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Estimating agreement coefficients from sample survey data 

Hung-Mo Lin, Hae-Young Kim, John M. Williamson and Virginia M. Lesser 1 

Abstract 
We present a generalized estimating equations approach for estimating the concordance correlation coefficient and the 
kappa coefficient from sample survey data. The estimates and their accompanying standard error need to correctly account 
for the sampling design. Weighted measures of the concordance correlation coefficient and the kappa coefficient, along with 
the variance of these measures accounting for the sampling design, are presented. We use the Taylor series linearization 
method and the jackknife procedure for estimating the standard errors of the resulting parameter estimates. Body 
measurement and oral health data from the Third National Health and Nutrition Examination Survey are used to illustrate 
this methodology. 
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1. Introduction  
Surveys often collect multiple measures of latent condi-

tions such as quality of life and aspiration for a college 
education, as well as multiple measures of difficult- to-
classify conditions such as having chronic fatigue syn-
drome. When multiple measures are collected, interest 
naturally focuses on the agreement between the multiple 
measures and in obtaining confidence intervals on those 
agreement measures. Also, there may be interest in con-
trasting agreement across population subgroups and across 
alternate pairings of measurements. In this context, one 
might be interested in testing equality of agreement 
measures. This paper focuses on two measures of agreement 
between such multiple measures, the concordance corre-
lation coefficient (CCC, )c  and the kappa ( )  coefficient. 
The former is useful for continuous measurements with 
natural scales. If a measure of a latent concept has no natural 
scale, then it can be arbitrarily rescaled to have mean zero 
and unit variance. When this is possible, it is meaningless to 
talk about differences in marginal moments. However, if 
there is a natural scale, then rescaling is not desirable and a 
good measure of agreement will take into account both 
correlation and agreement of marginal moments. The kappa 
coefficient is most useful for binary classifications. 

The CCC has been shown to be more appropriate for 
measuring agreement or reproducibility (Lin 1989; Lin 
1992) than the Pearson correlation coefficient ( ).  It evalu-
ates the accuracy between two readings by measuring the 
variation of the fitted linear relationship from the 450 line 
through the origin (the concordance line) and precision by 
measuring how far each observation deviates from the fitted 

line. Let 1iY  and 2iY  denote a pair of continuous random 
variables measured on the same subject i  using two meth-
ods. The CCC for measuring the agreement of 1iY  and 2iY  
is defined as follows:  

  
2

1 2 12
2 2 2 2

indep 1 2 1 2 1 2

[( ) ] 2
= 1 =

[( ) ] ( )
i i

c
i i

E Y Y

E Y Y

 
 

       
 (1) 

where 2
1 1= var( ),iY 2

2 2= var( ),iY  and 12 1= cov( ,iY  

2)iY  (Lin 1989). As noted by Lin (1989), = 0c  if and 
only if = 0.  It can also be shown algebraically that c  is 
proportional to   and that 1 | | | | 1c          (Lin 
1989). Hence imprecision can be reflected by a smaller   
and systematic bias can be reflected by a smaller ratio of 

c  relative to .  Together, information on   and c  
provide a set of tools to identify which corrective actions, 
either to improve accuracy and/or to improve precision, is 
most beneficial (Lin and Chinchilli 1997). 

The intraclass correlation coefficient (ICC) is also a 
popular measure of agreement for variables measured on a 
continuous scale (Fleiss 1986). Suppose 1iY  and 2iY  can be 
described in a linear model as follows: =ij j i ijy e  
where j  is the mean of the measurement from the        

thj  method, 2(0, )i    is the latent variable for the thi  
subject, and the 2(0, )ij ee   are independent errors terms. 
Carrasco and Jover (2003, page 850) used a model with 
variance components to demonstrate that the CCC is the 
intraclass correlation coefficient (ICC) when one takes into 
account the difference in averages of the methods:  
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Therefore, one can estimate the CCC using the variance 
components of a mixed effects model or the common 
method of moments. Because of its superiority to the 
Pearson correlation coefficient and its link to the ICC, 
application of the CCC has gained popularity in recent years 
(Chinchilli, Martel, Kumanyika and Lloyd 1996; Zar 1996). 
In 2009 and the 2010, the CCC was used as a measure of 
agreement in more than 60 medical publications in areas 
such as respiratory illness (Dixon, Sugar, Zinreich, Slavin, 
Corren, Naclerio, Ishii, Cohen, Brown, Wise and Irvin 
2009; Kocks, Kerstjens, Snijders, de Vos, Biermann, 
van Hengel, Strijbos, Bosveld and van der Molen 2010), 
sleep (Khawaja, Olson, van der Walt, Bukartyk, Somers, 
Dierkhising and Morgenthaler 2010), pediatrics (Liottol, 
Radaelli, Orsi1, Taricco, Roggerol, Giann, Consonni, 
Mosca1 and Cetin 2010), neurology (MacDougall, Weber, 
McGarvie, Halmagyi and Curthoys 2009), and radiology 
(Mazaheri, Hricak, Fine, Akin, Shukla-Dave, Ishill, 
Moskowitz, Grater, Reuter, Zakian, Touijer and Koutcher 
2009). 

The kappa coefficient ( )  (Cohen 1960) and the 
weighted kappa coefficient (Cohen 1968) are the most 
popular indices for measuring agreement for discrete and 
ordinal outcomes, respectively (Fleiss 1981). Let 1iY  and 

2iY  denote two binary random variables taking values 0 and 
1 with probabilities denoted by 1 1= Pr( = 1)iY  and 2 =  

2Pr( = 1).iY  Kappa corrects the percentage of agreement 
between raters by taking into account the proportion of 
agreement expected by chance (calculated under indepen-
dence), and is defined as follows:  

                                  = ,
1.0

o e

e

P P

P





 (2) 

where eP  is the probability that the pair of binary responses 
are equal assuming independence 1 2 1 2( (1 )(1 ))      
and oP  is the probability that the pair are equal (Cohen 
1960). The difference o eP P  is the excess of agreement 
over chance agreement. A value of 0 for   indicates no 
agreement beyond chance and a value of 1 indicates perfect 
agreement (Fleiss 1981). Disadvantages of kappa are that is 
a function of the marginal distribution of the raters (Fleiss, 
Nee and Landis 1979; Tanner and Young 1985) and its 
range depends on the number of ratings per subject (Fleiss 
et al. 1979). Robieson (1999) noted that the CCC computed 
from ordinal scaled data is equivalent to the weighted kappa 
when integer scores are used. Kappa has been used to 
measure the validity and reproducibility of the similarity 
between twins (Klar, Lipsitz and Ibrahim 2000), different 
epidemiologic tools (Maclure and Willett 1987), and 
control-informant agreement from case-control studies 
(Korten, Jorm, Henderson, McCusker and Creasey 1992). 

The value of sample surveys have been well recognized 
and estimation for data collected from sample surveys has 
been widely documented (Hansen, Hurwitz and Madow 
1953; Cochran 1963; Kish 1965). For example, a number of 
federal studies conducted in the U.S. to obtain estimates of 
the health of the population are based on national surveys, 
such as the National Health Interview Survey (NHIS), the 
Behavioral Risk Factor Surveillance System (BRFSS), and 
the National Health and Nutrition Examination Surveys 
(NHANES). Each of these studies incorporates complex 
survey design structure, namely oversampling of subpopula-
tions, stratification and clustering. These designs are often 
used to improve precision, provide estimates for subpopula-
tions, or reduce costs associated with frame development. In 
order to draw design-based inference to the targeted 
population for complex survey designs, estimators and their 
variances include sampling weights and account for the 
design structure to obtain unbiased estimates. In addition, by 
including the sampling weights and incorporating the 
sample design in analyses, any potential correlation from the 
clusters in a multistage design is taken into account so that 
the standard errors of the estimators are not underestimated. 

Often researchers are not interested in testing whether 
their estimation of agreement using either the CCC or kappa 
is significantly different from zero. Their interest is to report 
the confidence intervals along with their estimates (e.g., 
Dixon et al. 2009; Mazaheri et al. 2009). Similar to the 
Pearson correlation coefficient, there is no target value that 
can be used to judge if agreement is strong. Therefore, it is 
essential that judgment of agreement between any test and 
reference methods should be made with an established 
degree of certainty. In some situations, studies are con-
ducted that require hypothesis testing or comparisons of 
agreement indexes for more than one new methods against a 
reference method. For examples, Khawaja et al. (2010) 
tested the equality of two CCCs that compared the apnea 
hypopnea index (AHI) from the first 2 and 3 hours of sleep 
with the gold standard AHI from FN-PSG (FN-AHI). In 
radiology research, associations between volume measure-
ments of prostate tumor from imaging and also from 
pathologic examination were assessed by comparing CCCs. 
The two imaging methods were tested for equality of 
agreement with the pathologic results (Mazaheri et al. 
2009). Tests of equal kappa have been used to compare 
visual assessment and computerized planimetry in assessing 
cervical ectopy (Gilmour, Ellerbrock, Koulos, Chiasson, 
Williamson, Kuhn and Wright 1997; Williamson, 
Manatunga and Lipsitz 2000), and in comparing mono-
zygotic and dizygotic twins in terms of cholesterol levels 
(Feinleib, Garrison, Fabsitz, Christian, Hrubec, Borhani, 
Kannel, Roseman, Schwartz and Wagner 1977). 
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As illustrated in the two NHANES III examples in 
Section 3, large differences can exist between the weighted 
and unweighted estimates of parameter estimate standard 
errors in survey studies. Failure to include sampling weights 
and take into account the sample design in analyses will 
result in underestimation of standard errors and incorrect 
inference. This is especially important for surveys repeated 
every few years, and researchers often have a special 
interest in comparing changes among domains or sub-
populations. For instance, in the first NHANES III applica-
tion, we compare the agreement between self reported and 
measured body weights at examination in adolescents. 
Computing accurate standard errors (confidence intervals) 
are necessary if interest is to compare the CCC across 
domains, such as normal weight and obese subgroups. 

We provide weighted measures of the CCC and kappa 
coefficient, along with the variance estimators of these 
measures accounting for the sampling design. In Section 2, 
we present a generalized estimating equations approach for 
estimating these two agreement coefficients from sample 
survey data. In Section 3, we illustrate our method with data 
collected from the NHANES III study. We use body 
measurement data to estimate c  for assessing the agree-
ment between self-reported and actual weight. We also use 
oral health data to estimate   for assessing the agreement 
between two definitions of periodontal disease. We account 
for stratification and clustering, and incorporate weights of 
the survey design in both examples. We conclude with a 
short discussion. 

 
2. Methods  

We propose a general approach for estimating the CCC 
and kappa from sample survey data using two GEE 
approaches. For the CCC, three sets of estimating equations 
are required. A first set of estimating equations models the 
distribution of the continuous responses. Following Barnhart 
and Williamson (2001), a second set of estimating equations 
is used to estimate the variances of the continuous re-
sponses. A third set of estimating equations estimates the 
CCC by modeling the covariance between the paired 
continuous responses and the estimates of the means and 
variances from the first two sets of estimating equations. For 

,  only two sets of estimating equations are required. A 
first set of estimating equations models the marginal 
distribution of the binary responses. Following Lipsitz, 
Laird and Brennan (1994), a second set of estimating 
equations is introduced to estimate   by modeling a binary 
random variable depicting agreement between two re-
sponses on a subject. 

In order to account for variable selection probabilities, 
weight matrices are incorporated into each set of estimating 

equations. Standard error estimation of the proposed ˆ c  and 
̂  from sample survey data are conducted with the Taylor 
series linearization method. We also show how standard 
error estimation of the proposed estimators can be ac-
complished by using the jackknife approach. 

Assume a sample survey is conducted with stratification, 
clustering, and unequal probabilities of selection. Let hijY  
denote the response variable for the thj  member ( =j  
1, ..., )him  of the thi  cluster ( = 1, ..., )hi n  of the thh  stra-
tum ( = 1, ..., ).h H  Averaging over all possible samples, 
the corresponding expected value is [ ] =hij hijE Y   if hijY  is 
a continuous response, and the corresponding probability 

[ ] = Pr[ = 1] =hij hij hijE Y Y   if hijY  is a binary response. 
The sampling weight hijw  is the inverse of the probability of 
selection for the thj  member of the thi  cluster of the thh  
stratum.  
2.1 The concordance correlation coefficient  

Liang and Zeger (1986) developed moment-based 
methods for analyzing correlated observations from the 
same cluster (e.g., repeated measurements over time on the 
same individual or observations on multiple members of the 
same family). The GEE approach results in consistent 
marginal parameter estimation, even with misspecification 
of the correlation structure by using a robust “sandwich” 
estimator of variance. We use the GEE approach to analyze 
sample survey data by additionally incorporating a sampling 
weight matrix as follows:  

=1 =1

ˆ( ( )) = ,
nH h

hi hi hi hi hi
h i

   1D W V Y 0   

where Dhi  is the ( )hiq m  derivative matrix [ ] / ,hid d   
Whi  is a ( )hi him m  main diagonal matrix consisting of the 
person-specific sampling weights ,hijw Vhi  is a ( )hi him m  
working variance-covariance matrix for the within-cluster 
responses, Yhi  is a ( 1)him   response vector consisting of 
the responses ,hijY  and = [ ]hi hiE Y  is possibly a function 
of the ( 1)q   parameter vector .  The GEE can then be 
solved non-iteratively, resulting in the usual estimate  

=1 =1 =1 =1 =1 =1

ˆ =
n m n mH Hh hi h hi

hij hij hij
h i j h i j

w Y w
   

       
   
   

if we are estimating a common mean =  ( = 1)q  and 
are using an independence working covariance matrix. 

Assume a pair of continuous responses are observed for 
the thj  member of the thi  cluster of the thh  stratum, 1hijY  
and 2,hijY  and their expected values are 1hij  and 2.hij  
Again, assume we are estimating common means 1  and 

2  without covariates for the pair of within-subject 
continuous responses, which can be estimated by using the 
above generalized estimating equation. 
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Barnhart and Williamson (2001) demonstrated how three 
sets of generalized estimating equations can be used to 
model the CCC defined in (1) using correlated data. We 
extend Barnhart and Williamson’s (2001) second set of 
GEE equations to estimate the variances of the continuous 
responses by again incorporating a weight matrix as 
follows:  

2 2
2 1 1 1 2

2 2 2 2
1 2 1 2

=1 =1

ˆ ˆ ˆ ˆ( , , , ) =

ˆ ˆ ˆ ˆ( ( , , , )) = ,
nH h

hi hi hi hi hi
h i



    

       1F W H Y 0
 

where Fhi  is the (2 2 )him  derivative matrix 2 2[ ] /hid d   
with 2 2 2

1 2= [ , ],  Whi  is a (2 2 )hi him m  main diagonal 
matrix consisting of the person-specific sampling weights 

,hijw Hhi  is a (2 2 )hi him m  working variance-covariance 
matrix for the within-cluster squared responses, 2 =Yhi  

2 2 2 2 2 2
11 12 21 22 1 2[ , , , , ..., , ]hi hi hi hi him himhi hi

Y Y Y Y Y Y   is a (2 1)him   
response vector of the continuous variables, and 2 =hi  

2[ ].YhiE  Although 2
hi  is a function of both the variance 

terms 2
1  and 2

2  and the means 1  and 2,  it is assumed 
that the means are fixed in 2

hi  and one only takes deriva-
tives of 2

hi  with respect to the variances. Again we choose 
the (2 2 )hi him m  matrix Hhi  to be the “independence” 
working variance-covariance matrix and the (2 1)him   
column vector 2 2 2 2 2 2 2 2

1 1 2 2 1 1 2= [ , , ..., ,hi             
2
2 ]  because we are assuming common variances and 

means across all strata and clusters. The above GEE can 
thus be solved non-iteratively:  

2 2 2

=1 =1 =1 =1 =1 =1

ˆ ˆ ,
N M N MH Hh hi h hi

p hijp hijp hijp p
h i j h i j
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for the thp  measurement in the pair, = 1, 2.p  
The CCC can be estimated in a third set of estimating 

equations by using the pairwise products of the responses to 
model 12,  once the means and variances are estimated. Let 

11 12 21 22 m 1 2= [ , , ..., ]hi hi hi hi hi hi himhi hi
Y Y Y Y Y Y U  be a ( 1)him   

vector of pairwise products of the responses and denote 
= [ ],hi hiE U  which is a function of the means, variances, 

and CCC. We solve for ˆ c  in a third set of estimating 
equations:  

2 2
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where Chi  is a (1 )him  derivative vector = / ,hi c   
Whi  is a ( )hi him m  main diagonal matrix consisting of the 
person-specific sampling weights ,hijw  and Khi  is a 
( )hi him m  working covariance matrix that we choose to 
be the “independence” covariance matrix. The above GEE 
can be solved non-iteratively:  
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2.2 Linearization estimator of variance  

The usual robust estimators of variance for the means 
and CCC from the GEE approach are invalid here because 
they do not take into account the sampling structure, only 
the correlation of observations made on the same individual. 
We propose standard error estimation using the Taylor 
series linearization method (Binder 1983; Binder 1996). The 
first derivatives of c  (equation 1) with respect to 1,  

2 2
2 1 2, , ,    and 12  are: 
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The above equation can be rearranged into two parts, one 
involving the parameter estimates 2 2

1 2 1 2ˆ ˆ ˆ ˆ, , , ,     and 12̂  
and the other involving only parameters which does not 
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contribute to the variance estimation of ˆ .c  Thus the first 
part becomes  

12 1 2 12 2 1
1 22 2

2 212 12
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2 212
1 2 1 2 1 2 122
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=1 =1 =1= / ( ).

n mH h hi
h i jhij hij hijw w w    Equation (3) be-

comes a linear function of the data after the summation is 
moved to the front, which we can then express as =1

H
h  

*
=1 =1 ,

n mh hi
i j hij hijw z   where  

                

12
1 2 1 22

2 2
1 1 2 2

1 1 2 2

2
= (2( ) ( )

( ) ( ) )

2
( ) ( ).

hij hij hij

hij hij

hij hij

z Y Y
D
Y Y

Y Y
D


    

     

    

 

(4)

 

One then creates a random variable ˆhijz  based on equation 
(4) that replaces the parameters with their respective esti-
mates. The variance of this new estimator ˆhijz  is an approxi-
mation for the variance of ˆ ,c  which can be estimated using 
standard survey software (see Appendix).  
2.3 Jackknife estimator of variance  

We also use the jackknife technique for standard error 
estimation of the parameters following Rust and Rao (1996, 
Section 2.1) for comparison with the linearization estimates. 
The jackknife technique is implemented by calculating a set 
of replicate estimates and estimating the variance using 
them. A replicate data set is created for each cluster by 
deleting all observations from the given cluster from the 
sample. The weights of all other observations in the stratum 
containing the cluster are inflated by a factor / ( 1).h hn n   
Weights in the other strata remain unchanged. Thus, the 
new weights for the replicated data set created by removing 
cluster i  from stratum h  are:  

( )

( )

( )

if (different strata)=

/( 1) if=
(same strata but different clusters)

0 (for the cluster being removed).=

hi
kljklj

hi
hlj h hhlj

hi
hij

w k h

w n n l i



 



 

The resulting jackknife variance estimator for ˆ c  is  

2
( )

=1 =1

1
ˆ ˆ ˆ( ) = ( )

nH h
h

J c c hi c
h ih

n
v

n

 
    

 
   

where ( )ˆ c hi  is estimated in the same way as ˆ ,c  but using 
the recalculated weights ( )hi  instead of the weights .  
The jackknife estimators for the means are similarly 
calculated.  
2.4 The kappa coefficient  

Assume a pair of binary responses are observed for the 
thj  member of the thi  cluster of the thh  stratum, 1hijY  and 

2,hijY  and their expected values are the probabilities 1hij  
and 2.hij  Again assume we are estimating common proba-
bilities 1  and 2  without covariates for the pair of within-
subject binary responses. Lipsitz et al. (1994) demonstrated 
how two sets of generalized estimating equations can be 
used to develop simple non-iterative estimates of the  -
coefficient that can be used for unbalanced data as previous 
estimates of kappa and its variance were only proposed for 
balanced data. They defined the binary random variable 

1 2 1 2= (1 ) (1 ) = 1hij hij hij hij hijU Y Y Y Y    if both re-
sponses in the pair agree and 0 otherwise. Accordingly, 

[ ] = ,hij oE U P  which denotes the probability of observed 
agreement and is assumed here to be constant over all strata, 
clusters, and pairs of observations. Now let 1 2[ ]hij hijE Y Y 

1 2Pr[ = = 1] = .hij hijY Y   The probability of observed 
agreement can be expressed as 1 2= 1 2 .oP        
The probability of expected agreement by chance is defined 
as 1 2 1 2= (1 )(1 )eP         and is estimated by ˆ =eP  

1 2 1 2ˆ ˆ ˆ ˆ(1 )(1 ),        where 1̂  and 2̂  are calculated 
in the first set of estimating equations. 

We can derive estimates of   from sample survey data 
following the approach for the CCC in Section 2.1. We can 
incorporate the survey weight matrices into Lipsitz et al.’s 
(1994) two sets of GEE equations for estimating kappa. 
Then, by choosing “independence” working covariance 
matrices for the two sets of equations as in Lipsitz et al.’s 
(1994) approach, we arrive at the following non-iterative 
estimate of kappa for sample survey data:  

                 =1 =1 =1 =1 =1 =1

=1 =1 =1 =1 =1 =1

ˆ

ˆ = .
ˆ

n m n mH Hh hi h hi

hij hij e hij
h i j h i j

n m n mH Hh hi h hi

hij e hij
h i j h i j

w U P w

w P w






 

 
 (5) 

This estimator is identical to Lumley’s (2010), which can be 
computed using the R software survey package and 
svykappa function. 

Standard error estimation of ̂  can be conducted 
similarly to that of ˆ c  using the Taylor series linearization 
method. The first derivatives of kappa with respect to 

1, ,oP   and 2  are:  
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(6)

 

Replacing the parameters in (6) with their respective 
estimates, one then treats ˆhijz  as a random variable and 
estimates its variance using standard survey software that 
accounts for the sampling design. The variance of this new 
estimator ˆhijz  is an approximation for the variance of ˆ.  
The jackknife method can also be used to estimate the 
variance of ˆ.  

 
3. NHANES III survey  

We used data from the Third National Health and Nutri-
tion Examination Survey to illustrate our method. NHANES 
III was conducted by the National Center for Health Statis-
tics of the Centers for Disease Control and Prevention and 
was designed as a six-year survey divided into two phases 
(1988-1991 and 1991-1994). The data were collected using 
a complex, multistage, probability sampling design to 
select participants representative of the civilian, non-
institutionalized US population. Details of the survey 
design and analytic and reporting guidelines were published 
in the NHANES III reference manuals and reports (National 
Center for Health Statistics 1996).  
3.1 The adolescent weight study  

Obesity is a rapidly increasing public health problem 
with surveillance most often based on self-reported values 
of height and weight. A series of recent studies and systemic 

reviews have attempted to assess the agreement between 
self-reported and measured weight, especially in the ado-
lescent population. The general findings suggest that self-
reported weight was slightly lower than measured weight, 
and that a significant number of normal weight adolescents 
misperceive themselves as overweight and are engaging in 
unhealthy weight control behaviors (Field, Aneja and 
Rosner 2007; Gorber, Tremblay, Moher and Gorber 2007; 
Sherry, Jefferds and Grummer-Strawn 2007). Therefore, 
researchers have suggested that obesity prevention programs 
should address weight misperceptions and the harmful 
effects of unhealthy weight control methods even among 
normal weight adolescents (Talamayan, Springer, Kelder, 
Gorospe and Joye 2006). A similar Canadian study from the 
2005 Canadian Community Health Survey that focused on 
adult individuals also showed that associations between 
obesity and health conditions may be overestimated if self-
reported weight is used (Shield, Gorber and Tremblay 
2008). We use data obtained from the Body Measurements 
(Anthropometry) component of the NHANES III study to 
estimate the CCC that measures agreement between self-
reported and measured weight (pounds) obtained from 
adolescents (aged 12 through 16 years). 

The self-reported weight was obtained just prior to the 
actual measurement of weight. We use data from the entire 
six-year survey period (both 1988-1991 and 1991-1994). 
For simplicity, we excluded one stratum which only had one 
PSU. Hence, there were 48 strata and each stratum had two 
PSUs. The sample weight labeled wtpfex6 accounting for 
the differential selection probability was used in our 
analyses. There were 1,651 subjects with complete data for 
both weight measurements. The estimates of the self-
reported and actual weights (in pounds) were 135.5 (s.e. =
1.8) and 136.3 (s.e. = 1.8), respectively, calculated using 
PROC SURVEYMEANS in SAS. The estimates of the 
standard errors based on the jackknife approach are the 
same as above. 

The CCC is a natural choice for assessing the agreement 
between the two weight measurements because they are 
measured on the same scale and their ranges are similar 
(self-reported weight: 78 lbs   350 lbs and actual weight: 
73 lbs   372 lbs) (Lin and Chinchilli 1997). The estimate 
of the CCC for measuring the agreement between the two 
definitions of weight using the proposed method is 0.93. 
The standard error of the estimate is 0.021 using the Taylor 
series linearization method. The jackknife standard error of 
0.021 agrees closely with the linearization standard error. 
These statistics are summarized in Table 1 along with their 
values computed when the sampling structure is ignored. 
The standard errors for the estimates incorporating the 
sampling structure are much larger than the unweighted 
estimates. 
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Table 1 
Unweighted and weighted average, CCC, and respective 
standard errors for adolescent self-reported and actual weight 
in pounds  
 Self-reported  Actual  CCC  

Unweighted Estimate  135.31  136.96  0.890  
SE  0.76  0.80  0.0005  
    
Weighted Estimate  135.47  136.30  0.926  
SE  1.75  1.82  0.0205   

Similar to the CCC, the usual Pearson correlation 
coefficient between the self-reported and the actual weight 
measures is also 0.93. In this case, the mean difference 
between the two weight measurements is just less than one 
pound. When subpopulations are examined, differences are 
noted in the CCC and the Pearson correlation coefficient. 
Consider a subpopulation of those individuals that had a 
measured weight >  200 lbs at examination. Summarizing 
the data for this subpopulation, the self-reported weight is 
on average 8 pounds less than the measured weight 
(223.2 lbs vs 231.4 lbs). There is a slight departure of the 
CCC (0.72) from the Pearson correlation coefficient (0.76). 
The discrepancy between the two measures increases in the 
more obese subgroup. In the subpopulation where measured 
weight is > 220  lbs, the means of self-reported and 
measured weights are 231.9 lbs and 248.8 lbs, respectively. 
The CCC is 0.67, whereas the Pearson correlation coef-
ficient is 0.85. In this situation, the CCC reflects both the 
reproducibility and differences between the self-reported 
and measured means. Therefore, the CCC is informative 
and advantageous when considering these comparisons, 
particularly in domain analysis within a complex survey.  
3.2 The oral health study  

Slade and Beck (1999) used extent of pocket depth and 
loss of attachment as indices of periodontal conditions. 
Prevalence of periodontal disease using previously reported 
thresholds of pocket depth 4  mm and attachment loss 

3  mm were estimated by Slade and Beck (1999, Table 
1). Pocket depth may be reflective of inflammation rather 
than chronic periodontal disease and, thus, attachment level 
may be a more meaningful measure of periodontal destruc-
tion. However, pocket depth remains the recommended 
measurement in clinical practice (Winn, Johnson and 
Kingman 1999). Therefore, we compare the agreement of 
these two definitions of periodontal disease using the kappa 
coefficient. 

We use the sample that was analyzed by Slade and Beck 
(1999). The data include 14,415 persons aged 13 or older 
who had complete pocket depth and attachment loss 
assessment by six designated dentists. We again use data 
from the entire six-year survey period (both 1988-1991 and 
1991-1994). There were a total of 49 strata and each stratum 

had two PSUs. The variable labeled sample weight, 
wtpfex6, accounting for differential selection probability, 
was used in our analyses. 

The first definition of periodontal disease is pocket depth 
 4 mm and the second is maximum attachment loss 
3 mm. For both variables we are using the maximum values 
among all teeth in an individual’s mouth. The probability 
estimates of the attachment loss and pocket depth variables 
are 0.358 (jackknife s.e. = 0.0088) and 0.212 (jackknife 
s.e. =  0.016), respectively, using the proposed method. The 
asymptotic standard errors based on the usual Taylor 
series expansion (Woodruff 1971, produced by PROC 
SURVEYFREQ in SAS, version 9.1) are 0.0088 and 0.015, 
respectively. 

Kappa is a natural choice for assessing the agreement 
between two binary ratings as it corrects for chance agree-
ment (Fleiss 1981). The estimate of kappa for measuring the 
agreement between the two definitions of periodontal 
disease (pocket depth of 4  mm and attachment loss of 

3  mm) using the proposed method is 0.307. The standard 
error of 0.0158 was obtained by both the Taylor series 
linearization and jackknife methods. Table 2 compares these 
results to the measures when the complex sampling struc-
ture is ignored. The standard error of the kappa coefficient is 
larger when accounting for the survey structure.  
Table 2 
Unweighted and weighted average, kappa, and respective 
standard errors for attachment loss and pocket depth 
 

 Attachment  
Loss  

Pocket 
Depth  

Kappa  

Unweighted Estimate  0.393  0.283  0.334  
SE  0.004  0.004  0.008  
    
Weighted Estimate  0.358  0.212  0.307  
SE  0.009  0.016  0.0158   

4. Discussion  
The CCC and kappa evaluate the agreement between two 

measurements for continuous and categorical responses, 
respectively. In this paper, we have proposed a generalized 
estimating equation approach for estimating the CCC for a 
pair of continuous variables, and kappa for a pair of binary 
variables, from sample survey data where the data have 
been collected using complex survey features such as 
stratification or clustering. The usual sandwich estimator of 
the variance only accounts for repeated measurements made 
on the same individual, and does not account for the 
sampling framework (e.g., clustering, stratification, and 
weighting). In the GEE approach, standard error estimation 
of the estimators is conducted with the Taylor series 
linearization and jackknife approaches. If the data are not 
collected using complex survey features, the proposed 
estimators will be identical to the usual estimators. As is 
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evident in the two examples from the NHANES III study, 
we have shown the need to incorporate sampling weights 
and the sampling design features so that the standard errors 
are not underestimated when data are collected from a 
complex sampling design. Tables 1 and 2 show that there 
were large differences in the standard errors between 
weighted and unweighted estimates of the standard errors 
for both CCC and kappa. Confidence intervals that incor-
porate weights and the design features will allow correct 
inference. 

In the appendix, we show steps for calculating the 
weighted measures of the CCC and kappa, along with their 
standard errors using standard survey software that incor-
porates the sampling weights, clustering and stratification. 
The GEE approach is advantageous because it is a conve-
nient framework for developing estimators of the agreement 
coefficients and is easily extended to multiple raters, 
multiple methods, covariate adjustment and unbalanced 
cluster sizes. This design-based approach results in correct 
standard error estimation without assuming an underlying 
model and accounting for the sampling structure. If one is 
interested in estimating the agreement between two ordinal 
variables with kappa then Williamson et al.’s (2000) gener-
alized estimating equation approach can be extended 
similarly to the proposed method. 
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Appendix  

Steps for calculating the CCC and its standard error using 
standard survey software  
Step 1: Calculate the means of the continuous variables 

1hijY  and 2hijY  using software for survey data that 
incorporates stratification, clustering, and sample 
weighting (e.g., PROC SURVEYMEANS in SAS). 

 

Step 2: Square the centered 1hijY  and 2hijY  values around 
their respective means. 

 

Step 3: Calculate the means of the squared centered 1hijY  
and 2hijY  values using standard software for survey 
data. These means are the variance estimates of 

1hijY  and 2.hijY  Calculate the mean of the product 
of the centered 1hijY  and 2hijY  values using stan-
dard software for survey data. This mean is the esti-
mated covariance of 1hijY  and 2.hijY  

 

Step 4: Calculate the CCC by substituting the estimated 
means and variances into equation (1). Create the 
new variable hijZ  based on equation (4). 

 

Step 5: Calculate the standard error of hijZ  using standard 
software for survey data. The standard error of hijZ  
estimates the standard error of ˆ .c  

 
SAS CODE:  

Let 1y  and 2y  denote the variables for the pair of 
continuous responses, and ,s c  and w  denote the variables 
for strata, cluster and weight: 
  
PROC SURVEYMEANS DATA=dataset MEAN;  /* Step 1 above */; 

STRATA ;s  
CLUSTER ;c  
WEIGHT ;w  
VAR 1y 2;y  
ODS OUTPUT STATISTICS=stat; 

data _null_;  
set stat (where=(varname= 1’y‘ ));  
call symputx(‘muy1’, mean); 

data _null_;  
set stat (where=(varname= 2’y‘ ));  
call symputx(‘muy2’, mean); 

data dataset; set dataset;  /* Step 2 above */;  
1 = 1 & 1;cy y muy  
2 = 2 & 2;cy y muy  

1 = 1 * *2;vary cy  
2 = 2 * *2;vary cy  
12 = 1 * 2;covy cy cy  

PROC SURVEYMEANS MEAN;  /* Step 3 above */;  
STRATA ;s  
CLUSTER ;c  
WEIGHT ;w  
VAR 1vary 2vary 12;covy   
ODS OUTPUT STATISTICS=stat;  

run; 
data _null_;  

set stat (where=(varname= 1’vary‘ ));  
call symputx(‘vary1’, mean); 

data _null_;  
set stat (where=(varname= 2’vary‘ ));  
call symputx(‘vary2’, mean); 

data _null_;  
set stat (where=(varname= 12’covy‘ ));  
call symputx(‘covy12’, mean); 

data dataset; set dataset;  /* Step 4 above */;  
= & 1 & 2 (& 1 & 2)d vary vary muy muy   ** 2;  

= 2 * & 12/ ;CCC covy d  
= (2 / ) * ( 1 * 2) (2 * & 12/ / ) * (( 1 * *2)z d cy cy covy d d cy 

( 2 * *2) 2 * (& 1 & 2) * ( 1 2));cy muy muy y y    
PROC SURVEYMEANS MEAN;  /* Step 5 above */ ; 

STRATA ;s  
CLUSTER ;c  
WEIGHT ;w  
VAR CCC ;z  

run; 
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Steps for calculating kappa and its standard error using 
standard survey software  
Step 1: Estimate the probabilities of the binary variables 

1hijY  and 2hijY  using software for survey data that 
incorporates stratification, clustering, and sample 
weighting (e.g., PROC SURVEYFREQ in SAS). 

 

Step 2: Estimate 1 2 1 2ˆ ˆ ˆ ˆ(= (1 )(1 )).eP         
 

Step 3: Create the new agreement variable 1( =hij hijU Y  

2 1 2(1 ) (1 )).hij hij hijY Y Y    
 

Step 4: Calculate the sum of the sample survey weights 
and the sum of the weighted hijU  (e.g., using 
PROC SURVEYMEANS in SAS). Estimate 
kappa using equation (2). 

 

Step 5: Create a new variable hijz  using equation (6). 
 

Step 6: Calculate the standard error of hijz  using stan-
dard software for survey data. The standard error 
of hijz  estimates the standard error of ˆ.  
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