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Chapter 1 – Introduction

1.1 The Motivation: From Cellulose to TEB

This research began as an investigation to improve production and characterization of

rigid, rod shaped cellulose nanocrystals (CNCs) for applications such as polymer com-

posites, medical materials, and electro-optical devices. As is often the case with biologi-

cal nanoparticles, the large polydispersity of the resulting suspensions caused significant

difficulties in the control and design of subsequent CNC based materials. Since standard

separation techniques such as gel permeation chromatography often fail to differentiate

between rigid particles varying only in length (i.e. having roughly uniform diameter),

preliminary work went into developing novel size exclusion techniques. Apparent suc-

cess was obtained using liquid crystal (LC) phase separation of CNC suspensions above

critical concentrations.

Challenges then arose as to how to fully characterize the success of LC phase separa-

tion sizing. Microscopy methods such as AFM, TEM and SEM do not sufficiently sample

the bulk suspension to provide statistically sound data, and agglomeration upon sample

drying adds additional uncertainty to the estimated sizes of imaged particles. Light scat-

tering techniques probe the bulk of the suspension and provide statistically significant

sampling. The mathematical theory behind these techniques are based on spherical par-

ticles, however. As such, dynamic light scattering (DLS) yielded average hydrodynamic

volumes based on radius of gyration, but not detailed size distributions regarding parti-

cle length. Static light scattering (SLS) was also attempted. However, SLS models rely

on extrapolation to infinite dilution (i.e. Zimm and Berry plots). This required a higher
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degree of experimental accuracy for low sample concentrations than we were able to re-

producibly achieve.

Partway into this research on unsatisfying particle sizing techniques, we were in-

troduced to Transient Electric Birefringence (TEB), in which anisotropic particles are

aligned in an electric field. The rotational diffusion coefficient is measured directly from

time-dependent optical signals resulting from bulk alignment of particles in suspension.

Since rotational coefficients can be related directly to particle length given appropriate a

priori information, this seemed the most sensitive means to get length information from

our samples.

The research turned to the development a TEB apparatus to characterize cellulose

nanocrystals. In the course of this development, numerous electronic and optical chal-

lenges were encountered which forced a review and revision of the traditional data captur-

ing techniques and optical assumptions used by previous TEB experimentalists. For this

reason, the chapters in this dissertation will be divided into seemingly disparate sections:

those related to the production and preparation of cellulose nanocrystal suspensions, and

those relating to the development and improvement of the TEB characterization tech-

nique. The outcome of this work is twofold. Firstly, a novel method for size exclusion

of cellulose nanocrystals has been developed, as demonstrated using the TEB technique.

Secondly, a TEB apparatus has been developed with improved data resolution for use in

subsequent experiments. Since no commercial TEB apparatus is yet available, we hope

that outlining the challenges we encountered will ease the way for the future researchers

seeking to utilize this technique.
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1.2 Cellulose Nanocrystals

1.2.1 Introduction

Cellulose is considered to be the most abundant biopolymer on earth. Its low cost and

physical and chemical properties make it an easily exploitable source of biomass for many

commercial uses. It is synthesized in plant cell walls in hierarchical structures of crys-

talline microfibrils embedded in lignins and hemicelluloses. When cellulose from wood

pulp or cotton is beaten in water, long strands are produced, called fibrils, which are com-

posed of microcrystalline sections interconnected by amorphous regions. The cellulose

itself is composed of repeating β-(1,4)-linked glucopyranosyl subunits (Figure 1.2.1.1

a) forming long chains arranged in parallel. These subunits are linked in equatorial-

equatorial orientation such that the ring oxygen of one glycosyl unit can form hydrogen

bonds with the C3 hydrogen of the previous ring, thus preventing free rotation around the

glycosil linkage and stiffening the cellulose chain (Figure 1.2.1.1 (b)) [1, 2], giving the

ribbon-like character of the cellulose macromolecules.

The crystallinity of the cellulose elementary fibril arises from parallel, ribbon-like

cellulose macromolecules fitting closely together. There are multiple ways in which the

chains can be packed together, giving rise to several polymorphs of crystalline cellulose.

The native cellulose synthesized by plants and certain bacteria and fungi is Cellulose I.

Cellulose I is not the most thermodynamically stable polymorph. It is readily converted

to the more stable Cellulose II polymorph upon merceration (swelling in concentrated

sodium hydroxide) or regeneration (solubilization in solvent followed by precipitation in

water.) Cellulose III can be reversibly produced from cellulose I and II by treatment of

liquid ammonia, with Cellulose I and II giving rise to polymorph III1 and III11 respec-

tively. Heating polymorphs III1 and III11 to 206◦C in glycerol gives rise to polymorphs
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(a) Cellobiose Repeat Unit

(b) Intrachain Hydrogen Bonding

Figure 1.2.1.1: The cellobiose repeat unit. The β-D-glucopyanosyl-(1→4)-α-D-
glucopyanosyl unit (a) is the repeating unit in cellulose. The cellobiose repeat unit is
stabilized by intra-chain hydrogen bonding (b), giving the ribbon-like structure of the
cellulose macromolecule.

IV1 and IV11 respectively. The precise crystal structure of cellulose and all its polymorphs

is under continuous study. A detailed discussion is beyond the scope of this paper; please

refer to [3] and references therein for further reading.

The amorphous regions along the elementary microfibril arise from imperfect cellu-

lose chain packing, likely due to stress during biosynthesis. It has been deduced that ele-

mentary cellulose microfibrils are synthesized by rosettes of terminal complexes (TCs)

in plant plasma membranes. Groups of these TCs are responsible for elongating all

cellulose macromolecular chains in the microfibril simultaneously. Since the cellulose

macromolecules form two-fold screw symmetry along their length [4], torsional stress

release during synthesis causes repeated regions of lesser order along the fibril. Severe

acid hydrolysis preferentially degrades these regions of lesser order, resulting in crys-

talline cellulose fragments, or whiskers. Initially, acid attack is very rapid, breaking only
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the molecular hinges between crystalline regions to leave disconnected crystallites, after

which a levelling off of the reaction rate occurs. The level off degree of polymerization

(LODP) from this process varies depending on the cellulose source. Typical LODP values

for purified cotton are 200-250 [5], where degree of polymerization (DP) is as defined by

the total molecular weight of the polymer crystallite divided by the molecular weight of

the monomer unit.

Stable colloidal suspensions of crystalline whiskers can be prepared by adding sur-

face charges. This was first described by Rånby in 1951 [6], with the use of sulfuric acid

as the hydrolysing acid in place of hydrochloric acid. The introduction of sulfate ester

groups onto the crystallite surface leads to electrostatic stabilization of suspensions [4].

An alternative method for adding surface charge involves oxidation of primary or sec-

ondary hydroxyls to carboxylic acids. In both cases, electrostatic repulsion from surface

charge prevents agglomeration of individual cellulose crystallites, resulting in more stable

suspensions.

1.2.2 Microcrystalline and Nanocrystalline Cellulose

1.2.2.1 Defintions and Terminology in Scale

There is some discontinuity in the literature over the past decades between the use of the

terms colloids, micelles, microcrystals and nanocrystals. Examples of references claiming

to produce colloids or micellular solutions have been referenced decades later as having

produced nanocrystals, such as the 2005 reference [7] to Rånby’s 1949 report “Aqueous

Colloidal Solutions of Cellulose Micelles” [8]. Likewise, [7] redefines Revol, Godbout,

and Gray’s “microcrystallites” [9] as nanocrystal suspensions. The change in terminol-

ogy was likely concurrent with both the evolving definitions of nanomaterials and the
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increased understanding of cellulose structure. Although there is currently no interna-

tionally accepted definition for a nanomaterial, a terminology standard will be laid down

here for clarity.

The American Chemistry Council in March of 2007 proposed that an Engineered

Nanomaterial be defined as “any intentionally produced material that has a size in 1, 2, or

3-dimensions of typically between 1-100 nanometers.” [10] Although a parallel definition

is not in place for bio-nanomaterials, the same nomenclature is generally adopted. As

such, Rånby’s 60 Å by 600 Å micelles [8], as well as Revol et. al.’s 100-200 nm by

5-10 nm particles [9] qualify as nanomaterials. For all other incongruencies, the above

definition will be applied in this work. Following this, microcrystalline materials will be

defined as those in which a size of the smallest dimension is between 1µm and 100 µm.

1.2.2.2 Production of Micro and Nanocrystalline Cellulose

The mechanism of acid hydrolysis of amorphous cellulose starts with the rapid proto-

nation of the glycosidic bond, followed by fission of this bond to form a carbonium ion

(Figure 1.2.2.1, steps 1 and 2.) The carbonium is attacked by water in the rate determining

step (Figure 1.2.2.1, step 3) to form the free sugar residue and re-form the hydronium. If

the acid used is hydrochloric, the resulting crystallites will have uncharged surfaces. If

sulfuric acid is used, and additional esterification of the surface hydroxyls by sulfate ions

will occur, resulting in charged surface groups (Figure 1.2.2.2).

Acid hydrolysis produces nanocrystalline cellulose in aqueous suspension. Although

freeze drying can be used to obtain nanocrystalline cellulose in the dry state, the process

generally results in significant agglomeration. Characterizing dielectric and hydrody-

namic properties for CNCs in liquid suspension is therefore the preferred method for our

research. The remainder of this section will specifically describe cellulose nanocrystals,
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Figure 1.2.2.1: Mechanism of acid hydrolysis of cellulose. Rapid protonation of the
glycosidic bond by hydronium ion (step 1) is followed by fission of this bond to form
a carbonium (step 2). The carbonium is attacked by water in the rate determining step
(3) to form the free sugar residue and re-form the hydronium. (Schematic recreated from
reference [11].)

Figure 1.2.2.2: Esterification of cellulose surface hydroxyls by sulfuric acid.
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beginning with a discussion of the cellulose suspension stability as it pertains to surface

charge and dielectric properties of cellulose nanocrystals. The last section of this chapter

will pertain to electric birefringence as a method for measuring hydrodynamic properties.

1.2.3 Stability of Cellulose Nanocrystals Suspensions

A colloidal system results when one of the three states of matter, liquid, solid or gas, is

finely dispersed in another state. The classification system defines an aerosol as a dis-

persion of liquid in a gas phase, a sol as a solid in liquid phase, and an emulsion as two

non-miscible liquids. If the colloids are self-attracting, they are called lyophylic (hy-

drophilic if solution is water), or lyophobic (hydrophobic in aqueous system) if they

are self-repelling [12]. The stability of these suspensions is balanced by competing

forces [13]. Firstly, an attractive force between particles exists due to long range hy-

drodynamic interactions. Additional long range coulombic interactions between particles

arise from the sign and magnitude of the charge on the particle, as well as their counte-

rion distribution and the supporting polyelectrolytes in the surrounding medium. When

two macroions approach each other, short-range attractive forces can occur from van der

Waals interactions. Fourthly, a strong hydration repulsive force dominates over all the

others when macroions are brought closer together.

The balance of these forces determines the behavior of a colloidal suspension. If

individual colloids begin to adhere to one another, the initial floc can accumulate other

particles to form larger agglomerates in a process called flocculation. If agglomerates are

a different density than the surrounding solution, phase separation can occur by gravity

sedimentation for denser agglomerates, or by “creaming” for less dense agglomerates.

The stability and phase behavior of suspensions was described by a classic theory devel-

oped by Derjaguin, Verwey, Landau, and Overbeek (DVLO theory) in the 1940’s. The
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theory attempts to predict the potential energy of a particle in solution, VT , as a function

of competing energy functions, VT = VA + VR + VS , where A and R subscripts represent

the potential energy contributions from attractive and repulsive forces, and S is due to that

of the solvent. In order to understand DLVO theory better, some basic concepts of electric

double layer and solution ionic strength must first be addressed.

1.2.3.1 Electric Double Layer and Zeta Potential

Models for the Electric Double Layer: Most colloidal particles in aqueous suspen-

sions carry some surface charge due to various reasons. The first could be a surface func-

tional group ionization event, such as a -COOH−→ -COO− H+. Secondly, ions dissolved

in solution could bind to an otherwise charge-neutral surface due to molecular dipoles. A

third possibility is an exchange of higher valence ion replacing lower valence ions on the

surface. This effect lowers the overall solution ionic strength (IS). IS is defined by both

the valency and concentrations of all ion species in solution as Σizi
2ci, where zi and ci

are the valency and concentrations of ion species i. The charge density on the particle

surface, σ0 ( in µC/cm2) interacts with the solution IS to form the Electric Double Layer

(EDL). In simplest functional model, the solution side of the surface/particle boundary is

considered to be composed of several layers. Due to steric hindrance, ions in solution are

unable to penetrate the particle surface. They instead interact with σ0 to form a layer of

ions along the particle surface. Figure 1.2.3.1, (a) and (b) shows two simple models for

the organization of these ions as a function of distance from the particle surface. Figure

1.2.3.1 (c) shows the Stern Model as a hybrid of these two, where the electric double layer

is composed of a rigid Helmholtz layer nearest the surface, followed by a diffuse layer

(also called the Gouy-Chapman Layer) extending into the bulk of the solvent. Surface

potentials are shown as a function of distance from surface for all three models (Figure
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(a) Helmoltz Model (b) Gouy-Chapman Model (c) Stern Model

Figure 1.2.3.1: Development of the Stern Model for the electric double layer (c) as a
combination of two simpler models, (a) and (b). The Helmholtz model (a) depicts a
rigidly absorbed layer of counterions to a charged surface. The Gouy-Chapman model
(b) depicts an exponentially decaying concentration of counterion concentration from the
particle surface (distance = 0) to the solution bulk. Electric potentials as a function of
distance from particle surface are depicted below, where Ψ is the electric potential and σ
the charge density at the surface (0), the bulk solution (S), and the Helmholtz Plane (H)
respectively

1.2.3.1 [12]).

For most purposes, a more complex model is necessary to interpret experimental data.

When certain ion types absorb specifically to the surface (i. e. through chemical affinity

rather than purely coulombic forces), whereas others only interact through electrostatic

interactions, the Grahame Model can be used [14]. In this case, the Stern Layer is sub-

divided into two layers (Figure (1.2.3.2). The inner layer is called the Inner Helmholtz

Plane (IHP), and makes up a total charge density σi at a distance β from the surface. The

outer Helmholtz Plane is composed of nearest solvated ions which can only approach

the IHP at a distance d. These ions interact with long range electrostatic forces which
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are independent of ionic chemical properties, so this layer is said to be non-specifically

adsorbed. The potential at the OHP (Ψd) is the diffuse-layer potential, also known as

the Stern potential in this model, after which point an exponentially decaying potential

arises as the ion concentration decreases to that of the solvent bulk. This layer is com-

posed of thermally diffused, non-specifically adsorbed ions which are either attracted to

the particle surface charge or to the Stern layer. At a distance dek from the surface, a shear

potential is defined, which is called the electrokinetic potential, or zeta- potential (ζ).

Zeta-potential: A charged particle in an externally applied electric field will move at a

fixed velocity in a process called electrophoresis (where the particle moves with respect

to the liquid). The counterpart is electro-osmosis, where the liquid moves with respect to

the particle. In either case, a tangential flow of solvent across the particle surface occurs,

generally with a very thin layer of fluid adhering to the surface [14]. At this boundary,

defined in the Grahame Model as the “slip plane” [16] or “shear” plane” [12], the hydro-

dynamically stagnant layer extending from the surface gives way to the region in which

tangential flow of both solvent and ions will occur. The electrochemical potential extend-

ing from a charged particle surface to the solvent bulk is illustrated in Figure (1.2.3.2),

where ζ is defined at the shear plane.

The velocity at which the particle moves in the applied field depends on solution

viscosity and dielectric constant, as well as the zeta-potential. The definition of a shear

plane is abstract, however, since transitions between the layers are generally not sharp. It

is possible that the immobilization of fluid extends beyond the beginning of the diffuse

part of the EDL, and the difference between the diffuse layer potential Ψd and the actual

zeta potential is dependent on ionic strength (IS) of the solution. If the IS is high, the

decay of the electric potential is steeper than at low IS, so |ζ| ≤ |Ψd| [14].

There is no direct method to measure ζ experimentally. Instead, the velocity VS of the
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Figure 1.2.3.2: The Grahame Model of the electric double layer. The zeta-potential,
ζ , occurs at the shear plane. Ions specifically adsorbed (defined as those with chemical
affinity to the surface other than coulombic interactions) occur at a distance β, also known
as the Inner Helmholtz Plane (IHP). Solvated ions interact non-specifically at a distance
d to make up the Outer Helmholtz Plane (OHP). Charge densities are represented by σ
and surface potentials by Ψ. The electrochemical potential drops off linearly through the
IHP and OHP, then exponentially through the diffuse layer. The potential at the OHP
(distance d) is the diffuse-layer potential Ψd, also known as the Stern potential in this
model. The potential at the shear plane (beyond OHP at the boundary of the diffuse
layer) is the electrokinetic, or zeta-potential (ζ). At this point, the hydrodynamically
stagnant layer extending from the surface gives way to a region in which tangential flow
of ions will occur in an external electric field. The fixed surface charge density, σ0, the
charge density at the IHP (σi), and the charge density in the diffuse layer (σd) satisfy the
condition of electroneutrality, that is σ0 +σi +σd = 0. (Schematic distilled and recreated
from [12, 14, 15].)
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particle moving in the electric field E is measured and used to calculate ζ via a parameter

called electrophoretic mobility µe, where VS = µeE. The relationship between µe and

ζ depends on the model chosen. The location of ζ in the EDL depends on the particle

surface charge density, the EDL properties, and the solution IS and permittivity. Two

models exist for calculating ζ from µe, both using a parameter κa, where 1/κ represents

the EDL thickness and a is the radius of the entire electro-kinetic unit (particle plus double

layer up to the shear plane.) In the thick atmosphere approximation (κa� 1), the Hückel

model applies, µe = (2eζ)/3η, where η is the viscosity of the suspending medium and e is

the elementary charge [17]. This is appropriate for small molecules in low IS solutions.

In the thin atmosphere regime (κa � 1), the Smoluchowski limit is used, where µe =

(eζ)/η. For typical colloids (between 100 and 1000 nm in diameter) dispersed in 1 mM

aqueous KCl solutions, κa can vary between 10 to 100, whereupon neither model is

completely satisfied. Although more complicated models have been proposed to address

such discrepancies, one should keep in mind is that ζ is a function of solution IS as well as

certain mathematical approximations. It is therefore problematic to determine an accurate

ζ without accurate knowledge of particle and EDL dimensions. Comparative values can

be measured under “identical” conditions as a means to rapidly compare modifications of

electrical state between two colloidal systems [14]. If accurate ζ values are required for

a given particle, a priori information about the particle’s size and EDL thickness must be

applied.

For these reasons, there are no absolute calibration standards available for zeta-potential

measurements. There are, however, a few well-characterized colloids against which ex-

perimental zeta-potentials can be compared for reference. One such colloid is the BI-ZR3

reference material provided by Brookhaven Instruments Corporation [18]. Following the

preparation procedure outlined in [17], a zeta-potential of -53 mV +/− 4 mV is expected.

As a rule of thumb, a colloid is considered to have “good stability” if the ζ is between
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± 40 mV and ± 60 mV, where the sign is representative of positive or negative surface

charge. The significance of the zeta-potential to colloid stability is will be demonstrated

in the following section.

1.2.3.2 Suspension Stability and DLVO Theory

Colloidal suspensions are inherently unstable due to the constant presence of attractive

forces, specifically van der Waals forces. The second law of thermodynamics likewise

predicts a coalescence of smaller particles to reduce surface energy. For simple molecules,

these attractive forces vary as r−6, where r is the intermolecular distance. For colloids,

attractive forces are the sum of individual pair-wise molecular forces, and thus the at-

tractive forces vary between D−1 and D−2 depending on shape and size, where D is the

shortest distance between particles [17]. Therefore, colloids will attract each other over

much longer ranges than simple molecules and, without a stabilizing repulsive force, will

readily flocculate.

Considering the electric double layer discussed above, we can imagine that the re-

pulsive forces for colloids in suspension will not arise from bare Coulomb forces alone.

(Recall that the coulomb force is F = ke
q1q2

r2
, where q1 and q2 are two point charges, r is

the distance between them, and ke is Coulombs constant). In the presence of the double

layer, coulombic charges in particles are shielded from one another, and the electrostatic

repulsion arises from interference between double layers. Like charges on adjacent par-

ticle double layers would result in electrostatic repulsion and discourage agglomeration.

This is described by

Vrepulsion =
Aa2ζ2

R
e−s/rD , (1.2.1)

where A is a constant, a is the radius of (spherical) particles, ζ is the zeta-potential, R
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is the distance between particle centers, s is the distance between particle surfaces (i. e.

s = R− 2a), and rD is the double layer thickness. This equation is valid for particles that

are small with respect to rD ( a� rD). When a� rD, eqn. 1.2.1 is replaced by

Vrepulsion =
1

2
Aa2ζ2ln(1 + e−s/rD). (1.2.2)

The Debey-Hückel theory allows us to estimate the thickness of the double layer as

rD =
εRT

2ρF 2Ib	

1/2

, (1.2.3)

where I is the ionic strength of the solution, ρ is the mass density, and b	 = 1mol kg−1.

In the absence or reduction of the surface charge, attractive van der Waals forces will

cause particles to flocculate. This attractive force is given by

Vattraction =
B

s
, (1.2.4)

where B is a constant [12].

The van der Waals forces are cumulative and long ranged between multiple parti-

cles, whereas electrostatic forces only come into play when particles are close enough

for charge layers to interfere. The net interaction energy can be seen as a subtraction of

the van der Waals attractive forces from the electrostatic repulsion curve as seen in Fig-

ure 1.2.3.3. The point of maximum repulsive energy in the net interaction energy curve

is known as the energy barrier, and represents the kinetic energy two colliding particles

must have in order to agglomerate. The energy trap region represents the area after which

the energy barrier is cleared and all net forces are attractive. Thus particles are “trapped”

in agglomerates, also called coagulated. At high ionic strength, a second minimum in

the net interaction energy curve can occur which can result in flocculation. Agitation can



16

(a) No Flocculation (b) Flocculation

Figure 1.2.3.3: The electrostatic repulsion curve derived from the combination of the
van der Waals attractive forces and the electrical repulsion curve as a function of inter-
particle distance. The maximum in the net interaction energy corresponds to an energy
barrier that must be overcome on order for particles to agglomerate. The energy trap
region represents the energy region in which particles are irreversibly agglomerated. At
high ionic strengths, a second energy minimum can result in a reversible flocculation
region [12].

often disrupt flocculated material, whereas coagulates are irreversibly agglomerated. The

overall stability of a colloidal suspension increases as the height of the energy barrier in-

creases, which is largely due to changes in the electrostatic repulsion curve arising from

EDL interactions. Thus stability is more influenced by surface properties and solution IS

than the bulk properties of the colloid.

1.2.4 Cellulose Nanocrystals as Liquid Crystals

1.2.4.1 Overview of Liquid Crystals

The electric double layer (EDL) potentials discussed above influence how particles with

anisotropic geometries align with one another when concentrations exceed the dilute (i.e.
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non-interacting) regime. For long rigid rods, liquid crystal (LC) behavior is often ob-

served, where both the geometric anisotropy and EDL properties determine the macro-

scopic nature of the LC alignment. The term “liquid crystal” is used to describe a hybrid

state of matter with properties between that of a liquid and a solid crystal. Particles dis-

play long range order while retaining fluidity. In the case of thermotropic LCs, the order

evolves with some phase transition upon a temperature change. Lyotropic LC order is

dependent on both temperature and concentration of the LC particles in some solvent.

Lyotrophic LCs are therefore more influenced by the EDL properties extending into the

solvent, as particles will interact primarily with one another via their electric double lay-

ers.

A detailed overview of liquid crystal phases and subclassifications is beyond the scope

of this work. Specific to our studies are the concepts of nematic liquid crystals, in which

rigid rod-shaped particles align with one another along their long axes as shown in Fig-

ure 1.2.4.1 (a). A subclassification of nematic order is chiral nematic, where planes of

nematically aligned molecules stack of helically as shown in Figure 1.2.4.1 (b). For par-

ticles which themselves have anisotropic optical properties, nematic order can impart a

macroscopic birefringence in the system.

1.2.4.2 Cellulose Nanocrystals as Liquid Crystals

The high aspect ratio for cellulose nanocrystals arises from acid hydrolysis of amorphous

regions between long crystalline segments of the cellulose elementary fibril, where crys-

talline segments are long with respect to the fiber diameter. Depending on the cellulose

source, average crystallite dimensions can range between 100-1000 nm in length, and

vary between 3-20 nm in width [7]. The first stable colloidal suspensions of such crystal-

lites were produced by Rånby and Ribi [8, 19], followed by the first electron microscopy
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(a) Nematic LC Phase (b) Chiral Nematic LC Phase

Figure 1.2.4.1: Nematic (a) and chiral nematic (b) liquid crystal phases.

verification that acid hydrolyzed native cellulose was indeed colloidal suspensions of in-

dividual crystallites [20, 21]. It was soon thereafter observed that these colloidal suspen-

sions formed birefringent regions when dried from dilute solutions [22], and displayed

liquid crystal behaviour under gel flow shear stress. Due to the strong birefringence of na-

tive cellulose, the resulting macroscopic birefringence could be observed directly through

crossed polarizers; the liquid crystal regions were determined by electron-micrograph to

arise from parallel alignment of crystallites along their long axes.

In more recent studies, Revol, et. al. observed the formation of stable chiral nematic

liquid crystalline phases for sulfuric acid treated kraft pulp [23]. This chiral nematic is

a helical stacking of nematic phases around a cholesteric axis. At dilute concentrations,

Brownian motion causes particles to be randomly oriented. As concentration increased

by the evaporation of solvent (water), birefringent droplets, or tachtoids, were observed

to form then coalesce into a continuous anisotropic fluid phase [9, 23]. It was proposed

by Revol and co-workers that, in the absence of an assymmetric “twisting agent” in these
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solutions, the cholesterolic stacking must arise from either a twist in the microfibril crystal

structure [24] or a twist in the distribution of surface charge groups [23]. Support for this

theory comes from [25], where the addition of trace electrolyte disrupted a spontaneous

phase separation, possibly due to shielding of this twisted morphology.

Another series of publications investigated the effect of surface charge, ionic strength

and counterion species on isotropic-chiral nematic phase transition behaviour [26–29].

These rely on a modification to Onsager’s original model for liquid crystal phase sep-

aration of rigid rods [30] propsed by Stoobants, Lekkerkkerker, and Odjik (SLO) [31].

Onsager’s original model for uncharged, perfect rigid rods of diameter D and length L

predicted a critical concentration for phase separation that depended only on the aspect

ratio, L/D. For polyelectrolytes, the surface charge plays an important role in the free

energy of the system due to electrostatic interactions. Modifications to Onsager’s theory

involve methods to estimate the effective diameter produced by the surface charge, as well

as the twisting factor arising from electrostatic repulsion. Since both of these interactions

depend on surface charge density, counterion size and density, and solution ionic strength

(that is the shielding effects), the system becomes increasingly intractable. Experimental

evidence suggests that the equilibrium is governed by a balance between hydrophobic

attraction and electrostatic repulsion [27]. Size fractionation is also a key factor, with

longer particles forming more ordered phases [28].

1.2.4.3 Liquid Crystal Phase Separation

Onsager’s original theory used the excluded volume effect to predict the critical concen-

tration for ordered phase formation using the aspect ratio for rigid rods. It has been ob-

served that the critical concentration for cellulose was generally lower than predicted by

Onsager because of an increase in effective diameter due to a surface charge cloud [32].
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Refinements of Onsager’s theory sought to include electrostatic effects, as well as hy-

dration forces, hydrophobic interactions and hydrogen bonding. For polydisperse sus-

pensions of cellulose whiskers, variation of solution properties had profound effects [2].

The observed outcome was phase separation, where isotropic and anisotropic LC phases

co-exist in equilibrium for a range of critical concentrations. Extensive studies have

been done to correlate the phase separation behavior to surface charge [28], counterion

strength [33], solution ionic strength [26], and nano-whisker concentration [32]. The

interfacial tension between the phases was also addressed [34]. The ordering proper-

ties have been studied using ultra-small-angle X-ray scattering [35], parabolic focal con-

ics [36], and small angle neutron scattering [29]. The size exclusion properties of the

phases has generally been overshadowed by the electrostatic consideration. Our work

seeks to elucidate the relative size distributions in the isotropic and anisotropic phases of

cellulose nanowhiskers. Section 4.1.3 will discuss the experimental procedures employed

for the size fractionation of CNCs.

1.2.4.4 Refractive Index and Birefringence

From the above discussion of the surface electric properties of macroparticles in solvent

suspension, it becomes intuitive that such properties would react under the influence of an

externally applied electric field. This gives rise to a variety of techniques in which to probe

dielectric properties of particles. One such technique uses external fields to align particles

in an applied field, and thus provides hydrodynamic properties via diffusion coefficients.

If the alignment in solution gives rise to a macroscopic optical anisotropy, the effect is

called electric birefringence. A brief overview of the technique will be provided in the

following section. A more comprehensive literature review of the technique will follow

in subsequent chapters.
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1.3 Transient Electric Birefringence

The application of macroparticles as inclusions in homogeneous matrices for conductive

polymers, artificial dielectrics, and porous composites is a rapidly developing field. When

considering bulk dielectric properties of inhomogeneous materials, the Effective Medium

Theory (EMT) provides a powerful tool for estimating radiative properties [37, 38] and

effective transport properties, such as dielectric constants [39]. One of the most widely

used of the EMT is the Maxwell-Garnett (MG) approximation [40], also known as the

Claussius-Mossotti relation [41], which considers an exact calculation of the electrostatic

distortion caused by a spherical or ellipsoidal inclusion in a homogeneous matrix. This

requires the dielectric constants of both the medium and the inclusion, as well as the di-

mensions of inclusion and its volume fraction in the material. Although the MG model

breaks down for inclusions with a higher degree of anisotropy or a larger size distribution,

more sophisticated approaches to the model still require well characterized parameters for

dielectric constants. Electro-optic (EO) techniques provide a means to measure dielectric

parameters for anisotropic inclusions, as well as providing diffusion coefficients from

hydrodynamic theory. Diffusion coefficients can also be used to estimate size and dimen-

sions of inclusions. Therefore, EO techniques are promising characterization tools for

macroparticles required for composites with customizable mechanical and dielectric bulk

properties.

The EO phenomena, which include light scattering, birefringence, and dichroism in an

electric field, rely on three domains of physics to obtain information on macromolecules.

These are hydrodynamics, electrostatics, and optics [38]. Chapter 2 will expound upon the

electrostatics and relate these to refractive index of a material and the electronic surface

properties of colloidal particles. The hydrodynamic aspects will be discussed in chapter 3,

including a method for measuring rotary diffusion coefficients to determine particle size
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distributions. A mathematical approach to the optics specific to electric birefringence will

be covered in Section 4.2.

1.3.1 The Apparatus

Figure 1.3.1.1 shows a typical electro-optic experimental setup. A sample is placed be-

tween plane parallel electrodes attached to an external voltage source. Plane polarized

monochromatic light emerges from a polarizer oriented at 45 degrees with respect to the

electrodes. The light passes through the sample between the plane parallel electrodes.

A second linear polarizer (referred to as the analyzer) is placed after the cell at crossed

position to the first. When the applied electric field is off, the sample is isotropic and

light emerges from the cell in the same polarization state as it entered: linearly polarized

orthogonal to the analyzer. The light is thus extinguished by the analyzer. Upon the ap-

plication of an external electric field, the sample becomes increasingly anisotropic as the

particles align with the field. This causes the sample to macroscopically behave as a uni-

axial crystal, in which the two orthogonal components of the incident linearly polarized

light (parallel and perpendicular to the applied field) now travel through the media at dif-

ferent velocities. The two components become shifted from one another by phase angle δ,

and the light emerging from the cell is now elliptically polarized (Figure 1.3.1.2). Some

component of the elliptically polarized light exiting the cell will be parallel to the trans-

mission axis of the analyzer and will pass through to the detector beyond. The ellipticity

increases exponentially in time as the field persists and the sample becomes increasingly

anisotropic. This provides an optical means to measure orientation as a function of field

strength and duration. The equation given by Benoit [42] to describe the time-dependent
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rise response is

∆n = ∆n0

[
1 +

γ − 2

2(γ + 1)
exp(−DRt)−

3γ

2γ + 1
exp(−2DRt)

]
, (1.3.1)

where ∆n0 is the steady state birefringence, DR is the rotational diffusion coefficient, and

γ is a function of both induced and permanent dipole moments given by γ = µ′2/(α‖−α⊥.

Here µ′ is the screened permanent dipole and α‖ and α⊥ are the electric polarizabilities

along the symmetry and transverse axes of the anisotropic particle, respectively. The

removal of the field results in an exponential decay of the signal as the sample returns

to the isotropic state. The decay curve provides a means to observe field-free diffusion

properties of the material unbiased by the electronic properties, and is given by

∆n = ∆n0 exp(−6DRt). (1.3.2)

Figure 1.3.1.3 illustrates a typical electro-optic signal for a transiently applied electric

field.

1.3.2 Indices of Refraction and Birefringence

The refractive index of a material (n) is defined by the ratio of electromagnetic radiation’s

velocity in a vacuum (c ≈ 3 × 108 m/s) to the phase speed of a specific frequency of

radiation in a material υ such that n =
c

υ
. If a material has two different refractive

indices depending on crystallographic direction, it is referred to as birefringent. For the

case in which there is only one anisotropic axis (called the optical axis), the material is

uniaxial. The birefringence is defined as ∆n = ne − no, where ne and no are the indices

for polarizations parallel and perpendicular to the optical axis respectively. If alignment

occurs along the direction of an externally applied field (along the x-axis in figure 1.3.1.1),
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Figure 1.3.1.1: Electric birefringence apparatus. A coherent, monochromatic light source
first passes through a linear polarizer at 45◦ with respect to the horizontal axis (x). The
light emerges from this polarizer plane polarized at 45 degrees with respect to the lab
x-axis, where the orthogonal components can be projected onto the x and y directions as
depicted in a.) When an electric field is applied across the cell (along the x-axis), the Ex
and Ey components of the incident beam emerge phase shifted from one another, giving
rise to elliptically polarized light. The polarization ellipse is depicted in b.) Only the
component of the elliptically polarized beam parallel to the analyzer transmission axis at
−45◦ emerges, as depicted in c.)
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(a) Linearly polarized light (in phase components) entering cell

(b) Elliptically polarized light (phase shifted components) emerging from birefringent
sample

Figure 1.3.1.2: Phase shift resulting from sample birefringence. Linear polarized light
resulting from in-phase orthogonal components passes through a Kerr cell. The emerging
light becomes phase-shifted by δ and the resulting vector of the orthogonal components
is elliptically polarized.
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Figure 1.3.1.3: Rise and fall for a transient electric birefringent curve. The rise is depen-
dent on both rotational diffusional coefficients DR and dipole moment γ of the material,
whereas the field-free decay is a function of the diffusion only.
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then the anisotropic axis of the material is parallel to the external field, and we define the

birefringence induced in our sample as

∆n = nx − ny = n‖ − n⊥. (1.3.3)

The refractive index for both the x and y components is related to the optical path length

of the cell by

N‖ =
L n‖
λ0

(1.3.4a)

N⊥ =
L n⊥
λ0

, (1.3.4b)

where N is the number of wavelengths of light of each component in a cell of length

L, with λ0 being the wavelength of light in a vacuum. The phase shift between the two

components is thus

δ = 2 π(N‖ −N⊥) =
2 π L∆n

λ0

, (1.3.5)

where ∆n = n‖ − n⊥ in the birefringence in the material.

1.3.2.1 Kerr Constants

The magnitude of the induced birefringence, ∆n, can be related to the intensity of the

applied electric field E using the Kerr law

B =
∆n

λE2
=

δ

2πlE2
, (1.3.6)

where λ wavelength of monochromatic light used, E is the external field intensity, δ and

l are the phase shift and path length through the cell, and B is the Kerr constant specific
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to the sample [43]. Historically, the Kerr constant was an observed value for a given

system [43–47] obtained by plotting the observed birefringence against the square of the

field strength. The plot is linear in the low field regime, that is where the potential energy

of a macromolecule U aligned in an external field is less than the Boltzmann energy,

U � kBT . An alternate Kerr constant was proposed by Debye [48] as

K =
∆n

nE2
=
Bλ

n
, (1.3.7)

where n is the refractive index of the system in the absence of an applied electric field.

The refractive index of a material can be related by Maxwell’s equations to the propaga-

tion of a field in that material and the dielectric permittivity, giving rise to a method for

relating the measured Kerr constant to the electric properties of the material. In 1939,

Peterlin and Stuart [49] derived a model to relate the specific Kerr constant to the optical

anisotropy and polarizability of axially symmetric molecules in insulating systems under

an alternating applied field. This was re-derived by O’Konski [50] as

Ksp =
2π(g1 − g2)

15n2
(b2 + 2c), (1.3.8)

where g1 and g2 are the optical anisotropies along the symmetry and transverse axes re-

spectively, and b and c are related to the dipole moments and polarizabilities. Specifically,

b = µB1/kBT and c = (α1−α2)/2kBT . Here µ is the permanent dipole moment, α1 and

α2 are the excess polarizabilities of the particle along the symmetry and transverse axes,

and B1 is the internal field function relating the externally applied field to the resulting

internal field experienced at the dipole. (For detailed description, see [50]). Benoit [42]

later derived the relation for particles aligned under a rectangular electric pulse (static
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field) for conducting systems of rigid macromolecules as

∆n(t→∞) =
2π

15
(g1 − g2)V E2(p1 − p2 + q) = KλE2, (1.3.9)

where λ is the wavelength of light used, V is the volume fraction of the ellipsoids mod-

elled, q is the induced dipole term and p1 and p2 are related to the permanent dipole

moments along the symmetry and transverse axes respectively (as restated in [51]).

In each case, the electric free energy equations were derived from Laplace’s equation

for electrically insulating systems. The local internal field acting on the macromolecule

thus depends on the dielectric permittivity of the medium and on the static electric prop-

erties of the macromolecule [52]. Clearly this is inadequate for ionizable polyelectrolytes

in conducting media, where ion transport mechanisms become significant. For example,

it has been observed that the electrolyte concentration in aqueous suspensions of TMV

significantly affects the orientation of the molecule in an electric field, [50, 53], impli-

cating ion atmosphere polarizaility effects [54, 55]. Maxwell-Wagner polarization could

also result in charge accumulation at interfaces between volume elements with differ-

ent electrical properties [53, 56, 57]. While the literature continues to develop and refine

the models for polyelectrolytes in conducting media, a basic understanding of dielectric

permittivity and polarizability is required before expounding upon these models. The sub-

sequent chapter will develop basic theories for the alignment mechanisms of polarizable

elements in conducive media.
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Chapter 2 – Literature Review Part 1: TEB for Dielectric Properties

2.1 Electro-Optic Effect: A Historical Overview

The Kerr effect was first observed in 1875 by the Reverend John Kerr using plate glass

electrified with a Ruhmkorff induction apparatus between crossed Nicol prisms. When

the electric field was oriented at 45 degrees with respect to the incident beam’s electric

field vector, light began to emerge from the glass, continuously growing brighter, then

gradually returning to zero when the field was removed. Kerr’s interpretation of this

phenomena was that “the particles of the dielectric throughout the field are electrically

polarized, and tend to arrange themselves end to end · · · and · · · that the effect of the

electric force is to superinduce a uniaxial structure upon the primitive structure.” [1]

In 1897, Larmor made the first clear proposal that the Kerr effect was due to molec-

ular orientation [2]. Langevin later proposed equations for the energy of electrically

anisotropic molecules as a function of orientation in 1910 [3, 4]. Using the Boltzmann

equation, he derived an orientation distribution function to calculate probability of align-

ment as a function of angle. He obtained an equation for the Kerr constant, but the equa-

tion was limited to axial symmetry and did not account for permanent dipole. A more

general case was addressed by Enderle [5] and Voigt [6, 7], which still did not include

permanent dipole or optical activity. In 1921, Gans was the first to recognize the rela-

tionship between the Kerr constant and the optical anisotropy of the molecule giving rise

to the extent of depolarization of scattered light [8]. Debye [9, 10] and Sack [11] fur-

ther developed theoretical relationships between molecular optical properties and light

scattering.
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A pivotal work to establish the theory of double refraction of a colloidal system un-

der sinusoidal electric fields was done by Peterlin and Stuart in 1939 [12]. The action

of a pulsed rectangular field on rigid macromolecules was investigated independently by

Benoit [13] and O’Konski and Zimm [14] in the early 1950’s. The development of such

short orienting pulses was critical for the study of polyelectolytes and biological macro-

molecules in aqueous media, where energy dissipation, joule heating and electrophoresis

become dominating effects. Tinoco broadened the birefringence theory to the most gen-

eral case in 1963, applying it to fibrogen [15]. Since then, advances in instrument sensi-

tivity and theory has allowed electric birefringence to be applied to semiflexible polymer

systems and small biopolymers with longest dimensions less than 10 nm [15]. Since our

work is with rigid rod-like nanocrystals, the bulk of this dissertation will focus on theories

pertaining to that regime.

2.2 Electro-Optic Effect: The Principles

2.2.1 Maxwell’s Equations and Refractive Index

The refractive index of a material can be related by Maxwell’s equations to the propaga-

tion of a field in that material and the dielectric permittivitiy. Therefore, to understand

the relationship between the electrostatics and the optics, one must first be reminded of

Maxwell’s equations governing electromagnetic phenomena. If we consider the macro-

scopic average of a field or charge source (where volume is large with respect to atomic
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volumes), these can be given as [16]:

∇×H− 1

c

∂D
∂t

=
J
c

(2.2.1a)

∇× E +
1

c

∂B
∂t

= 0 (2.2.1b)

∇ · D = ρ (2.2.1c)

∇ · B = 0, (2.2.1d)

where E and B are the volume-averaged electric field and magnetic induction, J is the

current density, ρ is charge density, and c is the speed of light. D and H are field quantities

called electric displacement and magnetic field, and have values given by

Dα = Eα + (Pα −
∑
β

∂Q′αβ
∂xβ

) (2.2.2a)

Hα = Bα − (Mα + ...) (2.2.2b)

where the quantities P, M, and Q′αβ represent the macroscopically averaged electric

dipole, magnetic dipole, electric quadrupole, and other moment densities of the media

in or due to the presence of an external field.

Alternatively, in MKS units [17] using the conversion factor for the speed of electro-

magnetic fields in vacuum (c = (µ0ε0)−1/2), Maxwell’s macroscopic equations are

∇×H = ε0
∂E
∂t

(2.2.3a)

∇× E = −µ0
∂H
∂t

(2.2.3b)

∇ · E = 0 (2.2.3c)

∇ · B = 0, (2.2.3d)
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where the ε0 and µ0 are the vacuum permittivity and permeability respectively. For

isotropic, nonconducting media, ε0 and µ0 are replaced by ε and µ, and the speed of

propagation for electromagnetic fields is now υ = (εµ)−1/2, analogous to c in vacuum. If

we define two proportionality constants, called the relative permittivity εr =
ε

ε0
and rel-

ative permeability µr =
µ

µ0

, we get υ = (εµ)−1/2 = (µrµ0εrε0)−1/2 = c(εrµr)
−1/2. The

definition of index of refraction for a material is the ratio of the speed of light in vacuum

to the speed of light in the material, that is

c

υ
≡ n = (εrµr)

1/2. (2.2.4)

For nonmagnetic media, µr = 1, such that n equals the square root of the relative permit-

tivity, n =
√
εr. This gives the relation between electromagnetic fields propagating in a

media to the permittivity and permeability of that media and the index of refraction of the

media. With this broad picture in mind, the following sections expand on the specifics for

electro-optic Kerr effect in inhomogeneous media.

2.2.2 Kerr Effect: The Molecular Origin

2.2.2.1 Maxwell’s Equations in Anisotropic Media

We turn now to the study of light through matter using four macroscopically averaged

quantities defined as:

(1) the volume density of electric charge ρ,

(2) the volume density of electric dipoles (polarization) P,

(3) the volume density of magnetic dipoles (magnetization) M, and the

(3) electric current per unit area (current density) J.
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These values are related to the macroscopically averaged fields E and H by

∇×H = ε0
∂E
∂t

+
∂P
∂t

+ J (2.2.5a)

∇× E = −µ0
∂H
∂t
−−µ0

∂M
∂t

(2.2.5b)

∇ ·H = −∇ ·M (2.2.5c)

∇ · E = − 1

ε0
∇ · P +

ρ

ε0
, (2.2.5d)

Using the abbreviations D = ε0E+P and B = µ0(H+M), often referred to as the electric

displacement and the magnetic induction, respectively, we can obtain the compact forms

of Maxwell’s equations

∇×H =
∂D
∂t

+ J (2.2.6a)

∇× E = −∂B
∂t

(2.2.6b)

∇ · B = 0 (2.2.6c)

∇ · D = ρ, (2.2.6d)

We can now use Ohm’s law to relate conductivity σ to the electric field response of con-

duction electrons by J = σE, where D = εE is the constitutive relation describing the

aggregate response of bound charges ( [16], page 287). The electric susceptibility, χ,

arises from an alternative form of the bound charge response,

P = (ε− ε0)E = χε0E, (2.2.7a)
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whereupon

χ =
ε

ε0
− 1. (2.2.7b)

The electric susceptibility, generally expressed an a tensor, turns out to be an important

parameter for the study of anisotropic optical media. The tensoral nature of χ accounts

for different magnitudes of polarizations arising in different directions with respect to the

applied electric field [17]. From the derivation of equation 2.2.4, the index of refraction

is n = (εrµr)
1/2 where µr = 1 for vacuum and non-magnetic media. As ε = ε0(1 + χ),

we now have a link between susceptibility tensor and refractive index of an anisotropic

system, as addressed in Section 2.2.2.2.

The above argument applies to both an external electric field Eext applied across the

medium as well as the electric field from a light source probing the media EL. In this

case, the susceptibility is a function of both electric fields, χ = χ(Eext, EL). However,

the applied electric field for electro-optic experiments are typically orders of magnitude

greater than the field of the light used to probe the birefringence, an thus EL is negligible.

Therefore the study of non-magnetic media using low intensity lasers will concern only

the dielectric permittivity and susceptibility related to the applied field and neglect the

effects of the laser source.

2.2.2.2 Susceptibility Tensors for Anisotropic Media

Under the influence of an external electric field, a polarizable molecule experiences a

charge perturbation and an induced dipole moment Pi given by

Pi = µ0 +
∑
j

αijEj +
∑
jk

βijkEjEk +
∑
jkl

γijklEjEkEl + . . . , (2.2.8)
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where µi is the permanent dipole moment, αij is the linear polarizability tensor, and βijk

and γijkl are the first and second molecular hyperpolarizabilities respectively [18]. The

applied field components, denoted Ei, Ej , and Ek, act on the molecule in terms of the

Cartesian coordinates i, j and k. The molecular polarization is related to the macroscopic

sample polarization PI by

PI = P0 +
∑
J

χ
(1)
IJEJ +

∑
JK

χ
(2)
IJKEJEK +

∑
JKL

χ
(3)
IJKLEJEKEL + . . . , (2.2.9)

where P0 is the permanent polarization and χ(1), χ(2), χ(3) are the linear, second, and third-

order susceptibility tensors, respectively. Here, capital indices represent tensor elements

in χ. For weak external fields, the higher order terms can be neglected, and in the absence

of permanent polarizability, the above reduces to

PX = χ11EX + χ12EY + χ13EZ (2.2.10a)

PY = χ21EX + χ22EY + χ23EZ (2.2.10b)

PZ = χ31EX + χ32EY + χ33EZ (2.2.10c)

or more succinctly

PI =
∑
J

χ
(1)
IJEJ . (2.2.10d)

The macroscopic lab frame is represented by coordinates X, Y, and Z, and the molecular

coordinates represented by x, y, and z. The susceptibility tensor of the anisotropic medium
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is thus

χ(1) =


χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

 . (2.2.11)

From the previous sections, we know that n = (εr)
1/2 for nonmagnetic media, with ε =

ε0(1 + χ). It follows that n = (χ + 1)1/2 for linear, isotropic systems. For anisotropic

media, n is also a tensor. To bridge the susceptibility tensor to the refractive index tensor,

the parameters of polarizability and dielectric permittivity should be addressed.

2.2.2.3 Dielectric Permittivity and Polarizability.

The electric displacement field D given in equation 2.2.6 (D = ε0E + P) relates the

externally applied field E to that in the medium via the polarization, P. The polarization

is related to susceptibility by P = χε0 × E, or


Px

Py

Pz

 = ε0


χxx χxy χxz

χyx χyy χyz

χzx χzy χzz




Ex

Ey

Ez

 . (2.2.12)

Combining D with P gives

D = ε0E + P (2.2.13a)

= ε0E + χε0 × E (2.2.13b)

= ε0(1 + χ)× E (2.2.13c)

= ε0ε× E, (2.2.13d)
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where ε is now the dielectric tensor. The index of refraction is therefore related to the

susceptibility tensor via the polarization and the electric field directions. If the electric

field of the light is polarized parallel to the x axis, for example, the refractive index in

the x direction will be nxx = (1 + χxx)
1/2. An anisotropic material with different re-

fractive indices in different directions results in the state of birefringence. By placing

the polarized probe beam at 45 degrees with respect to the orienting field E in the Kerr

cell apparatus, the tensor geometry simplifies by symmetry operations, and we get the

equations described in section 1.3.2.

A more descriptive origin of P comes from the definition of εr in section 2.2.1 as the

ratio of an electric field strength in vacuum, E0, to that in a material, E. This quantity can

be measured by placing the material of interest between two plates of area A separated by

a distance d. A potential φ is placed across the plates. The resulting electric field between

them in the absence of the material would be E0 = 4πσ, where σ = q/A and +q and -q

are the charges on the plates in a vacuum. If the charge on the plates remains the same and

the space between is filled with the dielectric material, then E =
4πσ

ε
is the decreased

electric field strength. This decrease in field strength is found to beE0−E = 4πσ(ε−1)/ε,

meaning the surface electric density is reduced by P = σ(ε− 1)/ε [19].

The polarization of the dielectric, or the charge density on the dielectric surface, can

be explained by the lining up of individual dipoles of the dielectric media with the field.

There are several factors which can effect the polarizability of the media. The first comes

from a media composed of molecules with permanent dipole moments, which would

orient in a direction that opposes the field. The second would be a media with polarizable

molecules, ones which have a tendency to shift nuclear or electronic charge densities

in response to a field. The third effect could arise from networks of hydrogen bonds

in liquids, such as water, which can shift to reduce to decrease the field strength [20].

Regardless of the mechanism, the alignment of the dielectric media with the field gives
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rise to a change in charge density on the surface of the dielectric from σ to σ/ε so that

the entire dielectric can be considered a dipole with total charge +PA on one side and

−PA on the other. The moment µ of this dipole is PAd, and thus the polarization of

the dielectric can be considered an an average dipole moment per unit volume. That is

P = pAd/Ad [19].

2.2.2.4 The Internal Field of Ideal Gases: The Debye equation

The above discussion shows that the externally applied field is not always the same as

the field felt internally by a group of polarizable molecules. If the dielectric under po-

larization is a dilute gas, the Debye equation can be used to determine the orientation

distribution for N particles per unit volume with dipole moment µ using the Boltzmann

distribution for the temperature of the dielectric. The Debye equation is

ε− 1

ε+ 2
=

4ρ

3M
πNA(α0 + αd), (2.2.14)

where ρ and M are the density and molecular weight of the gas, α0 = µ2
p/3kBT , µP

is the permanent dipole moment, and αd is the polarizability of the molecule. (For full

derivation of equation 2.2.14, see [19], Chapter 2.) We can consider αd to arise from a sum

of electronic αe and atomic αa polarizabilities, with αd increasing with atomic number,

size, and low ionization potential. Setting µp = 0 and assuming ε at a wavelength λ is

related by ε(λ) = n2(λ), the static electric field can be extrapolated as λ → 0 to get the

Clausius-Mosotti expression:

n2 − 1

n2 + 2
=

4πρNA

3M
αe. (2.2.15)
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This expression can be combined with equation 2.2.14 to provide an alternate representa-

tion of Debye’s equation:

ε− 1

ε+ 2
− n2 − 1

n2 + 2
=

4πρNA µ
2
p

3kBMT
. (2.2.16)

The Debye equation holds for a wide variety of gases at ordinary pressure, and has

been extended to dilute solutions of polar molecules in nonpolar solvents. It falls short,

however, in calculating dipole moments or dielectric constants of pure liquids and more

complex anisotropic systems [19].

2.2.2.5 Dielectrics of Pure Liquids

The failure of the Debye equation to predict dipole moments of pure liquids from their

static dielectric constants led to a series of models during the first half of the previous

century. Onsager examined the effect of spherical polar molecules, assuming a dipole in

the center of a spherical cavity polarizes the surrounding media of permittivity ε. This

resulted in a reaction field R at the dipole proportional to the dipole moment. Therefore,

polar molecules in an external field E experience an internal field Ei composed of the

reaction field and a cavity field Ec, which can be derived from the homogeneous field

using the Laplace equation. The Onsager equation arises

µ2 =
9kBTM

4πρNA

(ε− ε∞)(2ε+ ε∞)

(ε+ 2)2
, (2.2.17)

where ε∞ is again obtained from n2(λ) = ε(λ) as λ → 0 (i. e. for a static electric field),

ρ and M are the density and molecular weights of the dielectric, and NA is Avogadro’s

constant. When ε → ε∞, as with atmospheric pressure gases, this becomes Debye’s

equation [19].
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Other modifications of Debye’s equation have been made to account for irregulari-

ties and inconsistencies, such as Kirwood (references 12 and 38 from [19]) and Frölich

(reference 39 from [19]) taking into account molecular interactions. These theoretical

model modifications are useful in determining internal fields and dipole moments of pure

liquids. For a solution in which polar molecules are sufficiently separated from one an-

other by non-polar solvent, Debye’s equation can be approximated as for the case of

non-interacting gases.

These attempts to correlate dipole moment to macroscopic permittivity are useful for

limited cases. Colloids suspended in conducting media, specifically aqueous systems

where the solvent is both polar and hydrogen bonding, bring added complexity. The sol-

vent contains ionized electrolytes, which can associate with the macroion by shielding the

surface charge, or remain in the bulk solution and contribute to the macroscopic dielectric

constant. It quickly becomes an intractable problem to completely solve for the general

case. From the basic principles of simple electrolytes, more specific models for distinct

experimental systems abound in the literature.

2.2.2.6 Simple Electrolytes Staring with the Debye-Hückel Equation

In order to understand how an externally applied field influences polyionic macroparti-

cles suspended in an inhomogeneous system, start with a electrolyte in solution. Point

charges arise from such electrolytes dissociating in polar liquids. In the simplest model,

the solvent is considered to be a uniform dielectric medium surrounding the electrolyte

ions. Here, point charges attract counterions to form electric double layers. These coun-

terion layers effectively shield the electrostatic potential of that particle. Describing the

ion surface as a plane with an electrostatic potential Ψ(x), the concentration of mobile

positive ions per unit volume a given distance x from the particle surface P is given by the
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Boltzmann equation, n+(x) = n∞exp(−zeΨ(x)/kBT ). Here n∞ is the concentration of

positive ions in the bulk far from the surface, e is the unit charge of a proton, and z is

the valency of the ion. Charge neutrality in the bulk defines an identical expression for

the negative ions, n−(x) = n∞exp(+zeΨ(x)/kBT ). These mobile ions will also con-

tribute to the electrostatic field of P. First calculate the charge density ρ(x) as a function

of number of ions at position x:

ρ(x) =
∑
i

zieni = ze[n+(x)− n−(x)]. (2.2.18)

The Poisson equation relating charge density ρ to electrostatic potential Ψ yielding∇2Ψ =

− ρ

Dε0
, where D is the dielectric constant of the solution. Substituting n+(x) and n−(x)

from Boltzmann equations into eqn 2.2.19, the famous Poisson-Boltmann (P-B) equation

is obtained:

∇2Ψ =
zen∞
Dε0

(ezeΨ/kBT − e−zeΨ/kBT ), (2.2.19a)

or in hyperbolic sine form, where sinh = (ex − e−x)/2,

∇2Ψ =
2zen∞
Dε0

sinh(zeΨ/kBT ). (2.2.19b)

This form of the P-B equation is a nonlinear second order differential equation. It can

be linearized when the electrostatic potential is small, that is zeΨ/kBT � 1, where the

assumption sinh(x) ≈ [(1 + x)− (1− x)]/2 = x holds. The result is the linearized P-B

equation, also known as the Debye-Hückel equation

∇2Ψ =
2zen∞
Dε0

(zeΨ/kBT ) = κ2Ψ (2.2.20)
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where

κ2 =
2z2e2n∞
Dε0kBT

(2.2.21)

defines a quantity known as the Debye screening length. This can be thought of as a

reciprocal rate at which ionic distribution decreases with distance around a central ion

[21]. At 1/κ, the charge from P is shielded from surrounding charges in the solution [20].

2.2.2.7 Surface Charge of Macromolecules Suspended in Electrolyte Media

The discussion in Section 2.2.2.6 applies for simple electrolytes with spherical symmetry

around a test ion. For simple ionic/electrolyte solutions, the Debye-Hückel limiting law

provides a means to calculate activity coefficients of ions in dilute solutions of known

ionic strength. In their original approach, Debye and Falkenhagen treated simple elec-

trolytes as point charges in a dielectric continuum [22]. For finite concentrations of sim-

ple electrolytes, deviations from the limiting law can be used to determine effects not

taken into account by the limiting law, such as short-range interionic forces and solvent

molecular effects [23]). This approach is inadequate for polyelectrolytes, however, where

particle dimension and shape are important constants in the system [24]. A high charge

density occurs near the polyion due to the cumulation of many counterions attracted to

the surface charge, which leads to the situation where the the limiting law will not apply

even at low equivalent concentrations [23]. A rigid polyelectrolyte has a fixed configu-

ration of charges, thus a high degree of charge asymmetry between the polyion and the

surrounding small ions. If a strict Boltzmann distribution is applied for a moderate surface

potential, surface concentrations of counterions in excess of 100 molar would result [21];

this is an unrealistic situation. Instead, the finite size and mutual interactions leads to

an upper limit of condensed counterions, resulting in statistical separations of a saturated
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Stern layer, followed by a Gouy-Chapman layer which follows the predicted Boltzmann

distribution [25]. [For a a refresher on electric double layers, see Section 1.2.3.]

Theories to explain the dielectric constant and conductivity of polyelectrolyte systems

must also take into account charge transport processes from charges in the solvent, as well

as the ion atmosphere around the polyion and inside the suspended particles [24]. This

results in different assumptions for polyelectrolyte systems. For example, the dielectric

constant that governs the interaction for point charges at large separations is that of the

pure solvent, whereas this bulk dielectric constant may have little effect in colloidal sys-

tems. The valency of the counterions and charge density around a polyion are relevant for

polyionic species, whereas ion size and shape is irrelevant in simple electrolytes [23].

The crux of this issue is that, while simple electrolyte systems can be modelled

tractably, the extension of these models to macroion solutions is complex and diversi-

fied amongst practitioners of the field. The interpretation of data cannot be undertaken

without some thought as to the appropriate chemical aspects of the system under study.

Despite these difficulties, it remains useful to understand simple electrolytes as a basic

foundation for more complex models of polyionic particles.

2.2.2.8 Transient Techniques for Electric Birefringence

From the discussion of Maxwell’s equation relating to refractive index of a material via

dielectric properties, we segue to optical methods of probing dielectric properties. If we

imagine a suspension of anisotropic macromolecules with dimensions on the order of the

wavelength of light, the intensity of light scattered by the suspension will be proportional

to the statistical array of such particles [26]. When an external electric field interacts

with induced and permanent dipoles to align macroparticles, the change in scattered light

can be used as a measure of the distribution function. This method is particularly sensi-
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tive when the plane of observation is perpendicular to the electric field and the resulting

alignment manifests as a macroscopic birefringence [27]. However, the application of

a continuous DC field creates difficulties for electric birefringence in conductive media.

These difficulties include Joule heating, electrophoresis, and time-dependent electrode

polarization effects. Such problems can be minimized by using short pulsed square wave

fields and observing the transient behavior of the particles, a technique referred to as

Transient Electric Birefringence (TEB).

While in theory both induced and permanent dipole effects can be extrapolated from

a pulsed DC field rise and decay curve, the uncertainty involved limits the usefulness of

this method. Alternatively, applying a continuous AC field and recording the response

as a function of frequency allows one to discern between permanent and induced dipole

effects. The dispersion frequency for the permanent dipole response, ωc will be much

lower than that of the induced dipole, so frequencies above ωc are related to induced dipole

alone. Frequencies below ωc are related to both permanent and induced dipoles [28]. The

dielectric dispersion (or Debye frequency) occurs when the polarizability of the ion cloud

can no longer respond the the field, typically at frequencies of 1010 Hz and greater. At

lower frequencies, the dielectric relaxation response τ is described as a function of field

angular frequency similar to the Debye relaxation for simple molecules. In the case of

rigid macromolecules and particles, this electric polarization is a function of boundary

layer potential [29] as well as surface conductivity [30], both of which are influenced by

the electrolyte properties.

Continuous AC fields can also result in difficulties with heating, as well as creating

electrode polarization effects [31, 32]. An alternative method for measuring frequency

dependency uses pulsed AC fields and allows the alignment to reach steady state, as

with the pulsed DC field. For an induced dipole moment, the optical response will have

an alternating component at twice the frequency of the applied field which decreases in
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amplitude with increasing frequency. This response is superimposed with an additional

time-averaged DC component [26, 31, 33]. A full characterization of both components

as a function of frequency provides information regarding permanent and induced dipole

moments, as well as rotary diffusion coefficients, which in turn provide size and shape

information for rigid particles. A basic summary of the theory ensues.

2.3 Transient Electric Birefringence in Suspensions of Rigid Macromolecules

The alignment of rigid rod-like colloidal particles in an electric field was observed as

early as 1912 for V2O5 sols ( see references 7-9 in [34]). It was recognized that align-

ment occurred due to an anisotropic deformation of the electric double layer around the

particle, with the largest polarization occurring along the long axis. Studies of Tobacco

Mosaic Virus (TMV) later showed the effect of the induced dipole moment on this align-

ment was a function of electrolyte concentration and solvent conductivity [14,32,35]. The

effect of a permanent dipole for polyethylene sulfonate was demonstrated to be signifi-

cant, even in the presence of large ionic polarizability [36]. Understanding the behavior

of these nanoparticles in an electric field thus requires knowledge of both their average

electric charge and their permanent dipole moments. In addition, one should consider

two-dimensional surface conductivity from large mobilities of charge carriers along the

surface and polarization effects between volume elements in the suspension (Maxwell-

Wagner polarization.) Since this research is primarily concerned with aqueous suspen-

sions of rod-like cellulose nanocrystals, the discussion will be narrowed to nonconducting

colloids with ionizable surface charge dispersed in electrically conducting media.
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2.3.1 Dipole Moments of Macromolecules

The description of dipole moments for nanoparticles and macromolecules is considerably

more complicated than for simple molecules. The difficulty arises in the particle medium

interface. The induced interfacial dipole moments (IDM) can be broken into two broad

categories, that of surface charge dependent IDMs (CDIDM) and that due to the bulk

dielectric properties of the particle and the medium, known as Maxwell-Wagner IDM

(MWIDM). Each dominate in different frequency regimes, as well as different magnitudes

of contribution to the overall IDM. A basic understanding of each allows us to discern the

mechanisms of alignment for a nanoparticle in an electric field.

Maxwell-Wagner-Sillars The Maxwell-Wagner-Sillars (MWS) interfacial polarizabil-

ity (MWIDM) depends on the difference between the dielectric constants and specific

conductivities of the bulk particle and the medium. Upon the application of an electric

field, accumulation of field at one side of the particle causes charges near the interface

to migrate, thus depleting the opposite side of the particle, as shown in Figure 2.3.1.1

(a). For conductive particles, this charge migration occurs within the particle, whereas

for nonconductive particles, it occurs on the surface. The characteristic relaxation time is

therefore dependent on the particle size and dimension, and the thickness of the induced

electric double layer, 1/χE (Figure 2.3.1.1 (b).) For typical dispersions of nanoparti-

cles, this mechanism relaxes at higher frequencies than the CDIDMs, around and above 1

MHz. Three mechanisms exists for this migration: distortion of the electron cloud around

atoms, atomic polarization within molecules, and orientational polarization of molecules

in the particle.
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Charge Dependent Induced Dipole Moments The CDIDM arise from distortion of

the electric double layer (EDL) around a colloidal particle. They are influenced by the pH

and ionic strength of the medium, as well as the size and polydispersity of the particles.

There is likewise a strong dependence on the surface charge of the particle, both from

permanent charges fixed to the surface and the counter charges adsorbed to the surface.

The diversity of theoretical models in the literature to describe the family of CDIDM

reflect the diversity of particles studied. Likewise, the strong dependence on surface

properties has led to variable results in the literature for similar samples under different

ionic conditions. In general, however, CDIDMs are characterized by large, sub MHz

dispersion frequencies, and they predominate over MWIDM in systems of highly charged

particles in low conducting medium.

Most published models for CDIDMs can be summarized in terms of the size of the

largest particle axis, the total surface charge in the EDL, the MWS component of the

electric polarizability, and either the zeta potential, EDL thickness, EDL potential, or

the surface conductivity. The inter-relations of the latter four properties are described in

Chaper 1. The MWS component is coupled to the CDIDM through the sharing of ions

between mechanisms. Figure 2.3.1.1 illustrates the spatial distribution of surface charges

resulting from the combined mechanisms and the electrostatic potential associated with

it.

2.3.2 AC Pulse Dynamics

Peterlin and Stuart [12] developed the general equation for the birefringence induced in a

solution of axially symmetric macromolecules under the influence of an electric pulse as

∆n

n
=

2πCv
n2

(g1 − g2)

∫
f(θ)

3cos2θ − 1

2
2πsinθdθ (2.3.1)
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(a) Maxwell-Wagner induced dipole
moment (µ).

(b) Spatial distribution of free electric
charge.

Figure 2.3.1.1: Maxwell-Wagner (MW) induced dipole moment. The MW induced dipole
moment (µ) is shown for conductive (top) and nonconductive (bottom) particles in non-
conductive and conductive medium, respectively. (b) Spatial distribution of a charge sur-
face between a conductive and non-conductive medium. Circled charges are ions col-
lected via the Maxwell-Wagner-Sillars mechanism. The diagram below illustrates the
surface potential ψ as a function of distance d in the presence and absence of an electric
field, E. The diffuse layer thicknesses are described in the presence and absence of an
electric field by 1/χE and 1/χ0 respectively. (Figure recreated from [37].)
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where Cv is the volume fraction of particles,∆n = n‖ − n⊥, n is refractive index of sol-

vent, g1− g2 is the optical anisotropy between axial symmetry and transverse axes (1 and

2 respectively), θ is the angle between the particle’s axial symmetry axis and macroscopic

alignment axis, and f(θ) is the angular distribution function. f(θ) can be interpreted as

the probability of finding a particle at an angle θ with respect to field direction per unit

solid angle for steady state birefringence, and is (following the Boltzmann distribution)

mathematically expressed as

f(θ) =
e
−U
kT∫

e
−U
kT 2πsinθdθ

. (2.3.2)

The constants k and T are the Boltzmann constant and the temperature, and U is the

total dipole interaction energy U = U1 + U2, where U1 and U2 reflect the permanent and

induced contributions respectively. (For detailed derivation, see [36].)

For an alternating field, this distribution function becomes time and frequency depen-

dent. For rod-like particles, Plummer and Jennings [26] described an additional factor

in the light-scattering equations at twice the frequency of the applied field in addition to

the change obtained in DC fields. The connection of this component to the distribution

function is discussed by Stoylov [33] and summarized as follows.

For an applied field E0sin ωt, where E0 is the maximum amplitude and ω is the

angular frequency, the calculated birefringence ∆n can be separated in to a component

due solely to induced dipole (∆ni), and one due only to the permanent dipole (∆np). The

induced component is dependent on the angular frequency by

∆ni = ∆ni,ave

[
1± cos(2ωt− φi)

(1 + 4ω2τ 2)1/2

]
, (2.3.3)

where ∆ni,ave is the average birefringence observed and φi is the phase angle between
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the birefringence and the applied field according to tanφi = 2ωτ . A plot of tan φi versus

ω therefore provides the characteristic birefringence relaxation time τ . ∆ni,ave is the

same birefringence as would be observed upon application of a steady field E0/
√

2 (or

Erms) and is the only birefringence observed at high frequency. The doubled frequency

component arises due to the fact that the induced dipole fluctuates between zero and max,

where max occurs at ±E0. It therefore occurs twice for each cycle of the applied field.

The phase angle exists because at low frequencies the molecular orientation follows the

field, but the rotational diffusion takes a finite time and a lag is observed.

The permanent dipole contribution is given by

∆np = ∆np,0

[
1

1 + 9 ω2τ 2
+

cos(2ωt− φp)
(1 + 9 ω2τ 2)1/2(1 + 4 ω2τ 2)1/2

]
, (2.3.4)

and the permanent dipole phase angle by

tan φp =
5 ωτ

1− 6 ω2τ 2
. (2.3.5)

It likewise is composed of an alternating frequency at twice the applied field frequency

and a time independent component, both of which reduce to zero at high frequency.

The overall response is a summation of induced and permanent dipole effects, given

by [31] as

∆n = ∆nst + ∆nalt cos(2 ωt− φalt), (2.3.6)

where ∆nst is the steady state component and ∆nalt is the magnitude of the alternate

component with phase angle φalt. For a permanent dipole along the symmetry axis of the

molecule, ∆nst is given by

∆nst =
∆n0

P + 1

[
P +

1

1 + 9 ω2τ 2

]
, (2.3.7)
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where ∆n0 is the low frequency limiting value of ∆nst, and P represents the relative

magnitudes of permanent and induced dipole effects as

P = kBT
α‖ − α⊥
µ2

. (2.3.8)

Extracting information regarding each mechanism requires a frequency sweep experiment

to isolate the regimes where only induced dipole effects dominate. Figure 2.3.2.1 shows

∆nst and ∆nalt as a function of frequency for different values of P .

In addition to the magnitude of the birefringence, the phase shift between the excita-

tion frequency and the alternating response frequency, φalt, can provide characteristic re-

laxation times of the electric polarizabilities from tanφalt = 2ωτ . Thurston and Bowling

describe the low and high frequency limits of φalt as 0 to 90 degrees, 90 to 180 degrees,

or 180 to 270 degrees depending on the value of P , as seen in Figure 2.3.2.2.
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(a) Steady state component

(b) Alternating component

Figure 2.3.2.1: Steady and alternating components with frequency. Normalized bire-
fringence values for each component are shown as a function of diffusion coefficient
D and radial frequency ω for values of P ranging from 0 (purely permanent dipole) to
±∞(purely induced dipole) in Equation 2.3.8 (recreated from [31]).
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Figure 2.3.2.2: High and low frequency dependence of phase angle. The frequency de-
pendence of phase angle between excitation and alternating response frequency is shown
for different values of P in Equation 2.3.8. (Recreated from Figure 4 in [31] using a
diffusion coefficient of 100 s−1.)
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Chapter 3 – Literature Review Part 2: TEB for Hydrodynamic Properties

3.1 Hydrodynamic Theory

3.1.1 Overview

Historically, hydrodynamics was synonymous with fluid dynamics, and referred to the

study of liquids in motion. With the study of macromolecular phenomena as early as

1821, when Robert Brown observed the random motion of plant particles in water, the

field has turned to the study of frictional coefficients of particles in solution. Stokes

demonstrated the translational coefficient dependence on particle dimension in 1856, de-

veloping a reference model of equivalent sphere of Stokes radius to describe the particle.

He later related the rotational friction coefficient to particle volume in 1880. The Perrin

equations developed in the 1930’s [1, 2] extended Stokes equation to ellipsoids of rev-

olution, and provided three translational coefficients as functions of dimension of this

ellipsoid. The observation of flow birefringence by James Maxwell in 1856 allowed for

the study of optical properties of macromolecules without fixed structure. John Kerr ob-

served in 1896 that certain solutions became birefringent under the influence of an electric

field. This provided a means to measure dipole-dipole interactions of macromolecules,

as well as relate flexibility and induced dipole moments. This was facilitated by Peterlin

and Stuart in 1939 [3], who developed an equation to relate the induced birefringence of

a suspension of axially symmetric particles in a sinusoidal electric field to the orientation

distribution function. Benoit [4] and O’Konski [5] simultaneously developed a model for

the alignment under rectangular electric pulse. In the decades since, many models have
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been developed to extrapolate hydrodynamic constants from optical measurements of col-

loidal suspensions, including high and low field regimes, conducting and non-conducting

media, isotropic and orientational light scattering, etc. We will limit our discussion to the

models appropriate to the cellulose nanocrystal suspension in aqueous media, but we will

need the background of hydrodynamic theory to get us started.

3.1.2 Hydrodynamics: The Particulars

Hydrodynamics deals with the behavior of bodies in fluids and the effects of fluid viscos-

ity on a particle being acted upon by an external force. The dynamics of charged parti-

cles is first interpreted in context of its dependence on the hydrodynamic friction factor,

which is a function of the particle’s shape and upon interparticle interactions. Any devi-

ation from predicted behaviour must then arise from electrical properties of the system.

It is therefore important to understand hydrodynamic principles in order to differentiate

the electrical interactions described in the previous chapter. The basics of hydrodynamic

properties in terms of solution viscosities and particle friction factors will first be dis-

cussed. The subsequent sections will discuss how diffusional coefficients from hydrody-

namic measurements can be used to obtain information regarding a particles shape and

size.

3.1.2.1 Units of Viscosity

The force required to accelerate a 1 g mass by 1 cm per second per second is defined

(historically in CGI units) as a dyne, where

1 dyne = 1 g cm s−2. (3.1.1)
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The inertial friction of a moving particle in solution is defined, in viscosity terms, as

the tangential force per unit area (dyne cm−2) required to maintain a unit difference in

velocity ( 1 cm s−1) between two parallel planes separated by 1 cm of fluid. This is the

poise in CGI units, that is:

1 poise = 1 dyne s cm−1 = 1 g cm−1 s−1 (3.1.2)

The viscosity to density ratio is the kinematic viscosity, or the Stoke:

1 Stoke = 1 Poise cm3 g−1 = 1 cm2 s−1 (3.1.3)

If a particle moves slowly enough, the inertial effects are negligible. The Reynolds num-

ber (R) determines the relative importance of inertial and viscous effects, where

R =
(fluid density × speed × particle size)

viscosity
=
ρ u l

µ
(3.1.4)

Low Reynolds numbers occur when viscosity dominates, and high numbers when inertial

forces dominate. For example, in water (µ = 10−2g cm−1 s−1, ρ = 1g cm−3), polystyrene

nanoparticles of 90 nm in diameter moving at 10−3 cm s−1 will have a small Reynolds

number (9×10−7), indicating it will stop moving when the force accelerating it is removed

(with the exception of Brownian motion.)

3.1.2.2 Boundary Conditions

Hydrodynamic dissipation is dependent on a particle’s velocity with respect to the sol-

vent, where surface interactions between solvent and particle define certain boundary

conditions. Two extreme cases are called the ‘slip’ and ‘stick’ boundary condition. In



58

the ‘slip’ condition, there is no interaction, and the solvent slips along the surface of the

particle. In the ‘stick’ condition, the first solvent layer adjacent to the particle sticks to it

and moves with it at the same velocity as the particle [6]. In the case of isolated spher-

ical particles under ‘stick’ condition, the velocity field dissipates with a long and short

range component described by the power laws r−3 and r−1 respectively. The wake of

this hydrodynamic velocity is reflected by other particles in the system, so the cumulative

hydrodynamic interaction is r−m, with certain restrictions on allowed values [7].

From the discussion of electric double layers and zeta potential in chapter 1, we can

imagine that these boundary conditions are highly simplified for the case of colloidal

particles and macromolecules. For complex double layers, a clear slip plane is often

absent as shown by the Grahame model (Figure 1.2.3.2). However, for simplicity we will

use the ‘slip’ and ‘stick’ conditions in our derivation of diffusion coefficients to come.

3.1.2.3 Translational Friction Coefficient

The accelerating force acting on a particle in solution is equal to the mass of the particle

(m) times the acceleration, that is F = m
du
dt

, where u is the particle velocity. Solvent

drag in viscous solutions creates an opposing force Ffrict which is proportional to the

particle’s velocity by a proportionality coefficient f , known as the translational friction

coefficient. That is Ffrict = −fu, where the negative sign indicated the force is in the

opposite direction as velocity. When the F and Ffrict are equal in magnitude, acceleration

goes to zero, and a constant velocity u = F/f is achieved for F = −Ffrict. Thus we

obtain a means to calculate translational coefficients from measurements of equilibrium

velocity. For a spherical particle, Stokes derived f for the ‘stick’ solvent boundary con-

dition as f = 6πη0R0, where η0 is the solvent viscosity and R0 is the particle radius. For

the ‘slip’ condition, f = 4πη0R0. For asymmetrically shaped particles, hydrodynamic
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properties can be taken into account by modelling an ellipsoid of revolution, either oblate

or elongate. Frictional forces will vary depending on the orientation of the molecule with

respect to the flow direction. In the general case, f = 6πη0R0F (p), where F (p) is the

Perrin function for oblate or elongate ellipsoids, and p is the axial ratio of the ellipsoid.

Specifically for a circular cylinder of length L and radius r, the axial ratio is p = L/r, and

f = 6πη0L/(2 ln p + γ), where γ depends on end effects.

3.1.2.4 Rotational friction coefficient

A constant torque Frot applied to a particle in solution will result in an angular velocity

ω. If Frot is balanced by an opposing solvent frictional force Ffrict, ω will be constant

after some transient period. The rotational friction coefficient ζ is defined in terms of the

opposing frictional force Ffrict = Frot = F as ω = f/ζ . For a sphere, Stokes derived

ζ = 8πη0V for the ‘stick’ boundary condition and ζ = 0 for the ‘slip’ condition.

For asymmetric particles, if we assume rotation occurs around a single axis through

the center of mass, a single angle θ to a reference axis (for example a line passing through

the long axis of a cylinder) can be related to angular velocity by ω = dθ/dt. A variable

p(θ) is defined such that the number of particles per unit volume with an orientation be-

tween θ and dθ is p(θ)dθ. At equilibrium, p(θ) is a constant, since all values of θ are

equally likely. In the presence of an orienting torque, some values of θ become more

likely, and p(θ) becomes dependent on θ. This rotational diffusion can be modelled anal-

ogously to translational diffusion using Fick’s first law, where J(θ) is now defined as the

net number of molecules that transverse the angle θ in the positive direction over a time

dt. The ‘rotational flux’ is thus

J(θ) = −D[dp(θ)/dθ]t, (3.1.5)
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where D is the rotational diffusion coefficient. Fick’s second law, again analogously

written to translation diffusion is

dp(θ)dt = −D[d2p(θ)/dθ2]. (3.1.6)

The relationship between the rotation frictional and diffusion coefficient is

D = kbT/ζ, (3.1.7)

where kBT is the thermal energy in the system.

3.1.2.5 Rotational diffusion of cylindrical rods

Analogously to the translational friction coefficient, Stokes approximation for a cylindri-

cal rod is

ζ =
πη0L

3

3 ln(p) + γ
(3.1.8)

and thus

D =
3kbT

πη0L3
[3 ln(L/d)− γ]. (3.1.9)

Since the rod diameter d only appears in the logarithm, a large change in diameter con-

tributes negligibly to D. Thus D can be used to estimate the rod length, L. Again γ is a

frictional factor which depends on the model. Perrin [1,2] derived more general equations

for the diffusion coefficients for rigid regular spheroids using the equation

D =
A F (r)

x3
, (3.1.10)
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where A = 3kBT/πη, x and d are the major and minor dimensions of the particle, r is the

aspect ratio x/d, and F (r) is a function of the particle geometry. For elongated particles,

the F (r) equation for prolate spheroids applies, where

F (r) =
r4

2(r4 − 1)

(
2(r2 − 1)

r(r2 − 1)1/2
ln[r + (r2 − 1)1/2]− 1

)
. (3.1.11)

In the limiting case for cylindrical rods with aspect ratio r > 10, this reduces to F (r) =

ln(2r)−γ, where γ is a function that accounts for end effects, and is generally dependent

on r. Perrin calculated this originally as 0.5, independent of r. Burgers later calculated

this to be 0.8 [8] and thus derived the torque constant for a cylinder to be

T/ω =
8πηa3

3(loge2a/b− 0.80)
(3.1.12)

for a particle of length 2a and half width b [9,10]. This was readdressed by Riseman [11],

Broersma [10, 12] and Tirado [13, 14] for end effects, with slight difference in the torque

constant with each consideration. All three models can be written in the general form

D =
3kBT ln((L/d)− γ)

πηL3
, (3.1.13)

where γ is the numeric correction factor which differs between models. Broersma gave

this as [10]

γ = 0.887− 7

[
1

ln(L/d)
− 0.28

]2

, (3.1.14)

and in a later writing gave this as

γ = 1.57− 7

[
1

ln(L/d)
− 0.28

]2

, (3.1.15)
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which eased certain discrepancies between experimental data for TMV [15] and the Burg-

ers model. He later modified this model slightly to account for the velocity of the cylinder

wall near the ends, as well as the flat ends of the cylinder [12]. This modified Broersma

value (reported privately to Newman [8] and later reported by Tirado [14]) was

γ = −0.76 + 7.5

[
1

ln(2L/d)
− 0.27

]2

. (3.1.16)

valid for 0.15 < 1/ln 2(L/d) < 0.35 [8, 14]. Broerma published a more general model

as [12, 14]

γ = −0.446− 0.2/ln 2(L/d)− 16/(ln 2(L/d))2 + 63/(ln 2(L/d))3 − 62/(ln 2(L/d))4.

(3.1.17)

Contrary to this, Tirado obtained the value of

γ = −0.662 + 0.917/p− 0.050/p2, (3.1.18)

and found this to fit experimental data better than that of Broersma’s refined model [14].

The above discussions is meant to illustrate the uncertainty in modelling rotational co-

efficients for rigid cylindrical molecules. No widely accepted model is currently available

in the field. The diversity in published models for rigid particles of symmetrical geometry

alone should alert us to the difficulties and uncertainties still associated with estimating

particle lengths from measured diffusion coefficients. With this in mind, the following

section will summarize a few attempts in the literature to determine size distributions

from TEB measurements of diffusion coefficients.
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3.2 Transient Electric Birefringence for Measuring Particle Sizes.

Chapter 2 dealt mostly with the rise curve behavior of Transient Electric Birefringence,

where the characteristic rise time is a function of the diffusion coefficient and dipole mo-

ment of the particle, and of the electric field strength. In the absence of the field, the

dipole effects are irrelevant and the decay to the isotropic state is solely a function of

rotary diffusion coefficient. The decay behavior therefore provides a method of measur-

ing hydrodynamic properties for anisotropic particles in suspension. These measurements

however come in the form of indirect observations. The first challenge comes from choos-

ing the correct model for the data, as discussed in Section 3.1.2.5 A second challenge then

arises as to how to relate the measured data to specific hydrodynamic properties using the

appropriate model. A common method for doing this is with Linear Inverse Theory (LIT)

as summarized below.

3.2.1 The Inverse Problem

According to William Menke [16],“Inverse theory is an organized set of mathematical

techniques for reducing data to obtain useful information about the physical world on

the basis of inferences drawn from observations.” A wide variety of applications occur in

which desired model parameters must be obtained indirectly from noisy observable data.

A parameter estimation, or linear inverse problem arises in the form

yk =

∫ b

a

Fk(λ)s(λ)dλ+

NL∑
i=0

Lkiβi + εk, (3.2.1)

where Fk(λ) is a known function operating on a function or vector to be estimated, s(λ).

The data produced is the observable yk, and εk are the unknown noise components [17].
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The extra optional sum over Li knowns allows for NL unknown βi parameters to be

included. We can, for example, account for a constant background by setting Nl = 1 and

all Lki = 1.

Data arising from imperfect detection of a system under study, indirect measurements,

or from multicomponent systems can result in an ill-posed problem, that is one in which a

unique solution may not exist. An exact solution to equation 3.2.1 using a Fourier trans-

form solution requires very accurate data over an essentially infinite range in t, and thus

cannot be practically applied to real data [17]. Approaches to solving this difficulty usu-

ally rely on reducing the degrees of freedom and fitting parameters to a coarse histogram,

that is to create a “discrete spectra” [17–19] such that

yk =

Ng∑
m=1

cmFk(λm)s(λm) +

NL∑
i=1

Lkiβi + εk , (3.2.2)

where Cm are the weights of the quadrature formula. The solution s(λ) is determined at

Ng gridpoints λm.

Damped linear least squares (references 1-3 in [18]) are widely used solutions to dis-

crete spectra. The weakness of these methods lies in the necessity of knowing the number

of parameters, Nλ, beforehand if grossly incorrect solutions are to be avoided. Serious

errors occur if the applied number of degrees is too small (inadequate modelling) or too

large, where the solution becomes unstable due to noise. Preferable to presetting the num-

ber of parameters, Nλ should be decided upon during the analysis using constraints and

reqularizers. Strategies to accomplish this may incorporate prior knowledge, such as us-

ing statistically expected means and covariances of the solution, or by forcing all positive

s(λ) values into the analysis. In addition, the principle of parsimony states that, of the set

of all possible solutions Ω, the simplest one should be selected which still reveals novel

information. Doing so ensures that the details included in the solution are necessary to
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the fit and therefore less likely to be artefacts [17].

A method for accomplishing the above was proposed by Provencher as a constrained

regularization method for inverting data represented by linear integral equations [17],

and a Fortran IV package for solving equation 3.2.1 via equation 3.2.2 was subsequently

released as CONTIN [20]. This package has found widescale use in dynamic light scat-

tering for autocorrelation functions (see for example Brookhaven Instrument’s software

packages). The improvement of this package over other methods of inverting noisy data

centers around its ability to incorporate statistical prior knowledge into its reguarizer in

order to prevent unbounded errors in ill-posed problems. The regularization arises from

the switch from continuous to discrete histograms (i. e. from Equation 3.2.1 to Equa-

tion 3.2.2), whereupon we go from an ill-posed problem to merely an ill-conditioned one.

Still, however, a large number of solutions Ω′ may satisfy eqn. 3.2.2 up to the experi-

mental error εL. We could take an ordinary constrained least-squares solution to Equation

3.2.2 using both parsimony and assuming all positive s(λ) such that

V (α) =‖M−1/2
ε (y −Ax) ‖2 +α2 ‖ r −Rx ‖2= minimum (3.2.3)

where ‖ • ‖ is the Euclidean norm, M ε is the covariance matrix of εk, y is a Ny × 1

vector with elements yk, andA is a combined matrix containing cmFk(λM) and Lki from

Equation 3.2.2. The second term, called the regularizer, is defined by the user via a

Nreg × 1 array r, a Nreg × Nx array R, and the regularization parameter α. Although

other methods are available for inverse theory, the CONTIN method of Provencher has

passed the test of time for over two decades, and is familiar to us through our use of a

Brookhaven Instruments DLS.

Without going into mathematical detail regarding the CONTIN subroutines, we should

simply take from this overview that real experimental data has noise which will signif-
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icantly bias convergence of solutions for linear inverse problems. Care must be taken

to penalize solutions that violate statistical prior knowledge. The regularizor defined in

CONTIN can help accomplish this, but not without careful thought on the experimenters

part as to what appropriate constraints should be used for the system. The importance of

such a regularizor, as well as the constraints which define it, will be evident in an alternate

inverse solution for TEB analysis discussed in section 3.2.3.

In the case of TEB decay data, the extrapolated data of interest comes from the model

proposed by equation 3.1.9 for the rotational diffusion coefficient

D =
3kbT

πη0L3
[3 ln(L/d)− γ], (3.2.4)

where L and d are the length and diameter of the anisometric particle, η0 is the solution

viscosity, and γ is a friction factor dependent on the model. If the rotational diffusion co-

efficient can be measured from the exponential decay of the electro-optic transient decay

curves, the length of the particle can be calculated as long as the aspect ratio and fric-

tion factor can be estimated to some decree of accuracy. For a polydisperse system, the

exponential decay is multi-order, representing the combined diffusion coefficients for all

contributing species. Extracting all coefficients requires complex mathematics and often

results in multiple solutions for systems containing more than 3 components. If a series

of representative diffusion coefficients could be extracted however, a particle size distri-

bution could be determined using inverse methods. Since linear inverse problems require

both adequate models and accurate and relatively noise free data, we will spend some

time discussing methods for extracting the diffusion coefficients from multi-exponential

(and typically noisy) TEB decay data.
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3.2.2 Using TEB Decay curve to Determine Diffusional Coefficients

Upon termination of the pulse (i. e. removal of the electric field), the decay to isotropic

suspension (random particle orientation) is a diffusion controlled process. For a monodis-

perse colloid suspension, the rotational coefficient, initially described by Benoit [4], can

be obtained from the single exponential decay as a function of time t

∆n(t) = ∆n(0)exp(−6Dt) (3.2.5)

where D is the rotary diffusion coefficient, ∆n(0) is the equilibrium value of n when

t = 0 (defined at the end of the pulse as the start of the field free decay as shown in Figure

1.3.1.3). In order to extractD, a plot of ln[∆n(t)/∆n(0)] versus t results in a straight line

with slope −6D. For a polydisperse system, equation 3.2.5 becomes a multi-exponential

decay, with each species contributing to the decay curve. Thus

∆n(t) =
∑
i

∆n(0)iexp(−6Dit). (3.2.6)

The plot of ln[∆n(t)/∆n(0)] versus t results in a curved line, where the degree of curva-

ture represents the polydispersity of the system. Solutions to the multi-exponential decay

become impractical for more than two components, since there are an infinite number

of solutions. Experimental noise also makes many of these solutions unstable, so it be-

comes necessary to apply mathematical restraints in order to find physically meaningful

solutions [21].

One such method, referred to as the ‘peeling method’, involves taking the limiting

slope of the curved log plot (D1) for long decay times The method assumes that at least

two diffusion constants can be obtained, and that D2 � D1 [22–24]. After determining
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the limiting slope, the data is compensated by subtracting D1, then replotted to get D2.

If the redrawn plot is not linear, the process is repeated to get a series of diffusion coef-

ficients. This method is limited by the greater uncertainty at longer decay times, where

∆n(t)/∆n(0) is very close to zero and baseline errors become more significant.

A more theoretically satisfactory method involves taking the logarithms of both sides

of equation 3.2.7 and differentiating with respect to t. The slope of this log plot, S(t) is

S(t) =
d

dt
ln[n(t)] =

−6
∑

iDini(0)e−6Dit∑
i ni(0)e−6Dit

. (3.2.7)

It is theoretically possible to fit a Laplace transform to this provided parameters n and D

are known [25], as shown by [26]. However, since the Laplace transform is essentially

a summation through infinitely small intervals [25], the superposition of a family of ex-

ponentials from a continuous spectrum of exponents results. This is a situation where

one cannot extract more than two average exponents unless the data is certain to within 1

percent, as shown mathematically by Lanczos [27].

A third method, shown to be more reproducible and reliable, involves the initial slope

of the normalized semi-log plot at t = 0 [15, 28–31]. This initial slope was found to be

dependent on particle shape and size distribution, the electric field strength (by effecting

the extent of orientation), and the electrical dipole moments [25, 32, 33]. An average

coefficient < D > is thereby determined under specific experimental conditions. The

uncertainty of this method lies in the interpretation in ‘initial’ slope as used by various

authors. While this method has been widely used [15, 25, 34, 35], authors do not specify

the statistical criteria which is used to cease the curve fitting. In our work, we have found

this approach to yield consistently decreasing diffusional coefficients as fitting criteria are

relaxed, as will be shown in the experimental section. As such, while convenient and less

prone to signal to error problems, this approach lacks a solid theoretical rational for its



69

use.

In more recent work, authors have used CONTIN [36, 37] to extract the diffusion

coefficients from the continuous distributions of TEB exponential decays. As discussed

above, this method can be reliable if appropriate statistical constraints are imposed. These

authors used the same parameters for dynamic light scattering and TEB data, using CON-

TIN to extract translational and diffusion coefficients respectively. They reported consis-

tent length and diameter values for cellulose nanocrystals from both methods [37].

3.2.3 The Evolution of a Truncated Pulse Particle Sizing Technique

It has been argued that the axial dipole moment increases with particle size. It will there-

fore be larger particles that have a higher degree of alignment at steady state under the

influence of a low-intensity applied field [38]. Smaller particles with smaller dipole

moments would require a higher amplitude field to produce the same degree of align-

ment [39], assuming the pulse was of sufficient duration to allow all particles to achieve

their steady state orientation distribution. Using this principle, Jennings developed a two

parameter function to describe particle distributions, using two different field strengths.

They used alternating pulses of sufficient duration to allow all particles to align (such that

the distribution function given in equation 2.3.2 approaches unity). They also chose alter-

nating fields of high enough frequency to avoid the effects of permanent dipole moment,

thereby simplifying the alignment mechanism. They made the assumption that at low

field amplitude, only large particles would align, and small particles would align fully

only at high field amplitudes [39].

Prior to this work, Stoylov and Sokerov recognized that the distribution function was

dependent on the duration of the electric fields as well as the amplitude, where low ampli-

tude fields favoured alignment of the more easily oriented larger particles. Since different
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constituent sizes of particles under the same amplitude field require different lengths of

time to achieve the same degree of statistical alignment, they were able to estimate a

distribution of sizes for Tobacco Mosaic Virus by varying both parameters [31].

An alternate method applied by Yoshioka and Watanabe [30] involved integrating the

area under the decay curve to get an average diffusion constant. A combined method

was proposed by Watson and Jennings in order to obtain a distribution function from a

single transient response [21]. In this method, the value of 1/ < D > was calculated

from the integrated area under the time dependent decay curve, and the value < D >

obtained from the initial decay slope. Under low and high field strength conditions, the

ratio of the weighted averages of each provided a method to calculate a size distribution

breadth σ from < 1/D >L< D >L=< 1/D >H< D >H= exp(9 σ2). Therefore,

a single transient measured under either high or low field conditions lead to σ directly,

eliminating the uncertainty of multiple pulses. The probability distribution function f(l)

was determined using a log normal function

f(l) =
1

l σ(2π)1/2
exp

[
−[ln(l/m)]2

2σ2

]
(3.2.8)

where
∫∞

0
f(l)dl = 1, m is the median, and σ is the breadth parameter. If the number

density for a species i is Ni, then

∫ ∞
0

lnf(l) =
∑
i

Nil
n
i , (3.2.9)

and the nth moment of the distribution depicted by

I(n) =

∫ ∞
0

lnf(l)dl (3.2.10)
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becomes

I(n) = mne(n2σ2). (3.2.11)

A refined version of the two parameter method involved compiling a histogram of sized

distributions using truncated pulses [34]. In theory, for fields of sufficiently high alternat-

ing frequency to prevent permanent dipole contributions, increasing the duration of the

field pulse would increase the degree of overall alignment, with larger particles adding

continuously with longer pulse duration. A series of deliberately truncated pulses of equal

amplitude provided average diffusion coefficients from the initial slope of the decay as a

function of truncation time. From Benoit’s equation for the rise time (equation 1.3.2), we

can imagine that for purely induced dipole moment, µ = 0 and equation 1.3.2 reduces to

∆n = ∆n0 [1− exp(−6Dt)] . (3.2.12)

This is symmetric to the decay equation. As such, the maximum birefringence of any

particle species is ∆n0 [1− exp(−Dt)]. We can model the decay for non-equilibrium

conditions as

∆n = ∆n0 [1− exp(−6Dθ)] exp(−6Dt), (3.2.13)

where θ is the restricted pulse duration. For a polydisperse system, this is a summation

over all species i such that

∆n =
r∑
i=1

(∆n0)i [1− exp(−6Diθ)] exp(−6Dt). (3.2.14)

The weighted factor ∆n0 [1− exp(−Dt)] allows us to write the initial slope coefficient
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for truncated pulses as

< Dθ >=

∑r
i=1 ciΦ

′
iDi [1− exp(−6Dθ)]∑r

i=1 ciΦ
′
i [1− exp(−6Dθ)]

, (3.2.15)

where ci is the volume fraction and Φ′i = ∆αE2/15kBT is the orientation function for in-

duced dipole mechanisms only, where electric polarizability ∆α = α1−α2. The average

value < D > is interpreted in terms of particle geometry and polarization mechanism,

and realistic experimental expressions are given in Table 1 of [34].

To proceed from there, one should recall the interpretation of D for regular spheroids

from the Perrin equations [1] as D = A F (r)/x3, where A = 3kBT/πη (η is the solvent

viscosity and kB and T have their usual meanings), x is the length of the particle major

axis, r is the particle aspect ratio, r = x/d > 1, and F (r) is a function of the axis

ratio. Solving for a distribution function then relies on a solution of m measured values

of < Dθ > using a set of linear equations based on a model for the appropriate geometry.

The expression for Dθ for rods from Table 3 of [34] provides

< Dθ >= A F (r)

∑r
i=1Ni [1− exp(−6Dθ)]∑r
i=1Nil3i [1− exp(−6Dθ)]

. (3.2.16)

Rearranging gives

∑
Ni

[
< Dθ > l3 − A F (r)

]
[1− exp(−6Diθ)] = 0 , (3.2.17)

Choosing an appropriate model for F (r) takes us full circle back to the discussion in

section 3.1.2.5 regarding conflicting models for cylindrical particles. While inverse theory

can be used to apply experimental data to different models to optimize fits, the technique

becomes increasingly intractable if data is noisy. It likewise fails if inaccurate models are

used. Our results were applied to several different models, with slight differences in size
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distributions resulting from each. Section 6.3.1.2 shows size distributions from models

assuming constant diameter, constant aspect ratio, or gradiated aspect ratio, with disparate

solutions arising in each case. In a polydisperse system, it is likely that multiple models

may be appropriate, and the inverse problem becomes considerably more complex.
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Chapter 4 – Materials and Methods

This chapter details the experimental protocols used throughout this research, and is di-

vided into three major sections. Section 4.1 summarizes the production, purification, and

liquid crystal phase separation of cellulose nanocrystals. Section 4.2 details the mathe-

matical principles which allow experimentally-measured light intensity to be correlated

with the polarization state of that light. Although this may seem abstract for a methods

chapter, it is included here as a simplified tool for the researcher not trained in optics. The

optical setup specifically relevant for TEB is outlined and demonstrated through model

and experimental data. The pitfalls of linear estimations used by past TEB analysts is

elucidated. Section 4.3 concludes by detailing the TEB apparatus and related electronics.

4.1 Cellulose Nanocrystals

4.1.1 Carboxylated Cellulose Nanocrystal (C.CNC) Production

4.1.1.1 Dust Free Deionized Water (DF-diH2O)

All water used for reactions and washing steps was first deionized, then filtered for dust

using an APEC Countertop Reverse Osmosis (RO-Ctop) water treatment system with a

CT-1SED first stage sediment filter (part # K2525), a CT-24CAB second stage Carbon

filter (part # K2553) and a Stage 3, 100 Dalton MWCO (Dow Filmtec TW30-1812-75)

reverse osmosis filter. The final carbon filter unit was bypassed to prevent carbon par-

ticulates from being re-introduced. Dust-free water was analyzed using dynamic light
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scattering (DLS) and compared to deionized water to ensure that unit was functioning as

desired.

4.1.1.2 Hydrochloric Acid Hydrolysis

Avicel PH-101 microcrystalline cellulose (80 g, Fluka, from cotton linters) starting ma-

terial was suspended in 1 liter of 2.4 N HCl (aq). This was brought up to 100◦C with

stirring under nitrogen reflux (Figure 4.1.1.1) over a 15 to 20 minute heating period, then

stirred for an additional hour. Stirring was then stopped and the suspension was allowed

to cool and settle (still under nitrogen reflux) for up to an hour until mixture reached room

temperature. Clear supernatant was siphoned off the settled solids (Figure 4.1.1.2). The

solid pellet was washed with dust free deionized water (DF-diH2O) until the conductivity

of supernatant was less than 100 µS. Washing was performed by sequential dilutions of

settled solids with DF-diH2O, overnight settling of solids and siphoning off of clear su-

pernatant. With large enough containers, in this case a 6 L Erlenmeyer flask, the ∼300

mL pellet of microcrystaline cellulose could be diluted up to 1:20 upon each washing,

requiring fewer wash steps.

Alternatively, washing was a carried out using centrifugation at 3400 RPM for 45

minutes with a table top centrifuge (Heraeus Instruments, Labofuge 400). Supernatants

after each centrifugation were decanted and pellets resuspended in DF-diH2O until final

conductivity of discarded supernatant was less than 100 µS. It was observed, however,

that the turbidity of centrifugation supernatants was significantly higher than those from

overnight gravity sedimentation (Figure 4.1.1.2), indicating a greater loss in smaller par-

ticles. As such, the more time-consuming gravity method was generally preferred.

When the discarded supernatant dropped to the desired conductivity (using either

washing method), the remaining pellet was re-suspended in dust-free diH2O to ∼500
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mL total volume and transferred to a 3 L three-neck round bottom flask in preparation for

the carboxylation reaction.

4.1.1.3 Carboxylation Reaction

After HCl hydrolysis, the pH of the slurry was adjusted to 9.7 with aqueous NaOH (4 M).

To this, 60 mg of 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) free radical (Aldrich)

per g cellulose and 1 g NaBr (EM Scientific) per 10 g cellulose was added and stirred

for around 30 minutes to dissolve the TEMPO. The reaction was initiated by adding 6%

sodium hypochlorite (NaOCl) until the oxidation/reduction potential (ORP) reached 500

mV. Oxidation reaction was continued with suspension maintained at pH >9.7 and the

ORP above 400 mV for 24 hours.

Controlled feed rates of NaOH and NaOCl were used to prevent undesired side re-

actions from occurring due to excess NaOCl. Feedback regulators were designed us-

ing a pH probe (VWR, SympHony Glass Semi-Micro pH Electrode cat # 14002-760)

with an Omega PHCN-70 (Omega Technologies) controller, and an ORP probe (VWR

SympHony Glass Combination Redox Electrode, cat # 14002-858) with a Jenco 3675

pH/ORP (Jenco Electronics, Ltd.) controller. Controllers were wired to OEM style peri-

staltic pumps (Omega, FPU100 series). The pumps were used to add 4 M NaOH and

% NaOCl from reservoir burets dropwise to the reaction whenever lower pH and ORP

set limits were encountered over the entire 24 hour reaction. After 24 hours, reaction

was quenched by the addition of 100 mL methanol, then subsequently allowed to settle

overnight undisturbed.
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(a) HCl hydrolysis schematic

(b) Lab View of HCl hydrolysis

Figure 4.1.1.1: Hydrochloric acid hydrolysis of Avicel PH-101. Reaction is performed at
100◦C under nitrogen reflux to minimizes oxidation side products.
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Figure 4.1.1.2: Photograph of HCl hydrolysis after sedimentation. Avicel PH-101 micro-
crystallin cellulose was allowed to settle and cool for 1 hour after hydrolysis, resulting in
a clear supernatant.

4.1.1.4 Nanocrystal Purification

After overnight settling, a clear supernatant could be observed above a white pellet (simi-

lar to Figure 4.1.1.2, with supernatant being clear yellow). After siphoning off the super-

natant, the pellet was further separated from reaction solution by centrifugation at 3400

RPM for 45 minutes (Heraeus Instruments, Labofuge 400). Centrifugation pellets were

then dialyzed against diH2O until no further decrease in conductivity was observed. The

pellets were then diluted with DF-diH2O to approximately 1% solids (wt/wt), then ultra-

sonicated at a duty cycle of 45%, power output of 4.5 (Branson Sonifier, model 250) to

expedite dispersion of microcrystalline aggregates into the desired nanocrystal whiskers.

Sonication time was kept to a minimum to avoid nanocrystal degradation (generally less

than 1 hour), and stopped when solution was observed to turn from translucent, non-

dispersive scattering (white, milky appearance representative of >1 µm particles) to a

clearer, Rayleigh scattering suspension. Specifically, suspension was observed to show

blue and red shifts with transmitted and reflected white light, respectively, due to the
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nanoscale size dispersion of crystallites (Figure 4.1.1.3). Figure 4.1.1.4 shows the same

C.CNC suspension before and after sonication as imaged through an optical microscope

between crossed polarizers. The absence of visible crystals in the sonicated suspension

indicates only the presence of nanosized particles. Suspension was then filtered down

to 0.7 µm with glass microfiber filters (Whatman GF/7) to remove remaining cellulose

aggregates and microcrystalline cellulose.

4.1.2 C.CNC Characterization Techniques

4.1.2.1 Carboxylic Acid Titration

Conductometric titration of surface carboxyl groups was done according to the protocols

of [1, 2] using 0.01 N NaOH titration standard solution (VWR). An excess of HCl was

added initially to titration sample to acidify all surface carboxyls. NaOH was then added

dropwise using a digital syringe pump (KDScientific, model 100 series). Conductivity

was measured using a VWR SympHony Conductivity probe (K=1.0, cat # 11388-372)

and volume was plotted against conductivity. Three distinct slopes could be seen with

increasing volume of NaOH (Figure 4.1.2.1). These correspond to the titration of excess

HCl (rapid decrease in conductivity), the titration of C.CNC surface carboxyls (slow con-

ductivity decrease), and the addition of excess NaOH (increasing conductivity). Due to

solubility limits for acidified C.CNC’s, a sharp transition between the HCl titration slope

and carboxylic acid titration slope could not be obtained. As such, linear regions of each

slope were fit and the intercepts of the fitted lines were used to obtain the titration volume

specific to the carboxylic acid surface groups. Typical values for the levelling-off degree

of acidification of CNC (occurring at TEMPO reaction times 24 hours) ranged from 1.1

mmol to 1.3 mmol of carboxylic acid per gram cellulose.
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(a) Sonicated (b) Unsonicated

(c) Red Shift to blue shift

Figure 4.1.1.3: Photograph of C.CNC suspensions before and after sonication. Suspen-
sions were at 2.5 wt% solids both before (b) and after (a) sonication. The same suspen-
sions show red shift or blue shift depending on angle of observation (c), indicating the
presence of nanocrystals.
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(a) Sonicated

(b) Unsonicated

Figure 4.1.1.4: Optical microscopy of C.CNC before and after sonication. C.CNC (2.5
wt% solids before (b) and after (a) sonication) is magnified under an optical micro-
scope (Nikon Eclipse E400 at 100X magnification) between crossed polarizers and pho-
tographed with a QImaging Micropublisher 5.0 RTV digital camera. The absence of
optically visible crystals in (a) indicates only nano-sized crystals present.
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Figure 4.1.2.1: Typical titration data for C.CNC. Initial linear fits to the excess HCl neu-
tralization curve (0 to 2 mL) and excess NaOH curve (8 to 12 mL) are extrapolated to
their intersection with the carboxylate titration curve (4 to 8 mL) to obtain more accurate
titration volumes.



83

4.1.2.2 Atomic Force Microscopy (AFM) Imaging

AFM was performed using a Dimension 3100 series Scanning Probe Microscope (Veeco

Metrology Inc., Santa Barbara, CA) in contact mode. Tips used were silica nitride of

varied origin (Veeco, Ted Pella, Budget Sensors) with typical radii of 10 nm.

4.1.2.3 Dynamic Light Scattering (DLS)

Dynamic Light Scattering (DLS) was done on a Brookhaven Instruments Corporation

(BIC) BI-200SM Multiangle Research Goniometer with a BI-9000 AT Autocorrelator.

Data was analyzed with BIC Bi-SLSW Static Light Scattering software and BI-DLSW

Dynamic Light Scattering Software.

4.1.2.4 Zeta Potential

Zeta potential was measured with a Brookhaven Instruments Corporation (BIC) Zeta-

Plus/ZetaPALS Zeta Potential Analyzer, calibrated and standardized with their BI-ZR3

reference material dispersed in 1 mmol aqueous KCl. Typical zeta potentials for C.CNCs

ranged from -59 to -66 mV, indicating good stability.

4.1.2.5 Fourier Transform Infra-Red Spectroscopy (FTIR)

IR spectra were generally obtained on free cellulose films using a Thermo Nicolet, NEXUS

470 series FTIR, and processed with the Thermo-Nicolet custom software OMNIC (ver-

sion 6).
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4.1.3 Liquid Crystal Phase separation

4.1.3.1 Phase Separation: Protocol Development

Aliquots of a C.CNC suspension (batch MJTII-11, conductivity of 520 µS per cm at

1.63% solids, pH 6.8, 520 µS) were simultaneously concentrated and dialyzed using a

tangential flow, hollow fiber filtration module (Spectrum Labs MicroKros, 500 kDa pore

size, 0.5 mm fiber ID). High ionic strength phase separations were dialyzed once while

concentrating 10 to 1. Total permeate was measured to be 113 µS and retentate was calcu-

lated from relative volumes to be 395 µS at the initial concentration of 1.63%. Final reten-

tate after concentration (measured to be 6.4%) was diluted to 6%, 5%, 4% and 3% solids

in aliquots of 2 mL volumes, then placed in NMR tubes and allowed to phase separate up

to three months with frequent photographic documentation. Low ionic strength samples

were dialyzed seven times followed by a 1:10 dilution each time with dust free de-ionized

water. Permeate was monitored until the conductivity ceased to decrease, starting at 115

µS and ending at 12 µS with the final dialysis. Retentate ( 5.7% solids, measured after

dilution to be 188 µS at 1.63%) was diluted to 4%, 3%, 3.5%, and 2% in 0.5 mL aliquots

and allowed to phase separate in NMR tubes for several months alongside the high IS

suspensions. Figures 4.1.3.1 and 4.1.3.2 demonstrate the dependence of phase separa-

tion on concentration and time, where the low ionic strength samples separated at lower

percent solids and with shorter time periods.

Figure 4.1.3.3 shows the entire volume for both the low and high IS LC phase sepa-

rations at 41 days. It is postulated that the surface charge interactions between particles

accelerate the phase separation behavior, since surface charge interactions would be re-

duced at high IS due to shielding effects. In addition, lower IS suspensions resulted in

higher volume fractions of ordered phases for lower concentrations. To help elucidate
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Figure 4.1.3.1: High Ionic strength C.CNC samples phase separated 24 days. C.CNC
samples had a conductivity of 395 µS at 1.63% solids, and were photographed regularly
for up to 24 days to monitor rate of phase separation. Suspensions were placed between
two crossed linear polarizer sheets for birefringence visualization.

Figure 4.1.3.2: Low IS C.CNC samples phase separated for two months. C.CNC samples
had a conductivity of 188 µS at 1.63% solids. These were phase separated for up to two
months and photographed regularly between crossed polarizer sheets to monitor rate of
separation. The emergence of birefringent droplets, or tachtoids, coalescing over time into
a continuous anisotropic fluid phase is in agreement with other published works [3, 4].
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(a) High IS (b) Low IS

Figure 4.1.3.3: Comparison of high and low IS C.CNC after 41 days of separation. Tach-
toid coalescence progressed slower for the high IS C.CNCs, occurring at a lower volume
fraction for equivalent concentrations. (See Table 4.1.3.1.) Since the glass tube for the
5% concentration in the low IS regime was broken at day one, and remaining suspension
corked and saved, it is guessed that no phase separation occurred above 5% at low IS.)
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Table 4.1: Volume fraction of anisotropic phases for low and high IS separations. The
volume fraction of the anisotropic phases was determined for low and high ionic strength
liquid crystal phase separations after 41 day from Figure 4.1.3.3. ([1]: Value in question.
See figure 4.1.3.3 for explanation.)

Vol. % Anisotropic Phase
Percent Solids High IS Low IS
2 - 19.0%
3 0% 29.0%
3.5 - 56.2%
4 4.5% 70.5%
5 15.1% 100%1

6 Undetermined -

whether this effect was due to surface charges alone or to interactions with free ions in

solution, the surface charge dependence on phase separation was investigated. A sample

of C.CNC (batch MJTII-11) was ion exchanged with Amberlite MB-150 H+/OH− ion

exchange resin to remove the Na+ countercharge and acidify the surface carboxylates.

Resin was added until conductivity ceased to decrease and final pH was 3.3. IR spectra

were taken after exchange, indicating the shift from -COO−Na+ to -COOH with the addi-

tion of a peak at 1723 cm−1 (Figure 4.1.3.5) and the shift from 1605 to 1613 cm−1 [5, 6].

Ion exchanged C.CNCs were then concentrated to 2%, 3%, 4%, and 4.5 % solids with

the MicroKros module and allowed to phase separate. No change was observed from ini-

tial loading, even after 4 months, indicating the necessity of a surface charge to form LC

phase separations (Figure 4.1.3.4).

4.1.3.2 Phase Separation: Preparative Scale-up

In order to accelerate the phase separation process for the scale up and size analysis, the

low IS regime was adopted. Multiple 10 mL aliquots of C.CNC (batch MJTII-11) were

dialyzed and concentrated with a 0.1 µm pore size hollow fiber filtration module (Spec-
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Figure 4.1.3.4: C.CNC LC separations in the absence of surface charge. H+/OH− ionic
exchanged C.CNCs are photographed between crossed polarizer sheets, showing no liquid
crystal phase separation in the absence of surface charge.
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Figure 4.1.3.5: IR spectra of C.CNCs with and without surface charge. IR spectra were
taken on unmodified C.CNCs (top spectrum), and on C.CNCs microcrossed using hollow
fiber filtration modules (middle spectrum) indicating slight shifts in protonation upon
removal of excess Na+ counterion. The bottom spectrum shows C.CNCs that were ion
exchanged with H+/OH− mixed bed ion exchange resin (Amberlite MB-150, Sigma).
The shift from -COO−Na+ to -COOH upon ion exchange can be seen with the addition
of a C = O stretching peak at 1723 cm−1 [5, 6] and the shift of the 1605 cm−1 peak to
1613 cm−1.
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trum Labs MicroKros, 0.5 mm fiber ID) seven times with a 1:10 dilution each time with

dust-free diH2O. The larger pore size from the initial LC phase separation experiment

was selected in hopes of removing the small particulates thought to arise from the harsh

processing conditions. The final suspension was diluted to 3.1% solids (giving a total

mass of 17 g) aiming for the roughly 50/50 volume fraction separation between 3% and

3.5% in figure 4.1.3.2. After 20 days, no further separation between the lower anisotropic

(birefringent) phase and the upper isotropic phase could be observed. The separation was

stopped at 22 days and the top phase was carefully removed from the lower by siphon-

ing through a narrow capillary tube. To avoid mixing effects between phases, removal

of the top phase was stopped several millimeters before the phase boundary. Subsequent

aliquots were collected into separate vials for several millimeters into the bottom phase

(see Figure 4.1.3.6 for volume approximations). The uppermost and lower most fractions

only were used for analysis, and the three inner aliquots were observed for further phase

separation to determine the degree of cross contamination due to mixing upon phase re-

moval (Figure 4.1.3.7.)

4.1.3.3 Characterization of Separate Phases

After separating the top and bottom phases for the scaled up LC phase separation (Figure

4.1.3.6), percent solids were re-measured. The top phase remained the same as the ini-

tial, unseparated suspension (3.1%), whereas the bottom-most phase was measured to be

3.5%. The mass redistribution could not be explicitly accounted for, as the total volume

before and after phase separation could not be accurately measured. It was supposed that

the increase in concentration in the bottom phase without depletion in the top phase could

have arisen from evaporation of liquid water through the parafilm seal. Figure 4.1.3.8

shows characteristic AFM images taken for each phase, possibly indicating an overall
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Figure 4.1.3.6: Preparative C.CNC phase separation. A scaled-up C.CNC phase sepa-
ration (17 g suspension at 3.1% solids) was left for 22 days and photographed regularly
between crossed polarizers. At 22 days, top phase was siphoned off to point B, then se-
quential portions were taken as shown by the dashed lines. Aliquots B through D were
placed in separate vials for further observation. Phase A (top) and phase E (bottom) were
used for further experiments.

Figure 4.1.3.7: Aliquots B through D from Figure 4.1.3.6. Aliquots were left undis-
turbed for 8 months after siphoning to estimate the degree of mixing upon separation of
anisotropic and isotopic phases.
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difference in size distribution for the two phases. The ordered, anisotropic phase appears

in AFM to contain a larger fraction of longer nanocrystals than the isotropic top phase. It

was not attempted to get comprehensive size distributions from AFM images, as it is our

belief that such sizing techniques are limited by inadequate sampling and experimental

selection bias (i. e. hand picking), as well as by tip broadening artefacts.

4.2 Polarized Light: The Bare Essentials for TEB

4.2.1 Overview

The beginning researcher using optical methods for measuring birefringence must have

a basic working understanding of polarized light and the techniques used to measure

and characterize it. Many introductory descriptions for TEB provide equations for light

intensity as a function of optical alignment for various optical components, but neglect a

full derivation of these equations. In addition, experimenters often report equations which

have been simplified by assumptions of negligible phase shift or small misalignment of

optical components. Since such negligible phase shifts are not necessarily universal for all

experimental settings, this assumption can result in significant errors when applied across

laboratory environments without in-house optimization. Understanding full derivations of

optical models allows the experimenter to identify optical errors specific to their system.

It therefore seems intuitive that these principles should be addressed. The section is not

meant to be a comprehensive description of polarized light, but rather to introduce some

basic tools for electric birefringence. (For further reading, please refer to [7–11], from

which this section was compiled.)

Section 4.2.2 will begin by reviewing published methods for approximating different

TEB regimes. The assumptions made by previous authors will be outlined, and the con-
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(a) Top phase (A) in Figure 4.1.3.6

(b) Bottom phase (E) in Figure 4.1.3.6

Figure 4.1.3.8: AFM images of scaled-up LC separation. The images from left and right
were taken at different locations on the same sample, illustrating the difficulty with imag-
ing techniques. Inhomogeneous deposition upon sample evaporation, as well as arbitrary
selection of imaging region, can lead to statistically non-representative sampling.
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tribution of these assumptions to measurement error will be addressed. Sections 4.2.3

through 4.2.5 will provide a more rigorous and mathematically correct method, first by

describing the wave equation of light and a method for describing the polarization state

known as the polarization ellipse. The Stokes parameters will then be introduced, which

are real measurable intensities used to fully characterize the polarization state. After de-

scribing a Mueller matrix method to determine how Stokes parameters are changed by an

ideal optical component, the two common experimental setups for transient electric bire-

fringence will be described. Section 4.2.6 will then illustrate how slight errors in optical

alignment or stray birefringences can introduce significant errors in measured intensities.

Mathematical models and experimental examples will be provided as illustration of these

caveats. Hopefully by the end of this discussion the reader will appreciate the importance

of proper optical alignment and mathematical models, and will have the tools to achieve

this experimentally.

4.2.2 Malus’s Law and the Myth of a Linear TEB Regime

The classic means to describe light intensity passing through two ideal linear polarizers

in an optical path comes from Malus’s Law, which states

I = I0 cos
2Θi, (4.2.1)

where I is the intensity of light emerging from the second polarizer, I0 is the initial inten-

sity of light entering the first polarizer, and Θi is the angle between the linear polarization

axes of the two. In the TEB regime, the polarizers are generally at crossed positions,
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where Θx = Θi +
π

2
and thus cos2(Θi +

π

2
) = sin2Θx. Malus’s law is therefore rewritten

I = I0 sin
2Θx. (4.2.2)

If a Kerr cell is inserted between two stationary crossed polarizers, the effect of the phase

shift induced by the birefringent sample is to effectively change the angle Θx. Equation

4.2.2 can be rewritten in terms of the ellipticity ω of the light emerging from the sample

as

I = I0sin
2ω. (4.2.3)

If a quarter wave plate is inserted between the cell and the analyzer, with it’s fast axis

perfectly aligned with the polarizer, this equation becomes

I = I0sin
2(ω − α), (4.2.4)

where α is the offset angle of the analyzer from crossed position. Equations 4.2.2 and

4.2.4 will be derived explicitly in the following sections. For now, it will simply be stated

that Equation 4.2.4 is the mathematically correct form of the model with a quarter wave

plate precisely aligned with the polarizer and an analyser offset by some angle α. It is

likewise described by the first term of Equation (3) in reference [12]. Clearly there is not

a linear relation between ellipticity and light intensity in the most literal application of

the model. Many attempts to linearize this equation have been made [12–14] using as-

sumptions for negligibly small phase shifts and offset angles. Trusting these linearizations

without an understanding of the uncertainty introduced by stray light and slight misalign-

ment of optical components is a common mistake amongst TEB analysts. It therefore

seems prudent to discuss linearization methods commonly used so that experimentalists

can apply the appropriate equations to their own apparatus.
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4.2.2.1 Linearizations for TEB optics

According to the method of Jennings [12], the total optical phase difference is defined

as P = δ + ps, where δ is the phase shift due to the sample birefringence, and ps is the

total stray phase contribution arising from misalignment or strain birefringence of optical

components. Equation 4.2.4 is written I = I0sin
2(P/2), where ellipticity is equal to one-

half the phase shift, ω = P/2. If we let I = Isignal+Ia, where Ia is a constant background

contribution, Ia = a I0, then I = I0sin
2(P/2) + a I0. If we express the sin(P/2) term

as a series expansion, then sin(
P

2
) =

P

2
− (P/2)3

3!
+

(P/2)5

5!
− (P/2)7

7!
+ · · · . If P

is small, we can neglect higher order terms and I ≈ I0(P/2)2 + a I0, which gives rise

to the right hand side of Equation (3) in reference [12]. For perfect alignment and no

stray birefringence ps present, P = δ and I ≈ I0(
δ

2
)2 + a I0. Rearranging and defining

Iδ = I − a Ia gives Iδ = I0(
δ2

4
), and solving for δ gives δ = 2(

Iδ
I0

)1/2, which is Equation

(4) in [12] describing the quadratic approximation of the detected response.

Now, if we consider stray birefringence ps, once again P = δ + ps. Expanding

the sine and again neglecting higher order terms gives I ≈ I0(
δ

2
+
ps
2

)2 + a I0. Thus
I − a
I0

≈ 1

4
(δ2 + p2

s + 2δps) + const. In the absence of an electric field, the induced

birefringence δ = 0, and IE=0 =
I0

4
p2
s +const, which represents a baseline intensity for a

given optical arrangement. Since the ps component is cumulative, arising from either de-

liberate or unintentional misalignment and/or strain birefringence in optical components,

the condition typically results where ps � δ2. Therefore measuring the change in light in-

tensity from the baseline gives
∆I

I0

=
1

4
(δ2 + 2δps). If we assume negligible background

intensity, dividing ∆I by the baseline gives

∆I

IE=0

=
[
(δ2 + 2δps)/p

2
s

]
≈ 2

δ

ps
, (4.2.5)
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which is the so called linear response. Since ∆I is now a function of δ rather than δ2,

the sign of the birefringence can be obtained using a quarter wave plate and a non-zero

analyzer offset. Choosing the offset angle for the expected phase shift must be carefully

considered if significant errors are to be avoided, however.

The mathematically complete expression follows from Equation 4.2.52, redefining

total intensity S ′′′0 as I(α + δ/2) = I0sin
2(α− δ/2). The baseline intensity for the same

optical alignment in the absence of field induced birefringence is IE=0 ≡ I(α) = I0sin
2α.

If we consider only the change in birefringence do to the phase shift, ∆Iδ = I(α−δ/2)−

I(α), normalized by the baseline intensity I(α), we get

∆Iδ
Iα

=
sin2(α + δ/2)− sin2α

sin2α
=
sin2(α + δ/2)

sin2α
− 1 (4.2.6)

as reported in [12] and [15]. Jennings plots the error between the linearized model (Equa-

tion 4.2.5) and the mathematically complete description (Equation 4.2.6) as a function

of analyser offset angle α for two different phase differences in Figure 3 of [12]. Since

the phase difference changes over time in a given TEB pulse, this is not necessarily an

experimentally helpful way to think about the issue. An alternate way to visualize this

problem is shown in Figure 4.2.2.1, where the changing phase shift is plotted (horizontal

axis) against the offset angle of the analyzer (vertical axis) for different error percents

between the two models. By selecting an acceptable experimental error and a set offset

angle, the range of experimental phase shifts which will give errors less than that desired

can be extrapolated. However, for α near zero, a very small range of phase shifts will give

significant errors, upwards of 50%. As such, the linearized model should not be used for

small phase shifts and small offset angles if one is to obtain accurate diffusion coefficients.

To avoid errors entirely, Equation 4.2.6 should be applied, and the diffusion coefficients

deconvoluted from experimental data using the mathematically complete model.
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Figure 4.2.2.1: Error between Equation 4.2.5 and Equation 4.2.6. The linearized quarter
wave model (Equation 4.2.5) and the mathematically complete model (Equation 4.2.6)
diverge significantly for small phase shifts at small offset angles. The phase shift (δ)
in radians is plotted on the vertical axis against the analyzer offset angle α in degrees
(horizontal axis) for different errors between 0.5% (uppermost curve) to 50 % (lowest
curve). At α near zero, a very small range of δ will give significant errors, indicating
the danger of applying the linear model for a quarter wave plate at small α and small
experimental phase shifts.

This section has avoided the full derivation of the mathematically complete model in

order to illustrate the difficulties associated with the simplification often used in the TEB

literature. The subsequent sections will derive the complete model from fundamental

optical theory, starting with a description of light in the form of the wave equations.
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4.2.3 Wave Equations

The wave equation, developed by Young in the early 19th century, combines the Newto-

nian mechanical wave equation with mechanical energy associated with wave amplitude.

For a wave propagating in one dimension as a function of time t, it is given as

δ2u(x, t)

δx2
=

1

ν2

δ2u(x, t)

δt2
, (4.2.7)

where the velocity of propagation ν is proportional to the ratio of tension to density in

a mechanically equivalent string undergoing wave motion, and the oscillation or optical

disturbance u(x, t) is related to displacement from a straight line connecting the ends of

the string. If we take the Fourier transform of the one dimensional formula, defined in the

time domain, we can rewrite (4.2.7) in terms of angular frequency ω as

δ2u(x, t)

δx2
=
−ω2u(x, t)

ν2
. (4.2.8)

This is the equation of a harmonic oscillator, the solution to which is

u(x, ω) = Aωeikx +Bω−ikx . (4.2.9)

The sinusoidal solution, using the trigonometric identity e±ix = cox(x)± i sin(x), is

u(x, ω) = A sin(ωt+ kx) +B sin(ωt− kx) , (4.2.10)

where k = ω/ν. Incorporating Maxwell’s theory for the electromagnetic nature of light,

we can divide the electric field vector into two orthogonal components in the x− y plane.

Assuming the direction of propagation, z is normal to the x− y plane, the two orthogonal
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components are

Ex(z, t) = E0xcos(ωt+ kz + δx) (4.2.11a)

and

Ey(z, t) = E0ycos(ωt+ kz + δy) , (4.2.11b)

where E0x and E0y are the maximum amplitudes and δx and δy are the absolute phases of

each component.

4.2.4 The Polarization Ellipse

The amplitudes of each component in Equation (4.2.11) and the phase shift between them

give rise to the state of polarization. The polarization is said to be instantaneous in that,

at optical frequencies, the time for a wave to undergo one cycle is around 10−15 seconds.

The polarization ellipse can be derived by revisiting Equation (4.2.11)

Ex(z, t) = E0xcos(τ + δx) (4.2.12a)

Ey(z, t) = E0ycos(τ + δy), (4.2.12b)

where τ = ωt+ kz is referred to as the propagator. These can be rewritten

Ex
E0x

= cos τ cos δx − sin τ sin δx (4.2.13a)

Ey
E0y

= cos τ cos δy − sin τ sin δy . (4.2.13b)
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Therefore

Ex
E0x

sin δy −
Ey
E0y

sin δx = cos τ sin(δy − δxy) (4.2.14a)

Ex
E0x

cos δy −
Ey
E0y

cos δx = sin τ sin(δy − δx) . (4.2.14b)

Squaring and adding Equations (4.2.14) eliminates the propagator and gives the resultant

vector as Ex(z, t) and Ey(z, t) propagate

E2
x

E2
0x

+
E2
y

E0y

− 2
Ex
E0x

Ey
E0y

cos δ = sin2δ , (4.2.15)

where δ = (δy − δx). Recognizing this as the general equation of an ellipse, a convenient

means to describe the polarization state arises, as shown in Figure 4.2.4.1. In general,

the axes of the polarization ellipse will not be parallel to the x and y orthogonal wave

components. As such, a rectangle parallel to the x and y axes is constructed such that

the sides are tangent to the polarization ellipse. The length of each sided of this rectangle

provides the magnitude ofE0x andE0y. This rectangle is used to define an auxiliary angle

α such that

tan α =
E0x

E0y

, (4.2.16)

for α for 0 ≤ α ≤ π
2
. The polarization orientation is given by the angle θ between the

horizontal or x-axis and the major axis of the ellipse. The sides of a second rectangle in

which the ellipse is circumscribed allows us to define the polarization angle as

tan 2θ =
2E0xE0y

E2
0x − E2

0y

. (4.2.17)

The ellipticity (also called the eccentricity) describes the “fatness” of the ellipse, and

is defined by an angle ω (with −π
4
≤ ω ≤ π

4
) such that tan ω = ±B

A
, where 2A and
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Figure 4.2.4.1: The polarization ellipse. Major and minor axes 2A and 2B are rotated an
angle θ with respect to the x− y coordinate system.

2B are the major and minor axes of the ellipse, respectively. The extrema are therefore

described by B = 0, and thus ω = 0 for linear polarization, and B = A, ω = ±π
4

for

circularly polarized light. From the definition of the auxiliary angle in Equation (4.2.16)

we can obtain the useful relation

sin 2ω = (sin 2α) sin δ (4.2.18)

to relate ellipticity to amplitudes and phase shifts of the components. While this is the

most general description of elliptical polarization, it can be simplified by setting up ex-

perimental parameters such that α = θ = 45, in which case a direct comparison between

ellipticity and phase shift can be made such that

sin 2ω = sin δ. (4.2.19)
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4.2.5 Experimental Measurements

4.2.5.1 Stokes Parameters

One can imagine the polarization ellipse being traced out by the electric field vector of

light in a plane transverse to the direction of propagation. However, as the time scale of

a single trace is on the order of 10−15 seconds, it would be impossible to experimentally

measure the polarization ellipse. Additionally, the polarization ellipse can only describe

light that is completely polarized. Since real light consists of many simple waves in rapid

succession, it is often partially or unpolarized. It is impossible to measure the absolute

phase or amplitude of a simple wave, so we instead refer to superpositions of simple

waves of independent phases in terms of four Stokes parameters. These parameters arise

from mathematical manipulation of the two orthogonal wave Equations 4.2.15, to give

(E2
0x + E2

0y)
2 − (E2

0x − E2
0y)

2 − (2E0xE0ycos δ)
2 = (2E0xE0ysin δ)

2 . (4.2.20)

We equate the quantities inside the parentheses to the four Stokes parameters for a plane

wave and define the four Stokes parameters as

S0 ≡ I0 + I90 = E2
0x + E2

0y (4.2.21a)

S1 ≡ I0 − I90 = E2
0x − E2

0y (4.2.21b)

S2 ≡ I+45 − I−45 = 2E0xE0y cos δ (4.2.21c)

S3 ≡ Ircp − Ilcp = 2E0xE0y sin δ . (4.2.21d)

These can be interpreted where S0 is the total intensity, S1 describes the difference in

intensities between linear horizontal and linear vertical polarizations, S2 the difference
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between linear +45◦ and −45◦ polarizations, and S3 the difference between right and left

circular polarized light. The significance of Stokes parameters is that they are real, mea-

surable intensities, which are derived from the time averaged square of the unobservable

parameters E0x, E0y and the phase shift δ.

The four Stokes parameters hold the relation

S2
0 ≥ S2

1 + S2
2 + S2

3 (4.2.22)

Since S0 is the total intensity of light, the equality holds only if light is fully polarized. In

the case S1 = S2 = S3 = 0, the light is natural, or unpolarized. The degree of polarization

P for any polarization state is defined as

P =
Ipol
Itot

=
(S2

1 + S2
2 + S2

3)
1/2

S2
0

(4.2.23)

for 0 ≤ P ≤ 1, with 1 corresponding to fully polarized, and 0 to natural or unpolarized

light.

The Stokes intensities for an optical beam are measured from the time averaged polar-

ization ellipse, but the time averaging can be formally bypassed by representing the real

optical amplitudes in Equation (4.2.11) in terms of complex amplitudes

Ex(t) = E0xexp[i(ωt+ δx)] = Exexp[iωt] (4.2.24a)

Ey(t) = E0yexp[i(ωt+ δy)] = Eyexp[iωt] , (4.2.24b)
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where

Ex = E0x exp(iδy) (4.2.24c)

and

Ey = E0y exp(iδy) . (4.2.24d)

The stokes parameters now become

S0 = ExE
∗
x + EyE

∗
y (4.2.25a)

S1 = ExE
∗
x − EyE∗y (4.2.25b)

S2 = ExE
∗
y + ExE

∗
y (4.2.25c)

S4 = i(ExE
∗
y − ExE∗y) (4.2.25d)

where * indicate the complex conjugate of Equations (4.2.24c) and (4.2.24d). Substituting

Equations (4.2.24c) and (4.2.24d) into Equations (4.2.25) results in the forms show in

Equation (4.2.21).
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4.2.5.2 Stokes Vector

The mathematical means to represent the Stokes parameters for an incident beam is a

column vector, called the Stokes vector

S =



S0

S1

S2

S3


(4.2.26)

or, by incorporating Equation 4.2.21

S =



E2
0x + E2

0y

E2
0x − E2

0y

2E0xE0y cos δ

2E0xE0y sin δ


. (4.2.27)

Thus, for example, the Stokes vector for linear horizontally polarized light, withE0x =

1 and E0y = 0, would be

S = ITot



1

1

0

0


, (4.2.28)

where ITot = E2
0x is the total intensity.

Considering the more general case of linear polarization at some angle θ from the

x axis, start by demonstrating that for any linear polarization, the phase difference in

Equation (4.2.27) is equal to zero. Hence, for all forms of linear polarization at any
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orientation, it can immediately be written S3 = 0. The relative intensities of the x and

y components for the beam, as well as the -45 and +45 degree components are found by

projecting the light vector onto these axes such that E0x = cosα, E0y = sinα, E0,+45 =

cos(45−α), andE0,−45 = sin(45−α) as shown in Figure 4.2.5.1. The normalized Stokes

vector for linearly polarized light at any angle θ from the x-axis (using the identities

cos2x− sin2x = cos 2x and 2 sin x cos x = sin 2x) is thus

S = ITot



1

cos 2α

sin 2α

0


. (4.2.29)

In this case, ITot = E2
0 , which is defined in terms of the auxiliary angle α (Figure 4.2.5.1)

from the x-axis such that

E0x = E0 sin α (4.2.30a)

E0y = E0 cos α (4.2.30b)

for 0 < α < π
2
. Again, when α = θ = π

4
, a simplification and direct comparison between

ellipticity and phase shift δ can be made.

In the most general case of elliptical polarization, with ellipticity ω and orientation θ,

the Stokes vector is

S = ITot



1

cos(2ω) cos(2θ)

cos(2ω) sin(2θ)

sin(2ω)


, (4.2.31)
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Figure 4.2.5.1: The Stokes intensities of linear polarized light. The polarization angle θ
from the x-axis is determined by projecting the light vector onto x, y, +45 and -45 axes
such that E0x = cosα, E0y = sinα, E0,+45 = cos(45− α), and E0,−45 = sin(45− α).

where ITot = E2
0x + E2

0y. This can also be written

S = I0



1

cos(2α)

sin(2α) cos(δ)

sin(2α) sin(δ)


, (4.2.32)

where I0 = E2
0 = E2

0x + E2
0y. In the simplifying case where α = θ = 45, and from

sin 2ω = sin δ (Equation (4.2.19)), these equations become

S = I0



1

0

cos(δ)

sin(δ)


= I0



1

0

cos(2ω)

sin(2ω)


. (4.2.33)

In an experimental setting, the principle of optical equivalence states that it is im-

possible by any measurement technique or instrument to distinguish between incoherent

sums of simple waves which together may form a beam with the same Stokes parameters.
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Experimental conditions are therefore set up in which only the desired parameters can

be measured. By using linear polarizers, all polarizations of light except for that parallel

to the axis of the polarizer can be excluded. In conjunction with an intensity detector,

only the component of light polarized in a specific direction is then measured. The use

of compensators allows the experimenter to induce a specific phase shift between the two

components of light, and in conjunction with linear polarizers, determine the orientation

of the polarization and the relative phases. In order to interpret how the Stokes vector of

incident light is affected by an optical element, Mueller matrices will now be introduced.

4.2.5.3 Mueller Matrices

A mathematical means to interpret the Stokes parameters for an incident beam of light

passing through an optical component, such as a polarizer, is the Mueller matrix method.

To understand how optical elements interact with polarized light in order to change its

state, assume that the light incident on the element has Stokes parameters Si, where i =

0, 1, 2, 3. The beam emerges with new states S ′i , (again i = 0, 1, 2, 3) which can be

expressed in terms of four linear combinations

S
′

0 = m00S0 +m01S1 +m02S2 +m03S3 (4.2.34a)

S
′

1 = m10S0 +m11S1 +m12S2 +m13S3 (4.2.34b)

S
′

2 = m20S0 +m21S1 +m22S2 +m23S3 (4.2.34c)

S
′

3 = m30S0 +m31S1 +m32S2 +m33S3 . (4.2.34d)

This is shown in matix form
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

S
′
0

S
′
1

S
′
2

S
′
3


=



m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33





S0

S1

S2

S3


, (4.2.35)

which is more concisely stated

S’ = B · S . (4.2.36)

The matrix, B, describing the operation performed by the compensator is known as the

Mueller matrix. If the transverse elements of the plane wave depicted in Equation (4.2.11)

interact with matter, the polarization state is almost inevitably altered by the changing of

amplitudesE0x andE0y, phase δx or δy, direction of orthogonal field componentsEx(z, t)

or Ey(z, t), or by transferring energy from polarized to unpolarized field components. If

successive optical elements are encountered along an optical path, the total transformation

of the stokes vector for the incident light can be calculated using a single Mueller matrix

train encompassing all encountered components according to

MT =
n∏
i=1

Mi . (4.2.37)

The train is calculated by starting with the first element encountered, then left-multiplying

successively until all transforming elements have been accounted for.

It is beyond the scope of this paper to derive the components of the Mueller matrix.

Full derivations for various optical components can be found in texts on polarized light.

For the sake of brevity, the Mueller matrices for linear polarizers and quarter wave re-

tarders are necessary for understanding the transient electric birefringence experiment.

The general Mueller Matrix for an ideal linear polarizer at an angle χ with respect to
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the horizontal (x) axis is

1

2



1 cos(2χ) sin(2χ) 0

cos(2χ) cos2(2χ) cos(2χ)sin(2χ) 0

sin(2χ) cos(2χ)sin(2χ) sin2(2χ) 0

0 0 0 0


. (4.2.38)

The general Mueller Matrix for a compensator at an azimuthal angle ψ with respect

to the x-axis with a phase retardance φ is



1 0 0 0

0 cos2(2ψ) + sin2(2ψ)cosφ sin(2ψ)cos(2ψ)(1− cosφ) −sin(2ψ)sinφ

0 sin(2ψ)cos(2ψ)(1− cosφ) sin2(2ψ) + cos2(2ψ)cosφ cos(2ψ)sinφ

0 sin(2ψ)sinφ −cos(2ψ)sinφ cosφ


.

(4.2.39)

4.2.5.4 TEB Setup Without a Quarter Wave Plate

A coherent monochromatic light source is used as the source, in this case a linearly po-

larized HeNe laser. The source is aligned with and first passed through a linear Glan-

Thompson polarizer, hitherto called the polarizer, aligned with its transmission axis at 45

degrees with respect to the laboratory horizontal axis. An electro-optic cell follows, which

is comprised of two planer parallel electrodes oriented along the laboratory vertical axis.

The beam passes between these electrodes and though a second linear polarizer, called

the analyzer, with its transmission axis at −45 degrees to the lab vertical axis. When the

electric field is turned on, the birefringence induced in the cell causes the linearly polar-

ized light entering the cell to exit as elliptically polarized due to a phase lag δ between
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the orthogonal components of the electric field of the incident light. The Stokes vector

for the light emerging from the cell, using Equation (4.2.31) for θ = 45 is

S = I0



1

0

cos(2ω)

sin(2ω)


, (4.2.40)

where ω is the ellipticity of the polarization ellipse defined via the major and minor axes

A and B by tan ω = B
A

. The assumption that θ = 45 arises from the fact that only in

the case of a dichroic media is the polarization ellipse rotated from the incident beam

orientation. Since the orthogonal absorption coefficients for optical light are generally

the same for aqueous suspensions, this is not the case.

The beam now passes though the linearly polarizing analyzer, which from Equation

(4.2.38) has the Mueller matrix at χ = −45 degrees

1

2



1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0


. (4.2.41)

The light emerging from the analyzer is therefore described by the Stokes vector

S’ =
I0

2



1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0





1

0

cos(2ω)

sin(2ω)


=
I0

2



1− cos(2ω)

0

−1 + cos(2ω)

0


(4.2.42)
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Since the experiment measures the total intensity of light passing through the analyzer,

which is given by the first Stokes parameter in Equation (4.2.42), the only term of interest

is

S
′

0 =
I0

2
(1− cos(2ω)) . (4.2.43)

From the trigonometric identity 2 sin2A = 1− cos(2A), the classic Malus’ Law relation-

ship is obtained, where

S
′

0 = I0 sin
2ω = I0 sin

2

(
δ

2

)
. (4.2.44)

Here the ellipticity ω replaces Θx in Equation 4.2.2 and ω = δ
2

for α = θ = π
4

from

equation 4.2.19.

For 0 ≤ ω ≤ π
2
, an increasing intensity of light results as ellipticity increases. For the

case of ω = π
2
, the light is linearly polarized at an orientation angle θ = −π

4
, and thus

a maximum transmittance through the analyzer occurs. For π
2
≤ ω ≤ π, the intensity

decreases again, demonstrating an optical over-rotation case.

If the analyzer is not perfectly crossed with the polarizer (that is χ 6= −π
4
), the general

form for a linear polarizer in Equation 4.2.38 is used, and the resulting intensity is

S
′

0 =
I0

2
(1− cos(2ω) sin(2χ)) . (4.2.45)

The result for misalignment from crossed position by ±10 and ±20 degrees is demon-

strated in Figure 4.2.5.2. The overall intensity decreases in magnitude, but has the same

phase as for the aligned case. Since the intensity does not follow the phase shift linearly

in all cases, care must be taken to apply a cosine squared function to the model in order

to extract the experimental phase shift. The experimental results under an aligning AC

pulse for a suspension of cellulose nanocrystals is shown in Figure 4.2.5.3. Note that the
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Figure 4.2.5.2: Model of Equation (4.2.42). Intensity of transmitted light for polarizer
and no quarter wave plate, with analyzer offset from crossed position by A.) 0 degrees;
B.) ±10 degrees, and C.) ±20 degrees as a function of increasing ellipticity.

peak-to-peak intensity begins to decrease at an offset angle >| ±2 | degrees. This could

indicate the start of an over-rotation regime, or could be due to optical misalignment of

the beam as the physical component of the analyzer is rotated. To determine this, the

plots would need to be normalized using a careful characterization of a full 0 to 90 degree

rotation of the analyzer. This requires accurate neutral density filters, which were not

available at the time of this experiment.

4.2.5.5 TEB Setup With a Quarter Wave Plate

In a second experimental setup, a quarter wave retarder may be inserted between the cell

and analyzer with its fast axis aligned parallel to the polarizer transmission axis. In this

setup, the elliptical light emerging from the cell is transformed by the Mueller matrix for
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Figure 4.2.5.3: Experimental data in the absence of a quarter wave plate. The sample is
cellulose nanocrystals under a 100 kHz AC pulse. The intensity of transmitted light is
shown with an analyzer offset from crossed position by −4 < α < +4 as a function of
time.
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a compensator with φ = π
2

and ψ = 45. From Equation (4.2.39), this is calculated as



1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0


. (4.2.46)

The Stokes vector for the beam emerging from the quarter wave plate is thus

S’ = I0



1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0





1

0

cos(2ω)

sin(2ω)


= I0



1

−sin(2ω)

cos(2ω)

0


. (4.2.47)

From the parameter S3 = 0, it is immediately determined that this is linearly polarized

light. Passing this light through the analyzer at χ = −45 degrees then gives

S” =
I0

2



1 0 −1 0

0 0 0 0

−1 0 1 0

0 0 0 0





1

−sin(2ω)

cos(2ω)

0


=
I0

2



1− cos(2ω)

0

−1 + cos(2ω)

0


, (4.2.48)
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which is the same seen in Equation (4.2.42). If we rotate the analyzer slightly from

crossed position with the polarizer, say by an angle α, the applied Mueller matrix becomes

1

2



1 cos2(χ± α) sin2(χ± α) 0

cos2(χ± α) cos22(χ± α) cos2(χ± α)sin2(θ ± α) 0

sin2(χ± α) cos2(χ± α)sin2(χ± α) sin22(χ± α) 0

0 0 0 0


.

(4.2.49)

The result is that the total intensity from S0 is

S
′′′

0 =
I0

2
[1− sin 2ω cos 2(χ± α) + sin 2(χ± α) cos 2ω] . (4.2.50)

Using the trigonometric identity sin(A−B) = sin A cos B − cos A sin B and defining

χ = −π
4

(recall the analyser is at crossed position with polarizer, plus some small offset

α), this becomes

S
′′′

0 =
I0

2

[
1− sin(2α− π

2
− 2ω)

]
=
I0

2
[1− cos(2α− 2ω)]

=
I0

2
[1− cos 2(α− ω)] . (4.2.51)

From the trigonometric identity cos 2A = 1− 2sin2A comes the form

S
′′′

0 = I0sin
2(α− ω), (4.2.52)

which was given at the beginning of this section as Equation 4.2.4. Thus when the quarter

wave plate fast axis is perfectly aligned with the polarizer transmission axis, the result

of a positive or negative analyzer offset is to shift the function as seen in Figure 4.2.5.4.
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Figure 4.2.5.4: Model of Equation (4.2.50). Intensity of transmitted light for aligned po-
larizer and quarter wave plate, and analyzer offset from crossed position by A.) 0 degrees;
B.) -15 degrees, and C.) +15 degrees as a function of increasing ellipticity.

This method is useful for increasing the sensitivity, considering that a positive offset will

shift the curve backwards. This results in a greater intensity difference with increasing

alignment at the beginning of the pulse. However, it is not strictly linear in a mathematical

sense. A cosine squared function should still be used for deconvolution of data if an error

free analysis of optical response is desired.

The models that follow an idealized Malus’ Law do not necessarily represent the

experimental reality of an exponentially increasing ellipticity with time as particles align.

Figure 4.2.5.5 shows the same setup for experimental data as an analyzer is rotated from

−1 < α < +4. We can see that the asymmetry around the aligned position gives rise to

the sign of the birefringence. The sensitivity increases at positive values of α, but as the

total baseline intensity of light also increases, the signal to noise level at higher α values
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Figure 4.2.5.5: Experimental data for an aligned quarter wave plate. The intensity of
transmitted light through cellulose nanocrystals under a 100 kHz AC pulse is shown for
an analyzer offset from crossed position by −3 < α < +6.

soon supersedes the benefits of this sensitivity. Generally, the optimal value of α must be

determined experimentally for each setup.

For prefect alignment of the quarter wave plate and accurate offset angles of the anal-

yser, there should be symmetry between negative and positive offset angles in Figure

4.2.5.5. This would result in the baseline signals overlapping. Careful examination of the

2 and -2 degree offset curves in Figure 4.2.5.5 shows this is not the case, which brings up

the important issue of alignment errors under typical experimental conditions. The next

section will describe some typical alignment errors encountered in TEB experiments.
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4.2.6 Experimental Caveats

4.2.6.1 Misaligned Quarter Wave Plate

The model in Figure 4.2.5.4 shows the case for perfect alignment of the quarter wave

fast axis with the polarizer. As seen from the experimental data in Figure 4.2.5.3, perfect

offset angles are difficult to achieve. Symmetry of the signal at ±2 and ±4 degree offsets

is expected, whereas deviations from this are observed arising from inaccurate settings.

The experimental difficulty of comes from the minimum gradation unit marked on a rotary

mount holding the anaylzer, which is typically 2 degrees. While the crossed position can

be determined optically by finding the minimum intensity, the offset angle is set from

this minimum using the marked gradations on the mount. As such, precise α settings

are difficult to achieve in the lab setting without a full characterization of the intensity

curve from minimum intensity to maximum intensity, in which case the polarizers are

fully aligned. Few detectors can measure this range without reaching a saturation limit,

so well characterized neutral density filters must be inserted into the optical path. This

introduces errors due to internal reflection, light scattering, and optical inconsistencies in

the filters.

Likewise, precise alignment of the quarter wave plate is difficult to achieve. The most

accurate method for aligning it is to replace the stationary analyzer with a motorized

rotating analyzer. As the analyzer revolves in time, the signal passed to the detector

is sinusoidal, the peak-to-peak values of which can be monitored by an oscilloscope.

(Rotation frequencies above 1 Hz will typically be fast enough for most oscilloscopes to

trigger on.) The quarter wave plate can then be adjusted under these conditions to achieve

a maximum peak-to-peak value, which corresponds to the closest alignment of the quarter

wave plate fast axis with the linear polarization axis of the first polarizer. Again, neutral
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density filters are required to measure the maximum intensity, and the accuracy of this

technique is limited by the alignment of the ND filters as well. In addition, due to the

thickness variations of the wave plate being on the order of a wavelength of the laser,

slight tilts from perfect vertical position with respect to the laser can result in non-integer

values of light wavelengths propagating through the plate. Therefore, precise alignment

requires control of six degrees of freedom in the lab frame, as well as much practice and

skill. As such, slight errors in quarter wave alignment will inevitably be present. In order

to understand this, the most general description of S0 for a quarter wave plate and analyzer

at arbitrary angles ψ and χ respectively will be considered. From Equations (4.2.38) and

(4.2.39) for elliptical polarized light at an orientation angle of θ = 45, S0 becomes

S0 = 1 + cos 2ω sin 2ψ cos 2ψ cosχ + sin 2ω sin 2ω cos 2χ

+cos 2ω sin22ψ sin 2χ− sin 2ω cos2ψ sin 2χ (4.2.53)

From this equation, Figure 4.2.6.1 shows the effect of a quarter wave compensator mis-

aligned by up to 45 degrees with the analyzer at -45. In addition to a shift of the func-

tion, the peak-to-peak value decreases with increasing misalignment leading to errors in

the measured birefringence. From the model, the significance of these errors may seem

negligible in the case of realistic misalignment values (< ±5 degrees). However, the ex-

perimental results in Figure 4.2.6.2 show the effects of a ±2 degree offset of the quarter

wave plate with the analyzer cross-aligned with the polarizer. Small misalignments can

become significant in the scale of experimental intensities.
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Figure 4.2.6.1: Model of quarter wave plate misaligned with polarizer. Misalignment of
wave plate increases from 0 degrees (perfect alignment) to 45 degrees from left to right
following the arrow. Analyzer is set at -45 degrees with respect to the lab horizontal axis
for all cases (crossed with polarizer).
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Figure 4.2.6.2: Experimental data for aligned analyzer and misaligned wave plate. Sam-
ple is cellulose nanocrystals under a 100 kHz AC pulse with analyzer set to -45 degrees
(crossed with polarizer) and quarter wave plate misaligned by 0, +2 and −2 degrees.

4.2.6.2 Misaligned Quarter Wave with Offset Anaylzer

The most realistic experimental case arises when both the analyzer and quarter waveplate

are offset by some unintentional, or in the case of the analyzer, intentional angle. Figure

4.2.6.3 shows modeled data for various cases of the quarter wave plate and analyzer offset

by ±10 degrees.

Figure 4.2.6.5 shows experimental data in the case of a quarter wave plate offset by

to ±1 degrees and an analyzer offset for variable angles. Experimentally, the model

fits fairly well, with lower misalignment angles resulting in significant systematic errors.

Slight discrepancies arise, such as the curves for quarter wave plate (Q) at 46 degrees and

analyzer (A) at -44 degrees, and for Q at 44 and A at -46 degrees , which the model pre-

dicts to be identical (Figure 4.2.6.4). However, the case for symmetric and antisymmetric

offset values for quarter wave plate and analyzer result in similar baselines and difference
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Figure 4.2.6.3: Model for both misaligned analyzer and quarter wave plate. Analyzer (A)
and a quarter wave plate (Q) are misaligned by up to ±10 degrees as a function of time.

Figure 4.2.6.4: Model for symmetrically misaligned analyzer and wave plate. Analyzer
(A) and quarter wave plate (Q) are aligned at Q=44, A=-46 and Q=46, A=-44 for the
diamonds and solid line, respectively.
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in initial sign of the birefringence, just as predicted by the model. The discrepancies in

expected peak-to-peak intensities re-enforces the argument that accurate alignment of op-

tics is both important, and difficult to achieve without appropriate alignment protocols.

In this case, a rotating anaylzer was not available, and quarter wave plate alignment was

estimated by adjusting both analyzer and quarter wave plate until a minimum intensity

was observed. Here also, the sensitivity of the detector and the digitization resolution of

the oscilloscope can become the limiters to accurate alignment.

4.2.6.3 Stray Birefringences in Optical Components

In addition to misalignment in the intended optical components, unintended sources of

birefringence can be added to the setup in the form of mechanical or optical strain in

glass plates. Rarely are fused silica or glass plates completely amorphous; birefringence

can arise from glass flow alignment during cell fabrication. In addition, mechanical strain

on plates can induce birefringence. Figure 4.2.6.6 shows the effects of increasing the

strain on the face of a glass cuvette by increasing the tightness of a set screw holding the

cell in place during a TEB experiment.

The maximum strain setting in Figure 4.2.6.6 (that is the highest mechanical strain

that could be applied without risk of breaking the cell) is shown in Figure 4.2.6.7 for an

analyzer offset from −6 < α < +6 degrees. The induced strain appears to behave as a

compensator with an arbitrary phase lag and orientation, which is why the initial decrease

in birefringence does not disappear with negative or positive analyzer offset as it does

with the aligned quarter wave plate in Figure 4.2.5.5.
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(a) Analyzer and Quarter Wave Plate Offset, Full Curves

(b) Analyzer and Quarter Wave Plate Offset, Baseline Expanded

Figure 4.2.6.5: Experimental data for misaligned quarter wave plate and analyzer. Cel-
lulose nanocrystals are aligned under a 100 kHz AC pulse. A quarter wave plate (Q)
is misaligned from 45 degrees by ±1 degree, and the analyzer (A) is misaligned from
-45 degrees by −2 to +5 degrees. The right plot shows the baseline expanded to vali-
date the symmetric (44/-44 and 46/-46) and antisymmetric (44/-46 and 46/-44) coincident
baselines predicted by the model in Figures 4.2.6.3 and 4.2.6.4.
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(a) TEB with cell strain birefringence

(b) Strain birefringence expanded around baseline

Figure 4.2.6.6: Experimental TEB with mechanically strained glass cuvette. Cellulose
nanocrystals are aligned under a 100 kHz AC pulse without a quarter wave plate. Stray
birefringence arises from mechanical strain on the cuvette, with strain increasing from
minimal (curve A, top) to an experimental maximum (curve C, bottom). The initial dip
upon application of electric field is shown expanded in the right plot.
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Figure 4.2.6.7: TEB with strain birefringence and offset analyzer. Data is from cellulose
nanocrystals aligned under a 100 kHz AC pulse under a mechanically strained glass cu-
vette and no quarter wave plate. The intensity of transmitted light is shown for an analyzer
offset from crossed position with the polarizer by −6 < α < +6 degree.
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4.3 Equipment and Electronic Devices

4.3.1 Optical Setup

The light source is a linearly polarized (minimum polarization ratio of 500:1) UniPhase

HeNe laser, model 1107P (2 mW, λ = 632.5 nm) with a Gaussian (1/e2) beam diameter

of 0.48 mm. To optimize the intensity of the beam entering the cell, the laser is nominally

aligned with and passed through a Glan Thompson polarizer, extinction coefficient 105,

set with its polarization axis at 45 degrees with respect to the laboratory horizontal plane.

A Kerr cell follows. The beam leaving the cell is passed through a second Glan polarizer

set at crossed positions to the first polarizer (Figure 4.3.1.1). The beam intensity is mea-

sured by a 500 MHz bandwidth, sensitivity 0.57A/W photodiode, Hamamatsu - S5972,

Newark part number 62M0263, and a low noise, high bandwidth amplifier circuit based

on OPA127 op amps (see Figure 4.3.2.2 for circuit schematic). The detector was calcu-

lated to have a bandwidth of 1.0 MHz and was measured using a picosecond pulsed laser

(built into the 2500 Optical Fiber Analysis System from Photon Kinetics) and a Tektronix

DSA8200, 50 GHz digital oscilloscope to ensure the circuit was behaving as predicted.

The circuit is powered at ±10 V by an HP 6255A Dual DC power supply with a 200 µV

rms, 1 mv peak-to-peak ripple/noise criteria.

4.3.2 TEB Kerr Cell Design

Kerr cells were built from quartz cuvettes with a path lengths of either 1 cm or 2 cm. Two

stainless steel planar electrodes are set 1 mm apart by Teflon spacers, with the polariza-

tion of the incident beam at 45 degrees with respect to the applied field (parallel to the

laboratory horizontal plane), propagating parallel to the electrodes (Figure 4.3.2.1).
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(a) TEB optical path

(b) Optical path viewed from the detector

Figure 4.3.1.1: Photograph of the TEB optical path.
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(a) Photograph of Kerr cell in use.

(b) Schemetic of Kerr cell in optical path.

Figure 4.3.2.1: Kerr cell design. Two stainless steel planar electrodes are set 1 mm apart
and held in place by two 4 mm Teflon spacers on either side. An additional 1 mm Teflon
spacer between electrodes at top acts as as a seal for the cell (a). The polarized laser beam
is passed between electrodes through solution as shown in (b).
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(a) Photodiode detector and amplification circuit.

(b) Circuit schematic for the detector amplification circuit.

Figure 4.3.2.2: TEB photodiode detector and preamp circuit mounted in an adjustable
stage (a) and the schematic for the amplification circuit (b).
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Figure 4.3.3.1: Photograph of the TEB electronics.

4.3.3 TEB Electric Pulse Generation

The electric pulse was either generated by a Wavetek 166 function generator gated through

a HP 8015A pulse generator, or by a Tektronix AFG3021B arbitrary digital function gen-

erator, then amplified by a Krohn-Hite model 7500 wideband amplifier. Radio frequency

(50-100 kHz) sinusoidal pulses were applied across the electrodes at 100-300 V/mm field

strengths.

4.3.4 Optical Signal Digitization and Measurement of Excitation Pulse

The output voltage generated by the detector circuit and the voltage across the cell was

digitized by a Tektronix TDS1012B, 100 MHz bandwidth, 8-bit vertical resolution digital

storage oscilloscope (DSO). This DSO has a 2 mV to 5 V per division vertical sensitivity

(80 µV to 0.2 V resolution) and a 5 ns to 50 sec per division time base range (1 GSa/s to
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Figure 4.3.3.2: Schematic diagram for the TEB apparatus. A HeNe laser (Uniphase,
model 1107P) is passed through a polarizer (P), a Kerr cell, and an analyzer (A). The wave
completion function of the Wavetek 166 function generator is illustrated with the modu-
lation of a continuous alternating waveform gated with the pulse generator (HP8015A).
Output is amplified by a Krohn-Hite 7500 wide band amplifier before being applied across
the cell. Output from the detector and amplifier are digitized by a Tektronix TDS1012B
digital storage oscilloscope.
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5 Sa/s sampling frequency) The memory depth is 2500 samples at all time base ranges.

Figure 4.3.4.1 shows the vertical voltage scales for each available gain, and the resolution

limits at each vertical scale.

In order to understand the limitations of using a digital storage oscilloscope as a dig-

itization tool, one must understand the basics of anolog-to-digital (ADC) conversion as

well as the basic theory behind the DSO operation. A brief discussion of ADC and DSO

operation can be found in the discussion chapter (Section 6.2), followed by experimental

examples of the limitations of tool.
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(a) Voltage waveform digitized at different gains.

Gain (V/div) Max/Min (V) Range (V) Resolution (V)
5 ±25.4 50.08 0.2
2 ±10.6 20.32 0.08
1 ±5.08 10.16 0.04

0.5 ±2.54 5.08 0.02
0.2 ±1.06 2.032 0.008
0.1 ±0.508 1.016 0.004

0.05 ±0.254 0.508 0.002
0.02 ±0.106 0.2032 0.0008
0.01 ±0.0508 0.1016 0.0004

0.005 ±0.0254 0.0508 0.0002
0.002 ±0.0106 0.02032 0.00008

(b) Summary of Voltage scales and resolution for each gain.

Figure 4.3.4.1: Digitization windows at different input gains. A 30 V peak-to-peak si-
nusoidal signal is digitized at variable gains by the Tektronix TDS1012B digital storage
oscilloscope (DSO). Digitization windows and resolution are given in the table below for
gains from 2 mV to 5 V per division.
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Chapter 5 – Results

5.1 Apparatus Trouble Shooting and Characterization

5.1.1 Cell Capacitance

The macroscopic electric field inside the cell depends on the macroscopic capacitance of

the cell, which depends on conductivity and dielectric constant of the cell contents. Chap-

ter 2 discussed dielectrics of pure liquids and simple electrolytes. Since the local electric

field felt by macroparticles in suspension is influenced by the surrounding electrolyte, it is

important to have some understanding of how the macroscopically applied field E0 (cal-

culated from the applied voltage V0 divided by distance d) relates to the internal field felt

by solutions with different particle concentrations and conductivities. For this purpose,

the time varying voltages across the cell and across an external load resistor in series with

the cell were measured and used to solve the time-evolving differential equation relating

to the equivalent circuit model of the system (shown in Figure 5.1.1.1). The differential

equation relating to this circuit is

V0 =
dVR1(t)

dt
R0C +

R0 +R1

R1

VR1 , (5.1.1)

where R1 is the resistance across the external load resistor, R0 is the cell resistance, and

C is the total cell capacitance arising from all possible electrochemical contributions. The

applied voltage measured across the output of the amplifier is given by V0. The solution to

equation 5.1.1 was determined numerically with Mathematica (Wolfram Research, Ver-

sion 4.). Table 5.1.1 summarizes the calculated resistance and capacitance for different
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solutions from raw data, and example of which is shown in Figure 5.1.1.2. The electric

field E is related to the applied voltage V0 by

E =
c

c0

E0 =
c

c0

(
V0

d

)
, (5.1.2)

where E0 is the equivalent vacuum electric field, d is the distance between electrodes and

c0 = (ε0A)/d for the vacuum capacitance of a cell with the same area A. The approxi-

mate value of the electric field felt for each sample was calculated from an electrode area

of A = 1 cm x 1 cm, a distance between the electrodes of 1 mm, and the vacuum permit-

tivity ε0 = 8.854X10−12C2/(N m2) via Equation 5.1.2. The conclusion to be made is

that the applied voltage (as measured across the cell) does not necessarily equate to the

same electric field felt for different samples. Therefore, calculating Kerr constants from

increasing field strength relies upon measurements of cell capacitance to determine true

electric field values from applied voltage.

An additional concern is the time required for the cell to reach a steady state upon

the application and termination of an external field. Figure 5.1.1.2 shows the voltage

data for a 0.02% C.CNC solution and a conductivity control, which represent the lowest

conductivity solution typically used throughout this research. We see that the voltage

across the load resistor reaches steady state after 4 µs, with higher conductivities requiring

less time, and a comparable settling time upon termination of the pulse as seen in Figure

5.1.1.3. Since pulsed fields were rarely applied for less than 100 µs, this was considered

to have an insignificant overall effect upon the time dependent optical responses measured

for the cell. It is however a matter to be aware of if less than 10 µs time scales are to be

analyzed immediately after the application or termination of a square wave electric field

(i.e. at the pulse edges.)

Since most of our experiments used sinusoidal pulses at frequencies between 50 kHz
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Figure 5.1.1.1: Equivalent circuit model used for capacitance measurement. R1 and C are
the resistance and capacitance of the cell and R0 is the resistance of an external (1 MΩ)
load resistor in series with the cell. V0 is the applied voltage measured at the amplifier
output terminals.

Table 5.1: Values of resistance and capacitance for different conductivities. Resistance
and capacitance were calculated for an applied voltage V0 for various samples. The in-
ternal electric field (last column) is calculated from the calculated capacitance of each
sample and Equation 5.1.2. Sodium chloride control solutions were prepared at roughly
equal conductivities for each C.CNC concentration to compare effects of macroion sus-
pension versus simple electrolytes. No quantitative difference is seen macroscopically for
comparable conductivities with and without C.CNC particles.

Sample Conductivity Capacitance Resistance V0 Electric Field
µS (pF) (MΩ) (V) (V/cm)

Water 0 4.5 4.88 13 6648
0.02% C.CNC 15 µS 1.05 9.44 13 1551
NaCl 17 µS 1.08 9.52 13 1595
0.05% C.CNC 39 µS 0.65 11.07 13 960
NaCl 34 µS 0.65 11.07 13 960
0.5% C.CNC 144 µS 0.11 13.06 13 163
NaCl 136 µS 0.11 12.15 13 163



140

Figure 5.1.1.2: Data for cell capacitance calculated in Table 5.1.1. Voltages are measured
across Krohn Hite amplifier (KH), an external load resistor (R) and the cell for the low-
est conductivity C.CNC suspension tested (black lines) and a roughly equivalent sodium
chloride control solution (white lines). The equivalent circuit for the experiment in shown
in Figure 5.1.1.1.
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Figure 5.1.1.3: Falling edge data for cell capacitance calculations. Voltages are measured
across Krohn Hite amplifier (KH), external load resistor (R) and the cell for the low con-
ductivity C.CNC suspension shown in Figure 5.1.1.2. Decay times upon termination of
an electric field are comparable to rise times upon field application as shown in Figure
5.1.1.2.

to 500 kHz, the phase delay was measured for two suspensions of C.CNC at representative

extremes of experimental concentrations. Figure 5.1.1.4 shows the voltages measured

across the amplifier and the external load resistor to the cell as a function of time. The

low conductivity sample (15 µS) showed a 240 ns delay from the applied voltage, whereas

the 144 µS suspension has a 64 ns delay.

5.1.2 Detector optimization

The detector used for this apparatus was developed in house by Photon Kinetics (Beaver-

ton OR, USA) for use with optical fiber analysis, and was later donated to our lab. Since

the initial application for which the detector was designed did not suit our particular mea-

surement needs, modifications in the pre-amplification gain circuit had to be made. To
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Figure 5.1.1.4: Phase delays for AC pulse across Kerr cell. Phase delays for C.CNCs at
two different concentrations are shown alongside the applied voltage The lower C.CNC
concentration (0.02% C.CNC, 15 µS conductivity) showed a 240 ns delay between ap-
plied voltage measured across the amplifier (KH) and the external load resistor (R) in
Figure 5.1.1.1, whereas the 0.5% C.CNC (144 µS) showed a 64 ns delay.

ensure that the modified detector was operating as expected, a picosecond pulsed laser

setup designed for high speed optical fiber measurements was used (specifically the 2500

Optical Fiber Analysis System (OFAS) from Photon Kinetics). The response of the com-

mercial detector incorporated into the 2500 OFAS is shown in Figure 5.1.2.1 for compar-

ison.

The initial gain of the donated detector was determined by the first operational am-

plifier (OPA127) feedback resistor (50 kΩ) and capacitor (5 pF), which gave a bandwidth

of 4 MHz. This gain was not sufficient for our weak optical signals, however. An ini-

tial modification (adding 4.25 MΩ to the feedback resistor) was made, which resulted

in significant optical gain. The bandwidth was significantly decreased, however, as seen

by the slow decay to baseline (over 16 µS) in Figure 5.1.2.1. A compromise was made

using a 5.6 pF capacitor in series with the 178 kΩ resistor in the feedback loop as shown
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in Figure 4.3.2.2(b). The calculated bandwidth for this configuration was 1 MHz. This

configuration, dubbed “Final Gain”, was used for all data presented in this dissertation.

The “TEB Detector, Final Gain” time response curve in Figure 5.1.2.1 shows a delay

from the onset of the laser pulse voltage of around 600 ns, whereas the commercial de-

tector has a delay of around 100 ns. Since the pulsed laser has a finite rise time upon the

application of the voltage pulse shown in Figure 5.1.2.1, the true signal increase with time

is represented more accurately by the 2500 OFAS detector response. The estimated delay

in our detector based on this correlation was around 500 ns. The TEB detector addition-

ally shows oscillatory behavior in the signal decay due to the delta pulse-like input signal

and the slew rates and stabilization times inherent with the OPA127 devices. A more

appropriate test of the detector behavior is shown in Figure 5.1.2.2 with the application

of a sinusoidal pulse across a C.CNC sample. The sacrifice of bandwidth for increased

signal is clear in Figure 5.1.2.2 (a) for the first modification, where the signal continues

to rise for 6 µs after termination of the pulse. The final gain curve, although an order of

magnitude lower in overall signal, shows a more immediate decay response at the pulse

edge. The lower gain with improved bandwidth was deemed sufficient from the sampling

rates and digital voltage resolution experimentally possible for this apparatus. Although

data from the initial modification was rejected in our final analysis, both gain responses

are shown here as a demonstration of the need for careful planning and characterization

when designing electronic detection systems for laboratory signals.

5.2 Frequency Domain Experimental Results

In order to measure the electronic response of C.CNCs, as well as test the sensitivity

and electronic limits of our apparatus, a frequency dependent study was carried out. The

theory behind the frequency dependence was discussed in section 2.3.2. In short, a rela-
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Figure 5.1.2.1: Response delay of detector for different circuit gains. A picosecond pulsed
laser signal was used (the applied voltage of which is shown in the ‘Laser Pulse’ curve),
and the commercial detector response for the 2500 Optical Fiber Analysis System (OFAS,
from Photon Kinetics) is shown for comparison. The initial circuit gain corresponded to
a 4.7 pF capacitor and 4.3 MΩ resistor in the first gain stage (Figure 4.3.2.2). The final
gain (used for all data reported here) was 5.6 pF and 178 kΩ.
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(a) Initial Gain

(b) Final Gain

Figure 5.1.2.2: Pulse edge for different detector amplifications. The black lines represent
the optical response of the cell, and the white lines correspond to the excitation voltage
across the cell (with scale adjusted to fit graph). (a) Shows a gain with a 4.7 pF capacitor
and a 4.3MΩ resistor (50 kHz bandwidth), whereas (b) shows the response with the 5.6
pF, 178 kΩ gain (1 MHz bandwidth). A 10-fold decrease in overall signal is the price paid
for the increase in response time.
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Figure 5.1.2.3: Phase delays measured as a function of frequency. Delays were measured
for sinusoidally applied voltages between 100 Hz and 300 kHz. Sample is 0.05% C.CNC,
pH 11.2, with an applied voltage of 300 V peak-to-peak for all frequencies. The optical
phase delay at 300 kHz was measured to be 940 ns, compared to the measured voltage
delay of 64 ns for comparable suspensions shown in Figure 5.1.1.4. The additional delay
(excluding the 500 ns detector delay measured in Figure 5.1.2.1) is expected to arise from
diffusional effects of the macroparticles.
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tionship between the induced birefringence (∆ni) and the average birefringence observed

∆ni,ave is sought such that

∆ni = ∆ni,ave

[
1± cos(2ωt− φi)

(1 + 4ω2τ 2)1/2

]
, (5.2.1)

where φi is the phase angle between the birefringence and the applied field, τ is the

characteristic relaxation time, and ω is the angular frequency of the field. The phase shift

follows the relationship

tanφi = 2ωτ. (5.2.2)

In the limit of high frequencies, φ approaches 90 degrees. Therefore, the second term

in equation 5.2.3 goes to zero and a steady state birefringence with magnitude ∆n0 =

A E2
0/2 is observed. The constant A is calculated from the measured Kerr constant K as

A = 2πnKλ0, for a wavelength λ0 and a medium refractive index n [1]. The extrema of

∆n, ∆nm is given by

∆nm = ∆ni,ave

[
1± 1

(1 + 4ω2τ 2)1/2

]
. (5.2.3)

The experimental difficulty in this method lies in measuring a valid Kerr constant for

a given frequency. We found Kerr constant values to vary slightly at different applied field

frequencies, and as such a universal K value could not be determined. This could be due

to the frequency dependence of the cell capacitance, which will effect the internal electric

field as discussed in section 5.1.1.

An alternative normalization method described by Thurston and Bowling [2] involves

normalizing the birefringence to the low frequency limit. However, the low frequency

limit could not be measured due to experimental limitations of the cell. The lowest fre-

quency measured was 100 Hz, which corresponds to a 10 ms pulse upon one complete



148

cycle. Pulses longer than 10 ms resulted in significant drift in the steady state amplitudes,

likely due to Joule heating and electrode polarization phenomena. Since at least one full

sinusoidal cycle must be output by the function generator, 100 Hz is the approximate

lower limit for this apparatus without further modification. As such, there is currently no

ready means to normalize the results to the low or high frequency limits without modifi-

cations of the cell and detector. Results will therefore be presented as raw data rather than

normalized birefringences.

An additional difficulty encountered in this experiment was the observation that fre-

quencies above 75 kHz showed a multimodal response. This was later determined to arise

from the detector resonating with the applied voltage over the cell, where signals became

indistinguishable from detector harmonic noise above 70-80 kHz (Figure 5.2.0.4). As

such, the AC component at limiting high frequencies can not be measured with our cur-

rent detector. Our preliminary results will be shown here in the context of how to improve

our apparatus for future experiments.

5.2.1 Tobacco Mosaic Virus

In order to compare our results with those of other TEB experimentalists, we obtained

a sample of Tobacco Mosaic Virus (TMV), for which much TEB data has been pub-

lished. In general, TMV is thought to be a monodisperse rod with a primarily induced

dipole. There has been some conflicting results for TMV for different strains and sample

preparations, some indicating a slight permanent dipole contribution, and many indicat-

ing deviations from monodispersity. We obtained two different samples from different

labs, and the TEM images for each can be seen in Figures 5.3.3.1 and 5.3.3.5 later in

this chapter. For both samples, smaller fragments were seen, negating the assumption

of monodispersity. The diameters appear to be quite homogeneous within each sample,
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(a) At 10 kHz, the response starts to becomes modulated by the de-
tector.

(b) At 70 kHz the detector ringing dominates. The sample double
frequency response is still discernible as a small shoulder.

(c) By 100 kHz the signal is no longer discernible from detector ring-
ing.

Figure 5.2.0.4: Detector response to an applied AC signal over the cell. Detector ringing
(large peak) is compounded with experimental response (small peak) at frequencies above
50 kHz. At 100 kHz, the sample’s response is indiscernible from the detector’s.



150

however. The sample provided from Theo Dreher was used for the frequency experiment

as follows.

5.2.1.1 Sample Preparation

The initial sample of TMV provided by Theo Dreher was at a TMV concentration of 26

mg/mL in a potassium phosphate buffer. The initial conductivity of the sample proved

too high for successful TEB experiments, even after dilution to 0.05% solids in low ionic

strength phosphate buffer. A 10 µL sample was therefore solvent exchanged into 1.5 x

10−4 M potassium phosphate (pH 7.0) via 10 x 500 µL volume dilutions using Centrifugal

Filter Units (Amicon Ultra,Ultracel 50K Membrane, Millipore). The final product was

diluted to 0.05% solids in 1.5 x 10−4 M potassium phosphate and used as such for TEB.

5.2.1.2 TMV Frequency Domain TEB

The TMV sample was placed in a 2 cm path length Kerr cell with planar stainless steel

electrodes placed 1 mm apart. An alternating voltage of 270 V peak-to-peak was applied

for all frequencies. Single pulses were applied for each frequency to avoid heating and

polarization effects.

5.2.1.3 TMV Frequency Domain Observations

The raw data for the TMV frequency domain experiment is shown in Figure 5.2.1.1.

The steady state birefringence for each frequency was calculated as the average of the

alternating (peak-to-peak) signal just short of the pulse end. The steady state and alter-

nating values are shown as a function of frequency in a log-log plot as per the method
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Figure 5.2.1.1: Raw data from frequency domain TEB of TMV. Pulsed electric fields of 10
ms duration, varying between 100 Hz (top-most curve) to 500 kHz (lowest curve), were
applied at 270 V peak-to-peak field strengths. Steady state value of alignment decreased
consecutively with increasing frequency. Tobacco Mosaic Virus (TMV) was provided by
Dr. Theo Dreher (Department of Microbiology, Oregon State University).

of Thurston [2] in Figure 5.2.1.2. (See Figure 2.3.2.1 for comparison.) The minima and

maxima of the alternating components are plotted according the method of O’Konski

in Figure 5.2.1.3(a), with the results obtained for TMV by O’Konski shown in Figure

5.2.1.3(b).

The primary difference we saw in our experiment from similarly published results

was the continued decrease in steady state birefringence with increasing frequency, even

up to 500 MHz. This was contrary to the results of O’Konski, et al., who saw a levelling

off of the steady state birefringence at around 10 kHz, as shown in Figure 5.2.1.3(b). It

was thought perhaps that changes in cell capacitance with frequency (and thus the internal

electric field) was to blame for this. The convergence of the alternating extrema occur at

roughly the same frequency as reported by O’Konski, however.
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Figure 5.2.1.2: Steady state and alternating components for TMV. The frequency domain
TEB steady state and alternating components are given versus frequency for TMV pro-
vided by provided by Dr. Theo Dreher.

5.2.2 Cellulose Nanocrystals

In order to determine whether slight shifts in protonation equilibrium contributed to elec-

tronic properties, a frequency domain experiment for cellulose nanocrystals was carried

out at low and high pH. IR spectroscopy was used to confirm that the carboxilic acid sur-

face groups of C.CNCs were predominantly in their acid and conjugate base forms at low

and high pH, respectively.

5.2.2.1 Sample Preparation

Cellulose Nanocrystals were prepared from Avicel PH101 microcrystalline cellulose us-

ing TEMPO carboxylation as described in Section 4.1. After final dialysis, aliquots of the

same preparation were adjusted to pH 4.8 and 11.2 with either HCl or NaOH, then dial-

ized using a tangential flow, hollow fiber filtration module (Spectrum Labs MicroKros,
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(a) Magnitude of alternating signal components for TMV.

(b) Results for TMV from [1]

Figure 5.2.1.3: Maxima and minima of alternating component for TMV. Experimental
values are shown as a function of frequency (a) and are compared to published results
from [1] (b). White circles and triangles in (b) correspond to experimental maxima and
minima, respectively, and solid lines represent calculated results. The vertical axis in
(b) is normalized birefringence, ∆n/∆n0 = δ/AE2

0 , whereas (a) reports non-normalized
birefringence. The continued decrease for both components at frequencies above 5 kHz
in (a) is not indicated by published results, and could represent competing mechanisms in
our apparatus.
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500 kDa pore size, 0.5 mm fiber ID) until permeate was less than 20 µS in conductivity.

IR spectra were taken of each to validate that the samples were in acid or sodium salt

form, respectively. Samples were adjusted to 0.05% solids and dynamic light scattering

sizing analysis was done to determine the average hydrodynamic sizes of each.

5.2.2.2 AC Frequency Domain TEB

The samples were placed in an alternating electric field of 10 mS total duration, ranging

in frequency between 100 Hz to 260 kHz. The peak-to-peak electric field amplitude was

maintained at 300 V/mm throughout the frequency range. Detection and digitization of

the signal was carried out as described in Chapter 4 using an 8-bit digital oscilloscope. For

the signal generation, either a Wavetek 166 (analog) or a Tektronix AFG3021B (digital)

function generator was used, with similar results from each.

5.2.2.3 C.CNC Frequency Dependence Results

The raw data for the frequency domain of C.CNC at pH 4.8 and 11.2 are shown in Figures

5.2.2.1 and 5.2.2.2. Figure 5.2.2.3 shows the phase shift as a function of frequency, from

which the relaxation time τ was calculated in Figure 5.2.2.4. Frequencies above 80 kHz

were not included in this calculation due to the uncertainties introduced by the detector.

The resulting relaxation times for the low frequency range are 6.1 µs and 5.3 µs for pH 4.8

and 11.2, respectively, using the phase shift approach. The rotational diffusion coefficient

DR is related to τ by τ = 1/(6 DR), which gives values of 27,400 s−1 and 31,400 s−1,

respectively, for pH 4.8 and pH 11.2. These are not indicative of the steady state diffusion

coefficient measured from the decay curves and are most likely dominated by smaller

particles in the samples.
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(a) Data for C.CNC at pH 4.8 for 100 to 1000 Hz

(b) Data for C.CNC at pH 4.8 for 1000 to 260000 Hz

Figure 5.2.2.1: Raw data for frequency domain C.CNC TEB at pH 4.8. Data is shown for
frequencies between (a) 100 Hz and 1 kHz, and (b) 1 kHz (top curve) and 260 kHz (bottom
curve). Above 1 kHz, steady state alignment degreased consecutively with increasing
frequency.
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(a) Data for C.CNC at pH 11.2 for 100 to 1000 Hz

(b) Data for C.CNC at pH 11.2 for 1000 to 260000 Hz

Figure 5.2.2.2: Raw data for frequency domain C.CNC TEB at pH 11.2. Data is shown
for frequencies between (a) 100 Hz and 1 kHz, and (b) 1 kHz (top curve) and 260 kHz
(bottom curve). Again, frequencies above 1 kHz resulted in decrease of steady state
alignment with increasing frequency.
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Figure 5.2.2.3: Phase angle as a function of frequency for C.CNCs. Phase shift for fre-
quencies above 75 kHz were compounded with detector ringing and could not be mea-
sured accurately.
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(a) Tanφ versus frequency for C.CNC at pH 4.2

(b) Tanφ versus frequency for C.CNC at pH 11.8

Figure 5.2.2.4: Relaxation time τ from frequency domain data for C.CNCs. τ is calcu-
lated for C.CNCs at different pH using the slope of the tangent of the phase shift φ versus
frequency. The slope results in 4πτ from equation 5.2.2, where τ is the characteristic
relaxation time for the particle [1].
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Figure 5.2.2.5(a) shows the steady state component of the birefringence for pH 4.8 and

11.2. There does not appear to be a significant difference between the samples, other than

that of a total magnitude of intensity shift due to experimental drift or slight differences in

concentration. Recall these are not normalized as in Figure 2.3.2.1 due to the experimental

difficulty of measuring high and low frequency limits. The overall behavior up to 5 kHz

could suggest a non-zero contribution of the permanent dipole to P in equation 2.3.8,

as illustrated by Figure 2.3.2.1(a) for negative P values. The decrease above 5 kHz,

however, is anomalous to any of the models suggested by [2] and Figure 2.3.2.1(a); we

must conclude that a response not modelled by Thurston and Bowling is at work in this

system. Figure 5.2.2.5(a) shows the alternating component of the birefringence to be

compared to Figure 2.3.2.1(b), where again the overall behavior could suggest a non-zero

P value indicative of a permanent dipole contribution.

In order to address anomalies from predicted models, it would behoove this research

to first eliminate the possibility of electrode polarization effects and other electrochemical

artefacts by coating the electrodes with an insulating material, or by using platinum elec-

trodes as reported by [2] and [1]. As such, future frequency response studies will depend

on a cell redesign with such issues in mind.

5.2.2.4 Mathematical Fitting Algorithms

The phase shifts charted in Figure 5.2.2.3 were measured using vertical (time) cursors

on a digital oscilloscope, and as such a large degree of uncertainty is associated with

them. The initial difficulty lies in selecting the appropriate maxima with electronically

noisy data as seen in Figures 5.2.0.4 and 5.2.2.6. Additionally, the low resolution time

increments reported by a digital scope tend to bias phase angles. A preferable approach

would be to model the cosine behavior of the response using a mathematical algorithm,
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(a) Steady State

(b) Alternating

Figure 5.2.2.5: Steady state and alternating components for CNCs. Birefringence values
for each component are given as a function of frequency for C.CNCs adjusted to pH 4.8
and 11.2.
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then use the fitted equation to extract the three desired parameters, namely the magnitude

of the alternating response (amplitude of the fit), the steady state response (given as a

DC offset), and the relative phase of the response with respect to the excitation signal.

A preliminary algorithm was written in Mathematica (Wolfram Research, Version 4.) to

accomplish this; the fits to three different frequencies are shown in Figure 5.2.2.6. The

advantages of this approach are clear. For the 5 kHz frequency the algorithm recognizes

the double frequency response of the signal. At 50 kHz, the algorithm becomes biased to

the first harmonic frequency detector response, ignoring the second harmonic peak as seen

in Figure 5.2.2.6(c). With appropriate data, however, this difficulty will be avoided and the

fitting approach can be used in preference to oscilloscope measurements (or estimations

in many cases). Additionally, a mathematical fitting method could be incorporated into

an automated sweep, allowing for in situ analyses. Work is in progress to develop such

techniques from our current apparatus.

5.2.2.5 Summary and Future Work

The expected shift in phase angle with frequency was seen for both samples, as seen in

Figure 5.2.2.3. The lower extrapolation to zero was compounded with the experimental

limitations described above. The saturation at 90 degrees was evident at frequencies above

80 kHz, albeit using somewhat suspect deconvolutions of detector-biased data. Above 10

kHz, lack of resolution in the data and electronic noise made phase angle measurements

somewhat uncertain, as seen for an experimental signals shown in Figure 5.2.0.4. While

at first glance there appears to be a difference in the slopes for each pH, a full study

cannot be concluded until a modified detector circuit can be constructed. Future work

in this area involves the design and production of a printed circuit board with a ground

plane for the amplification of the photodiode detector output. This will eliminate the
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ground loop problems created by the through-hole breadboard circuit photographed in

Figure 4.3.2.2(a). It will allow a greater range in frequency responses to be measured.

In addition, more care will be taken in the next generation detector to minimise thermal

noise such that clearer phase peaks can be measured. This, in combination with the

mathematical fitting algorithm, will greatly reduce the experimental drift and uncertainty

in the data shown so far.

This initial work, however, shows that the experiment is possible at the intensities

and data resolution currently produced by this apparatus. The optics and electronics are

sensitive enough to detect changes in modulation and phase at frequencies up to 300 kHz.

Our hope is that future frequency response studies can be used as sensitive measurements

for surface dielectric differences in our samples. With the recent acquisition of a 16-

bit, 10 MSa/s analog-to-digital converter, resolution of phase shifts data will be greatly

improved, facilitating this goal.

5.3 Sizing Data and Experimental Results

5.3.1 Sample Rates and Fitting Uncertainty

The majority of the data in this research was obtained using an 8-bit digital storage os-

cilloscope with a 2500 sample memory depth. Although an increase in sampling rate can

be obtained by adjusting the time scale, the compromise is to sacrifice large portions of

the trace in order to expand upon regions of interest. Since the diffusion coefficients were

calculated using the initial slope of the field free decay region, the oscilloscope was ad-

justed such that the first 10 percent of the data contained the last of the rise region, and the

remainder contained the initial decay (see Figure 5.3.1.2(b), for example). This allowed

for edge finding algorithms to determine a consistent start of the decay in the event of a
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(a) 5 kHz

(b) 30 kHz

(c) 50 kHz

Figure 5.2.2.6: Mathematical fitting to experimental data. A sinusoidal fit (smooth green
line) from Mathematica was applied to experimental data (jagged red line). By 50 kHz,
the algorithm takes a weighted average of the detector ringing and the cell birefringence.
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trigger delay or mistakes in oscilloscope settings on the part of the experimenter. Two

sampling rates were found to be sufficient for adequate linear fits using this technique,

specifically 100 µs per division (2.5 MHz sample rate) and 50 µs per division (5 MHz).

Expanding around the pulse edge results in a loss of all baseline information however,

and as such, normalization of the pulse cannot be accomplished. A full experiment would

require a full pulse data capture, followed by a higher sample rate capture. Since experi-

mental drift can be significant at long pulse lengths (see for example Figure 5.3.1.2a), the

data in successive captures may not necessarily be representative of one another. Future

work should involve a digitization method that can sample at sufficiently high sample

rates to obtain trustworthy diffusion coefficients, while having enough memory depth to

obtain full pulse information for the same pulse.

To demonstrate the uncertainty of the two pulse method, a TMV sample was pulsed

twice and the signal digitized at two different frequencies, 2.5 MHz and 100 kHz. The dif-

fusion coefficients were measured from each. Figure 5.3.1.1 shows representative AFM

images for the TMV used, and Figure 5.3.1.2 shows the TEB data for two sample rates.

Figure 5.3.1.3 shows the calculated diffusion coefficients for this data taken over the first

100 µs of the decay region for both sample rates. Although the diffusion coefficients

appear to agree at first approximation, Figure 5.3.1.4 shows the raw data for the 1 ms

truncation time pulse for the two rates. The linear fits for each illustrates the uncertainty

in fitting under-sampled data, where the full pulse capture provides only 10 data points,

as compared to the 250 points in the expanded pulse for the same time period.

5.3.2 Size Distributions of C.CNC

A cellulose nanocrystal suspension was concentrated to 5% solids and allowed to phase

separate for two weeks, after which a distinct separation between anisotropic and isotropic



165

(a) 5 microns

(b) 10 microns

Figure 5.3.1.1: AFM images of Tobacco Mosaic Virus (TMV). A roughly bimodal size
distribution can be seen, including end-to-end dimers in linear and boomerang-shaped
configurations. (Sample source is Qian Wang of the University of South Carolina.)
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(a) Full Pulse (100 kSa/s)

(b) Expanded Pulse (2.5 MSa/s)

Figure 5.3.1.2: Raw data for truncated pulse TEB at different sampling rates. In the
expanded pulse plot the lowest curve corresponds to the shortest pulse, with curve peaks
increasing with pulse length, and sequential pulses are offset in timescale for ease of com-
parison. (Sample is TMV provided by Qian Wang of the University of South Carolina.)
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Figure 5.3.1.3: Diffusion coefficients calculated for two different sample rates. Coeffi-
cients were calculated over the same time range (100 µs) from the data shown in Figure
5.3.1.2. (Sample is TMV provided by Qian Wang.)

liquid crystal phases was observed (Figure 5.3.2.1). Phases were separated and diluted to

0.05% solids in dust-free deionized water for TEB measurements. The lower anisotropic

phase was dubbed ‘bottom’ and the upper isotropic phase ‘top’. An aliquot of the orig-

inal suspension (unseparated) was likewise diluted to 0.05% solid and labelled ‘total’ to

indicate to full size distribution of the unseparated batch.

5.3.2.1 TEM of Liquid Crystal Phase Separated C.CNC

Aliquots of 0.05% C.CNC) were placed onto Formvar Carbon TEM support grids (300

mesh, Electron Microscopy Sciences) and allowed to dry. Grids were then stained with

2% uranyl acetate (50/50 alcohol/water solutions). TEM images were taken by Teresa

Sawyer at the Oregon State University Electron Microscopy Facility with a Philips CM12

Scanning Transmission Electron Microscope (STEM) running at 80 kV.
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(a) 100kHz Sample Rate

(b) 2.5 MHz Sample Rate

Figure 5.3.1.4: Linear fits of initial slope for two different sample rates. Data is from the
1 ms pulse truncation shown in Figure 5.3.1.3.
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Figure 5.3.2.1: C.CNC liquid crystal phase separation for particle sizing.

5.3.2.2 TEB of Liquid Crystal Phase Separated C.CNC

Truncated pulse TEB measurements were carried out in a 2 cm path-length, quartz cuvette

at 300 V/mm peak-to-peak field strength. Data digitization was carried out with the 8-bit

Tektronix TDS 1012B oscilloscope at 50 µS per division time resolution (5 MHz sample

rate) capturing only the initial falling trace at the edge of the pulse.

5.3.3 Size Distributions of TMV

Late in this research, a 16-bit, 10 MHz analog to digital converter was acquired, which

allowed for entire pulse lengths to be captured at 10 MSa/second samples rates for two

separate samples of Tobacco Mosaic Virus. The samples were provided by Dr. Theo

Dreher (Department of Microbiology, Oregon State University) and Dr. Qian Wang (De-

partment of Chemistry and Biochemistry, University of South Carolina). Representative

TEM images of each are shown in Figures 5.3.3.1 and 5.3.3.5.
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(a) Total (b) Top Phase

(c) Bottom Phase (d) Bottom Phase

Figure 5.3.2.2: TEM images of LC phase separated C.CNCs at 45kX magnification.
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(a) Total (b) Total

(c) Top Phase (d) Bottom Phase

Figure 5.3.2.3: TEM images of LC phase separated C.CNCs at 75kX magnification.
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Figure 5.3.2.4: Diffusion coefficients of LC phase separated C.CNCs. Coefficients were
calculated over six experiments using a mono-exponential decay model using Mathemat-
ica, and fitting was ceased when a set signal-to-noise criteria between the data and the
model was reached. Outliers were typically shown to arise from fitting truncation due to
intermittent noise from switching power supplies, microphonic pickup, and other labo-
ratory contributions. White squares represent the top phase and white circles the bottom
phase in Figure 5.3.2.1. Black diamonds indicate the suspension before LC phase separa-
tion.
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5.3.3.1 TEM of Tobacco Mosaic Virus

Samples were cross linked in 0.5% aqueous gluteraldehyde for 30 minutes, then desalted

using Centrifugal Filter Units (Amicon Ultra,Ultracel 50K Membrane, Millipore). Con-

centrated aliquots of the desalted TMV (1 µL) were placed onto Formvar Carbon TEM

support grids (300 mesh, Electron Microscopy Sciences) for several minutes, then excess

solutions were wicked off with lab tissue. Grids were then stained with 2% uranyl acetate

(50/50 alcohol/water solutions). TEM images were taken by Teresa Sawyer at the Ore-

gon State University Electron Microscopy Facility. The instrument was a Philips CM12

Scanning Transmission Electron Microscope (STEM) running at 80 kV.

5.3.3.2 TEB of Tobacco Mosaic Virus

Truncated pulse TEB measurements were carried out in a 2 cm path-length, quartz cuvette

at 270 V/mm peak-to-peak field strength. Data digitization was carried out with a 16-bit,

10 MHz ADLINK ADI9816H analog-to-digital (ADC) converter at full sampling rate (10

MSa/s). Full rise and decay pulses were captured simultaneously with the ADC and the

8-bit Tektronix TDS1012B oscilloscope. Oscilloscope data is shown for illustration only.

All diffusion coefficients were calculated from 16-bit data using Mathematica (Wolfram

Research Version 4.). Mono-exponential decay fits were calculated directly from the

initial decay.
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(a) Theo Dreher TMV, 885

(b) Theo Dreher TMV, 886

Figure 5.3.3.1: TEM images of OSU Tobacco Mosaic Virus (TMV). TMV was pro-
vided by Theo Dreher, Department of Microbiology, Oregon State University. Grids were
stained with 2% uranyl acetate and imaged at 80 kV.
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(a) Qian Wang TMV, 889 (b) Qian Wang TMV, 890

(c) Qian Wang TMV, 892 (d) Qian Wang TMV, 893

Figure 5.3.3.2: TEM images of USC Tobacco Mosaic Virus (TMV). TMV was provided
by Qian Wang, Department of Chemistry and Biochemistry, University of South Carolina.
Grids were stained with 2% uranyl acetate and imaged at 80 kV.
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(a) Theo Dreher TMV size distribution (b) Qian Wang TMV size distribution

Figure 5.3.3.3: Size distributions for OSU and USC TMV samples. Particles from TEM
images (Figures 5.3.3.1 and 5.3.3.5) were compared against scale bars to get length dis-
tributions. TMVs from Theo Dreher were consistently 16 nm in width, whereas TMVs
from Qian Wang appeared closer to 22 nm in diameter. Differences could be attributed to
variation in image resolution and focusing, as the TEM was reported to have had focusing
errors at the time of imaging.
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(a) Qian WangTMV

(b) Theo Dreher TMV

Figure 5.3.3.4: Raw data for truncated pulse TEB for different samples of TMV. Applied
voltage was 270 V/mm through a 2 cm path-length quartz cell.
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(a) Full Scale

(b) Expanded Time Scale

Figure 5.3.3.5: Diffusion coefficients calculated for different samples of TMV. Truncated
pulse experiments were performed for the two provided TMV samples and the diffusion
coefficient extracted using Mathematica. The TMV from Qian Wang indicates a larger
steady state diffusion coefficient at longer pulse lengths, as would be expected from the
larger particles seen in TEM images (Figures 5.3.3.1and 5.3.3.5.)
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Chapter 6 – Discussion

The outcome of this research was essentially an instrumental development project, where

actual experimental data more often revealed instrumental errors to be addressed rather

than reliable colloidal properties of our material of interest. Although the bulk of the

labwork involved cellulose nanocrystal (CNC) production, these techniques generally in-

volved published protocols rather than the development of novel CNC production meth-

ods. We did however run into discrepancies between the reported literature results and

those obtained in our lab, which required slight modifications to published protocols. This

chapter will start out by briefly discussing these modifications (Section 6.1), then move

onto the more challenging development of the TEB apparatus.

6.1 Cellulose Nanocrystal Production

6.1.1 Avicel PH-101 HCl Hydrolysis

It has been well characterized that hydrolysis of native cellulose in strong hydrochloric

or sulfuric acid results in a rapid decrease in degree of polymerization (DP) leading to a

level-off DP (LODP) which remains constant over a long period of time [1–3]. The initial

step in this process is the rapid protonation of the glycosidic oxygen, followed by the

fission of the glycosidic bond and the formation of a carbonium ion. The rate determining

step is the subsequent attack of water on this carbonium, followed by the regenerating the

hydronium ion (Figure 1.2.2.1) [2]. When all the accessible glycosidic bonds have been

hydrolyzed, the LODP is reached. This can be measured as a plateau in the increasing
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fluidity of the reaction mixture. Beyond this point, the material continues to lose mass

according to strictly first order kinetics. This has been attributed to reactions occurring at

the (now accessible) ends of the freed crystallites [2].

The production of commercial microcrystalline Avicel PH-101 involves an HCl hy-

drolysis step which takes cotton linters down to their LODP. Previously published proto-

cols have used this product directly for the TEMPO oxidation reaction and reported the

production of nanocrystalline cellulose. The additional HCl hydrolysis in our protocol

was found to increase yields of nanocrystals from 5-14% when TEMPO carboxylating di-

rectly from untreated Avicel PH-101 to 60-80% with HCl pre-treatment. It is unclear what

effect the HCl hydrolysis has in this procedure, as no significant increase in nanocrystal

concentration was observed directly from this step. It is thought that heating in HCl may

provide better chemical access to oxidizers and catalysts in the subsequent acidification

reaction by “activating” (swelling) cellulose as described by [4]. This could occur by re-

duction of crystallinity due to swelling of crystalline regions, although it has been reported

that greater mercerization depth from this type of swelling is achieved in alkali or LiCl

solutions rather than acidic solutions [5]. Swelling due to the introduction of water upon

attack of the carbonium ion could also be attributed (Figure 1.2.2.1). This is consistent

with results from modifying never-dried pulps as described by [6]. If this swelling allowed

for greater penetration of the oxidation reactants into the bulk, the resulting carboxylate

groups within cellulose aggregates could allow for greater dispersion into nanocrystals

upon sonication. It has also been reported that polyuronic acid sodium salts should be

soluble in the oxidation media at pH 10-11, and to that end oxidation of cellulose and

chitin have been continued until clear solutions were obtained [7]. In our case, the larger

scale of the reaction (80 g as opposed to 1 g cellulose) did not lead to clear solutions even

after 48 hour TEMPO oxidation at pH >9.7. However, clear solutions of the oxidized

and washed cellulose were readily obtained upon ultrasonication (Figure 4.1.1.3), with
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Figure 6.1.1.1: Alternative oxidation sites for cellulose. Hypochlorite in the absence of
TEMPO free radical can attack at carbons 2, 3 and 6, and at the glycosidic bond between
carbons 1 and 4’.

little agglomerates remaining upon microcscopic observation (Figure 4.1.1.4). It may

be of some concern how much mechanical damage occurs to nanocyrstalline whiskers

upon sonication. However, AFM imaging shows a high concentration of high aspect ra-

tio, nanocrystalline cellulose in the resulting sonicated suspensions, as well as smaller

particulates which could be precipitated salts or cellulose degradation products.

Although the Avicel-PH101 hydrolysis step is in addition to other published protocols

for cellulose TEMPO-carboxylation, it was shown to greatly increase yields of nanocrys-

talline cellulose in our lab. The protocol outlined in this work will typically give upwards

of 80% yields of nanocrystalline cellulose after 0.7 µm filtration when care is taken to

prevent loss of solids during centrifugation, decanting, and dialysis steps. Since the goal

of this work was to reproduce high yield CNC batches for subsequent applications, the

additional HCl hydrolysis and sonication steps were deemed necessary. Size separation

attempts were subsequently made to address the smaller particulates produced from the

harsh acid hydrolysis and high energy sonication steps.
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6.1.2 TEMPO Side Reaction Products and Reaction Feed Rates

In the absence of TEMPO, the hypochlorite oxidation of cellulose occurs non-specifically,

including attacks at carbons 6, 2, and 3, as well as the glucosidic bond between carbons 1

and 4’ (Figure 6.1.1.1). A detailed pH dependent study on the degradation and functional

group formation of hypochlorite showed that aldehyde and ketone groups were predom-

inantly formed at pH of 5 to 6, whereas carboxylic groups were predominantly formed

at pH 9 to 10 [8]. Degradation to soluble oxidized by-products was determined to be

minimal at pH 5-10, as determined by the 99% yields obtained after thorough washing

in water. This was thought to be due to the pH 7-10 being too weakly alkaline to cause

alkaline degradation, and pH 5-7 being too weakly acidic for acid hydrolysis [8]. As such,

the ideal pH for carboxylic acid formation was generally thought to be between 9 and 10

in the absence of TEMPO-mediator.

More specific oxidants, such as periodate at the C2-C3 atoms, and N2O4 at carbon 6,

may penetrate all phases of the fiber, causing changes in x-ray diffraction patterns. Non-

specific oxidants do not penetrate the crystalline regions of the fiber [9]. In addition, non-

specific oxidants can continue to attack primary oxidation products, resulting in a wide

array of side products. In contrast, the presence of TEMPO-mediator turns the nonspecific

hypochlorite oxidation into one preferential to primary alcohols over secondary, as first

described by [10] for a variety of alcohols. The mechanism involves the production of a

nitrosonium ion oxidant from the stable free-radical TEMPO precursor (Figure 6.1.2.1 (a

and b)). Oxidation results in a hydroxylamine by-broduct, which must be regenerated to

complete the catalytic cycle (Figure 6.1.2.1 c.)

The TEMPO reaction was introduced for the selective oxidation of primary alcohols

in carbohydrate chemistry using OCl-/HOCl to regenerate the nitrosonium ion oxidant

in [11–13]. Specifically, the C6 primary hydroxyl in cellulose and chitin is preferentially
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(a) TEMPO free radical (b) Nitrosonium Ion (c) Hydroxylamine

Figure 6.1.2.1: TEMPO intermediates for the cellulose oxidation reaction. The stable
nitroxyl radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (a) and the active oxidant
generated from TEMPO, nitrosonium ion (b) are shown. The hydroxylamine by-product
is produced from (c) upon oxidation of a primary hydroxyl.

carboxylated [14]. The rate of the TEMPO-mediated oxidation of α-D-glucopyranoside

was found to significantly increase above pH 9.5 by de Nooy, e al. [8].

Although the addition of excess NaOCl will also maintain the pH at these alkaline

conditions, this excess can cause cellulose degradation due to the competing oxidation

(glycol cleavage) arising from sodium hypobromite [4]. The established protocol to avoid

this reaction is to add small amounts of NaOCl at a time and wait for reaction to cease,

or to use greater concentrations of TEMPO. To accomplish the former, it was decided to

maintain pH with NaOH so that NaOCl could be added in controlled amounts.

In addition to the risk of degradation products from excess NaOCl, more recent stud-

ies have shown significant depolymerization of cellulose under alkaline conditions in

the TEMPO reaction [15–17]. However, only recently has work been done to avoid

this depolymerization by optimizing the carboxylic acid specificity under neutral con-

ditions [18]. As such, TEMPO reactions for this work were done at pH 9-10 according

to previously developed protocols. Subsequent work should, however try to adapt the

neutral TEMPO reaction to avoid smaller contaminating particulates that arise from de-

polymerization.
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6.2 Data Acquisition and Quantization Error

The majority of the data in this dissertation was obtained using a digital storage oscillo-

scope (DSO) as an analog-to-digital converter. Thus it becomes important to understand

the basic operational capabilities and limitations of such an instrument.

6.2.1 ADC Conversion and Digital Storage Oscilloscope Operation

6.2.1.1 Scale and Resolution

An anolog-to-digital converter (ADC) is a device that converts a continuous anolog input

value, such as a voltage, into a discrete digital number proportional to the magnitude of

the input value. When an ADC converts a continuous input signal, the number of discrete

values it can produce over the range of analog values is determined by the number of

bits in the ADC. When stored in binary form, the number of values is proportional to

the number of bits M by 2M . An 8-bit ADC has 256 discrete values (28), for example.

The resolution (R) of the ADC is determined by the full scale voltage range (EFRS) by

R =
EFSR
N

, where N = 2M is the number of discrete intervals.

Quantization noise arises from the finite resolution of the ADC. When a linear ADC

maps each continuous voltage input value to a corresponding discrete output value, a

rounding or truncation occurs. The value the output is given is determined ultimately by

the least significant bit (LSB), which comprises
1

2M
of the entire signal range. In an eight-

bit ADC for example, the LSB is 1/256th, or around 0.4%, of the total range. Therefore,

as the full scale voltage range increases, the quantization noise increases linearly with it.
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6.2.1.2 ADC Sample Rates and Synchronous Flash Conversion

The speed of an ADC defines the sample rate, or the number of values it can read and

write over a unit time. To overcome the limitations of low sampling speed, various in-

tegrated circuit designs have been implemented. One such design, used commonly in

laboratory and teaching quality DSOs, is the Synchronous Flash Conversion technology.

This design uses an array of comparators, devices which sample two different voltages or

currents and adjust their output to indicate which is higher. A single, high speed ADC

can be replaced by a parallel array of 2M − 1 comparators, where M is the number of

bits. The voltage to be sampled is fed into the non-inverting pin of each comparator, and

a reference voltage (equal to the converter full scale voltage) into the inverting pin of

each comparator in series with a high precision resistor (Figure 6.2.1.1). The circuit is

designed such that, as the sampled voltage increases in value, the number of comparators

outputting a HI value increases (in order from comparator 1 to comparator 2M − 1). The

output of all comparators are input into a logic circuit which interprets the value as a bi-

nary number. This means that, for example, an 8-bit flash converter would require 255

different comparators. Ensuring that all 255 comparators are calibrated correctly imposes

difficulties, as does the need for 2M high precision resistors

A hybrid pipelined flash conversion technology is also used, where the conversion

is split into stages. In this way, the number of comparators required is (2N − 1)/M ,

where M is the number of stages. In order to get the full sampling rate of the ADC, the

comparators are clocked in sequence, with each providing a different sample/value in the

final waveform. In this way, only one digital device, the synchronizing clock, needs to be

as fast as the compiled sample rate. This reduces the number of high speed comparators

required, and thus the total cost of the device.

The synchronous flash conversion allows for much higher sampling frequencies than
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Figure 6.2.1.1: Circuit schematic for a Synchronous Flash Converter. Synchronous flash
conversion for a N-bit ADC uses 2N voltage comparators in the absence of interleaving.
Hybrid pipelined conversion allows for comparitors to be clocked in sequence, reducing
the number of comparitors required to (2N − 1)/M , where M is the number of clocked
stages.

many practical ADCs by dividing the continuous analog input into multiple comparators.

The TDS1012B DSO for example has a sampling rate up to 1 GSa/s. However, the

waveform is essentially interlaced with samples from multiple comparators, and as such

it is prone to sampling errors when variability between input resistors and comparators

arise. Regular calibration and maintenance is required to ensure that gain and DC offsets

for all comparators are comparable.

6.2.1.3 Nyquist Frequency

The Nyquist sampling frequency theorem defines the minimum frequency of evenly spaced

sampling required to uniquely represent a reproducible waveform as 2fmax, where fmax

is the fastest frequency component in the waveform. Figure 6.2.1.2 shows a waveform

sampled at and below the Nyquist frequency. We can see that, although the waveform pe-
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Figure 6.2.1.2: A 100 kHz signal sampled at and below the Nyquist frequency. The high-
est frequency component of the signal, fmax, is 100 kHz. It is sampled at 200 kHz (2fmax,
i.e. the Nyquist frequency, shown as squares with short dashed line) and at 125 kHz (cir-
cles with long dashed line.) The periodicity of the signal is represented at the Nyquist
frequency, but is misinterpreted at lower sampling frequency. Neither sampling accu-
rately represents the shape of the waveform, however, which requires higher multiples of
the Nyquist frequency depending on the periodicity of the waveform.

riodicity can be represented by 2fmax, the actual shape of the waveform generally requires

a much higher multiple of 10fmax. A good approximation for a regular waveform would

be fmax. For a waveform with no periodicity, the Nyquist frequency would in essence be

infinite. While it is impractical to sample infinitely, the expected time responses in an ex-

perimental system should be understood from a priori data when designing the detection

and digitization system so that the representative features are captured.

6.2.2 DSO Memory Depth and Sampling Rates

When a DSO trigger voltage threshold is reached, the trigger circuitry signals the ADC

array to start inputting its output values to non-volatile memory. The device samples the
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input voltage at regular time intervals, and stores each digitized output value until the

memory is full. The number of samples the device can hold is referred to as the memory

depth. The sampling rate (the number of samples per second) depends of the time base

scale set for the instrument. In the case of the TDS1012B DSO, with a memory depth of

2500 for example, the time base of 5 ms/div x 10 div gives rise to a 50 kSa/s sample rate.

The sample frequency becomes ultimately limited by the total length of the waveform.

Capturing longer waveforms requires a sacrifice in the sampling frequency, and a loss in

waveform information if the Nyquist frequency criteria is not met.

6.2.3 DSO Vertical Resolution

The quantization noise can be controlled by manipulating the input voltage range of the

ADC, whereas the electronic and signal noise remain constant over all experimental input

ranges. One would ideally like to ensure that the quantization error does not exceed the

electronic noise, then maximize the signal-to-noise ratio within the optimal input voltage

range. With bit noise increasing linearly with input voltage range (see table in Figure

4.3.4.1), the smallest input signal range that sufficiently dominates over signal noise must

be used. This may require attenuation of the signal, either optically at the detector, or

electronically with resistors ahead of the input. Optical attenuation can add strain bire-

fringence due to imperfect optics, so a variable controlled resistor circuit may be prefer-

able in this case. The application to data acquisition can be seen in the experimental data

obtained by the 8-bit TDS1012B and TDS2024B oscilloscopes. For these devices, the

input signal range can be varied from 2 mV to 5 V per division on the vertical scale, and

the quantization noise changes for the same signal depending of the scale chosen. Figure

6.2.3.1 is an example of the same signal captured at different scales by the TDS1012B,

illustrating the magnitude of quantization error that can be introduced by selecting an
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Figure 6.2.3.1: Baseline signal captured at different acquisition gains. The different volt-
age gains shows how the magnitude of quantization error increases with the full scale
input voltage of the ADC. Individual traces have been deliberately offset from each other
for clarity, with smallest gain (100 mV per division) at bottom of graph and successively
increasing gains going from bottom to top.

inappropriate acquisition scale.

6.2.4 Instrumental and Electronic Noise

The entire experimental setup showed a consistent and reproducible electronic back-

ground signal at 50-60 kHz, 10-15 mV peak-to-peak as shown in Figure 6.2.4.1. This is

overlaid by various faster signals at smaller amplitudes, possibly thermal noise in the de-

tector compounded with quantization error. The lower frequency, higher amplitude signal

has be shown to be unrelated to stray light, occurring with the detector blocked, and can

be decreased in amplitude to 6 mV with Faraday shielding of the detector and preamp

circuit. Although the exact source is unknown, this noise is generally negligible with

respect to experimental data, and represents the maximum noise level that does not arise
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from digitization effects.

When digitizing the baseline signal using the 8-bit TDS1012B oscilloscope, we can

ascertain that the quantization error becomes comparable to the 50-60 kHz electronic

noise at gains of 100 mV/div and higher. At 200 mV/div, the quantization error is equal

to the amplitude of the electronic noise, causing a doubling in the background noise am-

plitude, as seen in Figure 6.2.4.2. At 500 mV/div gain and higher, the quantization error

dominates over electronic noise, adding greater uncertainty with greater gain. The effect

is somewhat diminished in rise and decay regions of experimental data as shown in Fig-

ure 6.2.4.3. However, gains above 1 V/div are still untenable for decay slope analysis as

seen in Figure 6.2.4.3. The difficulty quickly arises in finding a suitable acquisition scale

that both optimizes the signal-to-electronic-noise ratio while minimizing quantization er-

ror. For this system, no such window was found that was able to digitize the entire pulse

from baseline to peak. As such, baseline information was discarded in favor of a higher

resolution digitization of the falling edge of each truncated pulse.

For this work, the assumption is that the initial decay region upon pulse termination

represents an average diffusion coefficient for that experimental condition. By minimizing

the voltage gain setting on the oscilloscope and using optical attenuation for longer pulses,

it was feasible to measure only the initial slope of the falling edge for each truncated pulse

without significant contribution from quantization error. Two advantages to this approach

exist, despite the dominance of quantization error over electronic noise in baseline signals

at the same gain settings. The first advantage is the rapid change in voltage over time

at the pulse edge, which provides better signal-to-noise ratios as described by Jennings

[19,20]. The second advantage is that the slope is taken as a semi-log plot of ln(voltage)

versus time. The slope is thus mathematically insensitive to attenuation effects. Slight

differences were seen with baseline correction when such data was available, however,

indicating a disadvantage in one aspect. It was therefore decided to align the analyzer as
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(a) Baseline Electronic Noise.

(b) Expansion of waveform showing quantization errors.

Figure 6.2.4.1: Systematic electronic noise. Baseline noise is digitized at 5 MSa/s time
resolution and 2 mV/div voltage scale (0.08 mV resolution). Electronic noise is composed
of 10-15 mV peak-to-peak, 50-60 kHz waveform, which is overlaid by faster waveforms
of smaller RMS voltage, possible digitization errors from the synchronous flash conver-
sion array.
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closely as possible to crossed position with the polarizer, with the removal of the quarter

wave plate for reasons discussed in Sections 4.2.2 and 4.2.6. This allowed us to minimize

baseline contributions, and thus errors in the final analysis.

In addition to the increase in signal-to-noise ratio, a decrease in quantization error

occurs upon taking the natural log of the voltage. While this allowed us to get more

consistent diffusion coefficients for size analysis, it represents an artificial repression of

random noise, which biases the linear inverse analysis in the final stage of processing.

A better solution to this problem would be to increase the vertical resolution using a 12-

bit or 16-bit ADC, and to take diffusion coefficients directly from an initial exponential

decay region computed using mathematical algorithms. In this way larger voltage scales

can be captured without significant quantization error. Moreover, baseline and rise curve

information could be preserved with each pulse for other analytical applications without

loss in fine signal resolution. Significant headway in this area has been made using an

ADI9816H ADC (ADLINK Technologies) in tandem with Mathematica, as shown in

Section 5.3.3.2.

6.2.5 ADC Conversion and Resolution Over Time

Using a digital storage oscilloscope as an ADC for data capture limits the experimenter

in time resolution and scale. A continuous ADC board sending data to a computer can

be used to save any file size not limited by the computer memory or processing rate.

In contrast, a digital storage oscilloscope digitizes a single batch of data to a file that is

obtained either by waveform interlacing and sample averaging, or single sequence acqui-

sitions. In both cases, the data set digitized represents the waveform displayed on the

screen of the oscilloscope and is limited in length by the memory depth of the oscillo-

scope, as discussed in the DSO operation section. In the same way the vertical resolution
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Figure 6.2.4.2: Electronic noise shown in Figure 6.2.4.1 digitized at different gains. The
noise is digitized at vertical gains between 10 mV and 200 mV per division. At 100
mV/div gains and higher, quantization noise dominates over electronic noise.

Figure 6.2.4.3: Quantization error over experimental signal. An example of quantiza-
tion error compounded with the signal is expanded around edge of pulse, illustrating the
magnitude of error in the initial slope introduced by quantization noise.
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is determined by the total voltage scale chosen divided by the number of discrete digitized

increments (2bit number), the sampling rate is defined by the total time scale displayed by

the screen divided by the memory depth. The resolution in time scale thus comes from

the scale chosen by the experimenter.

As mentioned above for the this system, the TDS1012B series oscilloscope had a

memory depth of 2500 points for all horizontal time scales, and variable time acquisition

scales from 1GSa/s at 2.5 µs/div time scale (times 10 divisions to get a total capture pe-

riod of 25 µs) to 5 Sa/s at 50 s/div (for a total waveform length of 500 s). The difficulty

now arises in finding a time scale acquisition window that appropriately samples the high

frequency features of the experimental signal, while still capturing enough of the signal

to see the overall behaviour of the experiment. Figure 6.2.5.1 shows an example of exper-

imental data samples at two different rates, illustrating how high frequency attributes can

be lost in the process of under-sampling, also known as aliasing, when the Nyquist sam-

pling frequency is not met. However, when the oversampled frequency merely reveals the

level of quantization noise, as is clearly the case in Figure 6.2.5.1(b), no clear advantage

is obtained. Increased resolution must come from both fronts, time sampling resolution

and vertical bit-resolution.

As was the case for vertical resolution, a window was not found for this system that

captured the full rise and decay regions of the typical truncated pulse while adequately

sampling the initial decay region for analysis. The rise curve and the decay to baseline

regions were therefore sacrificed in favor of expansion around the pulse edge. Figure

6.2.5.2 shows the same signal captured at 5 MSa/s and 250 kSa/s sampling rates. Al-

though information can be obtained from each sampling, this method involves digitizing

two separate pulses at two different times, where experimental drift from Joule heating

and electrophoresis make the reproducibility of sequential pulses uncertain.

The long term solution for both voltage and time scale resolutions problems is to
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develop a high frequency, 16-bit ADC board in tandem with a real-time operating sys-

tem computer capable of capturing entire pulses at the optimal sampling rates. Here,

additional computer automation can allow multiple pulses to be captured and averaged

to account for experimental drift. Edge finding and exponential fitting algorithms could

further be incorporated in real time to allow for in situ measurements of decay times.

While robust mathematical models for estimating diffusion coefficient and size distribu-

tions from decay times may yet be lagging, there is no reason for electronics to be the

major limiting factor in TEB analysis with current computing resources available.

6.2.6 16-Bit versus 8-bit data

Since the recent acquisition of a 10 MSa/s, 16-bit ADC (ADLINK ADI9816H), a number

of comparative experiments were carried out against the Tektronix TDS1012B oscillo-

scope. The first captured the same signal at 10 MHz over the entire memory depth of the

oscilloscope (2500 samples) at 50 mV per division vertical resolution TDS1012B. Figure

6.2.6.1 shows the digitization results for the two different vertical resolutions, showing

the clear disadvantage of 8-bit data. Since most experiments require at least a 100 mV per

division or greater resolution on the oscilloscope in order to capture the entire trace, the

difficulties in data resolution become monumental under normal experimental conditions.

Apart from the obvious advantages of sampling rate and vertical resolution, the several

order of magnitude increase in signal-to-noise ratio for the ADI9816H over the oscillo-

scope is apparent from the power spectral frequency plots (Figure 6.2.6.2.) In order to

compare the experimental signal-to-quantization noise ratio (SNRQ) of the TDS1012B

scope to the reported SNR of the ADI9816H, a 1 MHz, 1.8 V peak-to-peak sinusoidal

signal was input to the oscilloscope in order to match the conditions reported by the

ADI9816H technical manual. The fast Fourier transform was measured for comparison.
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(a) Undersampling

(b) Undersampling expanded

Figure 6.2.5.1: Undersampling bias on signal imposed with electronic noise. This exam-
ple is digitized at 100 mV/div vertical scale, with a resolution of 4 mV. Lower frequency
waveforms are represented by both sampling rates. Faster frequency components repre-
sented at 10 MSa/s (closed diamonds) are unrepresented at 500 kSa/s (open circles).
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(a) Typical truncated pulse

(b) Typical truncated pulse expanded

Figure 6.2.5.2: Typical truncated pulse for two different sampling rates. Entire memory
depth waveforms are shown in (a) for sampling rates of 5 MSa/s (white line, digitized
at 500 mV/div, 0.02 V resolution) and 250 kSa/s (black line, digitized at 1 V/div, 0.04
V resolution). Expansion around the pulse edge in (b) shows the effect of biasing from
under-sampling at initial pulse edge.
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(a) Full Range

(b) Expanded around baseline

Figure 6.2.6.1: Digitization using 8-bit versus 16-bit ADCs. TEB traces are digitized by
an ADLINK ADI9816H 16-bit ADC and a Tektronix TDS1012B 8 bit digital oscilloscope
at 50 mV per division resolution
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The definition of the SNRQ for a given ADC is the ratio of the root mean square of the

value of the input signal to the root mean square of the quantization noise of that ADC,

and is given mathematically by

SNRQ = 6.02N + 4.77 + 20log 10(LF ) [dB], (6.2.1)

where N is the number of bits, and the loading factor LF is equal to 0.707 for a sinusoidal

input signal. Therefore, the maximum SNRQ possible for a 16-bit ADC is 98.09 dB,

whereas the maximum possible for an 8-bit ADC is 49.93 dB. These are confirmed in

Figure 6.2.6.2 at the 1 MHz peak for each ADC. The ADI9816H actually has a greater

than 98.09 dB SNRQ, which could be explained as the effect of oversampling discussed

in [21]. This difference may not seem significant until one recalls that dBs are measured

on log scales, and this represents several orders of magnitude improvement in SNRQ.

6.2.7 Data Acquisition Summary

TEB analysts have historically used oscilloscopes to capture traces, and with the advent of

digitizing oscilloscopes, to obtain digital information for data processing and exponential

fitting. The 8-bit oscilloscope represents a dated technology however. Despite the histor-

ical attachment many experimentalist still have for them, recent 16-bit, high speed ADCs

are now relatively inexpensive and accessible for off-the-shelf applications. A revolution

in data capture would benefit the TEB field. Fine detail in the frequency response is often

lost in favor of gaining global information on the trace, which switching to an appropriate

16-bit ADC would prevent. In addition, the signal-to-noise ratio can often be improved

by several orders of magnitude. All future work in our lab will use digital oscilloscopes

for monitoring purposes only, and 16-bit data for all future data processing.



200

(a) ADLINK ADI9816H ADC

(b) Tektronix TDS1012B DSO

Figure 6.2.6.2: Power spectral density (PSD) plots of 16-bit versus 8-bit ADCs. An
ADLINK ADI9816H 16-bit ADC PSD is compared to that of the TDS1012B 8-bit digital
oscilloscope.
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6.3 TEB for Macroparticle Characterization

6.3.1 Linear Inverse Calculations for Size Distribution Determination

For polydisperse systems, the challenge in applying inverse theory to the extraction of

sizes via optical measurements of exponential decay is embedded in layers. Firstly, the

exponential decay under any experimental condition represents multiple diffusion coeffi-

cients for each contributing species. Extracting each diffusion coefficient for each species

is in itself an inverse problem, fraught with its own uncertainty. The data is also con-

voluted by optical and experimental drift. Complicating this, the models for diffusion

coefficients as a function of particle dimensions are heavily debated. Solving this inverse

problem requires a pulse of sufficient duration or amplitude such that all species in solu-

tion are represented, that is they have reached their steady state distribution. Steady state

distribution does not, however, equate to the same degree of alignment for each species,

since the degree of alignment will vary with the length of particle. The application of

geometry sensitive models is therefore not necessarily straightforward.

Secondly, assuming that distinct diffusion coefficients can be measured for dominat-

ing species using controlled field conditions [19, 20, 22, 23], the determination of size

distributions now becomes a second inverse problem requiring a quantized ensemble of

estimated diffusion coefficients. Each of the estimated coefficients are associated with

optical noise and drift, and are now additionally convoluted with no small degree of error

and uncertainty given the measurement technique. The solution then requires an appropri-

ate and accurate model to equate diffusion coefficient to particle dimensions. The matter

is one of considerable debate in the field. The discussion below will attempt to describe

the specific challenges encountered in this research.
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6.3.1.1 Uncertainty in Determining Diffusion Coefficients

Although various methods have been suggested in the literature for estimating coefficients

from multi-exponential decay curves, the method we relied upon most for this work was

that proposed by O’konski [24] and later by Jennings [25]. Here, the initial linear de-

cay from a semi-log plot of birefringence versus time was considered to be the average

diffusion coefficient. Although there is no rigorous evidence that this is the case, the ex-

perimental ease of using this method makes it more appealing. We found however that

the “initial linear” description in the literature came with significant ambiguity when it

came time for experimental interpretation. Since the slope in the “initial linear” region

decreases continuously with time, the curvature of which increases with polydispersity,

increasing the amount of time over which the data was fit gave increasingly lower diffu-

sion coefficients. This is shown in Figure 6.3.1.1. For the same series of pulses, diffusion

coefficients were extracted for 6, 11, and 26 µs after the termination of pulse, with lower

diffusion coefficients being obtained for longer sampling times. For the top and total

phases, the diffusion coefficients clearly overlap for different fitting times.

In the absence of any theoretical rational for selecting one fitting time-range over an-

other, we debated several methods. By selecting an arbitrary time scale for all samples,

we could not be certain we were representing the same fraction for samples of different

size distributions. That is, samples with a smaller overall size distribution may require a

shorter decay region to represent the same fraction of particles that a sample with longer

particles would require. Selecting a linear regression fit parameter did not prove to be a

rigorous enough method for consistent results given the difficulties we had with under-

sampling and quantization noise arising from 8-bit data (Recall Section 6.2). What we

found, however was that choosing the same time scale for all samples within any given ex-

periment appeared to give consistent and reproducible results. We therefore present data
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Figure 6.3.1.1: Diffusion coefficients calculated over three different decay times. Co-
efficients were determined from truncated pulse TEB for the top phase (circles) and the
bottom phase (diamonds) in Figure 5.3.2.1, as well as for the total unseparated suspension
(triangles). Coefficients were calculated using the semi-log plots of signal versus time,
starting at the end of the excitation pulse and continuing for either 6 µs (black), 11 µs
(gray), or 26 µs (white). The uncertainty in the ‘initial linear’ response method is appar-
ent from the overlap in diffusion coefficients for top and total phases at long and short
fitting times.

for sample diffusion coefficient distributions as relative to one another under identical

processing conditions and make no claims as to the accuracy the the reported coefficients

themselves.

6.3.1.2 Truncated Pulse: Difficulties with Jennings Method

In order for a linear inverse theory to be robustly applied to experimental data, several

criteria need to be met. Firstly, a model that accurately describes the system must be

applied. Secondly, the inverse method must suppress noise, or at least not amplify it.

Thirdly, the noise should be ‘small’. Fourthly, the data should be robust and trustwor-
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thy (that is, have reasonable measurement uncertainties.) Fifthly, the solution must (a)

converge when model data is applied, and (b) should still converge to model data when

random noise is added. The sixth criteria is that he data should be oversampled in all

parameter space.

The difficulty with the first point was addressed in section 3.1.2.5 in context of con-

flicting models for diffusional coefficients for cylindrical particles. The third and fourth

points are issues in our data as seen from the experimental drift (take for example Figure

5.3.2.4), as well as the characterized noise associated with our digitization and detection

methods. We hope in the future to control much of the drift using a thermally regulated

cell and insulative coatings for electrodes. The quantization noise has largely been reme-

died with the 16-bit ADC; the planned improvements in the detector will reduce thermal

noise and resonant effects, as well as improve the detector response time.

The second and fifth points come from the specific inverse method. Since real data

will inevitably have noise, an exact fit to the model will not converge to a realistic so-

lution unless a reasonable estimation of that noise is incorporated into the regression.

Provencher develops a parameter called the regularizer to do this. In addition, they use a

‘parsimony’ analysis which attempts to use the most simple model that will yield novel

information.

Although Jennings, et al. claim to use the ‘Provencher parsimony’ analysis in their

statistical least squares procedure [19], they adopted several short-cuts which compro-

mise the trustworthiness of their convergence. For one, they do not explicitly incorporate

an experimental noise term, nor do they impose constraints such as all positive model pa-

rameters, as demonstrated by the negative values they obtained for overly restricted length

ranges. Provencher states in [26] that for certain cases (when experimental error εk = 0),

there are exact analytic inversion formulas for sλ. (Recall definitions from Equation 3.2.2

and Section 3.2.1.) He continues however, “any ‘exact’ inversion ignoring εk will select
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from Ω one member which will depend on the εk. In view of the unboundedness of the

errors· · · this member will be a poor estimate of true sλ. Therefore exact inversion formu-

las or iterative algorithms converging on them cannot be directly applied to experimental

data.” Likewise, Jennings, et al. acknowledge that their “method had the disadvantage

that it attempted to provide an exact fit to the data. It is not uncommon to fail to find an

all-positive solution owing to experimental uncertainties in the transient decay data.” [19]

After significant work with the Jennings algorithm, our group came to realize the signif-

icance of this caveat. In order to obtain realistic convergences, some estimation of the

uncertainty must be incorporated into (or estimated from) a least squares fitting algorithm

just as would be required of a full linear inverse problem.

In order to test the Jennings method for cellulose nanocrystals, an algorithm was writ-

ten by Dr. John Simonsen using the protocol outlined in [19]. To test the algorithm, model

data was generated for bimodal size distributions of 50/50 size fraction, and trimodal size

distributions for 22/56/22 and 33/33/33 size fractions. A constant diameter of 7 nm was

assumed using the average diameter measured by AFM. The effects of changing the cycle

criteria (lowest acceptable error for a cycle fit) and the order of the search (from low to

high values versus from high to low values) were explored. Figure 6.3.1.2 shows the fit

for the algorithm to model data for the bimodal distribution, with a chi-squared value of

93. Figure 6.3.1.3 shows an improvement in the chi-squared value with a more stringent

cycle criteria imposed for trimodal data. The effects of search order are shown in Figure

6.3.1.4. From all three figures, it can be seen that the algorithm fails to converge satisfac-

torily for any of the distributions or processing methods, violating the fifth criteria listed

at the beginning of this section. Despite this, the algorithm was applied to experimental

data for LC phase separated C.CNCs to see if a statistical difference could be obtained.

An additional difficulty in Jennings method came from their oversimplification of the

Perrin model for rigid rods. In their original paper, they assumed the diameter of their
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(a) Fit to model bimodal data

(b) Model diffusion coefficients for bimodal data

Figure 6.3.1.2: Model data for a bimodal distribution fit. The fit uses Jenning’s least
squares method [19]. Chi-squared value was 93.
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(a) Trimodel fit for a cycle criteria of 10−4, chi-squared of 115.

(b) Trimodel fit for a cycle criteria of 10−5, chi-squared of 44.

Figure 6.3.1.3: Model data for a trimodal distribution fit using different cycle criteria.
The cycle criteria sets the minimal acceptable error between the data and the converged
solution throughout the iterative fitting process.
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(a) Trimodel fit for a cycle criteria of 10−5, searching from low to high. Chi-squared
was 130.

(b) Trimodel fit for a cycle criteria of 10−5, searching from high to low. Chi-squared
was 406.

Figure 6.3.1.4: Model data for a trimodal distribution fit. The fit uses a cycle criteria of
10−5, and searches from low to high (a) or from high to low (b).
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test particles was constant regardless of length. Since this in not supported in our AFM

analysis of C.CNCs, we modified the method to include constant diameter, constant aspect

ratio, and a gradiated aspect ratio with particle lengths. The converged results for each of

these models is shown in Figures 6.3.1.5 and 6.3.1.6 for phase separated C.CNCs. Slight

differences were seen between models for each phase, the statistical significance of which

is still under discussion in our group. The fit regression between data and model is shown

to the left of each generated histogram, indicating an improvement in fit with deviation

from the constant diameter assumed by Jennings.

The final criteria, point six, is clearly not met by our TEB data as it is currently ob-

tained. The parameter space for TEB includes variation in sample concentration, strength

and frequency of applied field, and field duration. Without an automated measurement

system, it is infeasible to get a full sampling of frequencies and field strengths. A one

dimensional parameter was used for each inverse regression (in our case variation in field

duration over constant field strength and frequency.) It may be intuitively thought that an

increase in parameters degrees would narrow the convergence, i. e. a two dimensional

inverse regression. However, the increased number of variables, and their associated un-

certainty can lead to statistical over-fitting. As such, even more control over experimental

noise is required. A two dimensional inverse regression would therefore require extensive

modifications of the apparatus and the data capture methods currently in use. Addition-

ally, a higher level of mathematical sophistication would be required for a two dimen-

sional analysis. Future collaborations are currently being sought which will allow us to

address these issues.
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(a) Top phase, constant diameter (7 nm)

(b) Top phase, constant aspect ratio (20)

(c) Top phase, gradiated aspect ratio

Figure 6.3.1.5: Aspect ratio dependence of Jenning’s method. A linear inverse fitting
method [23] is applied for constant diameter, constant aspect ratio, and gradiated aspect
ratio for the top phase of a C.CNC LC phase separation using TEB truncated pulse exper-
iments. Size distributions are shown to the left, and the model fit to measured diffusion
coefficients to the right.
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(a) Bottom phase, constant diameter (7 nm)

(b) Bottom phase, constant aspect ratio (20)

(c) Bottom phase, gradiated aspect ratio

Figure 6.3.1.6: Aspect ratio dependence of Jenning’s method, bottom phase. The same
linear inverse method is applied as in Figure 6.3.1.5 for the bottom phase of C.CNC
phase separation. Size distributions are to the left, the model fit to measured diffusion
coefficients to the right.
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Chapter 7 – Conclusion

7.1 CNC Dispersions

A method for producing up to 80% yields of truly nanocrystal sized C.CNCs was devel-

oped from modifications of existing protocols, which we determined did not produce the

reported percent yields after rigorous filtration and removal of all particles greater than

nanosized crystallites. We demonstrated a size exclusion technique specific to C.CNCs

using liquid crystal phase separation, and demonstrated a method for laboratory scale

preparative separations. The difference in relative size distributions between phases was

demonstrated using AFM and TEB. The necessity of surface charge was proven for the

occurrence of C.CNC liquid crystal behavior and the inhibiting effect of shielding coun-

terions was demonstrated.

7.2 TEB Apparatus and Protocols

We have developed a TEB apparatus with improved data resolution and signal-to-quantization

noise ratios using a 16-bit ADC. The necessity for improved signal-to-electronic noise ra-

tio for measured TEB signals was established from frequency domain experiments, and

methods for improvement were outlined. This includes the development of a low noise

detector optimized for the low input impedance ADC requirements for the optimization

of overall system performance.

We also demonstrate that the linear approximation regimes for TEB optical systems

using a quarter wave plate are in the most general case inadequate for accurate data inter-
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pretation. Likewise, the use of a quarter wave plate in the absence of a means to precisely

align it with six degrees of laboratory freedom yields highly questionable results, and is

therefore not advisable for the electrochemist not trained in optics. Robust and precise

mathematical models are given for the two optical configurations for TEB, with and with-

out the quarter wave plate, as standards by which researchers can test the alignment and

trustworthiness of their apparatus.

7.3 Size Distribution Calculations

The latter century is filled with research and mathematical attempts to relate measurable

hydrodynamic properties of materials to their real physical properties via mathematical

models of the system. These models are often intractably complicated due to the com-

peting electrical and hydrodynamic mechanisms. In addition, polydispersity gives rise

to continuous solutions requiring multi-exponential deconvolution which often end with

unstable solution convergences due to experimental uncertainty. Although we have devel-

oped an apparatus to measure apparent rotational diffusion coefficients, the mathematical

dilemma of determining absolute particle lengths remains for us as it does for similar

techniques. We have educated ourselves to the difficulties and accepted protocols in the

field, and hope to make further progress with improved data resolution and enriched re-

search experiences. If the mathematical difficulties can be adequately addressed, TEB can

provide a technique for measuring aspect ratios and size distributions of nanoparticles.
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Appendix A – Appendix I: List of Common Abbreviations

AC = Alternating Current

ADC = Analog-to-Digital Converter

AFM = Atomic Force Microscopy

CDIDM = (Surface) Charge Dependent Interfacial Dipole Moments

CNC = Cellulose Nanocrystal

C.CNC = Carboxylated Cellulose Nanocrystal

DC = Direct Current

DF-diH2O = Dust Free deionized water

DLS = Dynamic Light Scattering

DP = Degree of Polymerization

DSO = Digital Storage Oscilloscope

EDL = Electric Double Layer

EMT = Effective Medium Theory

EO = Electro-Optic

FTIR = Fourier Transform Infrared Spectroscopy

IDM = Interfacial Dipole Moments
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IS = Ionic Strength

LC = Liquid Crystal

LIT = Linear Inverse Theory

MG = Maxwell-Garnett

MSa/s = Mega Samples per second

MWIDM = Maxwell-Wagner Interfacial Dipole Moments

MWS = Maxwell-Wagner-Sillars (in terms Interfacial Dipole Moments, also called

MW)

LODP = Level Off Degree of Polymerization

Sa/s = Samples per second (Referring to sample rate of an ADC)

SEM = Scanning Electron Microscopy

SNR = Signal-to-Noise Ratio (general for all laboratory noise contributions)

SNRQ = Signal-to-Quantization Noise Ratio (specific to ADC bit resolution)

TEB = Transient Electric Birefringence

TEM = Tunnelling Electron Microscopy

TEMPO = 2,2,6,6-tetramethyl-1-piperidinyloxy (free radical)

TMV = Tobacco Mosaic Virus




