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1 INTRODUCTION

1 Introduction

The critical point of a system is the point in phase space at which the distinction between
liquid and gaseous phases ceases to be well-defined. As shown in Figure 1, a fluid need not boil
or condense to transition between liquid to gaseous phases: it can smoothly transition between
the two by circumventing the critical point. Understanding the behavior of fluids near the critical
point is a major challenge in the field of classical density functional theory. The square-well fluid is
the simplest system with a liquid-vapor phase transition, and is therefore of interest for studying
the critical point. For a generic square-well fluid to be observed in a liquid state, it must have
a localized distribution of the spheres which make up the fluid. Such a distribution implies a low
energy fluid state, as all interactions between spheres are attractive. Conversely, a low energy liquid
state of a square-well fluid otherwise observable in both liquid and gaseous phases implies a localized
distribution of spheres. The search for liquid states of the square-well fluid is thus equivalent to the
search for low energy states.

Monte Carlo simulations are a standard means for studying the equilibrium thermodynamic
properties of a system. In the most straightforward implementation of Monte Carlo fluid simula-
tions, however, highly localized distributions of spheres are extremely unlikely to occur, making
such simulations impractical for studying the critical point of the square-well fluid. Several generic
computational methods, called histogram methods, exist for dealing with such a problem; namely,
that interesting regions of a system’s state space cannot be sampled via standard Monte Carlo
methods in a reasonable amount of time. There is little consensus, however, on the relative efficacy
of these methods, and few have applied them to simulation of the square-well fluid.

In this paper, we first review what the square-well fluid is, as well as how to simulate it via
standard, unbiased Monte Carlo (Sections 2.1–2.2). We then address the shortcomings of these
simulations as a means for studying the square-well fluid, and consider how one can modify sim-
ulations to overcome these shortcomings in Section 2.3. We develop a thorough understanding of
several histogram methods in Sections 3.1–3.6, and discuss some details pertinent to the actual
implementation of these methods in Section 3.7. Finally, in Section 4 we analyze the performance
of a few histogram methods in simulations of a particular square-well fluid.
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Figure 1: A generic phase diagram showing the boundaries between solid, liquid, and gaseous phases.
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2 BACKGROUND

2 Background

2.1 The square-well fluid

The square-well (SW) fluid is a simple model used in classical density functional theories to
capture low order effects of short-range attractive forces, such as the van der Waals force. The fluid
is composed of spheres with diameter σ which have a pair potential

vsw (r) =


∞ |r| < σ
−ε σ < |r| < λσ
0 |r| > λσ

, (1)

also shown graphically in Figure 2, where the parameters λ and ε are referred to as the well width
and depth, respectively. The first (|r| < σ) part of this potential forbids spheres from overlapping,
whereas the second (σ < |r| < λσ) associates an energy −ε with each pair of spheres whose centers
are within distance of λσ of each other (where typically, λ ∈ (1, 3]). The net potential energy of
the square-well fluid is thus

E =
∑
i<j

vsw (ri − rj) , (2)

where ri is the position of the i-th sphere. As the potential energy E is the primary form of energy
concerning us in this paper, we will refer to E as simply the “energy” of the fluid. An important
feature of the square-well fluid is that its energy is always an integer multiple of the well depth. A
homogeneous square-well fluid is thus uniquely identified by its well width λ and filling fraction η
(i.e. the proportion of space filled by spheres; a dimensionless density), as all other properties can
be normalized to the natural energy scale ε and length scale σ. In practice, our simulation codes
use dimensionless energies E/ε, temperatures kT/ε, and distances r/σ.

2.2 Monte Carlo fluid simulation

Model systems, such as the square-well fluid, are powerful tools for understanding complex phys-
ical systems, but they do not themselves exist in the real world. Consequently, direct experimental

0 σ λσ

r

0

−ε

v s
w

Figure 2: The square-well pair potential can be used to model short range forces to first order. The infinite
potential at r < σ simply enforces the condition that spheres cannot overlap. At r > λσ, the potential is
null, and makes no contribution to the fluid’s internal energy.
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2.2 Monte Carlo fluid simulation 2 BACKGROUND

tests of theories for model system (e.g. square-well density functional theories) are not possible. For
this reason, model system theories are commonly tested against Monte Carlo simulations. Proper
implementation of Monte Carlo methods to study completely characterized systems ensures that
statistical results from simulations converge on the exact properties of the simulated system in
the infinite simulation time limit. Furthermore, uncertainties in quantities computed via Monte
Carlo simulations are typically well-defined, monotonically decreasing functions of simulation time,
allowing one to run simulations to the desired level of accuracy.

2.2.1 Implementation

Algorithm 1 provides a sketch of unbiased Monte Carlo fluid simulation. Such an algorithm
is “unbiased” in the sense that it collects statistics (i.e. data) on all valid system configurations
with equal probability. Statistics whose collection time scales as O (1) with system size, meaning
that increasing the number of spheres N in the simulation does not affect collection time, can be
collected after every move (defined in the algorithm). Statistics whose collection time scales as
O (N), meaning that doubling N doubles collection time, can be collected after each iteration. In
general, collection with O [χ (N)] time scaling should not occur more often than once every χ (N)
moves, where χ (N) may be an arbitrary function of N , e.g. N logN , or 2N . These collection rules
ensure that scaling up simulations does not cause them to asymptotically spend all computation
time only collecting statistics, or only simulating the fluid. Collected statistics are used to find
thermodynamic properties of the simulated fluid.

In this work, we are concerned with simulating the homogeneous square-well fluid. To avoid edge
effects resulting from fluid behavior near a wall, we employ periodic boundary conditions. The use
of a finite cell with periodic boundary conditions suppresses all density fluctuations on scales larger
than the dimensions of the simulated fluid cell, thereby introducing a source of error. Addressing
and sequestering this error, however, is outside the scope of this work, and involves considering the
limit of numerical results as the number of spheres N →∞ (keeping the filling fraction η constant).

Algorithm 1: Unbiased Monte Carlo fluid simulation

1. Construct an initial “typical” (i.e. non-ordered) fluid configuration.

2. Randomly attempt to change the position of one sphere (in general, a single fluid “atom” or
“molecule”) to another location, rejecting the change if it results in a forbidden fluid config-
uration (e.g. two or more spheres overlap) and accepting the change otherwise. Attempting
to move a single sphere is referred to as a move.

3. Repeat step 2 for every other sphere in the fluid. Attempting to move every sphere once is
referred to as an iteration of the simulation.

4. Repeat step 3 indefinitely, or until data of sufficient quality has been generated, periodically
collecting and dumping statistics on fluid states (e.g. energy, pair distribution histograms,
etc.) to data files.

3 of 31



2.3 Histogram methods 2 BACKGROUND

2.2.2 Computing observables

The sort of Monte Carlo simulations described above are only capable of collecting statistics on
functions of system microstates, and finding correlations between these functions. For example, in
simulation one might periodically compute both the energy E (s) and some system property X (s),
both of which are determined by the microstate s, in order to find the mean value of X at any
given energy E, i.e. 〈X〉E . In the real world, however, information about a system’s microstates,
and by extension information about functions of microstates (e.g. the energy E), is inaccessible.
One therefore cannot measure 〈X〉E directly. Instead, one typically measures the dependence of
thermodynamic properties on macroscopic state variables such as temperature, i.e. 〈X〉T .

To find 〈X〉T , we first need to understand the concept of a density of states. Given an arbitrary
system property Y (s) (e.g. energy) determined by the microstate s, one can define a density of
states D (Y ) such that i) for arbitrary Y0, the value of D (Y0) is proportional to the number of
microstates s for which Y (s) = Y0, and ii)

∑
Y D (Y ) = 1. The units of D (Y ) are inverse to the

units of Y . The temperature dependence of 〈X〉T can be expressed in terms of the expectation
value 〈X〉E and the density of states D (E) by

〈X〉T =
1

Z (T )

∑
E

〈X〉E D (E) e−E/kT , (3)

where the partition function Z (T ) is simply a normalization factor, given by

Z (T ) =
∑
E

D (E) e−E/kT . (4)

To reduce redundant computations and numerical error in implementation, we will generally use a
partition function with an unnormalized density of states D̃ (E), i.e.

Z̃ (T ) =
∑
E

D̃ (E) e−E/kT , (5)

in terms of which

〈X〉T =
1

Z̃ (T )

∑
E

〈X〉E D̃ (E) e−E/kT . (6)

2.3 Histogram methods

Due to the fact that unbiased Monte Carlo simulations sample all of state space randomly, a
histogram H (X) of observations of some system property X is directly proportional to the density
of states D (X); that is, the number of observations H (X0) of the system with X (s) = X0 is
proportional to the total number of states s for which X (s) = X0. It is sometimes the case,
however, that the density of states in some range R of possible X is so low that it is practically
impossible (via unbiased Monte Carlo) to sufficiently sample R, that is, to accumulate a statistically
significant histogram H (X ∈ R), in any reasonable amount of time. Given that the entropy S (X)
can be expressed in terms of the number of microstates Ω (X) as S (X) = k ln Ω (X) ∝ lnD (X),
we may refer to regions with low state densities D (X) as low entropy states.

Figure 3 provides an example of an unnormalized density of states D̃ (E) in energy for a particular
square-well fluid. The density of states has been “normalized” to have a maximum value of 1 in
order to emphasize the logarithmic span of D (E). This logarithmic span (∼ 10300) is proportional
to the number of moves which one must simulate via unbiased Monte Carlo in order to observe
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Figure 3: Sample density of states for square-well fluid with a well width λ = 1.3, filling fraction η = 0.1,
and N = 100 spheres, computed via the transition matrix Monte Carlo method. The density of states has
been normalized to have a maximum value of 1.

the energies with the lowest state densities. For reference, there are approximately 1080 atoms in
the observable universe, and the world’s current fastest supercomputers can perform about 1016

floating-point operations per second.

2.3.1 Biased sampling

We do not have time to count all of the atoms in the observable universe, and we certainly do
not have time to wait for unbiased Monte Carlo to sample (and worse, collect decent statistics on)
low energy square-well fluid states. Histogram methods provide a means to address unbiased Monte
Carlo’s inability to sufficiently sample low energy states by introducing a bias into the otherwise
random sampling of state space. A weighting function w is introduced, whose domain is the value
of some property X (s) which depends on the system state s. An additional condition is then added
to step 2 of Algorithm 1 in order to accept an attempted move: the weights w (Xi) and w (Xf ) of
the initial (pre-move) state si and final (post-move) state sf , respectively, are used to determine
the probability Pm (si → sf ) of accepting an otherwise valid move via

Pm (si → sf ) = min

{
w (Xf )

w (Xi)
, 1

}
. (7)

This formula means that when w (Xf ) > w (Xi), the move si → sf is accepted; when w (Xf ) <
w (Xi), the ratio of these weights determines the probability of accepting the move. Due to the fact
that only ratios of weights determine Pm (si → sf ), the weights w (X) are scale-invariant, meaning
that their effect on simulations is unchanged by scale factors that are constant with respect to
X (s). Furthermore, simulating with flat weights w (X) = w0 for all X is equivalent to simulating
without weights, as the probability Pm (si → sf ) will always equal 1.

This sort of biased simulation is called Metropolis-Hastings Monte Carlo sampling. Employing
Metropolis-Hastings Monte Carlo simulations, sketched out in Algorithm 2, allows one to construct
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Algorithm 2: Metropolis-Hastings Monte Carlo fluid simulation

1. Construct an appropriate weight function w [X (s)], whose argument is a system property
X (s) determined by the microstate s.

2. Construct an initial typical fluid configuration.

3. Randomly attempt to change the position of one sphere, rejecting the change if i) it results
in a forbidden fluid configuration, or ii) a newly chosen random number on the interval [0, 1]
is larger than the probability determined by (7) for the initial and final states si and sf ,
respectively.

4. Repeat step 3 the simulation produces statistics of sufficient quality.

weight functions that favor some region of state space over others, as transitions to states with
higher weights are always accepted, whereas transitions to states with lower weights may be rejected,
artificially preventing the simulated system from leaving interesting regions of state space. Crucially,
the bias introduced by weights can be reversed when computing system properties from sampling
statistics, as the weight of a particular state is directly proportional to the probability bias of that
state; that is, a state with a weight of 2 will be sampled twice as often as it would have been with
a weight of 1. If we wish to convert a histogram H (X) of observations in a Metropolis-Hastings
Monte Carlo simulation into a numerical unnormalized density of states D̃ (X) in X, we therefore
divide the histogram by the corresponding weights w (X), i.e.

D̃ (X) =
H (X)

w (X)
. (8)

The normalized density of states D (X) in X is then

D (X) =
D̃ (X)∑
X′ D̃ (X ′)

=
H (X) /w (X)∑
X′ H (X ′) /w (X ′)

. (9)

In general, the domain and shape of the weight function will depend on the desired yields (e.g.
density of states, heat capacity) of a simulation. A histogram method is simply an algorithm or
procedure for determining a weight function appropriate for a particular simulation.

In this paper, we will use a histogram H (E), weights w (E), and density of states D (E) which
are functions of the square-well fluid’s energy E. Due to the fact that the square-well fluid can
only have discrete energies E = −nε, where n is a non-negative integer and ε is the well depth, in
simulation we store the weight function as an array of values. We will therefore generally refer to
the weight function as a “weight array,” or simply “weights.”

2.3.2 Canonical weights

The most common weight array w (E) used by physicists for what is called a canonical (or
Metropolis) Monte Carlo simulation involves choosing a particular temperature T0, and using
weights proportional to the Boltzmann factor at that temperature, i.e.

w (E) = e−E/kT0 , (10)
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where there is no reason to normalize w (E) due to the fact that only ratios of weights, as per (7),
are ever used in simulation. The fact that only ratios of weights are used in simulation makes w (E)
scale-invariant.

The partition function at T = T0 for simulations with canonical weights is

Z̃ (T0) =
∑
E

D̃ (E) e−E/kT0 =
∑
E

H (E)

w (E)
e−E/kT0 =

∑
E

H (E)

e−E/kT0
e−E/kT0 =

∑
E

H (E) , (11)

and the value of a thermodynamic property 〈X〉T0

〈X〉T0
=

1

Z̃ (T0)

∑
E

〈X〉E D̃ (E) e−E/kT0 =

∑
E 〈X〉E H (E)∑

E H (E)
, (12)

where 〈X〉E is the mean value of X at the energy E. The simplifications in in (11) and (12),
which have no explicit dependence on T0, occur because canonical Monte Carlo simulations sample
energies in proportion to the distribution (over energy) of microstates at a temperature of T0.
Canonical Monte Carlo simulations can therefore fail to sufficiently sample energies which are
important (i.e. energies with a non-negligible state probability density) at different temperatures.
As a consequence, such simulations should not be used to determine properties 〈X〉T 6=T0

, and are
thus referred to as “fixed temperature” simulations. Incidentally, unbiased Monte Carlo simulations
can be thought of as infinite-temperature simulations, as they are equivalent to simulations with
canonical weights

w (E) = lim
T→∞

e−E/kT = 1. (13)

This observation will be used in Section 3.7.2 to identify a maximum energy of interest in simula-
tions.

Though canonical Monte Carlo is simple to implement, its inability to investigate a system at
more than one temperature at a time is a disadvantage for determining the temperature dependence
of system properties. In order to find the behavior of 〈X〉T , one must run many simulations at
discrete temperature intervals; each such simulation will yield one data point on 〈X〉T .

Sampling low energies, however, or understanding system behavior at low temperatures, is even
more problematic with canonical weights. Using low temperature canonical weights will indeed
force a simulated system down to low energies, but will also likely freeze the system into a local
minimum of its energy landscape. Freezing into a state in this manner will limit a simulation to
sampling only a small portion of the energy landscape, even though there may (and generally will)
be many other states with the same energy.

Due to these problems, we will not use canonical weights alone to study the square-well fluid. We
will, however, use canonical weights for portions of all weight arrays, which we discuss in Section
3.7.2.

2.3.3 Broad energy sampling

Given the expression for 〈X〉T in (6), sufficient accumulation of statistics on 〈X〉E at all available
energies in principle allows one to determine 〈X〉T for any temperature T . In practice, the density
of states can fall off so quickly with energy that some range of allowable energies is practically
inaccessible via Monte Carlo simulations, biased or otherwise. In such a case, computing 〈X〉T to
a reasonable degree of accuracy requires sufficiently sampling the energies at which D̃ (E) e−E/kT

7 of 31



3 METHODS

dominates the sum in (6). Section 3.7.2 discusses identifying the energies which are important for
computing system properties at a given temperature.

We will employ histogram methods in order to sample as broad of an energy range as possible in
each simulation. Broad energy sampling will allow us to determine, for various square-well fluids,
i) the density of states D (E), and ii) the temperature dependence 〈X〉T of various thermodynamic
properties X, particularly at temperatures near the liquid-gas phase boundary.

3 Methods

Having covered the basics of the square-well fluid as well as Monte Carlo fluid simulation, we
can now discuss several histogram methods for constructing energy weights. In Section 3.1, we will
introduce the flat histogram method, which is not directly applicable to the study of most systems,
but which forms the basis of many other methods. We will then introduce, in Section 3.2, the
“simple flat” method, which we designed to be the simplest viable histogram method, and against
which we can compare more complicated methods. Next, in Sections 3.3–3.5 we introduce three
published methods: Wang-Landau, transition matrix Monte Carlo, and the optimized ensemble. The
last of these methods we will not actually implement and analyze because, unlike most histogram
methods, it was designed to optimize pre-existing weights rather than construct them. We will,
however, borrow ideas from the optimized ensemble to design a histogram method of our own, a
hybrid of the optimized ensemble and transition matrix Monte Carlo, in Section 3.6. Finally, we
will cover some general implementation details and loose ends in Section 3.7

3.1 The flat histogram (multi-canonical) method

The flat histogram method, also called the multi-canonical method, assumes complete knowledge
of the density of states D (E) of the system in question, and solves (8) for a weight array w (E)
which should yield a flat energy histogram H (E) = H0 to get

w (E) =
1

D (E)
, (14)

where we may neglect the constant scale factor H0 and do not worry about normalization factor
distinguishing D (E) from D̃ (E) due to the scale-invariance of w (E).

For all but the most trivial or well-studied systems, however, the density of states D (E) is
not known prior to simulation, and is in fact one of the system properties which a simulation is
intended to determine. Nonetheless, the this method has pedagogical value by enabling discussion
of an “optimal” weight array for generating a flat energy histogram in simulations. All algorithms
to construct w (E) with the aim of producing a flat energy histogram should converge on the same
weight array, given by (14).

Algorithm 3 provides a naive way to implement the flat histogram method without knowing a
priori the density of states D (E). This algorithm involves first running a simulation without weights
(or with constant weights w (E) = 1) while collecting a histogram H (E) of the observed energies
E. After some time (loosely defined), the histogram H (E) may be taken as an approximation of
the density of states D̃ (E), and used via (14) to generate a weight array for an actual simulation.
Algorithm 3 has one free parameter, which determines the amount of time for which to collect an
energy histogram H (E).

The problem with this implementation of the flat histogram method is that histogram methods
are generally necessary when some range of energies R is inaccessible via unbiased Monte Carlo
simulations. In such a case, the energy histogram H (E ∈ R) after simulating for any reasonable
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amount of time will be statistically insignificant or null, invalidating the proportionality H (E) ∝
D (E). This method will therefore only “flatten” the histogram at energies E which have been
sufficiently sampled forH (E) to be statistically significant. The end goal in implementing histogram
methods, however, is precisely to sample those energies that cannot be sufficiently sampled without
employing clever schemes to bias Monte Carlo simulations. Therefore, this method does not directly
help us study the square-well fluid. This method does, however, motivate the method in Section
3.2, and provides some of the theory behind the methods in Sections 3.4 and 3.6.

3.2 The simple flat method

The “simple flat” method, developed by ourselves, extends the implementation of the flat his-
togram method discussed in Section 3.1 to an algorithm intended to be the simplest viable broad
energy histogram method. While we do not expect this method to outperform other, more sophis-
ticated methods, the simple flat method should provide a lower bar and a standard of comparison
for the performance of other methods. Any nontrivial histogram method should, at a minimum,
consistently outperform the simple flat method in order to be considered for any applications.

The idea behind the simple flat method is such: after simulating for some time, the energy
histogram H (E) will have a peak, or some other uneven distribution of observations, in a region of
energies R for which H (E ∈ R) statistically significant. One can thus use the existing histogram to
construct weights which should flatten H (R). Subsequent simulations should then spend less time
at energies with the highest state densities, and more time at energies with relatively low state
densities. The energy histogram from such simulations should therefore be statistically significant
in a larger range of energies, improving the available estimate for a density of states with which to
compute flat histogram weights. One could then use the improved estimate to construct new weights,
and repeat this simulation and updating process until simulations satisfy some end condition (in
fact, most histogram methods will require end conditions, which is discussed in Section 3.7.1).

Algorithm 4 provides an implementation of the simple flat method. This algorithm has two free
parameters: the initial number of iterations n0 for which to simulate and the factor u. Due to the
exponential growth of nk = ukn0, this algorithm should not be sensitive to the value of n0.

The most interesting part of Algorithm 4 is step 4c, which updates the weights as w (E) ←
w (E) /H (E). The reasoning behind this step is such: say that for two energies E0 and Eb we
have that H (E0) = 〈H〉E and H (Eb) = b 〈H〉E , where 〈H〉E is the mean histogram value over all
energies. In this case, we wish to decrease the current simulation bias on Eb by a factor of b while
keeping the bias on E0 the same. As the weights w (E) are proportional to the simulation bias on
each respective energy E, dividing the weights w (E) by the current histogram H (E) achieves the
desired changes to the simulation biases. The factor 〈H〉E in this weight update has no effect on

Algorithm 3: A naive flat histogram method

1. Construct an initial typical fluid configuration.

2. Simulate (without weights) for some time τ , which may be real time, computer time, or a
number of simulation iterations, collecting a histogram H (E) of energy observations after
every move.

3. Set weights w (E) = 1/H (E). At energies with H (E) = 0, set w (E) = 1.
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Algorithm 4: The simple flat method

1. Construct an initial typical fluid configuration.

2. Set k = 0, choose an initial number of iterations n for which to simulate, and initialize weights
w (E) = 1 for all E.

3. Simulate for n iterations (with weights), collecting a histogram H (E) of energy observations
after every move.

4. If some predetermined initialization end condition has not been met, then

(a) increment k ← k + 1

(b) set nk = unk−1 with a predetermined factor u ≥ 1,

(c) update weights as w (E)← w (E) /H (E) for all E at which H (E) 6= 0,

(d) return to step 3.

the function of the weights, and is in practice immediately scaled out of the weight array.
In our implementation of the simple flat method, we used u = 2 and n0 = L exp (ε/kTmin), where

L is the number of energy levels of the given square-well fluid and Tmin is a minimum temperature
of interest for the current simulation. The factor of L appears because initialization time should
scale with the range of energies of the simulated system. If we have twice the number of energies, we
should explore energy space for twice as long. To estimate L, we multiplied the maximum number
of spheres M which fit within a radius of λσ of a single sphere on a face-centered cubic lattice (i.e.
the maximum number of spheres with which a given sphere could interact) by the total number of
spheres N , and divided the result by two so as to not double-count interactions between spheres
(so L = MN/2). The exponential exp (ε/kTmin), a Boltzmann factor for two adjacent energies,
appears because lower minimum temperatures of interest warrant sampling lower energies, which
in turn requires simulating for longer (in step 3 of Algorithm 4) because these energies have lower
state densities. The introduction of a minimum temperature may seem ad-hoc, but all simulations
in this paper require a choice of minimum temperature anyways (discussed in Section 3.7.2).

3.3 The Wang-Landau method

The Wang-Landau method is the first published histogram method we discuss[1–4]. This method
has been used to study a wide variety of systems, and is the standard method to compute the density
of states of a system via Monte Carlo simulations[4–7].

Unlike the simple flat method, the Wang-Landau method modifies the weight array on the fly.
After every move during initialization Wang-Landau decreases the weight w (E) on the current
energy E by some factor of f , so as to decrease weights on the most commonly observed energies
relative to those of the least commonly observed energies. Eventually, such a simulation with con-
stant modification of the weights w (E) should yield a flat histogram H (E) ≈ 〈H〉E for all E, as
the modifications to w (E) increasingly pushes the simulated system away from the most sampled
energies, and toward the least sampled energies. When the energy histogram is sufficiently flat,
H (E) is reset (i.e. set to H (E) = 0 for all E), the factor f is decreased (geometrically approaching
unity), and the entire process is repeated until f − 1 falls below some cutoff c� 1.
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Algorithm 5: Wang-Landau initialization of weights

1. Construct an initial typical fluid configuration

2. Set k = 0, choose some factor f0 > 1, and initialize w (E) = 1 for all E.

3. Simulate for n iterations. After each move, increment the histogram H (E) of energy obser-
vations and update w (E)← w (E) /fk, where E is the current energy of the system.

4. If the histogram H (E) is not sufficiently flat, i.e. if it fails a “flatness” condition C [H], return
to step 3, otherwise

(a) reset H (E) = 0 for all E,

(b) increment k ← k + 1,

(c) set fk = u
√
fk−1 for some predetermined u > 1,

(d) if fk ≥ c for some predetermined c, return to step 3.

Resetting and repeating this initialization process is necessary to perform fine tuning and re-
finement of the weights. A flat histogram after a simulation in which w (E) has changed does not
guarantee that simulating with the final weights will likewise result in a flat histogram. Eventually,
when f − 1 < c� 1, i.e. f ≈ 1, the initialization process no longer makes any appreciable modifi-
cations to the weights w (E), so that upon achieving a flat histogram one can be confident that a
regular simulation which fixes the current weights will yield similar results.

Algorithm 5 walks through the Wang-Landau initialization procedure. This algorithm includes
four free parameters which affect initialization process: the number of iterations n to run in step 3,
the initial factor f0, the update factor u, and the flatness condition C [H]. The cutoff c determines
the condition for Algorithm 5 to terminate.

The first of these parameters, n, controls how often to check the flatness condition C [H] and
run updates, if necessary. The value of n is not too important, so long as it is reasonable for the
system at hand. Too small value of n will waste computation time determining C [H], while too
large of a value will waste time simulating when C [H] has already been satisfied. In general, n
should be proportional to the computation time of C [H], which scales with energy range of the
simulated system. We therefore use n = L, where L is, as described in Section 3.2, the number of
energy levels for the given square-well fluid. Other works typically neglect providing any heuristic
or formula for n, reporting a system-independent n = 103[2] or 105[1].

The next parameter, f0, controls the initial amount by which to adjust the weight of the current
energy after each move. As mentioned in Algorithm 5, one should always have f0 > 1, but the
appropriate value of f0 will generally depend on the system at hand. Too large a value of f0 will
magnify stochastic error in initialization, while too small a value of f0 will cause simulations to
take an exceedingly long time to converge. Lacking any heuristics for assigning f0, we use f0 = e
(more precisely, ln f0 = 1), a value commonly suggested by literature[1].

The factor u appearing in step 4c of Algorithm 5 controls the amount by which to adjust f when
the histogram H (E) is sufficiently flat. In principle, one need not take a root of f at each reset:
the general idea behind Algorithm 5 requires only fk < fk−1 to converge (assuming that C [H] can
be satisfied) and limk→∞ fk = 1 to terminate. Taking the u-th root of f at each increment of k is a
natural and convenient iterative means to satisfy these requirements. Previous works have reported

11 of 31



3.4 The transition matrix Monte Carlo (TMMC) method 3 METHODS

using values such as u = 2 [1, 2] and u = 10 [3]; we use the former value.
One might guess why the flatness condition C [H] for updating f and restarting the Wang-

Landau initialization process should not be made too lax: doing so would prompt the initialization
process to i) reset and decrease f too early, i.e. when the weight array could still use some heavy
handed adjustment, and ii) quit before one has any reason to think that simulations might yield a
flat histogram. Less obvious, however, is the fact that the flatness condition C [H] should not be
made too stringent: if the histogram is completely flat, say H (E) = H0 for all E, then the weights
w (E) have all been modified by the same factor of fH0 . Remembering the scale-invariance of w (E),
this result would mean that the weights have not actually changed at all!

The success of Wang-Landau thus relies on some degree of leniency in the flatness condition,
which makes tuning C [H] crucial to the efficient and effective implementation of this method. Some
previous works[1] suggest that C [H] should be made as stringent as possible, cautioning only that
some simulations might not satisfy too strict of a flatness condition in any reasonable amount of
time. These works fail to recognize the reliance of Wang-Landau on the failure of C [H] to enforce a
perfectly flat histogram. A commonly suggested flatness condition is that the minimum histogram
value in some specified range of energies be at least some fixed proportion of the mean histogram
value, i.e. C [H] : min [H (E)] ≥ x 〈H〉E , and several papers report using x = 0.95. We use this
condition with the same value of x. Determining the range of energies over which to evaluate C [H]
is the subject of Section 3.7.2.

The final free parameter in the Wang-Landau method is the cutoff c, which determines how
small f can get before the algorithm stops modifying the weight array. Too large of a value for c
will make Wang-Landau quit prematurely, whereas too small a value will cause the algorithm to
waste time simulating after the weights w (E) have essentially converged. One might imagine using
an alternate end condition for Wang-Landau, which involves comparing the current weights wk (E)
to those at the end of the previous cycle, wk−1 (E), to check whether the initialization process is
still making appreciable modifications to the weights, but such a check would require both a metric
and a free parameter to define what an appreciable change is. For simplicity, we stuck with the
standard end condition given in Algorithm 5. As with the other free parameters in Wang-Landau,
we are not aware of any heuristics for determining an appropriate value of c, but literature cites
typical values of ln c = 10−8. In order to compare different histogram methods fairly, we used an
alternate end condition in step 4d of Algorithm 5 (discussed in Section 3.7.1), and therefore did
not need to choose a value of c.

3.4 The transition matrix Monte Carlo (TMMC) method

Unlike the previous histogram methods, the transition matrix Monte Carlo method does not
use weights, and merely computes the density of states D (E) of a system[8]. The density of states
can in turn be used to determine flat histogram weights via (14). TMMC introduces a new object:
the energy transition matrix, T , whose components Tij are the probabilities that a system will
transition to a state with energy Ei from a given state with energy Ej , i.e. Tij = P (Ej → Ei).

The transition matrix is trivially square and positive-definite, but it is not symmetric. Given
that unbiased Monte Carlo samples all of state-space randomly, meaning all possible system states
are equally likely to occur during simulation, a transition Ei → Ef from an energy with a low
state density to one with a high state density, D (Ei) < D (Ej), is more probable than the inverse
transition Ej → Ei simply due to the fact that there are more states with energy Ei than those with
energy Ej . Thus D (Ei) < D (Ej) implies P (Ei → Ej) > P (Ej → Ei), which means Tji > Tij . The
asymmetry of the transition matrix is precisely the origin of the second law of thermodynamics:
systems are exceedingly likely to evolve towards macroscopic states with higher accessible microstate
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densities.
Knowing the transition matrix of a system determines, among other properties, the system’s

density of states. Consider an ensemble of unbiased Monte Carlo simulations with a distribution
of energies at a time t given by D̂t (E), such that the probability of any given simulation to have
an energy Ei at a time t is D̂t

i = D̂t (Ei). The probability D̂t
i can be expressed in terms of the

distribution D̂t−1 (E) one time step (i.e. one Monte Carlo move) prior by

D̂t
i =

∑
j

P (Ei → Ej) D̂
t−1
j =

∑
j

TijD̂
t−1
j . (15)

At equilibrium, the probability distributions do not vary with time, meaning D̂t = D̂t−1. Further-
more, the distribution of states in an equilibrium ensemble of unbiased Monte Carlo simulations is
precisely the density of states D (E), which means Di =

∑
j TijDj . Expressing this condition for

all energies with a state density vector D and transition matrix T ,

D = TD. (16)

Finding the density of states of a system can thus be reduced to finding the eigenvector of the
transition matrix which has a corresponding unit eigenvalue. Once one has determined the density
of states of a system, one can initialize weights via the flat histogram method, i.e. (14).

Computationally determining the transition matrix of a system is straightforward: one need only
simulate the system and collect a histogram T̃ij = T̃ (Ei, Ej) of the energy transitions after each
unbiased Monte Carlo move attempt, i.e. after step 2 of Algorithm 1. A histogram of transitions
T̃
(
Ei, Ēj

)
from a fixed energy Ēj to energies Ei is then proportional to the probability distribution

of transitions from Ēj , i.e. the transition matrix T
(
Ei, Ēj

)
. Crucially, this proportionality does not

depend on the history of a simulation, or on how the simulation got to be in the energy Ēj , so
long as samples of the energy Ēj are themselves void of systemic bias. Furthermore, one does not
actually need to transition from Ej to Ei in order to collect statistics on T (Ei, Ej): after deciding
whether to accept a move based on whether it results in a valid system state, one can increment
T̃ (Ei, Ej) before deciding to reject the move for some other reason, e.g. because w (Ej)� w (Ei),
or even because one wishes to collect more statistics on T

(
Ei, Ēj

)
.

The proportionality T̃ij ∝ Tij can be made explicit by enforcing that the probabilities of all
transitions from an energy Ej sum to unity, i.e.∑

i

P (Ej → Ei) =
∑
i

Tij = 1, (17)

which implies

Tij =
T̃ij∑
i T̃ij

. (18)

Computing T from T̃ therefore requires normalizing each row of T̃ independently.
If a system has L energy levels, the transition histogram T̃ (Ei, Ej) is an L × L matrix. Given

that L is proportional to the system size N , the memory footprint of T̃ (Ei, Ej) grows as N2. For
most systems, however, there will be a maximum energy M independent of system size by which
a single move can change the energy of the system. The transition histogram for such systems is
therefore band-diagonal, which one can exploit to save memory. In particular, it is natural to store
the transition histogram in the form T̃d (E,∆E), which gives the probability that a system will
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Algorithm 6: Transition matrix Monte Carlo initialization

1. Construct an initial typical fluid configuration.

2. Initialize a transition histogram T̃d (E,∆E) = 0 for all E and ∆E ∈ [−M,M ], where M is
the possible maximum energy transition of a single move.

3. Randomly attempt to change the position of one sphere, tentatively accepting the transition
from state si to state sf if sf is not a forbidden fluid configuration.

4. Let ∆E = Ef − Ei and increment T̃d (Ei,∆E), where Ek is the energy of state sk.

5. If ∆E < 0, accept the move. Otherwise

(a) compute the normalization factor

nk =
∑
∆E′

T̃d
(
Ek,∆E

′)
for k ∈ {i, f}, and

(b) accept the move si → sf with probability

Pm (si → sf ) = max


(
T̃d (Ei,∆E) + c

)
/ (ni + c)(

T̃d (Ef ,−∆E) + c
)
/ (nf + c)

, exp

(
− ∆E

kTmin

)
for a predetermined number c and temperature Tmin.

6. If some predetermined initialization end condition has not been met, return to step 3. Other-
wise, compute the density of states D (E) by solving (16), and set weights w (E) = 1/D (E).

transition from the energy E to the energy E + ∆E in a single move. One can convert between
T̃d (E,∆E) and T̃ (Ei, Ej) using the relation

T̃ (Ei, Ej) = T̃d (Ej , Ei − Ei) , (19)

which means, from (18),

Tij =
T̃d (Ej , Ei − Ej)∑
i T̃d (Ej , Ei − Ej)

=
T̃d (Ej , Ei − Ej)∑

∆E T̃d (Ej ,∆E)
. (20)

Expressed in this form, the memory footprint of the transition histogram grows linearly with system
size N and the maximal energy difference M .

Figure 4 provides an example of a transition matrix Td (E,∆E) for a particular square-well fluid.
The band at ∆E = 0 indicates that most moves transition from an energy to itself. Low energies
are more likely to transition up in energy, with ∆E > 0, than down in energy, with ∆E < 0. The
high energies which are more likely to transition down in energy than up are those above the state
of maximum entropy, i.e. the state at which D (E) is maximal.

While one could imagine many initialization routines to determine the transition matrix T , we
use Algorithm 6, which is a modified version of a routine provided in [8]. The primary motivation
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Figure 4: Sample transition matrix Td (E,∆E) for square-well fluid with a well width λ = 1.3, filling
fraction η = 0.3, and N = 25 spheres. The band at ∆E = 0 indicates that any given state is most likely to
transition into another state with the same energy.

behind this algorithm is such: as lower energies are always more difficult to sample than higher
energies, transitions to lower energies should always be accepted, while transitions to higher energies
should pass a probabilistic acceptance test. To understand the probability in step 5b of Algorithm
6 of accepting a move si → sf for which Ef > Ei, first consider the case of c = 0 and Tmin → 0, in
which case the probability becomes

Pm (si → sf ) =

(
T̃d (Ei,∆E)

)/(∑
∆E′ T̃d (Ei,∆E

′)
)

(
T̃d (Ef ,−∆E)

)/(∑
∆E′ T̃d (Ef ,∆E′)

) =
Td (Ei,∆E)

Td (Ef ,−∆E)
=
P (Ei → Ef )

P (Ef → Ei)
, (21)

where ∆E = Ef −Ei and P (Em → En) is the unbiased probability of a transition from an energy
Em to an energy En. The result in (21) is the probability of accepting moves si → sf required
for simulation via Algorithm 6 to yield a flat energy histogram[8]. Unlike the previous histogram
methods, we desire a flat histogram during initialization via Algorithm 6 in order to broadly sample
the transition histogram T̃d (E,∆E), rather than to construct weights w (E) directly.

Aside from a minimum temperature Tmin and an end condition, Algorithm 6 contains one free
parameter, c, used in step 5b to modify (21). This parameter, which is our own addition to the
algorithm provided in [8], makes the rejection of transitions more conservative when there are too
few statistics in the histogram T̃d to be confident in the current estimate of the transition matrix.
Without this parameter, the TMMC initialization routine can get stuck at energies which, due to
poor collection of statistics in T̃d, appear to be more important than they actually are. In order to
make the effects of c negligible as T̃d collects more statistics throughout initialization, c should be
of order unity, though its optimal value is generally system-dependent. In our implementation of
Algorithm 6, we use c = 16.

The last interesting part of the probability in step 5b of Algorithm 6 is the limit on Pm (si → sf )
to a minimum value of exp (−∆E/kTmin). This limit caps the bias on energies to that introduced
by canonical (fixed-temperature) weights at a temperature of Tmin. As a result, Algorithm 6 will
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not waste time oversampling energies which are unimportant for determining system properties at
temperatures T ≥ Tmin.

3.5 The optimized ensemble (OE) method

All histogram methods introduced in this paper thus far have focused on determining a weight
array w (E) for a flat energy histogram H (E), in order to sample and collect statistics on all energies
equally. This motivation considers the quantity of statistics, but not their quality. Metropolis-
Hastings Monte Carlo simulations collect statistics on low energy states by first getting into these
states, and then rejecting moves which move the system into higher energy states. Statistics on low
energy states will therefore generally be highly correlated, as they are based on many samples of
only a few low energy regions of a system’s energy landscape. The optimized ensemble[9] attempts
to address the autocorrelation between low energy samples by finding weights to maximize the
rate at which a simulation makes round trips between low and high energy states. Maximizing the
round trip rate, in turn, maximizes the rate at which a simulation makes independent, uncorrelated
samples of low energies.

The optimized ensemble works by considering an ensemble of simulations, each of which defines
the position of a “walker” in energy space. Given that we want walkers to move back and forth
between two extrema E+ and E− of some specified energy range, we label each walker by which
extrema it has visited most recently. We can then identify “down-going” (“up-going”) walkers by
those which more recently visited E+ (E−), which means that to make a round trip they first needed
to get to E− (E+). Denoting the total walker and down-going density at an energy E respectively
by n (E) and n+ (E), the ratio f (E) = n+ (E) /n (E) gives the proportion of walkers at E which
are down-going. We also denote the walker diffusivity at an energy E by α (E).

At equilibrium with a flat histogram, meaning n is constant, the down-going walker current
j (E) can be expressed in terms of the diffusivity α (E) by

j = −αdn+

dE
. (22)

This identity can be taken as the definition of the walker diffusivity α, which is the independent of
the label we have assigned any given walker. Substituting n+ = fn,

j = −α
(
n
df

dE
+ f

dn

dE

)
= −αn df

dE
, (23)

where a constant n implies dn/dE = 0. We can rearrange (23) and integrate over the energy range
as ∫ f(E+)

f=f(E−)

df

j
= −

∫ E+

E=E−

dE

αn
. (24)

At equilibrium, the number of down-going walkers n+ (E) at any given energy E is constant with
time, which means that the walker flux j (E) must be constant with energy. We can therefore
evaluate one of the integrals in (24) to get

1

|j| =

∫ E+

E=E−

dE

αn
. (25)

The optimized ensemble method minimizes the integral in (25), thereby maximizing the down-
going walker current |j|, by varying the walker density n with the constraint that n must remain
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normalized. With the additional assumption that α (E) does not strongly depend on the weights
w (E), the authors of [9] find that the optimal walker density n is

nopt ∝
1√
α
, (26)

where the proportionality is determined by enforcing that n is normalized.
Equating the set of observations in a single simulation with a single observation of an ensemble of

simulations, the walker density n (E) is proportional to the energy histogram H (E) = D̃ (E)w (E),
which means

wopt =
1

D
√
α
, (27)

where we neglect the distinction between D̃ and D, which has no effect on the weights w.
The algorithm provided in [9] to construct weights given by (27) finds the diffusivity α by solving

for it in (22). This procedure accepts flat histogram weights, or equivalently the density of states, as
an input, and is not meant to construct weights from scratch. We therefore will not be comparing
the optimized ensemble to other methods in this paper. We do, however, credit [9] for motivating
the hybrid OETMMC method in Section 3.6.

3.6 The hybrid OETMMC method

As well as the density of states, the transition matrix T (Ei, Ej) determines the local diffusivity
α (E) for any given weights w (E). Denoting by Pb (Ei → Ej) the actual, biased probability of
transitioning from Ei to Ej in a single Monte Carlo move, we can say that

Pb (Ei → Ef ) = P (Ei → Ef )Pm (Ei → Ef ) = Tji max

{
w (Ef )

w (Ei)
, 1

}
, (28)

where P (Ei → Ej) is the probability of attempting the move Ei → Ej and Pm (Ei → Ej) is the
probability of accepting that move, should it occur. In terms of a transition histogram T̃d (E,∆E)
with E = Ei and ∆E = Ef − Ei,

Pb (E → E + ∆E) =
T̃d (E,∆E)w (E + ∆E) /w (E)∑

∆E′ T̃d (E,∆E′)w (E + ∆E′) /w (E)
. (29)

We now define

〈∆E〉E =
∑
∆E

∆EPb (E → E + ∆E) =

∑
∆E ∆E T̃d (E,∆E) max {w (E + ∆E) /w (E) , 1}∑

∆E′ T̃d (E,∆E′) max {w (E + ∆E′) /w (E) , 1}
(30)

and

〈
∆E2

〉
E

=
∑
∆E

∆E2Pb (E → E + ∆E) =

∑
∆E ∆E T̃d (E,∆E) max {w (E + ∆E) /w (E) , 1}∑

∆E′ T̃d (E,∆E′) max {w (E + ∆E′) /w (E) , 1}
,

(31)

in terms of which the diffusivity α (E) is

α (E) =
〈
∆E2

〉
E
− 〈∆E〉2E . (32)
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The diffusivity α (E) is thus the variance of the change in energy ∆E from as single move out of
E. Reconciling this definition with that we provide in (22) is considered outside the scope of this
paper.

The OETMMC method, a hybrid of TMMC and the optimized ensemble, first runs Algorithm
6 to collect a transition histogram and compute flat histogram weights, then computes the dif-
fusivity α (E) via (30)-(32), and finally computes optimized weights as given by (27). Unlike the
optimized ensemble, OETMMC does not require any extra simulation routines, and is therefore
straightforward to implement and compare to other histogram methods.

3.7 Loose ends

Throughout the discussion and development of histogram methods, we have thus far neglected
expanding on a few important subjects: i) initialization end conditions i.e. the means by which
we decide when an algorithm to construct weights is finished, ii) the minimum temperature Tmin

which we have sometimes mentioned, iii) the energy range over which we are interested in, and
iv) what to do with the weight array outside of the energy range of interest, or at energies where it
is not defined. The last three of these subjects turn out to be related, as the minimum temperature
Tmin chosen for any given simulation determines the minimum energy E− of interest, as well as the
weights w (E) at energies E < E−.

3.7.1 End conditions

While the Wang-Landau method comes equipped with an end condition of its own, most his-
togram methods require some external means of deciding when they are finished initializing. Wang-
Landau’s “natural” end condition does not advantage it over other methods, however, as the Wang-
Landau end condition makes use of a free parameter (the cutoff c), which any end condition will
require. In order to compare all methods fairly, we need a method-independent end condition to
initialization. The most straightforward of such end conditions is to simply to stop initializing after
some fixed number of Monte Carlo iterations, and finish up any other calculations in the algorithm
if appropriate. We thus initialize systems of N spheres for 105N2 iterations; the choice of 105N2 we
address in Section 4. In general, however, one might want an end condition which is independent of
system size. We came up with a four such end conditions as examples, though we do not use them
in simulations analyzed in this paper.

Our end conditions require knowledge of the minimum and maximum energies of interest, which
we denote respectively by E− and E+. We define the pessimistic sample count sp (E0) as the
number of times which a system has traveled from E+ to E0. The trip from E+ to E0 may be made
in any number of moves, but cannot include intermediate visits to E− or E0. The count sp (E0)
provides the most pessimistic estimate for the number of independent, uncorrelated observations
of the energy E0, assuming that a visit to E+ wipes all correlations between samples of any other
energy; this assumption will be justified by our definition of E+ as the energy at which the density
of states D (E), and by extension the entropy S (E), is maximal. We similarly define an optimistic
sample count so (E0) as the number of times which the system has transitioned into E0 from any
energy E > E0 in a single move. This count represents an optimistic estimate of the number of
independent observations of E0, as the system had merely to go to any energy E > E0, where the
density of states may be only marginally larger, between each sample.

In general, any initialization routine should sample the entire range R = [E−, E+] of interest
for a given simulation before terminating. Furthermore, samples at the end of initialization should
be numerous enough to be statistically significant. Given that any samples of E− require first
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sampling all other energies in R on the way down from E+, this energy (E−) will generally have
the fewest number of samples. As an end condition, therefore, one can simply enforce some minimum
number of optimistic or pessimistic samples at E−, i.e. minimum values of so (E−) or sp (E−). A
more sophisticated end condition would be to choose a minimum temperature of interest Tmin

and initialize until the mean fractional error 〈δs〉E,Ttmin
in one of the sample counts reaches some

minimum value. These mean errors are

〈δs〉E,T =
〈
s−1/2

〉
E,T

=
∑
E

s (E)−1/2 P (E, T ) =

∑
E s (E)−1/2 D̃ (E) e−E/kT∑

E′ D̃ (E′) e−E′/kT
, (33)

where we use the fact that the fractional error δG in any histogram G collected via random Monte
Carlo sampling is G−1/2.

3.7.2 The energy range of interest

Using histogram methods generally requires specifying, whether explicitly or implicitly, the en-
ergy range of interest for a given simulation. The Wang-Landau method, for example, periodically
checks a flatness condition C [H] on the energy histogram H (E). In order for such a condition to
be well-defined, it needs have a specified energy range over which to evaluate C [H]. While some
systems, such as the Ising model, have a well-defined and easily computable energy range, the same
is not true of most systems. In the case of the square-well fluid, not only is the minimum energy
unknown, but some energies have such an incredibly low state density D (E) that one cannot rea-
sonably expect to ever observe them via Monte Carlo, biased or otherwise. We therefore need to
identify an energy range of interest, bounded by a minimum E− and maximum E+.

Identifying a maximum energy E+ of interest is straightforward: this is simply the energy at
which the density of states D (E) is maximal. Though high energies become more important for
determining system properties 〈X〉T at higher temperatures, the relative importance of energies
E > E+ to that of the energy E+ approaches a maximum as T →∞. There is therefore a maximum
weight w (E) which is appropriate to assign energies E > E+ relative to the weight w (E+), which
is given by the ratio of these weights as T → ∞. As observed in (13), the weight array becomes
flat as T → ∞, which means that the ratio of w (E > E+) to w (E) appropriate for any given
temperature T maximally approaches unity. We can therefore always set w (E > E+) = w (E+),
which will ensure that energies E > E+ are not sampled any more than is necessary for any positive
temperature. The maximum of D (E) can be found by simulating without weights for a short while,
after which the energy histogram H (E) should be maximal at E+.

The minimum important energy E− for a system is less obvious than E+. Just as determining
E+ involved reference to a “maximal” temperature T → ∞, determining E− requires a choice of
some minimum temperature Tmin. The minimum important energy E− is then the energy at which
the term D (E) e−E/kTmin in the partition function is maximal. Lower energy terms in the partition
function grow increasingly less important as the distance |E − E−| grows, and are sufficiently sam-
pled with canonical weights w (E < E−) = w (E−) e−E/kTmin to determine any property 〈X〉T≥Tmin

.

To maximize D (E) e−E/kTmin , we need

d

dE

(
De−E/kTmin

)
=
dD

dE
e−E/kTmin +De−E/kTmin

(
− 1

kTmin

)
= 0, (34)

which means

1

D

dD

dE
=
d lnD

dE
=

1

kTmin
. (35)
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Though we do not always know the density of states D (E), in practice we compute the best
available estimate of D (E) every time we need to know E−. If we do not find any energy satisfying
(35), we use the minimum energy the simulation has ever observed in place of E− to define our
energy range of interest.

Once we identify an energy E− satisfying (35) in an initialization routine for any histogram
method, we set weights w (E < E−) = e−(E−E−)/kTmin with a temperature kTmin = 0.2ε. These
weights prevent the initialization routine from wasting time on energies at which we will override
the weight array after initialization anyways. We chose this temperature because it is comfortably
below the temperature at which the square-well fluid condenses from a gas into a liquid in simulation
(see Section 4.3).

We made a special case for Wang-Landau treatment of the energy range of interest, as the design
of this method assumes knowledge of the energy range over which to evaluate C [H]. In order to
more fairly compare Wang-Landau to other methods, as well as having Wang-Landau determine
E− in the manner described above, we also simulated via Wang-Landau with E− hard-coded for
each system size N . We will distinguish the two sets of Wang-Landau simulations by referring to
those in which E− is hard-coded as “vanilla Wang-Landau.”

4 Results and Discussion

Having developed and implemented all of the histogram methods discussed in Section 3, we will
now look at the results from simulating with these methods. Due to time constraints, we simulated
only one system, the square-well fluid with well width λ = 1.3 and filling fraction η = 0.3, for sizes
(number of spheres) N ∈ [5, 25]. We initialized histogram methods for 105N2 iterations (105N3

moves), and simulated for just as long afterwards. To check for consistency in simulation results,
we simulated each combination of histogram method and system size with 30 different random
number generator seeds.

4.1 Controls

Our analysis will involve comparing errors in system properties computed from simulation re-
sults. As we do not know the true values of these system properties, we will compare standard
simulation results against those from “gold standard” simulations, which run for significantly longer
than the standard 105N2 iterations. For our gold standard simulations, we use the TMMC method
and initialize until it collects 104 optimistic samples of the minimum important energy (i.e. until
so (E−) ≥ 104). To increase confidence in low-temperature gold standard results, we initialized
them with kTmin = 0.1ε. After initialization, the gold standard runs simulate for 1010 iterations
(1010N moves). While the entire initialization and simulation process takes around two hours for
the largest regular simulations, the largest golden simulations initialize for ∼ 11 hours, and simu-
late for a week. To control for iteration number in the results from any given set of simulations,
we compare against “converged flat” simulations. Converged flat simulations read in the transition
matrix from golden simulations to construct a weight array, and simulate for the same number of
iterations as the standard simulations.

4.2 Histograms and arrays

Most of our analysis will use quantities computed from two arrays: the energy histogram H (E)
and the weights w (E). To get a sense of what these arrays look like, Figure 5 shows the energy
histogram and weights from N = 25 simulations, along with the density of states computed via
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Figure 5: Example arrays computed by various histogram methods for a square-well fluid with a well
width λ = 1.3, filling fraction η = 0.3, and N = 25 spheres after simulating for 105N2 iterations: (top left)
energy histogram, (top right) weight array, (bottom left) density of states. Vertical reference lines denote the
minimum important energy E−.
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Figure 6: Example pessimistic energy sampling rates computed by various histogram methods. Sample
rates for each method are averaged over 30 simulations with different random number seeds. The vertical
reference line denotes the minimum important energy E−.

D̃ = H/w and normalized to have a maximum value of 1. The vertical reference line in these plots
denotes the minimum important energy E−. For reference, we also provide the histogram produced
by an infinite temperature (no weights) simulation.

The most immediate observation in these plots is the failure of Wang-Landau to produce mean-
ingful results without a predefined energy range. This failure occurs because the Wang-Landau
algorithm does not have a mechanism for properly setting and adjusting weights on newly observed
energies. After several reset cycles of the Wang-Landau algorithm, the weight-modifying factor fk
gets exceedingly small relative to its initial value. When Wang-Landau finds new low energies,
therefore, the simulation gets stuck trying to fix the weights at these energies with a factor fk
whose magnitude is appropriate for fine tuning, rather than heavy adjustment. If Wang-Landau
knows the energy range of interest to begin with, it will not decrease fk until it has observed all
important energies, and adjusted their weights to some reasonable value. Due to the drastic failure
of Wang-Landau, will omit its nonsensical results from some figures, as these results are distracting
and unfit for drawing any conclusions.

The energy histogram in Figure 5 shows that TMMC and OETMMC spend considerably less
time at important low energies than the simple flat and vanilla Wang-Landau methods. At face
value, this behavior of TMMC and OETMMC is undesirable, as these are the most interesting
energies for low temperatures, and the most difficult energies to sample.

High energy histogram counts at low energies mean that a simulation has collected many statis-
tics on these energies, but the energy histogram contains no information about how correlated
these statistics are. To determine how effective different simulations are at collecting uncorrelated
statistics, we can look at the pessimistic sample rate rp (E), which is the mean number of simula-
tion iterations required to sample a given energy E. This rate is roughly equal to the number of
iterations I in a simulation and the pessimistic sample rate sp (E) by rp (E) = I/sp (E); the greater
the number of iterations I, the better this approximation. Figure 6 shows pessimistic sample rates
averaged over 30 simulations with N = 25. Lower pessimistic sample rates mean that a simulation
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takes less time to collect statistics which are guaranteed to be uncorrelated. By this metric, TMMC
and OETMMC again perform worse than simple flat and vanilla Wang-Landau.

4.3 Thermodynamic properties and errors

Histograms and sampling rates let us speculate about the quality of a simulations, but the most
important deliverable of any simulation is accurate physical results. We therefore compute, via the
formula in (6), the temperature dependence of the square-well fluid’s potential energy

U = 〈E〉T , (36)

the heat capacity

CV (T ) =
∂U

∂T
=

〈(
E

kT

)2
〉

T

−
〈
E

kT

〉2

T

, (37)

and the configurational entropy

Sconfig (T ) = S (T )− S (T →∞) = k

〈
E

kT
+ lnZ

〉
T

− k
〈
E

kT
+ lnZ

〉
T→∞

. (38)

All of these properties are directly computable from the density of states D (E), and are shown in
Figures 7–9 forN = 25 simulations, averaged over 30 simulations. When looking at these figures, one
should remember that we are only confident in results down to kT = 0.2ε for regular simulations,
and kT = 0.1ε for golden ones. With the exception of Wang-Landau, which has a heavy low-energy
bias, all simulations agree fairly well on these properties of the square-well fluid.
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Figure 7: Specific internal energy curves averaged over 30 N = 25 simulations.
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Figure 8: Specific heat capacity curves averaged over 30 N = 25 simulations.
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Figure 9: Specific configurational entropy curves averaged over 30 N = 25 simulations.
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Though Figures 7–9 are interesting for studying the square-well fluid, they do not help us resolve
the efficacy of different histogram methods. These figures do, however, show that the square-well
fluid has a phase transition around kT ≈ 0.5ε, which justifies our choice of kTmin = 0.2ε and ensures
that the histogram methods are indeed performing the nontrivial task of exploring the liquid-gas
phase boundary of the square-well fluid. For the purposes of this paper, we will neglect to prove
that this phase transition is indeed between liquid and gas phases, and take this fact as given.

Having a sense of how U , CV and Sconfig behave with respect to temperature, we can now look
at the how the errors ∆U , ∆CV and ∆Sconfig relative to the TMMC golden calculations, shown in
Figures 10–12. Much like the arrays in Figure 5, we provide these figures for a sense of how error
curves behave. Errors (at kT ≥ 0.2ε) typically peak near the phase transition at kT ≈ 0.5ε, and
drop back down.

Figures 13–15 provide a more comprehensive picture of errors from each method. These figures
show the average maximum error in U , CV , and Sconfig for different system sizes. Though errors
jump around considerably in these figures, the fact that they are roughly stable (logarithmically)
between N = 15 to 25 justifies the choice N2 scaling for our number of initialization iterations.
Future studies might use this scaling to estimate appropriate initialization time for larger systems.

Figures 16–18 provide a different visualization of the same information as in Figures 13–15,
plotting the errors of all histogram methods against those of converged flat histogram weight sim-
ulations. The fact that some points fall below the diagonal reference line is strange, and indicates
that some regular simulations are outperforming the converged flat ones. We do not understand
why such events occur, as converged flat simulations should be using high quality golden data to
construct weight arrays, and should therefore outperform all standard simulations.

As with the arrays, the error comparison figures demonstrate the inability of Wang-Landau to
sample a system without a predefined energy range. The simple flat method, vanilla Wang Landau,
and TMMC seem to give comparable errors, except for some anomalous cases with N = 18 and
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Figure 10: Errors in specific internal energy, averaged over 30 N = 25 simulations.
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Figure 15: Specific configurational entropy error scaling.
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Figure 16: Specific internal energy errors, plotted against those from converged flat histogram weight
simulations.
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Figure 17: Specific heat capacity errors, plotted against those from converged flat histogram weight simu-
lations.
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Figure 18: Specific configurational entropy errors, plotted against those from converged flat histogram
weight simulations.
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N = 21 in which simple flat has large errors. We do not know the reason for these anomalies, but
they could occur if the method terminates before finding energies near E−, in which case it would get
stuck in simulation at low energies with canonical weights for the minimum temperature kTmin =
0.2ε. Finally, these error figures further confirm earlier suspicions of OETMMC’s underperformance
relative to TMMC, despite the fact that it is supposed to provide an improvement over the TMMC
weight array.

5 Conclusions

After implementing several histogram methods and applying them to simulation of the λ = 1.3,
η = 0.3 square-well fluid, we found that Wang-Landau, if given a predefined energy range, con-
sistently yields some of the smallest errors and highest low-energy sampling rates of all histogram
methods, with comparable results from TMMC and the simple flat method. Without prior knowl-
edge of the minimum important energy of a system, however, Wang-Landau can get stuck at low
energies, in which case it is incapable of recovering. Wang-Landau is therefore most appropriate for
studying systems in which the entire energy range is known a priori, or in which only a given energy
range is of particular interest. The simple flat method, while generally performing well, sometimes
fails to initialize. If gone unnoticed, such failures can be costly in terms of computation time and re-
sources. Our implementation of the optimized ensemble using the transition matrix, i.e. OETMMC,
resulted in lower sampling rates and higher errors than the flat histogram TMMC weights. Though
we have not completely ruled out that our implementation of OETMMC contains bugs, we suspect
that the optimized ensemble is failing to improve TMMC either because i) the theory behind the
optimized ensemble neglects the discretization of energies, or ii) OETMMC is highly sensitive to
sampling error in the transition matrix. The first of these suspicions can be tested by simulating
larger systems with a denser specific energy spectrum, and for which discretization should become
asymptotically negligible; the second suspicion can be tested simply by initializing via TMMC
for longer, thereby reducing errors in the transition matrix, before computing diffusion-optimized
weights.
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