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COMPARATIVE STUDY OF THREE LOG RULES COMMONLY
USED IN THE PACIFIC NORTHWEST, U.S.A.

INTRODUCTION

The basic reference quantity in timber measurement may be

expressed in such terms as dry weight, length, number of pieces,

or green weight. However, with good reason, the tradition has been

to use solid volume to express timber measurement. Often when other

parameters, such as stacked volume or weight are used these are

changed to solid volume estimates for purposes of management. The

use of solid volume is good for other reasons, too. Many timber pro-

ducts are sold by solid volume. Also it is easy to measure solid

volume for both felled and standing timber. It is impossible to use

weight measurements of any kind in standing timber. So, solid volume

is generally "the expression of quantity".

The nature of forest products has led to the use of volume

estimates, since very precise measurement in forestry is seldom

practical. There are several ways of estimating timber volume even

in the smallest logs. Consequently the resulting estimates are

inevitably different depending on the method used. This creates

a necessity of measurement conventions and a description of the

material used if full understanding of timber volume estimates is

to be obtained.

When making an estimate of quantity the degree of precision

desired must be established. Different degrees of precision may

be obtained for any forest product. Costs and benefits that



2

correspond to these different levels of precision must be considered

before the measurements.

First of all, greater precision almost always costs more per

unit volume because it requires more measurements and this involves

more work. On the other hand, almost always, greater precision pro-

duces greater benefits. G. J. Hamilton, 1975, gives very clear con-

siderations about the relationship of price to precision and of

cost of measurement to precision.

Log measurement has been one of the most important and contro-

versial topics in the field of forest management and wood technology.

In the past, many different log rules have appeared in the United

States with eah generally being used in a particular area as a con-

sequence of variations in acceptable utilization standards, slab

allowance, taper, shrinkage, sawkerf and method of construction.

Buyer-seller relationships remain normal because each accepts volumes

and values involved in log transactions although they are aware of

the inaccuracy of the log rules. For research purposes serious

difficulties can appear when comparisons of volumes by two or more

different log rules are tried. Log rule characteristics are such

that only with difficulty can two measurement systems be success-

fully compared.

It is known that Tarif Tables and Bruce's Cubic Volume Table

for Immature Douglas-fir are very practical log rules, but it is

easy to perceive how important it is to know the accuracy of each

one in a specific situation (as species, class of DBH, and site)
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to help in selecting the one which gives the best results. Weyer-

haeuser Douglas-fir Table, British Columbia Coast Immature Douglas-

fir and Bruce's Table for Immature Douglas-fir are specific for the

material of study (Young growth Douglas-fir from Western Washington).

The objective of this study is to compare the volumes estimated by

those three volume tables with the actual volume, of second growth

Douglas-fir calculated by standard measurement done by James E. King

of Weyerhaeuser Company.

Knowing that the results of a such investigation are precise

only for that specific population, we could have a reasonable idea

how these volumes compare with actual volumes.

The objective of this study is the investigation of a methodo-

logy which could serve as a base to begin a study to find out the

most accurate log rule for each species and/or site anywhere but

mainly in countries like Brazil where Forestry is really a very new

activity and practical log rules are seldom used in the many species

of Eucalyptus and Pinus for pulpwood and paper production and sawmill

purposes.

This will be accomplished by an analysis of variance on the

per cent difference between the total tree volume given by each of

three log rules and the standard volume calculated by Weyerhaeuser

Company. Average per cent volume difference by each of 8 diameter

classes will be compared for each log rule.



LITERATURE REVIEW

Since trees vary in geometric form from the stump to the top,

no single mathematical formula can express the exact cubic volume

of each log.

Measuring the volume contents of individual trees or sections

by assimilating them to geometric solids is the most accurate means

of determining volume. This is usually called "standard scaling"

when assuming the stem as a sequence of super-imposed geometric

solids. The interpretation and use o formulas varies, with the

mensurationist but the geometric solids more commonly used are the

cone, the quadratic paraboloid, the neiloid, their frustrums and

the cyl inder.

It is conventional to calculate the volume of the stump as a

cylinder and the volume of the first butt log as a frustrum of a

neiloid. The subsequent logs may be assumed as frustrums of

neiloids, cones or paraboloids, depending on the species and the

mensurationist 's interpretation.

A method that provides very accurate estimates is the one used

by Weyerhaeuser Company which assumes the several logs of the stem

are composed as follows:

Stump - cylinder.

Stump to feet - neiloid frustrum.

Logs above i.5 feet - paraboloid frustrums.

1+. Top - cone.
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Figure 1. The paraboboids which logs are more frequently assumed
to resemble.

5

Its accuracy was proved in the past for many species by the

immersion method, the only perfectly accurate method for determin-

ing log volumes.

The formulas for these geometric forms give very different

volumes. If the volume of a cylinder of given diameter and height

is expressed as l0O?, the volumes of the paraboloid, cone and neiloid

of the same basal diameter and height are respectively 50, 33 1/3

and 25 per cent of the cylinder volume. Fig. 1.

Cylinder Paraboloid Cone



Actually the paraboloid mentioned here is the quadratic para-

boloid. In general that is the only paraboloid used in tree measure-

ment but the use of cubic and semi-cubic paraboloids should improve

the accuracy in the determination of standard volume of a tree. In

some European countries, like France and Portugal, researchers fre-

quently use both cubic and semi-cubic paraboloid frustrums for cer-

tain species; the cubic for the lower logs (immediately after the

neiloid frustrum) and the semi-cubic for the upper one (before the

top). The intermediate logs are assumed as quadratic paraboloid

(or simply paraboloid as it is commonly known) frustrums. Fig. 2.

Cubic Semi-cubic

Figure 2. Cubic, quadratic and semi-cubic paraboloids.



Since the cited geometric figures are solids of revolution,

the volume formula for each one of them is obtained by integration

rotating the graph of the general equation V = K tJaround the X

ax i s:

ca
2v=r \ V dX

The paraboloid (more precisely: quadratic paraboloid) is

generated when r = 1 (so V = K X2); the cone when r = 2 (V = K X);

the neiloid when r = 3 K X'2); and the cylinder when r = 0 (V = K

The cubic and semi-cubic paraboloids are generated respectively from

the formulas V K X1/3 and V = K X'3.

For any of the geometric curves, the constant K changes in

accord with the ratio Y/X. For example, the curve which generates

the paraboloid of basal radius V = 2 and height X = 7 has the constant

K = .755929 while the curve which generates a paraboloid of same

height X = 7 but with basal radius V = I requires a constant K =

.37796k. This is a crucial point in comparative study of volumes

of different paraboloids of the same height and basal radius. Fig. 3.

(1)

7

Y = .755929

Figure 3. Generating two quadratic paraboloids with different ratio
radius/height ('tix).



In figure 3 if Y is the radius of the basal circle of either

paraboloid the volume will be:

V = JT\ V dX (2)

Since Y is function of X,

Or:

CD
V = 'rr\

V = ir K XdX

As r for the quadratic paraboloid is equal to 1, the volumes

for both paraboloids in figure 3 can be calculated as follows:

2 [2v = r (.755929) I X /2 = 143.982303
L - o

for the thickest one, and

V = it (.3779614)2 [x2/2] = 10.9955...

for the thinnest one.

A paraboloid frustrum has a perfect formula for its volume as

the product of an average cross-sectional area of its basal area

(Ab) and top cross-sectional area (Au) by its height. This is the

Smalian's formula, often used in log scaling:

K Xr/Z)2 dX (3)

(5)



where

V = volume of the log

H = length of the log

= basal area at the base

A = basal area at the top

A different formula is often used for paraboloid frustrums.

It is Huber's formula, whrch is considered more accurate because

the volume of a log is more dependent on the middle diameter than

on the end diameter, and other practical formulas utilize end dia-

meters. Huber's formula is expressed as follow.s:

V=AH
m

where

A = cross-sectional area at midpoint

The mathematical formula for a cone frustrum is:

v=- (Ab+V A A +A)bu u

Smalian's formula overscales a truncated cone and Huber's

formula also slightly overscales the frustrum.

Neiloid frustrums have a more complicated geometrical formula

for volume:

u+ AbA 2+A) (8)

9
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A very accurate practical formula for all frustrums we are con-

cerned with in the present study is Newton's formula, which is incon-

venient because of the necessity of taking three diameter measure-

ments: at both extremeties and at the middle of the log:

V =
-
(Ab + k Am + A) (9)

Most of the practical log rules determine board-foot volume.

This work however will be limited to a comparison of the accuracy

of three cubic-foot log rules when applied to young Douglas-fir,

Pseudotsuga menziesi i.

CUBIC-FOOT LOG RULES - A REVIEW

1. Newton's Formula

It fits almost any geometric figure and gives the cubic con-

tents of frustrums of paraboloids, cones and neiloids accurately.

However, it requires the measurement of diameters inside the bark

at the base, middle and top of the log. Obviously, it is inefficient

for practical use. The formula is:

Hir 1=
14 (D + D2 +

where

V = volume of log in cubic feet

Db = diameter inside bark in inches at large end

D = diameter inside the bark in inches at small
end

(10)



D = diameter inside bark in inches at them
middle point of the log

H = height

In Western Oregon and Western Washington the more common length

of log to be measured is 32 feet and so the formula can appear in

the following expression:

V = .0291

2. Smalian's Formula

It's perfect for a frustrum of paraboloid but has the incon-

venience of considering only the extreme end diameters, excluding

the middle one.. It overscales logs which have a truncated cone

form and especially logs with neiloid frustrum form:

HiT 1=
144

(D + D)

For a 32-foot log:

V = .087264

3. Huber's Formula

2 + 4 D2)
b m u

2
+D )

u

This formula is considered the most accurate of the more

practical log rules but as in Newton's the inconvenience is in

taking diameter measurement at the middle of the log:

_irH 1 2

7rl4L+ D

(12)

(13)

11
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and for 32-foot log:

V = .17k528 D2 (15)

14 Rapraeger's Formula

It is a modification of Huber's rule which attempts to combine

the supposed accuracy of Huber's with a practical method of scaling

decked, rafted and loaded logs to determine the diameter of the

middle of the log. Rapraeger proposed an arbitrary taper allowance

of one inch for every 8 feet of length from the small end of the log,

with the resulting formula being:

V = .0054SL i-i (D +
2

(16)

where

D = Diameter inside bark at small end of

the log in inches

H = Length of the log in feet

5. Sorensen's Formula

This rule is based on the cone frustrum formula. It is not

considered very satisfactory unless the logs scaled closely approach

a taper of 1 inch in 10 feet of length. Sorensen advocates measuring

only the small end diameter and using 1 inch of taper for every 10

feet of length to get the diameter at the middle of the log.

It saves time since the only measurements are length and dia-

meter at the small end. This rule underscales drastically neiloidal



and paraboloidal logs. The formula can be expressed as follows:

V = .0051+514151+ (D + L (17)

where

D = Diameter inside bark at small end

in inches

L = Length of the log in feet

The term is, in effect, a conversion from small end to mid-

point diameter based on the assumed taper of 1 inch in 10 feet.

6. Bruce and DeMars' Volume Equations for Second-Growth Douglas-

Fir.

Although very specific, this rule is listed here because it is

a major part of this study.

David Bruce and Donald J. DeMars Volume Equations were first

published in November J971 by Pacific Northwest Forest and Range

Experimental Station as a USDA Forest Service Research Note. They

were constructed as a result of a request for a reasonable table for

small Douglas-Fir.

The tables were based on a sample of 1,127 trees which ranged

from 0.14 inch DBH and 6 feet in height to 32 inches DBI-I and 167 feet

in height. The independent variables were DBH outside bark (o.b.)

and inside bark (i.b.); the dependent variable was form factor based

on total volume inside bark, including the stump c3lculated as a

13



when H > 18 feet.
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cylinder. The form factors are used in the equation and so are cal-

culated before.

Outside bark form factor equations for small sample trees (FOS)

and for large trees (FOL) are presented below. Trees considered

small here are those of total height equal or smaller than 18 feet

and consequently large trees are those of total height greater than

18 feet.

FOS = 0.1106098(H-O.9)2/(H-Li.5)2 - 0.0762998 D(H-O.9)3/(H-11.5)3

+ 0.00262715 DH(H_O.9)3/(H_L4.5)3 (18)

(based on 59 trees for young stands in Oregon, Washington and B.C.)

FOL = 0.1+80961 + 142.14651+2/H2 - 10.9961+3 D/H2 - 0.107809 D/H

- 0.001409083 D (19)

(based on 1,068 trees from young stands in Oregon, Washington and

B.C.)

Volumes are simply calculated through one of the following

fo rmu 1 as:

VS = 0.00514541514 FOS (D2H) (20)

when H < 18 feet, and

VL = 0.0051454154 FOL (D21-l) (21)



Equation (21) can not be applied for very small trees (trees

with DBH smaller than 1.4 inches and height less than 13 feet) as

volume decreases when height increases, holding the sam.e diameter.

This frequently happens in different rules because of the use of DBH

that is located at 4.5 feet above the ground level.

The test criterium for significance of the regression, for

both form factor and volume was the root mean square error: 12.2

and 8.O for FOS and FOL, respectively; and 12.7 and l6.8? for VS

and VL.

7. Tarif Tables

Tarif Tables are constructed for different species and sites.

They are considered very simple and more accurate than conventional

tables especially in young growth stands. The application of the

tarif system is very easy both for field use (tables) and computers

(formulas). It provides easy conversion between units of measure

and its authors claim sufficient accuracy for volume and growth in

research application.

"A tarif table is a local volume table that gives tree volume

by diameters for trees of the same general height class. They are

particularly suited, but not limited, to even-aged stands" (Hoyer,

1971).

The tarif table system is a group of "preconstructed" local

volume tables applicable to the specific stand, each one having its

tarif access number. The tarif number is the total cubic foot

volume from the stump to a 4-inch top for a tree of 1.0 square foot

of basal area.

15



16

The tarif number of a stand is found through "Access Tables",

which provide a number for each sample tree, given its DBH and

height. In finding the tarif number, DBH's have to be measured

to the nearest 1/10th inch and total height to the nearest foot

for each sample tree. The tarif numbers found are averaged and

this average is the tarif number. In general only 20 representative

trees are necessary to determine the average tarif number for a stand.

The tarif number is the index-number for the table to be used.

Tarif Tables being a major subject in the present work, a

detailed discussion is required.

Cubic Volume Tarif System

Here are the main considerations about cubic volume tarif

sy s t ems:

CV4 is the volume of a tree above stump height to a top dia-

meter of 1.0 inches. CV4 curves are the basis for the Tarif System

since total cubic volume curves (TCV) had been shown to be an

inadequate basis for some important reasons:

I. The total volume/basal area straight line is satisfactory

for the larger trees but the actual trend in lower range values is

curvilinear (Figi).

2. The intercept in the horizontal axis is not stationary, so

a moving intercept has to be adopted if volume/basal area trend is

employed for the total cubic volume curves. The authors primarily

investigated the moving intercept by fitting the trend of a co-

efficient in relation to b coefficient for all individual CVTS/basal



area 1 ines. Then a system of harmonized CVTS/basal area lines was

constructed by using the smoothed values of a for a given b but due

to movement of the intercept along the horizontal axis because of

change in the slope of the line (trees of small DBI-I showing higher

volume for smaller slope and lower volume for greater slope, as

shown in figure 5), and considering that the slope increases with

increasing age of the stand, "this system of lines would cause the

smaller trees to have less volume with advancing ag&'. (Turbull and

Hoyer, 1965).

In CVI+ curves no curvilinearity of trend was found even in the

lower range of basal area because the 14-inch top limit excluded the

small trees wh.ich are responsible for the curvature. Furthermore

the volume/basal area line is equally satisfactory for all plots in

the sample and the horizontal intercept is stationary.

Subsequent tests showed important points:

No trend of the basal area intercept value in relation to

steepness of the line.

None of the intercept values differed significantly from

0.0873 sq. ft. of basal area which is equivalent to a k-inch DBH.

Trees with a k-inch DBH outside bark have stump diameter

inside bark consistently within 3.9 to k.O inches and hence they

have zero volume to 4-inch top above stump. Fig. 6.

17



Total

Volume

Basal Area

Figure Li. Curvilinearity of the basal area/total volume trend for
the smaller trees.

Total
Volume

Basal Area

Figure 5. Harmonized volume trends with "moving intercept."

Let's call the regression coefficient b, bLi, Fig. 7.

CvLi = a + (bLi) (B)

where B = basal area.

(22)

18



But when B = 0.0873 square feet, CV14 - 0.0

LI Breast height

3. 91)_)4 l'') Stump height

Figure 6. Relation between '4-inch diameter outsidebark at breast
height and the diameter inside bark at stump height.

Figure 7. When basal area is 0.0873 square foot, cv4 is always 0.0.

19



So:

a = by (0.0873) (23)

Then:

CV4 = by (0.0873) + b B

Or:

CV14 = by (basal area - 0.0873) (25)

which represents the fixed intercept CVL1/bsal area line.

This shows that equations for different stands only differ by

the slopeof the regression line and each different equation is design-

ated by the volume for a tree of 1 square foot of basal area. This

is the tarif number (T), the CV1 for a tree of 1 square foot of basal

area, that is, the average CVL for the tree of 1 square foot of basal

area.

If

CV14 = bli (1.0 - 0.0873)

we have

T = 0.9127 b

and

bI! - 0.9127

If tarif number and DBH are known, the CV1 can be computed as:

= 0.9127
(B - 0.0873) (29)

20



If on the other hand, CVL4 and DBH are known, the tarif number

can be computed as:

-r
Cvk (0.9127)

- B - (0.0873) (30)

The ratio
B 00873

is called Tarif Access Constant for CVL+

represented by TA14.

So, the equation (30) can be written as:

T = (cv) (TM) (31)

In using tarif system in terms of CV4 one should follow these

four steps as recommended by Turbull and Hoyer:

Measure sample trees in a stand and estimate CV for

each tree.

Compute T for each sample tree by using equation (30).

Average the sample tree T values to obtain T mean, T.

Use this sample mean, T, in equation (29) to compute the

CV14 estimate for each DBH class midpoint. This will yield the

equivalent of a Local Volume Table.

In choosing equation (30) in step 2, use tarif access constant

tables of CV4.

Notice that

CV4
T

(B-o.o873)
0. 9127

0.9127
= TV1+

21

and

B - 0.0873



which is called Tarif Volume Constant for CV4 that is the inverse of

TA1+:

TV4 = 1/TM (34)

To adopt this system of fixed-intercept CV4/basal area as the

basis for the comprehensive tarif system the authors constructed

weighted CV4/basal area lines for each sample plot by a special

method conditioning the regression and compared them with the

original CV4/basal area local volume tables, only weighted, follow-

ing 2 criteria;

The volume for trees with sample mean basal area estimated

by both equations should not differ by more than 2 standard errors

of the mean.

The tarif volume line should lie within the confidence

interval of the localvolume table regression.

no significant difference or consistent bias are shown in

either test, the difference between the two lines is considered

as sampl ing error.

The estimated Tarif has a statistical error that is Student's

t times the standard error of the mean tar if and so its confident

limits are easily determined.

As trees vary in form from species to species, from age to age

and from site to site for the same species, tarif tables have been

constructed for a combination of different species, ages and sites.

As these tables are limited to those factors combinations, another

22



23

variable, Tree Total Height, may be used to make a more convenient

determination of individual sample tree volume, through a double

entry table in place of using equation (30). This avoids the use

of inadequate standard volume tables to get the volume in function

of DBH only and utilizes sample trees total height, a very strong

covariable when species, age and site are controlled.

Tarif tables offer not only DV4 but other merchantable volumes

like CVTS (cubic foot volume including top and stump), CVT (cubic

ft. volume including only top), CV6 (cubic foot volume to 6-inch

top), CV8 (cubic foot volume to 8-inch top), 1V6 (International l/1-

inch volume to 6-inch top), 1V8 (International 1/14 inch to 8-inch

top), sV6 (Scribner to 6-inch top) and SV8 (Scribner to 8-inch top).

Since the relationship CV14/basal area is the basis of the

system, the conversions to other volume units were made through the

study of the trend of the ratio "volume in study"/CV14 over DBH. In

this paper will be shown the conversion of CV14 to CVTS, the unit used

in the future research.

When a trend of CVTS/CV1+ (=RTS14) over DBH of a sample is traced,

it is easy to see that this trend is asymptotic (Fig. 8) "but since

there is actual volume to 14-inch trees of less than 0.0873 sq. ft.

of basal area, it is impossible to derive an actual ratio of CVTS/CV14",

(Turbull, 1965). The problem can be overcome by measuring all volumes

from a "zero" level which is located 2 times the volume intercept

distance below the origin (Fig. 9).



CVTS/CVI4

4" DBH

Figure 8. Asymptotic curve of CVTS/CV4 ratio on DBH.

Vol.

(cu. ft.)

a{
/.o873 sq. ft.

Actual base
I.> 2a

J Artificial base

basal area

Figure 9. The artificial base for deriving an actual CVTS/CVê ratio.
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Let's call CVTS' and CV4' respectively CVTS and CV1 measured

from the artificial base located two times the Volume-intercept

below the origin. And let's all RTS' the ratio CVTS'/CV1-i'.

CVTS' = CVTS + 2a (35)

CV4' = CV4 + 2a (36)

So, if
CVTS'

= RISk',
CV"'

CVTS = CVTS' - 2a (37)

and CVTS = RTS14' (cv4') - 2a (38)(38)

= RTSI4' (Cv' + 2a) - 2a (39)

= RTSk' (bB - a + 2a) - 2a ('w)

= RTSk' (bB -F a) - 2a (L, 1)

Note that if B = 0,DBH 0 and CVTS = 0 and note that

a = bk (0.0873)

So, for CVTS = 0:

0 = RTSk' [b (0.0) - b (0.0873)] + 2 [b (0.0873)] (k3)

0 = RTSk' [-ba (0.0873)] b4 (0.0873)

RISk' b (o.o873)= 2 b (0.0873) ("5)

RISk' = 2

when DBH = 0

Now, the function RISk' was found to be a sample asymptotic

regression with formula:
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RTS1 = A

RTS+' = A + B (8)

2=A+B (19)

or:

B=2-A (50)

where A is the estimate asymptote.

The trend of CVTS'/CV14' ratio over DBH is shown in figure (10).

RTS1i'

26

RTS4' = A + B e (47)

0 DBH

Figure 10. Trend of CVTS'/CVLe' ratio.

and when DBH = 0:

So:



As we have the value for CVTS as shown in formula (l), and we

know that bk, the slope of the volume line regression for CVk, is

CVTS = 41.9 (1.3045) = 54.7 (57)

27

the general formula
0.9127

, and more, that a = b4 (0.0873), we find

for CVTS:

RTS14' (B) + RTS1i' (0.0873) -CVTS = 2 (0.0873)
(51)

0.9127

or:

CVTS = T (TvTs)

where TVTS is total volume top and stump.

(52)

If, for example, a tree is a 15-inch DBH,

T 52.3 (0.9127)
1.9 53- 1.2272 - 0.0873

TVTS
RTS14 (1.2272 + 0.0873) - 0.l7'i6 (

0.9127

In our case, DBH = 15:

RTS1I' = 1.03857Ot (55)

TVTS 1.0385704 (1.2272 - 0.0873) 0.1746
6

0.9127

= 1.3045



Constructing a Tarif Table - An Example

As a demonstration of tarif table construction, a sample of 20

trees was taken, randomized within each diameter class. The random-

ization was done using the HP-97 "Random Number Generator" program.

On the next page is presented a list of the sample trees with their

DBH, basal area, total volume and CVLi. The regression volume by

three different equations - simple regression, weighted regression

and tarif - is also presented, as well as values 1/B, I/B2, V/B and

V/B2, necessary to compute the coefficients a and b of the weighted

regression.

CV4 was calculated by subtracting the volume of the stump and

the volume above the inches top diameter from the total volume.

When the data did not show a top volume exactly above inches dia-

meter, the proportion method was used to find this volume consider-

ing either a frustrum of paraboloid or a cone according to the

method Weyerhaeuser Company adopted to calculate the standard volume

of the trees. Two examples were chosen to demonstrate this method.

1. The frustrum of paraboloid: Table (2) shows the values for

sample tree #1611.

The intermediary sections are assumed to be frustrums of para-

boloids which volumes are determined by Smalian's formula. Thus the

volume of section #5 is calculated as follows:

()2 + (2.8)2 (o.785)
(10) = O.Th cu. ft.V

- (144) (12) (58)
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Table 1. Quantities needed to construct a tarif table.

REGRESSIONS

2 3 14 5 6 7 8 9 10 II 12 13 I4

#

DBH

CLASS
SAMPLE,
NUMBER 081-I

BASAL
AREA CVTS Fy14

cv14

(S.R.)
cv14
(4)

TARIF
VOL. I/B 1/B2 V/B 2

V/B

1.

2.

1,

I.
1669. 14.;

6.6

.0917

.2376

2.1

8.6

0.2

7.3

-11.2

- 3.6

0.2

6.1

0.2

6.9

10.9051

14.2088

118.9218

17.7136

2.1810

30.7239

23.714143

129.30914

1611. 7.1 .2907 14.8 3.9 - 0.1 8.2 9.3 3.141400 11.83314 13.14159 146.1503
4. 2. 980. 10.2 .5675 19.14 18.14 15.5 19.14 22.0 1.7621 3.1050 32.14229 57.1329
5. 2. 1221. 11.2 .68142 26.8 25.9 22.0 214.2 27.14 1.14616 2.1362 37.851414 55.3266
6.

821. 11.7 .71466 19.7 18.8 25.5 26.7 30.2 1.33914 1.79140 25.1800 33.7273
143. 13.0 .9218 35.7 314.5 35.4 33.8 38.3 1.08148 1.1769 37.14268 140.6013

8.
16140. 15.14 1.2935 50.8 49.7 56.2 148.9 55.1 0.7731 0.5977 38.14229 29.70146

9. 132. 15.5 1.31014 714.6 73.6 57.2 149.6 56.1 0.7631 0.58214 56.1661 42.8618
10. 4, 796.

512.

16.6

2O6

1.5030

2.31145

44.14

1214.0

43.6

122.14

68.0

113.5

57,14

90.3

64.9

102.2

0.6653

0.14321

0.141427

0.1867

29.0086

52.88140

19.3005

22.81490
12.

799. 21.3 2.147145 83.6 82.0 122.5 96.8 109.5 0.1402; 0.1633 33.1380 13.3918
13. 1765. 23.3 2.9610 116.9 115.2 1149.8 116.5 131.8 0.3377 0.11141 38.9058 13.13914
114. 6. 1081. 23.7 3.0636 160.9 159.1 155.5 120.6 136.5 0.32614 0.1065 51.9324 16.95114
15. 6. 526. 23.9 3.1155 215.7 213.8 1s8.6 122.7 138.9 0.3210 0.1030 68.62146 22.0268
76. 7. 488. 28.0 14.276; 223.14 217.3 223.6 169.8 192.2 0.2339 0.05147 50.8173 11.88140
17. 7. 229. 29.3 14.6823 2314.9 231.1 2146.14 186.3 210.8 0.2136 0.0456 49.3561 10.5410
18. 7. 1063. 29.7 4.8;;; 263.0 260.0 253.6 191.5 216.7 0.2079 0.0432 514.0477 11.2327
19. 8.

1160. 32.0 5.5851 286.6 283.6 297.0 222.9 252.2 0.1790 0.0321 50.7780 9.0917
20. 8. 1090. 34.2 6.3794 370.0 366.8 341.6 255.1 288.7 0.1568 0.0246 57.14976 q.oIlo
TOTAL 377.6 47.3101 2365.9 2327.2 2327.4 1857.0 2089.9 29.2756 159.1773 810.7788 677.9763

MEAN 18.9 2.3655 118.3 116.4 116.14 92,3 1014.5



It can easily be seen thatDIB 14.0 inches falls in section #5

since 4.4 inches and 2.8 inches are the top limits of sections #4

and #5, respectively.

To find the length of the sub-section with extremities of 4.0

and 2.8 inches it is easier to use the proportion method. Since the

method works only if the section is a frustrum of cone, there will be

some error here as the section is assumed to be a frustrum of para-

boloid. However, the error is insignificant.

So, if the diameter decreases from 14.4 to 2.8 (1.6 inches) at

length of 10 feet (from 31.5' to 21 .5") then at length of x feet the

diameter will decrease from 14.0 to 2.8 (1.2 inches). Fig. (8-a).

(10)0.2)
- 7.5 ft.

And the volume of this sub-section is:

(4.0)2 + (2.8)2 (0.78514)
(7.5) = 0.488 cu. ft. (60)V

- (1414) (2)
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TABLE 2: Measures of sample tree #1611.

SECT. CUM
DBH HEIGHT CVTS # HT. DIB

CUB.

VOL.

7.3 48.8 14.8 1 1.5 7.8 0.5

2 14.5 5.8 0.8

3 11.5 5.4 1.2

14 21.5 4.4 1.3

5 31.5 2.8 0.7

6 48.5 0.0 0.2



The stump volume is found by dividing the volume of the first

section by twice its own height which gives the volume of a cyl inder

of 1/2 foot high and diameter equal to the top diameter of the first

section. In this case there is a major mathematical negative error

since the actual diameter of the stump is bigger than the top dia-

meter of the first section, but, from the practical point of view,

this error can be neglected given the volume of the stump is already

very small in comparison to the total volume of the tree. In the

computation of the stump volume of the biggest sample tree for example,

the theoretical error is no more than 0.4 cubic foot or 0.l0/o of the

CV1i, while the error for the smallest sample tree, in thiscase, is

no more than O..02 cubic foot or O.49 of the CV14.

10'

2.8'

4.0'

44'

(a)

ii

\1

36'

4'

6'

(b)
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Figure 11. Necessary measures to calculate the volume above 4.0
inches diameter in a paraboloid frurtrum (a) and in a cone
(b).



The #43cone section: Sample tree

Table 3: Measures of sample tree #1+3.

In this case the Computation of the length of the 4-inch diameter

base cone has theoretically no error (Fig. 8-b). The length of this

top conical section is computed as follows:

has the following values

SECT. CUM. CUB
DBH HEIGHT CVTS # HT. DIB VOL.

13.0 95.5 37.7 1 1.0 13.3 1.0

2 4.5 12.0 3.1

3 17.5 11.3 9.6

4 34.0 9.9 10.2

5 49.5 8.0 6.8

6 50.5 7.8 0.3

7 59.5 6.0 2.4

8 95.5 P0.0 2.4
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In this example the volume of the stump is:

Stump vol.
= (2)(i.5) - Ol67 Cu. ft. (61)

DV1i of the sample tree #1611 is Calculated by subtracting from

CVTS (4.8 cu. ft.) the stump volume (0.167 cu. ft.), the calculated

volume of the upper sub-section of section #5 (0.1+88 cu. ft.) and

the volume of the top section #6 (0.2 cu. ft.):

cv4 = 4.8 - (0.167 + 0.488 + 0.2) = 3.945 = 3.9 cu. ft.(62)



Length x - 5) (1)
- 2.0 inches

(6.0) -

Its volume is computed as follows:

v
054) (2.0) = 0.698 cu. ft.

The volume of the stump is given by:

Stump vol.
= (2)(i.o) - 0.5 Cu. ft. (65)

And the CV1-i of the sample tree is:

CV14 = 37.5 - (0.698 + 0.5) = 3+.5 Cu. ft. (66)

The graph on the next page (Fig. 12) shows the three regression

links. Simple regression line has the following equation, with r2 =

0. 9638:

CVI4SR = -16.3609 + 56.1069 B (67)

where B is basal area.

The values of the coefficients a and b for the weighted regres-

sion were computed through equations (68) and (69) below:

b-

(v/B2) - b2(1/B)

(l/B2)

(68)

(69)

33

(63)

(6!)
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SR: Simple regression line

WR: Weighted regression line

1: Tarif regression line
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Figure 12: Comparing SR, WR and T regression lines.
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The weighted regression equation is:

CVI4WR = -3.5583 + 40.5389 B

The tarif number, T, for each sample tree was computed through

equation 71 below and the sample mean I = 41.8701 was used in the

tarif volume equation 72.

cv4 (0.9127)
T

(B - 0.0873)

cv1 = 41:87
(b - 0.0873)

As it was seen before, there are two conditions for accepting

the results of a tarif table, although neither of those constitutes

a valid significant test but "they do demonstrate the order of

magnitude of difference between the two regressions in relation to

estimate sampl ing error" (Turbull , 1965).

The first is that "the volume estimated for trees with sample

mean basal area should not differ by more than 2 (Sym) standard errors

between tarif and local volume table regressions" (Turbull, 1965).

These values in the present example are:

Tarif volume estimated for trees with

Sample mean basal area l04.,5 cu. ft.

Similar volume given by local volume regression 92.3 cu. ft.

Difference l22 cu. ft.

2 (Sym) 42.6 Cu. ft.

Since 2 (Sym) is bigger than the difference between the two

meanvolumes, thecondition is satisfied.

35
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The second is that "the tarif volume line should lie within

the confidence bands of the local volume table regression" (Turbull,

1965).

This condition is also perfectly satisfied as shown in the

graph of figure 12.

Figure 13 compares CVTS and CV lines.
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Volume 360
in Cu. ft.

360

Figure 13. Comparing CVTS line with CV4 line.
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STUDY MATERIAL

The data were provided by the Department of Natural Resources,

State of Washington and consist of a computer output of the volume

of 1,765 trees used in the construction of a standard volume table

for a young growth of Douglas-fir, Pseudotsuga menziesii in Western

Washington.

Total tree volume is the summation of the volumes of sections

of the entire stem from the base to the top. The volume of the first

section, which is called "stump", is calculated on the basis of it

being considered a cylinder equal to its top cross-sectional area

and length ranging between 0.5 and 14.5 feet. The next section from

the stump to 14.5 feet is assumed to be a neiloid frustrum and its

volume is calculated by formula (8). Sections above 14.5 feet to the

top section were assumed to be paraboloid frustrums, their volumes

are calculated by Smalian's formula (5). Top section was assumed

to be a cone, its volume calculated by the formula for a cone.

A problem that could be considered of major importance is that

the intermediary segments are not consistently divided into sections

of equal length. As a result the total volume varies depending on

the length of the sections since they are seldom perfect paraboloid

frustrums. A good example can be seen in sample tree #2140 which

has the intermediary segment divided in sections of 6 feet except

sections #13 and #114 of 14. and 1.5 feet, respectively. (Fig. 11+).

The summation of their volumes is 1.214 cubic feet while the volume

of a whole 6-foot section (14.5 + 1.5) is 1.22 cubic feet. This
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0.02-foot difference was not shown in the computer output. Many

other trials were made in different trees with different sections

lengths and the difference always had been shown to be minimum and

so, insignificant, except for the largest trees that are out of the

sample used in the present work.

1.5' ),

39

Figure l. In sample tree #20 the difference between the calculated
volume of a 6-foot log and the summation of the calculated
volumes of a 14.5-foot log and a 1.5-foot log is insigni-
ficant.

From a total of 1,765 trees, l,64' were used for the study,

since these had DBH between 14.0 and 35.0 inches, which are the limits

for the tar if table used.

Trees were grouped in 8 diameter classes with width of 3.9

inches except 7 with width 3.8 inches:

6.5' ' :60, 5.7"
Sj :



with

The distribution of the frequency in the DBH classes is shown

in figure (15). The regression equation for frequency and DBH mean

for the 8 DBH classes is:

F = 610.7028 - 29.6370 (DBH) + 0.3734 (DBH)2 (73)

Second degree polynomial was the one which fits the best with

2 2
R = 0.9852 compared to r = 0.9522 for 1 inear regression. The

regression curve is shown in figure (15).

The regression that fits the best Volume X DBH is:

TV = - 10.5723 + 0.1026 (DBH) + 0.3162 (DBH)2 (74)

'40

Class Interval

4.0" - 7.8"

Class

5

Interval

19.6" - 23.4"

2 7.9" - 11.7" 6 23.5" - 27.3"

3 11.8" - 15.6" 7 27.8" - 31.1"

'4 15.7" - 19.5" 8 31 .2" - 35.0"

R2 = 0.9995 (75)

and where TV = total volume of the tree. Figure (16).

As it was expected, the best regression for Volume X Basal Area

(B) was the simple linear regression. Figure (17). The equation is

TV = -9.7436 + 58.5016 (B) (76)



with

= 0.9984 (77)

In search for the hypsometric relationships, a second degree

convex polynomial (Figure 18) was found to show total height (TH)

in function of DBH:

TH = 7.4317 + 9.0597 (DBH) - 0.1119 (DBH)2 (78)

with

R2 = 0.9995

After all these investigations and considerations, Weyerhaeuser

tree total volumes were considered to be a very good standard basis

for this study.
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Figure 15. Regression of frequency on DBH.
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Figure 16. Regression of Total Volume on DBH.
2

TV = 10.5723 + 0.1026 (DBI-i) + 0.3165 (DBH)
: Average volume by average diameter for each OWl class.

R2 = 0.9981+
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Figure 17. Regression of Total Volume over Basal Area.
Regression: TV = -9.7436 + 58.5016 (B)

S: Average volume by average basal area for each
diameter class.
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Figure 18. Regression of total height on DBH Equation:
TH = 7.k317 + 9.0597 (DBH) - 0.1119 (DBIO2

0 = Average total height by average diameter for each
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METHODS

The variable used to compare the three log rules was percent

difference between the volume given by each of the three log rules

and the standard volume calculated by Weyerhaeuser Company:

Percent Difference Volume - -s
S

(100) (80)

where S is the standard volume and X is either A, the volume given by

the Weyerhaeuser Douglas-Fir Cubic Volume Equation, B, the volume

given by the British Columbia Coast Immature Douglas-Fir Volume

Equation or C, the volume given by David Bruce's Equations for

Second-Growth Douglas-Fir.

Log rule A equation is the original tarif equation modified by

Turnbull and King:

Log CVTS = 0.321809 (81)

+ 0,04948 log TH log DBH

- 0.15664 (log DBH)2

2.02132 log DBH

+ 1.63408 log TH

- 0.16185 (log TH)2

whichhas been changed for the computer to:

CVTS = 1O (-3.21809) (82)

TH (LOG(DBH)* 0.04948)

DBH (LoG(DBH)(-o.l566k)

'DBH**2. 02132

*TH;'d1 .63408

TH' (LOG (TH) (-0. 16185)
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cVTs = oo_321809)

(TH0
0119148 logDBI-I)

(DBH0
5664I0gDBH)

(DBH202132)

(TH1 .631408)

(TH0 16185)

(83)

17

Log rule B equation is presented in the form:

Log CVTS = -2.658025 (84)

+1.739925 (log DBH)

+1.133187 (log TH)

which has been changed for the computer to

CVTS = l0** - 2.658025* DBH** 1.739925* TH**

1.133187 (85)

cvis = (lo_2658025)(DBH1.739925) (TH133187) (86)

Log rule C equations are VS and VL:

VS = 0.00511541511 FOS (DBH2 TH) (87)

where VS is the volume of trees with total height (TH) equal or

smaller than 18 feet and FOS is a form factor for trees of TH = 18 feet:

VL = 0.005145141514 FOL (DBH2 TH) (88)

where VL is the volume of trees with TH = 18 feet and FOL is the form

factor for those trees.

As there is no definite breaking point between these two cate-

gories, VS and VL give virtually the same volume for an. 18-foot tree.
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+ 112.46542 / (TH)2

- 10.996113 (DBH) / (TH)2

- 0.107809 (DBH) / (TH)

- 0.00409083 (DBH)

Since 1644 trees were used in the present work and 3 log rules were

compared, a total of 4832 data were processed for the comparative

A two-way analysis of variance was performed on the data to see

if there were any significant differences among the percent difference

volumes given by the 3 log rules as well as to see if the percent

difference volumes were significantly different among the 8 DBH classes.

study. The data were split into 8 DBH classes as shown below:

Class Interval in inches

1 4.0 - 7.9

2 8.0 - 11.8

3 11.9 - 15.6

4 15.7 - 19.5

5 19.6 - 23.4

6 23.5 - 27.3

7 27.4 - 31.1

8 31.2 - 35.0

FOS and FOL formulas are given below:

FOS = 0.1106098 (TH - 0.9)2 / (TH (89)

- 0.0762998 (DBH) (TH - 0.9)/ (TH -

+ 0.00262615 (DBH) (TH) (TH - 0.9)I (TH -

FOL = 0.480961 (90)



(92)

L9

The purpose of comparing percent difference volumes among the DBH

classes was to investigate the possibility of a log rulebeing a

better estimator than another for a certain size of tree.

In case there is a difference among log rules and/or DBH

classes, a test was planned for inspection of all differences between

pairs of means.

Since "with unequal sample size the F- and t-test are more

affected by non-normality and heterogeneity of the variance than

with equal sample size" (Snedecor, 1973), before using any test

for comparing pairs of means, a x2-test - the Bartlett's Test of

Homogeneity of Variance - was performed to see if there was homo-

geneity among. the variances of the 8 DBH classes. Although the 3

log rules samples have the same size, the Bartlett's test was

applied among their variance because, based on a preliminary test,

they showed not being homogenous.

The Bartlett's test has the following equation:

(K-l)
= 2.3026 (log S2)((n. - i)) - (n1 - l)(log ) (91)

where S2 is the pooled within class variance and S2 is the variance

of class i. The figure 2.3026 is a constant of approximate trans-

formation of common logarithm to natural logarithm which is used in

the original formula. K is the number of variances to be tested.

The formula for the pooled within DBH class variance, S2 is:

2S-



formula is:

3 (K - 1) + [ E(-':1) -

When x is significant, a correction should be applied. Its

s=

LSD =

where

t
w1t1 + w2t2

(96)
+ w2

and

s

w.
ni

is Student's t for n - 1 degrees of freedom.

/
s s

nkn.

3 (K- i)

And the corrected value of is then:

2

Corrected x2
uncorrected x

C

As the homogeneity of variance was expected to be rejected, the

test chosen for inspection of difference between pairs of means was

LSD-test because it deals with the standard error of the difference,

S, which can. be calculated separately for each pair of means, and

in case of heterogeneity of variance, it seems to be more prudent

to calculate S for each pair of means, as shown below, rather than

use a S from a pooled variance of the analysis of variance:

(95)
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RESULTS

ANALYSIS OF VARIANCE

The two-way analysis of variance with highly (c = 0.01)

significant value of F for both log rules and DBR classes is shown

below.

SOURCES SS DF MS F

LOG RULES 3074.994 2 1537.497 l4.825

DBH CLASSES 15414.585 7 2202.084 2l.234;*

LOG RULES X DBFI CLASSES 6504.032 14 464.574 4.48o*

RESIDUAL 508996.153 4098 103.707

TOTAL 540959.128 4931

TABLE 4. Analysis of Variance table for two factors; log rules and
DBH classes. Significantly different at 0.01.

TEST OF HOMOGENEITY OF VARIANCE

1. FOR LOG RULES:

The quantities needed for the Barlett's Test of Homogeneity of

Variance are tabulated here:

RULE Si2 n-i CORRECTED SS n-i LOG Si2 (n-l)(log Si2)

88.5204 1643 145,539.01 0.0006086 1.9470433 3,198,9921

2 97.6866 1643 160,499.08 0.0006086 1.9898348 3,269.2987

3 136.9304 1643 224,976.6' 0.0006086 2.1364998 3,510.2692

TOTAL 4929 530,914.73 0.0018258 9,667.2829

TABLE 5. Quantities needed for Bartlett's test on the homogeneity of
the variance of the three log rules.
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The pooled. within variance is computed through the corrected

Sum of Squares (SS):

ss1
107.7125

The calculated value of x2 was significant in contrast with the

tabulated value:

Calculated = 805.566

Tabulated x2 (2 d.f., = 0.01) = 0.020

2. FOR BDH CLASSES

Similar tabke, as for log rules, is presented for DBH classes

52

in log rule A

CLASS S2

For log rules B and C

n-i CORRECTED SS

the results are very similar.

(n-l)(logLog Si2
52)

83.1167 420 34,909.014 0.00238 1.9196882 806.26904

2 69.9372 399 27,865.042 0.00251 i.844o868 735.79063

3 79.6907 263 20,958.654 0.00380 1.9014076 500.07019

4 88.5585 216 19,128.636 0.00463 1.9472302 420.60172

5 112.1073 137 15,358.700 0.00730 2.0496338 280.79984

6 113.9831 97 11,056.360 0.01031 2.0568404 199.51352

7 110.9611 57 6,324.783 0.01754 2.0451707 116.57472

8 179.1625 47 8,420.638 0.02128 2.2532471 105.90261

TOTAL 1636 144,021.827 0.06975 3,165.52227

TABLE 6. Quantities needed for Bartlett's test in log rule A.



The pooled within variance for DBH classes is:

l'4.021 .827
= 88.0329

1636

Calculated x2 = 36.65

2
Tabulated x

7 d.f., a = 0.01)
=

The homogeneity assumption was rejected for both log rules and

DBH classes. That means that the standard error of the difference,

S, should be calculated for each pair of means, to compare then

through LSD-test.
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TEST FOR COMPARING MEANS: LSD-TEST

1. COMPARING LOG RULES MEANS:

Table 8 shows the means and variances of the 3 log rules, as

well as the means and variances for the 8 DBH classes within each

log rule.

The table below (Table 7) shows the absolute differences

between the log rules means.

Log

Rule

Log

Rule A C

significantly different at 0.01.

TABLE 7. Differences between two log rules.

The results of the test ca.n be summarized as follows:

Log Rule:

Mean:

B A

-1.33 1.29 1.98

5L

Any two means not underscored by the same line are significantly

different.

2. COMPARING DBH CLASSES MEANS FOR EACH LOG RULE:

Table 8 also shows means and variances of the 8 DBH classes

for each log rule. As in table 7 for log rules means differences,

B

A.

2.62* 3.3l

0.69
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the differences between two means are presented in tables 9, 10 and

11.

Tables 9, 10 and 12 show LSD for each pair of means.



Code Sum Mean STD 0EV Variance N

For entire population 3203.0000 .61494 10.14741 107.7058 4932

Log Rule A. 2125.0000 1.2926 9.4085 88.5204 1644
Class 1. 898.3000 2.1337 9.1168 83.1166 1421
Class 2. 1473.7000 1.18142 8.3569 69.8372 400
Class 3. 119.6000 .14530 8.9270 79.6907 2614
Class 4. 8.9000 .0410 9.4106 88.5585 217
Class 5. 204.2000 1.14797 10.5881 112.1073 138
Class 6. 56.7000 .5786 10.6763 113.9831 98
Class 7. 235.0000 4.0517 10.5338 110.9611 58
Class 8. 128.6000 2.6792 13.3852 179.1625 48

Log Rule B. -2184.6000 -1.3286 9.8837 97.6866 16144
Class 1. 75.3000 .1789 9.2030 814.6959 421
Class 2. -1573.6000 -3.93140 8.0915 65.4730 400
Class 3. -1045.8000 -4.0030 8.9129 79.4392 264
Class 4. -6214.8000 -2.8793 9.4342 89.0050 217
Class 5. 73.4000 .5319 10.6003 112.3660 138
Class 6. 149.1000 1.5214 10.9346 119.5660 98
Class 7. 411.9000 7.1017 11.2172 125.8265 58
Class 8. 360.9000 7.5187 14.0564 197.5820 48

Log Rule C. 3262.6000 1.9845 11.7017 136.9304 1644
Class 1. 772.3000 1.8344 15.5563 241 .9982 421
Class 2. -8.2000 -.0205 8.5122 72.4578 400
Class 3. 313.4000 1.1871 9.4757 89.7884 2614
Class 4. 469.7000 2.1645 9.8224 96.4797 217
Class 5. 665.9000 4.8254 11.0295 121.6488 138
Class 6. 394.7000 4.0276 11.0916 123.0245 98
Class 7. 406.3000 7.0052 11.2968 127.6170 58
Class 8. 248.5000 5.1771 13.7089 187.9346 48

Table 8 Table of important statistics for log rules.



2a. FOR LOG RULE A:

**Signjfjcantly different at 0.01.

Table 9. Differences between two DBH class means for log rule

TEST SUMMARY:

DBH Class:

**Significantly different at 0.01.

Table 10. Differences between two DBH class means for log rule B.
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DBH

CLASS

DBH
CLASS

2 Ii
7 8

3 0.07 1 12 Li 18** 14 53** 5 52* 11 10** 11 52'

2 1.05 4.l1** 4.146** 5.45** 1l.O3* 11.45*8

14 3 . 06* * 3 . 42 * * 4 . 140* 9 . 98 * * 1 0 . 4 O *

0.35 1.34 6.92** 7.34**

5 0.99 6.57**
6.99**

6
5 . 58** 6. oo**

7
0.42

DBH

CLASS

D BH

CLASS

3 5 a 7

I'

3

6

2

5

8

0.141 0.54

0.13

1.14

0.73

0.60

1.44

1.03

0.90

0.30

2.09**

1.68

1.55

0.95

0.65

2.614**

2.23

2.10

1.50

1.20

0.55

14.01**

3.60

3.47

2.87

2.57

1.90

1.37



Table 11. Table of important statistics for DBH classes

SUM MEAN STO DEV VARIANCE N

For entire population 3203.0000 .6494 10.4741 109.7058 4932
Class 1745.9000 1.3823 11.7101 137.1268 1263
Log Rule A 898.3000 2.1337 9.1168 83.1167 421
Log Rule B 75.3000 .1789 9.2030 84.6959 421
Log Rule C 772.3000 1.83411 15.5563 241.9982 1121

Class 2 -1108.1000 -.9234 8.5976 73.9182 1200
Log Rule A 473.7000 1,1842 8.3569 69.8372 400
Log Rule B -1573.6000 -3.93140 8.0915 65.4730 1100
Log Rule C -8.2000 -.0205 8.5122 72.4578 1100

Class 3 -623.8000 -.7876 9.38211 88.0288 782
Log Rule A 119.6000 .4530 8.9270 79.6907 264
Log Rule B -1056.8000 -11.0030 8.9129 79.11392 2611
Log Rule C 313.11000 1.1871 9.4757 89.78811 2611

Class 11 -146.2000 -.22116 9.76117 95.3485 651
Log Rule A 8.9000 .0410 9.11108 88.411811 217
Log Rule B -624.8000 -28793 9.11342 89.0050 217
Log Rule C 469.7000 2.1645 9.8224 96.4797 217

Class 5 943,5000 2.2790 10.6727 118.2153 414
Log Rule A 2011,2000 1.4797 10.5881 112.1073 138
Log Rule B 73.4000 .5319 10.6003 112.3660 138
Log Rule C 665.9000 4.8254 11.0295 121.6488 138

Class 6 600.5000 2.0425 10.9623 120.1721 294
Log Rule A 56.7000 .5786 10.6763 113.9831 98
Log Rule B 149.1000 1.5214 l0.9346 119.5660 98
Log Rule C 394.7000 4.0276 11.0916 123.0245 98

Class 7 1053.2000 6.0529 11.01190 122.0794 174
Log Rule A 235.0000 4.0517 10.5338 110.9611 58
Log Rule B 411.9000 7.1017 11.2172 125.8265 58
Log Rule C 406.3000 7.0052 11.2968 127.6170 58

Class 8 738.0000 5.1250 13.7668 189.5261 144
Log Rule A 128,6000 2.6792 13.3852 179.1625 48
Log Rule B 360.9000 7.5187 14.0564 197.5820 48
Log Rule C 248,5000 5.1771 13.7089 187.9346 48



Significant1y different at 0.01.
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Table 12. Differences between two DBH class means for log rule C.

TEST SUMMARY

D BH

C LASS

DBI-I

C LA S S

3

2

3

4

6

5

8

0.21 1.85

0.64

2.18

0.97

0.33

L+.O5

2.8L

2.22

1.87

4.85*
3.64

3.00

2.67

0.80

5.20

3.99

3.35

3.02

1.15

0.35

7.O3*

5.82

5.18

4.85

2.93

2.18

1 .83

DBH CLASS: 2 3 1 4 6 5 8 7

Mean: -0.02 1.19 1.83 2.16 4.03 4.83 5.18 7.01

TABLE 11.

TEST SUMMARY:

DBHClass: 3 2 4 1 5 6 7 8

Mean: -hi.00 -3.93 -2.88 0.18 0.53 1.52 7.10 7.52

C: FOR LOG RULE C:



CORRELATION BETWEEN AVERAGE PERCENT DIFFERENCE VOLUME AND MIDPOINT

DBH CLASS

The regression equations that show the best coefficient of

determination are the following:

LOG RULE A:

115\i= 4.61129 - 0.5066 (DBHmidpoint) + 0.0151 (DBHmid)2

with

R2 0.6858

LOG RULE B:

PDV = 4.2106 - 1.0798 (DBI-I mid) + 0.0390 (DBH mid)2

R2. 0.9402

LOG RULE C:

PDV = 1.09111 + 0.1894 (DBH mid) + 0.0015 (DBH mid)2

R2 = 0.9765

Figures 19, 20 and 21, illustrate those three regression equa-

tions in contrast with the points representing the DBH classes mid-

points and the average percent difference volume for each class.

The regression analysis for the 3 log rules are shown in

tables 13, 14, and 15.
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Log Rule A:

' Regression significant at 0.05.

TABLE 13. Regression analysis for log rule A.

Log Rule B:

Source SS DF MS F

Regression 136.1409 2 68.0704 39.4735*

Residual 5 1.7246

Total 7

* Regression significant at 0.01.

TABLE 14. Regression analysis for log rule B.

Log Rule C:

Source SS DF MS F

Regression 38.1752 2 19.0876 l02.9203**

Residual 0.9272 5 0.1855

Total 39.1028

*Regression significant at 0.01.

TABLE 15. Regression analysis for log rule C.
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Source SS DF MS F

Regression

Residual

Total

8.8336

3.8480

12.4316

2

5

7

4.41418

0.7696

5.77
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Figure 19. Regression of average PDV on DBH class midpoint.
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Figure 20. Regression of average PDV of DBH Class on DBH class mid-
point, for Log Rule B.
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Figure 21. Regression of Mean Percent Volume (PDV) on DBH class midpoint.
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CORRELATION BETWEEN PERCENT DIFFERENCE VOLUME (PDV) AND DBH

For the three different log rules this correlation was

unsatisfactory, with very low coefficient of determination,

respectively:

R2 = 0.0077 for rule A

R2 = 0.0933 for rule B

R2 = 0.0190 for rule C.
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DISCUSSIONS AND CONCLUSIONS

Although the percent "error", more precisely, the percent

difference between the volumes given by the three studied log rules

and the "actual" volume computed by the standard method, were very

small (no more than 2* of the actual volume), they proved to be

significantly different.

The large F value is due in part to the different number of

trees in the 8 DBH classes, the second factor in this study. From

a statistical point of view, it would be more convenient to deal

with the same number of trees for each DBH class. However, the

smallest size class (class number 8) had only 48 trees and a maximum

of 384 (48 trees times 8 log rules) measurements was not sufficient

for the experiment because the high variance of the variable "percent

difference volume". The variance had shown, in a general way, to be

still bigger in the larger classes which were exactly those of small

size.

When the log rules means were compared through LSD-test, log

rule B was significantly different from log rule A as well as from

log rule C, at 99* level of probability (which is the probability

level used throughout this study). Log rules A and C didn't prove

to be significantly different.

Of all the log rules Bruce's Equation was the one which pre-

sented the highest volume difference, averaging 1.98*, even though

very low. Log rule A, Weyerhaeuser Douglas-Fir Cubic, showed the

smallest absolute mean difference, 1.29*, but very close, in absolute
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value, to rule B, British Columbia Immature, with a volume differ-

ence averaging -l.33?.

All the log rules presented very high variance: Coefficient

of variation equal to 59O for C, 729°/a for B and 71+3? for A. Only

this high variance could explain the significance of the difference

between so close averages. The greater difference was 3.3l?.

The means of the DBH classes in the same log rule showed

more variation. Log rule A, for example, showed a range from -4.00

in class 3 to 7.25 in class 8. To arrange them in an increasing

or decreasing order with DBH increment was impossible, meanwhile

almost always the 4 highest DBI-I classes had presented higher aver-

ages. The only exception was class 6 in rule A with a very small

mean, O.58?, while class 1 presented an average of 2.l3, the 3rd

highest.

The tables of the differences between means for log rules A

and C (tables 9 and 12) showed a peculiar situation related to

class 8. For log rule A, class 4 was significantly different from

class 6 with a difference of 2.09 but was not significantly differ-

ent from class 8 which had a bigger difference (2.64). Log rule C

had the same situation: classes 2 and 3 showed significantly differ-

ent from class 5 but not from class 8 with larger mean. A reason

for this apparent contradiction could be the high value of the

variance of class 8 in both rules associated with its very small

sample size. This seems to reinforce the evidence discussed above:

DBH class 8, with very high variation and only 48 trees, did not

have a sample size big enough for a statistical analysis.
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It seems that the same peculiarity did not happen in log

rule B because of its smaller relative variance and so for this

rule the sample size of class 8 would have been sufficient.

With a look at the trend of the DBH class means of PDV on

the midpoint of DBH classes (Figures 15, 16 and 17), it is reason-

able to suspect that there exists a curl inear correlation between

these two variables. To test whether there is a relation between

the variables an analysis of regression was performed. For log

rule B and C the correlation was significant at 0.01 level. Values

of coefficient of determination, R2, equal to , respectvely, O.9+,

0.97 showed a very strong correlation between the variables. For

log rule A, wjth R2 = 0.67, the significance is shown only at 95?

level.

A regression analysis of the correlation between PDV and DBH,

using all data, (16Lte trees) for each log rule, showed very low

2 .

values of R although the values of F had shown significant relation

between the variables. The reason for those high values of F is

justified by two major reasons: The large sample size and the high

variance of the data.

In the conclusion about this topic, the major comment is that

even though DBH classes midpoint seems to be very highly correlated

with the mean of PDV for the DBH classes, DBH by itself does not

seem to be a good predictor of PD\I, the use of PDV mean and DBI-$

midpoint should be discouraged and even not acceptable for DBH

classes sample sizes smaller than those used in this study. Class 8

anyway should have a bigger sample size.
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As it was explained in the Introduction, the objective of

this paper was the investigation on a methodology of comparing log

rules in a statistical basis. No attempt was made to ascertain

the relative performance of the three log rules as an estimator

of the total volume of a young second-growth Douglas-fir stand.

The good performance of all of them for young Douglas-fir stands

was already known. The resulting figures of this study prove this

with very small average percent difference between the volume given

by each of them and the standard volume although one of them, the

British Columbia Coast Immature Douglas-fir Tarif Table showed to

be statistically different of another tarif table, the Weyerhaeuser

Doug1as-fir Tarif Table and of Bruce's Table for Immature Douglas-

fir.
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