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A representation for the process of mechanical design,

along with its computer implementation is presented and

discussed. The representation consists of three

fundamental concepts: design objects, constraints, and

decisions. The design objects are the structures with

which the physical artifacts of the design are described.

A design object consists of a set of attributes that

represent the properties and characteristics of that

object. The values of these attributes are specified by

the constraints of the design.

The constraints specify the values of and relations

between the attributes of the design object. The

conglomeration of design objects and their respective

constraints define the state of the design. The state of

the design can be thought of as a snapshot of the design

taken at any particular time in the design process.

Changes to this state occur through the introduction of

new constraints into the design space.

New constraints are brought into the design by the

application of a design decision. The design decision

process consists of a set of input constraints, an

evaluation performed on those input constraints and the

subsequent generation of one or more new resulting

constraints. These new constraints in turn affect the

attribute values and relations of the design objects,

thereby changing the state of the design.



This representation is capable of storing not only the

final state of a design, but the initial and intermediate

states as well. Maintained also, is the process of change

from one design state to the next. By using this

representation, one can inspect the evolution of design

objects, the propagation and dependencies of the

constraints, and the rationale behind the decisions of the

design.

This representation was developed from data extracted

from mechanical design protocols. These protocols were of

mechanical designers solving original design problems and

consisted of video recordings, verbal transcripts, and the

designer's original drawings.

The representation was implemented in HyperClass, an

object oriented programming environment. The

implementation is capable of generating and displaying

graphical images of the design. The design information

extracted from the protocols can be recorded by the

implementation developed.



AN OBJECT ORIENTED REPRESENTATION FOR MECHANICAL DESIGN
BASED ON CONSTRAINTS

by

Brian D. McGinnis

A THESIS

submitted to

Oregon State University

in partial fulfillment of
requirements for the

degree of

Master of Science

Completed June 7, 1990

Commencement June 1991



APPROVED:

Redacted for Privacy
Associate Protessor or mecnanical Engineering in charge of
major

n it

Redacted for Privacy
AP

Head of Department of Methanical Engineering

Redacted for Privacy
Bean or Graauatfrscnool

Date thesis is presented June 7, 1990

Typed by researcher for Brian D. McGinnis



ACKNOWLEDGEMENT

I wish to thank Dr. David Ullman and Dr. Tom Diettrich

for their many hours of thought, debate, and evaluation

throughout the development of this project. I wish to

also thank my fellow graduate students of the Design

Process Research Group of Mechanical Engineering at Oregon

State University, who participated in the formulation and

refinement of this research. I also wish to extend my

gratitude to Dr. Robert Young and the other researchers of

Schlumberger Laboratory for Computer Science in Austin

Texas, for granting me the opportunity to work in a

friendly and conducive environment.

This research was made possible by grants from

Schlumberger Laboratory for Computer Science and the

National Science Foundation, grant DMC-8514949.



TABLE OF CONTENTS

Title

HISTORY TOOL
Design History Tool Concept
Related Work

ANALYSIS

Page

1

2

3

INTRODUCTION

DESIGN
2.1
2.2

PROTOCOL

1

6

6

9

11
3.1 Research Method 12

3.1.1 Constraint Analysis 12
3.1.2 Design Objects, Features,
Constraints and Design

18

Decisions
3.1.2.a Design Objects 19
3.1.2.b Design Features 21
3.1.2.c Constraints 24
3.1.2.d Design Decisions 28

3.2 Observations 28
3.2.1 Features Identified 29
3.2.2 Constraint Classification 29

3.2.2.a Constraint Source 30
3.2.2.b Constraint Structure 34
3.2.2.c Level of Abstraction 36

3.2.3 Constraint Mapping 38
3.3 Conclusions of Protocol Analysis 45

4 DESIGN PROCESS REPRESENTATION 47
4.1 Design Process Model 47
4.2 Basic Design Process Representation 49

4.2.1 Design Objects 49
4.2.2 Constraints 51
4.2.3 Design Decisions 52

4.3 Constraint Representation 53
4.3.1 Constraint Source 53
4.3.2 Constraint Role 54

4.3.2.a Numeric Parameter 55
Role

4.3.2.b Spatial Role 55
4.3.2.c Function Role 56
4.3.2.d Production Role 57
4.3.2.e Form Role 57
4.3.2.f Status Role 58
4.3.2.g Unclassified Role 58

4.3.3 Constraint Language 59
Representation

4.3.3.a Equational Language 59
4.3.3.b Graphical Language 62
4.3.3.c Textual Language 63

4.3.4 Constraint Causality 65



5 IMPLEMENTATION 67
5.1 HyperCiass Basics 67
5.2 Design Process Knowledge Base 70

5.2.1 Design Object 73
Implementation

5.2.1.a Design Object 73
5.2.1.b Design Primitives 75
5.2.1.c Attribute Slots 79

5.2.2 Decision Implementation 80
5.2.3 Constraint Implementation 82

5.2.3.a Constraint Source 83
5.2.3.b Constraint Role 84
5.2.3.c Constraint Language 90

5.2.4 Constraint Implementation 106
Summary

6 CONCLUSIONS 108
6.1 Conclusions of Constraint Analysis 108
6.2 Representation Conclusions 109
6.3 Current Capabilities of 110

Implementation
6.4 Future Recommendations and 111

Suggestions

7 BIBLIOGRAPHY 113

APPENDICES

I. Original Problem Statement 117
II. Features From Protocol Analysis 119

II.A All Features Observed 119
II.B Feature Attributes 122

III. Implementation Code 123
III.A Knowledge Base Printout 123
III.B Support Files 155

III.B.1 Design-Object.lisp 155
III. B.2 General - Constraints. lisp 161
III.B.3 Graphical - Constraints. lisp 165
III.B.4 Equational - Constraint. lisp 178
III.B.5 Textual - Constraint. lisp 182
III.B.6 New-Functions.lisp 187
III.B.7 Draw-Function.lisp 191
III.B.8 Menu-Interface.lisp 195



LIST OF FIGURES

Figure Page

1. Design History Tool Breakdown 7

2. CAD Drawing of S6 Flipper Dipper 14

3. S6 Outer Frame Assembly Drawing 16

4. S6 Drawing from Protocol 17

5. S6 Design Object Tree 20

6. Expanded Design Object Tree 22

7. Feature Diagram 23

8. Constraint Source Percentages 33

9. Constraint Structure Percentages 35

10. Level of Abstraction Percentages 37

11. Constraint Map Feature List 39

12. Constraint Map Section 41

13. Constraint Loop of Functional Patching 42

14. Constraint Loop of Component Interfacing 44

15. Design Process Model 48

16. Design Process Basic Representation 49

17. Design Object Representation 50

18. Constraint Roles 54

19. Constraint Languages 60

20. Structured Textual Constraints 63

21. HyperClass Example Frame 68

22. Design History Template 71

23. Design Object Class Frame 73

24. Table Object Instance Frame 75

25. Design Primitives Class Frame 76

26. Slab Class Frame 77

27. Table Height Attribute with Facets 79

28. Decision Class Frame 80

29. Constraint Source Class Frame 83

30. Constraint Role with Subclasses 85

31. Role - Language Relation 86

32. Function Module Instance Frame 88

33. Constraint Language with Subclasses 90



34. Constraint Language Class Frame 91

35. Equality Constraint Instance Frame 94

36. Typical Equations 96

37. Conditional Constraint Instance Frame 99

38. Spatial Orientation Instance Frame 101

39. Surface Restriction Class Frame 103

40. Structured Language Class Frame 104

41. Simple Language Instance Frame 104

42. Object Form Language Instance Frame 105



AN OBJECT ORIENTED REPRESENTATION FOR MECHANICAL DESIGN

BASED ON CONSTRAINTS

1. INTRODUCTION

Mechanical design is the process of developing

physical objects or systems that fulfill some desired

need. In creating these mechanical designs, some means or

methods of conveying the design information must be

established. The design information consists of two

distinct parts: 1) a description of the design states, and

2) the process by which those states were achieved.

The design state refers to a snapshot of the design

taken at any specific time during the design process.

This temporal description of the design contains all the

values and relations characterizing that design. This

design characterization includes only the information that

has been specified up to a given point in the design

process. As the design progresses, the state of the

design changes as well. The accumulation of these changes

to the design states is what constitutes the process of

the design.

To fully relate the information in a design, a design

representation must include a detailed description of the

final design, the intermediate states, and a description

of the procedures used to progress from one design state

to the next. A detailed description of the design, at any

state, includes information on the dimensions,

configuration, functions, production, and any other

important properties of the objects of the design that

have been specified by the designer. This design

information is expressed in term of constraints that

define the values and relations of the objects in the

design. This constraint-based description includes only

information specified by the designer up to that
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particular design state.

To fully describe the process of the design, the

design representation must contain information on the

inputs, rationale and result of each decision made within

the design. The inputs to a decision are the previously

stated constraints that were considered or evaluated when

making that decision. The rationale of a decision refers

to what motivated or forced that particular decision to be

reached. The decision result is the change in state of

the design produced by that decision. This decision

result is in the form of a new constraint. Therefore

design decisions are the mechanisms by which a design

changes from one design state to the next.

The representation of the design states and design

process must relate both the physical description of the

design and the intent of the original designer(s) during

that design effort [Kuffner 89]. The intent of the

designer gives insight into how and why a particular

design configuration was achieved. Design representation

is needed for the purposes of design communication.

Design communication refers to the exchange of design

information from one party to another. An effective means

of design communication is required for the successful

completion of the following tasks:

1. Design understanding
2. Design evaluation
3. Design of integrated or related systems
4. Redesign

Each task is explained in the following paragraphs.

Design understanding refers to the perception and

comprehension of the design. To understand a design, the

important properties of the design must be clearly

expressed and presented. Understanding the design is

important in the manufacture and production of the design.

To manufacture a design, a complete description of the

physical objects of the design is required. Valuable
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production information can be extracted by examining the

function of the objects along with the designer's intent.

An efficient and adequate means of design understanding

should therefore decrease the production time of a design

or at least reduce errors.

Design evaluation is the process of reviewing,

inspecting, or appraising the result of a design effort.

Evaluation of the design could be performed by associated

engineers or by a design manager. To achieve an adequate

evaluation of a design, it is necessary to examine not

only the final state of the design, but also the major

decisions involved in reaching that final state. By

identifying problem areas of a design early in the design

process, corrections to the design can be made prior to

the development of poor design solutions.

Integrated design involves the design of two or more

systems or parts that have interacting or related pieces.

In such situations, designers working on related problems

need to examine each other's work and focus directly on

those specific aspects of the design that interact. This

examination entails not only the inspection of the

physical description of the objects of the design, but

also the intended function of those objects. By allowing

an efficient means of collaborative design, many designers

could work simultaneously on different aspects of a single

design problem without interrupting the activities of

others.

Redesign is the process of modifying or changing an

existing design because of a design failure or in order to

meet some new design requirement. Redesign cannot always

be performed by the original designer. To perform the

process of redesign, a designer should ideally be able to

trace the states of the design from the design's initial

inception to the finalized form. It would be helpful to a

designer if he were able to determine the major decisions
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of the design and note their rationale. If a designer is

not able to retrieve this design information, the old

design may have to be abandoned and a completely new

design generated. This new design generation can be

costly in terms of time and resources, especially when a

modification of the old design would have sufficed.

From the explanations of these four design tasks, it

is apparent that an effective and efficient means of

design communication is desirable for productive

mechanical design. Current forms of mechanical design

communication include drawings, notebooks, and prototypes.

Design notebooks are hard to maintain and are often

incomplete. Prototyping is expensive and cannot be

performed until the design has progressed to a fairly

detailed level. Consequently, design drawings have become

the predominant form of documenting and communicating

design. With the advent of computers, the generation of

these drawings is now often achieved through the use of

some form of Computer Aided Drafting (CAD) software.

Most CAD systems enable a user to record and annotate

designs in the form of finalized design drawings. These

drawings relate the basic shape, dimensions, and

configuration of the design. Sometimes notes on

manufacture and assembly are included. Although these

drawings are adequate for expressing the physical

properties of the design, they lack the ability to relate

the functionality of the design and the process from which

the design resulted. Consequently there is a large amount

of information that is lost or unaccounted for in these

mechanical drawings.

Current CAD systems are not fulfilling or meeting all

the needs of the design communication tasks stated above.

This deficiency in current CAD systems can be remedied by

establishing a new form of design documentation. To

achieve better communication of mechanical designs, a more
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complete form of design documentation needs to be

developed.

This research has been devoted to the issue of

developing a representation for mechanical designs that

meets the communication and representation requirements

stated above. The representation developed is capable of

containing not only description of the physical objects of

the design, as is accomplished with current CAD systems,

but the functionality of those objects as well. The

representation also contains information on the process of

the design, so that the rationale behind the decisions of

the design can be expressed. This representation contains

the design information in a structure that is consistent

with the way it was generated by the designer. To

implement this representation, an object-oriented

programming environment was used.

The object-oriented programming environment chosen for

this research was the HyperClass system. The accumulation

of information within HyperClass is referred to as a

knowledge base. The design representation is used as the

basis for the embodiment of the knowledge needed for a

design history tool.

The following section discusses the concept of a

design history tool, what it is, what it does, and why it

is needed. The next section explains the protocol

analysis used and presents the results of that analysis.

This leads into a section on the design process

representation developed by this research. Finally,

documentation on the implementation of the representation

is presented.
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2. DESIGN HISTORY TOOL

2.1 Design History Tool Concept

A design history is a means of recording, storing, and

reviewing the important information generated during the

process of designing a mechanical component or system.

The design is recorded in a representation so that, not

only can the initial and final states of the design be

reviewed, but also all the important intermediate states

as well. Therefore the evolution of a design system, an

individual component of that system, or an attribute of a

component can be traced from the initial design

specifications to its final, manufacturable form.

Maintained in the design history knowledge base are all

the major decisions made throughout the design process.

Included also is information on proposals for the design

that were rejected by the designer as well as the reasons

behind their rejection. Within the knowledge base, it is

possible to determine the decision making processes, the

constraint dependencies and propagation, and the design

object evolution. Therefore, with the aid of a design

history all important aspects of the design and its

development process can be inspected either during the

design or after its completion.

It has been speculated that a design history will

greatly aid in the processes of design communication

[Brown, 89] [Ullman, 87] [Kuffner, 89]. The design tasks

mentioned previously, design understanding, design

evaluation, integrated design, and redesign, would all

benefit from improved methods of design communication.

By providing a tool that supports the direct querying of a

design, design communication can be made more expedient

and more complete. Design communication is also

facilitated by being able to efficiently examine a design

from any desired viewpoint. A design history therefore
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relates not only the "what" of a final design, but also

the "how" and "why" that were involved in reaching that

design.

The development of the design history tool was

Design History Tool Break Down
MAJOR TASK

Design
Capture &
Recording

Design
Represent

ation

Design
Playback

Immil 111110.1
REPRESENTATION

ELEMENTS

Design
Objects

Constraints

Figure 1 Design History Tool Breakdown

subdivided into three major tasks; design capture, design

representation, and design playback, see Figure 1. In

terms of the type of information they are dealing with,

the development tasks are interdependent, since

information flows from one task into the next. In terms

of implementation, the tasks are considered independent,

(i.e., the representation implementation is not concerned

with the capture or playback method used).

Design capture refers to the means or methods used to

input design information into the design history. Ideally

this information would be captured from the designer, as
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he designed at a customized design workstation [Hwang

1990] [Queisser 89] [Lakin 89]. Unfortunately this

capture of design information is a non-trivial task, and

in itself requires much research and work to achieve. For

the purposes of this research, the design capture was

achieved by using a simple design recorder. The design

recorder achieved the task of recording design information

through the use of a user interface, which facilitated the

entering of design data, that was extracted from

verbalized protocols.

The development of a design process representation is

the major focus of research discussed in this thesis. To

accomplish the task of developing a mechanical design

representation, a model for the process of mechanical

design was established. To generate an accurate and

complete model, working mechanical designers were observed

and studied. The means of studying the mechanical

designer was through protocol analysis. This analysis was

used as the basis in the development of the representation

for the design process. The protocol analysis used in

this research and a discussion of the results can be found

in Section 3. The formal design process representation

developed is presented in Section 4.

The playback of the recorded design information is

achieved through the use of a design playback tool, which

is being developed in a related research effort. The

purpose of this tool is to retrieve and present the design

information in a form and at a level that can be easily

understood by mechanical designers. This playback tool

allows a designer to sit at a computer workstation and

examine a stored design at its final states or at any of

its intermediate states of development. The playback tool

also presents information on the decisions in the design:

what forced them, why they were made, and what was their

result.
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2.2 Related Work

There are other efforts currently underway to

develop tools that are similar to the design history.

Primary among these is the NASA-funded effort to record

the important aspects of the design of part of the Space

Infrared Telescope facility [Leifer, 87). Part of this

effort is the VMACS program [Lakin, 89]. VMACS is a

prototype electronic design notebook. It is developed to

support conceptual design by giving designers the freedom

and agility they find with pencil and paper. It records

and maintains all efforts performed by designers during

the conceptual design: sketches, calculations, and design

notes. VMACS does not record or represent the rationale

behind design decisions, nor does it capture the

constraint dependencies or propagation. In order to

obtain this information, the development of Design

Rationale Inferencing System is underway. This system is

used to infer the rationale and monitor the satisfaction

of constraints.

Also of interest is the gIBIS effort at the

Microelectronic and Computer Technology Corporation MCC

[Conklin, 1988). The gIBIS (graphical Issue-Based

Information System) is an on-line hypertext facility for

interactively posting the issues, positions, and arguments

for a problem being solved by many users. Although not

intended to record a temporal history of the posting of

positions on an issue and arguments for the positions, it

does make extensive use of hypertext in a problem solving

situation.

The MIKROPLIS system [McCall, 1989], which is similar

to gIBIS, extends the issue, position, and argument

structure by allowing sub-issues, sub-positions, sub-

arguments and so on. Therefore MIKROPLIS can be

considered a 3-dimensional text outliner with retrieval
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capabilities specifically aimed for use in design

problems. Again, although it records no temporal history

of the design process, it is a good example of the use of

a hypermedia system as a design aid.

Three points differentiate the research described in

this thesis from those mentioned above:

1) The design history tool has been developed from

the bottom up. Data extracted from the video taping of

designers solving problems was used to generate the model

employed in the design history representation. The others

are prescriptive models or methods developed from the

researcher's knowledge.

2) The design history tool implementation is based on

HyperClass and incorporates the solid modelling package,

Vantage [Balakumar, 1988]. This implementation allows the

objects of the design to be graphically represented and

directly queried by the user's mouse interactions.

Although VMACS does allow for graphic images, it does not

provide an interactive query system that displays the

temporal design information. Neither of the other systems

mentioned currently support graphic images of the design.

3) The design history records not only the states of

the design but the temporal and dependency information as

well. In this way a chronological history of the design

is documented so that the evolution of the design can be

inspected. The other research efforts mentioned are

concerned with only the current states of the design and

have no easy means of accessing previous design states.
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3. PROTOCOL ANALYSIS

There have been many postulations and theories on how

the design process of a mechanical part proceeds from

initial specifications to completed artifact. Most of

these design theories [Jones, 1970] [VDI-221 87] [Paul &

Bietz 88] [Hubka 84] are prescriptive techniques rather

than descriptive models derived from empirical data. A

design method derived from empirical data can be

beneficial in many areas, such as design instruction,

design automation, and in the advance of computer design

tools. An empirically based design method should be more

natural and instinctive for a designer to use. It can be

speculated that by empirically basing computer design

tools, the acceptability and usefulness of the tools

increases, since these tools are easier to incorporate

into the designer's normal design activities.

The general purpose of the ongoing research at Oregon

State University has been to study the design process and

extract pertinent empirical data. This data can then be

used to determine a satisfactory design model that can

emulate the actual process employed by design engineers.

The research at Oregon State University has been devoted

to the design process of the mechanical engineer. For the

formulation of the representation, one part of this

research included the tracking of the constraints (see

Section 3.1.2.c) in the design of a single part and

determining the constraint use, growth, and evolution.

This research used empirical data as a basis to define the

use of features (see Section 3.1.2.b) in a design and how

features and constraints interact within the design

process.

To better understand the process of constraint

development and propagation, the identification and

classification of all the constraints that affected a
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particular component of a design was performed. This was

achieved by reviewing a design protocol transcript while

viewing the designer on a video tape [Stauffer et al.,

1987]. Therefore the constraints captured consist of only

explicitly stated constraints that were either spoken or

drawn by the designer. These captured constraints were

then classified into different categories and displayed on

a constraint map to observe patterns and regularities.

Further reduction was then performed on the constraint

statements to arrive at individual feature relationships,

which were used to aid the feature analysis.

Before describing the terminology employed, it is

important to explain the method of protocol analysis and

relate the background of the component studied. Therefore

the following sections are devoted to describing the

methodology of the research performed. This is followed

by the terminology, which will present the definition of a

constraint and a feature and discuss the way in which they

interact. This leads into a description of the

classification used in the protocol analysis, which is

followed by the constraint mapping technique employed and

a discussion on observations made from the constraint

classification.

3.1 Research Method

Protocol analysis was achieved by assigning an initial

set of criteria for the design constraints. Then by

reviewing a design protocol, the initial criteria were

developed into a complete and adequate constraint

classifications set. The following sections explain the

method of protocol analysis used and how the constraints

were extracted from the design protocol.

3.1.1 Constraint Analysis

To understand the performance of a design engineer, it
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was necessary to observe engineers engaged in the design

process. This was accomplished in this research through a

technique called protocol analysis. Design protocols were

obtained by video and audio taping of engineers as they

solved specific design problems. During their solutions

they were asked to "remain verbal" [Stauffer et. al., 87]

[Ullman et. al., 87]. The engineers' verbalizations were

then transcribed. By reading the transcripts and viewing

the designers gestures and drawing actions on video tape,

many types of information can be extracted from the data

[Stauffer et. al., 87] [Ullman et. al., 88]. Here, the

protocol data was used to extract the features and

constraints from the design effort.

Protocol data is the best way known to this researcher

to gather information on how humans solve complex

problems. Since the major use of the data developed here

is for the development of a design representation, it is

important to know how human designers behave in order to

develop an acceptable model of the design process.

However, protocol data is limited to what the designer

verbalizes, gestures, or draws. It is conceded that not

all the design activity is verbalized in protocol data,

because humans think faster than they can talk. But past

research [Stauffer et. al., 87] has shown that what is

recorded gives enough information on the overall activity

to aid in understanding the design process.

In previous studies [Stauffer et. al., 87] [Ullman et.

al, 87], a total of five protocols were recorded. Two

experienced design engineers solved a problem concerned

with the packaging of small batteries in a computer and

three design engineers solved the problem used for this

study. The design problem presented to the engineer whose

protocol is used in this study (the selection criteria

used follows this paragraph) was that of coating both

sides of an aluminum plate with a thin film. The design
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specifications (see Appendix I for the original problem

statement) presented to the subject gave the required

operation which included a worker loading a 10" x 10" x

.063" aluminum plate into the machine to be designed. The

machine then must lower the plate to the surface of a

water bath. On the water surface was a sticky, thin

chemical layer, which adheres to the plate on contact.

The plate must then be lifted off the surface, flipped

over and the process repeated for the other side.

Finally, the worker removes the plate with the film on it

and loads a new one to be coated. Based on the action

required by the machine, this problem has been dubbed the

"flipper-dipper" problem. Along with the functional

requirements above, specific form constraints on the

handling of the plate and the allowable space for the

machine were also given.

Since the focus of this protocol analysis was to track

one component through its evolution, it was necessary to

Figure 2 CAD Drawing of S6 Flipper Dipper
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select a single subject's protocol for study. The

selected protocol was chosen because of the clarity of the

protocol data and the relative straightforward nature of

the design process and of the finished design itself. The

chosen design consists of a pedestal, outer frame,

flipping frame, and gripper as is shown in Figure 2. This

figure is a cleaned up CAD drawing of the final design

drawing generated by the designer. The operation of the

mechanism is as follows: the operator places an aluminum

plate into slots located on the gripper assembly, the

gripper which is attached to the flipping frame is then

lowered to the water surface for the chemical adhesion,

the plate is then raised above the water bath and rotated

about a pivot between the flipping frame and outer frame,

and the plate is again lowered with the opposite side

down. Once the chemical adhesion has taken place, the

plate is again raised and removed from the gripper

assembly. To account for the thickness of the flipping

frame, the gripper assembly slides on rods so that the

lower edge of the plate is always below the lower edge of

the flipping frame.

Due to its simplicity, the design object chosen for

the study was that of the outer frame assembly of the

machine. The outer frame, along with its decomposition

into its major components, is shown in Figure 3. The main

function of the outer frame assembly is to raise and lower

the flipping frame over the water bath. The components

that comprise the outer frame are the lever arms, the

front cross member, the back cross member, the diagonal

cross member, the front and back pivot points, the

doublers, and the bushings. Each of these components has

certain features that are pertinent in the design. The

constraints associated with these individual features are

the ones focussed on in this analysis.

The protocol studied encompassed a total design period
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All Tubing

1" X 1 X .063"

6061 T6 Al

1. Lever arm
2. Back cross member
3. Front cross member
4. Diagonal cross member
S. Front pivot point
6. Back pivot point
7. Doublers
8. Bushings

Figure 3 S6 Outer Frame Assembly Drawing

of 4 hours and 38 minutes, recorded over three separate

design sessions on subsequent days. The transcript for

this protocol consisted of 85 pages of typed, double-

spaced verbalizations and 28 separate design drawings made

by the subject (all drawings were done by hand). These

range from conceptual sketches to complete detailed

drawings from which Figures 2 and 3 were taken. The

development of the outer frame assembly was contained in

40% of the total transcript and was represented on 34% of

the drawings.

As an example of the data, consider the section of

transcript presented below, which is about one minute

long. In this example the subject is about 1/3 of the way

through the design. He is trying to position the front

pivot point (the pivot between the outer frame and the

flipping frame) and subsequently determine the lever arm

length. This topic is reconsidered four other times

during the protocol, each time with new design information

having been generated in the interim. The numbers
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preceding the lines refer to page and line number of the

protocol from which the data was extracted. In this

section the designer is referencing a sketch he made that

Figure 4 S6 Drawing from Protocol

is shown in Figure 4.

The text, the figure, and the associated video tape

for this and other similar segments of the protocol that

refer to the outer frame assembly are the raw data on

which this study is based. In order to deal with the data

it was first reduced to a more intelligible form, that of

the individual constraint phrases. This reduction

directly follows the segment of transcription shown below.

"Let's see how much we've got in the back. We've
got 32" minus 15, 17" here to play with, so we
need, surface of the water is here, 1/2" below and
if we make most of this take place near the front
of the tank, say 1" from the front of the tank,
here's a plate, that'd give us the longest moment
arm there, or fulcrum, so we get the maximum
elevation pivot point, pivot point is up above
the, okay, if we have to we can make it up here.
Okay. And the rods here, rod here, and it has to
go equal distance past here, so that it slides
equal distance from both sides of the pivot point.
And the pivot point will also be, on the same
plane as the pivot point we'd also have to have



our guide so that it didn't extend below or equal
distance on each side of the pivot point, like so,
the framework. Okay, here we go. And, that would
take care of that arm coming back. Okay."

19.17 we've got .... 17" here to play with [from back
of sink to back edge of table] (drawing 4.2)

19.23 most of this [machine process] take place near
the front of the tank, 1" from front of tank

19.27 longest moment arm there, or fulcrum

19.27
point

get the maximum elevation in the [front] pivot

18

19.31 [front] pivot point is up above the make it
up here (drawing 4.2 A)

19.45 that arm coming back (drawing 4.2 B)

It should be noted that not all of the information

available in the transcript sample was extracted. Only

information relevant to the outer frame was considered.

The numbers preceding each constraint phrase refer to the

page and line number on the protocol transcript, from

where the constraint was extracted.

The important points to note about the above reduced

text are that 1) this reduction does capture the design

progress of the protocol, 2) it is easier to follow than

the original text, and 3) the six statements are all of a

similar structure. After examining the constraint

statements made on the outer frame assembly, it is

hypothesized that all the data can be represented in terms

of features and constraints and that design decisions can

be observed through the changes occurring in them.

3.1.2 Design Objects, Features, Constraints and Design

Decisions

One of the main objectives of this protocol analysis
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was to establish an acceptable terminology, that could be

used in describing the design process. By following the

progression of constraints and the evolution of features

in the design protocol, the formulation of this

terminology was achieved. Therefore the following

terminology was arrived at through considerable review of

design data, with the objectives of being completely

inclusive and relatively basic so that all data could be

easily modeled.

3.1.2.a. Design Objects

During the design effort an engineer decomposes the

design into assemblies, components, and features of

assemblies, and components. All aggregations of

components are termed an "assembly" [Tikerpuu & Ullman,

88]. Assemblies can be thought of as parent or child in

nature, in that an assembly can have a larger parent

assembly or have children or (sub)assemblies. Since there

is no limit to the number of assembly generations, the

term "assembly" is used for all component aggregations.

"Components" are the individual parts of a design.

A design object tree, which graphically displays the

hierarchical breakdown for the design studied, is shown in

Figure 5. This diagram shows the breakdown of the entire

assembly into its children assemblies. Also depicted is

the breakdown of the outer frame assembly into its eight

components.

The next section focuses on the features. However,

before fully defining features it must be noted that the

breakdown of design objects into assemblies, components

and interfaces is inadequate in that it is too coarse.

Usually it is necessary to deal with the features of a

design object or commonly, the features of a feature. For

example; the lever arm is a component. However, much

design activity was expended on the front pivot point, a



20

Design Object Tree

Assembly Assembly

A. Pedestal
Assembly

Components

1. Lever Arm
2. Front Cross Member
3. Back Cross Member

Diag. Cross MemberB. Outer Frame 4.
Assembly 5. Front Pivot Point

6. Back Pivot Point
7. Doublers
8. Bushings

I. Flipper Dipper
Assembly

. Flipping Frame
Assembly

D. Horse Shoe Clamp
Assembly

E. Shoulder Bolts

F. Knurled Knobs

G. Spring

Figure 5 S6 Design Object Tree

feature of the lever arm. The front pivot point, in turn,

has many features such as its location. Thus, features

themselves must be treated as design objects.

It is important to define all the entities of a

design as design objects, in order to discuss them as a

group, and because this breakdown is consistent with the

way in which a designer refers to the design. At any

given moment in the design, the designer focuses his

attention on one of the design objects. The distinct

properties of the design object that the engineer deals

with when working on it are commonly called design

features.
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3.1.2.b Design Features

There has been a substantial amount of work done in

the area of design feature definition and use [Cunningham

& Dixon, 88] [Dixon et. al., 88] [Unger & Ray, 88] [Shah &

Wilson]. These efforts represent a variety of different

backgrounds and differing points of view. This has

resulted in a variety of definitions for the term

"feature". These definitions all have validity in their

respective fields or areas of interest. However, here the

concern is for the terminology used by the designer and so

the definition must be very broad. Thus, this research's

formal definition for a feature is:

A feature is any particular or specific
characteristic of a design object that contains or
relates information about that object. It is
verbally represented in the form of a noun or noun
phrase.

From the above definition it can be surmised that

anything and everything about a mechanical design object

can be considered a feature, such as location, length,

material, operation, etc. Depending on the point of view

taken, some features are obviously more important than

others. In other words, the relevancy of a feature is

dependant on the focus at the time. For example, the

manufacturing feature of a surface finish may not be

important to a designer during the conceptual phase of the

design process, but is important to manufacturing.

Likewise some functional features on how a design behaves,

which may be critical to a designer, may not be important

from a manufacturing point of view. An expanded object

tree displaying some of the features of the components

used in the design of the outer frame assembly is shown in

Figure 6. The features shown in this tree are those that

the engineer devoted a considerable amount of time to. A
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Expanded Object Tree With Component Feature

1. Lever Arm
length
cross section
hole "for spring support"
location

2. Front Cross Member
cross section
functional purpose
location

B. Outer Frame
Assembly 3. Back Cross Member

functional purpose
location

4. Diagonal Cross Member
location

5. Front pivot point
radius
location

6. Back pivot point location
location

7. Doublers
width
functional purpose

- location

8. Bushings (-) denotes features
Figure 6 Expanded Design Object Tree

complete list of all 277 features and 38 design objects

used by the designer in the sections of the protocol

studied are given in Appendix II.A. Out of the 277

features only 95 (34%) of them directly describe the outer

frame. The remainder of the features were of components,

interfaces or assemblies that acted as constraints on the

outer frame.

There are two distinct types of features used by the

designer: form features and function features. Form

features include geometrical, topological, manufacturing

and tolerance features along with any other features used

to describe the physical structure of the design object.

Functional features include both the function purpose of

the design object such as support, stability, or strength

and the function behavior that the design object performs

like lifting, gripping, or rotating. The form features
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define or describe the physical characteristics of design

objects in a design, while the functional features explain

what purposes the design objects achieve and what

behaviors they exhibit in the

these different feature types

II.B.

The feature

diagram, in

Figure 7,

displays how the

features are

segregated into

form or

function. To

better

understand the

way in which

form and

function

features

describe an

object, consider

the mechanism of

the flipper

dipper in the

design studied.

Some important

form features

include the

shapes, dimensions,

design. A breakdown of

can be found in Appendix

DESIGN OBJECTS
(assemblies, components, features)

Form Features

Geometry
Topology
Manufacturing
Material
etc...

Functional Features

Purpose
Behavior

Figure 7 Feature Diagram

orientations and manufacturing

methods. The functional features of the mechanism are the

purpose and behavior, which are described by the

constraint phrases "to coat both sides of the plate" and

"gripping, lowering, raising, rotating, and so on",

respectively.
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3.1.2.c Constraints

In the protocols, constraints are statements made

about a design's features, such as: 'the length is 19"',

'the knob diameter is smaller than the outer arm height.'

In the first example the feature "length" is constrained

by the value "19". The second example relates two

features, "the knob diameter" and "the outer arm height"

by a conditional value of "smaller". In reviewing the

constraint statements like those at the end of Section 2,

for all the protocol sections focused on the design of the

outer frame assembly, the 277 features were involved in

725 constraint relations. These have been classified into

the two types of semantic structures observed. By using

these structures every constraint in the protocol has been

modeled. Outside of the studied protocol, the constraint

types given below are thought to represent all types of

constraints possible.

The first semantic structure is of the form [feature-

instantiation]. Here the term "feature" is as defined in

the previous section and term "instantiation" refers to

the value related to the feature. From the protocol

sections reviewed, two types of feature relationships of

this structure were found. These are:

1. <function feature>-<instantiation>
2. <form feature>-<instantiation>

Below are examples of these two constraint types found in

the protocol. Preceding the feature relationship is the

number referring to the specific type of the relationship

involved. The dashes (-) signify the separation between

the feature and instantiation.

[1 machine operation time - is 40 seconds]

Here the feature being instantiated is the functional

feature of "machine operation time". It is being



25

instantiated with the descriptive value "is 40 seconds".

This instantiation comes from the given design specific-

cations and is therefore a reference made by the designer

as opposed to his changing or giving some new value to the

feature.

[2 flipping frame depth - needs to be at least 10 1/2"]

The form feature here "flipping frame depth" is

instantiated with the value "at least 10 1/2" ". Here a

feature is given an inequality value that must met.

Of the above two examples the first came from the

given specifications and the second from the design

itself. Many of the instantiations observed involved the

initialization or modification of features in the design

itself. It is these instantiations that give the current

value of the feature. By observing the changes in the

value of the feature instantiation, the history of the

feature development can be tracked.

For example, the next two occurrences of the flipping

frame depth are given below as:

[2 flipping frame depth - is 12"]
[2 flipping frame depth - is 12" overall]

The feature is first given a value of "12" ", which is

a refinement of the previous instantiation. The feature

value is then further refined by the instantiation "12"

overall". This type of feature development is typical of

the protocol studied, and it shows how the feature

progresses with respect to the constraints.

The other semantic structure observed for the

constraints was of the form: [dependent feature-relation-

independent feature]. As there are both form and function

features and there can be both form and functional

relations, there are potentially eight different feature
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relationships of this structure possible. These are:

3. <form feature>-<form relation>-<form feature(s)>
4. <form feature>-<function relation>-<form feature(s)>
5. <function feature>-<form relation>-<function
feature(s)>
6. <function feature>-<function relation>-<function
feature(s)>
7. <form feature>-<form relation>-<function feature(s)>
8. <form feature>-<function relation>-<function
feature(s)>
9. <function feature>-<form relation>-<form feature(s)>
10. <function feature>-<function relation>-<form
feature(s)>

In each of these, one or more features constrain, through

the relationship, a single feature. Examples of each of

these constraint types are listed below:

[3 knob location - in middle of - flipping frame outer arm

location]

Here the form feature, "knob location", is constrained

by the relation, "in middle of", to the form feature

"flipping frame outer arm location". This was used as a

form constraint on the positioning of the knob.

[4 outer frame orientation - stops when at right angles

with - pedestal stand position]

The first form feature, "outer frame orientation", is

related functionally by "stops when at right angles" to

the second form feature "pedestal stand position". This

relation acts as functional constraint on the outer frame.

[5] <function feature>-<form relation>-<function feature>

This relationship was not found in the section of

protocol that was codified. This relationship is

theoretically correct but cannot be substantiated by the

data reviewed.
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[6 front cross member purpose - prevent - outer frame

racking]

Here the functional feature of "front cross member

purpose" is related to another functional feature of

"outer frame racking", by the relation of "prevent". Here

the functional purpose of preventing outer frame racking

was satisfied by the front cross member.

[7 front pivot point elevation - would be 8" to allow for

- flipping frame rotation]

Here the form feature, "front pivot point elevation",

is subject to the conditional form relation of "would be

8" to allow for" regarding the function feature, "flipping

frame rotation". This is used as a form constraint on

determining the location of the front pivot point.

[8 back pivot point location - limits - framework side

travel]

This relationship shows that the form feature of "back

pivot point" has a functional relationship of "limits" on

the function feature of "framework side travel".

[9 flipping frame behavior - occurs 1" from -tank front

edge]

In this relationship, the functional feature of

"flipping frame behavior" is related to the form feature

of "tank front edge" by the form relation of "occurs 1"

from". Thus the position of the water tank is imposing a

form constraint on the flipping frame operation.

[10 spring purpose - hold out of water - flipping frame

position]

Here the function feature, "spring purpose", is

related to the functional relation of "hold out of water"

with respect to the form feature "flipping frame". The
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only difference between this relationship and that shown

above in (6) is that the independent feature is of a form

type.

This breakdown of constraints into basic structures

assisted in the formulation of the constraint

representation, which will be discussed later. This

breakdown also leads to the development of a more

formalized representation of design decisions.

3.1.2.d Design Decisions

In this model of the design process, design decisions

are defined in terms of constraint changes.

A design decision is defined as occurring
each time a value or relation stated about a
feature of a design object is changed or
initialized or when a new feature is introduced.

Design decisions may be driven by several different

constraints emanating from separate design objects, but

the decision itself directly affects only one specific

object feature. The result of the design decision can

affect any level in the design object tree but, it usually

modifies a specific feature value on which the decision

was focused. Resulting constraints are the direct

consequences of design decisions and represent new

information generated in the design. Once a design

decision is made, the new information can be used as input

constraints in future design decisions.

3.2 Observations

From the aforementioned constraint analysis, several

new and interesting observations were made. A list of

common features was generated that gave insight into what

type of parameters needed to be modelled. A constraint

classification was developed that helped categorize the
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different aspects of the constraint information and also

gave insight on the refinement of the constraints. A

constraint mapping technique was developed that indicated

how the constraints were propagated within the design.

The mapping technique also showed that the design process

is non-linear process. The following sections discuss

these observations.

3.2.1 Features Identified

In the sections of the protocol that were focused on,

the design of the outer frame assembly, 277 separate

features were observed. A list of these features is given

in Appendix II.A. In reviewing these 277 features it

should be noted that they are of the form {design object-

specific feature). Specific features are object

attributes of interest. If the design process were

totally geometric, then the specific features would all be

geometric primitives such as length, height, etc. In the

entire 277 features there are only 58 different specific

feature attributes. A listing of these feature

attributes, categorized by type, can be found in Appendix

II.B. These are by no means a complete list of all

possible design features, but represent only the features

explicitly used by this designer on one subassembly in the

design. It is observable from this list that the majority

of the feature attributes are form oriented. This is

consistent with the results of earlier research [Ullman

et.al 1988], namely, designers focus on form much more

than function.

3.2.2 Constraint Classification

Once the definitions were completed and the

constraints extracted from the design protocol, the task

of classifying the constraints was initiated. The purpose

of classifying the constraints is to characterize them so
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that their effect on the different design features can be

observed. By classifying the constraints, a pattern for

their propagation and growth can be documented.

The classification of the constraints was performed

not only for purposes of analysis but also in hopes of

developing a more formal constraint language upon which

the representation would be built. Even if the

classification only provides an elaborate bookkeeping

tool, it would still be beneficial in the development of a

constraint management system. The classification also

gives insight into how the designer uses constraints in a

design and relates the significance of some constraints as

opposed to others. Constraints are classified by three

different measures: constraint source, constraint

structure, and level of abstraction. Below is an

explanation of each of the different measures and

statistics from the protocol reduction that was taken for

the outer frame assembly.

3.2.2.a Constraint Source

A constraint can originate from one of three different

sources: it can be given, introduced, or derived. Given

constraints are those furnished to the designer, which

provide an idea of what is required by the design. A

given constraint is usually received by the designer at

the beginning of the design as part of the design

specifications and requirements. These can be either form

or function oriented and can originate from clients,

designers of adjacent design objects, or initial specs.

Given constraints can be used at any time in the design

process, whenever the designer requires information on the

initial state of the design.

An introduced constraint is one which is brought into

the design from the designer's domain knowledge,

handbooks, or other "domain knowledge" sources. It is a
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constraint that is brought in from outside the current

problem solution space and has not been derived from any

other constraints. Introduced constraints often are vague

and general by nature. Examples of introduced constraints

are "keep everything as light as possible" or "make

maximum use of the table". Other introduced constraints

include equations and hard data used in analysis such as

material properties, but none of these were observed in

the single protocol examined.

Derived constraints are generated inside the design

space and are intrinsic to the design being worked on.

Derived constraints result from and can be changed by the

outcome of design decisions. Although design decisions

can be affected by given, introduced, or derived

constraints, the result of a decision is always the

creation or modification of a derived constraint.

The process of design for a mechanical part can be

thought of as the creation and refinement of a set of

constraints. Initially these constraints consist of a

group of given constraints that define a desired function

and/or form for a particular application. The given

constraints comprise the initial specifications of the

design. As the design process proceeds, this body of

constraints grows and develops until a final concrete

solution is achieved.

In the beginning of the design, the design engineer is

presented with given constraints that are primarily

functional; they describe the desired operation of the

design. Along with the functional definition of the

design, very specific form constraints are often presented

in the given specifications (e.g., the dimensions of the

aluminum plate).

As the designer proceeds, the given constraints become

less abstract and develop into concrete form and function

instantiations for specific design objects. In the
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protocol studied, the engineer took the given

specification of "coating both sides of an aluminum plate"

and developed it into "a person would load the plate, dip

it, rotate it, dip it, and then a person would have to

flip it back to unload it". This revision of the

functional constraints allows the engineer to begin the

conceptualization of the design objects needed for the

design function.

The next three paragraphs walk through the three

design stages of the design (conceptual, layout, and

detail) in reference to the constraint source: given,

introduced, or derived. In analyzing the data, the concept

of three distinct design stages was adopted: conceptual,

layout, and detail. These stages are really management

labels given to the level of design detail and are hard to

apply, since the design process is so interleaved. While

one feature may be in the layout stage, other adjacent

components or features of the object in question may still

be conceptual. Therefore the design stage divisions

assumed in this research were based on the drawing level

produced by the designer during the protocol. Rough

sketches were treated as conceptual design

representations. After establishing a basic layout of the

design with rough sketches, the designer used a straight

edge to generate scale drawings with rough dimensions.

These drawings were taken as representations of layout

design. The designer then made drawings with detailed

dimensions and manufacturing notes. These were considered

as representations of detailed design. These stages are

important when trying to understand how the constraints

affect the design and how the constraints are propagated

through the design. A graph of the constraint source

percentage for the three design stages and for the total

design is given in Figure 8.

As the design's functional constraints become more
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Figure 8 Constraint Source Percentages

concrete, design objects are created to meet these new

functional requirements. During the conceptual stage of

the design, the majority of the constraints (70%, see

Figure 8) are given constraints. From the functional

constraints are born the conceptual form of the design.

In the development of the conceptual design, form features

are created out of functional requirements and then

verified by simulation of the design operation.

Once a completed conceptual design is created, the

designer begins the layout stage of the design process.

In the layout stage, the designer patches and refines his

design and checks to see that there are no conflicts with

any of the form constraints given in the design

specifications. The main driving force of the layout

stage are the derived constraints (79%). It should be
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noted here that almost half of these derived constraints

originated from design objects outside the outer frame

assembly.

In the detail stage of the design, the engineer is

primarily refining the design to ensure that all the

design objects work together. The main drivers of this

design stage are previously derived form constraints

(84%). This refinement process consists of comparing

different form constraints to ensure that there are no

conflicts in the design and changing or "patching" the

constraints when conflicts arise. The resulting product

of this constraint propagation and feature evolution is a

formalized detailed design from which the mechanism can be

constructed.

When examining the percentages for the overall design,

the dominant value is of the derived constraints (75%).

This value suggests that the designer deals primarily with

constraints generated by the design itself rather than

constraints brought in from outside the design space.

3.2.2.b Constraint Structure

As discussed earlier there were ten different

constraint structures possible in the protocol. The

percentage of each type of structure was calculated and

plotted in Figure 9. By far the largest percentage of

relationships (51%) fell into the second type, [form

feature - instantiation]. The next highest percentage

(20%) was for the third relation, [form feature - form

relation - form feature]. This supports the earlier

notion that the majority of the work performed was

concentrated on the form features. It should be noted

that most constraints of the first relationship type,

[functional feature - instantiation], were verbal

simulations of the machine's behavior (i.e., [machine

behavior - operator slides plate in, pivots it and turns
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the frame that holds it]).

The 10 constraint structures can be divided into two

separate categories: form constraints and function

2

Feature Relationships

(Constraint Structures)
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Figure 9 Constraint Structure Percentages

constraints. Structures 2,3,6,9 and 10 are form

constraints. Structure 2 gives the instantiation of a

form feature, whereas structures 3,6,9 and 10 give a form

relation between either form or function features.

Likewise, structures 1,4,5,7 and 8 are function

constraints. Structure 1 gives the instantiation of a

function feature, whereas structures 4,5,7 and 8 give

functional relationships between either form or function

features.

Nearly three-quarters (72%) of the constraints are of

the form type and the other quarter (28%) are functional.
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These values are not surprising, since by nature design is

a very form-oriented process. Since the design problem

studied was driven primarily by functional requirements,

it might be expected that for a design with more form-

oriented specifications, the percentages observed would

have an even wider spread.

3.2.2.c Level of Abstraction

The level of abstraction for a constraint can fall

into one of three sub-divisions: abstract, intermediate,

or concrete. The concept of abstraction is actually a

continuous function rather than the discrete form used

here. However, to codify abstraction is difficult and

thus the three divisions are very loosely bound and may

overlap each other in certain instances. Also note that

the abstraction level refers to the "instantiation" or

"relation" the features attain rather than the

representation of the feature. Therefore the current

abstraction of a feature is represented by its most recent

instantiation.

Abstract constraints are very general and are usually

concentrated in the conceptual stage of the design

process. An example of an abstract constraint is "small

axle on a framework [the front pivot point] ", which is the

first conceptualization of the front pivot.

Intermediate constraints are more descriptive in

nature but still not fully defined in a precise

quantitative notation. These constraints are

predominantly found in the layout stage of the design, but

they can be dispersed throughout the design effort. An

intermediate constraint is "our front pivot point we want

right in the middle of the tank". This constraint tells

approximately where the pivot should be (in the middle of

the tank), but not exactly.

Concrete constraints are very specific, giving exact
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quantitative values or specific functional qualifications.

As expected, these constraints are found primarily in the

detail stage of the design. A concrete constraint is "our

front pivot point will be 6" from the center".

Constraints tend to start as abstract and develop through

intermediate into concrete specifications. However, this

is not always the case, as many design objects are brought

into the design (introduced) at a concrete level.

As with the constraint sources, the levels of

abstraction were also grouped into the three different

design stages: conceptual, layout, and detail. The

resulting percentages can be seen graphically in Figure

Figure 10 Level of Abstraction Percentages

10. In the conceptual stage, the majority of the

constraints were abstract (55%), which should be expected.
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In this stage, the concrete constraints appear to be more

numerous than what might be anticipated (18%), but this

can be accounted for when realizing that most of the given

constraints are stated in a concrete form. In the layout

stage, the intermediate constraints are predominant (57%),

which is not surprising considering the above definitions.

In the detail stage of the design, the concrete

constraints have the largest magnitude (47%). They are

followed somewhat closely by the intermediate constraints

(36%). Since the design studied was not completed through

to the level of full detailed drawings but instead to the

high level layouts with manufacturing notes, it is

expected that with more detailed design, the concrete

constraints would increase greatly in the detail stage of

the design.

The percentages for the entire design can be seen in

the total grouping in Figure 10. The first observation

that can be made of these values is that they are fairly

well distributed. It can also be noted that the largest

percentage occurs at the intermediate level, which

suggests that the design was developed significantly on a

transitional basis, that is neither concrete or abstract.

As stated above, the concrete constraints would increase

significantly if the design were carried out to complete

detailed drawings.

3.2.3 Constraint Mapping

Since there were 725 constraints identified during the

examination of the protocol data, a graphical form of

representation was created to facilitate easier

examination. The representation developed distinguishes

between feature development, input constraints, and

resulting constraints. It also makes tracing the

development of individual features fairly easy.
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Since it was impossible to graphically represent all

95 of the outer frame features, only those that attracted

considerable designer attention were examined. This

reduced the features to the more manageable amount of 23.

These features describe the 8 components of the outer

frame assembly, with each component having anywhere from 1

to 5 features associated with it. Another reduction was

made by combining all the function features into one

feature. The list of the features diagrammed in the

constraint map can be

found in Figure 11.

This list can also be

referenced in Figure

6, the feature tree.

The particular

technique for

constraint mapping

was arrived at

through several

iterations. This

graphical form of the

constraints is not

meant to be a formal

representation but

only a means to

observe trends and

patterns in the

constraint-feature

relationships. A

section of the

constraint map generated is given in Figure 12. The

constraint map consists of horizontal lines, with each

line representing a different design object feature. The

evolution of the feature progresses to the right with

respect to time. Each design decision made on the feature

1. Machine function
2. Outer frame function
3. Outer frame location
4. Lever arm general
5. Lever arm length
6. Lever arm cross-section
7. Lever arm hole
8. Lever arm location
9. Front cross member general
10. Front cross member
11. Front cross member function
12. Front cross member location
13. Back cross member function
14. Back cross member location
15. Diagonal cross member
location
16. Front pivot point general
17. Front pivot point diameter
18. Front pivot point location
19. Back pivot point location
20. Doubler thickness
21. Doubler function
22. Doubler location
23. Bearing general

Figure 11
List

Constraint Map Feature
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is placed on the line at the time it occurred; these

represent the change in the resulting constraint. The

limiting constraints (forcing constraints) that affected

the design decisions are indicated by vertical lines

originating at the constraining feature and terminating

with an arrow at the constrained feature. These vertical

lines are either incoming or outgoing constraints

depending on whether they began or terminated on the

feature line under examination. Incoming constraints can

be given, introduced, or derived constraints. Outgoing

constraints are all derived constraints. This constraint

map allows the study of any specific feature from its

initial conception to its final completion with all the

incoming and outgoing constraints easily observed.

The constraint map for the outer arm assembly was

based on the 23 features discussed above. The development

of these features, the constraints, and the design

decisions required a piece of paper nearly thirty feet

long. As this is not easily presentable, a small portion

of the map is shown in Figure 12. This section is derived

from the section of protocol presented and reduced

earlier. In this section of the map there are two

features that are worked on: the "lever arm length" and

the "front pivot point location". The top row of

constraints are those given in the design specifications.

The second row are those which are introduced by the

designer. The third row contains the derived constraints

which originate from features outside the outer frame

assembly. The design progresses to the right with respect

to time.

This segment of the design begins with the

accumulation of two given constraints followed by a

previously derived constraint on the machine process and

an introduced constraint dealing with the longest moment

arm. These four constraints all act as limiting
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constraints on the length of the lever arm. The last

introduced constraint also affects the location of the

front pivot point. The design decisions made on the front

pivot point are now used to limit the length of the lever

arm, which is drawn to scale in a layout drawing.

Although this small portion of the constraint map may

appear complicated, it greatly clarified the complex

relationships that existed between the constraints and

Constraint Map Section

Given
TankConstraint drawing 17' from front

of tank to
back of table

Introduced
Constraint

19.27
Want longest
moment arm or fulcrum

Derived
Constraint

19.23
Machine process
takes place 1'
from front of tank

Feature
Name

lever arm
length

front pivot
point location

19.27 19.31
Maximum Draw front
elevation for pivot point
front pivot point 4.2 A

19.45
AL - scale dwg.

4.2 B

Figure 12 Constraint Map Section

features. Another aid to the study of the design objects

was the placement of actual drawings made by the designer

on the constraint map at the time intervals at which they

occurred. This allowed for a better understanding of how

a design object was progressing at any given moment in the
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design.

One interesting pattern noted on the constraint map

was that of constraint looping. A constraint loop occurs

when feature A acts as a limiting constraint on a design

decision made on feature B which in turn acts as a

limiting constraint on a new design decision made on the

original feature A. Although the above explanation is

made for only two features, constraint loops were noted

that involved as many as four different features.

Constraint loops imply that the interrelationship of

design decisions and the process of mechanical design is

not easily decomposable into independent design problems.

Constraint Loop of Functional Patching

Feature
Name

10.13
the worker could

Entire slide It In, pivot
Assembly It, turn the whole
Operation [plate]

frame that holds it

Front
Pivot
Point

10.24
y have a small

axle here
[front pivot
point]

10.28
small axle
on the
framework
[front pivot
point]

10.28
a person has to load it
[flipping frame & horse
shoe clamp], dip it, rotate
it, dip it, and then a
person would have to flip
It back to unload and load It

Simulate
Add

Verify by Simulation

Figure 13 Constraint Loop of Functional Patching
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An example of a simple constraint loop taken from the

protocol can be found in Figure 13, which is discussed

below.

Of the constraint loops identified, two major reasons

for their occurrence were observed. The first, functional

patching occurred primarily in the initial conceptual

stage. Functional patching consists of a behavioral

simulation of the design which results in an addition or

modification of a form constraint. These changes or

alterations in the design objects then alter the behavior

of the design and are verified by a new revised behavioral

simulation. The new behavioral simulation was usually

less abstract than the original simulation. The result of

functional patching was the introduction of a new design

object and a buildup of the functional behavior of the

design rather than the decomposition of the machine

process into separate functions. The functional behavior

is simply the behavior exhibited by the design object.

Figure 13 presents an example of functional patching

from the constraint map. Initially there exists a

behavioral description for the entire assembly. To

perform this behavior an axle (the front pivot point) is

placed in the framework. The behavior of the assembly is

then re-simulated to ensure that it performs

satisfactorily. Five occurrences of this type of

constraint looping were observed for the outer frame

subassembly.

The second reason for the use of constraint loops was

that of component interfacing. This occurred when the

designer was working on a feature and realized that a

design decision on an interfacing feature needed to be

made. The designer would then postpone work on the first

feature, make the needed decision on the second feature,

and then return to the first feature. These loops were

seen mainly in the layout stage, and the features involved
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were primarily spatial relationships.

Constraint Loop of Component Interfacing

Feature
Name

63.49
run the frame forward

lever arm here, come beck here,length move forward to this
point [begins to draw
lever arm] 11.1 F

front pivot
point location

64.01
there will be
another [front] pivot
point here 11.1 J

84.01
[draws remainder of
lever arm] 11.1 F

Begins work on feature
Needs location of related feature
Resumes work on original feature

Figure 14 Constraint Loop of Component Interfacing

One example of this type of loop can be found in

Figure 14. This excerpt from the constraint map begins by

the designer starting to draw the lever arm length. But

the location of the front pivot point needs to be

determined first. Once a design decision on the front

pivot point is made, it acts as a limiting constraint on

the lever arm. Six occurrences of this type of loop were

observed. Many of those dealt with the pivot point

location. This is because the pivot points were the
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primary interfacing components for most of the machine

subassemblies.

3.3 Conclusions of Protocol Analysis

The analysis performed resulted in a substantial

amount of insight gained on the process of mechanical

design. Using knowledge gained from the protocol analysis

and from the observations made above, a list of

conclusions was produced.

1. Features are created on an as-needed basis. They are

driven by both form and function requirements, and

they are usually evolved from the domain knowledge of

the designer.

2. A design begins as an abstract functional need,

subject to form restrictions. By changing levels of

abstraction, these needs evolve into a finalized

specific design. This advancement of the abstraction

level is a direct result of the constraint refinement.

3. The mechanical design process is a non-linear

procedure that contains constraint loops that closely

interrelate different features of the design.

4. A design object representation must posses the

following properties:

a. Be hierarchical in structure.

b. Allow for interfacing between feature nodes.

c. Allow for both form and function properties.

d. Be general enough to allow for various types of

features.

e. Be closely coupled to the design's constraints.

f. Allow for textual, numerical and graphical

notations.

5. A constraint representation must possess the following

properties:

a. Must represent both form and function

instantiations and relationships.
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b. Allow for varying levels of abstraction.

c. Must be able to link relevant constraints, which

will allow for constraint propagation and interaction.

d. Be coupled to both the features of the design and

to the design decisions made on those features.

e. Allow for easy input of both graphical and textual

constraints.

f. Allow for easy reference to constraints that are

directly related to particular features and design

decisions.
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4. DESIGN PROCESS REPRESENTATION

The conclusions reached from the analysis of the

protocol helped to establish a clear picture of

requirements needed for the design process representation.

This study served as the basis for the development of the

design process representation, which will now be presented

and discussed. The next subsection explains the basic

design process model that was used for the representation.

This is followed by a description of representation

elements: design objects, constraints, and decisions (see

Figure 1). Lastly, the representation for the constraints

is expanded and explained.

4.1 Design Process Model

The overall mechanical design process is described as

follows. The design generally begins with an abstract

functional description that is confined by some given

geometric constraints. This functional description along

with the given constraints is then utilized by the

designer in the formation of the final design artifact.

The initial functional description can consist of either

some perceived mechanical behavior or some required

purpose. The given geometric constraints usually consist

of some spatial or geometric limitations or boundaries set

on physical properties such mass, strength, and load, or a

combination of both. The final design artifact can exist

as either the final detailed drawings or actual physical

components. The design effort is the process by which the

initial specifications are transformed into the design

artifact. This transformation is the process of interest

in the formation of the design process representation.

A model of the design process discussed above can be

seen in Figure 15. Here the design effort is broken down
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Design Process Model
TIME

X 0

--> Decision operator produces a new constraint
which changes the state of the design.

Figure 15 Design Process Model

into design episodes [Stauffer, 87]. Each design episode

is depicted by a graph of boxes, representing the

different states of the design. Each state is created as

a modification or change from the previous state. A

modification includes the addition or deletion of

information into the design state (the addition of a box

to the graph) or the revision of the values or relations

defining that state (the change from X to 0 in a graph

box). These additions and modifications to each design

state come about by the application of the decision

operator. This decision generates new information that

affects and changes the state of the design. This set of

new information comprise the new constraints of the

design. By chronicling the generation of new constraints

through the use of decisions, a history of the design

process is recorded. From this model of the design

process, the representation was developed.
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4.2 Basic Design Process Representation

The design history representation is comprised of

Design Process Representation

...,

given
constraints

derived
constraintsdecisions design

objects
IONNIN

introduced
constraints

constraints

Figure 16 Design Process Basic Representation

three main elements: design objects, constraints, and

design decisions. These three elements interact together

as shown in Figure 16. Each of these elements is detailed

below.

4.2.1 Design Objects

Design objects are the physical artifacts of the

design. They represent the components of the design as

well as the assemblies created by those components. Each

design object is comprised of a set of attributes that are

used to describe it, see Figure 17. Attributes are

defined as any specific characteristic of a design object
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that relates information about that object. The

attributes usually consist of physical parameters, such as

DESIGN OBJECT

ATTRIBUTE-1 : 10

inconstraint (C9, C6, Cl)

outconstraint (C4, C2)

ATTRIBUTE-2 : 5

inconstraint (....)
outconstraint (C9,....)

ATTRIBUTEN

CONSTRAINTS

C9 : ATTRIBUTE-1 = ATTRIBUTE-2
status: (inactive)

C6 : ATTRIBUTE-1 = 10
status: (active)

C1 : ATTRIBUTE-1 < 20
status: (active)

Figure 17 Design Object Representation

length, width, mass, location, etc.; functional

descriptions, such as purpose or behavior; or any other

property the designer may wish to define.

Attached to each attribute of the design object is an

in-constraint list and out-constraint list, see Figure 17.

The in-constraint list indicates which constraints were

used to specify that attribute's value. The first
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constraint in this list is the most recent. The out-

constraint list denotes other constraints that have used

the attribute's value in a computation or relation. The

value of the attribute is determined by finding the first

active constraint in the in-constraint list and then

evaluating for that constraint. A constraint is marked as

active or inactive as the result of some previous

evaluation performed by the designer, (see status

constraint role below). Evaluation of the constraint

returns the value or relation specified by that

constraint, for example, evaluating for the constraint

A=B+C would return the sum of B and C. By specifying the

attribute values of the design objects, a basic

description of the design can be established. The

constraints are the mechanism by which these attribute

values are specified.

An example of how a design object attribute is

specified is shown in Figure 17. Here attribute-1

contains in its list of in-constraints, C9, C6, and Cl.

We can see from the description of the constraints that

constraint C9 is marked as inactive. Therefore it is

disregarded when determining the value of Attribute-1.

The attribute value is instead determined by evaluating

constraint C6, since it is the first constraint in

Attribute -i's in-constraints marked with an active status.

The evaluation of constraint C6 returns the value of 10,

which is the value specified by that constraint. An

example of an out-constraint, in Figure 17, is C9 with

respect to Attribute-2. The value of Attribute-2 is used

to determine the value of attribute-1 in the solving of

constraint C9, therefore C9 is placed as an out-constraint

for Attribute-2. This accounting of the constraint is

used in determining the constraint dependencies.

4.2.2 Constraints
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The constraints are used to define the attributes of

the design objects as well as the relationships that exist

among those attributes. The design objects are the basic

structure from which the constraints describe the specific

instances of the design. The constraints contain the

essence of the design, in that they specify the specific

values and relations that exist within any particular

design. In a design history, for example, a design object

of the assembly 'bottom case' and its components of 'side

wall', 'middle wall' and 'bottom', would have no meaning

without its conglomeration of constraints defining the

height, length, width, as well as the spatial relations of

the walls and bottom. Thus the design objects with their

respective constraints define the specific state of the

design at whatever stage the design may be in.

4.2.3 Design Decisions

Design decisions are the processes by which new,

derived constraints are created to change the design

state, see Figure 16. The decisions are made by

considering some previously existing constraints and

applying some evaluation operator to them to produce a new

derived constraint(s). The constraints input into the

decision can be given, derived, or introduced. The

resulting constraint is always a new constraint that when

added to the existing constraint set affects or changes

the state of the design in some way. Through this

decision process, design objects and their attribute

values are defined. In this way, the design decisions

represent the processes of changing the state of the

design. Thus the design objects represent the structure

of the design, the constraints define this structure, and

the decisions relate the process by which the design

acquires and changes these constraints.



53

4.3 Constraint Representation

From the above explanation, it is apparent that the

constraint representation is the most basic element of the

design process representation. The constraint

representation has to be flexible enough to model many

different types of constraints and at the same time

concise enough express the values and relations of those

different constraints. Another consideration, is to allow

for the easy modification or expansion of the constraint

representation, which gives the design knowledge base the

potential as a testbed for future research projects. The

constraint representation use also provides information at

a level sufficient enough to generate graphical images of

the design. These images are for use in the graphical

user interface developed for the design playback tool

(Charon, 89].

From the previous discussion on the constrain analysis

(Section 3.1.2.c) 10 basic constraint structures were

presented. From these structures and the subsequent

constraint classifications, three important aspects of

constraint information were identified:

1. Constraint source, which specifies the origins of

the constraint.

2. Constraint role, which defines what type of design

object attribute was affected by the constraint.

3. Constraint language, which defines the form the

constraint relation or instantiation was expressed in.

These three aspects, which were developed from design

protocol data, are used as the basis on which the

constraint representation is formulated. Each aspect will

be expanded and discussed in the following sections.

4.3.1 Constraint Source

The constraint source denotes the origin of the

constraint, and can be one of three types: given,
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introduced, or derived (see Section 3.2.2.a for more

detail). This classification of constraints by source

within the constraint representation helps in determining

the origin of the constraints. For example, whether they

were produced from design textbooks or were derived by the

designer in the decision making process.

4.3.2 Constraint Role

The second aspect of the constraint information is

that of the constraint role. The need for this design

information was developed from the examination the 10

basic syntactic constraint structures discussed previously

Constraint Roles
(Design Object Attribute Affected)

Numeric-Parameter
Dimension

(length, width, radius, ...)
Physical Properties

(density, yield stress, ...)
Calculated Properties

(volume, strain, deflection

Spatial Properties
(orientation, restrictions)

Function
(purpose, behavior)

Production
(manufacture, assembly)

Form
(object creation, object modification)

Status
(accept, reject, suspend)

Unclassified
(color, appearance, texture ...)

Figure 18 Constraint Roles
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(section 3.1.2.c). By examining the dependent attributes

of these syntactic structures, the constraint roles were

developed. The constraint role refers to what attribute

of the design object is being affected. The role of the

constraint is primarily concerned with what parameter,

property, or characteristic of the design object is being

specified or defined, see Figure 18. This figure contains

a list of the more common roles identified in the design

protocols, but new roles can be added to this list as

needed. Each role will be discussed below.

4.3.2.a Numeric Parameter Role

The numeric parameter constraints are those which deal

with the numeric valued attributes of the design objects.

This role is a grouping of the first three constraint

attribute types shown in Figure 18. They include

geometric dimensions (i.e., length, width, radius),

physical properties (i.e., strength, weight, quantity),

calculated properties (i.e., volume, stress, deflection),

or any other property that can be specified by a numeric

quantity.

4.3.2.b Spatial Role

The spatial constraints are concerned with the spatial

relations of the design objects. This constraint role has

been subdivided into orientation and restriction. The

orientation constraints are used to describe locational

relations between the different topologies of the design

objects. These topologies include surfaces, edges, axis,

and combinations thereof. Examples of these relations are

"coplanar surfaces", "colinear edges", or "angle between

axis". The orientation constraints are used to generate

the x,y,z translations and rotations of the design

objects.

The boundary or restriction constraints define what
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spatial areas of the design cannot be entered or occupied.

These constraints limit where the design objects can be

located. They are often stated in the original

specifications of the design but can also be generated by

the designer himself. Examples include, "machine cannot

touch within 1 1/2" of the table edge" or "plate cannot

enter more than 1/2" into water surface". Although these

constraints do not directly describe the spatial relations

among the design objects they indirectly affect where the

design objects can exist. Because of its difference from

the spatial orientation constraints, the restriction

constraints have been broken out into a special and

separate subclass of the geometric constraints. This

separation of the restriction constraints gives the

capacity for the addition of future restriction checkers.

4.3.2.c Function Role

The function constraints describe the behavior or

purpose of the design objects and have thereby been

separated into two subclasses; purpose constraint and

behavior constraints. This separation of function

constraint has also been identified and used in [Hubka,

84]. Purpose constraints describe the intended

requirements of the design objects. Where behavior

constraints relate the manner in which the design objects

act or behave within the design. In other words, the

purpose constraints refer to what a design object is to do

and behavior constraints refer to how the design object is

to behave. For example, the purpose of fan blade may be

to move air, but the behavior is to rotate at a specific

speed about some specified axis. Another example from the

protocol data is that of a spring contact. Its purposes

are to hold the battery in place and to provide an

electrical conductor but its behavior is to exert a force

upon the battery's end. This distinction between types of
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function constraints provides greater structure within the

representation.

It should be noted here that traditional definitions

of design form and function are not used in determining

the constraint roles. The traditional concepts of design

form and function often overlap [Rinderle, 88] [Eastman,

89]. The functionality of a design can be present in both

the configuration of the design objects as well as the

parameters of those objects. Therefore design

functionality can be implicitly present in the form of the

design. There is no definite distinction between design

form and function, but a distinction can be made between

the form and function attributes of the design objects.

The form attributes describe the physical aspects of the

design objects, where the function attributes define what

the behavior and/or purpose of those objects is to be.

4.3.2.d Production Role

Production constraints contain information on the

assembly and manufacture of the design objects. These

constraints are used to describe how an object is to be

produced or made. Examples of production constraints

extracted for the protocol data are "weld at (flipping

frame) back cross member and inner arm" and "shoulder bolt

should be locktited in place". The subclasses of the

production constraint are assembly and manufacture. The

manufacture describes how the design object is to be

fabricated, and assembly describes how the design is to be

constructed or put together.

4.3.2.e Form Role

The form constraints are used to account for the

creation and modification of the design objects. These

constraints are used to specify the names, shapes,

parents, and components of the design objects. Simple
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examples are, "there will be a lever arm" or "this gripper

will be in the shape of a U". The components of the

design objects refers to what sub-parts comprise or make

that particular object. The parent object is just the

reverse, this denotes what assembly or component the

design object belongs to. This constraint role has been

subdivided into create object and modify object form.

This division was made to clarify the difference between

creating a new design object and just modifying an

existing one.

4.3.2.f Status Role

Status constraints are used to denote the acceptance,

rejection, or suspension of other constraints. A

constraint is accepted, rejected, or suspended through the

process of a design decision evaluation. By marking a

constraint as rejected, it becomes inactive within the

design space. As a result of being marked as inactive,

the constraint is no longer solved for when determining an

attribute value of a design object, see Figure 17 and

discussion in section 4.2.1. Status constraints indicate

that an attribute value or relation was evaluated against

some measures. The result of this evaluation was the

creation of a status constraint that accepted, rejected,

or suspended the constraint that originally specified the

attribute value or relation. In this way rejected

constraints are never deleted from the design space but

are instead set to an inactive status.

4.3.2.g Unclassified Role

The last category of constraint roles is the

unclassified constraint role, which is used as a catch-all

for any constraints that are not yet explicitly

represented. These constraints are employed to specify

design object characteristics such as color, rigidity,
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appearance, power and so on. Because of the abstract

nature and diversity of these constraints, they have not

been subdivided into subclasses. These constraints

include "chemical bonding takes place instantaneously" and

"flipping frame is no effort to handle". Further research

projects may provide subdivisions within in this class or

create new classes of constraint roles.

Tied closely to the constraint role is the constraint

language. Where the role indicates what kind of design

object attributes are affected by the constraint, the

language determines how the constraint is expressed (and

represented in the computer).

4.3.3 Constraint Language Representation

The constraint language representation is concerned

with what form the constraints are expressed in:

equational, graphical, or textual. This should not be

confused with the how the constraints were stated in the

protocols by the designer (e.g., verbally or drawn on

paper). For example, a designer could just as easily

state an equational constraint verbally as draw it on

paper, but the basic expressional form of the constraint,

that of an equation, is still the same. Each constraint

is expressed in terms of specific language operators

(e.g., =, <, coplanar, supports, etc.). These operators

can be grouped together according to type to form

different subclasses for each constraint language, see

Figure 19.

4.3.3.a Equational Language

The equational language is used to constrain the

numeric parameters of the design objects. Five primary

subclasses of the equational language have been observed:

equality, inequality, qualitative, conditional, and other.
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Constrain Languages
(and language operators used)

Language Language Operators
Equational

equality (=)
inequality (<, >, <>, ...)
quality ("small", "maximize")
coditional (if <cond> then <set value>)
other (table or graph lookup)

Graphical
spatialorientation (coplanar, coaxial, ...)
spatialrestriction (away from, within, ...)

Textual
structured (predicate phrase)
simple (any verb phrase)
special constaint role dependent

Figure 19 Constraint Languages

It should be noted here that all the equational subclasses

discussed below can incorporate standard algebraic

operators such as +, /, and *.

Equality constraints are used to specify exact values

for parameters; the primary operator used is the equality

sign (=). Examples of the equality constraints are "the

beam height is equal to twice the width" (height = 2 *

width), or calculating the stress as function of load,

length, height, and width (Q = f(P,l,a,b)).

Inequality constraints are used to specify parameter

values as consisting of a range or subset of values. The

operators used in this equational language subclass

include (<, >, <>). Examples of inequality constraints

are "the lever arm length must be less than table depth"
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(length < depth), or "the load should be kept below 10

lbs." (load < 10).

Qualitative constraints are used to specify parameter

values in abstract or relative terms. Examples for these

constraints include "keep the weight as small as possible"

or "want this gripper width to be short". It is hard to

consider "small as possible" or "short" as equational

operators, but in terms of specifying numeric values, they

do describe a desired range or relative value to be

obtained. Therefore, they warrant separation from the

standard class of qualitative measures such as color,

texture, appearance and so on. This concept of a

qualitative language is associated with the fields of

qualitative physics and qualitative reasoning. One reason

for distinguishing the equational qualitative constraints

as a separate subclass is to allow for the future

development of computational solvers, that could solve for

these types of equational operators.

Conditional constraints are used to express constraint

relations that are stated in conditional terms. These

include statements like "if the spring constant is high,

this hole can be moved back" or "if the flipping frame

rotation is a problem, we can shorten the lever arm

length". The main provision for a conditional expression

is that the relation or value expressed must be contingent

upon a conditional phrase.

The last equational language identified is "other".

The "other" constraint language is used to represent

constraints whose value or relation cannot be expressed in

simple computational terms. For example, if a

constraint's resulting value was dependent on an FEA or

other numerical method, it would fall in this category.

Constraints dependent on table or graph lookups are also

considered under this constraint category. The main

consideration for these constraints is that they specify
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or define a numeric parameter value by some complex

computation and that the computation is not easily

expressed in simple terms.

4.3.3.b Graphical Language

The next basic constraint language is the graphical

language. This language is used to describe the spatial

relationships that exist among the design objects as well

as the restrictions that exist on the space the design

objects may occupy. Therefore it has been divided into

two subclasses: spatial orientation and spatial

restriction. The operators used in the spatial

orientation constraints are dependent on the topology of

the design objects that is being used. Since this

research is concerned with the 3-dimensional environment

used by designer, the operators describe relations between

surfaces, axis, and edges of design objects. Therefore

the operators employed by these constraints define spatial

relationships such as coplanar, perpendicular, co-axial,

colinear edges, or above. Typical constraints include

"this outer arm front cross member is 1" from this

flipping frame rear cross member" or "these two datum

lines, front and back pivot, are parallel". The

subclassification made on the spatial orientation language

is based on the topology of the design objects and

consists of surface constraints, axial constraints, edge

constraints, and combinations thereof. Other or more

complicated constraint subclasses can be added as

required.

The spatial restriction subclass of the graphical

language is also connected to the topology of the design

objects. These constraints specify either areas or

surfaces that should not be occupied or touched by the

design objects. They include statements like "do not go

more than 1/2" under water surface" or "keep this table
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side area free". A subclassification is also made here

based on whether the constraint is dealing with a surface

or a volume.

4.3.3.c Textual Language

The last basic constraint language, the textual

language, is used to describe relations or values of the

design that cannot be stated with equational or graphical

operators. The textual language operators consist of all

the verbs in the english language. Because of this

infinite quantity of possible operators, the textual

language was subclassed according to the different

representation schemes used rather than trying to classify

the constraints by the operators used. The three textual

subclasses include structured, simple, and special. As

with the other constraint languages, additional textual

subclasses can be added as needed.

The structured textual constraints are those

constraints which express a value or relation in a

predicate form. A predicate expression contains a verb

Structure Textual Constraints

Object
Action
Receiver

Location

object performing action
event or behavior occurring

object receiving or affected
by action

where action occurs
Actionqualifier descriptors of action

Figure 20 Structured Textual Constraints
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with or without objects, compliments, or adverbial

modifiers. Examples are "flipping frame raises out of

water" or "plate slides into gripper slot". These forms

are represented by decomposing the predicate statements

into predefined syntactic structures, see Figure 20. The

basis for this structure was developed from that

prescribed in [Rich, 83], and also observed by [Lai, 87].

The object argument refers to what item is initiating or

performing the action. The action argument denotes what

action was performed or achieved, see [Libardi, 88] for a

subset of typical function actions. The receiver argument

denotes the recipient of the action. The action is

further described in terms of an action location, where

the action occurs, and some action qualifiers, adverbial

modifiers of the action. This representation scheme

provides a formalized structure for the constraints and

allows for a more refined examination of the constraint by

its action, receiver, or location values, rather than by

just examining a textual string.

The second subclass of textual constraints are the

simple constraints. These constraints are used when the

relation or value expressed by the constraint is not in

terms of a predicate form. Examples are be "flipping

frame will have tendency to be heavy in back" or "machine

power could be pneumatic, electric, or manual". These

constraints are represented by noting the dependent

feature and independent feature(s) of the constraint as

well as the relation or value expressed. These are the

most basic of the constraints represented, since they are

modeled primarily as text strings.

The last textual constraint subclass is that of

special. The special constraints are used for specialized

constraint roles. For example the form constraints, those

used to create and modify design object form, are

represented using a specialized language consisting of a
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set of arguments for the name, shape, parents, and

components of the design objects. Other specialized

languages are used for the status constraints, the

function constraints, and the production constraints.

The use of these textual language specializations is

further discussed in section 5.2.3.c of implementation

section. This use of specialized languages for specific

constraint roles allows greater flexibility in

representing and creating the textual constraints.

4.3.4 Constraint Causality

Another consideration of the constraint representation

that is closely linked to the language of the constraints

is the causality of the constraint relations. The

representation assumes that all the constraints expressed

in the design as causal, since they were originally stated

that way by the designer. Causality refers to the

dependence of the constraint relations [Chung, 89]. This

causality in the representation implies a forced

dependency in the constraint expressions, for example A =

B + C, where A is the dependent variable and B & C are the

independent variables. Another example is "block-a is

below block-b", where the location of block-a is dependent

on the location of block-b.

This assumption of causality greatly simplifies the

constraint representation, by allowing the solving of

constraints on an individual basis as opposed to solving

sets of constraints simultaneously. If the constraints

were considered non-causal or unidirectional, then complex

parametric or variational constraint solvers would need to

be implemented. Although the current representation could

support parametric or variational constraint solvers, they

are currently not implemented. Instead constraints are

solved individually, since for the purposes of the design

history, variational and parametric design solvers are
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currently not required.

The three aspects of the constraint information

(source, role, and language) are used to model the

constraints in the design history tool. The constraint

source denotes where the constraint originated from. The

constraint role signifies what aspect of the design

objects is being affected. The constraint language is

used to express the values and relations of the

constraints. Therefore, a specific constraint is

represented by selecting the three subclasses of each of

the appropriate constraint aspects (i.e., given source,

numeric parameter role, equality language), creating the

constraint, and filling in the necessary arguments. An

implementation of the design process representation for

the design history tool is presented in the next chapter.
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5. IMPLEMENTATION

Once the formal representation for the design process

was established, its implementation commenced. A complete

printout of both the knowledge base and supporting source

code used for the implementation can be found in Appendix

III. Because of its power and flexibility, HyperClass was

chosen as the object-oriented system upon which the design

process representation is implemented. The following

sections relate this implementation, explaining the

underlying principles involved.

Before explaining the implementation of the design

history tool, it is important to have a basic

understanding of HyperClass and of object-oriented

programming in general. The next section is devoted to

explaining the basics of HyperClass and some of its more

important facilities.

5.1 HyperClass Basics

HyperClass is an object-oriented programming

environment, which was developed for the purposes of

building, maintaining, and using knowledge base systems.

It is implemented in Common Lisp and includes three

subsystems: Strobe, MetaClass, and Impulse-86 1 Strobe

is an object-oriented programming language that provides

all the facilities of an object-oriented system.

MetaClass was developed as an interface to Strobe which

allows users to directly model their knowledge bases

without being concerned with the intricacies of lower

level programming. The interface consists of various

object editors that can be used to build or modify the

1 Strobe, MetaClass, and Impulse-86 are trademarks of
Schlumberger Technologies Incorporated. See [Smith,
1987,1988] and [Schoen, 1989].
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knowledge base. Impulse-86 is an interface-building tool.

It provides a general and extensible substrate upon which

to construct a wide variety of interactive user interfaces

for developing, maintaining, and using knowledge-based

systems. Impulse-86 is implemented in Strobe, and

MetaClass is built from Impulse-86.

An object, which should not be confused with a design

object in the design history model, is a fundamental

element in HyperClass. A basic frame for an example

FASTOBJECTEDITOR: IMPULSE. EXAMPLE- OBJECT
OBJECT: EXAMPLE-OBJECT
SYNONYMS:
GENERALIZATIONS: OBJECT
GROUPS: GROUP-B GROUP-A
TYPE: CLASS
Edited: 31-May-90 20:15:46 PDT
SLOT-1[TEXT]:
SLOT-2[EXPR]:
SLOT-3[LISP]:
SLOT-4[OBJECT]:
SLOT-5[BITMAP]:

By: Mcginnis

ASTFACETEDITOR: IMPULSE.EXAMPLE-OBJECT.SLOT-1
SLOT-1:
VALUE: *NOVALUE*
DATATYPE: TEXT
FACET-2: *NOVALUE*
FACET-1: *NOVALUE*
LINKS-UP: NIL
LINKS -DOWN: NIL

Figure 21 HyperClass Example Frame

object is shown in Figure 21. An object is a type of data

structure that combines data and procedures in a single

entity. Objects are referenced by name in HyperClass,

with each object having a unique name distinguishable from
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all others. In this example, the object name is EXAMPLE-

OBJECT. Each object has properties that describe it.

These are called slots, which are encapsulated in an

object frame. As shown in EXAMPLE-OBJECT, SLOT-1 is one

of the slots used to describe the object. Every slot has

a value, which may be English text, a numerical quantity,

a lisp procedure, pointers to other objects, or a bitmap.

Each slot may also have facets in which further

information can be located. The facets are used to

describe the slot and its value. Each object may contain

procedures or methods that constitute the actions that can

be performed to exhibit some desired behavior or action.

The procedures within the object and slot are invoked via

their operation name.

HyperClass supports a modelling technique that allows

users to directly represent the fundamental concepts of a

particular domain. Within HyperClass, a distinction is

made between the types of objects to be created: class or

instance. A class object defines the properties and

behaviors common to a set of objects. An instance object

describes an element of a class object. Each class object

may possess subclass and (sub)subclass objects. Instance

objects, however, have no descendants, since they only

denote a particular, unique individual.

Each fundamental concept in a domain can thus be

represented by a class object. The taxonomical

relationships that exist in a domain can be represented by

the relationship between the class and its instance

objects. For example, the "decision" concept of design

history representation can be represented as a class

object, called DECISION. This class object represents the

generic decision which has a common set characteristics

shared by all decisions. Each particular decision made by

the designer is then represented as an instance of the

DECISION class object, with each instance inheriting the
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properties and procedures of its parent class. This

inheritance mechanism allows many instances to share

common properties and procedures at one identifiable

location. The inheritance of an object is specified by

the generalizations slot, see Figure 21, which contains

the parent of that particular object. An object can be an

instance of more than one class object. The

generalizations slot in an object lists all of the class

objects of which this object is an instance or subclass

of.

The procedures associated with an object's slots are

distinguished by their names and are invoked through the

procedure of message passing. By sending a "message" to a

slot or facet, a specific behavior or action can be

performed. Since procedures are inherited in the same

manner as properties, it is easy to build the required

characteristics for a knowledge-based system.

Since one of the requirements of the design history

tool is to provide a graphic interface, some means of

displaying objects graphically is essential. This is

accomplished by integrating a solid modelling package,

Vantage' into HyperClass. This integration is described

in [Charon, 1989]. The resulting HyperClass - Vantage

hybrid is capable of creating solid models from the

HyperClass knowledge base and then displaying those images

with the HyperClass window system. Using HyperClass,

Vantage, and their encapsulated components, the design

history representation is constructed.

5.2 Design Process Knowledge Base

As explained earlier, the design history

representation consists of three primary elements: design

1 Vantage is a trademark of Carnegie-Mellon
University [Balakumar, 1988).
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objects, constraints, and design decisions. Using

HyperClass, these concepts were directly implemented as

class objects within a knowledge base. The creation and

interaction of these three objects form the building

blocks for design history knowledge base. A basic

template for the design history knowledge base can be

raph of PROGENY for OBJECT in I EMP

OBJECT

DESIGN-PRIMITIVES

DESIGN-OBJECT

COMPOSITE

SLAB SLOT

CYLINDER HOLE

L-SHAPE

DERIVED-CONSTRAINT

CONSTRAINT-SOURCE INTRODUCED-CONSTRAINT

GIVEN-CONSTRAINT

NUMERIC-PARAMETER

SPATIAL

FUNCTION

CONSTRAINT-ROLE PRODUCTION

FORM

STATUS

UNCLASSIFIED

EQUATIONAL

CONSTRAINT-IANGUAG E GRAPHICAL

NUMERICAL

DECISION

Figure 22 Design History Template

found in Figure 22. From the class objects shown in this

knowledge base template, histories of the design process

can be generated.

It is important to note here that because of the

direct modelling capabilities associated with object
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oriented programing, the previously discussed

representation can be directly mapped into the

implementation. In this way, basic representational

concepts become class objects, important characteristics

of those concepts become the slots of the objects, and

specific instances of those concepts (i.e., table-top,

decision-34, constraint-10) become instance objects with

their appropriate slots specified. Because of this direct

mapping, many of the details concerning the implementation

have already been addressed in the representation

discussion. At the cost of being redundant, these details

will be restated, so that a complete description of the

implementation can be presented without constant referrals

to the representation previously discussed.

There are six primary class objects; design-

primitives, design-objects, constraint-source, constraint-

role, constraint-language, and decision. Some of these

classes have sub-classes that represent specializations

within that class. For example design-primitives can be

decomposed into one of several simple or complex shapes,

or can be composite in nature. The constraint-language

class has also been decomposed into its more specific sub-

classes to allow for different behaviors among the

constraints. Specific instances of design objects,

constraints, and decisions are generated from these

classes and sub-classes. For example, a table-top design

object is created from the class design-object and the

sub-class slab. In this way, table-top inherits all the

properties associated with both the design-object and

slab. A particular constraint instance has the parents or

generalizations of a constraint-source subclass, a

constraint-role subclass, and a constraint-language

subclass, inheriting properties from all three ancestors.

Decision instances are generated solely from the decision

class object.
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5.2.1 Design Object Implementation

As previously stated, design objects represent the

physical artifacts of the design. They provide a

framework or basic structure in which to assign and order

the constraints. A constraint specifying a value would be

of little use unless that constraint was associated with

the specific design object parameter it was specifying.

The design objects are generated as instances of the class

object design-object and subclasses of the design-

primitives. In doing this, the specific design object

instance inherits the general attributes associated with

all design objects from the design-object class and

inherits the specific attributes of the design-primitives

subclass that was chosen. These properties are represented

as slots in the design objects, as discussed below.

5.2.1.a Design Object

The design-object class object has as its descendants

ASTOBJECTEDITOR: DH-TEMPLATE.DESIGN-OBJECT
OBJECT: DESIGN-OBJECT
SYNONYMS:
GENERALIZATIONS: OBJECT
GROUPS:
TYPE: CLASS
Edited: 31-May-90 20:50:24 PDT By: Mcginnis
PURPOSE[TEXT-VALUED]: *NOVALUE*
BEHAVIONTEXT-VALUED]: *NOVALUE*
MANUFACTURE[TEXT-VALUED]: *NOVALUE*
ASSEMBLY[TEXT-VALUED]: *NOVALUE*
COLOR[TEXT- VALUED]: *NOVALUE*
APPEARANCE[TEXT-VALUED]: *NOVALUE*
FORM[TEXT- VALUED]: *NOVALUE*
COMPOSED-OF[P-LISP]: NIL
PARENT[DESIGN- OBJECT]:

Figure 23 Design Object Class Frame
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all the design object instances of the design. That is to

say, each design object instance has the generalization of

the design-object class object. This class object

contains attribute slots that can be inherited by all the

design objects, see Figure 23. The attribute slots

include purpose, behavior, manufacture, assembly, color,

appearance, and form. New attribute slots are created for

the design objects as needed by the user.

Other slots of interest in the design-object class

object include component slots, composed-of, and parent.

The component slots are the slots created as pointers to

the component objects of that design object instance.

Component slots are created only for instances of design

objects as they are needed. For example, a table object

may have the components of a top and four legs. Each of

these components are represented in the table design

object by the slots top, legi, leg2, leg3, and leg4. The

slots in turn contain pointers to the design objects of

top, legl, leg2, leg3, and leg4, see Figure 24. The

composed-of slot is a specialized method slot that

automatically collects all the component slots of a

particular design object instance and places this

component list in the composed-of slot. The parent slot

is a pointer used to indicate what assembly or part has

this design object as a component. For example, the

parent slot of the table design object, mentioned above,

contains a pointer to an office design object, of which

the table is part.

This use of component, composed-of, and parent slots

helps maintain the hierarchial structure of the design

objects. The hierarchial structure refers to the part-of

relationship that exist within a design. For example, the

legs are part of the table, and the table in turn is part

of an office. This hierarchial structure is identical to

the breakdown of the design objects into assemblies and
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AS I 011.11-C [EDI I OH: JAHLE

OBJECT: TABLE
SYNONYMS:
GENERALIZATIONS: COMPOSITE DESIGN-OBJECT
GROUPS: DESIGN
TYPE: INDIVIDUAL

X-TRANSLATION[EXPR]: 0
Y-TRAM SLATION[EXPR]: 0
Z-TRANSLATION[EXPR] : 0
X-ROTATION[EXPR]: 0
Y-ROTATION[EXPR]: 0
Z-ROTATION[EXPR]: 0
TORDESIGN-OBJECTJ: TOP
LEG- 1 [DESIGN- OBJECT]: LEG-1
LEG-2[DESIGN-OBJECT]: LEG-2
LEG-3[DESIGN-OBJECT]: LEG-3
LEGADESIGN-OBJECT]: LEG-4
PARENT[DESIGN-OBJECT]: OFFICE
MANUFACTURE[TEXT-VALUED]: (') ('STEP-1: made from wood' 'STEP-2: made by hand')
COLOR[TEXT-VALUED]: (') 'lighter than dark blue "
LENGTH[NUMERIC]: (') "<6'
DEPTH[NUMERIC]: (') 6
HEIGHT[NUMERIC]: (') 12
FORKTEXT-VALUED]: (')'TABLE with shape COMPOSITE "
APPEARANCE[TEXT-VALUED]: "look nice "
CSG-NODE[OBJECT]: NODE-107
SCENE[OBJECT]: SCENE-108
REPRESENTATION[BITMAP] :

Figure 24 Table Object Instance Frame

components, except that components may be further broken

down into their composite shapes or design features.

5.1.2.b Design Primitives

The design-primitives class object and its subclasses

are used to contain information that is relevant to the
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configuration of the design object. The design-primitives

class object is decomposed into subclasses according to

the basic design shapes that are used by the designer.

These subclasses include composite objects, basic design

shapes, such as slab, slot, cylinder, or hole, and more

complex design shapes, such as L-shape, see Figure 18.

The composite objects are those objects that have not yet

been assigned a shape or whose shape is a conglomeration

of shapes as with an assembly object. These subclasses

can be expanded by adding new design shapes as required.

The slots of these subclasses contain information on the

particular topology and shape represented by that

subclass. This information is denoted in the slots of the

design primitives, see Figure 25. The slots shown are

concerned with either the topology of the object, the

location of the object, or are specialized methods used to

create the csg (Constructive Solid Geometry)

representation of the object.

AS I OBJEC I EDI101-1: DH-IEMPLAIE.DESIGN-PRIMIIIVES
OBJECT: DESIGN-PRIMITIVES
SYNONYMS:
GENERALIZATIONS: OBJECT
GROUPS: TEMPLATE
TYPE: CLASS
Edited: 31-May-90 20:59:56 PDT By: Mcginnis
X-TRANSLATION[EXPR]: 0
V-TRANSLATION[EXPR]: 0
Z-TRANSLATION[EXPR]: 0
X-ROTATION[EXPR]: 0
Y-ROTATION[EXPR]: 0
Z-ROTATION[EXPR]: 0
TRANSFORM-VECTOR[P-LISP]: (0 0 0 0 0 0)
SHAPE[LISP]:
FACES[LISP]:
ORIENTATION[P-LISP]: NIL
MAKE-NODE[LISP]: DESIGN-PRIMITIVEMAKE-NODE
MAKE-CSG-NODE[LISP]: DESIGN-PRIMITIVE.MAKE-CSG-NODE

Figure 25 Design Primitives Class Frame
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FASTOBJECTEDITOR: DH-TEMPLATE.SLAD

OBJECT: SLAB
SYNONYMS:
GENERALIZATIONS: DESIGN-PRIMITIVES
GROUPS: TEMPLATE
TYPE: CLASS
Edited: 19-Jun-90 16:39:08 PDT By: Mcginnis
LENGTHY -DIM} [NUMERIC]: 1
HEIGHT{Z-D IM} [NUMERIC]: 1
DEPTH{X-DIM} [NUMERIC]: 1
FACES[LISP]: ((TOP (LIST 270 90 ...)) (BOTTOM (LIST 90 270 ...)) (FRONT (LIST 0 270 ...))

SHAPE[LISP]: (+ CUBE)

Figure 26 Slab Class Frame

The location and topology slots include the x,y,z

rotation and translation, the transform-vector, shape,

faces, and orientation slots. The x,y,z rotation and

translation slots are used to place the object in the

global reference frame. The values of these slots are

specified by solving the spatial constraints assigned to

that particular object. When these spatial constraints

are fired, they change the values of the x,y,z,

translation and rotation slots to enforce the relationship

defined by the constraints (e.g., coplanar, co-axial,

etc.). The transform-vector slot is a specialized design-

primitives method, created for programming efficiency,

that collects the values of the translation and rotation

slots and displays that list as its value, see Figure 25.

The shape slot contains the basic csg shape of the

object along with a specifier that tells whether the shape

is a positive or negative volume. For example, the shape

slot of slab contains the value (+ cube), signifying a

positive cubical volume as the shape of the object, see

Figure 26. The faces slot describes the surfaces of the

design-primitive and associated plane equation for those
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surfaces. It contains a list of the surfaces of the

design primitive and a description of the planes upon

which those surfaces lie. For example, the cube design

primitive, has as one item in the faces slot, the value

(TOP (LIST 270 90 0 (/ HEIGHT 2)), see Figure 26. This

value can be evaluated to return a the cosine angles of

the face normal vector and the distance from that face to

the local origin. This information is used by the spatial

constraints to designate which faces of the object are to

be constrained and subsequently what translations and

rotations will need to occur in order to satisfy that

constraint.

The orientation slot is a specialized design primitive

method that generates a textual description of how a

particular design object instance constrained spatially.

This method goes through x,y,z translation and rotation

slots and determines which spatial constraints are

currently affecting the orientation of the object. A

textual phrase is then generated from each spatial

constraint and verbosely displayed, such as "(leg-1 top)

coplanar to (table-top bottom)". This allows a user to

quickly examine what specific spatial constraints affect

the orientation of an object without having to examine the

graphical representation.

The specialized methods used to create the csg

representation are make-node and make-csg-node, see Figure

25. The make-node method is used to generate the csg

tree for the design object. It determines what

components, if any, are present within an object and

builds the csg tree for that object. The make-csg-node

method is used to generate the leaf nodes of that csg

tree. A make-csg-node method can be specialized for any

design primitive that may be needed by the designer, such

as the L-shape mentioned earlier.

Associated with the different shape subclasses of the



79

design-primitives class object, are the specific

dimensional parameters of that particular shape. For the

slab design primitive subclass, see Figure 26, the

parameters required are the length, depth, and height.

These are directly related to the x, y, and z dimensions

of that shape that are required to build the csg

representation.

A frame of a typical design object can be found in

Figure 24. Here each slot represents a specific attribute

of the object. A representation slot exists which

contains a bitmap of the graphical image of the object.

This representation was generated using the specialized

csg representation methods discussed above. New attribute

slots can be created as needed for the design objects, as

there is no predetermined limit on design object

attributes.

5.1.2.c Attribute Slots

The values for the slots of design objects are

specified by associating a constraint with a particular

attribute. Within each slot of a design object, there

exist facets or sub-slots associated with that slot. Each

FASTFACETEDITOR: THESIS-TABLE.TABLE.HEIGHT
HEIGHT:
VALUE: (") 12
DATATVPE: NUMERIC
IN- CONSTRAINT: (GIVEN-CONSTRAINT-78)
OUT-CONSTRAINT: (GIVEN- CONSTRAINT -80 GIVEN-

CONSTRAINT-79)
LINKS -UP: COMPOSITE
LINKS-DOWN: NIL

Figure 27 Table Height Attribute with Facets
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parameter slot of a design object has an in-constraint and

an out-constraint facet, see Figure 27. These facets are

used to determine which constraint specifies the slot

value, the in-constraints, and which constraints use this

slot value, the out-constraints, see section 4.2.1 for

further discussion. This use of in-constraint and out-

constraint facets relates the temporal values of design

object attributes as well as providing a means of

specifying the constraint dependencies.

5.2.2 Decision Implementation

The design decisions are the processes by which new

derived constraints are added to the knowledge base.

Decision instances are created from the decision class

FASTOBJECTEDITOR: DI-I-TEtv1PLATE.DECISION

OBJECT: DECISION
SYNONYMS:
GENERALIZATIONS: OBJECT
GROUPS: TEMPLATE
TYPE: CLASS
Edited: 28-May-90 11:51:14 PDT By: Mcginnis
INPUT-CONSTRAINTS[CONSTRAINT-SOURCE]: NIL
RESULTING-CONSTRAINTICONSTRAINT-SOURCE]: NIL
RATIONALE[TEXT]:
PRECEDING-DECISION[DECISION]: NIL
SUCCEEDING-DECISION[DECISION]: NIL

Figure 28 Decision Class Frame

object, see Figure 28. The decision representation does

not require any computational or manipulative

capabilities. The three primary slots of are the input-

constraint, rationale and resulting-constraint slots. The

input constraints are that subset of the existing active
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constraints that were used or considered during a

particular decision-making process. The active

constraints are those constraints that define the current

state of the design. The rationale slot is used to

contain a text string describing the reasoning process

behind the decision. The resulting constraint slot is

used as a pointer to the new derived constraints, which

were generated by that particular decision. By noting

these input and resulting constraints, the propagation of

the constraints can be followed.

The other slots of the decision object are the

succeeding-decision and preceding-decision slots. These

slots point to the previous and following decisions in the

overall design process. This is the way that the temporal

sequence of the design decisions is represented.

There are two types of constraint dependencies in the

design representation.

1. Direct dependencies, which are gained by

inspecting the in-constraint and out-constraint facets of

the design object parameter slots.

2. Indirect dependencies, which are noted by

examining the propagation of the constraint through the

input and resulting constraint slots of the decisions.

It is important to note these two types of constraint

dependencies, since they affect the design differently.

For example, suppose the value of constraint, Cl, was

directly dependent on the value of another constraint, C2,

via the in-constraint and out-constraint facets of the

design object parameters. A change in C2 would require a

change in the value of constraint C1. If on the other

hand, constraint Cl was indirectly dependent on C2 through

the input and resulting constraint slots of a decision, a

change in C2 may not necessarily warrant a change in

constraint Cl. This separation allows a user to determine

what affects changing the value of any particular
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constraint will have on the overall design.

5.2.3 Constraint Implementation

The constraints in the knowledge base contain the

basic information describing the state of the design. New

information is added to the knowledge base in the form of

constraints. Constraints are either generated by a

decision process as is the case with derived constraints,

or they are brought into the design as given or introduced

constraints. All the constraints are causal, as mentioned

previously, in that there is a dependent variable whose

value is simply instantiated or is determined from one or

more independent variables. The values specified by the

constraints are tied to the design object parameters by

the in- and out-constraint facets of the design object

parameter slots.

Again, because an object-oriented programing

environment was used, an almost direct mapping of the

constraint representation into the implementation was

achieved. Each of the three aspects of constraint

information discussed previously is implemented as a

fundamental class object from which the constraint

instances are descended. These objects are constraint-

source, constraint-role, and constraint-language. All

constraint instances created within the knowledge base

must have three primary ancestors or generalizations.

Each primary generalization must be one of the subclasses

or descendants of a fundamental constraint class object

(i.e., source, role, language). Each fundamental class

and its subclasses contain specialized slots and functions

that enable them to behave or perform in a distinct

manner. This specialization of and distinction between

the different aspects of constraint information allows for

the modelling of many different types of constraints.

Therefore to understand how any particular constraint is
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modelled, an understanding of each of the three constraint

aspects must be obtained.

5.2.3.a Constraint Source

The source of a constraint identifies where the

constraint originated. The three subclasses of constraint

source are given-constraint, introduced-constraint, and

derived-constraint. Each constraint instance must have as

one of its primary generalizations or ancestors one of

these three constraint sources.

The constraint-source class object contains status,

originating-decision, time-code, and actual-text slots.

The status slot denotes the status of the constraint and

can be specified by one of four possible values accepted,

FASTOBJECTEDITOR: DH-TEMPLATE.CONSTRAINT-SOURCE
OBJECT: CONSTRAINT-SOURCE
SYNONYMS:
GENERALIZATIONS: OBJECT
GROUPS: TEMPLATE
TYPE: CLASS
Edited: 31-May-90 21:12:39 PDT
STATUS[TEXT-VALUED]: *NOVALUE*
ORIGINATING-DECISION[DECISION]:
TIME-CODE[EXPR]:
ACTUAL- TEXT[EXPR]:

By: Mcginnis

Figure 29 Constraint Source Class Frame

rejected, suspended, or nil, see Figure 29. A nil value

indicates that the constraint was generated but was never

subjected to an evaluation decision by the designer. The

values of accept, reject, or suspend give the outcome of

an evaluation decision. If a constraint is rejected by an

evaluation decision, it is marked as inactive. This

inactive status means that this constraint is no longer
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considered in the active design space and subsequently it

is not evaluated or solved for when trying to determine

the value of a design object attribute (see section

4.2.1). The originating-decision slot contains a pointer

to the decision from which the constraint originated.

The time-code slot contains a numeric time code

denoting when during a design protocol the constraint was

stated. A typical time code is 2035.23, which states that

the constraint was stated 35 minutes and 23 seconds into

the second video tape of the design protocol. The actual-

text slot contains the actual text string stated by the

designer in the protocol or it may contain a reference to

one of the designer's original drawings. These slots are

not an integral part of the basic constraint

implementation, but are aids in this research for

identifying the constraints in the design protocols from

which they were extracted.

Given and introduced constraints have an additional

source slot that denotes the origin of that constraint.

The source slot contains a simple text string that

explains where the constraint came from (i.e., design

specifications, other designers, domain knowledge, design

textbooks).

5.2.3.b Constraint Role

The constraint role determines what attributes of the

design objects are affected by the constraint. The class

object of constraint-role has been decomposed into

subclasses according to the attribute affected by the

constraint, see Figure 30, which is an expansion of part

of Figure 22. The constraints are generated from only the

leaf nodes subclasses. New subclasses can be easily added

to this tree as required.

Related closely to the constraint role is the

constraint language. Certain constraint roles are
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Graph of PROGENY for CONSTRAINT-ROLE in TEMP

CONSTRAINT-ROLE

NUMERIC-PARAMETER

ORIENTATION
SPATIAL<

RESTRICTION

PURPOSE

FUNCTION BEHAVIOR

GENERAL

MANUFACTURE
PRODUCTION<

ASSEMBLY

CREATE-OBJECT

FORM<MODIFY-OBJECT-FORM

ACCEPT

STATUS REJECT

SUSPEND

UNCLASSIFIED

Figure 30 Constraint Role with Subclasses

expressed exclusively with a particular constraint

language or constraint language subclass. Figure 31

presents a matrix of the standard constraint role -

language possibilities.

Because of the close mating between constraint role
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and language, a default-language slot has been added to

the constraint-role class and subclasses. This slot tells

which constraint language is to be used for the particular

constraint role. In this way, the constraint language can

be specialized for specific constraint roles.

The numeric-parameter role is groups together all of

the numeric-valued design object attributes (i.e., length,

weight, volume, stress, deflection). Because there exist

a great multitude of possible numeric attributes and

interactions between them, no attempt was made to

decompose this role.

The spatial constraint role is used to define the

spatial constraints on the design objects of the design.

Role Language Relation
Equality

Inequality
Quality

Conditional
Other

SpatialOrientation
SpatialRestriction

Structured
Simple

Specia

Numeric
Parameter X X X X X

Spatial X X

Function X X

Production X X

Form X

Status X

Unclassified X

1

Figure 31 Role - Language Relation

It has been decomposed into the orientation and

restriction subclasses. Constraints descended from the
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orientation constraint role are used to describe the

spatial orientation of the design objects. When solved,

these constraints specify the x,y,z translations and

rotations of the design objects.

The restriction constraints describe areas of the

physical design space that cannot be occupied by the

design objects. Since the design history tool did not

require a restriction constraint solver, none was

implemented, although a solver could be added if it is

later deemed necessary.

The function constraint role represents the functional

characteristics of the design objects. The three

subclasses are purpose, behavior, and general. The

purpose and behavior objects stipulate what functions the

design object is to perform and how the object is to

perform them, respectively. For any given design object,

there may exist multiple purposes and behaviors. For

example, the purpose of a battery contact is to hold the

battery in place as well as to provide a electrically

conductive path. For this reason, multiple purpose or

behavior slots may exist within purpose and behavior

constraints, respectively.

Within these purpose and behavior slots are pointers

to function-modules, which describe a functional value or

relationship. By using separate objects to contain basic

functional information, design objects can share

functionality. For example, if a specific function module

describing the function of "supplying electric energy" is

created, that module may be shared as a purpose of a

battery, generator, or solar cell. Another benefit in

isolating the functions is that they can be created and

decomposed without regard to any specific design object.

The general function constraint role subclass

describes the creation or modification of a function

module without regard to any particular design object.
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For example, the function of "supplying electric energy"

stated above, can be decomposed into "generate energy" and

"transmit energy" without any regard to what design object

was generating or what object was transmitting.

Function modules are the basic building blocks of

design object functionality. The function modules are

generated from the descendants of the textual language

subclass object structured and of the function-module

class object. A typical function module instance can be

ASTOBJECIEDI OR : I FIESIS-IAI3LEFUNCTION-MODULE-53
OBJECT: FUNCTION-MODULE-53
SYNONYMS:
GENERALIZATIONS: FUNCTION-MODULE STRUCTURED
GROUPS: DESIGN
TYPE: INDIVIDUAL
Edited: 31-May-90 23:06:08 PDT By: Mcginnis
OBJECTIPURPOSE[DESIGN-OBJECT]: LEG
OBJECT/BEHAVIONDESIGN-OBJECT]: NIL
ORIGINATING-CONSTRAINT[CONSTRAINT-SOURCE]: GIVEN-CONSTRAINT-52
ACTION[EXPR]: "support"
RECEIVER[DESIGN- OBJECT]: TOP
LOCATION[EXPR]: "at corners"
ACTION-QUALIFIENEXPR]: "rigidly"
ALTERNATIVES[OBJECT]: FUNCTION-MODULE-55 and FUNCTION-MODULE-54

Figure 32 Function Module Instance Frame

found in Figure 32. Most of the slots shown are inherited

from the structured generalization, which is discussed in

further detail below under textual constraint language.

The slots that are inherited from the function-module

object and are particular to the function module instances

are object/purpose, object/behavior, and originating-

constraint. The object/purpose and object/behavior slots

for a specific module point to objects that have this

particular function module instance as their purpose or

behavior. These slots act as back pointers to the design

objects that refer to this particular function module.

The originating-constraint slot points to the constraint
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that originally created the function module. Function

modules can be generated by purpose or behavior of design

objects. They can also be created independently of any

design object in the general role subclass.

The production constraints describe how a design

object is to be manufactured and assembled. As a result,

this role has been decomposed into manufacture and

assembly. Similar to function constraints, production

constraints contain multiple slots, called step slots.

Each step slot contains a text string that describes a

manufacture or assembly method to be used in the

production of that particular design object. By having

the option for multiple production steps, an assembly or

manufacture method can be decomposed into a series of

instructions. For example, a manufacture constraint of a

table can contain the values "made by hand" and "built in

house".

The form constraint role describes the creation and

modification of design object instances. The two subclass

of this are create-object and modify-object-form, which

make a distinction between when an object is created and

when an object is modified. These constraints change the

design space by creating new objects or changing objects

by specifying the name, shape, parent, or components of a

new or existing objects.

Status constraints record the fact that a constraints

has been evaluated in a decision and that the result of

that decision was to accept, reject, or suspend the

specified constraint. The only slot that resides in the

status constraint is the status slot. This slot contains

the value to be associated with the specific status role

subclass, namely inactive, active, or suspended,

respectively.

The last constraint role object is that of

unclassified, which is used for constraint types that have
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not yet been classified. These constraints cover design

object attributes such as color, texture, appearance,

safety, usability and so on. They are a catch all for any

constraint that are not currently categorized.

5.2.3.c Constraint Language

The third aspect of information to be specified in the

construction of a constraint is the constraint-language.

Graph of PROGENY for CONSTRAINT-LANGUAGE in DH-TEMPLATE

CONSTRAINT-LANGUAGE

211-C

=El

-B12+2

A-B+C

EQUALITY-CONSTRAINT A-2"B

A-B`C

EQUATIONAL A=1:1"C"D

A-VALUE

kcB

INEQUALITY-CONSTRAINT A,B

A,VALUE

GRAPHICAL

TEXTUAL

QUALITY-CONSTRAINT

CONDMONAL-CONSTRAINTIF-A343-THEN-A-B

OTHER

SURFACE-CONSTRAINT

SPACIAL-ORIENTATION AXIAL-CONSTRAINT

EDGE-CONSTRAINT

VOLUME-RESTRICTION
SPACIAL-RESTRICTION<

SURFACE-RESTRICTION

STRUCTURED

SIMPLE

SPECIAL

OBJECT-FORM-LANGUAGE

STATUS-LANGUAGE

FUNCTION-CONSTRAINT-LANGUAGE

PRODUCTION-CONSTRAINT-LANGUAGE

Figure 33 Constraint Language with Subclasses
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The constraint language and its descendants contain the

basic representational expressions of the constraint, see

Figure 33. A specific constraint language is specified by

choosing a leaf node subclass of the constraint-language

tree. As with constraint roles, additional constraint

languages can be added as necessary.

ASTOHJECTFDITOR: DH-TEMPLATECONSTRAINT-LANGUAGE
OBJECT: CONSTRAINT-LANGUAGE
SYNONYMS:
GENERAUZAT1ONS: OBJECT
GROUPS: TEMPLATE
TYPE: CLASS
Edited: 16-May-90 16:03:06 PDT By: Mcginnis
SOLVE[USP]:
UPDATQLISP]: CONSTRAINT-LANGUAGE.UPDATE
SATISFIED[LISP]:
SUCCESSOR[OBJECT]:
LINK- CONSTRAINT[LISP]: CONSTRAINT-LANGUAGE.LINK-CONSTRAINT
PARSRUSP]: NIL
PHRASE[CONSTRAINT- PHRASE]: NIL

Figure 34 Constraint Language Class Frame

Associated with the constraint languages are the

solvers of the constraints. The constraint solvers are

needed in the design history only for the purposes of

generating graphical images. Because of this requirement,

only simple constraint solvers are used, as was discussed

in section 4.2.1. These solvers enforce the constraint

expressions stated by the constraints. For example, the

expression "A=B+C", when solved, returns the sum of the

argument values of B and C. The constraint-language class

object contains a solve slot that is inherited by its

subclasses and that indicates which specific solvers to

use for each language subclass, see Figure 34. For

example there is a specific solver for the equality

constraints that works differently from the solver of the

inequality constraints. In this way, different languages

can be solved appropriately and new solvers can be added

as required.
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In object-oriented programming, in HyperClass, the

names of LISP procedures can be given as the values of

slots. These LISP procedures are called "methods", and

they are executed by sending a "message" to the object

slot. The constraint solver for each constraint is

implemented by a LISP method , whose name is given in the

solve slot of each constraint. The solve slots are

inherited from the appropriate constraint language

subclass.

Related to the solve slot are the update and satisfied

slots. The method named in the update slot can be applied

to update the constraints when design object attribute

values are changed. For example, take the constraint

A=B +C, where A, B, and C are all bound to particular

design object attributes. If a change were to occur in

the value of the attributes bound to B or C, then the

constraint A=B+C can be resolved using that new attribute

value. This updating of constraints ensures the

consistency of the constraints. It can also be used for

redesign purposes, when a user would like to see the

effect of changing an attribute's value. This update

facility is analogous to a truth maintenance system, where

the constraints are the nodes of the network. The update

facility is currently disconnected, because it was not

required for the purpose of the design history tool. It

can be reintegrated into the system by sending an update

message to all new constraints as they are entered into

the knowledge base. This constraint updating is the first

step toward automatic redesign.

The method contained in the satisfied slot can be

applied to determine if a particular constraint has been

violated. This function sets the values of the constraint

arguments to the current values of design object

attributes to which they are bound. The constraint is

then evaluated with these new values and a value of either
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true or false is returned indicating whether the

constraint is satisfied or not. This method differs from

the solve method in that it does not solve for the

dependent variable, but instead determines if the equation

stated by the constraint still holds true.

Other slots residing in the language subclasses are

successor, link-constraint, parse and phrase. The

successor slot indicates which constraint (if any)

succeeds the current constraint. Often when a constraint

is made, it is simply a modification of a previous

constraint. In these cases, rather than create a

completely new constraint, the constraint is linked to the

old constraint via the linksup and linksdown facets of the

new constraint's slots. The successor slot of the old

constraint is then set to indicate which new constraint

has superseded it.

The link-constraint slot contains a specialized method

that is invoked upon the creation of all new constraints.

This method links the in- and out-constraint facets of the

design object attributes to the constraints that use or

specify those attributes. This method is invoked only

once when the constraint is first introduced into the

knowledge base.

The parse slot names a method for generating text

phrases from the constraint instance. In Figure 35 for

example, the constraint A=B+C in which A is bound to the

table height, B is bound to top height, and C is bound to

the top height, is parsed into "table height = leg height

+ top height". Similarly, a specific graphical constraint

can be parsed into "table top-surface coplanar to computer

bottom-surface". This parsing of constraints allows a

designer to examine the constraints in a more easily

understood manner. The phrase slot is the slot that

contains the result of this constraint parsing, see Figure

35. In the event that the constraint cannot be easily
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RJECTEDITORWITHFACETS: THESIS-TARLEGIVEN-CONSTRAINT -/B
OBJECT: GIVEN-CONSTRAINT-78
SYNONYMS:
GROUPS: DESIGN
TYPE: INDIVIDUAL
Edited: 31-May-90 23:01:27 PDT By: Mcginnis
A[NUMER1C-CONSTRAINT-PARAMETER]: 12

PATH: (TABLE HEIGHT)
B[NUMERIC-CONSTRAINT-PARAMETER]: 10

SOURCE: GIVEN-CONSTRAINT-76
PATH: (LEG HEIGHT)

C[NUMERIC-CONSTRAINT-PARAMETER] : 2
SOURCE: GIVEN-CONSTRAINT-77
PATH: (TOP HEIGHT)

EQUATION[EXPR]: (= A (+ 8 C))
PHRASE[CONSTRAINT-PHRASE]: ((TABLE HEIGHT) (LEG HEIGHT) + (TOP HEIGHT))

Figure 35 Equality Constraint Instance Frame

parsed, the phrase slot can be specified by directly

imputing a text string.

All the constraint expressions are modelled in the

same manner, with the major difference between them being

the type of arguments and operations used. The

constraints are implemented based on the syntactic

structure mentioned previously, that is there are

dependent and independent feature(s) connected by some

relation or instantiation. A constraint expression will

contain one or more constraint arguments (A,B,C), see

Figure 35. These arguments are related to each other by

some set of language operators (i.e., =, +, coplanar,

rotates about,...etc.). The language operators employed

depend on the constraint language specified. The argument

slots of the constraint object each have associated with

them facets or sub-slots. The facets specific to these

constraint arguments are path, role, and source.

The path facet of a constraint argument is used to

bind that argument to a particular design object

parameter. For example, a path facet for an equational

constraint is (gripper width) or (pedestal load), for a

graphical constraint (flipping-frame front) or (plate x-
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axis), and for a textual constraint (outer-frame behavior)

or (pedestal appearance).

The role facet is used to distinguish the constraint

argument as being dependent or independent. A role facet

is set as one of two values: in or out. The in value

signifies that an argument's value is brought into the

constraint and is therefore independent. The out value

states that an argument's value is calculated or generated

within the constraint and is considered to be the

dependent argument. The information in the path and role

facets is used to link the constraints to the in-

constraint and out-constraint facets of the design object

attributes that are being used or specified.

The source facet of a constraint argument (see Figure

35) points to the original constraint from which the

argument retrieved its value. The source facet appears

and is used only by the independent argument of the

constraint expression. Where the path facet points to the

design object attribute bound to the constraint argument

(A,B,C), the source indicates what particular constraint

was specifying that attribute at that time. For example,

in Figure 35, argument B is bound the path facet to the

(leg height). At the time this constraint was constructed,

the value of (leg height) was 10. This value of 10 for

(leg height) was specified by a constraint in the in-

constraint facet of that attribute, and the constraint

that specified that value was given-constraint-76. In

this way, as the value of the (leg height) attribute

changes along with the in-constraints specifying it, the

constraint argument using that specific value can

determine from which specific in-constraint it was

specified. This use of the source facet in the

independent arguments of the constraint directly indicates

what constraint was involved in that argument's value

(i.e.,, B = 10).
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Using a standard method for the constraint

implementation provided a consistent and reliable means of

entering and creating the constraints. Although the

arguments of all constraints were modelled in a similar

manner, the argument types, language operators used,

constraint solvers, and constraint parsers are different

for each constraint language subclass. The specialization

of the constraints by constraint language allowed for a

variety of constraint expressions to be modelled. It also

enabled the implementation to assimilate new constraint

languages or update old ones as needed. The following is

a discussion of the constraint languages used, their

argument types, the operators available, and the solving

techniques used if any.

The equational language is used to express constraints

that specify or relate a numeric quantity to a design

Typical Constraint Equations

Constraint Language Expressions Lisp Equation Used
Equality A = Value (= A Value)

A = B + C (= A (+ B C))

Inequality A > Value (> A Value)
A < 2 B (< A (* 2 B))

Qualitative A >> Value none
A Value none

Condition IF A > B (if (> A B)
THEN A =B (= A B))

Other A = result of FEA none
A = table lookup none

Figure 36 Typical Equations
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object parameter. Therefore, they are used exclusively by

the constraint role numeric-parameter, which has

"equational" as its default language. The arguments of

the equational constraints should always be bound to the

numeric valued parameters of the design objects, it does

not make sense to specify the color slot of a design

object as being "<6". The equational language arguments

have both the role and path facets mentioned previously.

All the equational language descendants contain an

equation slot that is used to calculate the dependent

argument's value. This slot contains a lisp expression

that is evaluated along with the constraint arguments and

appropriate values to produce the constraint's output

value. A list of typical equations for the different

equational languages can be found in Figure 36. These

equations can be selected from preexisting constraint

class objects, A=B+C, A<2*B, or can be specified by the

user when building new constraint classes as needed. For

example, if a particular equation regarding the stress of

an I-beam was not already present in the constraint class

set, it is created by the user and then automatically

added to the existing constraint set. The equational

language is currently subdivided into the equality,

inequality, qualitative, conditional, and other

subclasses.

The equality constraints specify exact values for

design object parameters. The main criterion for this

equational constraint subclass is that it specifies an

exact value as opposed to a general value or range of

values. The primary operator used by the equality

constraints is the equality (=). As with all equational

constraints, other algebraic operators can also be used in

association with the primary operator (i.e., +, /, *).

One of the more common and most basic of the equality

constraints is A=VALUE, in which a design object parameter
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is instantiated or set to a specific numeric value. More

complicated constraints can exist, and the user is only

limited by the extent of computer code needed to solve the

constraint equation. As mentioned earlier, the constraint

subclasses are not finite, and new constraints can be

easily added as necessary.

The inequality constraints are very similar to the

equality constraints, with the biggest difference being

the primary relational operators used. The operators used

by the inequality constraints are the inequality operators

(i.e., <, >, <>). The other main difference is the solver

used for this constraint subclass. Where the solver for

equality constraints returns the value calculated from the

constraint equation, the inequality constraints return an

expression that is derived from the constraint equation.

For example, the inequality constraint A<B+C has an

equation slot valued with the lisp expression "(< A (+ B

C))". Assuming B=4 and C=5 the inequality constraint

solver returns the expression "<9" as the solved value of

this constraint. This solver is somewhat rudimentary in

its treatment of inequalities, but it is adequate for the

purposes of the current design history. If this

implementation was to be used for a design tool, a more

advanced solver could be used to solve sets equations

simultaneously. Such a solver could return an exact value

instead of the current inequality expression (i.e., "<4").

The qualitative constraints are the most abstract of

the equational language constraints. These constraints

relate the value of design object parameter to some

subjective phrase, such as "as close as possible",

"short", "want the maximum". Although the current

constraint implementation does not incorporate a

constraint optimizer, the use of a qualitative constraint

subclass gives the capacity for this future enhancement.

The solver for the qualitative constraints is similar to
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the one for inequality constraints in that it returns an

expression that expresses the essence of the constraint.

For example, the constraint A»VALUE states that argument

A should be as large as possible in relation to VALUE. If

VALUE was set to 10, the constraint returns the expression

'>>10" when solved for.
TiJECTIDITORWITTIFACF TS: THESIS -TART F.CAVFN-CONSTRAINT-E1

OBJECT: GIVEN-CONSTRAINT-61
SYNONYMS:
GROUPS: DESIGN
TYPE: INDIVIDUAL
Edited: 31-May-90 23:19:26 PDT By: Mcginnis
KNUMERIC-CONSTHAINT-PARAMETER]: 1

PATH: (LEG LENGTH)
SOURCE: NIL

B[NUMERIC-CONSTRAINT-PARAMETER]: 2
PATH: (TOP HEIGHT)
SOURCE: GIVEN-CONSTRAINT-77

PHRASE[CONSTRAINT- PHRASE]: "If the leg lenght Is greater than the top height the set the length equal to the height"

Figure 37 Conditional Constraint Instance Frame

The conditional constraints are used when the value of

the constrained parameter is determined by some

conditional (if-then) relationship. For example, a

conditional constraint is "if the flipping frame hits the

front of the tank then shorten the lever arm". This

constraint is dependent on the behavior of the flipping

frame and affects the length of the lever arm. These

constraints are different from the other equational

constraint subclasses in that the value of the dependent

argument is contingent on a condition. These constraints

are expressed in terms of if-then statements. Ideally the

constraint solver should be able solve whatever

conditional statement is residing in the equation slot of

that constraint. Unfortunately not all conditions can be

easily calculated, such as the flipping frame behavior

stated above. Therefore the actual value returned by the

solved constraint is the value stated by the original

designer and the actual conditional statement resides in
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the phrase slot of the constraint, see Figure 37. In this

way the constraint behaves as an equality constraint when

solved for but actually contain the conditional statement

made by the designer.

The last equational constraint subclass currently

recognized in the implementation is the other class. This

subclass deals with those constraints whose resulting

value cannot be coded into a coherent or easily solved for

expression. Examples of these constraints include

attribute values that were extracted from graph or table

lookups or values that were derived from an analytical or

numerical integration or differentiation. Like the

conditional constraints, these constraints behave as

equality constraints because they specify an exact value,

but their true constraint expression resides in the phrase

slot.

This set of subclasses for the equational constraint

language is not exhaustive. New types of equational

constraints will be added as they are identified. The

subclasses presented here are only representative of the

constraints extracted from the protocol data. For

example, an additional constraint subclass might be finite

element analysis, in which the equation slot of the

constraint designates some FEA code or program to run in

order to evaluate that constraint. All of the constraint

languages are openended in this way, and this enables the

implementation to expand as is needed.

Graphical, the next basic constraint language, is used

to express spatial relationships or restrictions.

Consequently there are two different subclasses for this

language: spatial-constraint and restriction-constraint.

The spatial relations are dependent on the topology of the

objects to be related. For example, a 2-dimensional

topology would involve of points, lines, and curves.

Therefore the expressions needed to define these would
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include parallel lines, line through a point, line tangent

to a curve, and so on. The topology used by the designer

was 3-dimensional, so design objects were constructed from

solid geometries (CSG). This topology involves surfaces,

axis, and edges. Some expressions needed for this

topology include parallel and perpendicular surfaces, co-

axial axis, same edges, or co-linear edges (edges that are

collinear but can rotate relative to each other).

Therefore the spatial constraint subclasses are divided

according to the topology referred to by the constraint

surface-constraint, axial-constraint, edge-constraint, and

combined.

BJECIED1101-1WIIHFACEIS: IHESIS-IAI3LE.GIVEN-CONSIRAIN1 37
OBJECT: GIVEN-CONSTRAINT-37
SYNONYMS:
GROUPS: DESIGN
TYPE: INDIVIDUAL

INDEPENDENT-SURFACE[GEOMETRIC-CONSTRAINT-PARAMETER]: (TOP BACK)
PATH: (TOP BACK)

DEPENDENT-SURFACE[GEOMETRIC-CONSTRAINT-PARAMETER]: (LEG-4 BACK)
PATH: (LEG-4 BACK)

Figure 38 Spatial Orientation Instance Frame

The individual implementation of these subclasses is

very similar and therefore will be explained as a single

group. Each constraint has dependent and independent

topologies, that are surface, edge, or axis, see Figure

38. These constraint slots are bound to the design object

topologies to be related. The constraint is then enforced

or solved for by sending a message to the constraint to

assert itself. This assert method then sets the

orientation of the dependent topology and subsequent

design object in accordance with the location of the

independent topology and the prescribed relation.

The spatial constraints are solved for by examining

the design objects and determining the dependencies of
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constraints affecting the x,y,z translations and

rotations. This results in an ordered list of constraints

that are solved for or asserted, in order to produce the

correct orientation of the objects. The ordering of these

constraints by the computer is important to the final

orientation result. The assert method is used since these

constraints are solved in an ordered set, as opposed to

the regular constraints which are solved for on an

individual basis. This allows spatial constraints to be

stated in any chronological order as long as the

constraint dependencies make sense (i.e., block-a's

location is dependent on block-b's location, which is

dependent on block-a's location,.... and so on).

The other subclass for the graphical language is the

restriction-constraint subclass. These constraints are

used to express limitations or restrictions on where the

design objects can be located. These restrictions are

expressed in terms of volumes not to enter, such as "leave

the side areas of table free" or "do not enter tank in

these areas (from specification drawing)". Other

expressions affect surfaces, like "only 1/4" of the plate

periphery can be handled" or "do not touch 1 1/2" from

table back edge". The restriction constraints are

therefore subdivided into volume-restriction and surface-

restriction.

The volume-restriction constraints refer to volumes

not be entered or violated. Therefore these expressions

simply state a volume that is not to be occupied (e.g.,

"table side areas"). These constraints have an area slot

that contains a description of an area or volume that is

not to be entered.

The surface-restriction constraints are represented in

terms of a surface reference, a distance, and direction,

see Figure 39. The reference is the object surface from

which the restriction originates (i.e., "the plate
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ASTOBJECTEDITOR: DH-TEMPLATE.SURFACE-RESTRICTION
OBJECT: SURFACE-RESTRICTION
SYNONYMS:
GENERALIZATIONS: SPACIAL-RESTRICTION
GROUPS: TEMPLATE
TYPE: CLASS
Edited: 15-May-90 21:53:08 PDT By: Mcginnis
REFERENCE[TEXT]:
DISTANCE[EXPR]:
DIRECTION[TEXT]:

Figure 39 Surface Restriction Class Frame

periphery" or "the table back edge"). The distance is the

measure from that reference, and the direction is a

qualifier on that distance. The restriction constraints

are currently not solved for or asserted, but a

restriction constraint checker can be later added if

desired.

The last basic constraint language, textual, expresses

constraints that do not directly relate to the numerical

or geometric properties of the design object. There are

currently no solve methods for these constraints. The

solved values returned by these constraints are the

results of the parse method discussed previously. These

constraints have been subdivided based on the

representation scheme used: structured, simple, and

special. The implementations for the structured and

simple constraints are mapped directly from the

representational forms discussed earlier. The only

difference is the addition of the parse slot, which when

used creates phrases from the constraint.

The structured constraints model expressions that are

stated in the form of a declarative sentence. This

language contains slots for the object, action, receiver,

location, and action-qualifier arguments discussed

earlier. The object and receiver slots are specified by
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pointers to design objects; the remaining slots are

AST OBJECTEDITOR: DH-TEMPLATE.STRUCTURED
OBJECT: STRUCTURED
SYNONYMS:
GENERALIZATIONS: TEXTUAL
GROUPS: TEMPLATE CONST-TYPE
TYPE: CLASS
Edited: 31-May-90 21:40:48 PDT
OBJECT[DESIGN-OBJECT]:
ACTION[EXPR]:
RECEIVER[DESIGN-OBJECT]:
LOCATION[EXPR]:
ACTION-QUALJFIER[EXPR]:
SEQUENCE[OBJECT]:
DECOMPOSITION[OBJECT]:
ALTERNAT1VES[OBJECT]:

By: Mcginnis

Figure 40 Structured Language Class Frame

specified by text strings, see Figure 40. Additional

slots contained in the structured language object include

the sequence, decomposition, and alternative slots. These

slots can contain a series of other structured language

constraints. These series slots are used if the stated

structure is further broken down into either an ordered

sequence, decomposed elements, or alternative options,

respectively.

OBJECT EDI I WWI I III ACL IS: I I ILSIS-IABLL.GIVEN-CONS I BAIN 1-59
OBJECT: GIVEN-CONSTRAINT-59
SYNONYMS:
GROUPS: DESIGN
TYPE: INDIVIDUAL

DEPENDENT-FEATURE[TEXTUAL-CONSTRAINT-PARAMETER]: NIL
PATH: (TABLE COLOR)

INDEPENDENT-FEATURRTEXTUAL-CONSTRAINT-PARAMETER]: dark blue

PATH: (OFFICE COLOR)
INSTANTIATION/RELATIORTEXT]: lighter than

Figure 41 Simple Language Instance Frame
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The simple language is used for constraint expressions

that are not expressed in as structured declarative form.

This language contains a dependent-feature, independent-

feature(s), and relation/instantiation slot, see Figure

41. The feature slots are specified by pointers to design

object parameters. The relation or instantiation slot is

specified by a text string.

The special constraint subclasses currently includes

the object-form-language, status-language, and function-

constraint-language. These subclasses are used for

specific constraint roles and enable the language to

become specialized for certain constraint roles. The

object-form-language is used to create constraints

affecting the basic form and configuration of the design

objects. These constraints have slots for the name,

shape, parent, and components of a design object, see

Figure 42. When solved for, these constraints either

create a new design object or modify an existing one.

The status-language constraints, used exclusively by

the status constraint role, select a design object

parameter and its related constraint for a status change.

ASTOI3JECTEDITOR: THESIS-TABLE.GIVEN-CONSTRAINT-74
OBJECT: GIVEN-CONSTRAINT-74
SYNONYMS:
GENERALIZATIONS: GIVEN-CONSTRAINT CREATE-OBJECT OBJECT-FORM-

LANGUAGE
GROUPS: DESIGN
TYPE: INDIVIDUAL

NAME[EXPR]: TABLE
SHAPE[DESIGN-PRIMITIVES]: COMPOSITE
PARENT[DESIGN-OBJECT]: OFFICE
COMPONENTS[DESIGN-OBJECT]: TOP, LEG-1, LEG-2, LEG-3, and LEG-4

Figure 42 Object Form Language Instance Frame

This constraint language contains the slots affected-
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feature and constraint-affected. The affected feature

slot refers to what design object parameter is to be

indirectly affected by the status constraint. The

constraint affected slot is used to point to the

constraint that is to have its status slot value changed.

The constraint solver simply sets the value of the status

slot in the constraint named in the constraint-affected

slot (i.e., active, inactive, suspended). This can

subsequently affect the value of the design object

parameter that was set by that particular constraint.

Since the parameter value is determined by finding the

first constraint with a non "inactive" valued status from

the list of constraints residing in the in-constraint

facet of that parameter.

The last special constraint subclass is the function-

constraint-language. The main reason for separating this

constraint language out from the others was the need for a

special user interface when creating the function

constraints. This interface enables the user to specify

the purpose or behavior of an object by specifying the

appropriate function-module. If the function module does

not currently exist or needs to be changed, the user is

given the opportunity to do this. This allows for both

the selection and modification of the function modules to

occur together, which makes for cleaner, more efficient

constraint creation.

5.2.4 Constraint Implementation Summary

Using the decendents of the three primary class

objects, constraint-source, constraint-role, and

constraint-language, a constraint instance is generated.

By using these constraint instances to specify the

attribute values of the design objects, the state of the

design is represented. The use of the decision instances

to generate and record the introduction of new constraints
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into the design space captures the temporal process of the

design. By keeping track of the decisions, constraints,

and design objects of design, a history of the design is

maintained.
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6. CONCLUSIONS

The goal of this research was to develop and implement

a representation for mechanical designs that not only

represented the final state of a design but also the

temporal intermediate states as well. The representation

was developed from a design process model based on

protocol data taken of mechanical engineers solving

original design problems. The representation was

implemented in HyperClass, an object oriented programming

environment. The implemented representation succeeded in

fulfilling the requirements identified from the constraint

analysis and has been used to represent a subset of the

constraints extracted from the design protocols.

6.1 Conclusion of Constraint Analysis

The focus of the constraint analysis was concerned

with the development and propagation of constraints and

features in the mechanical design process. This was

accomplished by studying the constraints that affected the

design of one part throughout the entire design protocol.

By identifying and codifying these constraints, a better

understanding of the necessary requirements for

representing them was acquired.

A constraint classification was developed and

evaluated that consisted of a constraint source, level of

abstraction, and constraint structure. The structure

developed for the constraints was based on feature

relationships. These feature relationships were of the

form:

[dependent feature]-[instantiation]
or

[dependent feature]-[relation]-[independent feature(s)]

From these basic structures, 10 different structure types
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were generated. These structures were used to

successfully model all the constraints identified in the

design of the part examined. These structures were also

an aid in identifying two of the important aspects of the

constraint information, namely the constraint role and the

constraint language.

The analysis performed resulted in substantial insight

into constraint and feature generation and propagation in

the process of mechanical design. By examining the

constraint classification and structures used, the

requirements of a mechanical design constraint

representation were established.

6.2 Representation Conclusions

A design process representation has been developed

that is capable of documenting the initial, intermediate,

and final states of a design as well as the design

processes that connects them. By modelling the design

process as a series of design decisions, the

representation captures the intent of the original

designer. The design decisions result in new constraints

which in turn instantiate or modify the values or

relations between the design object attributes of the

design.

The representation is composed of three fundamental

concepts that interact together to form a history of the

design process: the design objects, constraints, and

decisions. The design objects, which represent the

physical artifacts of the design, are comprised of a set

of design object attributes. These attributes embody the

properties, parameters, and characteristics of the design

object that are of concern to the designer, such as

length, weight, behavior, and appearance. The values and

relationships among these attributes are specified by the

constraints of the design.
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The representation for constraints is composed of

three aspects of the constraint information: constraint

source, constraint role, and constraint language. The

constraint source refers to the origin of the constraint,

whether it was given, introduced, or derived. The role of

the constraint determines what types of design object

attributes are affected by constraints, such as the

function, production, or numeric parameter. The language

of the constraint is concerned with what form the

constraint was expressed in, whether it was equational,

graphical, or textual. Using these three aspects, all

constraints observed in the protocol can be represented.

The design decisions are the processes by which new

derived constraints are generated within the design space.

These are represented by noting the inputs and results of

the decision. By chronicling the decisions of the design,

a history of that design can be recorded. The

representation is capable of maintaining not only the

process of the design but also the intermediate states of

the design as well.

6.3 Current Capabilities of Implementation

The design process representation was implemented in

HyperClass, an object oriented programming environment.

The implementation is openended and allows for new

constraint types or subclasses to be added as needed.

The architecture used enables modifications and

enhancement to the system to occur without difficulty.

The current constraint implementation can be used to

represent all the constraints found in the protocols

examined. Not all the constraints modelled have

computational meaning; some constraints simply state the

value or relation expressed by the designer in textual

terms.

The constraint implementation is sufficient enough to
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generate accurate graphical images of the design objects.

These graphical images are 2-dimensional projections of

the 3-dimensional design. The images are incorporated in

a browsing interface tool, which uses the images for the

querying of the design.

The implementation is the basic foundation of the

design history tool. This tool will be used to record,

represent, and playback designs for the purposes of

improved design communication. The design history may

potentially aid in the process of redesign in that it will

relate the designer's original intent of the design.

6.4 Future Recommendations and Suggestions

Although the current implementation is capable of

representing all the constraints extracted from the

protocol data, not all the constraints represented have

computational meaning. Only a subset of the equational

and graphical language constraints have solvers associated

with them. To improve the implementation, constraint

solvers can be created or incorporated for a broader range

of the constraints. The current equational and graphical

solvers can also be upgraded if a variational design tool

is desired.

The representation used for modelling the decision

object is rudimentary, in that it treats the decision as

black block. This representation of the decision notes

only what goes in and what comes out but does not concern

itself with the actual workings of the decision process.

To give more meaning to the decisions represented in the

system, a more detailed decision representation needs to

be developed. This new decision representation should be

capable of relating the designer's decision rationale in

more detail and with more structure. A structured

decision representation could lead the way for an expert

system, which would perform automatic redesign.
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Another improvement to the implementation would be a

refinement of the design recorder. Although the current

design recorder is sufficient for purposes of entering

protocol data, it is not user friendly. It allows no easy

means of quickly inspecting the results of the decisions

or constraints being entered. The pop-up menus of the

recorder disappear after a selection made and it is easier

for the user to become confused about where he is in the

recorder. A more user-friendly interface that constantly

showed the user where in the recording process he was and

displayed the effects of decisions and constraints being

generated, would greatly enhance the usability of the

implementation.

The design process representation and implementation

presented and discussed in this thesis is an attempt to

formally model the process of mechanical design. The

representation, based on constraints, covers a broad range

of different constraint types. Rather than try to fully

represent one particular type of constraint, the

representation lays a foundation from which to model many

different constraint types. It is hoped that this

foundation can be used as the basis for future research

projects in the area of mechanical design.
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Appendix I. Original Problem Statement

Our manufacturing company needs a machine to coat

thin, aluminum "plates" for use in a mechanical lung

machine. A thin chemical layer will be cast on the

surface of a water bath for coating the plates. The

machine needs to dip both sides of the plates into this

chemical bath. We need you to design three of these

machines. There is a large machine shop on the premises

for building these machines in-house.

Specifically, the process for coating these plates

will be as follows:

A worker loads the machine with a .063 x 10 x 10 inch

aluminum plate (see Figure 1). Since the worker needs to

load and unload these plates all day from a standing

position, fatigue should be kept to a minimum.

The worker visually insures that the surface of the

water is clean and then uses a syringe to eject a

premeasured amount of chemical in solvent solution on the

surface of the water. The chemical solution spreads as an

oil slick over the surface. When the solvent evaporates

(just a few seconds) the 500 Angstrom thick chemical layer

is ready to be applied to the surface of the plate. The

chemical is nontoxic and safe to handle.

The chemical is applied to the surface of the plate by

gently lowering the plate onto the water where surface

tension will cause bonding instantly. The plate should

not go in more than half of its thickness. Once the plate

is coated, it is moved away from the surface and the

process is finished for that side of the plate. The

excess chemical left on the surface of the water is

cleared from the bath manually by the worker (the layer is

very thin and sticky).

The process must be repeated to coat the other side of

the plate. After coating both sides, the plate is then
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presented to the worker for unloading. The entire process

should take a maximum of 40 seconds.

There are a few constraints on the problem, namely:

(1) The plates can only be edge handled. Only the edge

1/4" around the periphery of the plate can be touched

by either the worker or the machine at any time (see

Figure 1).

(2) The water must be kept clean as any impurities can

affect the integrity of the chemical. This is

especially true of organic materials.

(3) Parts of the machine that hold the plate can enter the

water, outside the periphery of the plate, to a depth

of up to 1/2" as shown in Figure 1.

(4) It is anticipated that the machine will mount on the

table surface in the areas shown in figure 2. The

machine can not extend within 1.5" of the edge of the

table.

(5) The water bath level is automatically maintained 0.5"

below the surface of the table, plus or minus 0.01".



Appendix II. Features from Protocol

II.A. All features Observed

aluminum block

aluminum block location

back cross member

back cross member location

back cross member purpose

back pivot point

back pivot point center line

back pivot point elevation
back pivot point location

back pivot point manufacture

bearing location

bearing manufacture
bearing material

bearing purpose

bolt location

bolt type
bolt installation

bushing installation

bushing material

bushing purpose
bushing

bushing location

chemical

chemical bonding

chemical layer

chemical toxicity

cross member

cross member purpose
detentes
detentes purpose

diagonal cross member
diagonal cross member
diagonal cross member location doubler

location

doubler manufacture

doubler purpose
doubler quantity

doubler size
doubler thickness

doubler
finger

flipping frame

flipping frame back cross member thickness

flipping frame back cross member purpose
flipping frame back cross member

flipping frame back cross member location

flipping frame cross member purpose
flipping frame cross members
flipping frame depth

flipping frame downward travel

flipping frame elevation

flipping frame front cross member location

flipping frame front cross member

flipping frame inner arm location

flipping frame location

flipping frame material

flipping frame movement

flipping frame operation

flipping frame orientation
flipping frame outer arm

flipping frame outer arm height

flipping frame outer arm location

flipping frame outer arm material

flipping frame outer arm purpose
flipping frame outer arm shape

flipping frame outer arm thickness

flipping frame racking

flipping frame rear portion
flipping frame rotation

flipping frame shape

flipping frame stability

flipping frame upward travel
flipping frame vertical travel

flipping frame weight

flipping frame width

framework
framework downward travel

framework material

framework orientation

framework side travel

framework stability

framework upward travel

front cross member
front cross member cross section
front cross member location

front cross member purpose

front pivot point

front pivot point arc
front pivot point center line

front pivot point diameter

front pivot point elevation

front pivot point elevation
front pivot point hole diameter

front pivot point location

front pivot point operation

front pivot point purpose

gripper

gripper location
gripper material

gripper operation
gripper shape

gripper shape purpose

gripper thickness

gripper tolerances
gripper width

guide rods

guides

guides operation
hangers

hangers purpose

knob

knob diameter

knob location

knob operation

knob purpose

knob shape

knob type

lever arm

lever arm bearing area

lever arm cross section
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lever arm front extension length
lever arm length

lever arm location

lever arm longevity

lever arm moment

lever arm operation

lever arm purpose

lever arm rear
lever arm rear doublers

lever arm rear extension

lever arm rear extension length

lever arm rear outside doubter thickness
lever arm rear outside doubler size

lever arm shape

lever arm spring hole

lever arm vertical travel

lever arm width

lever arms orientation

machine

machine appearance
machine area

machine cleaning

machine design

machine installation
machine loading

machine longevity
machine manufacture

machine materials
machine mounting

machine mounting area

machine movement

machine operation
machine operation time
machine power

machine quantity

machine racking
machine rear

machine safety
machine stresses

machine surface

machine tubing material

machine tubing size

machine weight
operator
operator area

operator comfort

operator effort

operator fatigue
operator gripping length

operator hand
operator position

outer frame
outer frame inside width

outer frame material

outer frame orientation

outer frame racking

outer frame shape

outer frame torque

outer frame twisting

outer frame twisting movement
pedestal

pedestal base

pedestal base location
pedestal height
pedestal location
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pedestal moment
pedestal width

pivot point hole quantity

pivot point holes

plate

plate coating

plate edge

plate loading
plate material

plate orientation

plate restriction

plate side
plate size

plate surface

plate thickness

plate weight
restricted area

restrictions

safety factor

shoulder bolts
shoulder bolts loading

shoulder bolts manufacture

shoulder bolts thread

sink location

sink rear edge

spring

spring hook

spring hook location
spring location

spring purpose

spring relaxed/stretched length

spring size
spring support holes diameter

spring support hole manufacture

tank free area

tank front

tank front edge

tank front edge location

tank location

tank rear edge

tank restricted area

tank safety border

tank sides
tank width
thrust collar

water

water bath

spring support plate
spring support plate quantity
spring support plate size
spring support plate thickness spring type

stop
stop elevation

stop location

stop manufacture

stop purpose

surface of table

table

table area

table back edge location

table depth

table edge

table edge area

table edge restriction
table ends
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table front edge

table height

table length

table location
table molding

table rear edge

table sides

table surface

tank

tank area

tank border

tank center line
tank depth

tank edge

tank edge restrictionwater bath level

water bath size
water depth limit

water depth limitation

water depth restriction

water level

water purity

water surface
water surface cleaning

water tank depth

water tank width



Appendix II.B.

Form Features

Feature Attributes

Geometry: Production:
area installation
border manufacture
center line mounting
cross section quantity
depth threads
diameter tolerances
edge type
elevation
extension Material:
height material
hole
layer Misc:
length appearance
level comfort
restriction design
shape effort
size general
surface longevity
thickness purity
width safety

toxicity
Spatial:
location
orientation
position
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Function Features

Purpose:
moment
purpose
racking
stability
stresses
torque
twisting

Behavior:
bonding
cleaning
coating
fatigue
loading
movement
operation
power
rotation
time
travel
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Appendix III. Implementation Code

III.A. Knowldege Base Printout

;;; -*- Mode: Lisp; Syntax: Common-lisp; Package:SLB-CL;
Base: 10 -*-

;;;; Copyright (c) 1990 Schlumberger Technologies, Inc..
All rights reserved.

;; Dump of knowledge-base DH-TEMPLATE
;;;; Made by Lucid Common Lisp 3.0.2
;; on Sun-4 edison under Unix release unknown

;;;; at NIL.
;;;; Filed on
/home/edison/mcginnis/dh-template/dh-template.kb.
;;;; Written on 21-Jun-90 21:14:12 PDT by Mcginnis.

(in-package :strobe)

;;; Declare knowledge base DH-TEMPLATE

(DEFKB DH-TEMPLATE
95
NIL
((PACKAGE . "SLB-CL") (WRITE-DATE . 2855016852)

(KB-STRUCT-FNS
(ACTIVE-DEPENDENTS

DH-TEMPLATE/ACTIVE-DEPENDENTS

DH-TEMPLATE/BREAKDOWN

DH-TEMPLATE/ORIGINAL-SOURCE

DH-TEMPLATE/ALL-DEPENDENTS

NIL)
(BREAKDOWN

NIL)
(ORIGINAL-SOURCE

NIL)
(ALL-DEPENDENTS

NIL))
(SHOWDATATYPESWHENEDITING .

(EDITOR . "Mcginnis")
(AUTHOR . MCGINNIS)))

;;; Declare the objects in knowledge base DH-TEMPLATE

;;; Declare object ROOT

(DEFOBJECT ROOT
CLASS
NIL
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SYSTEM
((DOCUMENTATION (DATATYPE . TEXT)

(DOCUMENTATION
. "This slot contains

documentation for the object."))
(EDITOR-TO-USE (VALUE FASTOBJECTEDITOR

PLAYBACKEDITOR)))
("Achen" "19-Jul-89 10:01:33 CDT"))

;;; Declare object DATATYPE

(DEFOBJECT DATATYPE
CLASS
ROOT
SYSTEM
((DATUM-ADD (DATATYPE . LISP)

(VALUE . SYS/MADDVALUE))
(DATUM-EDIT (DATATYPE . LISP)

(VALUE . SYS/EDITEXPR))
(DATUM-GET (DATATYPE . LISP)

(VALUE . SYS/MGETVALUE))
(DATUM-PUT (DATATYPE . LISP)

(VALUE . SYS/MPUTVALUE))
(DATUM-PRINT (DATATYPE . LISP)

(VALUE . SYS/PRINTEXPR))
(DATUM-REMOVE (DATATYPE . LISP)

(VALUE . SYS/MREMOVEVALUE))))

;;; Declare object BITMAP

(DEFOBJECT BITMAP
CLASS
DATATYPE
SYSTEM
((DATUM-EDIT (VALUE . SYS/EDITBM))
(DATUM-PRINT (VALUE . SYS/PRINTBITMAP))))

;;; Declare object EXPR

(DEFOBJECT EXPR
CLASS
DATATYPE
SYSTEM
((DATUM-EDIT (VALUE . SYS/EDITEXPR))

(DATUM-PRINT (VALUE . SYS/PRINTEXPR))))

;;; Declare object NUMERIC

(DEFOBJECT NUMERIC
CLASS
EXPR
TEMPLATE
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((DATUM-GET (VALUE . NUMERIC. DATUM -GET))
(DATUM-PRINT (VALUE . NUMERIC.DATUM -PRINT)))

("Mcginnis" "3-May-90 20:12:05 PDT"))

;;; Declare object TEXT-VALUED

(DEFOBJECT TEXT-VALUED
CLASS
EXPR
TEMPLATE
((DATUM-PRINT (VALUE .

TEXT-VALUED.DATUM -PRINT))
(DATUM-GET (VALUE . TEXT -VALUED.DATUM -GET)))

("Mcginnis" "7-May-90 13:01:37 PDT"))

;;; Declare object CONSTRAINT-PHRASE

(DEFOBJECT CONSTRAINT-PHRASE
CLASS
EXPR
TEMPLATE
((DATUM-GET (VALUE .

CONSTRAINT-PHRASE.DATUM-GET))
(DATUM-PRINT (VALUE .

CONSTRAINT-PHRASE.DATUM-PRINT)))
("Mcginnis" "15-May-90 22:28:57 PDT"))

;;; Declare object LISP

(DEFOBJECT LISP
CLASS
DATATYPE
SYSTEM
((DATUM-EDIT (VALUE . SYS/EDITLISP))
(DATUM-PRINT (VALUE . SYS/PRINTLISP))
(DATUM -BOTTOMUPADDITIVEINHERITANCE (DATATYPE

. LISP)

SYS/LISP/DATUM-BOTTOMUPADDITIVEINHERITANCE))
(DATUM-BOTTOMUPADDITIVEINHERITORS

LISP)

SYS/LISP/DATUM-BOTTOMUPADDITIVEINHERITORS))
(DATUM-TOPDOWNADDITIVEINHERITANCE

LISP)

SYS/LISP/DATUM-TOPDOWNADDITIVEINHERITANCE))

(VALUE

(DATATYPE .

(VALUE

(DATATYPE .

(VALUE



LISP)
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(DATUM-TOPDOWNADDITIVEINHERITORS (DATATYPE .

(VALUE

SYS/LISP/DATUM-TOPDOWNADDITIVEINHERITORS))
(BOTTOMUPADDITIVEINHERITANCE (DATATYPE .

LISP)
(VALUE

SYS/DATUM-BOTTOMUPADDITIVEINHERITANCE))
(BOTTOMUPADDITIVEINHERITORS (DATATYPE . LISP)

(VALUE

SYS/DATUM-BOTTOMUPADDITIVEINHERITORS))
(TOPDOWNADDITIVEINHERITANCE (DATATYPE . LISP)

(VALUE

SYS/DATUM -TOPDOWNADDITIVEINHERITANCE))
(TOPDOWNADDITIVEINHERITORS (DATATYPE . LISP)

(VALUE

SYS/DATUM -TOPDOWNADDITIVEINHERITORS))))

;;; Declare object P-LISP

(DEFOBJECT P-LISP
CLASS
LISP
TEMPLATE
((DATUM-PRINT (VALUE . SYS/PRINTLISP-P-LISP)))

("Mcginnis" "2-Aug-89 9:47:29 CDT"))

Declare object OBJECT

(DEFOBJECT OBJECT
CLASS
DATATYPE
SYSTEM
((DATUM-EDIT (VALUE . SYS/EDITOBJECT))

(DATUM-PRINT (VALUE . SYS/PRINTOBJECT))
(CREATE (DATATYPE . LISP))
(OBJECT-DELETION-PROCEDURES (DATATYPE .

LISP))

LISP)))
(OBJECT-CREATION-PROCEDURES (DATATYPE .

("Mcginnis" "27-Nov-89 15:16:53 PST"))

;;; Declare object DECISION
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(DEFOBJECT DECISION
CLASS
OBJECT
TEMPLATE
((INPUT-CONSTRAINTS (DATATYPE .

CONSTRAINT-SOURCE)
(VALUE))

(RESULTING-CONSTRAINT (DATATYPE
CONSTRAINT-SOURCE)

(VALUE))
(PRECEDING-DECISION (DATATYPE . DECISION)

(VALUE))
(SUCCEEDING-DECISION (DATATYPE . DECISION)

(VALUE))
(OBJECT-DELETION-PROCEDURES

(VALUE . DECISION.DELETION -PROCEDURES))
(RATIONALE (DATATYPE . TEXT)))

("Mcginnis" "28-May-90 11:51:14 PDT"))

;;; Declare object CONSTRAINT-SOURCE

(DEFOBJECT CONSTRAINT-SOURCE
CLASS
OBJECT
TEMPLATE
((CREATE (VALUE)) (TIME-CODE (DATATYPE . EXPR)

(ROLE .

*NOVALUE*))
(ACTUAL-TEXT (DATATYPE

EXPR))
(STATUS (DATATYPE .

TEXT-VALUED)
(IN-CONSTRAINT

*NOVALUE*))
(ORIGINATING-DECISION

(DATATYPE . DECISION)))
("Mcginnis" "28-May-90 11:49:33 PDT"))

;;; Declare object GIVEN-CONSTRAINT

(DEFOBJECT GIVEN-CONSTRAINT
CLASS
CONSTRAINT-SOURCE
TEMPLATE
((SOURCE (DATATYPE . TEXT)

(ROLE . *NOVALUE*)))
("Mcginnis" "15-May-90 21:40:05 PDT"))

;;; Declare object INTRODUCED-CONSTRAINT
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(DEFOBJECT INTRODUCED-CONSTRAINT
CLASS
CONSTRAINT-SOURCE
TEMPLATE
((SOURCE (DATATYPE . TEXT)

(ROLE . *NOVALUE*)))
("Mcginnis" "15-May-90 21:40:28 PDT"))

;;; Declare object DERIVED-CONSTRAINT

(DEFOBJECT DERIVED-CONSTRAINT
CLASS
CONSTRAINT-SOURCE
TEMPLATE
((PRECEEDING-CONSTRAINT (DATATYPE . P-LISP)

(VALUE

DERIVED - CONSTRAINT. PRECEEDING- CONSTRAINT)))
("Mcginnis" "28-May-90 11:49:57 PDT"))

;;; Declare object CONSTRAINT-ROLE

(DEFOBJECT CONSTRAINT-ROLE
CLASS
OBJECT
TEMPLATE
((OBJECT-DELETION-PROCEDURES

(VALUE .

CONSTRAINT-ROLE.OBJECT -DELETION -PROCEDURES))
(DEFAULT-LANGUAGE (DATATYPE .

CONSTRAINT-LANGUAGE)
(VALUE . TEXTUAL)))

("Mcginnis" "15-May-90 23:53:09 PDT"))

;;; Declare object SPATIAL

(DEFOBJECT SPATIAL
CLASS
CONSTRAINT-ROLE
TEMPLATE
NIL
("Mcginnis" "27-May-90 14:23:10 PDT"))

;;; Declare object ORIENTATION

(DEFOBJECT ORIENTATION
CLASS
SPATIAL
TEMPLATE
((DEFAULT-LANGUAGE (VALUE .

SPATIAL-ORIENTATION)))
("Mcginnis" "15-May-90 21:54:24 PDT"))
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;;; Declare object RESTRICTION

(DEFOBJECT RESTRICTION
CLASS
SPATIAL
TEMPLATE
((DEFAULT-LANGUAGE (VALUE

SPATIAL-RESTRICTION)))
("Mcginnis" "15-May-90 21:54:53 PDT"))

;;; Declare object FORM

(DEFOBJECT FORM
CLASS
CONSTRAINT-ROLE
TEMPLATE
((DEFAULT-LANGUAGE (VALUE .

OBJECT-FORM-LANGUAGE))
(SOLVE (DATATYPE . LISP)))

("Mcginnis" "27-May-90 14:26:18 PDT"))

;;; Declare object CREATE-OBJECT

(DEFOBJECT CREATE-OBJECT
CLASS
FORM
TEMPLATE
((SOLVE (VALUE . CREATE-OBJECT.SOLVE)))
("Mcginnis" "1-May-90 22:23:11 PDT"))

;;; Declare object MODIFY-OBJECT-FORM

(DEFOBJECT MODIFY-OBJECT-FORM
CLASS
FORM
TEMPLATE
((SOLVE (VALUE . MODIFY-OBJECT-FORM.SOLVE)))
("Mcginnis" "2-May-90 1:17:33 PDT"))

;;; Declare object UNCLASSIFIED

(DEFOBJECT UNCLASSIFIED
CLASS
CONSTRAINT-ROLE
TEMPLATE
((DEFAULT-LANGUAGE (VALUE . SIMPLE)))
("Mcginnis" "27-May-90 14:26:50 PDT"))

;;; Declare object PARAMETER

(DEFOBJECT PARAMETER
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CLASS
CONSTRAINT-ROLE
TEMPLATE
((DEFAULT-LANGUAGE (VALUE . EQUATIONAL)))
("Mcginnis" "27-May-90 14:24:13 PDT"))

;;; Declare object FUNCTION

(DEFOBJECT FUNCTION
CLASS
CONSTRAINT-ROLE
TEMPLATE
((PARSE (DATATYPE . LISP)

(VALUE . FUNCTION.PARSE)))
("Mcginnis" "7-May-90 13:36:30 PDT"))

;;; Declare object PURPOSE

(DEFOBJECT PURPOSE
CLASS
FUNCTION
TEMPLATE
((DEFAULT-LANGUAGE (VALUE .

FUNCTION-CONSTRAINT-LANGUAGE))
(PURPOSE-1 (DATATYPE . FUNCTION-MODULE)

(ROLE . FUNCTION-PARAMETER))
(PURPOSE-2 (DATATYPE . FUNCTION-MODULE)

(ROLE . FUNCTION-PARAMETER))
(PURPOSE-3 (DATATYPE . FUNCTION-MODULE)

(ROLE . FUNCTION-PARAMETER))
(PURPOSE-4 (DATATYPE . FUNCTION-MODULE)

(ROLE . FUNCTION-PARAMETER))
(PURPOSE-5 (DATATYPE . FUNCTION-MODULE)

(ROLE . FUNCTION-PARAMETER))
(PURPOSE-6 (DATATYPE . FUNCTION-MODULE)

(ROLE . FUNCTION-PARAMETER))
(PURPOSE-7 (DATATYPE . FUNCTION-MODULE)

(ROLE . FUNCTION-PARAMETER))
(PURPOSE-8 (DATATYPE . FUNCTION-MODULE)

(ROLE . FUNCTION-PARAMETER))
(PURPOSE-9 (DATATYPE . FUNCTION-MODULE)

(ROLE . FUNCTION-PARAMETER))
(PURPOSE-10 (DATATYPE . FUNCTION-MODULE)

(ROLE . *NOVALUE*)))
("Mcginnis" "6-May-90 21:32:49 PDT"))

;;; Declare object BEHAVIOR

(DEFOBJECT BEHAVIOR
CLASS
FUNCTION
TEMPLATE
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((BEHAVIOR-1 (DATATYPE . FUNCTION-MODULE)
(ROLE . FUNCTION-PARAMETER))

(BEHAVIOR-2 (DATATYPE . FUNCTION-MODULE)
(ROLE . FUNCTION-PARAMETER))

(BEHAVIOR-3 (DATATYPE . FUNCTION-MODULE)
(ROLE . FUNCTION-PARAMETER))

(BEHAVIOR-4 (DATATYPE . FUNCTION-MODULE)
(ROLE . FUNCTION-PARAMETER))

(BEHAVIOR-5 (DATATYPE . FUNCTION-MODULE)
(ROLE . FUNCTION-PARAMETER))

(BEHAVIOR-6 (DATATYPE . FUNCTION-MODULE)
(ROLE . FUNCTION-PARAMETER))

(BEHAVIOR-7 (DATATYPE . FUNCTION-MODULE)
(ROLE . FUNCTION-PARAMETER))

(BEHAVIOR-8 (DATATYPE . FUNCTION-MODULE)
(ROLE . FUNCTION-PARAMETER))

(BEHAVIOR-9 (DATATYPE . FUNCTION-MODULE)
(ROLE . FUNCTION-PARAMETER))

(BEHAVIOR-10 (DATATYPE . FUNCTION-MODULE)
(ROLE . FUNCTION-PARAMETER))

(DEFAULT-LANGUAGE (VALUE .

FUNCTION-CONSTRAINT-LANGUAGE)))
("Mcginnis" "6-May-90 15:29:37 PDT"))

;;; Declare object GENERAL

(DEFOBJECT GENERAL
CLASS
FUNCTION
TEMPLATE
((FUNCTION-MODULE (DATATYPE . FUNCTION-MODULE))

(DEFAULT-LANGUAGE (VALUE .

FUNCTION-CONSTRAINT-LANGUAGE)))
("Mcginnis" "6-May-90 22:45:13 PDT"))

;;; Declare object PRODUCTION

(DEFOBJECT PRODUCTION
CLASS
CONSTRAINT-ROLE
TEMPLATE
((DEFAULT-LANGUAGE (VALUE .

PRODUCTION-CONSTRAINT-LANGUAGE))
(STEP-1 (DATATYPE . TEXT)

(ROLE . PRODUCTION-PARAMETER))
(STEP-2 (DATATYPE . TEXT)

(ROLE . PRODUCTION-PARAMETER))
(STEP-3 (DATATYPE . TEXT)

(ROLE . PRODUCTION-PARAMETER))
(STEP-4 (DATATYPE . TEXT)

(ROLE . PRODUCTION-PARAMETER))
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(STEP-5 (DATATYPE . TEXT)
(ROLE . PRODUCTION-PARAMETER))

(STEP-6 (DATATYPE . TEXT)
(ROLE . PRODUCTION-PARAMETER))

(STEP-7 (DATATYPE . TEXT)
(ROLE . PRODUCTION-PARAMETER))

(STEP-8 (DATATYPE . TEXT)
(ROLE . PRODUCTION-PARAMETER))

(STEP-9 (DATATYPE . TEXT)
(ROLE . PRODUCTION-PARAMETER))

(STEP-10 (DATATYPE . TEXT)
(ROLE . PRODUCTION-PARAMETER)))

("Mcginnis" "28-May-90 12:39:43 PDT"))

;;; Declare object ASSEMBLY

(DEFOBJECT ASSEMBLY CLASS PRODUCTION TEMPLATE)

;;; Declare object MANUFACTURE

(DEFOBJECT MANUFACTURE CLASS PRODUCTION TEMPLATE)

;;; Declare object STATUS

(DEFOBJECT STATUS
CLASS
CONSTRAINT-ROLE
TEMPLATE
((DEFAULT-LANGUAGE (VALUE . STATUS-LANGUAGE))

(STATUS (DATATYPE . EXPR)))
("Mcginnis" "7-May-90 14:10:08 PDT"))

;;; Declare object ACCEPT

(DEFOBJECT ACCEPT
CLASS
STATUS
TEMPLATE
((STATUS (VALUE . ACTIVE)))
("Mcginnis" "2-May-90 22:52:11 PDT"))

;;; Declare object REJECT

(DEFOBJECT REJECT
CLASS
STATUS
TEMPLATE
((STATUS (VALUE . IN- ACTIVE))))

;;; Declare object SUSPEND

(DEFOBJECT SUSPEND
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CLASS
STATUS
TEMPLATE
((STATUS (VALUE . SUSPENDED))))

;;; Declare object CONSTRAINT-LANGUAGE

(DEFOBJECT CONSTRAINT-LANGUAGE
CLASS
OBJECT
TEMPLATE
((UPDATE (DATATYPE . LISP)

(VALUE . CONSTRAINT - LANGUAGE. UPDATE))

(SOLVE (DATATYPE . LISP))
(SUCCESSOR)
(PARSE (DATATYPE . LISP) (VALUE))
(PHRASE (DATATYPE . CONSTRAINT-PHRASE)

(ROLE . *NOVALUE*))
(LINK-CONSTRAINT (DATATYPE . LISP)

(VALUE .

CONSTRAINT -LANGUAGE.LINK -CONSTRAINT))
(SATISFIED (DATATYPE . LISP)))

("Mcginnis" "16-May-90 16:03:06 PDT"))

;;; Declare object EQUATIONAL

(DEFOBJECT EQUATIONAL
CLASS
CONSTRAINT-LANGUAGE
TEMPLATE
((EQUATION (DATATYPE . EXPR))

(SATISFIED (VALUE . EQUATIONAL.SATISFIED)))
("Mcginnis" "16-May-90 16:07:06 PDT"))

;;; Declare object EQUALITY-CONSTRAINT

(DEFOBJECT EQUALITY-CONSTRAINT
CLASS
EQUATIONAL
(TEMPLATE CONST-TYPE)
((SOLVE (VALUE . EQUALITY-CONSTRAINT.SOLVE))

(UPDATE (VALUE . EQUALITY - CONSTRAINT. UPDATE))

(PARSE (VALUE . EQUALITY -CONSTRAINT. PARSE)))

("Mcginnis" "15-May-90 21:57:07 PDT"))

;;; Declare object A=2*B-C

(DEFOBJECT A=2*B-C
CLASS
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EQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(PATH . *NOVALUE*)
(ROLE . OUT))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(C (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(EQUATION (VALUE = A (* 2 (- B C)))))
("Mcginnis" "15-May-90 22:05:52 PDT"))

;;; Declare object A=B

(DEFOBJECT A=B
CLASS
EQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(PATH . *NOVALUE*)
(ROLE . OUT))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

I

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(EQUATION (VALUE = A B)))
("Mcginnis" "15-May-90 23:08:43 PDT"))

Declare object A =B/2 +2

(DEFOBJECT A=B/2+2
CLASS
EQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(PATH . *NOVALUE*)
(ROLE . OUT))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(EQUATION (VALUE = A (+ 2 (/ B 2)))))
("Mcginnis" "15-May-90 22:10:19 PDT"))
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;;; Declare object A=B+C

(DEFOBJECT A=B+C
CLASS
EQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(PATH . *NOVALUE*)
(ROLE . OUT))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(C (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(EQUATION (VALUE = A (+ B C))))
("Mcginnis" "15-May-90 22:10:54 PDT"))

Declare object A=2*B

(DEFOBJECT A=2*B
CLASS
EQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(PATH . *NOVALUE*)
(ROLE . OUT))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(EQUATION (VALUE = A (* 2 B))))
("Mcginnis" "15-May-90 22:11:15 PDT"))

;;; Declare object A=-2*B

(DEFOBJECT A=-2*B
CLASS
EQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(PATH . *NOVALUE*)
(ROLE . OUT))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
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(ROLE . IN))
(EQUATION (VALUE = A (* 2 B))))

("Mcginnis" "15-May-90 22:11:39 PDT"))

;;; Declare object A=B*C

(DEFOBJECT A=B*C
CLASS
EQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(PATH . *NOVALUE*)
(ROLE . OUT))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(C (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(EQUATION (VALUE = A (* B C))))
("Mcginnis" "15-May-90 22:11:57 PDT"))

;;; Declare object A=B*C*D

(DEFOBJECT A=B*C*D
CLASS
EQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(PATH . *NOVALUE*)
(ROLE . OUT))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(C (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(D (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE . *NOVALUE*)
(PATH . *NOVALUE*)
(ROLE . IN))

(EQUATION (VALUE = A (* B C D))))
("Mcginnis" "15-May-90 22:12:20 PDT"))
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;;; Declare object A=VALUE

(DEFOBJECT A=VALUE
CLASS
EQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(PATH . *NOVALUE*)
(ROLE . OUT))

(VAL (DATATYPE . EXPR)
(SOURCE . *NOVALUE*)
(ROLE . IN))

(EQUATION (VALUE = A VAL)))
("Mcginnis" "15-May-90 22:47:23 PDT"))

; Declare object INEQUALITY-CONSTRAINT

(DEFOBJECT INEQUALITY-CONSTRAINT
CLASS
EQUATIONAL
(TEMPLATE CONST-TYPE)
((SOLVE (VALUE . INEQUALITY-CONSTRAINT.SOLVE))

(PARSE (VALUE . EQUALITY-CONSTRAINT.PARSE)))

("Mcginnis" "15-May-90 22:44:52 PDT"))

; Declare object A<B

(DEFOBJECT A<B
CLASS
INEQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(ROLE . OUT)
(PATH)
(SOURCE))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(ROLE . IN)
(PATH)
(SOURCE))

(EQUATION (VALUE < A

;;; Declare object A>B

B))))

(DEFOBJECT A>B
CLASS
INEQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)
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(ROLE . OUT)
(PATH)
(SOURCE))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(ROLE . IN)
(PATH)
(SOURCE))

(EQUATION (VALUE > A

;;; Declare object A>VALUE

B))))

(DEFOBJECT A>VALUE
CLASS
INEQUALITY-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(SOURCE)
(PATH)
(ROLE . OUT))

(EQUATION (VALUE > A VALUE))
(VALUE (DATATYPE . EXPR)

(SOURCE . *NOVALUE*)
(ROLE . IN)))

("Mcginnis" "9-May-90 15:11:00 PDT"))

;;; Declare object QUALITY-CONSTRAINT

(DEFOBJECT QUALITY-CONSTRAINT
CLASS
EQUATIONAL
(TEMPLATE CONST-TYPE)
((DEPENDENT-FEATURE (DATATYPE

NUMERIC-CONSTRAINT-PARAMETER)
(ROLE . OUT)
(PATH))

(INDEPENDENT-FEATURE (DATATYPE
NUMERIC-CONSTRAINT-PARAMETER)

(ROLE . IN)
(PATH))

(QUALITY-EXPR (DATATYPE . TEXT)
(ROLE . IN)
(PATH))

(PARSE (VALUE . QUALITY-CONSTRAINT.PARSE)))
("Mcginnis" "20-Jun-90 2:47:08 PDT"))

;;; Declare object CONDITIONAL-CONSTRAINT

(DEFOBJECT CONDITIONAL-CONSTRAINT
CLASS
EQUATIONAL
TEMPLATE
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NIL
("Mcginnis" "16-May-90 0:09:53 PDT"))

;;; Declare object IF-A>B-THEN-A=B

(DEFOBJECT IF-A>B-THEN-A=B
CLASS
CONDITIONAL-CONSTRAINT
TEMPLATE
((A (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(ROLE . OUT)
(PATH)
(SOURCE))

(B (DATATYPE . NUMERIC-CONSTRAINT-PARAMETER)

(ROLE . IN)
(PATH)
(SOURCE))

(EQUATION (VALUE IF (> A B) (= A

;;; Declare object OTHER

(DEFOBJECT OTHER CLASS EQUATIONAL TEMPLATE)

;;; Declare object GRAPHICAL

(DEFOBJECT GRAPHICAL
CLASS
CONSTRAINT-LANGUAGE
TEMPLATE
((ASSERT (DATATYPE . LISP)))
("Mcginnis" "30-Apr-90 15:30:49 PDT"))

;;; Declare object SPATIAL-ORIENTATION

(DEFOBJECT SPATIAL-ORIENTATION
CLASS
GRAPHICAL
TEMPLATE
((RELATION (DATATYPE . EXPR))

(PARSE (VALUE . SPACIAL - ORIENTATION. PARSE)))

("Mcginnis" "21-Jun-90 21:01:37 PDT"))

;;; Declare object SURFACE-CONSTRAINT

(DEFOBJECT SURFACE-CONSTRAINT
CLASS
SPATIAL-ORIENTATION
TEMPLATE
((DEPENDENT-SURFACE (DATATYPE

GEOMETRIC-CONSTRAINT-PARAMETER)
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(ROLE . OUT)
(PATH . *NOVALUE*))

(INDEPENDENT-SURFACE (DATATYPE .

GEOMETRIC-CONSTRAINT-PARAMETER)
(ROLE . IN)
(PATH . *NOVALUE*)))

("Mcginnis" "15-May-90 21:44:25 PDT"))

;;; Declare object PARALLEL-SURFACE-CONSTRAINT

(DEFOBJECT PARALLEL-SURFACE-CONSTRAINT
CLASS
SURFACE-CONSTRAINT
TEMPLATE
((ASSERT (VALUE .

PARALLEL- SURFACE - CONSTRAINT. ASSERT))
(LINK-CONSTRAINT

(VALUE .

PARALLEL - SURFACE - CONSTRAINT. LINK- CONSTRAINT))
(RELATION (VALUE . "parallel to")))

("Mcginnis" "15-May-90 22:58:50 PDT"))

;;; Declare object PERPENDICULAR-SURFACE-CONSTRAINT

(DEFOBJECT PERPENDICULAR-SURFACE-CONSTRAINT
CLASS
SURFACE-CONSTRAINT
TEMPLATE
((ASSERT (VALUE .

PERPENDICULAR - SURFACE - CONSTRAINT. ASSERT))
(RELATION (VALUE . "perpendicular to"))
(LINK-CONSTRAINT

(VALUE .

PERPENDICULAR - SURFACE - CONSTRAINT. LINK- CONSTRAINT)))
("Mcginnis" "15-May-90 23:54:35 PDT"))

;;; Declare object COPLANAR-SURFACE-CONSTRAINT

(DEFOBJECT COPLANAR-SURFACE-CONSTRAINT
CLASS
SURFACE-CONSTRAINT
TEMPLATE
((ASSERT (VALUE .

COPLANAR- SURFACE - CONSTRAINT. ASSERT))
(LINK-CONSTRAINT

(VALUE .

COPLANAR- SURFACE - CONSTRAINT. LINK- CONSTRAINT))
(RELATION (VALUE . "coplanar to")))

("Mcginnis" "15-May-90 23:00:00 PDT"))

;;; Declare object DISTANCE-BETWEEN-SURFACE-CONSTRAINT
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(DEFOBJECT DISTANCE-BETWEEN-SURFACE-CONSTRAINT
CLASS
SURFACE-CONSTRAINT
TEMPLATE
((ASSERT (VALUE .

DISTANCE - BETWEEN - SURFACE - CONSTRAINT. ASSERT))
(DISTANCE (DATATYPE .

NUMERIC-CONSTRAINT-PARAMETER)
(PATH . *NOVALUE*))

(INITIAL-DIST-VALUE (DATATYPE . EXPR)
(ROLE . STARTER-IN))

(LINK-CONSTRAINT
(VALUE .

COPLANAR - SURFACE - CONSTRAINT. LINK- CONSTRAINT))
(CREATE (VALUE .

DISTANCE - BETWEEN - SURFACE - CONSTRAINT. CREATE))
(RELATION (VALUE . "set distance from")))

("Mcginnis" "15-May-90 23:00:49 PDT"))

;;; Declare object OPPOSING-COPLANAR-SURFACE-CONSTRAINT

(DEFOBJECT OPPOSING-COPLANAR-SURFACE-CONSTRAINT
CLASS
SURFACE-CONSTRAINT
TEMPLATE
((ASSERT (*INHERIT* .

COPLANAR-SURFACE-CONSTRAINT)
(DATATYPE . LISP)
(VALUE .

OPPOSING - COPLANAR- SURFACE - CONSTRAINT. ASSERT))
(LINK-CONSTRAINT (*INHERIT* .

COPLANAR-SURFACE-CONSTRAINT)
(DATATYPE . LISP)
(VALUE

COPLANAR - SURFACE - CONSTRAINT. LINK- CONSTRAINT))
(RELATION (*INHERIT* .

COPLANAR-SURFACE-CONSTRAINT)
(DATATYPE . EXPR)
(VALUE . "coplanar to")))

("Mcginnis" "20-Jun-90 0:17:27 PDT"))

;;; Declare object AXIAL-CONSTRAINT

(DEFOBJECT AXIAL-CONSTRAINT
CLASS
SPATIAL-ORIENTATION
TEMPLATE
NIL
("Mcginnis" "15-May-90 21:44:51 PDT"))

;;; Declare object EDGE-CONSTRAINT
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(DEFOBJECT EDGE-CONSTRAINT
CLASS
SPATIAL-ORIENTATION
TEMPLATE
NIL
("Mcginnis" "15-May-90 21:45:18 PDT"))

;;; Declare object SPATIAL-RESTRICTION

(DEFOBJECT SPATIAL-RESTRICTION
CLASS
GRAPHICAL
TEMPLATE
((RESTRICTED-OBJECT (DATATYPE . DESIGN-OBJECT)

(ROLE . OUT)
(PATH . *NOVALUE*)))

("Mcginnis" "21-Jun-90 21:02:02 PDT"))

;;; Declare object VOLUME-RESTRICTION

(DEFOBJECT VOLUME-RESTRICTION
CLASS
SPATIAL-RESTRICTION
TEMPLATE
((RESTRICTED-AREA (DATATYPE . TEXT)

(ROLE . *NOVALUE*)))
("Mcginnis" "15-May-90 21:53:36 PDT"))

;;; Declare object SURFACE-RESTRICTION

(DEFOBJECT SURFACE-RESTRICTION
CLASS
SPATIAL-RESTRICTION
TEMPLATE
((REFERENCE (DATATYPE . TEXT)

(ROLE . *NOVALUE*))
(DISTANCE (DATATYPE . EXPR)

(ROLE . *NOVALUE*))
(DIRECTION (DATATYPE . TEXT)

(ROLE . *NOVALUE*)))
("Mcginnis" "15-May-90 21:53:08 PDT"))

;;; Declare object TEXTUAL

(DEFOBJECT TEXTUAL
CLASS
CONSTRAINT-LANGUAGE
TEMPLATE
((PARSE) (SOLVE (VALUE . TEXTUAL. SOLVE))

(OBJECT (DATATYPE . DESIGN-OBJECT)
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(PATH . *NOVALUE*)
(ROLE . OUT)))

("Mcginnis" "6-May-90 15:15:17 PDT"))

;;; Declare object STRUCTURED

(DEFOBJECT STRUCTURED
CLASS
TEXTUAL
(TEMPLATE CONST -TYPE)
((ACTION (DATATYPE . EXPR)

(ROLE . *NOVALUE*))
(RECEIVER (DATATYPE . DESIGN-OBJECT)

(ROLE . *NOVALUE*))
(LOCATION (DATATYPE . EXPR)

(ROLE . *NOVALUE*))
(PRE-CONDITION)
(POST-CONDITION)
(ACTION-QUALIFIER (DATATYPE . EXPR)

(ROLE . *NOVALUE*))
(PARSE (VALUE . STRUCTURED. PARSE))
(SEQUENCE (ROLE . SERIES))
(DECOMPOSITION (ROLE . SERIES))
(ALTERNATIVES (ROLE . SERIES)))

("Mcginnis" "7-May-90 13:30:51 PDT"))

;;; Declare object SIMPLE

(DEFOBJECT SIMPLE
CLASS
TEXTUAL
TEMPLATE
((PARSE (VALUE . SIMPLE.PARSE))
(DEPENDENT-FEATURE (DATATYPE .

TEXTUAL-CONSTRAINT-PARAMETER)
(PATH)
(ROLE . OUT))

(INDEPENDENT-FEATURE (DATATYPE .

TEXTUAL-CONSTRAINT-PARAMETER)
(PATH)
(ROLE . IN))

(INDEPENDENT-FEATURE2 (DATATYPE .

TEXTUAL-CONSTRAINT-PARAMETER)
(PATH)
(ROLE . IN))

(INSTANTIATION/RELATION (DATATYPE . TEXT)
(PATH)
(ROLE . IN)))

("Mcginnis" "15-May-90 21:24:08 PDT"))

;;; Declare object SPECIAL
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(DEFOBJECT SPECIAL
CLASS
TEXTUAL
TEMPLATE
NIL
("Mcginnis" "6-May-90 15:06:02 PDT"))

;;; Declare object OBJECT-FORM-LANGUAGE

(DEFOBJECT OBJECT-FORM-LANGUAGE
CLASS
SPECIAL
TEMPLATE
((NAME (DATATYPE . EXPR)

(ROLE . *NOVALUE*))
(SHAPE (DATATYPE . DESIGN-PRIMITIVES)

(ROLE . *NOVALUE*))
(PARENT (DATATYPE . DESIGN-OBJECT)

(ROLE . *NOVALUE*))
(COMPONENTS (DATATYPE . DESIGN-OBJECT)

(ROLE . *NOVALUE*))
(PARSE (VALUE . OBJECT -FORM -LANGUAGE.PARSE)))

("Mcginnis" "7-May-90 21:12:43 PDT"))

;;; Declare object STATUS-LANGUAGE

(DEFOBJECT STATUS-LANGUAGE
CLASS
SPECIAL
TEMPLATE
((CONSTRAINT-AFFECTED (DATATYPE .

CONSTRAINT-SOURCE)
(ROLE . OUT)
(PATH . *NOVALUE*))

(FEATURE-AFFECTED (DATATYPE .

CONSTRAINT-PARAMETER)
(ROLE . *NOVALUE*)
(PATH . *NOVALUE*))

(SOLVE (VALUE . STATUS -LANGUAGE.SOLVE)))
("Mcginnis" "2-May-90 23:35:32 PDT"))

;;; Declare object FUNCTION-CONSTRAINT-LANGUAGE

(DEFOBJECT FUNCTION-CONSTRAINT-LANGUAGE
CLASS
SPECIAL
TEMPLATE
NIL
("Mcginnis" "28-May-90 11:55:54 PDT"))

;;; Declare object PRODUCTION-CONSTRAINT-LANGUAGE
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(DEFOBJECT PRODUCTION-CONSTRAINT-LANGUAGE
CLASS
SPECIAL
TEMPLATE
((PARSE (VALUE .

PRODUCTION - CONSTRAINT - LANGUAGE. PARSE)))
("Mcginnis" "28-May-90 14:39:20 PDT"))

;;; Declare object CONSTRAINT-PARAMETER

(DEFOBJECT CONSTRAINT-PARAMETER
CLASS
OBJECT
TEMPLATE
NIL
("Mcginnis" "27-Apr-90 3:52:59 PDT"))

;;; Declare object GEOMETRIC-CONSTRAINT-PARAMETER

(DEFOBJECT GEOMETRIC-CONSTRAINT-PARAMETER
CLASS
CONSTRAINT-PARAMETER
TEMPLATE
((DATUM-PRINT (VALUE .

GEOMETRIC - CONSTRAINT - PARAMETER. PRINT))
(DATUM-GET (VALUE .

GEOMETRIC - CONSTRAINT - PARAMETER. GET)))
("Mcginnis" "18-Aug-89 9:53:43 CDT"))

;;; Declare object NUMERIC-CONSTRAINT-PARAMETER

(DEFOBJECT NUMERIC-CONSTRAINT-PARAMETER
CLASS
CONSTRAINT-PARAMETER
TEMPLATE
NIL
("Mcginnis" "27-Apr-90 4:01:00 PDT"))

;;; Declare object TEXTUAL-CONSTRAINT-PARAMETER

(DEFOBJECT TEXTUAL-CONSTRAINT-PARAMETER
CLASS
CONSTRAINT-PARAMETER
TEMPLATE)

;;; Declare object DESIGN-OBJECT

(DEFOBJECT DESIGN-OBJECT
CLASS
OBJECT
NIL
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((COMPOSED-OF (DATATYPE . P-LISP)
(VALUE .

DESIGN - OBJECT. COMPOSED -OF))
(FORM (DATATYPE . TEXT-VALUED)

(IN-CONSTRAINT . *NOVALUE*)
(OUT-CONSTRAINT . *NOVALUE*)
(ROLE . DUMMY-PARAMETER))

(CREATE-PARAMETER (DATATYPE . LISP)
(VALUE .

DESIGN-OBJECT.CREATE-PARAMETER))
(PURPOSE (DATATYPE . TEXT-VALUED)

(OUT-CONSTRAINT . *NOVALUE*)
(IN-CONSTRAINT . *NOVALUE*))

(COLOR (DATATYPE . TEXT-VALUED)
(VALUE)
(IN-CONSTRAINT . *NOVALUE*)
(OUT-CONSTRAINT . *NOVALUE*)
(ROLE . PARAMETER))

(ASSEMBLY (DATATYPE . TEXT-VALUED)
(VALUE)
(IN-CONSTRAINT . *NOVALUE*)
(OUT-CONSTRAINT . *NOVALUE*)
(ROLE . PARAMETER))

(MANUFACTURE (DATATYPE . TEXT-VALUED)
(VALUE)
(IN-CONSTRAINT . *NOVALUE*)
(OUT-CONSTRAINT . *NOVALUE*)
(ROLE . PARAMETER))

(BEHAVIOR (DATATYPE . TEXT-VALUED)
(VALUE)
(IN-CONSTRAINT . *NOVALUE*)
(OUT-CONSTRAINT . *NOVALUE*)
(ROLE . PARAMETER))

(PARENT (DATATYPE . DESIGN-OBJECT)))
("Mcginnis" "27-May-90 14:24:39 PDT"))

;;; Declare object DESIGN-PRIMITIVES

(DEFOBJECT DESIGN-PRIMITIVES
CLASS
OBJECT
TEMPLATE
((CREATE (VALUE . DESIGN - PRIMITIVES. CREATE))

(OBJECT-DELETION-PROCEDURES (VALUE))
(SHAPE (DATATYPE . LISP)

(ROLE . DUMMY-PARAMETER))
(TRANSFORM-VECTOR (DATATYPE . P-LISP)

(VALUE .

DESIGN - PRIMITIVES. TRANSFORM- VECTOR))
(X-TRANSLATION (DATATYPE . EXPR)

(VALUE . 0)

(ROLE . GEOMETRY)
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(IN-CONSTRAINT . *NOVALUE*)
(OUT-CONSTRAINT . *NOVALUE*))

(Y- TRANSLATION (DATATYPE . EXPR)
(VALUE . 0)

(ROLE . GEOMETRY)
(IN-CONSTRAINT)
(OUT-CONSTRAINT))

(Z- TRANSLATION (DATATYPE . EXPR)
(VALUE . 0)

(ROLE . GEOMETRY)
(IN-CONSTRAINT)
(OUT-CONSTRAINT))

(X- ROTATION (DATATYPE . EXPR)
(VALUE . 0)

(ROLE . GEOMETRY)
(IN-CONSTRAINT)
(OUT-CONSTRAINT))

(Y- ROTATION (DATATYPE . EXPR)
(VALUE . 0)

(ROLE . GEOMETRY)
(IN-CONSTRAINT)
(OUT-CONSTRAINT))

(Z- ROTATION (DATATYPE . EXPR)
(VALUE . 0)

(ROLE . GEOMETRY)
(IN-CONSTRAINT)
(OUT-CONSTRAINT))

(FACES (DATATYPE . LISP))
(MAKE-NODE (DATATYPE . LISP)

(VALUE .

DESIGN -PRIMITIVE.MAKE -NODE))
(STATUS (VALUE))
(MAKE -CSG -NODE (DATATYPE . LISP)

(VALUE .

DESIGN -PRIMITIVE.MAKE -CSG -NODE))
(ORIENTATION (DATATYPE . P -LISP)

(VALUE .

DESIGN -PRIMITIVES.ORIENTATION)))
("Mcginnis" "15-May-90 23:23:23 PDT"))

;;; Declare object COMPOSITE

(DEFOBJECT COMPOSITE
CLASS
DESIGN-PRIMITIVES
TEMPLATE
((MAKE-NODE (VALUE . COMPOSITE.MAKE-NODE))

(SHAPE (VALUE + NIL))

(LENGTH
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(DATATYPE . NUMERIC)

(VALUE . 1)

(IN-CONSTRAINT

*NOVALUE*)

(OUT-CONSTRAINT

*NOVALUE*)

(ROLE . PARAMETER) )

(HEIGHT

(DATATYPE . NUMERIC)

(VALUE . 1)

(IN-CONSTRAINT

*NOVALUE*)

(OUT-CONSTRAINT

*NOVALUE*)

(ROLE . PARAMETER) )

(DEPTH

(DATATYPE . NUMERIC)

(VALUE . 1)

(IN-CONSTRAINT

*NOVALUE*)

(OUT-CONSTRAINT

*NOVALUE*)

(ROLE . PARAMETER) )

(FACES

(VALUE

(TOP
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( LIST 270

90

0

(/ HEIGHT 2) ) )

( BOTTOM

( LIST 90

270

180

(/ HEIGHT 2 ) ) )

( FRONT

(LIST 0

270

90

(/ DEPTH 2 ) ) )

( BACK

( LIST 180

90

270

(/ DEPTH 2 ) ) )

(RIGHT

( LIST 90

0

270

(/ LENGTH 2) ) )

( LEFT

( LIST 270
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180

90

(/ LENGTH 2))))))
("Mcginnis" "19-Jun-90 14:18:37 PDT"))

;;; Declare object SLAB

(DEFOBJECT SLAB
CLASS
DESIGN-PRIMITIVES
TEMPLATE
(((LENGTH Y -DIM) (DATATYPE . NUMERIC)

(VALUE . 1)

(OUT-CONSTRAINT . *NOVALUE*)
(ROLE . PARAMETER)
(IN-CONSTRAINT . *NOVALUE*))

((HEIGHT Z -DIM) (DATATYPE . NUMERIC)
(VALUE . 1)

(OUT-CONSTRAINT . *NOVALUE*)

2)))

(ROLE . PARAMETER)
(IN-CONSTRAINT . *NOVALUE*))

((DEPTH X -DIM) (DATATYPE . NUMERIC)
(VALUE . 1)

(OUT-CONSTRAINT . *NOVALUE*)
(IN-CONSTRAINT . *NOVALUE*)
(ROLE . PARAMETER))

(FACES
(VALUE (TOP (LIST 270 90 0 (/ HEIGHT 2)))

(BOTTOM (LIST 90 270 180 (/ HEIGHT

(FRONT (LIST 0 270 90 (/ DEPTH 2)))

(BACK (LIST 180 90 270 (/ DEPTH 2)))

(RIGHT (LIST 90 0 270 (/ LENGTH 2)))

(LEFT (LIST 270 180 90 (/ LENGTH

(SHAPE (VALUE + CUBE)))
("Mcginnis" "19-Jun-90 16:39:08 PDT"))

;;; Declare object SLOT

(DEFOBJECT SLOT
CLASS
SLAB
TEMPLATE
((SHAPE (*INHERIT* . DESIGN-PRIMITIVES)
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(DATATYPE . LISP)
(VALUE - CUBE)))

("Mcginnis" "14-Nov-89 23:07:42 PST"))

;;; Declare object CYLINDER

(DEFOBJECT CYLINDER
CLASS
DESIGN-PRIMITIVES
TEMPLATE
((SHAPE (VALUE + CYLINDER))
((RADIUS LENGTH DEPTH) (DATATYPE . NUMERIC)

(VALUE . 1)

(OUT-CONSTRAINT .

*NOVALUE*)

*NOVALUE*)
(IN-CONSTRAINT .

(ROLE . PARAMETER))
(HEIGHT (DATATYPE . NUMERIC)

(VALUE . 1)

(OUT-CONSTRAINT . *NOVALUE*)
(IN-CONSTRAINT . *NOVALUE*)
(ROLE . PARAMETER))

(NUMBER -OF -APP -FACES (DATATYPE . EXPR)
(VALUE . 10)
(ROLE . PARAMETER))

(FACES
(VALUE (TOP (LIST 270 90 0 (/ HEIGHT 2)))

(BOTTOM (LIST 90 270 180 (/ HEIGHT

("Mcginnis" "19-Jun-90 16:47:54 PDT"))

;;; Declare object HOLE

(DEFOBJECT HOLE
CLASS
CYLINDER
TEMPLATE
((SHAPE (VALUE CYLINDER)))
("Mcginnis" "14-Nov-89 20:29:42 PST"))

Declare object POS-RIGHT-WEDGE

(DEFOBJECT POS-RIGHT-WEDGE
CLASS
DESIGN-PRIMITIVES
TEMPLATE
(((LENGTH Y-DIM) (DATATYPE . NUMERIC)

(VALUE . 1)

(ROLE . PARAMETER)
(IN-CONSTRAINT . *NOVALUE*)
(OUT-CONSTRAINT . *NOVALUE*))
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((HEIGHT Z-DIM) (DATATYPE . NUMERIC)
(VALUE . 1)

(OUT-CONSTRAINT)
(IN-CONSTRAINT)
(ROLE . PARAMETER))

((DEPTH X-DIM) (DATATYPE . NUMERIC)
(VALUE . 1)

(OUT-CONSTRAINT)
(IN-CONSTRAINT)
(ROLE . PARAMETER))

(SHAPE (VALUE + RT-ANG))
(FACES
(VALUE (TOP (LIST 270 90 0 HEIGHT))

(BOTTOM (LIST 90 270 180 0))
(BACK (LIST 180 90 270 0))
(LEFT (LIST 270 180 90 0))

(SLANT (POS-RIGHT-WEDGE/SLANT-FACE
DEPTH LENGTH)))))

("Mcginnis" "19-Jun-90 16:37:14 PDT"))

;;; Declare object NEG-RIGHT-WEDGE

(DEFOBJECT NEG-RIGHT-WEDGE
CLASS
POS-RIGHT-WEDGE
TEMPLATE
((SHAPE (VALUE - RT-ANG)))
("Mcginnis" "19-Jun-90 15:00:47 PDT"))

;;; Declare object L-SHAPE

(DEFOBJECT L-SHAPE
CLASS
DESIGN-PRIMITIVES
TEMPLATE
(((MAJOR-HEIGHT Z-DIM) (DATATYPE . NUMERIC)

(VALUE . 2)

(OUT-CONSTRAINT)
(IN-CONSTRAINT)
(ROLE . PARAMETER))

((MAJOR-LENGTH Y-DIM) (DATATYPE . NUMERIC)
(VALUE . 2)

(OUT-CONSTRAINT)
(IN-CONSTRAINT)
(ROLE . PARAMETER))

((DEPTH X-DIM) (DATATYPE . NUMERIC)
(VALUE . 1)

(OUT-CONSTRAINT)
(IN-CONSTRAINT)
(ROLE . PARAMETER))

(MINOR-HEIGHT (DATATYPE . NUMERIC)
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(VALUE . 1)

(OUT-CONSTRAINT)
(IN-CONSTRAINT)
(ROLE . PARAMETER))

(MINOR-LENGTH (DATATYPE . NUMERIC)
(VALUE . 1)

(OUT-CONSTRAINT)
(IN-CONSTRAINT)
(ROLE . PARAMETER))

(FACES
(VALUE (OUTER-TOP (LIST 270 90 0

MAJOR-HEIGHT))

MINOR-HEIGHT))

MAJOR-LENGTH))

MINOR-LENGTH))

(INNER-TOP (LIST 270 90 0

(BOTTOM (LIST 90 270 80 0))
(FRONT (LIST 0 90 270 (/ DEPTH 2)))

(BACK (LIST 180 270 90 (/ DEPTH 2)))

(OUTER-RIGHT (LIST 90 0 270

(INNER-RIGHT (LIST 90 0 270

(LEFT (LIST 270 180 90 0))))
(MAKE-CSG-NODE (VALUE .

L-SHAPE.MAKE-CSG-NODE))
(SHAPE (VALUE + L-SHAPE)))

("Mcginnis" "20-Jun-90 1:28:35 PDT"))

;;; Declare object FUNCTION-MODULE

(DEFOBJECT FUNCTION-MODULE
CLASS
OBJECT
TEMPLATE
((DEFAULT-LANGUAGE (DATATYPE .

CONSTRAINT-LANGUAGE)
(VALUE . STRUCTURED))

(ORIGINATING-CONSTRAINT (DATATYPE .

CONSTRAINT-SOURCE))
(OBJECT/PURPOSE (DATATYPE . DESIGN-OBJECT))
(OBJECT/BEHAVIOR (DATATYPE . DESIGN-OBJECT)))

("Mcginnis" "6-May-90 21:59:38 PDT"))

;;; Declare object TEXT

(DEFOBJECT TEXT
CLASS
DATATYPE
SYSTEM
((DATUM-EDIT (VALUE . SYS/EDITTEXT))
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(DATUM-PRINT (VALUE . SYS/PRINTTEXT))))

;;; Declare object ROOT-38

(DEFOBJECT ROOT-38 INDIVIDUAL ROOT DESIGN)

;;; Declare object ROOT-83

(DEFOBJECT ROOT-83 INDIVIDUAL ROOT DESIGN)

;;; Declare object ROOT-85

(DEFOBJECT ROOT-85 INDIVIDUAL ROOT DESIGN)
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III.B. Knowledge Base Support Files
III.B.1. Design-object.lisp

(in-package 'sib -cl)

(defun design-object/create/component (object component)
(createslot object (objectname component)

'design-object)
(putvalue object (objectname component) component)
(putvalue component 'parent object)
(putfacet object (objectname component) 'role

'component)
(createfacet object (objectname component)

'in-constraint)
(createfacet object (objectname component)

'out-constraint)
component)

(defun design-object.create-parameter (object slot facet
name &optional type value)

(declare (ignore slot facet))
(if (and (null value)

(equal type 'numeric))
(setq value 0))

(createslot object name type)
(putvalue object name value)
(createfacet object name 'in-constraint)
(createfacet object name 'out-constraint)
(putfacet object name 'role 'parameter)
name)

(defun design - object. deletion- procedure (object)
(mapcar 'deleteobject

(mapcan #'(lambda (slot)
(if (facet? object slot 'in-constraint)

(getfacet? object slot 'in-constraint)))

(listslots object))))

(defun design-object/create (object shape)
(let ((obj (design-primitives.create shape nil nil

object)))
(if (not (generalization? shape 'design-object))
(addgeneralizations object 'design-object))
obj))

;; This function collects and returns a list of the
components
;; for a particular object
(defun design-object.composed-of (object slot facet)

(declare (ignore slot facet))
(objectnames



(mapcar #1(lambda (slot) (message* object slot))
(listslots object 'role 'component))))

(defun design-object/make-object-generic (object)
(changeobjecttype object 'class))

(defun design-object/active-objects (objects)
(remove nil

(mapcar #'(lambda (obj)
(if (equal 'active (message* obj

'configuration))
obj))

objects)))

;; This function gives the immediate components of
;; a design object
(defun dh-template/breakdown (object)

(mapcar #'(lambda (slot)
(getvalue object slot))

(remove 'self (slotnames (listslots object 'role
'component)))))

; ; ;
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(defun design - primitives. deletion- procedures (object)
(mapc #'(lambda (slot)

(deleteobject (getvalue object slot)))
(remove 'self (slotnames (listslots object 'role

'component))))
(mapc #'(lambda (slot)

(let ((const-list (append (getfacet? object
slot 'in-constraint)

(getfacet? object slot
'out-constraint))))

(if const-list
(mapc 'deleteobject const-list))))

(listslots object 'role)))

;; This method returns the transform vector of
;; a design object
(defun design-primitives.transform-vector (object slot
facet)

(declare (ignore slot facet))
(mapcar #'(lambda (slot)

(message* object slot 'get))
(list 'x-translation 'y-translation 'z-translation

'z-rotation 'y-rotation 'x-rotation)))

(defun design - primitive. included- objects (object slot
facet)
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(declare (ignore slot facet))
(mapcar #'(lambda (component)

(list component
(getvalue? component 'csg- node)))

(slotnames (listslots object 'role 'component))))

;; This method returns the geometric constraints that
currently
;; affect the design object
(defun design - primitives. orientation (object slot facet)

(declare (ignore slot facet))
(let ((constraints

(remove-duplicates
(remove nil

(mapcar #'(lambda (slot)
(first
(getfacet? object slot

'in-constraint)))
(listslots object 'role 'geometry))))))

(mapcar #'(lambda (const)
(message* const 'phrase 'get))

constraints)))

(defun design - primitives. create
&optional name)

(declare (ignore slot facet))
(let ((obj (createobject name

'design)))
obj))

(object slot facet

'individual object

;; this function determines the cosine angles and length
for the
;; plane equation of a wedge slant face
(defun pos-right-wedge/slant-face (depth length)
(let* ((slant (sqrt (+ (* depth depth)

(* length length))))
(alphal (acos (/ length slant)))
(alpha2 (acos (/ depth slant))))

(list
(- 90 (cnvt-to-degrees alpha2))
(- 360 (- 90 (cnvt-to-degrees alphal)))
90
(* depth (sin alpha2)))))

;; This method builds the CSG tree for some of the
;; design-primitive subclasses
(defun design-primitive.make-node (object slot facet)

(declare (ignore slot facet))
(if (and (slot? object 'csg-node)

(slotvaluep object 'csg-node))
(message* object 'csg-node)
(let* ((comp-list (append (list object)
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(mapcar #'(lambda (slot)
(message* object slot))

(listslots object 'role 'component))))

(node
(if (rest comp-list)

(progn
(setq base-node (message* (first comp-list)

'make-csg-node))
(mapc
#'(lambda (obj)

(case (first (message* obj 'shape))
('+ (setq action 'union))
('- (setq action 'difference)))

(setq base-node
(csgnode* (gentemp "NODE-") action

(list base-node
(message* obj

'make-node)))))
(rest comp-list))

base-node)
(message* (first comp-list) 'make-csg-node

))))
(putvalue object 'csg-node node)
(boun-rep* node)
(putvalue object 'scene (scene* (gentemp "SCENE-")

(list node)))
node)))

;; This method builds the CSG node for a particular shape

(defun design-primitive.make-csg-node (object slot facet)

(declare (ignore slot facet))
(if (and (slot? object 'csg-node)

(slotvaluep object 'csg-node))
(message* object 'csg-node)
(let* ((node-name (intern (format nil "-s-NODE"

(objectname object)) 'sib -cl))
(shape (first (last (message* object 'shape))))
(parameters (mapcar #'(lambda (slot)

(message* object slot 'get))
(case shape
(cube '(depth length height))
(cylinder '(radius height

number-of-app-faces))
(rt-ang '(depth length height)))))

(trans-vect (mk-motion-matrix* (message* object
'transform-vector))))

(csgnode* node-name shape parameters :trans
trans-vect))))
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;; This method forms the basic CSG node for the L-SHAPE
design primitive
(defun 1-shape.make-csg-node (object slot facet)
(declare (ignore slot facet))
(if (and (slot? object 'csg-node)

(slotvaluep object 'csg-node))

-cl))

(trans-vect (message* object 'transform-vector))

(message* object 'csg-node)
(let* ((node-name (intern (format nil "-s-NODE"

(objectname object)) 'sib
(h (message* object 'major-height 'get))
(h1 (message* object 'minor-height 'get))
(1 (message* object 'major-length 'get))
(11 (message* object 'minor-length 'get))
(d (message* object 'depth 'get))

(cl-local (multiply-array-matrix
(list 0

(/ 1 2)
(/ hl 2))

(first (get-values
(mk-motion-matrix*
(list 0 0 0

(- (fourth trans-vect))
(- (fifth trans-vect))
(- (sixth trans-vect))))

'matrix-name))))
(c2-local (multiply-array-matrix

(list 0
(/ 11 2)
(/ h 2))

(first (get-values
(mk-motion-matrix*
(list 0 0 0

(- (fourth trans-vect))
(- (fifth trans-vect))
(- (sixth trans-vect))))

'matrix-name))))
(trans-1 (mk-motion-matrix*

(append (mapcar #'+ c1-local (butlast
trans-vect 3))

(list (fourth trans-vect)
(fifth trans-vect)
(sixth trans-vect)))))

(trans-2 (mk-motion-matrix*
(append (mapcar #'+ c2-local (butlast

trans-vect 3))
(list (fourth trans-vect)

(fifth trans-vect)
(sixth trans-vect)))))

(nodel (csgnode* (gentemp) 'cu (list d 1 hl)
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:trans trans-1))
(node2 (csgnode* (gentemp) 'cu (list d 11 h)

:trans trans-2)))
(csgnode* node-name 'union (list nodel node2) :fast

t))))

;; This method builds a CSG tree for the composite design
primitive
(defun composite.make-node (object slot facet)
(declare (ignore slot facet))
(if (and (slot? object 'csg-node)

(slotvaluep object 'csg-node))
(message* object 'csg-node)
(let* ((nodes (mapcar #'(lambda (component)

(message* component 'make-node))
(slotnames (listslots object 'role

'component))))
(object-node
(progn
(setq base-node (first nodes))
(mapcar #'(lambda (node)

(setq base-node
(csgnode* (gentemp "NODE-")

'union
(list base-node

node))))
(rest nodes))

base-node)))
(boun-rep* object-node)
(putvalue object 'csg-node object-node)
(putvalue object 'scene (scene* (gentemp "SCENE-")

nodes))
object-node)))
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III.B.2. General - Constraints. lisp

;; This files contains methods and functions for
constraint use
;; in general

(in-package 'sib -cl)

(defun derived - constraint. preceeding- constraint (object
slot facet)

(declare (ignore slot facet))
(let ((dep-obj (message* object (car (listslots object))

'path)))
(mapcan #'(lambda (constraint)

(if (equal dep-obj
(message* constraint

(car (listslots constraint))
'path))

(list constraint)
nil))

(instances 'constraint-source))))

(defun derived-constraint/create()
(createobject nil 'individual 'derived-constraint

'design))

(defun given-constraint/create ()
(createobject nil 'individual 'given-constraint

'design))

(defun introduced-constraint/create ()
(createobject nil 'individual 'introduced-constraint

'design))

;; This method is used to link the constraints to the in
and out
;; constraint facest of the design object slots that are
used in
;; expressing the particular constraint
(defun constraint-language.link-constraint (object slot
facet)

(declare (ignore slot facet))
(mapcar #1(lambda (slot)

(let* ((role (getfacet? object slot 'role))
(path (getfacet? object slot 'path))
(s-object (first path))
(s-slot (second path)))

(if (and s-object s-slot)
(case role

(in (addfacet s-object s-slot
'out-constraint

(objectnames object)))
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(out (addfacet s-object s-slot
'in-constraint

(objectnames object)))))))
(listslots object 'path)))

;; This method is used to set the source facets of the
arguments of a
;; constraint. The source facet holds the constraint that
specified
;; that particular value shown in the argument
(defun set-source-constraints (constraint)

(mapcar #'(lambda (slot)
(let* ((path (getfacet? constraint slot 'path))

(s-const (objectname
(first (getfacet? (first path)

(second path)
'in-constraint)))))

(putfacet constraint slot 'source s-const)))
(listslots* constraint 'source)))

(defun constraint-role.object-deletion-procedures
(constraint)

(let ((decision (getvalue? constraint
'origination-decision)))

(if decision
(deleteobject decision))
(mapc #'(lambda (slot)

(let ((path (getfacet? constraint slot 'path)))

'role)))

(if (and (object? (first path))
(slot? (first path) (second path)))

(let ((role (getfacet? constraint slot

(case role
(in (removefacet (first path)

(second path)
'out-constraint
(objectname constraint)))

(out (removefacet (first path)
(second path)
'in-constraint
(objectname

constraint))))))))
(listslots constraint 'path ))))

(defun dh-template/active-dependents (object)
(constraint/active-dependencies object))

;; This function return the constraints that depend on
this constraint
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;; for their current value
(defun constraint/active-dependencies (object)

(let ((path (getfacet? object
(first (slotname (listslots* object 'role

'out)))
'path)))

(mapcan #1(lambda (const)
(let ((obj-path

(getfacet const
(first (listslots* const 'role

'out))
'path)))

(if (equal const
(first (getfacet (first obj-path)

(second obj-path)
'in-constraint)))

(list const))))
(getfacet? (first path) (second path)

'out-constraint))))

(defun constraint/all-dependencies (object)
(let ((path (getfacet? object

(first (slotname (listslots* object 'role
'out)))

'path)))
(getfacet? (first path) (second path)

'out-constraint)))

(defun constraint/original-sources (constraint)
(mapcar #'(lambda (slot)

(getfacet? constraint slot 'source))
(listslots* constraint 'source)))

(defun constraint/get-active-dependents (constraint)
(catch 'get-active-dependents-error

(constraint/get-active-dependents-1 constraint (list
constraint))))

(defun constraint/get-active-dependents-1 (start
constraints)

(let ((dependents (mapcar
#'constraint/active-dependencies constraints)))

(dolist (dep dependents)
(when (member start dep :test #'same-object)

(throw 'get-active-dependents-error :fail)))
(apply #'append

constraints
(mapcar #1(lambda (clist)

(constraint/get-active-dependents-1
start clist))

dependents))))



164

(defun constraint - language. update (constraint slot facet)

(declare (ignore constraint slot facet))
nil)

(defun constraint-phrase.datum-print (constraint slot
facet &optional val (dsp *standard- output *))

(declare (ignore facet))
(let ((phrase (message* constraint 'parse)))

(if phrase
(print phrase dsp)
(print (getvalue? constraint 'phrase) dsp))))

(defun constraint-phrase.datum-get (constraint slot facet
&optional path)

(declare (ignore facet path))
(let ((phrase (message* constraint 'parse)))

(if phrase
phrase
(getvalue? constraint 'phrase))))
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III.B.3. Graphical - Constraints. lisp

;; This file contains the methods and functions associated
with the
;; graphical constraints of the kb. Also included is
geometric constraint
;; solver that collects and orders the constraints needed
to be solved for
;; a particular design object

(in-package 'sib -cl)

(defun geometric-constraint-parameter.get (object slot
facet &optional xpath)

(declare (ignore facet))
(getfacet? object slot 'path))

(defun geometric- constraint - parameter. print
(object slot facet &optional val (dsp

*standard-output*))
(declare (ignore facet))
(let* ((path (getfacet? object slot 'path)))

(if path
(print path dsp))))

(defun spacial-orientation.parse (constraint slot facet)
(declare (ignore slot facet))
(format nil "-s -a -s"

(getfacet? constraint
(first (listslots constraint 'role 'out))
'path)

(getvalue? constraint 'relation)
(getfacet? constraint

(first (listslots constraint 'role 'in))
'path)))

;;;; The following are the individual assert methods for
the orientation
;;;; constraints. Each assert method performs
manipulations to the x,y,z
;;;; rotations and translations of the dependent object
specified in the
;;;; constraint.

;,

(defun parallel- surface - constraint. assert (object slot
facet)

(declare (ignore slot facet))
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;;; gather variables and perform rotation
(let* ((indep-object (first (message* object

'independent-surface 'path)))
(indep-face (second (message* object

'independent-surface 'path)))
(indep-face-plane (find-local-plane-equation

indep-object indep-face))
(indep-face-vector (list

(cos (deg-to-rad (first
indep-face-plane)))

(cos (deg-to-rad (second
indep-face-plane)))

(cos (deg-to-rad (third
indep-face-plane)))))

(dep-object (first (message* object
'dependent-surface 'path)))

(dep-face (second (message* object 'dependent-surface
'path)))

(dep-face-plane (find-local-plane-equation dep-object
dep-face))

(dep-face-vector (list
(cos (deg-to-rad (first dep-face-plane)))

(cos (deg-to-rad (second
dep-face-plane)))

(cos (deg-to-rad (third
dep-face-plane)))))

(rot-vector (norm-of-vector
(cross-product dep-face-vector

indep-face-vector)))
(angle-between (- (angle-between-vectors

indep-face-vector
dep-face-vector
rot-vector)))

(delta-rx (cnvt-to-degrees (* angle-between (first
rot-vector))))

(delta-ry (cnvt-to-degrees (* angle-between (second
rot-vector))))

(delta-rz (cnvt-to-degrees (* angle-between (third
rot-vector))))

(rx (message* indep-object 'x-rotation 'get))
(ry (message* indep-object 'y-rotation 'get))
(rz (message* indep-object 'z-rotation 'get))
(affected-axis
(mapcar #'(lambda (value rot)

(if (not (or (= value 180)
(= value 0)))

rot))
(butlast (find-local-plane-equation indep-object

indep-face))
'(x-rotation y-rotation z-rotation))))

(if (member 'x-rotation affected-axis)



(message* dep-object 'x-rotation 'put (+

(if (member 'y-rotation affected-axis)
(message* dep-object 'y-rotation 'put (+

(if (member 'z-rotation affected-axis)
(message* dep-object 'z-rotation 'put (+
)))

delta-rx

delta-ry

delta-rz
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(defun coplanar- surface - constraint. assert (object slot
facet)

(declare (ignore slot facet))
;;; gather variables and perform rotation
(let* ((indep-object (first (message* object

'independent-surface 'path)))
(indep-face (second (message* object

'independent-surface 'path)))
(indep-face-plane (find-local-plane-equation

indep-object indep-face))
(indep-face-vector (list

(cos (deg-to-rad (first
indep-face-plane)))

(cos (deg-to-rad (second
indep-face-plane)))

(cos (deg-to-rad (third
indep-face-plane)))))

(dep-object (first (message* object
'dependent-surface 'path)))

(dep-face (second (message* object 'dependent-surface
'path)))

(dep-face-plane (find-local-plane-equation dep-object
dep-face))

(dep-face-vector (list
(cos (deg-to-rad (first dep-face-plane)))

(cos (deg-to-rad (second
dep-face-plane)))

(cos (deg-to-rad (third
dep-face-plane)))))

(rot-vector (norm-of-vector
(cross-product dep-face-vector

indep-face-vector)))
(angle-between (- (angle-between-vectors

indep-face-vector
dep-face-vector
rot-vector)))

(delta-rx (cnvt-to-degrees (* angle-between (first
rot-vector))))

(delta-ry (cnvt-to-degrees (* angle-between (second
rot-vector))))

(delta-rz (cnvt-to-degrees (* angle-between (third
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rot-vector))))
(rx (message* indep-object 'x-rotation 'get))
(ry (message* indep-object 'y-rotation 'get))
(rz (message* indep-object 'z-rotation 'get))
(affected-axis
(mapcar #'(lambda (value rot)

(if (not (or (= value 180)
(= value 0)))

rot))
(butlast (find-local-plane-equation indep-object

indep-face))
'(x-rotation y-rotation z-rotation))))

(if (member 'x-rotation affected-axis)
(message* dep-object 'x-rotation 'put (+ delta-rx

rx)))
(if (member 'y-rotation affected-axis)
(message* dep-object 'y-rotation 'put (+ delta-ry

ry)))
(if (member 'z-rotation affected-axis)
(message* dep-object 'z-rotation 'put (+ delta-rz

rz)))
;;; perform translation of dep-object

(let* ((indep-face-global-plane
(find-global-plane-equation indep-object

indep-face))
(indep-face-global-vector (list

(cos (deg-to-rad (first
indep-face-global-plane)))

(cos (deg-to-rad (second
indep-face-global-plane)))

(cos (deg-to-rad (third
indep-face-global-plane)))))

(indep-face-normal-vector
(norm-of-vector indep-face-global-vector))
(indep-face-dist (abs (first (last

indep-face-plane))))
(dist-path (getfacet? object 'distance 'path))
(dep-face-dist (abs (first (last dep-face-plane))))

(offset (if dist-path
(message* (first dist-path)

(second dist-path) 'get)
0))

(indep-translation (butlast (message* indep-object
'transform-vector) 3))

(dep-translation (butlast (message* dep-object
'transform-vector) 3))

(face-dist (- (+ (distance-between-parallel-planes
indep-translation

dep-translation

indep-face-normal-vector)
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indep-face-dist
offset)

dep-face-dist)))
(message* dep-object 'x-translation 'put

(+ (* face-dist
(first indep-face-normal-vector))

(first dep-translation)))
(message* dep-object 'y-translation 'put

(+ (* face-dist
(second indep-face-normal-vector))

(second dep-translation)))
(message* dep-object 'z-translation 'put

(+ (* face-dist
(third indep-face-normal-vector))

(third dep-translation))))
object))

(defun opposing- coplanar- surface - constraint. assert (object
slot facet)

(declare (ignore slot facet))
;;; gather variables and perform rotation
(let* ((indep-object (first (message* object

'independent-surface 'path)))
(indep-face (second (message* object

'independent-surface 'path)))
(indep-face-plane (find-local-plane-equation

indep-object indep-face))
(indep-face-vector (list

(cos (deg-to-rad (first
indep-face-plane)))

(cos (deg-to-rad (second
indep-face-plane)))

(cos (deg-to-rad (third
indep-face-plane)))))

(dep-object (first (message* object
'dependent-surface 'path)))

(dep-face (second (message* object 'dependent-surface
'path)))

(dep-face-plane (find-local-plane-equation dep-object
dep-face))

(dep-face-vector (list
(cos (deg-to-rad (first dep-face-plane)))

(cos (deg-to-rad (second
dep-face-plane)))

(cos (deg-to-rad (third
dep-face-plane)))))

(rot-vector (norm-of-vector
(cross-product dep-face-vector

indep-face-vector)))
(angle-between (angle-between-vectors

indep-face-vector
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dep-face-vector
rot-vector))

(rot-angle (if (> angle-between pi)
angle-between
(- 180 angle-between)))

(delta-rx (cnvt-to-degrees (* rot-angle (first
rot-vector))))

(delta-ry (cnvt-to-degrees (* rot-angle (second
rot-vector))))

(delta-rz (cnvt-to-degrees (* rot-angle (third
rot-vector))))

(rx (message* indep-object 'x-rotation 'get))
(ry (message* indep-object 'y-rotation 'get))
(rz (message* indep-object 'z-rotation 'get))
(affected-axis
(mapcar #'(lambda (value rot)

(if (not (or (= value 180)
(= value 0)))

rot))
(butlast (find-local-plane-equation indep-object

indep-face))
'(x-rotation y-rotation z-rotation))))

(break)
(if (member 'x-rotation affected-axis)
(message* dep-object 'x-rotation 'put (+ delta-rx

rx)))
(if (member 'y-rotation affected-axiA
(message* dep-object 'y-rotation 'put (+ delta-ry

ry)))
(if (member 'z-rotation affected-axis)
(message* dep-object 'z-rotation 'put (+ delta-rz

rz)))
;;; perform translation of dep-object

(let* ((indep-face-global-plane
(find-global-plane-equation indep-object

indep-face))
(indep-face-global-vector (list

(cos (deg-to-rad (first
indep-face-global-plane)))

(cos (deg-to-rad (second
indep-face-global-plane)))

(cos (deg-to-rad (third
indep-face-global-plane)))))

(indep-face-normal-vector
(norm-of-vector indep-face-global-vector))
(indep-face-dist (abs (first (last

indep-face-plane))))
(dist-path (getfacet? object 'distance 'path))
(dep-face-dist (abs (first (last dep-face-plane))))

(offset (if dist-path
(message* (first dist-path)
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(second dist-path) 'get)
0))

(indep-translation (butlast (message* indep-object
'transform-vector) 3))

(dep-translation (butlast (message* dep-object
'transform-vector) 3))

(face-dist (- (- (+
(distance-between-parallel-planes indep-translation

dep-translation

indep-face-normal-vector)
offset)

indep-face-dist
dep-face-dist))))

(message* dep-object 'x-translation 'put
(+ (* face-dist

(first indep-face-normal-vector))
(first dep-translation)))

(message* dep-object 'y-translation 'put
(+ (* face-dist

(second indep-face-normal-vector))
(second dep-translation)))

(message* dep-object 'z-translation 'put
(+ (* face-dist

(third indep-face-normal-vector))
(third dep-translation))))

object))

;; This method creates a new 'A=VALUE constraint to
specify the offset
;; distance between two objects. It is invoked only when
the constraint is
;; initially created.
(defun distance - between - surface - constraint. create (object
slot facet)

(declare (ignore slot facet))
(let* ((const-source (objectname (first (generalizations

object))))
(orig-decision (getvalue? object

'originating-decision))
(dep-object (first (message* object

'dependent-surface 'path)))
(indep-path (message* object 'independent-surface

'path))
(val (message* object 'initial-dist-value))
(slot-name (intern (format nil "offset from -s -s"

(first indep-path)
(second indep-path)) 'sib -cl)))

(if (not (slot? dep-object slot-name))
(message* dep-object 'create-parameter nil slot-name

'numeric))
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(putfacet object 'distance 'path (list dep-object
slot-name))

(let ((new-const
(case const-source
(derived-constraint (derived-constraint/create))

(given-constraint (given-constraint/create))
(introduced-constraint

(introduced-constraint/create)))))
(addgeneralizations new-const '(parameter a=value))

(putvalue new-const 'val val)
(putfacet new-const 'a 'path (list dep-object

slot-name))
(putvalue new-const 'originating-decision

orig-decision)
new-const)))

;;********************************************************
********************
;; Link methods used to link constraints to design-object
slots *
;;********************************************************
********************

(defun parallel- surface - constraint. link- constraint (object
slot facet)

(declare (ignore slot facet))
(let* ((indep-object (first (message* object

'independent-surface 'path)))
(indep-face (second (message* object

'independent-surface 'path)))
(indep-face-axis (second (assoc indep-face (message*

indep-object 'faces))))
(dep-object (first (message* object

'dependent-surface 'path)))
(changed-slots '(x- rotation y-rotation

z-rotation)))
(mapcar #'(lambda (slot)

(addfacet indep-object slot 'out-constraint
object)

(addfacet dep-object slot 'in-constraint
object))

changed-slots)))

(defun coplanar- surface - constraint. link- constraint (object
slot facet)

(declare (ignore slot facet))
(let* ((indep-object (first (message* object

'independent-surface 'path)))
(dep-object (first (message* object
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'dependent-surface 'path)))
(indep-face (second (message* object

'independent-surface 'path)))
(indep-face-plane (find-local-plane-equation

indep-object indep-face))
(affected-axis
(mapcar #'(lambda (value trans rot)

(if (or (= value 180)
(= value 0))

trans
rot))

(butlast indep-face-plane)
'(x-translation y-translation z-translation)
'(x-rotation y-rotation z-rotation))))

(mapcar #'(lambda (slot)
(addfacet indep-object slot 'out-constraint

object)
(addfacet dep-object slot 'in-constraint

object))
affected-axis)

object))

;not sure that this linker links the right slots
(defun perpendicular- surface - constraint. link- constraint
(object slot facet)
(declare (ignore slot facet))
(let* ((indep-object (first (message* object

'independent-surface 'path)))
(indep-face (second (message* object

'independent-surface 'path)))
(indep-face-axis (second (assoc indep-face (message*

indep-object 'faces))))
(dep-object (first (message* object

'dependent-surface 'path))))
(case indep-face-axis
(x (setq changed-slots '(y-rotation z-rotation)))
(y (setq changed-slots '(x- rotation z-rotation)))
(z (setq changed-slots '(x- rotation y-rotation))))

(mapcar #'(lambda (slot)
(addfacet indep-object slot 'out-constraint

object)
(addfacet dep-object slot 'in-constraint

object))
changed-slots)))

;;********************************************************
*********************
;* miscellaneous functions

*

;;********************************************************
*********************
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(defun find-normal-vector (object axis)
(let* ((rx (message* object 'x-rotation))

(ry (message* object 'y-rotation))
(rz (message* object 'z-rotation))
(mot-matrix (mk-motion-matrix* (list 0 0 0 rz ry

rx)))
(rows (list 'first-row 'second-row 'third-row)))

(case axis
('x (mapcar #1(lambda (row)

(first (first (get-values mot-matrix
row))))

rows))
('y (mapcar #1(lambda (row)

(second (first (get-values mot-matrix
row))))

rows))
('z (mapcar #'(lambda (row)

(third (first (get-values mot-matrix
row))))

rows)))))

(defun find-global-plane-equation (object face)
(let* ((plane-equation (second (assoc face (message*

object 'faces))))
(parameters (slotnames (listslots* object 'role

'parameter)))
(par-values (mapcar #'(lambda (slot)

(message* object slot 'get))
parameters))

(equation (progv parameters par-values
(eval plane-equation)))

(x-rot (message* object 'x-rotation 'get))
(y-rot (message* object 'y- rotation 'get))
(z-rot (message* object 'z-rotation 'get))
(new-vect (multiply-array-matrix

(list (cos (cnvt-to-radians (first
equation)))

(cos (cnvt-to-radians (second equation)))

0 0

(cos (cnvt-to-radians (third equation))))

(first (get-values (mk-motion-matrix* (list 0

(- z-rot)
(- y-rot)
(- x-rot)))

'matrix-name)))))
(list (cnvt-to-degrees (acos (first new-vect)))
(cnvt-to-degrees (acos (second new-vect)))
(cnvt-to-degrees (acos (third new-vect)))
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(fourth equation))))

(defun find-local-plane-equation (object face)
(let* ((plane-equation (second (assoc face (message*

object 'faces))))
(parameters (slotnames (listslots* object 'role

'parameter)))
(par-values (mapcar #'(lambda (slot)

(message* object slot 'get))
parameters))

(equation (progv parameters par-values
(eval plane-equation))))

(list (first equation)
(second equation)
(third equation)
(fourth equation))))

(defun distance-between-points (pointl point2)
(let ((dl (- (first pointl) (first point2)))
(d2 (- (second pointl) (second point2)))
(d3 (- (third pointl) (third point2))))

(sqrt (+ (* dl dl)
(* d2 d2)
(* d3 d3)))))

(defun distance-between-parallel-planes (pointl point2
normal)

(let ((vector (vector-between-points pointl point2)))
(/ (dot-product vector normal)

(vector-length normal))))

(defun vector-length (vector)
(let ((x (first vector))

(y (second vector))
(z (third vector)))
(sqrt (+ (* x x)

(* Y Y)
(* z z)))))

(defun vector-between-points (pointl point2)
(list (- (first point2) (first pointl))
(- (second point2) (second pointl))

(- (third point2) (third pointl))))

(defun cnvt-to-radians (angle)
(/ (* angle pi) 180))

(defun cnvt-to-degrees (angle)
(/ (* angle 180) pi) )



176

;;;
**********************************************************
******************
;; * geometric constraint sorter - solver

*

;;;
**********************************************************
******************

(defun get-active-geometric-constraints (object)
(reverse (reduce-list

(mapcan #'geometric-constraints-needed
(mapcar #'(lambda (slot)

(first (getfacet? object slot
'in-constraint)))

(listslots object 'role 'geometry))))))

(defun geometric-constraints-needed (constraint)
(if constraint

(append (list (objectname constraint))
(mapcan #'geometric-constraints-needed

(mapcan #'(lambda (slot)
(let ((object (first

(message* constraint
slot 'path))))

(get-active-geometric-constraints object)))
(listslots constraint 'role 'in))))))

(defun geometric-constraints-for-component (object)
(append
(get-active-geometric-constraints object)
(geometric-constraints-for-component-1 object)))

(defun geometric-constraints-for-component-1 (object)
(let ((components (mapcar #'(lambda (slot)

(message* object slot))
(listslots object 'role 'component))))

(append
(mapcan #'get-active-geometric-constraints

components)
(mapcan #'geometric-constraints-for-component-1

components))))

(defun solve-geometric-constraints (objects)
(if (atom objects)

(setq objects (list objects)))
(mapcar #'(lambda (constraint)
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(message* constraint 'assert))
(reduce-list
(mapcan #'geometric-constraints-for-component

objects))))

;; This function removes all the graphic representation
information from
;; the design objects as well as resets the values of the
x,y,z
;; translations and rotations.
(defun reset-geometry ()

(init)
(mapc #'(lambda (slot)

(mapc #'(lambda (object)
(if (slot? object slot nil t)

(deleteslot object slot)))
(progeny* 'design-object)))

(list 'geo-status 'scene 'csg-node 'representation
'relevant-v1v2edges

'win-origin-x 'win-origin-y 'zoomf))
(mapc #'(lambda (slot)

(mapcar #'(lambda (object)
(if (slotvaluep object slot)
(putvalue object slot 0)))

(progeny* 'design-object)))
(list 'x-translation 'y-translation
'z-translation 'x-rotation 'y-rotation

'z-rotation)))
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III.B.4 Equational - Constraint. lisp

;; This file contains functions and methods for use by the
equational
;; constraints

(in-package 'sib -cl)

;; This function evaluates the equation of a constraint
and returns whether
;; the cnostraint is satisfied (t) or not (nil)
(defun equational. satisfied (constraint slot facet)

(declare (ignore slot facet))
(let* ((vars (slotnames (append (listslots* constraint

'role))))
(vals (mapcar #'(lambda (slot)

(let ((path (getfacet? constraint slot
'path)))

(if path
(message* (first path)

(second path)
'get)

(getvalue? constraint slot))))
vars))

(equation (getvalue? constraint 'equation)))
(progv vars vals

(eval equation))))

(defun equality-constraint.solve (constraint slot facet)
(declare (ignore slot facet))
(let* ((vars (slotnames (listslots* constraint 'role

'in)))
(vals (mapcar #'(lambda (slot)

(getvalue? constraint slot))
vars))

(equation (first (rest (rest (getvalue constraint
'equation)))))

(result (progv vars vals
(eval equation))))

(putvalue constraint (first (listslots* constraint
'role 'out)) result)

result))

(defun equality-constraint.parse (constraint slot facet)
(declare (ignore slot facet))
(let* ((vars (slotnames (listslots* constraint 'role)))

(var-path-alist
(mapcar #'(lambda (slot)

(list
(slotname slot)
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(if (getfacet? constraint slot 'path)
(getfacet? constraint slot 'path)
(getvalue? constraint slot))))

vars))
(equation (getvalue constraint 'equation)))
(prefix-to-infix equation var-path-alist)))

(defun prefix-to-infix (expr alist &optional (outer-op
nil))

(cond ((null expr) nil)
((atom expr)
(if (cdr (assoc expr alist))

(cdr (assoc expr alist))
(list expr)))

((and (member outer-op '(* /))
(not (member (second expr) '(* /))))

(list
(append (prefix-to-infix (second expr) alist (first

expr))
(list (first expr))
(prefix-to-infix (third expr) alist (first

expr)))))
(t
(append (prefix-to-infix (second expr) alist (first

expr))
(list (first expr))
(prefix-to-infix (third expr) alist (first

expr))))))

(defun inequality-constraint.solve (constraint slot facet)

(declare (ignore slot facet))
(let* ((vars (slotnames (listslots* constraint 'role)))

(vals (mapcar #'(lambda (slot)
(getvalue? constraint slot))

vars))
(equation (getvalue constraint 'equation))
(result (format nil "-s-s"

(first equation)
(progv vars vals

(eval (list '+
(first (rest (rest

equation)))))))))
(putvalue constraint (first (listslots* constraint

'role 'out)) result)
result))

(defun quality-constraint.parse (constraint slot facet)
(declare (ignore slot facet))
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(format nil "-{`A
(remove nil

(list
(getvalue? constraint 'quality-expr)
(getfacet? constraint 'independent-feature

'path)))))

(defun equational-constraint/create/subclass (name
var-list type)

(if (null (listp var-list))
(list var-list))

(let ((object (createobject name 'class type 'template

'(((,(first var-list))
(datatype .

numeric-constraint-parameter)
(role . out)
(path)
(source))))))

(mapcar #'(lambda (var)
(fillslots object

'(((,var)
(datatype . numeric-constraint-parameter)
(role . in)
(path)
(source)))))

(rest var-list))
object))

;; This method automatically maintains and updates the
equality constraints
;; as new constriants are added to the kb. This is done by
creating new
;; instances of those constraints that will be affected by
the addition or
;; modification information into the kb.
(defun equality-constraint.update (constraint slot facet)

(declare (ignore slot facet))
(let ((dependents (constraint/get-active-dependents

constraint))
(decision (getvalue? constraint

'originating-decision)))
(if (equal dependents :fail)
:fail
(mapcar #'(lambda (const)

(let* ((generalizations (generalizations
const))

(new-const
(case (objectname (first

generalizations))
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(given-constraint
(given-constraint/create))
(introduced-constraint
(introduced-constraint/create))
(derived-constraint
(derived-constraint/create)))))

(addgeneralizations new-const
(list (second

generalizations)
(third generalizations)))

(uncache const new-const)
(mapcar #'(lambda (slot)

(let* ((path (getfacet new-const
slot 'path))

(value (message* (first
path)

(second path)
'get)))

(putvalue new-const slot
value)))

(listslots* new-const 'path))
(putvalue new-const

(slotname (first
(listslots* new-const 'role

'out)))
(message new-const 'solve))

(if decision
(putvalue new-const

'originating-decison decision))
(message* new-const 'link-constraint)
(set-source-constraints new-const)
new-const))

(cdr (reduce-list dependents))))))



182

III.B.5. Textual - Constraint. lisp

;; This file contains methods and functions used by the
textual constraints
(in-package 'sib -cl)

(defun textual.solve (constraint slot facet)
(declare (ignore slot facet))
(obj ectname (first

(getfacet? constraint
(first (listslots* constraint 'role 'out))

'path))))

(defun status-language.solve (constraint slot facet)
(declare (ignore slot facet))
(let ((constraint (getvalue constraint

'constraint-affected))
(status (getvalue constraint 'status)))
(putvalue constraint 'status status)))

(defun structured.parse (constraint slot facet)
(declare (ignore slot facet))
(let ((sequence (getvalue? constraint 'sequence))
(decomposition (getvalue? constraint 'decomposition))

(alternatives (getvalue? constraint 'alternatives)))
(format nil "-(-A -}"

(remove nil
(list (format nil "-(-A -)"

(remove nil
(list
(getvalue? constraint 'object)

'receiver)

'location)

(getvalue? constraint 'action)

(getvalue? constraint

(getvalue? constraint

(getvalue? constraint
'action-qualifier))))

(if sequence
(format nil "SEQUENCE: -a"

(series-parse sequence)))
(if decomposition

(format nil "DECOMPOSITION: -a"
(series-parse decomposition)))

(if alternatives
(format nil "ALTERNATIVES: -a"

(series-parse alternatives))))))))
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(defun series-parse (series)
(setq counter 0)
(mapcar #'(lambda (constraint)

(setq counter (+ counter 1))
(format nil "-D. -A"
counter
(message* constraint 'parse)))

series))

(defun simple.parse (constraint slot facet)
(declare (ignore slot facet))
(format nil "-{-A -)"

(remove nil
(list
(getvalue? constraint 'instantiation/relation)

(getvalue? constraint 'independent-feature)
(getvalue? constraint

'independent-feature2)))))

(defun function.parse (constraint slot facet)
(declare (ignore slot facet))
(remove nil

(mapcar #'(lambda (slot)
(let ((fm (find-last-successor

(getvalue? constraint slot))))
(if fm

(message* fm 'parse))))
(listslots constraint 'datatype

'function-module))))

(defun production-constraint-language.parse (constraint
slot facet)

(declare (ignore slot facet))
(remove nil

(mapcar #'(lambda (slot)
(format nil "-s: -a"

(slotname slot)
(getvalue? constraint slot)))a

(listslots constraint 'role
'production-parameter))))

(defun object-form-language.parse (constraint slot facet)

(declare (ignore slot facet))
(let ((name (getvalue? constraint 'name))
(shape (getvalue? constraint 'shape))
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(status (getvalue? constraint 'status)))
(format nil

"-:[-Cs -]-:[-; with shape -s -]-:[-; and status
-s -]"

name name shape shape status status)))

;; This method is used by a specialized expr datatype that
returns a
;; formulated phrase of the textual constraint expression

(defun text-valued.datum-get (object slot facet &optional
path)

"SYS/GETFUNCTION responds to a GET message with
GETVALUE."

;; From version of 18-Sep-86 by jaw
(declare (ignore facet))
(let ((constraints (objectname (getfacet? object slot

'in-constraint))))
(if constraints
(let* ((val (dolist (const constraints)

(if (not (equal 'in-active
(getvalue? const 'status)))

(return (message* const 'parse))))))
val)

(getvalue object slot))))

(defun text-valued.datum-print (object slot facet
&optional path (dsp *standard-output*))

"SYS/GETFUNCTION responds to a GET message with
GETVALUE."

;; From version of 18-Sep-86 by jaw
(declare (ignore facet))
(let ((constraints (objectname (getfacet? object slot

'in-constraint))))
(if constraints
(let* ((val (dolist (const constraints)

(if (not (equal 'in-active
(getvalue? const 'status)))

(return (message* const 'parse))))))
(print val dsp))

(prinl (getvalue object slot) dsp))))

;; This method creates a new design object within the
knowledge base
(defun create-object.solve (constraint slot facet)
(declare (ignore slot facet))
(let* ((obj-name (getvalue? constraint 'name))

(obj-shape (getvalue? constraint 'shape))
(parent (getvalue? constraint 'parent))
(components (getvalue? constraint 'components))
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(object (design-object/create obj-name
obj-shape)))

(putfacet constraint 'object 'path
(list obj-name 'form))

(if parent
(case parent

(*generic-object* (design-object/make-object-generic
object))

(otherwise (design-object/create/component parent
obj-name)

(putvalue object 'parent parent))))
(if components
(mapcar #1(lambda (comp)

(design-object/create/component obj-name
comp))

components))
(objectname object)))

;; This method modifies the name, shape, components,
and/or parents of an
;; existing design object
(defun modify-object-form.solve (constraint slot facet)

(declare (ignore slot facet))
(let* ((new-name (getvalue? constraint 'name))

(new-shape (getvalue? constraint 'shape))
(new-parent (getvalue? constraint 'parent))
(new-components (getvalue? constraint 'components))
(old-name (objectname (first (getfacet constraint

'object 'path))))
(old-shape (objectname (primarygeneralization

old-name)))
(old-parent (getvalue? old-name 'parent))
(old-components (message* old-name 'composed-of)))
(if (not (equal new-name old-name))
(progn
(renameobject old-name new-name)
(putfacet constraint 'object 'path

(list new-name 'form))
(if old-parent

(renameslot old-parent old-name new-name))))
(if (not (equal new-shape old-shape))
(progn
(addgeneralizations new-name new-shape)
(removegeneralizations new-name old-shape)
(sortgeneralizations new-name nil

#'(lambda (gi g2)
(generalization? gl

'design-primitives)))))
(let ((comp-added (set-difference new-components

old-components))
(comp-removed (set-difference old-components
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new-components)))
(if comp-added
(mapcar #'(lambda (comp)

(design-object/create/component new-name
comp))

comp-added))
(if comp-removed
(mapcar Paambda (comp)

(deleteslot new-name comp))
comp-removed)))

(if new-parent
(if (not (equal new-parent old-parent))

(if (equal new-parent '*generic-object*)
(progn

(design-object/make-object-generic new-name)
(deleteslot new-name 'parent)
(if (equal new-name old-name)

(deleteslot old-parent old-name)
(deleteslot old-parent new-name)))

(progn
(putvalue new-name 'parent new-parent)
(design-object/create/component new-parent

new-name)
(if old-parent

(deleteslot old-parent new-name))))))
new-name))
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111.8.6. New-Functions.lisp

(in-package 'SLB-CL)

(defun delete-instances-all (object)
(mapcar 'deleteobject (progeny* object 'design)))

;; This function deletes all design instances from the
;; knowledge base
(defun cleanup ()

(list (delete-instances-all 'constraint-source)
(delete-instances-all 'design-object)
(delete-instances-all 'decision)
(delete-instances-all 'function-module)))

(defun delete-object-all (object)
(mapcar 'deleteobject (progeny* object)))

(defun delete-slots-all (object)
(mapcar #'(lambda (slot)

(deleteslot object slot))
(listslots object)))

(defun decision.preceeding-decision (object slot facet)
(declare (ignore slot facet))
(mapcar #'(lambda (const)

(message* const 'originating-decision))
( derived - constraint. preceeding- constraint
(message* object 'resulting-constraint) nil nil)))

(defun decision/create ()
(let ((decision (createobject nil 'individual 'decision

'design))
(constraint (derived-constraint/create)))
(addvalue decision 'resulting-constraint constraint)
(list decision constraint)))

;; This is a specialized lisp datatype that returns as its
value the
;; result of evaluating the lisp expression contained as
its value
(defun sys/printlisp-p-lisp (object slot facet &optional
val (dsp *standard-output*))

"SYS/PRINTLISP is the printing function for an item of
the LISP datatype. DSP is an optional

stream."
;; From version of 10-Sep-84 by rgs
(declare (ignore facet dsp val))
(let ((fn-val (message* object slot)))

(write fn-val :stream dsp :escape t)))

;; This is a specialized expr datatype method that finds
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the current value
;; of a design object attribute by determining the most
recent active
;; in-constraint and solving for it
(defun numeric.datum-print (object slot facet &optional
val (dsp *standard-output*))

"the printing function for an item of the NUMERIC
datatype. DSP is an optional

stream."
;; From version of 11-Nov-82 by rgs/11-Jul-86 by jaw
(declare (ignore facet))
(let ((constraints (objectname (getfacet? object slot

'in-constraint))))
(if constraints
(let* ((val (dolist (const constraints)

(if (not (equal 'in-active
(getvalue? const 'status)))

(return (message* const 'solve))))))
(prinl val dsp))

(prinl (getvalue object slot) dsp))))

;; See numeric.datum-print
(defun numeric.datum-get (object slot facet &optional
path)

"responds to a GET message with GETVALUE."
;; From version of 18-Sep-86 by jaw
(declare (ignore facet path))
(let ((constraints (objectname (getfacet? object slot

'in-constraint))))
(if constraints
(dolist (const constraints)
(if (not (equal 'in-active

(getvalue? const 'status)))
(return (message* const 'solve))))

(getvalue object slot))))

(defun decision. deletion- procedures (object)
(mapcar #1(lambda (result)

(if (object? result)
(deleteobject result)))

(getvalue object 'resulting-constraint)))

(defun reduce-list (lis)
(let ((lis (reverse lis))

(new-lis nil))
(dolist (item lis)
(pushnew item new-lis :test #'eql))

new-lis))

(defun function-module/create ()
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(createobject (createobjectname 'function-module)
'individual
'function-module
'design))

(defun updated-series (constraint slot)
(let ((old-sequence (getvalue? constraint slot)))

(mapcar #'(lambda (item)
(find-last-successor item))

old-sequence)))

(defun find-last-successor (object)
(cond ((null object) nil)
(t (let ((successor (getvalue? object 'successor)))

(if successor
(find-last-successor successor)
object)))))

(defun uncache (source target)
(mapcar #'(lambda (slot)

(if (slotvaluep source slot)
(linkslot target slot source)))

(slotnames (listslots* source 'role)))
(putvalue source 'successor target))

;; This function determines if a constraint is current or
not by examining
;; its status and comparing it to the in-constraints of
the dependent
;; argument specified by the constraint
(defun current? (constraint)
(let ((path (getfacet? constraint

(first (listslots* constraint 'role 'out))

'path)))
(if path
(if (object? (first path))

(let* ((in-consts
(if (slot? (first path)

(second path))
(getfacet? (first path)

(second path)
'in-constraint)

(list constraint)))
(active (dolist (const in-consts)

(if (null (equal 'in-active
(getvalue? const 'status)))

(return const)))))
(same-object constraint active))

nil)
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t)))

;;;Do you want this function to be destructive (i.e., to
destructively
;;;modify the list?). If so, then the following code will
work:

(defun ninsert-after (newitem element list)
(let ((tail (member element list)))

(cond (tail
(rplacd tail (cons newitem (cdr tail)))
list)

(t (error "-S is not in "S." element list)))))

;;;If you don't want the function to make destructive
modifications to
;;;the list, then this will work:

(defun insert-after (newitem element list)
(cond ((null list) nil)

((eq element (car list))
(cons element (cons newitem (cdr list))))

(t (cons (car list)
(insert-after newitem element (cdr

list))))))

;;;Note that in this second version, if ELEMENT is not
found in LIST, the
;;;function simply returns (a copy of) LIST without
reporting an error.
;;;It would be easy to make NINSERT-AFTER do this too, of
course.
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III.B.7. Draw-Function.lisp

(in-package 'sib -cl)

;; This function draws csg-nodes to the vantage window
(defun draw (node)
(fit-screen* (boun-rep* node)))

;; This function draws objects to the vantage window given

;; one or more design objects
(defun draw-objects (objects)

(if (atom objects)
(setq objects (list objects)))

(solve-geometric-constraints objects)
(if (and (null (rest objects))

(not (generalization? (first objects) 'composite)))

(draw (message* (first objects) 'make-node))
(draw (let ((nodes (mapcan #'(lambda (obj)

(message* obj 'make-node))
objects)))

(if (listp nodes)
(if (rest nodes)

(progn
(setq base-node (first nodes))
(mapcar #'(lambda (node)

(setq base-node
(csgnode* (gentemp "NODE-")

'union
(list base-node

node))))
(rest nodes))

base-node)
(first nodes))

nodes)))))

;; This function creates a bitmap for the representantion
slot
;; of a design object
(defun make-representation (object)

(if (or (null (slot? object 'scene))
(null (slotvaluep object 'scene)))

(draw-objects object))
(setq *relevent- scene- vlv2edges* ())
(fit-scene-to-screen* (message* object 'scene)

'display-camera)
(fillslots object

'((representation
(datatype . BITMAP)
(value . ,(make-bitmap
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:width *vantage-window-width*
:height *vantage-window-height*)))

(relevant-v1v2edges
(value . ,*relevant-scene-v1v2edges*)
(datatype . EXPR))

(win-origin-x
(datatype . EXPR)
(value . ,*win-origin-x**))

(win-origin-y
(datatype . EXPR)
(value . ,*win-origin-y**))

(zoomf
(datatype . EXPR)
(value . ,*zoomf*))))

(rasterop *vantage-window* 0 0
(message object 'representation) 0 0
*vantage-window-width*
*vantage- window - height *))

;;********************************************************
**********************
;; The following function were extrated from Rich Charon's
Scene-handler.lisp
;; code. They are used in drawing objects to the vantage
window.
;;********************************************************
********************

(defvar *relevant- scene - vlv2edges* ())

(defun fit-scene-to-screen* (scene camera)
(let* ((nodes-in-scene (car (v-get-values scene

'CSG-NODE-LIST)))
(minx most-positive-fixnum)
(maxx most-negative-fixnum)
(miny most-positive-fixnum)
(maxy most-negative-fixnum)
diffx diffy)
(dolist (body-node nodes-in-scene)
(let* ((body-name (v-get-value body-node

'boundary-rep))
(ver-list (v-get-values body-name

'body-vertex-list)))
(dolist (ver ver-list)
(let* ((xyz (v-get-value ver 'xyz-value))

(xyzl (project-point camera (car xyz) (cadr xyz)
(caddr xyz)))

(xv (car xyzl))
(yv (cadr xyzl)))

(if (< xv minx) (setq minx xv))
(if (> xv maxx) (setq maxx xv))
(if (< yv miny) (setq miny yv))



(if (> yv maxy) (setq maxy yv))))))
(setq diffx (abs (- minx maxx)))
(setq diffy (abs (- miny maxy)))
(set-new-display-parameters diffx diffy (/ (+ minx

maxx) 2) (/ (+ miny maxy) 2) .8)
;;(break "list = "S"A" nodes-in-scene)
(dolist (body-node nodes-in-scene)

(scene-draw-body* body-node camera))))

(defun scene-draw-body* (node camera)
(let* ((name (v-get-value node 'boundary-rep))

(edge-1 (v-get-values name 'body-edge-list))
(face-1 (v-get-values name 'body-face-list)))
(dolist (i edge-1) (scene-draw-edge node i camera))

;(break "i = -s-%" i)
(if (= 4 *hid-level*) (dolist (i face-1)

(scene-draw-face i))))
(values node))

(defun scene-draw-edge (node edge camera)
(if (null (v-get-value edge 'edge-children))

(let* ((dash (if (not (= 1 *hid-level*))
(not-visible-p edge)))

;t means not-visibe
(vi (v-get-value edge 'p-vertex))
(v2 (v-get-value edge 'n-vertex))
(xyzl (v-get-value vl 'xyz-value))
(xyz2 (v-get-value v2 'xyz-value))
(ppl (project-point camera (car xyzl)

(caddr xyzl)))
(pp2 (project-point camera (car xyz2)

(caddr xyz2)))
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(cadr xyzl)

(cadr xyz2)

(x (floor (+ (* *zoomf* (car ppl))
*win-origin-x**)))

(y (floor (+ (* *zoomf* (cadr ppl))
*win-origin-y**)))

(xl (floor (+ (* *zoomf* (car pp2))
*win-origin-x**)))

(yl (floor (+ (* *zoomf* (cadr pp2))
*win-origin-y**))))

(v-replace-values vl 'display-xy (list x y))
(v-replace-values v2 'display-xy (list xl yl))
(push (list vl v2 edge) *displayed- vlv2edge- list *)
(push vl *displayed-vertex-list*)
(push v2 *displayed-vertex-list*)
(unless (and (or (= 4 *hid-level*) (= 3 *hid-level*))

dash)
(vantage-line (car ppl) (cadr ppl) (car pp2) (cadr

pp2) :dash dash)



194

(push (list (list (car ppl) (cadr ppl))
(list (car pp2) (cadr pp2)) edge node)

*relevant- scene- vlv2edges *)))
;;(break "edge = -S-%node = -S-% ppl = -S, pp2 =

-S-%" edge node ppl pp2)
(dolist (edge (v-get-value edge 'edge-children))

(scene-draw-edge edge))))
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III.B.8. Menu-Interface.lisp

;; This file contains all the interface functions needed
for the design
;; recorder.

(in-package 'slb -cl)

(defvar *menu-position* (make-position :x 400 :y 200))
(defvar *menu-font* (open-font 'Helvetica 'mrr 14))
(defvar *title-font* (open-font 'Helvetica 'brr 14))

(defvar *prompt-window*
(make-window-stream :left 600 :top 300 :width 700

:height 200
:title "Prompt Widow"
:activate-p nil))

(defvar *top-level-menu*
'(design-object constraint decision quit))

(defvar *design-object-menu*
'(examine-object
delete-object
change-object-name
clean-knowledge-base
reset-geometry
draw-object
return))

(defvar *decision-menu*
'(make-decision
delete-decision
examine-decision
return))

(defvar *constraint-menu*
'(make-constraint
delete-constraint
examine-constraint
return))

(defun start-interface ()
(do ((top-choice (mt/singlechoicemenu *top-level-menu*

:title "DESIGN-RECORDER"
:position *menu-position*
:font *menu-font*
:title-font *title-font*)

(mt/singlechoicemenu *top-level-menu* :title
"DESIGN-RECORDER"

:position *menu-position*



:font *menu-font*
:title-font *title-font*)))

((equal top-choice 'quit) "exited")
(case top-choice
(design-object (design-object-interface))
(constraint (constraint-interface))
(decision (decision-interface)))))

(defun design-object-interface()
(do ((do-choice (mt/singlechoicemenu

*design-object-menu* :title "DESIGN-OBJECT-INTERFACE"
:position *menu-position*
:font *menu-font*
:title-font *title-font*)

(mt/singlechoicemenu *design-object-menu*
:title "DESIGN-OBJECT-INTERFACE"

:position *menu-position*
:font *menu-font*
:title-font *title-font*)))

((equal do-choice 'return) t )
(case do-choice
(examine-object (examine-interface (get-object

'design-object)))
(delete-object (mapcar 'deleteobject

(mt/multichoicemenu

'design-object))
(objectnames(progeny*

:abort-p t
:title "Select Design

Object(s)")))
(change-object-name (let* ((object (get-object

'design-object))

Name"
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(new-name (get-item :prompt "Enter New

:default (objectnames
object))))

(renameobject object new-name)))
(clean-knowledge-base
(if (equal (get-item :prompt "Do you really want to

clean all the KB?? (yes/no)"
:default 'no)

'yes)
(cleanup)))
(reset-geometry
(if (equal (get-item :prompt "Do you want to reset

all graphic representation (yes/no)"
:default 'no)

'yes)
(reset-geometry)))

(draw-object
(let ((obj (get-object 'design-object)))

(if obj
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(progn
(make-representation obj)
(examine-interface obj))))))))

(defun create-parameter-interface ()
(let ((object (mt/singlechoicemenu (append (progeny*

'design-object)
'(design-object))

:title "Choose Object"
:position *menu-position*
:font *menu-font*
:title-font *title-font*))

(type (mt/singlechoicemenu '(numeric text-valued)
:title "Choose value datatype for parameter"
:position *menu-position*
:font *menu-font*
:title-font *title-font*)))

(message* object
'create-parameter
nil
(get-item :prompt "Parameter Name"

:null-response-ok-p nil)
type)))

(defun design-object-create-interface ()
(let* ((parent (mt/singlechoicemenu (append

(objectnames (instances*
'design-object 'design))

(list '*generic-object*))
:title "Choose Parent Object or

<abort> for none"
:font *menu-font*
:title-font *title-font*
:abort-p t))

(obj-name (get-item :prompt "Object Name"
:default (createobjectname

"design-object")))
(obj-shape (mt/singlechoicemenu

(objectnames (subclasses*
'design-primitives))

:title (format nil "Choose shape for -S"
obj-name)

:position *menu-position*
:font *menu-font*
:title-font *title-font*))

(object (design-object/create obj-name obj-shape)))
(if parent
(case parent
(*generic-object* (design-object/make-object-generic

object))
(otherwise (design-object/create/component parent

obj-name)
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(putvalue object 'parent parent))))
(if (equal obj-shape 'composite)
(let ((components (mt/multichoicemenu

(remove obj-name
(objectnames (progeny*

'design-object)))
:abortp t
:title (format nil "Select components for

"S" obj-name)
:title-font *title-font*)))

(mapcar #'(lambda (comp)
(design-object/create/component obj-name

comp))
components)))

(objectnames object)))

(defun get-item (&rest askitem-args)
(activate *prompt-window*)
(let ((val (with-ttyin-environment *prompt-window*

(apply 'askitem askitem-args))))
(deactivate *prompt-window*)
val))

(defun get-text (&rest askitem-args)
(activate *prompt-window*)
(let ((val (with-ttyin-environment *prompt-window*

(apply 'askstring askitem-args))))
(deactivate *prompt-window*)
val))

(defun get-object (object &optional title)
(if (null title)

(setq title "Choose One"))
(mt/singlechoicemenu (objectnames (progeny* object

'design))
:title title
:font *menu-font*
:title-font *title-font*
:abort-p t))

(defun decision-interface()
(do ((decision-choice (mt/singlechoicemenu

*decision-menu* :title "DECISION"
:position *menu-position*
:font *menu-font*
:title-font *title-font*)

(mt/singlechoicemenu *decision-menu* :title
"DECSION"

:position *menu-position*
:font *menu-font*
:title-font *title-font*)))
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((equal decision-choice 'return) t )
(case decision-choice

(make-decision (make-decision-interface))
(delete-decision (delete-decision-interface))
(examine-decision (examine-decision-interface)))))

(defun delete-decision-interface ()
(mapcar 'deleteobject

(mt/multichoicemenu
(choose-decision-menu)
:abort-p t
:title "Select Decision(s)"
:centered nil)))

(defun choose-decision-menu ()
(mapcar #'(lambda (decision)

(list
(format nil

"'s with resulting: '("A ")"
decision
(mapcar #'(lambda (const)

(format nil "'s => 'a"
(objectname const)
(message* const 'parse)))

(getvalue? decision
'resulting-constraint)))

decision))
(objectnames(instances 'decision 'design))))

(defun make-decision-interface ()
(let* ((dcpair (decision/create))

(decision (first dcpair))
(result (second dcpair))
(input (mt/multichoicemenu (choose-constraint-menu

result)
:centered nil
:title
(format nil

"Select Input Constraint(s)
for 'a with 'a"

(objectname decision)
(objectname result))))

(rationale (get-text :prompt "Enter Decision
Rationale"))

(new-consts (define-constraint-interface result)))
(if new-consts
(progn

(if (member :fail new-consts)
(progn

(get-item
:prompt
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"looping constraint in dependences
- aborting decision (push return to continue)"
:default t)

(deleteobject decision)
(deleteobject result))
(progn
(putvalue decision 'resulting-constraint

new-consts)
(putvalue decision 'input-constraints input)
(putvalue decision 'rationale rationale)
(mapcar #'(lambda (new-cons)

(putvalue new-cons
'originating-decision decision))

new-consts))))
(progn

(deleteobject decision)))))

(defun choose-constraint-menu (&optional result
const-list)

(if (null const-list)
(setq const-list

(mapcan #'(lambda (const)
(if (current? const)

(list const)))
(progeny* 'constraint-source 'design))))

(mapcar #'(lambda (const)
(let* ((dep-obj (getfacet? const

(first (listslots const 'role
'out)) 'path))

(type (objectname (third (generalizations
const))))

(value (message* const 'parse)))
(list (format nil ""45a "tOBJ:-50:a

-tVALUE:-:a"
const dep-obj value) const)))

(objectnames (remove result const-list))))

(defun define-constraint-interface (constraint)
(let* ((role (choose-constraint-category

'constraint-role
"Choose Constraint Role")))

(if role
(progn
(addgeneralizations constraint role)
(let* ((language (choose-constraint-category

(getvalue constraint 'default-language)

"Choose Constraint Language")))
(if language
(progn

(if (listp language)
(setq language



language)))

constraint

constraint

constraint

constraint

constraint

constraint)

'create))

'update)
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(create-new-constraint-interface (second

(addgeneralizations constraint language)
(if
(case language

(structured
(make-structured-constraint-interface

role))
(object-form-language
(create-object-constraint-interface

role))
(status-language
(make-status-constraint-interface

role))
(function-constraint-language
(make-function-constraint-interface

role))
(production-constraint-language
(make-production-constraint-interface

role))
(otherwise
(fill-constraint-slot-interface

))
(progn
(let* ((created-const (message* constraint

(all-new-consts
(mapcan #'(lambda (const)

(append (message* const

(list const)))
(remove nil (list created-const

constraint)))))
(mapc #1(lambda (const)

(message const 'solve)
(set-source-constraints const)
(message* const 'link-constraint))

all-new-consts)
all-new-consts))))))))))

(defun choose-constraint-category

(let ((options
(cond ((generalization? class

(list '*new-constraint*))
((generalization? class

(list '*new-constraint*))

(class &optional title)

'equational)

'graphical)
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(t ()))))
(if (subclasses? class 'template)
(let ((cat (mt/singlechoicemenu (append

(objectnames (progeny class))
options)
:title title
:abort-p t)))

(if (equal cat '*new-constraint*)
(list cat class)
(choose-constraint-category cat title)))

class)))

(defun fill-constraint-slot-interface (constraint)
(do ((slot (mt/singlechoicemenu

(define-constraint-menu constraint)
:title constraint
:position *menu-position*
:font *menu-font*
:title-font *title-font*
:abort-p t)
(mt/singlechoicemenu
(define-constraint-menu constraint)
:title constraint
:position *menu-position*
:font *menu-font*
:title-font *title-font*
:abort-p t)))

((or (equal slot '*done*)
(null slot))
(if (null slot)
nil
t))

(let ((datatype (getdatatype constraint slot)))
(case (objectname datatype )

((numeric-constraint-parameter
geometric-constraint-parameter
textual-constraint-parameter)
(let ((path (putfacet constraint slot 'path

(choose-object-parameter-pair
"Choose object/parameter"
datatype))))

(if (equal (second path) '* *new -parameter**)
(setq path (list (first path)

(create-parameter-interface))))
(if (same-object datatype

'geometric-constraint-parameter)
(putvalue constraint slot path)
(putvalue constraint slot

(message* (first path) (second path)
'get)))

(putfacet constraint slot 'path path)))
(design-object
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(putvalue constraint slot
(mt/singlechoicemenu
(objectnames (progeny* 'design-object

'design))
:title "Choose Design Object")))

(expr
(putvalue constraint slot

(get-item :prompt (format nil "Enter expr for
-s"

(slotname slot))
:default (getvalue constraint slot))))

(text
(putvalue constraint slot

(get-text :prompt (format nil "Enter expr for
-5"

(slotname slot))
:default (getvalue constraint slot))))

(otherwise
(putvalue constraint slot

(get-text :prompt (format nil "Enter text for
-s"

(slotname slot))
:default (getvalue constraint

slot))))))))

(defun define-constraint-menu (constraint)
(let ((slot-path-vals (mapcar #1(lambda (slot)

(list slot
(getfacet? constraint slot 'path)

'get)))
(message* constraint slot

(slotnames (listslots* constraint
'role)))))

(append (mapcar #,(lambda (set)
(list (format nil "-a [-:a] (-:a)"

(first set) (second set) (third
set))

(first set)))
slot-path-vals)
'( *done *))))

(defun choose-object-parameter-pair (request &optional
datatype)

(if (null datatype)
(setq datatype 'numeric-constraint-parameter))

(let* ((object (mt/singlechoicemenu (objectnames
(progeny* 'design-object. 'design))



:title request))
(parameter (mt/singlechoicemenu

(case (objectname datatype)
(numeric-constraint-parameter

(append
(slotnames (listslots* object 'datatype

'numeric))
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'(**new-parameter**)))
(geometric-constraint-parameter

(mapcar #'first (getvalue? object 'faces)))

(textual-constraint-parameter
(append
(slotnames (listslots* object 'datatype

'text-valued))
'(**new-parameter**)))
(constraint-parameter

(append
(slotnames (listslots* object 'datatype

'numeric))
(slotnames (listslots* object 'datatype

'text-valued))
'(**new-parameter**))))

:abort-p nil
:title "Select Parameter")))

(if (equal parameter '**new-constraint**)
(setq parameter (create-parameter-interface)))
(list object parameter)))

(defun create-object-constraint-interface (constraint
role)

(if (equal role 'modify-object-form)
(let* ((obj (get-object 'design-object "Choose

Object To Modify"))
(old-const (first (getfacet obj 'form

'in-constraint))))
(linkslot constraint 'object old-const)
(uncache old-const constraint)))

(do ((slot (mt/singlechoicemenu
(define-constraint-menu constraint)
:title constraint
:position *menu-position*
:font *menu-font*
:title-font *title-font*
:abort-p t)
(mt/singlechoicemenu
(define-constraint-menu constraint)
:title constraint
:position *menu-position*
:font *menu-font*
:title-font *title-font*
:abort-p t)))



((or (and (equal slot '*done*)
(slotvaluep constraint 'name))

(null slot))
(if (null slot)
(return nil)
(progn
(if (null (slotvaluep constraint 'shape))
(putvalue constraint 'shape 'composite))

t)))
(putvalue constraint

slot
(case (slotname slot)

(parent
(mt/singlechoicemenu
(append
(objectnames (instances* 'design-object

'design))
(list '*generic-object*))

:title "Choose Parent Object or <abort> for
none"

:font *menu-font*
:title-font *title-font*
:abort-p t))

(name
(let ((obj-name

(get-item :prompt "Object Name"
:default (createobjectname
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"design-object"))))
(if (object? obj-name)

(progn
(get-item :prompt "Object Already Exist

!!!! (return to continue)"
:default t)

nil)
obj-name)))

(shape
(mt/singlechoicemenu
(objectnames (subclasses* 'design-primitives))

:title "Choose shape for Object"
:position *menu-position*
:font *menu-font*
:title-font *title-font*))

(components
(mt/multichoicemenu
(objectnames (progeny* 'design-object))
:abortp t
:title "Select components for Object"
:title-font *title-font*))

(source
(get-text
:prompt "Enter origin of constraint"
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:default (getvalue constraint slot)))
(time-code
(get-item
:prompt "Enter time code from Protocol"))

(*done*
(get-item
:prompt "Please Make Sure the NAME slots are

defined (return to continue)"
:default t))

(otherwise
(getvalue constraint slot))))))

(defun make-status-constraint-interface (constraint role)

(do ((slot (mt/singlechoicemenu
(define-constraint-menu constraint)
:title constraint
:position *menu-position*
:font *menu-font*
:title-font *title-font*
:abort-p t)
(mt/singlechoicemenu
(define-constraint-menu constraint)
:title constraint
:position *menu-position*
:font *menu-font*
:title-font *title-font*
:abort-p t)))

((or (and (equal slot '*done*)
(slotvaluep constraint 'feature-affected)
(slotvaluep constraint 'constraint-affected))

(null slot))
(if (null slot) nil t))

(case slot
(feature-affected
(putvalue constraint slot

(choose-object-parameter-pair
"Choose object/parameter"
(getdatatype constraint slot))))

(constraint-affected
(let ((feature (getvalue? constraint

'feature-affected)))
(if feature

(let ((const (mt/singlechoicemenu
(choose-constraint-menu
nil
(getfacet? (first feature)

(second feature)
'in-constraint))

:title "Choose constraint for status
change"
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:font *menu-font*
:title-font *title-font*)))

(putvalue constraint slot const)
(putfacet constraint slot 'path (list const

'status)))
(get-item :prompt "Must choose feature first

(<cr> to continue)"
:default t)))))))

(defun make-function-constraint-interface (constraint
role)

(if (equal role 'general)
(let ((function-module (function-module-interface

constraint)))
(putvalue constraint 'function-module

function-module))
(let* ((object (get-object 'design-object

(format nil
"Choose Design Object for 's

Constraint"
role)))

(previous (first (getfacet? object role
'in-constraint))))

(putvalue constraint 'object object)
(putfacet constraint 'object 'path (list object role))

(if previous
(uncache previous constraint))

(do ((slot (function-constraint-menu constraint role)

(function-constraint-menu constraint role)))
((or (equal slot '*done*)

(null slot))
(if (null slot) nil t))

(case slot
(*add*
(let ((new-slot

(dolist (slot (reverse (listslots* constraint

'role
'function-parameter)))

(if (null (slotvaluep constraint slot))
(return slot)))))

(putvalue constraint new-slot nil)))
(*remove*
(let ((old-slots

(mt/multichoicemenu
(listslots constraint 'datatype

'function-module)
:title (format nil

"Choose "s Slots to Remove" role)
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:abport-p t)))
(if old-slots
(mapcar #'(lambda (slot)

(let ((fm (getvalue? constraint
slot)))

(if fm
(case role

(purpose
(removevalue fm 'object/purpose

object))
(behavior
(removevalue fm

'object/behavior object))))
(deleteslot constraint slot)))

old-slots))))
(otherwise
(case (objectname (getdatatype constraint slot))

(design-object
(let* ((object (get-object 'design-object

(format nil
"Choose Design Object for

-s Constraint"
role))))

(putvalue constraint 'object object)
(putfacet constraint 'object 'path (list object

role))))
(function-module

(let ((fm (function-module-interface
constraint)))

(if fm
(progn

(putvalue constraint slot fm)
(case role
(purpose (addvalue fm 'object/purpose

object))
(behavior (addvalue fm 'object/behavior

object))))))))))))))

(defun function-constraint-menu (constraint role)
(mt/singlechoicemenu
(append
(list (list (format nil

"-20s -t-30s -t-15s"
'object
(getfacet? constraint 'object 'path)
(getvalue? constraint 'object))

'object))
(mapcar #'(lambda (slot)

(list
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(let* ((fm (find-last-successor
(getvalue? constraint slot)))

(fm-val
(if fm
(message* fm 'parse))))

(format nil
"-20s -t-20s -t-40a"
slot
fm
fm-val))

slot))
(slotnames (listslots constraint 'datatype

'function-module)))
(list (list (format nil "*ADD-NEW--s*" (slotname

role)) '*add*))
(list (list (format nil "*REMOVE--s*" (slotname role))

'*remove*))
'(*done*))
:title (format nil "-s constraint -s" role constraint)

:position *menu-position*
:font *menu-font*
:title-font *title-font*
:abort-p t))

(defun function-module-interface (constraint)
(let* ((current

(remove-duplicates
(mapcar #'(lambda (fm)

(find-last-successor fm))
(progeny* 'function-module 'design))))

(choice (function-module-menu current
'( *add* *change*)))

(new-fm ()))
(if choice
(progn

(case choice
(*add*
(setq new-fm (function-module/create))
(addgeneralizations new-fm 'structured))

(*change*
(let ((old-fm (function-module-menu current)))
(setq new-fm (function-module/create))
(addgeneralizations new-fm 'structured)
(uncache old-fm new-fm))))

(if new-fm
(define-function-module new-fm constraint)
choice)))))

(defun define-function-module (new-fm constraint)
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(putvalue new-fm 'originating-constraint constraint)
(do ((slot

(mt/singlechoicemenu
(define-constraint-menu new-fm)
:title new-fm
:position *menu-position*
:font *menu-font*
:title-font *title-font*)
(mt/singlechoicemenu
(define-constraint-menu new-fm)
:title new-fm
:position *menu-position*
:font *menu-font*
:title-font *title-font*)))
((equal slot '*done*) t)

(let ((value
(case (objectname (getdatatype new-fm slot))

(design-object (get-object 'design-object))
(expr (get-text))
(object (define-function-series new-fm slot)))))

(putvalue new-fm slot value)))
new-fm)

(defun define-function-series (fm slot-type)
(let ((series (updated-series fm slot-type))
(constraint (getvalue? fm 'originating-constraint)))
(do ((choice (mt/singlechoicemenu

(append (textual-constraint-menu series)
(list '*add* '*delete* '*done*))

:title "Structure Series"
:position *menu-position*
:font *menu-font*
:title-font *title-font*)
(mt/singlechoicemenu
(append (textual-constraint-menu series)

(list '*add* '*delete* '*done*))
:title "Structured Series"
:position *menu-position*
:font *menu-font*
:title-font *title-font*)))

((equal choice '*done*) t)
(case choice

(*add*
(let ((new-module (function-module-interface

constraint))
(position (mt/singlechoicemenu

(append (list '*top*)
(textual-constraint-menu series))

:title "Choose Preceding Operation"
:position *menu-position*



211

:font *menu-font*
:title-font *title-font*)))

(if (equal position '*top*)
(setq series (append (list new-module)

series))
(progn

(ninsert-after new-module position series)
(putvalue position 'post-condition new-module)
(putvalue new-module 'pre-condition

position)))))
(*delete*
(let ((delete-ops (mt/multichoicemenu

(textual-constraint-menu series)
:title "Choose Operation to Remove"
:position *menu-position*
:font *menu-font*
:title-font *title-font*
:abortp t)))

(mapcar #'(lambda (ops)
(setq series (delete ops series)))

delete-ops)))
(otherwise
(let* ((new-module (function-module/create)))

(addgeneralizations new-module 'structured)
(uncache choice new-module)
(define-function-module new-module constraint)
(setq series (substitute new-module choice

series))))))
series))

(defun function-module-menu (modules &optional options)
(mt/singlechoicemenu
(append
(mapcar
#'(lambda (fm)

(let* ((name (objectname fm))
(value (message* fm 'parse))
(series-name
(setq series

(slotname
(first
(listslots fm 'role 'series)))))

(series-value
(if series-name
(objectnames (getvalue? fm series-name)))))

(list
(format nil

"-20s -t-50a -t-10:s -30:a"
name
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value
series-name
series-value)

fm)))
modules)

options)
:title "Current-Function-Modules"
:centered nil
:font *menu-font*
:title-font *title-font*
:abort-p t))

(defun make-production-constraint-interface (constraint
role)

(let* ((object (get-object 'design-object
(format nil

"Choose Design Object for -s
Constraint"

role)))
(previous (first (getfacet? object role

'in-constraint))))
(putvalue constraint 'object object)
(putfacet constraint 'object 'path (list object role))

(if previous
(uncache previous constraint))
(do ((slot (production-constraint-menu constraint

role)
(production-constraint-menu constraint role)))

((or (equal slot '*done*)
(null slot))

(if (null slot) nil t))
(case (slotname slot)

(*add*
(let ((new-slot

(dolist (slot (reverse (listslots* constraint
'role
'production-parameter)))

(if (null (slotvaluep constraint slot))
(return slot)))))

(putvalue constraint new-slot nil)))
(*remove*
(let ((old-slots

(mt/multichoicemenu
(mapcar #1(lambda (slot)

(list
(getvalue constraint slot)
slot))

(listslots constraint 'role
'production-parameter))
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:title (format nil
"Choose "s Slots to Remove" role)

:abport-p t)))
(if old-slots

(mapcar #'(lambda (slot)
(deleteslot constraint slot))

old-slots))))
(otherwise
(case (objectname (getdatatype constraint slot))

(text
(putvalue constraint

slot
(get-text
:prompt (format nil

"Enter "s of Constraint" slot)
:default (getvalue constraint slot))))

(expr
(putvalue constraint

slot
(get-item :prompt (format nil

"Enter "s of Constraint"
slot)

:default (getvalue constraint slot))))

(design-object
(let* ((object (get-object 'design-object

(format nil
"Choose Design Object for -s

Constraint"
role))))

(putvalue constraint 'object object)
(putfacet constraint 'object 'path (list object

role))))))))))

(defun production-constraint-menu (constraint role)
(let ((slot-list

(append
(listslots constraint 'role 'production-parameter)
(set-difference
(listslots* constraint 'role)
(listslots* constraint 'role

'production-parameter)))))
(mt /s inglechoicemenu
(append
(mapcar #'(lambda (slot)

(list (format nil
"-20s -t-30s"
(slotname slot)
(getvalue? constraint slot))

slot))
(slotnames slot-list))
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(list (list '*add-new-step* '*add*))
(list (list '*remove-step* '*remove*))
'( *done *))

:title (format nil "-s constraint -s" role
constraint)

:position *menu-position*
:font *menu-font*
:title-font *title-font*
:abort-p t)))

(defun make-structured-constraint-interface (constraint
role)

(let* ((object (get-object 'design-object
(format nil

"Choose Design Object for -s
Constraint"

role)))
(previous (getfacet? object role 'in-constraint)))

(if previous
(let ((choice

(mt/singlechoicemenu (append
(textual-constraint-menu previous)

'(*new*))
:title (format nil "Existing -s"

role)
:position *menu-position*
:font *menu-font*
:title-font *title-font*)))

(if (equal choice '*new*)
(progn
(putfacet constraint 'object 'path (list object

role))
(putvalue constraint 'object object))
(progn

(uncache choice constraint)
(removefacet object role 'in-constraint

choice))))
(progn
(putfacet constraint 'object 'path (list object

role))
(putvalue constraint 'object object)))

(define-structured-constraint constraint)))

(defun textual-constraint-menu (constraints)
(mapcar #'(lambda (const)

(list (format nil "-S ==> -A"
const (message* const 'parse))

const))
constraints))
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(defun define-structured-constraint (constraint)
(do ((slot (mt/singlechoicemenu

(define-constraint-menu constraint)
:title constraint
:position *menu-position*
:font *menu-font*
:title-font *title-font*)
(mt/singlechoicemenu
(define-constraint-menu constraint)
:title constraint
:position *menu-position*
:font *menu-font*
:title-font *title-font*)))

((equal slot '*done*) t)
(let ((value (case (objectname (getdatatype constraint

slot))
(design-object (get-object 'design-object))
(expr (get-text))
(object (define-structured-series constraint

slot)))))
(putvalue constraint slot value))))

(defun define-structured-series (constraint slot)
(let ((series (updated-series constraint slot)))
(do ((choice (mt/singlechoicemenu

(append (textual-constraint-menu series)
(list '*add* '*delete* '*done*))

:title "Structure Series"
:position *menu-position*
:font *menu-font*
:title-font *title-font*)
(mt/singlechoicemenu
(append (textual-constraint-menu series)

(list '*add* '*delete* '*done*))
:title "Structured Series"
:position *menu-position*
:font *menu-font*
:title-font *title-font*)))

((equal choice '*done*) t)
(case choice

(*add* (let* ((generalizations (generalizations*
constraint))

(new-constraint
(case (objectname (first generalizations))

(derived-constraint
(derived-constraint/create))

(given-constraint (given-constraint/create))

(introduced-constraint
(introduced-constraint/create))))
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(position (mt/singlechoicemenu
(append (list '*top*)

(textual-constraint-menu series))

:title "Choose Preceding Operation"
:position *menu-position*
:font *menu-font*
:title-font *title-font*)))

(addgeneralizations new-constraint (second
generalizations))

(addgeneralizations new-constraint (third
generalizations))

(make-structured-constraint-interface
new-constraint
(objectname (second generalizations)))

(if (equal position '*top*)
(setq series (append (list new-constraint)

series))
(progn
(ninsert-after new-constraint position

series)
(putvalue position 'post-condition

new-constraint)
(putvalue new-constraint 'pre-condition

position)))))
(*delete*
(let ((delete-ops (mt/multichoicemenu

(textual-constraint-menu series)
:title "Choose Operation to Remove"
:position *menu-position*
:font *menu-font*
:title-font *title-font*
:abortp t)))

(mapcar #'(lambda (ops)
(setq series (delete ops series)))

delete-ops)))
(otherwise
(let* ((generalizaions (generalizations* constraint))

(new-constraint
(case (objectname (first generalizations))
(derived-constraint

(derived-constraint/create))
(given-constraint (given-constraint/create))
(introduced-constraint

(introduced-constraint/create)))))
(addgeneralizations new-constraint (second

generalizations))
(uncache choice new-constraint)
(make-structured-constraint-interface

new-constraint
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(objectname (second
generalizations)))

(setq series (substitute new-constraint choice
series))))))

series))

(defun choose-constraint-form-interface (constraint type)

(if (equal type 'quit)
nil
(let* ((form (mt/singlechoicemenu

(append (objectnames (subclasses* type
'template))

'(**new-constraint**))
:title "Choose Type"
:abort-p t)))

(if (equal form '**new-constraint**)
(create-new-constraint-interface type)
form))))

(defun create-new-constraint-interface
(let* ((name (get-item :prompt "Enter

name"))
(num-of-var (+ 1 (get-item :prompt

independent variables"
:default 1)))

(new-const (case type
((equality-constraint

inequality-constraint
quality-constraint
conditional-constraint
other)

(let* ((var-list (get-variable-list
num-of-var))

(nc
(equational-constraint/create/subclass name var-list
type)))

(putvalue nc 'equation
(get-item :prompt "Enter equation in

lisp form"))
nc)))))

(examine-interface new-const)
new-const))

(type)
new constraint

"Enter number of

(defun get-variable-list (num-of-vars)
(let ((var-list (list (get-item :prompt "Entert

Dependent Variable Name or Symbol"))))
(if (> num-of-vars 0)
(do ((i 1 (+ i 1)))

((= i num-of-vars))
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(setq var-list
(append var-list

(list
(get-item
:prompt
(format nil

"Enter Independent Variable--s Name
or Symbol" i)))))))

var-list))

(defun constraint-interface ()
(do ((constraint-choice (mt/singlechoicemenu

*constraint-menu* :title "CONSTRAINT"
:position *menu-position*
:font *menu-font*
:title-font *title-font*)

(mt/singlechoicemenu *constraint-menu*
:title "CONSTRAINT"

:position *menu-position*
:font *menu-font*
:title-font *title-font*)))

((equal constraint-choice 'return) t )
(case constraint-choice
(make-constraint (make-constraint-interface))
(delete-constraint (delete-constraint-interface))
(examine-constraint (examine-constraint-interface))

(return nil))))

(defun make-constraint-interface ()
(let* ((const-type (mt/singlechoicemenu '(given

introduced return)
:title "Choose Constraint Type"
:font *menu-font*
:title-font *title-font*)))

(if (equal const-type 'return)
nil
(let* ((constraint (case const-type

(given (given-constraint/create))

(introduced(introduced-constraint/create))))
(new-consts (define-constraint-interface

constraint)))
(if new-consts

(if (equal new-consts :fail)
(progn

(get-item
:default
"looping constraint in dependences

- aborting decision (push return to continue")
(deleteobject constraint))
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new-consts)
(deleteobject constraint))))))

(defun delete-constraint-interface ()
(mapcar 'deleteobject (mt/multichoicemenu

(choose-constraint-menu nil (progeny*
'constraint-source 'design))

:abort-p t
:title "Select Constraint(s) To Delete")))

(defun examine-constraint-interface ()
(examine-interface
(mt /s inglechoicemenu
(choose-constraint-menu
nil
(progeny* 'constraint-source 'design))
:title "Choose Constraint to Examine"
:centered nil
:abort-p t)))

(defun examine-decision-interface ()
(examine-interface
(mt/singlechoicemenu
(choose-decision-menu)
:abort-p t
:centered nil
:title "Select Decision to Examine")))

(defun examine-design-object-interface ()
(examine-interface (get-object 'design-object)))

(defun examine-interface (object)
(let ((kb-base (knowledge-base-name)))

(rkbeval 'impulse
(sendq fastobjecteditor starteditor nil

(make-strobetuple :kb kb-base :object
object)))))


