Fishermen's location choice under spatio-temporal update of expectations

Barbara Hutniczak
&
Angela Münch
RESEARCH QUESTION:
How fishermen form beliefs about the productivity of fishing grounds that drive their harvest location choices?

- What is the role of prior beliefs (i.e. expectations) in the decision with respect to location choice?
- How are the at-sea day-to-day locations adjusted based on signals obtained through harvest activity?

SPECIFIC ASPECTS OF COMMERCIAL FISHERY INCORPORATED IN THE MODEL

- Varying sites productivity (spatial and temporal, e.g. fish migratory patterns, seasonality, species composition, past exploitation patterns)
- Common vs. private knowledge about sites productivity
- True site productivity vs. individual expectation
- Heterogeneity of fleet (e.g. risk preferences in exploration vs. exploitation)
- Use of experience to update in space and time (correlation structure)

GOAL: To develop a method to derive empirically informed parameters used in models like ABM focusing on location choices
Each decision making unit (DMU) has a harvest location choice set represented by spatial rectangles (discrete choice, mutually exclusive, exhaustive and finite number)

DMU $n (n \in N)$ is utility maximizer when making choice i at time $t (t \in T)$ compared to alternative choices $j (j \in J)$ based on expected attributes for each alternative (x_{njt}):

$$U_{njt} = V_{njt}(x_{njt}) + \varepsilon_{njt}$$
$$P_{nit} = P(U_{nit} > U_{njt} \forall j \neq i)$$

Decision is made under uncertainty and motivated by individual expectations:

$$\neg \Box (x_{njt} \neq x_{mjt}) \text{ for } n, m \in N$$

Utility is realized only after a decision has been made

Each decision/action updates the future expectations
Prior Expectations

- \(R = f(z_k, u, \pi) \) - revenue on site, function of variable inputs \(k \ (k \in K) \), individual efficiency \(u \) and environmental productivity \(\pi \):

\[
\ln(R_{njt}) = \alpha_0 + \sum_{k \in K} \alpha_k \ln(z_k) + u_n + \pi_{jt} + \epsilon_{njt}
\]

- Fishermen have prior beliefs based on past experiences (common knowledge) that vary over space and time

- Empirically: (1) Regress the logged revenue equation with a fixed effects on lagged data for the whole fleet, and (2) create an expectation plain based on \(\pi_{jt} \) results using spatio-temporal kriging
\(\pi_{jt} \) is not certain: \(E(\pi_{jt}) \sim N(\mu_{jt}, \sigma_{jt}^2) \)

Sites harvested frequently are considered to have lower variance in expected productivity than sites rarely harvested, i.e. non-fished sites present higher uncertainty for fishermen

Variance in expected productivity is used as proxy for risk attitude in the location choice model
Updating Individual Expectations

➢ Krige output as initial values for individual updating process → Bayesian priors

➢ Individual realized productivity at the site (signal): \(S_{njt} = \pi_{jt} + e_{njt} \) with \(\sigma_s^2 < \sigma_0^2 \)

➢ Bayes normal updating applied iteratively

\[
E(\pi_{njt} | S_{njt}) \sim N \left(\frac{S_{njt} \sigma_s^2 + \mu_{njt} \sigma_s^2}{\sigma_{njt}^2 + \sigma_s^2}, \frac{\sigma_{njt}^2 \sigma_s^2}{\sigma_{njt}^2 + \sigma_s^2} \right)
\]

➢ Good signals (i.e. \(S_{njt} > \mu_{njt} \)) increase future \(E(\pi_{njt}) \) with weight determined by signal noise; posterior variance decreases by \(\sigma_s^2 / (\sigma_{njt}^2 + \sigma_s^2) \)

➢ Note: while priors are common knowledge, signals are private knowledge
Assuming that environmental productivity is correlated in space and time, but that reliability of information decays in space and time \rightarrow spatio-temporal updating

$$
E(\pi_{njt} | S_{njt}) \sim N(\mu_{n'jt} + (S_{njt} - \mu_{njt}) \frac{\text{COV}\{\pi_{njt}, \pi_{nj't'}\}}{\sigma_{njt}^2 + \sigma_s^2}),
$$

$$
\sigma_{nj't'}^2 - \frac{\text{COV}\{\pi_{njt}, \pi_{nj't'}\}}{\sigma_{njt}^2 + \sigma_s^2}
$$

$$
\text{COV}\{\pi_{njt}, \pi_{nj't'}\} = \sigma_{njt}\sigma_{nj't'}\rho_{sp}(|d_{jj'}|; \phi_{sp})\rho_{tp}(|d_{tt'}|; \phi_{tp})
$$

- ρ_{sp} & ρ_{tp} - spatial and temporal correlation functions of distance and parameters $\phi \rightarrow \phi_{sp}$ & ϕ_{tp} needs to be determined
- Separable correlation structure
Knowledge Decay over Time and Space

- Simulation of a two-dimensional grid with varying ϕ_{sp} & ϕ_{tp} based on Halton draws and generating dataset of updated expectations regarding environmental productivity (π_{it})

- Mixed logit estimation for each simulated dataset:

$$P_{nit} = \int \left(\frac{e^{\beta'x_{nit}}}{\sum_j e^{\beta'x_{nit}}} \right) f(\beta) d\beta \text{ with } f(\beta) = f(dist_{nit}, \pi_{nit}, \text{var}(\pi_{nit}))$$

- Model comparison via Akaike Information Criteria
Polish logbook data for demersal trawl from 2011 & 2012 (39 DMUs)

- 99 location to choose from in the southern Baltic Sea
- 2011: 3,383 At-sea day-choices on 1,539 trips in 84 locations
- 2012: 2,811 At-sea day-choices: signals in the updating process
 - 1,111 At-sea day-choice: 1) stay or 2) change which are used in the mixed logit model
Fixed effect regression based on trawling hours

$$\ln(R_{njt}) = \alpha_0 + \sum_{k \in K} \alpha_k \ln(z_k) + u_n + \pi_{jt} + \varepsilon_{njt}$$

Priors 2011 (expected environmental productivity)

a) March 1, 2011

b) June 1, 2011

c) September 1, 2011

d) December 1, 2011
Mixed logit estimation (1)

- 3,196 iterations

- 1,111 choices for 99 locations, i.e. 109,989 alternatives

- Mixed logit with lowest AIC for varying ϕ_{sp} & ϕ_{tp}, with $\sigma_s^2 = 0.5 \sigma_{ntj}^2$

- Global minimum: $\phi_{sp} = 0.0250$ & $\phi_{tp} = 0.1125$

- Correlation equal to 0.5 with spatial separation of 28 km or temporal separation of 6 days.

AIC contour plot
Results for the best fit mixed logit

- Predicted probability higher for observed chosen areas than for alternatives
- 750 out of 1,111 choices are correctly predicted (67.5 %), 99.7% correctly rejected.
- Additionally, 197 predictions to neighbor area (17.7%); over 85% observations predicted correctly to nearest neighbor.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>robust SE</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance added [km]</td>
<td>-0.014</td>
<td>0.002</td>
<td>0.000</td>
</tr>
<tr>
<td>Expected productivity1</td>
<td>0.818</td>
<td>0.146</td>
<td>0.000</td>
</tr>
<tr>
<td>Expected productivity variance</td>
<td>-10.829</td>
<td>0.294</td>
<td>0.000</td>
</tr>
<tr>
<td>SD: Expected productivity variance</td>
<td>1.759</td>
<td>0.343</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Akaike Information Criteria - AIC=3236.237

H0: no random effects - Wald test $\chi^2 = 26.285$, $p = 0.000$
Moving between fishing grounds is not a random search process, but rational choice based on prior expectations & economic incentives.

Environmental productivity expectations are continuously updated with signal strength decaying over space and time.

Polish fishermen are risk-averse considering their at-sea location choice (‘old habits die hard’) although the model allows risk-heterogeneity.

Calibration method can be used to inform, e.g. agent-based models, on relevant parameters.
Other aspects to consider/implement

- Alternative sources of updating (e.g. communication)
- Competition on site (depends how big are considered sites)
- Exploitation impact on site productivity
- Limited choice set (spatial closures)
Figure 1: Density plot of the estimated environmental productivity factor π_{jt}.
Fixed effect regression based on trawling hours

\[
\ln(R_{njt}) = \alpha_0 + \sum_{k \in K} \alpha_k \ln(z_k) + u_n + \pi_{jt} + \varepsilon_{njt}
\]

Variogram

\[
\text{cov}_{\text{priors}}(|d_{jj'}|, |d_{tt'}|) = k \text{cov}_{sp}(|d_{jj'}|) \text{cov}_{tp}(|d_{tt'}|) + \text{cov}_{sp}(|d_{jj'}|) + \text{cov}_{tp}(|d_{tt'}|)
\]

Space: psill=1, Exp, range=8, nugget=0.5
Time: psill=1, Exp, range=3, nugget=2
k=3
Figure 5: Distribution of random coefficients on expectation variance - risk attitude heterogeneity.
<table>
<thead>
<tr>
<th>Additional materials</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Methods</th>
<th>Results</th>
<th>Discussion/Conclusion</th>
<th>Further work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Motivation

TEMPLATE - KEEP