛼𝛼𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
(𝑒𝑒𝜎𝜎

2
−1)(𝑡𝑡𝑖𝑖+𝜏𝜏𝑖𝑖)]

𝑟𝑟𝑖𝑖𝑖𝑖
∗ [𝑃𝑃𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖

∗ 𝛾𝛾𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�𝛼𝛼𝑖𝑖𝑒𝑒
1
2𝜎𝜎

2
�𝑒𝑒𝜎𝜎2−1�(𝑡𝑡𝑖𝑖+𝜏𝜏𝑖𝑖)𝑟𝑟𝑖𝑖𝑖𝑖

∗ 𝛽𝛽𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖
∗ 𝛽𝛽𝑖𝑖+1�1+2𝛽𝛽𝑖𝑖�−𝜆𝜆𝑖𝑖

2𝛽𝛽𝑖𝑖]
∙
𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖

∗

𝜕𝜕𝜎𝜎𝜀𝜀2
 is derived from 

equation (A2-8). The denominator of the first term on the right-hand side can be 

transformed into 𝜆𝜆𝑖𝑖𝛽𝛽𝑖𝑖
𝑎𝑎𝑖𝑖𝑖𝑖
∗ [𝜆𝜆𝑖𝑖𝛽𝛽𝑖𝑖 + (1 + 𝛽𝛽𝑖𝑖)(𝜆𝜆𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∗

𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖∗
𝛾𝛾𝑖𝑖�1 − 𝛽𝛽𝑖𝑖 − 𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖∗

𝛽𝛽𝑖𝑖𝑒𝑒
1
2𝜎𝜎

2
)], 

which is positive according to A3. The numerator can be rewritten as 
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𝜆𝜆𝑖𝑖𝛽𝛽𝑖𝑖
𝑃𝑃𝑖𝑖𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖

∗ 𝛾𝛾𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�𝑟𝑟𝑖𝑖𝑖𝑖
∗ 𝛽𝛽𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖

∗ 𝛽𝛽𝑖𝑖
[𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖∗

𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖∗
𝛾𝛾𝑖𝑖�1 − 𝛽𝛽𝑖𝑖 − 𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖∗

𝛽𝛽𝑖𝑖𝑒𝑒
1
2𝜎𝜎

2
�2 − 𝑎𝑎𝑖𝑖𝑖𝑖∗

𝛽𝛽𝑖𝑖� − 2𝜆𝜆𝑖𝑖]. 

When the numerator is set equal to zero, 𝑎𝑎𝚤𝚤𝚥𝚥𝜀𝜀���� = [1 −�1 − 2𝜆𝜆𝑖𝑖

𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖
∗ 𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖

∗ 𝛾𝛾𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�𝑒𝑒
1
2𝜎𝜎

2]
1
𝛽𝛽𝑖𝑖 

and 𝜆𝜆𝚤𝚤
𝜀𝜀���� =

𝑃𝑃𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖
∗ 𝛽𝛽𝑖𝑖𝑧𝑧𝑖𝑖𝑖𝑖

∗ 𝛾𝛾𝑖𝑖�1−𝛽𝛽𝑖𝑖−𝛾𝛾𝑖𝑖�𝑎𝑎𝑖𝑖𝑖𝑖
∗ 𝛽𝛽𝑖𝑖𝑒𝑒

1
2𝜎𝜎

2
�2−𝑎𝑎𝑖𝑖𝑖𝑖

∗ 𝛽𝛽𝑖𝑖�

2
. 

When 𝑎𝑎𝑖𝑖𝑖𝑖∗ < 𝑎𝑎𝚤𝚤𝚥𝚥𝜀𝜀����, i.e. when 𝜆𝜆𝑖𝑖 > 𝜆𝜆𝚤𝚤
𝜀𝜀����, the numerator is negative. Since 

𝜕𝜕𝑟𝑟𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝜎𝜎𝜀𝜀2
< 0, 

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝜎𝜎𝜀𝜀2
> 0. 

Otherwise, when 𝑎𝑎𝑖𝑖𝑖𝑖∗ > 𝑎𝑎𝚤𝚤𝚥𝚥𝜀𝜀����, i.e. when 𝜆𝜆𝑖𝑖 < 𝜆𝜆𝚤𝚤
𝜀𝜀����, 

𝜕𝜕𝑎𝑎𝑖𝑖𝑖𝑖
∗

𝜕𝜕𝜎𝜎𝜀𝜀2
< 0. 

 

A6. Supporting Statistics and Estimation Results 
The coefficient estimates for the nonlinear model equation (2-13) are reported 

in Table A1. The summary statistics for independent variables at county level are 

presented in Table A2. 
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Table A1. Parameter Estimates of Efficient Irrigation Technology Adoption 
 

Note: *, **, and *** denote significance at the 10, 5, and 1 percent levels, respectively. In parentheses are standard 
errors. 
 

 

Variable (units) Forage Orchard/Vineyard Potato Wheat 
Water scarcity 

    Off-farm surface water cost ($1000/acre-foot) 14.091*** 
(2.334) 

1.733** 
(0.744)  

13.986** 
(5.955) 

5.648 
(5.569) 

    Depth to well water (1000 feet) 0.221 
(1.222) 

3.080** 
(1.574) 

-3.189** 
(1.519) 

4.716** 
(2.254) 

    Pump capacity (1000 GPM) 0.434** 
(0.184) 

0.143 
(0.205) 

1.831** 
(0.768) 

0.663 
(0.529) 

Water supply institutions 

    BOR surface water supply (0/1) 0.430** 
(0.199) 

-0.925*** 
(0.307) 

0.088 
(0.841) 

-0.845** 
(0.352) 

    BOR*surface water cost -10.857*** 
(3.245) 

6.692 
(4.256) 

3.395 
(20.581) 

3.535 
(6.028) 

Climate and weather 

    Excessive moisture risk (inches) -0.008 
(0.006) 

0.026** 
(0.012) 

-0.086 
(0.157) 

-0.031* 
(0.018) 

    Extreme heat risk (°F) -1.859** 
(0.879) 

-0.178 
(0.399) 

1.017 
(0.992) 

-0.584 
(1.715) 

    Spring freeze and frost risk (days) -- 0.007 
(0.007) -- -- 

    Drought risk [0,1] -- -- -- 8.497** 
(3.834) 

    Precipitation, expected (inches) 0.019 
(0.014) 

-0.004 
(0.014) 

-0.010 
(0.061) 

0.103 
(0.065) 

    Max. temperature, expected (°F) -0.308*** 
(0.054) 

-0.049 
(0.057) 

-0.475 
(0.309) 

-0.207* 
(0.114) 

Farm characteristics and farmer demographics 

    Cropland quality [0,1] 0.220 
(0.404) 

0.533 
(0.466) 

1.367 
(2.136) 

-1.855 
(1.367) 

    Scale (1000 acres) -0.009 
(0.011) 

0.384*** 
(0.098) 

0.137* 
(0.084) 

-0.013 
(0.013) 

    Tenure [0,1] -0.347 
(0.237) 

-0.068 
(0.288) 

-0.493 
(0.963) 

0.898** 
(0.408) 

Price  

    Output price ($/ton) -0.242** 
(0.105) 

-0.003 
(0.002) 

0.124 
(0.162) 

0.320* 
(0.177) 

Year: 2018 -1.747** 
(0.787) 

-0.249 
(0.576) 

2.036 
(1.660) 

6.708** 
(3.462) 

State: OR 10.105** 
(4.342) 

-0.907 
(2.419) 

1.905 
(4.124) 

5.261 
(8.267) 

State: WA 2.492*** 
(0.423) 

-1.184 
(2.246) 

1.075 
(3.852) 

6.271 
(7.655) 

Intercept 18.725*** 
(5.349) 

4.172 
(3.111) 

3.755 
(8.311) 

-19.110 
(12.871) 

Observations 1645 2629 294 658 
Likelihood Ratios 𝜒𝜒2 (df) 830.43 (16) 189.24 (17) 28.87 (16) 404.29 (17) 
Prob > 𝜒𝜒2 0.00 0.00 0.02 0.00 
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Table A2. Descriptive Statistics for Independent Variables 
 

Note: a Outliers in water scarcity variables are replaced with the values at 95% percentile. Missing observations are 
replaced with county-level or state-level averages, by assuming that farms in the same county have similar water 
availability.  

 

A7. Variable Construction 
We start with all crops included in the database and drop the ones from the 

analysis that exhibit any of the following features: (1) it is not a specialty crop (i.e., 

not fruit, nut, vegetable, nursery and floriculture); (2) it has never been supplied with 

Variable (units) 
Forage Orchard/Vineyard Potato Wheat 
Mean 

(Std. Dev.) 
Mean 

(Std. Dev.) 
Mean 

(Std. Dev.) 
Mean 

(Std. Dev.) 
Water Scarcity and institutions a  

    Off-farm surface water cost ($1000/acre-foot) 0.054 
(0.105) 

0.097 
(0.157) 

0.093 
(0.166) 

0.042 
(0.094) 

    Depth to well water (1000 feet) 0.139 
(0.084) 

0.143 
(0.080) 

0.160 
(0.099) 

0.146 
(0.096) 

    Pump capacity (1000 GPM) 1.113 
(0.485) 

1.058 
(0.490) 

1.070 
(0.511) 

1.145 
(0.465) 

    BOR surface water supply [0,1] 0.304 
(0.276) 

0.251 
(0.267) 

0.309 
(0.278) 

0.361 
(0.263) 

Climate and weather  

    Excessive moisture risk (inches) 30.235 
(34.913) 

34.593 
(24.684) 

21.419 
(10.984) 

18.433 
(24.943) 

    Extreme heat risk (oF) 1.692 
(2.312) 

1.980 
(2.051) 

4.302 
(0.610) 

2.764 
(2.397) 

    Spring freeze and frost risk (days) -- 109.042 
(34.524) -- -- 

    Drought risk [0,1] -- -- -- 0.091 
(0.142) 

    Precipitation, expected (inches) 28.506 
(23.347) 

30.171 
(23.585) 

34.116 
(26.065) 

21.373 
(15.585) 

    Precipitation, observed (inches) 26.200 
(23.555) 

26.536 
(23.849) 

31.953 
(26.900) 

20.685 
(18.050) 

    Max. temperature, expected (oF) 27.174 
(4.028) 

26.901 
(4.163) 

26.112 
(4.328) 

28.218 
(3.800) 

    Max. temperature, observed (oF) 27.823 
(3.775) 

27.474 
(3.925) 

26.838 
(4.045) 

28.873 
(3.463) 

Farm characteristics and farmer demographics  

    Cropland quality [0,1] 0.404 
(0.320) 

0.453 
(0.316) 

0.403 
(0.288) 

0.353 
(0.321) 

    Scale (1000 acres) 35.153 
(59.454) 

27.914 
(57.057) 

39.157 
(68.692) 

55.561 
(69.908) 

    Tenure [0,1] 0.567 
(0.234) 

0.625 
(0.246) 

0.614 
(0.238) 

0.546 
(0.215) 

Price  

    Output price ($/ton) 44.335 
(4.021) 

497.261 
(324.277) 

42.999 
(16.700) 

56.676 
(9.851) 
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insurance or has always been supplied with insurance (thus the variation is not large 

enough for empirical analysis); (3) it has data for insurance but not for production; 

and (4) there are ambiguous crop categories. For example, at points in time the 

insurance policies for citrus crops were divided into more specific categories, 

transitioning from policies for “citrus”, to “citrus” and “special citrus”, and finally to 

a wide variety of more crop-specific policies. This ambiguity presents identification 

issues for determining the incidence of insurance supply to different crops across 

time. Finally, several crops were dropped from the database because they have few 

observations. These procedures resulted in the insurance and production data for the 

five crops analyzed in this article: apples, wine grapes, English walnuts, dry plums 

(i.e., prunes), and dry beans. 

 

A8. Identifying the Best Model Specifications and Estimators 

A8.1 Federal Crop Insurance Supply 
The model specifications are determined in the following way. First, only 

county level own-crop values are used to represent economic significance. Then crop 

values at the agricultural statistic district level, state level, and national level are 

added to the estimation successively. This process generates four specifications for 

each crop insurance equation. We perform Wald tests of coefficients and find that 

economic significance variables are jointly significant only if crop values at all spatial 

levels are included. This result holds for all crops. Therefore, the specification that 

includes all spatial level crop values provides the most fit model.  

Apart from selection of spatial scales, the measurements of economic 

significance need to be determined as well. First, absolute crop values at different 

spatial scales are used as measurements. Then relative shares of county value in each 

spatial scale are also used to measure economic significance. A comparison of 

marginal effects under these two model specifications suggests absolute crop values 

are better indicators of economic significance. Wald test results show that for all 
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crops, the explanatory variables are jointly significant when absolute crop values are 

included in the estimation.  

Tests are also performed to determine the appropriate method for estimating 

the insurance equation for each crop. Table 3-3 reports the estimation results of the 

marginal effects from four different estimators for the insurance equation for grapes. 

The insurance equation is first estimated using the pooled probit method, with both 

unclustered standard errors and cluster-robust standard errors.  

The pooled probit method ignores the panel structure of the data. It does not 

exploit variation between counties. The results from the pooled probit method are 

inconsistent if there are fixed county effects, and are also inefficient if standard errors 

are not adjusted to solve the problem of serial correlation induced by time-invariant 

county characteristics.  

We then estimate the insurance equation as a panel probit model using both 

the random-effect and correlated-random-effect estimators. The error term 𝑢𝑢𝑖𝑖𝑖𝑖𝑡𝑡 in the 

insurance supply equation (3-1) can be decomposed into two components,  

    𝑢𝑢𝑖𝑖𝑖𝑖𝑡𝑡 =  𝑎𝑎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡,                                      (A8-1) 

where 𝑎𝑎𝑖𝑖𝑖𝑖 capturesunobserved time-invariant county specific effects. The random-

effect estimator assumes 𝑎𝑎𝑖𝑖𝑖𝑖 to be uncorrelated with explanatory variables 𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡′ , while 

the correlated random effect estimator (i.e., Mundlak’s approach) accounts for 

correlation between 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑋𝑋𝑖𝑖𝑖𝑖𝑡𝑡′ . 

The test statistics reported in Table 3-3 show that the random effect estimator 

is better than the correlated random effect estimator. We run the Hausman 

specification test to see whether there is systematic difference between the two sets of 

panel probit estimates. The null hypothesis means both the random and correlated 

random effect models would be consistent, and the random effect model is also 

efficient. The null hypothesis that there is no correlation between county-specific 

effects and the regressors cannot be rejected, indicating that the random-effect 
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estimator is consistent and more efficient. We also perform a Wald test on the 

coefficients from the correlated random effect model. The result shows that they are 

jointly insignificant. That is, the assumption for the random effects model that the 

unobserved heterogeneity is uncorrelated with regressors is valid. The Wald test 

result confirms the conclusion from Hausman test that random effect estimator is 

consistent and efficient.  

The test statistics reported in Table 3-3 also reveal that the random-effect 

panel probit estimator performs better than the pooled probit estimators. 𝜌𝜌 is the 

proportion of the total variance contributed by the county specific effects. According 

to the likelihood-ratio test, 𝜌𝜌values are significantly different from zero, reflecting the 

importance of inter-county variance. This suggests that the pooled probit method does 

not provide consistent estimates for this model as it neglects county fixed effects in 

the data. Indeed, most marginal effects estimated using the pooled probit estimators 

are statistically insignificant. 

The above analysis and tests of model specifications and estimation methods 

are performed for each crop. The results confirm that the random-effect panel probit 

estimator is also the best estimator for other crop insurance supply equations.  

A8.2 Harvested Acreage and Yield Response Equations 
The model specifications for the harvested acreage and yield equations are 

determined in the following way. First, the predicted probability of insurance 

provision is the only policy variable included in the estimation of the equation 

system; no interaction terms are included. To explore the mechanisms through which 

farmers’ cropping decisions are affected by crop insurance supply, interaction terms 

are then added to the estimation. According to equation (3-3), the coefficient on the 

interaction term, 𝜃𝜃𝑖𝑖, measures the difference in the marginal effect of the independent 

variable with and without insurance supply. Similarly, the coefficient on the 

interaction term in equation (3-4), 𝛽𝛽𝑖𝑖, defines the effect of crop insurance supply on 

yield. Based on the estimated coefficients on the interaction terms, we can assess how 

acreage and yield respond differently to changes in explanatory variables due to 
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provision of crop insurance. The interaction terms are selected in the following 

manner. First, all interaction terms between crop insurance provision and explanatory 

variables are included in the estimation. Those that are insignificant for all crops are 

dropped. Then the equation system is re-estimated simultaneously.  

The harvested acreage equation and yield equation are estimated 

simultaneously. We perform Hausman specification tests to check if unobserved 

county heterogeneity is correlated with regressors. The error terms in equation (3-3) 

and (3-4) are both decomposed into time-invariant and time-varying parts: 

               𝜈𝜈𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑑𝑑𝑖𝑖𝑖𝑖𝑡𝑡,                                       (A8-2) 

    𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡.                                        (A8-3)  

According to the Hausman test results, correlation between county effect and the 

independent variables results in an endogeneity problem in the acreage equation of 

dry beans, and yield equation of grapes and dry plums. We use least squares dummy 

variable estimators to deal with county fixed effects in these equations. For the rest, 

county-fixed effects 𝑐𝑐𝑖𝑖𝑖𝑖 and 𝑒𝑒𝑖𝑖𝑖𝑖 lead to an auto-correlation problem instead of the 

endogeneity problem, and they can be treated as random parameters. The pooled OLS 

method with cluster robust standard errors is used to deal with serial correlation. It 

outperforms the random effect estimator in that it does not require additional 

assumption on the specific form of the variance-covariance matrix and that it allows 

for arbitrary heteroscedasticity.  

 

A9. Estimation Results 
The estimation results from the harvested acreage and yield response models 

are presented in Table A3 and Table A4.  
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Table A3. SUR Estimates of the Harvested Acreage Response Models 
 

Variable (units) Apples Grapes Plums, Dry Walnuts Beans, Dry 
      
Panel A: θ′s 

𝐼𝐼∗ ∗ Own Price ($/𝑡𝑡𝑃𝑃𝑡𝑡) 3.103** 
(1.290) 

7.512 
(6.686) 

-1.095 
(3.800) 

10.080*** 
(3.392) 

15.630*** 
(4.277) 

𝐼𝐼∗ ∗ LCC [1 − 2](%) -466.310 
(338.490) 

1,351 
(1,606) 

-8,370*** 
(1,061) 

9,607** 
(1,300) 

4,919* 
(2,652) 

𝐼𝐼∗ ∗ LCC [1 − 3](%) -65.300*** 
(9.745) 

-499.280*** 
(68.540) 

30.790* 
(18.400) 

-48.860** 
(21.070) 

28.350 
(28.920) 

𝐼𝐼∗ ∗ LCC [1 − 4](%) 9.453 
(8.047) 

308.930*** 
(102.640) 

518.850*** 
(58.570) 

195.590*** 
(45.670) 

156.250*** 
(42.760) 

𝐼𝐼∗ ∗ PPT (𝑖𝑖𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑠𝑠) 85.040 
(108.700) 

-5,173*** 
(932.600) 

-507.400 
(456.600) 

-2,660*** 
(374.300) 

-340.100 
(1,203) 

𝐼𝐼∗ ∗ PPT2 (𝑖𝑖𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑠𝑠2) -2.722 
(1.769) 

73.300*** 
(14.650) 

14.380* 
(7.814) 

37.840*** 
(5.817) 

-15.290 
(32.630) 

𝐼𝐼∗ ∗ Min Temp. (℉) -15,736*** 
(4,383) 

-251,347*** 
(40,387) 

118,663*** 
(22,437) 

-188,751*** 
(19,191) 

-135,184*** 
(24,683) 

𝐼𝐼∗ ∗ Min Temp.2  (℉2) 125.200 
(98.440) 

3,847*** 
(903.200) 

-603.800 
(525.700) 

-1,742*** 
(246.400) 

-1,276*** 
(430.000) 

𝐼𝐼∗ ∗ Max Temp. (℉) 11,642*** 
(3,856) 

280,130*** 
(33,573) 

286,486*** 
(26,220) 

182,492*** 
(21,244) 

255,183*** 
(38,089) 

𝐼𝐼∗ ∗ Max Temp.2  (℉2) -119.800* 
(66.110) 

-1,325* 
(702.500) 

-1,586*** 
(516.600) 

-3,640*** 
(314.700) 

-3,466*** 
(563.000) 

𝐼𝐼∗ ∗ D1995−2000 
-1,440 
(2,419) 

1,977 
(7,810) 

250.100 
(1,850) 

8,292** 
(3,893) 

852.200 
(2,717) 

𝐼𝐼∗ ∗ D2001−2014 
-817.700 
(2,479) 

-5,309 
(8,833) 

-1,704 
(2,046) 

11,698*** 
(4,155) 

1,348 
(3,003) 

𝐼𝐼∗ ∗ D2015−2017 
-974.000 
(2,341) 

11,332* 
(6,499) 

-1,311 
(1,777) 

10,021*** 
(3,002) 

1,838 
(2,937) 

𝐼𝐼∗ ∗ Non − bearing Land (%)  1,619*** 
(307.400)    
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Table A3. SUR Estimates of the Harvested Acreage Response Models (Cont.) 
 

Variable (units) Apples Grapes Plums, Dry Walnuts Beans, Dry 
      
Panel B: η′s 

Own Price ($/𝑡𝑡𝑃𝑃𝑡𝑡) -0.916* 
(0.516) 

8.758** 
(4.138) 

1.883 
(3.198) 

-0.597 
(2.090) 

2.916** 
(1.283) 

LCC [1 − 2](%) -37.260** 
(18.660) 

-1,176 
(924.000) 

5,768*** 
(803.880) 

1,242 
(934.490) 

441.760 
(622.250) 

LCC [1 − 3](%) 12.790*** 
(2.307) 

264.580*** 
(37.630) 

-12.800 
(14.570) 

-5.082 
(11.880) 

-53.360*** 
(19.170) 

LCC [1 − 4](%) -3.082 
(2.964) 

40.160 
(66.110) 

-487.260*** 
(47.350) 

-65.050** 
(32.600) 

-70.000*** 
(25.550) 

PPT (𝑖𝑖𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑠𝑠) 80.560*** 
(23.310) 

2,039*** 
(561.400) 

138.800 
(353.500) 

121.600 
(230.400) 

-81.370 
(422.100) 

PPT2 (𝑖𝑖𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑠𝑠2) -0.650* 
(0.356) 

-26.930*** 
(8.758) 

0.677 
(5.952) 

-1.670 
(3.343) 

-4.580 
(10.610) 

Min Temp. (℉) 1,320 
(1,988) 

213,624*** 
(41,405) 

139,573*** 
(20,620) 

44,294** 
(17,343) 

1,450 
(16,961) 

Min Temp.2  (℉2) -126.500*** 
(22.720) 

-687.400 
(454.900) 

1,674*** 
(377.700) 

426.000*** 
(139.000) 

-519.100*** 
(185.200) 

Max Temp.2  (℉2) -67.050*** 
(15.980) 

1,075*** 
(344.900) 

2,048*** 
(340.300) 

564.700*** 
(144.800) 

-317.000 
(199.200) 

Average Temp. (℉) -651.100 
(2,001) 

-204,326*** 
(39,512) 

-194,490*** 
(31,492) 

-48,654** 
(22,236) 

-3,010 
(20,176) 

Average Temp.2  (℉2) 174.600*** 
(32.950) 

-865.100 
(744.200) 

-3,304*** 
(727.800) 

-978.400*** 
(261.700) 

792.200** 
(373.700) 

Trend (𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟) -8.107 
(8.267) 

592.800** 
(243.900) 

1,197*** 
(311.400) 

232.600 
(180.900) 

54.490 
(121.600) 

Non − bearing Land (%)  -307.800** 
(148.400) 

 
   

County Dummies No No No No No 
Obsv. 697 1,022 497 1,056 588 
R2 0.62 0.71 0.84 0.76 0.70 

Note: In parentheses are standard errors. *, ** and *** denote significance at the 10%, 5% and 1% levels, respectively.  
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Table A4. SUR Estimates of the Yield Response Models 
 

Variable (units) Apples Grapes Plums, Dry Walnuts Beans, Dry 
      
Panel A: β′s 

𝐼𝐼∗ ∗ LCC [1 − 2](%) -0.009 
(1.302) 

0.353* 
(0.202) 

0.110 
(0.195) 

0.164* 
(0.088) 

-0.084*** 
(0.025) 

𝐼𝐼∗ ∗ LCC [1 − 3](%) -0.041 
(0.036) 

0.013 
(0.009) 

-0.001 
(0.003) 

-0.007*** 
(0.002) 

0.003** 
(0.001) 

𝐼𝐼∗ ∗ LCC [1 − 4](%) -0.035 
(0.025) 

-0.061*** 
(0.012) 

0.004 
(0.011) 

0.010*** 
(0.003) 

-0.008*** 
(0.002) 

𝐼𝐼∗ ∗ Max Temp. (℉) -8.823 
(30.200) 

-1.270 
(9.185) 

-11.440*** 
(4.229) 

-1.515 
(2.157) 

0.237 
(1.424) 

𝐼𝐼∗ ∗ Max Temp.2  (℉2) 0.293 
(0.623) 

0.083*** 
(0.015) 

0.063 
(0.076) 

0.004 
(0.041) 

-0.021 
(0.040) 

𝐼𝐼∗ ∗ Average Temp. (℉) 9.787 
(29.670) 

-2.667 
(9.127) 

11.320*** 
(4.216) 

-1.481 
(2.147) 

-0.101 
(1.421) 

𝐼𝐼∗ ∗ Average Temp.2  (℉2) 1.101* 
(0.624) 

-0.826*** 
(0.175) 

-0.010 
(0.081) 

-0.036 
(0.040) 

0.003 
(0.031) 

𝐼𝐼∗ ∗ D1995−2000 
-11.810 
(10.490) 

1.918* 
(1.084) 

-0.211 
(0.432) 

0.231 
(0.337) 

0.086 
(0.179) 

𝐼𝐼∗ ∗ D2001−2014 
-5.516 

(10.870) 
2.179* 
(1.232) 

-0.623 
(0.482) 

0.330 
(0.357) 

0.145 
(0.201) 

𝐼𝐼∗ ∗ D2015−2017 
-2.167 
(9.609) 

0.878 
(0.876) 

0.235 
(0.412) 

0.070 
(0.249) 

0.155 
(0.199) 

𝐼𝐼∗ ∗ Non − mature Land (%)  
 

0.006*** 
(0.002) 
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Table A4. SUR Estimates of the Yield Response Models (Cont.) 
 

Variable (units) Apples Grapes Plums, Dry Walnuts Beans, Dry 
      
Panel B: γ′s 

Own Price ($𝐾𝐾/𝑡𝑡𝑃𝑃𝑡𝑡) -8.430*** 
(1.830) 

-0.212 
(0.452) 

0.811 
(0.683) 

0.169 
(0.181) 

-0.161** 
(0.081) 

Fertilizer Price ($𝐾𝐾/𝑡𝑡𝑃𝑃𝑡𝑡) -13.800** 
(6.630) 

0.683 
(3.520) 

0.627 
(2.200) 

-2.760* 
(1.510) 

-0.789 
(0.654) 

LCC [1 − 2](%) -0.249*** 
(0.057) 

-0.352*** 
(0.116) 

-0.343** 
(0.162) 

 
— 

0.018*** 
(0.007) 

LCC [1 − 3](%) 0.055*** 
(0.009) 

-0.012** 
(0.005) 

0.002 
(0.003) 

-0.004 
(0.004) 

-0.003*** 
(0.001) 

LCC [1 − 4](%) -0.022** 
(0.009) 

-0.029*** 
(0.008) 

-0.026*** 
(0.010) 

-0.081*** 
(0.018) 

0.003*** 
(0.001) 

PPT (𝑖𝑖𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑠𝑠) 0.005 
(0.028) 

-0.001 
(0.018) 

0.004 
(0.011) 

-0.002 
(0.005) 

0.001 
(0.004) 

PPT2 (𝑖𝑖𝑡𝑡𝑐𝑐ℎ𝑒𝑒𝑠𝑠2) -0.0017* 
(0.0009) 

-0.0009 
(0.0006) 

-0.0006** 
(0.0002) 

0.0001 
(0.0002) 

-0.0002 
(0.0001) 

Min Temp. (℉) 2.515 
(9.655) 

0.643 
(5.432) 

-12.660*** 
(3.504) 

-0.441 
(1.549) 

0.158 
(0.906) 

Min Temp.2  (℉2) 0.025 
(0.187) 

0.223** 
(0.088) 

0.061 
(0.051) 

-0.001 
(0.024) 

-0.007 
(0.022) 

Max Temp. (℉) -2.338 
(9.631) 

-1.044 
(5.409) 

12.570*** 
(3.490) 

0.441 
(1.544) 

-0.023 
(0.907) 

Max Temp.2  (℉2) 0.222 
(0.186) 

-0.253** 
(0.100) 

-0.025 
(0.057) 

-0.020 
(0.024) 

0.011 
(0.017) 

Average Temp. (℉) -5.589 
(19.290) 

-1.614 
(10.860) 

25.230*** 
(6.996) 

0.921 
(3.091) 

-0.372 
(1.822) 

Average Temp.2  (℉2) 0.073 
(0.379) 

-0.544*** 
(0.196) 

-0.068 
(0.112) 

-0.021 
(0.051) 

0.046 
(0.040) 

Trend (𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟) 0.013* 
(0.007) 

-0.003 
(0.005) 

0.008*** 
(0.003) 

-0.005*** 
(0.002) 

0.002*** 
(0.001) 

Non − mature Land (%)  
 

-0.002* 
(0.001) 

 
   

County Dummies No No No Yes Yes 
Obsv. 697 1,022 497 1,056 588 
R2 0.84 0.90 0.92 0.86 0.95 
Note: In parentheses are standard errors. *, ** and *** denote significance at the 10%, 5% and 1% levels, respectively.  
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