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In a steady state, the Earth’s absorbed solar radiation (ASR) balances the outgoing

longwave radiation (OLR) at the top of the atmosphere (TOA). In response to a radiative

forcing, that is, an external perturbation to the top of the atmosphere energy balance, the

Earth’s climate system adjusts until reaching a new state of radiative equilibrium. For

example, an increased amount of carbon dioxide in the atmosphere will absorb more ter-

restrial radiation thus decreasing the amount of outgoing longwave radiation at the top of

the atmosphere. Since more energy is kept in the system, the global temperature rises, and

the Earth emits more radiation until the OLR is in equilibrium with the incoming solar

radiation. The magnitude of the climate response to an imposed forcing is dependent upon

the strength of physical climate feedbacks within the system (i.e., water vapor, temperature,

surface albedo, and clouds) which act to amplify or dampen the response. Global climate

models project that the Earth’s climate, represented by the globally averaged surface tem-

perature, will warm between 2.0-4.5 Kelvin if we double the concentration of carbon dioxide

in the atmosphere (Soloman et al., 2007). The differences in global climate model simula-

tions of the climate response to an imposed forcing are largely due to differences in climate

feedback strengths among individual models (Soloman et al., 2007).

This thesis assesses how well short-term feedback variability relates to long-term feed-

backs with the goal of using an observational dataset to ultimately constrain long-term

feedback estimates. First, feedbacks and feedback variability are quantified on three time

scales over two time periods in the 20th century as simulated by 13 global climate mod-

els. The three time scales are: annual, interannual, and decadal. These time scales are

characterized, respectively, by the amplitude of the seasonal cycle, standard deviation of

TOA flux anomalies, and least-squares linear trend of TOA flux anomalies. Second, time

scales of feedback variability are compared over the two time periods. The two time periods



are: 20-years (short-term) and 100-years (long-term). Third, modeled short-term feedback

variability is compared with the European Center for Medium-range Weather Forecasts

ERA-Interim reanalysis observational data product. The method used to quantify individ-

ual climate feedbacks in models is the radiative kernel technique (Soden et al., 2008). This

technique decomposes each feedback into two components: the TOA flux change due to

a standard change in the feedback variable (radiative kernel), and the change in the feed-

back variable due to a particular climate forcing (climate response). The radiative kernel

technique can also be used effectively to analyze climate feedbacks in reanalysis datasets.

Monthly departures from the mean of each feedback variable (specific humidity, atmospheric

temperature, and surface albedo), at each grid point and vertical level, are multiplied by the

corresponding radiative kernel (Shell et al., 2008) to obtain TOA radiative flux anomalies

due to each variable.

The annual cycle provides a better constraint than interannual or decadal variability on

global and hemispheric long-term feedbacks. For water vapor and atmospheric temperature,

this result is strong for both the northern and southern hemispheres. For surface albedo,

the strongest relationship between the annual cycle and long-term feedback occurs in the

southern hemisphere. However, using the annual cycle to estimate the long-term feedback

still results in a large uncertainty. For atmospheric temperature and water vapor, the

reanalysis observations of the annual cycle are within the range of models, but for surface

albedo, the reanalysis annual cycle is smaller in magnitude than all models. Understanding

the differences between modeled and observed annual, interannual, and decadal variability

of climate feedbacks and corresponding TOA flux anomalies and how they relate to climate

sensitivity will help reduce the uncertainty associated with future climate projections.
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Comparison of Radiative Feedback Variability Over Multiple Time
Scales in Climate Model and Reanalysis Data

Chapter 1

Introduction

Evidence for the current warming of the global climate is unequivocal according to

the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

(IPCC) (IPCC, 2007). The IPCC also concludes that it is �very likely� that the ob-

served warming is not fully explained by natural climate variability alone and includes

contributions from mankind (i.e., increasing concentrations of carbon dioxide (CO2)

and other greenhouse gases in the atmosphere). The additional atmospheric concen-

trations of greenhouse gases force the climate to warm by absorbing and retaining

more of the energy radiated by the Earth that would otherwise escape to space. Even

if human civilization ceased to emit carbon dioxide and other greenhouse gases, the

climate would continue to warm over the next century. The ability to accurately

project how much the Earth will warm in the future is important for planning adap-

tive resource management strategies for a changing future climate. How much the

Earth will warm in the coming century depends on the magnitude of future CO2 emis-

sions, the rate at which the ocean takes up heat, and the sensitivity of the climate to

alterations of the balance of energy entering and exiting the Earth system through

the top of the atmosphere.

In a steady state, the Earth's temperature is unchanging, and thus the energy

entering the Earth system balances the energy exiting the Earth system. The energy

entering the Earth comes in the form of solar radiation (sunlight). Some incoming

solar radiation is re�ected by the Earth's atmosphere and surface back out to space.

That which is not re�ected, the absorbed solar radiation (ASR), is absorbed by the

Earth's surface and to a lesser extent, by the atmosphere. The Earth's surface radiates

longwave (infrared) energy according to its temperature and emissivity, and much of

that energy is absorbed by gases and clouds in the atmosphere. The atmosphere

also radiates longwave energy in all directions. The net result of the atmosphere's
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e�ect is to absorb more upwelling longwave energy than it emits, resulting in outgoing

longwave radiation (OLR) at the top of the atmosphere (TOA) that is less than the

longwave radiation emitted by the Earth's surface. On a global and time averaged

domain, the ASR and OLR roughly balance each other, but at a given time the

incoming and outgoing energy may not exactly balance and tend to �uctuate around

a steady state. The recent alteration of the composition of the atmosphere, that of

increased concentrations of carbon dioxide and other gases that selectively absorbed

longwave radiation (i.e. greenhouse gases), has forced the climate system out of steady

state such that on average the amount of energy absorbed by the system is greater

than the energy escaping the system (Trenberth et al., 2009) leading to a rise in the

global average surface temperature.

Because atmospheric CO2 is a gas that selectively absorbs infrared (or longwave)

radiation emitted by the Earth, higher concentrations of CO2 in the atmosphere will

absorb more longwave energy, resulting in a warmer Earth. The climate sensitivity is

how much the Earth will warm given this retention of energy. The sensitivity of the

climate depends on the strength of internal climate processes that a�ect the top of the

atmosphere radiative energy �ows. These internal processes are known as radiative

feedbacks. The radiative feedbacks include those due to surface albedo, water vapor,

temperature, and clouds.

The temperature feedback is technically the response of the climate system to a

retention of radiative energy, but the temperature response in�uences the TOA energy

balance and thus the climate sensitivity. The TOA in�uence of temperature changes

is the most negative (dampening) feedback in the climate system. A warmer Earth

emits more longwave radiation according the Stefan-Boltzmann emission (emission

= σT 4) leading to an increase in the outgoing longwave radiation at the top of the

atmosphere. This is a regulating cooling e�ect. When the surface air temperature

of the Earth increases, other components of the climate system are a�ected, which

in turn a�ect the global energy balance of the Earth and feedback to either amplify

or dampen the initial climate response. For example, as temperatures rise, snow and

ice melt in the high latitude regions. Since ice is more re�ective than the land or

ocean beneath it, the Earth's surface now absorbs more solar radiation. This is an

amplifying warming e�ect. Warmer temperatures also increase the saturation speci�c

humidity of air and allow the atmosphere to hold more water vapor. Water vapor

is a selective absorber of longwave radiation (i.e. greenhouse gas) so the amount of

longwave radiation emitted to space is now less. Again, this is an amplifying warming
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e�ect. Changes in cloud properties also a�ect the energy balance because clouds both

absorb longwave radiation and re�ect shortwave radiation. The sign of cloud changes

is uncertain and varies spatially and seasonally. To restore the climate system to a

state of equilibrium, the cumulative e�ect of all these changes must be to eventually

reach a balance between the incoming and outgoing energy.

The equilibrium climate sensitivity (ECS) is de�ned as the resulting temperature

change after the climate system has equilibrated to an instantaneous doubling of

atmospheric CO2 concentrations. The actual equilibrium climate sensitivity of the

Earth is unknown. Estimates of the ECS are generally obtained using an ensemble

of Atmospheric Global Climate Models (AGCMs). AGCMs consist of a dynamical

atmospheric model coupled to a slab-ocean model. The current range of ECS among

AGCMs used in the Fourth Assessment Report (AR4) of the IPCC is 2.1 to 4.4 K

with a most likely value of ≈ 3.2 K (Randall et al., 2007). While climate models have

improved since the Third Assessment Report of the IPCC, the range in ECS has not

narrowed much. This spread in ECS among climate models is due to the uncertainty

in the climate sensitivity components, that is, radiative feedbacks among models. The

largest contributor to the spread in climate sensitivity is clouds, followed by water

vapor and lapse rate, then surface albedo (Colman, 2003a). Satellite observations of

radiation �ows are used to estimate climate sensitivity, but since the Earth is not in

equilibrium, an "e�ective climate sensitivity" is being inferred. Assuming constant

feedback strengths, the e�ective climate sensitivity computed at a given time within

a transient climate state is an estimate of the ECS (Randall et al., 2007). When the

Earth system is in a transient state, the rate at which the ocean takes up heat will

partly determine the overall sensitivity. Coupled Atmosphere-Ocean Global Climate

Models (AOGCMs), with a dynamic ocean model with multiple depth layers, are used

to calculate e�ective climate sensitivities from transient simulations of the climate.

There are two ways in which to study the Earth's climate and climate changes:

through the lens of observational instrumentation including satellites, ground mea-

surements, and proxies (past and present), and through the careful use of global

climate models (past, present, and future). In terms of the Earth's energy balance,

there are only a couple of decades of observations from which information about the

short-term variability of TOA radiative �uxes can be gleaned. An open question is

to what extent any long-term climate change information is contained in annual, in-

terannual and decadal variability of TOA �ux anomalies derived from a short record.

Climate models can be useful in this situation because there are many realizations
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of past, present, and future climates. It is therefore useful to study the relationship

between short-term and long-term variability of TOA �ux anomalies with climate

models. To this end, the work of this thesis characterizes the short-term and long-

term variability of TOA �ux anomalies of 20th century simulations from 13 AOGCMs

used in the AR4 of the IPCC.

The purpose of this work is to study the variability of global and hemispheric TOA

e�ects due to the variability in the feedback variables: water vapor, temperature,

and surface albedo, in order to understand any relationships between this variability

on di�erent time scales. If any information about long-term changes is contained in

annual or interannual variability of TOA �ux anomalies, then observational validation

of the short-term variability may be able to constrain variability or changes over a

longer period. This thesis considers the following questions: what is the nature of

variability of TOA e�ects of feedback variables between short and long time scales in

climate models and how does short-term variability in climate models compare with

an observational dataset?

Many study short-term feedbacks in models and attempt to relate short-term

feedbacks on the annual to interannual time scales to long term feedbacks on the

century time scale (e.g. Hall and Qu, 2006; Knutti et al., 2006). The usefulness of

these kinds of studies is that we can begin to characterize the short-term observed

feedbacks of the climate system using satellite observations or reanalysis products

with hopes to validate the projected future changes in climate. However, short-term

feedbacks and/or climate sensitivity may not necessarily be indicative of long-term

climate feedbacks and sensitivity. This study characterizes the short-term variability

of TOA �ux anomalies over an ensemble of 20-year periods from the 20th century

AOGCM simulations, for ease of comparison with the available reanalysis record of

20 years. For any relationships between the short-term and long-term variability in

climate models, the modeled short-term variability can then be checked against the

observed short-term variability.

This thesis characterizes and compares climate feedback-related behavior over

several time scales between a number of AOGCMs and a reanalysis observational

product. The radiative kernel technique is used to compute TOA radiative e�ects of

anomalies in feedback variables, that is water vapor, temperature, and surface albedo,

from the 20th century AOGCM simulations. The variability is characterized and sepa-

rated into three time scales: annual cycle, interannual variability, and decadal trends.
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Quanti�ed characteristics of variability are compared across models and an obser-

vational data product and any relationships between time scales are explored. The

agreement of variability between models and observational datasets will contribute to

better con�dence in the climate models skill at simulating current climate variability

and future projections of climate change if any link between short and long time scales

is found.

We �nd that the annual cycle provides a better constraint than interannual or

decadal variability on global and hemispheric long-term feedbacks. For water vapor

and atmospheric temperature, this result is strong for both the northern and southern

hemispheres. For surface albedo, the strongest relationship between the annual cycle

and long-term feedback occurs in the southern hemisphere. However, using the annual

cycle to estimate the long-term feedback still results in a large uncertainty. For

atmospheric temperature and water vapor, the reanalysis observations of the annual

cycle are within the range of models, but for surface albedo, we �nd that the reanalysis

annual cycle is smaller in magnitude than all models.
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Chapter 2

Background and Literature Review

2.1 Earth's Energy Balance

The rate of change of the global temperature of the Earth is governed by the di�erence

between the rate of absorbed solar radiation (ASR) and the rate of outgoing longwave

radiation (OLR),

C
dT

dt
= Q0(1− α)− F (2.1)

where C is heat capacity (JK−1m−2) of the climate, and T is the global average

surface air temperature. The �rst term on the right hand side of equation (2.1) is the

absorbed solar radiation, Q, which is the fraction of the total incoming solar radiation,

Q0, that is not re�ected by the Earth. The re�ectivity, or albedo (α), of the Earth is

about 0.3 on average. In the second term, F represents the total outgoing longwave

radiation at the top of the atmosphere (TOA). Units of radiation are in Wm−2. The

di�erence between the absorbed solar radiation and the outgoing longwave radiation

is the net radiative imbalance, R, at the top of the atmosphere, such that R = Q−F .
In a steady state, the change in temperature is zero (dT

dt
= 0, R = 0) such that the

energy entering the system at the top of the atmosphere balances the energy exiting

the system at the top of the atmosphere. That is, Q = F . This equilibrium state

is described by the statistically steady global average surface temperature, T . If the

Earth were not in equilibrium (dT
dt
6= 0), then R 6= 0 and Q 6= F .

The Earth's radiative energy balance is an important framework for understanding

climate change on a global scale. Any net positive (negative) imbalance of the Earth's

global energy �ux at the top of the atmosphere, that is R 6= 0, averaged over a number

of years leads to a warming (cooling) of the planet. In fact, over the period 2000-

2004, measurements of global radiative energy �ows reveal that the Earth is out of



7

balance, retaining ≈ 0.9 Wm−2 in the Earth system (Trenberth et al., 2009). The

Earth system retains energy by absorbing more (re�ecting less) of the incoming solar

radiation, or through a reduction in the OLR by increased infrared absorption by the

atmosphere (e.g. increased concentrations of carbon dioxide). Higher atmospheric

concentrations of CO2 and other infrared absorbing gases force the climate to warm.

The initial amount of energy kept in the system from, say, instantaneously doubling

the concentration of CO2 concentration is known as the radiative forcing, ∆G, of the

climate. Changes in the TOA energy balance is given by (Bony et al., 2006):

∆R = ∆G+ λ∆T (2.2)

The climate system's equilibrium response (when ∆R = 0) to a sustained radiative

forcing is proportional to the radiative forcing by (Roe, 2009):

∆T = −λ∆G = −1

γ
∆G (2.3)

The constant of proportionality, λ, is called the feedback parameter, which is the

strength of the internal climate processes that a�ect the TOA energy balance, and is

in units of Wm−2K−1. The inverse of the feedback parameter is called the climate

sensitivity, γ, which is the increase in temperature due to a radiative forcing and has

units of K/Wm−2.

2.2 Climate Sensitivity & Feedbacks

A standard measure of climate sensitivity, known as the equilibrium climate sensitiv-

ity (ECS), is de�ned as the resulting equilibrium change in globally averaged surface

air temperature (climate response) after doubling the amount of carbon dioxide in

the atmosphere and letting the climate model run until a new equilibrium is reached.

The radiative forcing due to an instantaneous doubling of CO2 is estimated to be 3.7

Wm−2 (Kiehl, 2007). Because the ECS is calculated between changes in two equi-

librium states, it is only de�ned for Atmospheric Global Climate Models (AGCMs)

coupled to a slab-ocean models. A slab-ocean model is a simple ocean modeling com-

ponent that communicates with the atmosphere model component through a mixed-

layer temperature. A coupled Atmosphere-Ocean Global Climate Model (AOGCM)

has a dynamic, multi-layer ocean model so it takes millennia in model years for an

AOGCM to reach equilibrium. For this reason, simpler and related AGCMs are used
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for calculating ECS because it takes less than 100 years to reach equilibrium. Ac-

cording to the 4th Assessment Report (AR4) of the IPCC, the current range in ECS

among state-of-the-art AGCMs is 2.1 - 4.4 K with a likely value of 3.2 K (Randall

et al., 2007). This range in ECS is due to varying feedback strengths across climate

models.

The sum of the feedback strengths is the feedback parameter such that

λ = λT + λQ + λα + λC + ε (2.4)

where λT is the total temperature feedback, λQ is the total water vapor feedback, λα

is the surface albedo feedback, λC is the cloud feedback, and ε contains the cross-

feedback terms and is assumed to be small, ≈10% (Shell et al., 2008). The total

temperature feedback can be separated as: λT = λTS + λTA where λTS is the surface

temperature feedback and very similar from one model to the next (Soden and Held,

2006). The atmospheric temperature feedback can be separated as: λTA = λ0 + λL,

where λ0 is the Planck feedback and is also essentially constant between models (So-

den and Held, 2006). The spread in the temperature feedback among models comes

from the lapse rate feedback, λL. The atmospheric temperature feedback is computed

in this thesis, and is related to the lapse rate feedback by subtracting the Planck re-

sponse, which is a uniform temperature increase throughout the entire atmospheric

column, though the increase varies regionally, from the atmospheric temperature feed-

back. The lapse rate feedback is negative because the atmosphere warms more than

the surface due to release of latent heat by condensation of moist air. The water vapor

feedback has a SW and LW component. While the SW component is non-negligible,

the LW component is dominant and is analyzed in this thesis.

As described earlier, the surface albedo and water vapor feedbacks are positive

in that the initial climate response is ampli�ed. All climate models produce positive

albedo and water vapor feedbacks. The albedo feedback is the smallest feedback in

the climate system with a mean and range of 0.26 ± 0.08 Wm−2K−1, and the water

vapor feedback (1.8 ± 0.18 Wm−2K−1) is the largest. The only negative feedback

is the lapse-rate feedback with a mean and range of -0.84 ± 0.26 Wm−2K−1. The

cloud feedback is the most uncertain feedback among climate models with a mean and

range of 0.69 ± 0.38Wm−2K−1 (Bony et al., 2006). While the largest contribution to

the uncertainty in climate sensitivity among models is from the cloud feedback, the

spread in the water vapor and albedo feedbacks are substantial contributors (Bony et
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al., 2006). If we assumed a climate sensitivity of 3 K, the TOA �ux changes due to

each of the feedbacks would be 5.4 Wm−2 for water vapor (i.e. 1.8Wm−2K−1 · 3K =

5.4Wm−2), 0.78 Wm−2 for surface albedo, 2.07 Wm−2 for clouds, and -2.52 Wm−2

for lapse rate. Compared to the initial radiative forcing of 3.7Wm−2, these feedbacks

are important, especially the water vapor feedback. If we summed all the TOA �ux

changes together we'd get a total �ux change due to feedbacks of 5.73 Wm−2 which

is 1.5 times the original forcing.

The actual climate system is not in equilibrium so an e�ective climate sensitivity

(EfCS) is used. The EfCS represents the global climate response if the transient state

were run to equilibrium assuming constant feedback strengths (Randall et al., 2007).

The EfCS is the strength of climate feedbacks at a particular time and may vary with

forcing history and climate state (Randall et al., 2007). The climate sensitivity is

assumed to be independent of base state although some studies (Jonko et al., 2011)

show that the climate sensitivity indeed depends on the base climate state. However,

in the present study, the 20th century climate state is used, so di�erences in the base

climate state between models are small and we can assume the climate sensitivity

and thus feedbacks to be constant. When using observations to estimate the climate

sensitivity, the e�ective climate sensitivity is being inferred. The EfCS can also be

calculated from transient simulations of coupled atmosphere-ocean global climate

models (AOGCMs) that have a fully dynamic, multi-layer ocean model component

(Randall et al., 2007). Gregory et al. (2004) introduce a simple technique to calculate

climate sensitivity from transient states in climate models and observations.

A common motivating question for all of the following studies, including the

present, is to determine the climate sensitivity of the Earth. Because the sensitivity of

the climate is unknown, GCMs are used to explore the possible range of climate sensi-

tivity. Several studies (e.g. Colman, 2003a; Soden and Held, 2006; Soden et al., 2008)

explore the uncertainty of individual climate feedbacks that contribute to the range in

modeled climate sensitivity. Other studies estimate the climate sensitivity, feedback

strengths, and TOA �ux variability from satellite observations (e.g. Forster and Gre-

gory, 2006; Gregory et al., 2004). Another way to approach the `constraining climate

sensitivity' problem is by exploring relationships between short-term and long term

feedbacks and TOA radiative perturbations in models and observations (e.g. Hall

and Qu, 2006; Knutti et al., 2006; Dessler, 2010). This thesis explores the variability

of individual climate feedback radiative perturbations at the TOA by quantitatively

characterizing variability of TOA �uxes due to three feedback variables:
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• Atmospheric Temperature

• Water Vapor

• Surface Albedo

over three time scales:

• annual

• interannual

• decadal

Relationships between feedbacks in short and long time scales in AOGCMs are

explored, and modeled variability on short time scales are compared with variability in

equivalent record lengths of a reanalysis observational product. The following sections

review the recent studies of feedbacks derived from climate models and observations

and long-term climate feedbacks inferred from short-term feedbacks.

2.3 Observational Studies

Establishing an observed record of TOA radiative �ux anomaly variability (SW, LW,

& Net) as a benchmark for climate model performance is important because accurate

simulations of the TOA �ux variability on a global scale are needed for improving

future climate change projections. Models can then be tested against these observa-

tions and should be able to accurately model the variability especially on a global

scale (Harries and Belotti, 2010). Because there is substantial transport of heat away

from the tropics, a global domain is needed to discern TOA �ux variability in rela-

tionship to climate change studies. Trenberth et al. (2010) �nd relationships between

tropical sea surface temperature and near global TOA �ux anomalies and conclude

that climate sensitivity discerned from only tropical radiation measurements could

be misleading. If a climate feedback contributes to the overal climate sensitivity, it

must be seen in global quantities (Slingo et al., 2000).

Wielicki et al. (2002) analyzed satellite observations of tropical longwave radiative

�uxes from seven broadband instruments spanning 22 years from 1979 to 2001. Flux

anomalies were calculated relative to the 1985-1989 base period. In the LW, large

variations of up to 8 Wm−2 during the 1998 El Niño and a decadal change of 3.1

Wm−2 over the 1980s and 1990s were seen. This large decadal variability is signi�cant
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especially since radiative forcings of 1 Wm−2 are important for climate change scales.

They concluded that the large decadal variability was due to variability in tropical

cloudiness. After correcting some discovered biases in the ERBE data, Wong et

al. (2006) �nd the LW decadal variability to be 1.6 Wm−2 over the same period.

They also �nd interannual variability of near-global net TOA radiative �ux anomalies

in the 1990s was ≈ 1.5 Wm−2. Harries and Belotti (2010) reanalyze the observed

variability of the global net TOA radiative energy balance to determine its usefulness

as a measure of climate change detection. Using broadband measurements of absolute

�uxes measured by several satellites (ERBE & CERES), Harries and Belotti (2010)

de�ne a �ux anomaly to avoid the poor absolute accuracy of �ux values. They �nd

that the interannual variability of ± 1.5 Wm−2 could result from errors other than

absolute calibration. Scales and magnitudes of variability of Earth's TOA energy

balance, as reported by Harries and Belotti (2010), include: volcanic eruptions that

act over a few years to cause an imbalance on the order of -10 W/m2, interannual

variations of 2 to 4 years with imbalances in the range of a fewWm−2 (although this is

within the range of absolute errors of the instruments), and high frequency variability

of 1-2 months in on the order of ± 4 Wm−2 (probably due to cloud variability).

Global net TOA �ux anomalies, excluding volcanic eruptions, usually fall within a

few Wm−2 around zero. As a climate change measure, detecting a 1 Wm−2 TOA

net �ux change against natural variability with just the twenty years of satellite data

is not yet reliable (Harries and Belotti, 2010). As Hansen et al. (2005) notes, on

long time scales the Earth has likely been in balance within a fraction of 1 Wm−2

because a sustained imbalance of this magnitude over 10,000 years is enough to raise

the ocean temperature by 100 K.

Forster and Gregory (2006) use the near global (60◦N to 60◦S) ERBE satellite

�ux data to extract e�ective climate sensitivity and the shortwave and longwave

components using a linear regression analysis, following Gregory et al. (2004), of net

TOA energy imbalance against surface air temperature. The slope of the regression

line gives a value for the total feedback parameter. They �nd a climate feedback

parameter of 2.3 ± 1.4 Wm−2 which corresponds to a climate sensitivity of 1.0-4.1 K.

Forster and Gregory (2006) argue that feedback parameters derived from regressions

of TOA �ux anomalies and surface air temperature anomalies over short-term periods

are likely representative of feedback parameters of long-term climate change, if the

span of surface temperature change on the short-term is like that of long-term trends

and temperature changes on the short-term behave like those expected for long-term
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changes (i.e. temperature changes throughout the troposphere). Dessler et al. (2008)

estimate the water vapor feedbacks over 2003-2008 using satellite observations of

speci�c humidity from NASA's Atmospheric Infrared Sounder (AIRS) and �nd a

positive mean feedback of 2.04 Wm−2K−1 (0.94 to 2.69) which is consistent with

climate models. Flanner et al. (2011) derive an estimated range of the observed

albedo feedback over the period from 1979 to 2008. They conclude that the northern

hemisphere albedo feedback is between 0.3 and 1.1Wm−2K−1 which is a larger range

than climate model estimates.

2.4 Modeling Studies

Over a period of years, a net imbalance in the TOA global energy balance of a

constant sign will lead to a change in climate, usually represented by a change in

the globally averaged surface air temperature. Coupled atmosphere-ocean global

climate models (AOGCMs) are used to project such future climate changes based on

particular scenarios of greenhouse gas emissions that result in particular magnitudes

of energy imbalances at the top of the atmosphere. The projected future warming of

the climate depends on the future scenario used for input in the climate model and

also the sensitivity of the modeled climate. AGCMs are also used to calculate ECS

and feedbacks.

Colman (2003a) compared climate feedback results between several AGCMs by

presenting a summary of published results of experiments where the concentration

of CO2 was instantaneously doubled and the AGCM was run until reaching a new

equilibrium. Of the 2×CO2 AGCM experiments included in Colman (2003a), the

mean water vapor feedback was 1.7 Wm−2K−1 with a large range of 1.1 to 2.4

Wm−2K−1. The mean albedo feedback was 0.3 Wm−2K−1 with a large total range

of 0.45 Wm−2K−1. While the cloud feedback contributes most to the spread of the

total feedback, uncertainties in water vapor and albedo feedbacks are important as

well (Colman, 2003a). Soden and Held (2006) calculated climate feedbacks in 14 cou-

pled AOGCMs used for the IPCC AR4 with a doubling of CO2 experiment (SRES

A1B scenario). See Section 2.2 for values.
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2.5 Motivation to compare short-term & long-term TOA �ux anomalies

To constrain estimates of climate sensitivity, many studies have attempted to relate

seasonal (e.g. Hall and Qu, 2006; Knutti et al., 2006) and interannual (e.g. Colman

and Power, 2010) feedbacks to long-term feedbacks in climate. Feedbacks diagnosed

from short time scales are then compared with observations. All these studies use

GCMs to explore feedbacks over time scales because long time scales are only available

with GCMs. The justi�cation for exploring this relationship is that the seasonal

sensitivity and climate sensitivity are governed by the similar processes. For example,

snow accumulates over the winter and as temperatures warm into the spring, snow

melts so the snow cover changes with seasonal temperature. In a warmer world, there

may be less snow cover in general because precipitation may fall more often as rain

rather than snow.

Colman (2003b) explored seasonal contributions to climate feedbacks in one AGCM.

He found that the global LW water vapor feedback does not vary much seasonally and

the LW lapse rate feedback contributes the most seasonal variation in feedbacks. The

surface albedo feedback is more seasonally variable than the longwave feedbacks and

the cloud feedback has the most seasonal variability. These results suggest that feed-

back seasonality is an important factor in the equilibrium climate sensitivity. Since

water vapor shows little seasonal variation, the global water vapor feedback calcu-

lated at any point in the year might be a good estimate of the seasonal mean feedback

(Colman, 2003b). Taylor et al. (2011) used a coupled AOGCM (CCSM3) to inves-

tigate climate feedback seasonality. They found little seasonality in the water vapor

feedback, consistent with Colman (2003b), but the largest seasonal amplitude varia-

tion occurs in the Northern Hemisphere. The largest contribution to the long time,

global average water vapor feedback occurs near the equator during April and May.

The strongest seasonal variability of the lapse rate feedback occurs in the northern

polar region, and a similar, and lesser behavior occurs in the southern polar region.

The largest seasonal contribution to the long time global average lapse rate feedback

occurs in the high latitudes during winters. The surface albedo feedback seasonality

is most pronounced in the high latitude regions and the greatest contribution to the

global average surface albedo feedback occurs during the summer in high latitudes. In

fact, the largest contribution to the long time global average surface albedo feedback

occurs in April in the mid-latitude northern hemisphere and is associated with snow
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melt seasonality (Taylor et al., 2011). This is consistent with a study by Hall and Qu

(2006).

Hall and Qu (2006) �nd a linear relationship in CMIP3 models between the spring-

time snow albedo change (April to May di�erence) per temperature change of the

Northern Hemisphere and the climate change albedo change per temperature change

between the 20th and 22nd century April albedo. By comparing an ensemble of mod-

eled snow albedo seasonal cycle feedbacks with observed values, they identify models

that occur within this range and those with large biases. �Exploiting similarities be-

tween the seasonal cycle and anthropogenic climate change is a promising strategy for

constraining other radiative feedbacks a�ecting the extratropics, where seasonality is

most pronounced� (Hall and Qu, 2006). Similarly for surface temperature, Knutti et

al. (2006) �nd a relationship between the amplitude of the seasonal cycle in Northern

Hemisphere regions (where seasonal cycle is most pronounced) and the associated

climate sensitivity.

However, according to Slingo et al. (2000), interannual time scales instead of

seasonal time scales might be better suited to diagnose longer term feedbacks. The

following studies calculate interannual time scale feedbacks from climate models and

observations and show that they are reasonable estimates of century long feedbacks in

models. Colman and Power (2010) examine radiative feedbacks in a coupled AOGCM

from two experiments. The �rst experiment is a century-scale transient warming from

a 1%/year CO2 increase and the second is a natural, unforced simulation. The study

seeks to understand how climate change feedbacks di�er from those operating at in-

terannual variability time scales. For the `transient' simulations, they �nd that the

transient feedbacks approximate feedbacks under equilibrium warming in AGCMs.

The water vapor feedback derived from interannual `unforced' variability is found to

be about two-thirds of the `transient' feedback. Interannual net lapse rate feedback

is essentially zero while the `transient' feedback strength is dominantly negative. The

surface albedo feedback operating under interannual variability is found to be more

strongly positive than the `transient' feedback, and that is probably due to strong neg-

ative feedbacks due to Antarctic sea ice changes (Colman and Power, 2010). Chung

et al. (2010) analyze relationships between surface temperature and TOA radiative

�uxes, called radiative damping rates, in climate models and observations over the

period 1985-1999. They �nd good agreement between between models and observa-

tions. They also show that the damping rates calculated from interannual variability
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are "modestly correlated to the climate sensitivity of the model in response to in-

creasing CO2." The idea that motivates these studies is that the physical processes

that contribute to the inter-model spread of climate sensitivity and feedbacks may

be accounted for in the interannual variability of feedbacks or feedback related TOA

e�ects, especially for water vapor and surface albedo, and may provide some infor-

mation about long-term climate change feedback strength.

On the other hand, a few studies suggest that short time scale estimates of climate

feedbacks may not be representative of long-term climate change feedbacks. Using

short-term data to calculate the total feedback parameter and/or climate sensitivity

may not be reliable if the fast feedback components do not represent the total climate

feedback parameter (Lin et al., 2011). Forster and Gregory (2006) suggest that if their

total feedback parameter is calculated from tropical variability and ENSO, it may not

be representative of climate change feedback parameter. In fact, Dessler and Wong

(2009) �nd that the water vapor feedback inferred from ENSO-driven variability in

climate models and reanalysis observational products are larger than the water vapor

feedback for long-term climate changes. Dessler (2010) �nds no relationship between

short-term and long-term cloud feedbacks within models though he �nds similar short-

term feedback values calculated in models and observations.

2.6 Objectives

This thesis further explores this issue of using TOA radiative perturbations due to

feedback variables derived from annual and interannual time scales as `proxies' for

long-term climate change feedbacks. This study breaks down the TOA radiative

�ux anomalies into components due to radiatively active climate variables such as

temperature, water vapor, and surface albedo. By, �rst, quantifying characteristics

of the annual, interannual and decadal variability of model TOA �ux anomalies over

the 20th century and comparing the characteristics over a short and long time period,

this thesis contributes to the discussion of the following questions:

• Does the short-term variability in feedbacks and TOA �ux anomalies tell us
anything about long-term feedbacks and trends in TOA �ux anomalies?

• Can climate sensitivity components be constrained by this analysis method?
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Chapter 3

Data

3.1 Climate Models

Climate models simulate the general circulation of the atmosphere and ocean by

numerically solving the Navier-Stokes equations of motion on a rotating, spherical

grid. There are climate models of varying complexity used for di�erent purposes.

Simple models, with fewer components and processes included, are used to isolate

and understand the evolution of a single process or phenomenon of the ocean and

atmosphere. The most complex models, with fully-coupled components (e.g. ocean,

atmosphere, land, and sea ice), are used to simulate the current climate and make

projections of the future evolution of the climate system. These models (e.g. AGCMs

and AOGCMs) are used to study climate sensitivity and feedbacks. The basic com-

ponents of an AOGCM include atmosphere, ocean, sea ice, and land models. The

atmospheric model includes a radiation scheme to account for the movement and

exchange of radiative energy from the top of the model to the surface. Computa-

tional infrastructure and numerical methods limit the grid resolution used in climate

models. Generally, global climate models have a horizontal resolution on the order of

1◦-4◦ latitude and longitude and are able to resolve large scale dynamics on the order

of greater than 100 km. Processes that occur on scales smaller than the grid resolu-

tion that a�ect the large scale dynamics are not explicitly resolved but parameterized

based on physical and empirical constraints. Examples of parameterized processes

include clouds, ocean eddies, and sea ice melt ponds.
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Table 3.1: Coupled Atmosphere-Ocean Global Climate Models used in this study.
First column contains the model abbreviation, second column contains modeling in-
stitution, third column contains the number of ensemble members.

Abbreviation Climate Modeling Institution Runs

CCSM NCAR Community Climate System Model 3.0 8

CGCMT47 Canadian Centre for Climate Modeling & Analysis v. 3.1 5

CGCMT63 Canadian Centre for Climate Modeling & Analysis v. 3.1 1

CM20 Geophysical Fluid Dynamics Lab Climate Model 2.0 3

CM21 Geophysical Fluid Dynamics Lab Climate Model 2.1 3

ECHAM Max Planck Institute for Meteorology v. 5 3

GISSAOM NASA Goddard Institute for Space Science � AOM 1

GISSEH NASA Goddard Institute for Space Science � EH 5

GISSER NASA Goddard Institute for Space Sciences � ER 9

INM Institute for Numerical Methods Model 3.0 1

IPSL Institut Pierre Simon Laplace Climate Model 4 1

MIROCHI Center for Climate System Research (Japan) v. 3.2 hi-res 1

MIROCMED Center for Climate System Research (Japan) v. 3.2 med-res 3

3.2 20th century simulations (20C3M)

The climate model data used in this study were generated by fully-coupled Atmosphere-

Ocean Global Climate Models for the Third Climate Model Intercomparison Project

(CMIP3) used in the �ndings presented in the Fourth Assessment Report (AR4) of

the Intergovernmental Panel on Climate Change (IPCC). We use the data from 13 of

the climate models that simulated the 20th century climate (20C3M). Each climate

model has a unique combination of horizontal and vertical resolutions, complexity of

climate system components, radiative transfer scheme, and sub-grid scale parameter-

izations. Table 3.1 lists the modeling institutions, climate model abbreviation and

number of ensemble members used.

The 20th century climate simulation is used as the initial conditions for simulations

of future climates. The ability of climate models to represent the 20th century climate

with some degree of accuracy gives some con�dence that processes will be accurately
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represented in future climate projections (Randall et al., 2007). The 20C3M simu-

lation was initialized from a control model simulation and forced by observed land

changes and estimated natural and anthropogenic radiative forcings during the 20th

century including solar irradiance cycle, historic volcanic eruptions, and increases in

carbon dioxide to name a few. However, the radiative forcing components included

is not the same for all climate models. See model documentation including radiative

forcing information for the climate models of the CMIP3 archive here: http://www-

pcmdi. llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php.

Listed in Table 3.2 are the atmosphere and ocean spatial resolutions and the equilib-

rium climate sensitivity of the corresponding slab-ocean Atmospheric GCM.

The variables used are surface albedo, atmospheric temperature, and speci�c hu-

midity. The surface albedo is the fraction of the incident sunlight re�ected by the

surface. Sea ice and land snow evolve throughout a simulation given the dependence

on temperature and other atmosphere and ocean properties. The albedo of the sur-

face evolves with time based on surface cover changes. Atmospheric temperature is

in units of Kelvin. The speci�c humidity is in units of kg (water vapor)/kg (air).

3.3 ECMWF ERA-Interim

The observational dataset used in this study is the ERA-Interim reanalysis product

provided by the European Center for Medium Range Weather Forecasts (ECMWF).

This reanalysis dataset is derived by assimilating observational data into a forecast

model to produce the global state of the atmosphere from 1979 to the present. Satellite

and in situ observations are used as input to the data assimilation. Various satellite

instruments provide measurements of radiances and atmospheric motion vectors. Air

temperature, wind, and speci�c humidity measurements are provided by radiosonds,

aircraft, and wind pro�lers. Surface pressure and 2-meter temperature data are avail-

able from ships, buoys, and land stations. The data assimilation method used for

ERA-Interim is a 12-hourly four-dimensional variational analysis (4D-Var). Data is

assimilated during successive 12-hour cycles. Prior information from a forecast model

for the physical evolution of atmospheric variables is combined with available obser-

vations at each 12-hour cycle to produce an estimate of the physically constrained

evolution of the state of the atmosphere and surface. The forecast model is important

because it can extrapolate in a physically meaningful way to regions where direct
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Table 3.2: AOGCM speci�cations. Second column contains the top most atmospheric
level resolved in the atmospheric component, followed by the number of atmospheric
levels in parenthesis, and the horizontal resolution in degrees of latitude by longi-
tude followed by the triangular spectral truncation in parenthesis. The third column
contains the horizontal resolution in degrees of latitude by longitude of the ocean
component and vertical levels in parenthesis. The fourth column contains the equi-
librium climate sensitivity (ECS), using the corresponding slab-ocean model, and the
transient climate response (TCR). This information can be found in Tables 8.1 and
8.2 of the IPCC AR4 (Randall et al., 2007).

Model
Atmosphere
Component

Ocean
Component

ECS & TCR

CCSM
2.2 hPa (26)
1.4◦ × 1.4◦ (T85)

0.3◦ − 1◦ × 1◦ (40)
ECS 2.7 K
TCR 1.5 K

CGCMT47
1 hPa (31)
2.8◦ × 2.8◦ (T47)

1.9◦ × 1.9◦ (29)
ECS 3.4 K
TCR 1.9 K

CGCMT63
1 hPa (31)
∼ 1.9◦ × 1.9◦

0.9◦ × 1.4◦ (29)
ECS 3.4 K
TCR n/a

CM20
3 hPa (24)
2.0◦× 2.5◦

0.3◦-1◦× 1◦
ECS 2.9 K
TCR 1.6 K

CM21
3 hPa (24)
2.0◦ × 2.5◦

0.3− 1◦ × 1◦
ECS 3.4 K
TCR 1.5 K

ECHAM
10 hPa (31)
∼ 1.9◦ × 1.9◦ (T63)

1.5◦ × 1.5◦ (40)
ECS 3.4 K
TCR 2.2 K

GISSAOM
10 hPa (12)
3◦ × 4◦

3◦ × 4◦ (16)
ECS n/a
TCR n/a

GISSEH
0.1 hPa (20)
4◦ × 5◦

2◦ × 2◦ (16)
ECS 2.7 K
TCR 1.6 K

GISSER
0.1 hPa (20)
4◦ × 5◦

4◦ × 5◦ (13)
ECS 2.7 K
TCR 1.5 K

INM
10 hPa (21)
4◦ × 5◦

2◦ × 2.5◦ (33)
ECS 2.1 K
TCR 1.6 K

IPSL
4 hPa (19)
2.5◦ × 3.75◦

2◦ × 2◦ (31)
ECS 4.4 K
TCR 2.1 K

MIROCHI
40 km (56)
∼ 1.1◦×1.1◦ (T106)

0.2◦ × 0.3◦ (47)
ECS 4.3 K
TCR 2.6 K

MIROCMED
30 km (20)
∼ 2.8◦ × 2.8◦ (T42)

0.5◦ − 1.4◦ × 1.4◦ (43)
ECS 4.0 K
TCR 2.1 K
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observations are lacking. The forecast model used for the ERA-Interim reanalysis

product is the ECMWF Integrated Forecast System, which consists of fully coupled

atmosphere, land surface, and ocean wave components (Dee et al., 2011). The global

atmospheric �elds used in this study are monthly averages of the atmospheric tem-

perature and speci�c humidity from 1000mb to 10mb. The surface variables used are

monthly averages of forecast albedo and 2-meter above surface air temperature. The

years used for this thesis are the 20 years spanning 1989-2008.

3.4 Data Preprocessing

Since each dataset, from climate models and the reanalysis, has a di�erent horizontal

and vertical resolution, we begin by regridding the data onto a common grid of 17

vertical levels (10, 20, 30, 50, 70, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850,

925, 1000mb) and a horizontal resolution of T42 (approximately 2.8◦ latitude by 2.8◦

longitude), the same grid as the CAM radiative kernels.

Since we are interested in speci�c humidity concentrations as they a�ect the ra-

diative energy balance, we use the natural log of speci�c humidity as the variable

because water vapor absorption of longwave radiation behaves like the natural log of

speci�c humidity. After regridding the variables to a common grid of T42 horizontal

resolution, we use surface albedo (α), atmospheric temperature (ta), and water vapor

(ln(q)) as our feedback variables. Water vapor and atmospheric temperature have

values on all 17 vertical levels. All variables are monthly averages from each year

of the simulation. The 100-year period from 1901-2000 (sometimes 1900-1999 if year

2000 was not present in the model's �le output) is the data used in this analysis. This

100-year period is analyzed in two ways. First, for each run of each model used in

this analysis, the TOA �ux anomalies and statistical characteristics of variability are

computed for the entire 100-year period. Second, the 100-year period is separated

into �ve sequential, non-overlapping 20-year slices. For example, if climate model X is

run three times, then �fteen 20-year slices will result for model X. The same analysis

is then performed on each 20-year slice for each run for each model.
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Chapter 4

Methods

The goal of this work is to quantify the variability of TOA �ux anomalies due to

atmospheric temperature, water vapor and surface albedo over several time scales.

To convert the anomalies in feedback variables to the net TOA e�ect, we need a

method to calculate feedbacks. We �rst discuss several feedback calculation methods

(Section 4.1), then expand in more detail the method used in this thesis (Section 4.2).

We describe how TOA �ux anomalies are computed (Section 4.3) and how variability

is quanti�ed on annual, interannual, and decadal time scales (Section 4.4). The

�nal section (4.5) describes the regression method used to compare characteristics of

feedback variability.

4.1 Methods of Calculating Climate Feedbacks

There are several ways to calculate radiative feedbacks. The �rst is the partial ra-

diative perturbation (PRP) technique (Wetherald and Manabe, 1988). Given two

climate states, a control climate and a doubled CO2 climate, the perturbed variable

�eld from the doubled CO2 climate is inserted in place of the control �eld. The PRP

method then uses an o�ine radiation code to calculate instant TOA radiative �ux

changes for perturbations of one variable at a time leaving all other variables un-

changed. This method assumes variables are temporally uncorrelated. Large biases

in calculated feedbacks could result for variables that are indeed correlated, like water

vapor and clouds (Soden et al., 2008). The advantage of the PRP method is that

it accounts for some of the non-linear relationships among variables. A disadvan-

tage is that speci�c humidity, temperature, cloud and surface albedo �elds become

decorrelated introducing errors in the feedback estimate. The PRP technique is also

computationally expensive having to run a radiation code every time. The second is
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the Gregory method from Gregory et al. (2004) where TOA �ux anomalies (gener-

ally LW, SW, and net) are regressed against global average surface air temperature

anomalies. The slope of the linear regression is the feedback strength in Wm−2K−1.

The advantage of the Gregory method is its simplicity and the fact that it can be used

for both model and observational data. A disadvantage is that it only separates the

net feedback strength into SW and LW components. The radiative kernel technique

(RKT) is described in the following section. Its advantages are that it can be used for

model and processed observational �elds, it is quick and easy to implement in multi-

ple situations once the radiative kernel is calculated, and it can be used to calculate

not only SW and LW components of the feedback strength, but also components due

to water vapor, surface albedo, temperature, and clouds. We use the radiative kernel

technique and perform selected calculations using the Gregory method.

4.2 Radiative Kernel Technique

Soden et al. (2008) introduced a new technique for feedback calculation, called the

radiative kernel technique, that decomposes the feedback into the TOA response

to a standard change in a feedback variable (the `kernel') and climate response. The

radiative kernel technique is an e�cient way to calculate feedbacks and eliminates the

issue of cross-�eld correlations. The radiative kernel technique calculates the TOA

radiative e�ect of a perturbation to a single climate variable, namely x, which in this

thesis is either water vapor, atmospheric temperature or surface albedo. The TOA

radiative e�ect of changes in variable x, ∆Rx, is a function of x, which is a function

of global average surface air temperature, T . So, ∆Rx = ∆Rx(T ). To approximate

this function, ∆Rx(T ) is expanded in a Taylor series about the base climate state,

T0.

∆Rx(T ) = ∆Rx(T0) +
d∆Rx(T0)

dT
· (T − T0) +

d2∆Rx(T0)

dT 2
· (T − T0)2

2
+ . . . (4.1)

The �rst term is zero, ∆Rx(T0) = 0, because at the base state, there is no relative

change in variable x, and so no radiation change. The second term is of �rst-order

and is the largest. The remaining higher-order terms, which account for non-linear

behavior of feedbacks and are assumed to be small (≈ 10%) and thus neglected in the

kernel technique analysis. In other words, the radiative �ux changes in the system
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are assumed to be adequately described by this linear model. Thus, equation 4.1

becomes:

∆Rx(T ) =
d∆Rx(T0)

dT
· (T − T0) =

∂Rx

∂x

(
dx

dT

)
∆T (4.2)

The feedback strength for variable x is given by:

λx =
∆Rx

∆T
=
∂Rx

∂x
· dx
dT

(4.3)

in terms of Wm−2K−1. The sum of all the feedback strengths is the feedback param-

eter from equation 2.4:

λ =
∑
x

λx = λT + λQ + λα + λC + ε (4.4)

where ε encompasses the cross-feedback terms, that is the interaction between feed-

backs, and is also assumed to be small. In other words, the radiative kernel technique

assumes that individual feedbacks combine linearly.

The �rst component on the right hand side of equation 4.3, ∂Rx

∂x
, is the radiative

e�ect of a standard change in climate variable x. This component, called the radia-

tive kernel, is calculated using an o�ine radiative transfer model. Figure 4.1 shows

a schematic of the calculation of the radiative kernel. The Community Atmospheric

Model Version 3 with speci�ed climatological sea surface temperature and sea ice is

run for a year, establishing the base climate state. Then, for each model level the

base climate state is perturbed uniformly over the globe by a standard anomaly, x′,

while keeping all other variables constant. For the temperature kernels, the standard

anomaly is one Kelvin. For surface albedo, it is a 0.01 increase of the surface re�ectiv-

ity. For water vapor, the standard anomaly is the change in speci�c humidity due to

a 1 K increase in temperature keeping relative humidity constant. This base climate

with a single layer perturbation is input into the radiative transfer model of CAM3,

and the output is the resulting change in the top of the atmosphere energy balance

for each month and location.

Technically, the radiative kernel is the TOA �ux change due to a standard change.

Division by the standard anomaly, x′ normalizes the �ux anomaly and is appropriate.

One bene�t of using the radiative kernel technique, instead of the PRP method, to

calculate feedbacks is that once the radiative kernels have been calculated, they can

be used for myriad climate feedback studies across various models and observational
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Figure 4.1: Schematic of radiative kernel calculation.

climate products of a similar base state. The second component of equation 4.3, dx
dT
,

is the climate system response to a change in temperature and is discussed in Section

4.3. The discrete form of the feedback strength is given by:

λx = Kx

(
∆x

∆T

)
. (4.5)

The radiative kernel (Kx = ∂Rx

∂x
) is already calculated (Shell et al., 2008), so only

the change in the climate variable, ∆x, given a change in climate, ∆T, is needed to

calculate the feedback strength. Figure 4.2 shows the LW water vapor, atmospheric

temperature, and surface albedo kernels, before division by the standard anomaly.

The result of these calculations is a value at each latitude, longitude, level and month

for the given variable's contribution to the TOA energy �ows. Negative values in the

top two rows indicate less energy trapped and thus a cooling TOA e�ect. Negative

values in the surface albedo kernel are generally multiplied by negative albedo changes

resulting in a positive warming e�ect. A warming TOA e�ect (positive Wm−2 value)

can occur through a reduction of OLR (e.g. more atmospheric water vapor to trap

more LW radiation) or an increase in ASR (i.e. less sea ice re�ects less sunlight).
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Figure 4.2: Zonal average radiative kernel for LW water vapor (top) and atmospheric
temperature (center) for January (left) and July (right). Bottom plots are January
and July surface albedo kernel and are in units ofWm−2 per fractional albedo change.
Note di�erent scales.

Conversely, a cooling TOA e�ect (negative Wm−2 value) can occur through an in-

crease in OLR (e.g. reduction in water vapor or increase in atmospheric temperature)

or a reduction of ASR (i.e. more sea ice re�ects more sunlight).

The contributions to TOA energy �ows, in Wm−2, are summed from the surface

to the top pressure level. Each level's contribution is weighted by the thickness of the

layer, since the radiative kernel is calculated per 100mb. For the surface variables,

the net TOA e�ect is the e�ect of the surface layer. The sign convention is such that

positive values indicate more energy trapped in the system and thus a warming TOA

e�ect.



26

Typically, feedbacks in climate models are calculated using the di�erence in mean

climate states (averaged over at least 10 years) between a control climate that is

in equilibrium and an experiment climate of a new equilibrium state after instan-

taneously doubling the concentration of carbon dioxide in the atmosphere, or the

di�erence in mean climate state between two time periods not necessarily in equi-

librium. The present study calculates feedbacks with reference to a climatology of a

given period of time; essentially we examine the short time scale variability of feed-

backs calculated using anomalies of climate variables around the mean state. The

anomaly in the climate variable is: ∆x = x − xavg and the anomaly in climate, as

represented by temperature, is: ∆T = T − Tavg, where xavg and Tavg are the aver-

age seasonal cycle. This study looks at the short time scale variability not just in

feedbacks, but in the corresponding top of the atmosphere radiative �ux anomalies.

These radiative anomalies are simply feedbacks calculated in the aforementioned way

excluding the normalization by the anomaly in global surface air temperature (TAS).

In equation form, the radiative anomaly at the TOA is de�ned as:

∆Rx = λx ·∆T = Kx ·∆x (4.6)

With this framework, ∆x can be calculated from model �elds, reanalysis �elds, or

satellite �elds so that the characteristics of the variability of the top of the atmosphere

radiative anomalies due to each climate variable can be compared across models and

observations of the climate system. We can't directly compare albedo changes to

water vapor changes, but we can compare net TOA e�ects across variable �elds.

4.3 TOA Radiative Flux Anomalies

This thesis compares the variability of top of the atmosphere �ux anomalies due to

three variables (water vapor, atmospheric temperature, and surface albedo) over two

time lengths (20 years and 100 years) in the 20th century climate model simulations.

Variability of TOA �ux anomalies are characterized instead of anomalies in the vari-

ables themselves because we are interested in the culminating TOA e�ect of anomalies

throughout the atmosphere and surface. An advantage of this is that we are preserv-

ing the variability of anomalies at each grid point and converting it into a TOA e�ect

that is additive (we are assuming that the TOA e�ects are indeed additive). It is a

way of accounting for anomalies everywhere in their overall and cumulative e�ect on
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the TOA energy balance. Also, we are ultimately interested in comparing short-term

and long-term feedback variability so the variability in the TOA energy balance is

conducive and convenient for that end.

The climate variable anomalies are calculated by �rst computing and removing the

average seasonal cycle over the period of interest. The seasonal cycle was calculated

by averaging all the Januarys, Februarys, etc, and then subtracted from each year

of the 20-year or 100-year time series. For the 100-year period the average seasonal

cycle from the entire record was removed from each year. For the 20-year slices, the

average seasonal cycle of each 20-year period was calculated and removed from each

year of the respective periods. The average seasonal cycle (January to December) is

computed for each grid point and level of the model or reanalysis product. In the

case of water vapor, we take the natural log of speci�c humidity, ln(q), to be the

variable of interest because absorption of radiation by water vapor behaves like the

natural log of water vapor. The average seasonal cycle of ln(q) is then subtracted

from the �eld of ln(q). Figure 4.4 shows examples of the average seasonal cycle and

is discussed further in Section 4.4.

The top of the atmosphere radiative �ux anomalies are then calculated for each

variable by multiplying the de-seasonalized climate anomaly by the corresponding

radiative kernel, then dividing by the standard anomaly of the climate variable as

described previously. The time series of TOA �ux anomalies for each variable are

then zonally and globally averaged for further analysis. Figure 4.3 demonstrates the

progression by which TOA �ux anomalies are calculated for water vapor for CCSM.

First, plot (a) shows a 20-year time series of globally averaged speci�c humidity at 850

hPa in units of kg (water vapor) per kg (air). Next, we take the natural log of plot (a)

which is shown in plot (b). Working with the natural log of speci�c humidity as the

variable, we compute and remove the average seasonal cycle over the 20-year period

to obtain anomalies shown in plot (c). Note that the scale of anomalies is much

smaller than absolute values of water vapor before deseasonalizing. The radiative

kernel technique is then used to compute the TOA e�ect of water vapor anomalies as

shown in plot (d). Each of these steps were performed over a 3-dimensional domain.

The area-averages are computed after obtaining a 3-dimensional �eld of TOA e�ects.

Global averages at each step of the way are presented here for clarity. Area averaged

TOA e�ects are then detrended before further analysis.

To obtain a time series of feedbacks from this time series of TOA radiative �ux

anomalies, one simply divides the TOA �ux anomalies by the corresponding surface
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air temperature anomalies. Statistical techniques are used to characterize the vari-

ability of the TOA radiative �ux anomalies. Those characteristics, or metrics, are

then compared across climate models and with an observationally-based reanalysis

product.

Figure 4.3: Anomalies and TOA Flux Anomalies for Water Vapor. Global average
speci�c humidity values at 850 hPa are shown in plot a. Plot b shows the natural
log of plot a. Plot c is the deseasonalized data from plot b. Plot d is the cumulative
TOA e�ect of water vapor anomalies from all levels.

4.4 Quantifying Characteristics of Feedback Variability

Feedback variability is separated into and characterized by three time scales of in-

terest: annual (within a year), interannual (1-10 years), and decadal (20-year and

100-year trends); and three geographic regions: global, northern hemisphere, and

southern hemisphere. Statistical metrics are presented as an average and range of

values of all runs (and slices, for the case of the 20-year periods) for a particular

model. The general motivating question for studying variability of TOA �ux anoma-

lies at these three time scales is how short-term climate feedback variability is related
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to long-term trends and feedbacks, with the ultimate goal of better projecting possible

future climate.

Each 20-year slice can be thought of as a realization of the �observed� variability

in TOA e�ects. Results for the 20-year slices are presented as an average and range

of all slices for a given model. Analyzing the 20th century simulations in this way

is conducive to quantifying how much the variability at a 20-year time scale tells us

about the variability on a century scale. How much can the current short observational

record tell us about potential future variability and trends of the climate? In other

words, are the trends in the observed 20 year periods due to natural variability or

are they indicative of global warming? Of particular interest are any relationships in

measurements of variability found between short-term (20-year) and long-term (100-

year) periods because a goal of this thesis is to test how well any information about

variability in the TOA �ux anomalies (due to individual variables) obtained from a

short record, analogous to the length of the observed record, is related to variability

in TOA �ux anomalies obtained from a long record.

Annual

The seasonal cycle was removed from the climate variable �elds in the calculation of

the climate anomaly for both the 20-year and 100-year periods (e.g. Figure 4.3). The

seasonal cycle is averaged over the globe and the northern and southern hemispheres,

weighted by latitude. For the three-dimensional variables (atmospheric temperature

and speci�c humidity), the seasonal cycle at 850 hPa is used because it is a typical

height of the boundary layer of the atmosphere. The northern hemisphere tends to

dominate the seasonal cycles on the global scale because there is more land area in

the NH and land responds quicker to temperature changes than the ocean.
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Figure 4.4: Average seasonal cycle over 100-year period of natural log of speci�c
humidity at 850 hPa (left), atmospheric temperature at 850 hPa (middle), and surface
albedo (right) for CCSM (blue), CM20 (green), and GISSER(red) for the globe (top),
NH (middle), and SH (bottom).

The metric of variability for the annual time scale is the amplitude of the sea-

sonal cycle. The amplitude of the seasonal cycle is de�ned di�erently for each vari-

able and geographic area with the goal of capturing the maximum seasonal change.

Seasonal amplitude de�nitions are summarized in Table 4.1. For water vapor, the

global seasonal amplitude is de�ned as for temperature, the June-July-August av-

erage minus the December-January-February average. The northern and southern
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Table 4.1: Summary of seasonal cycle amplitude de�nitions

Region Water Vapor LW Atm. Temperature Surface Albedo

Global JJA-DJF JJA-DJF FM-JA

N. Hem. JAS-JFM JJA-DJF June-April

S. Hem. JFM-JAS JJA-DJF August - June

hemisphere seasonal amplitudes are de�ned as the July-August-September average

minus the January-February-March average and the January-February-March aver-

age minus the July-August-September average. See plots a, d, & g in Figure 4.4. For

atmospheric temperature, the seasonal amplitude is de�ned as the di�erence between

the summer and winter seasons, the June-July-August average minus the December-

January-February average. (This de�nition follows from Knutti et al. (2006) linking

northern hemisphere seasonal amplitude in temperature to climate sensitivity). See

plots b, e, & h in Figure 4.4. For surface albedo, the global seasonal amplitude is

de�ned as the average of the two maximum months (February and March) minus

the average of the two minimum months (July and August) (plot c in Figure 4.4).

The northern hemisphere seasonal cycle is de�ned as the change in surface albedo

between April and June because it is the largest (negative) rate of change in the

northern hemisphere surface albedo seasonal cycle (plot f in Figure 4.4). This is a

similar de�nition to that used in the study by Hall and Qu (2006) where the northern

hemisphere snow albedo percent change from April to May is used. The southern

hemisphere surface albedo seasonal cycle is de�ned as the change from June to Au-

gust, the largest (positive) rate of change (plot i in Figure 4.4). Note the di�erences in

the magnitude of seasonal amplitude and mean values among the three models shown

in Figure 4.4. When removing the seasonal cycle from feedback variable anomalies,

the mean value is also removed so we are able to compare anomalies centered around

a zero mean state for all models.

We also compute the corresponding seasonal amplitude of surface air temperature

(TAS). We use this value to normalize the seasonal amplitude of the feedback vari-

able. Since the feedback variables are dependent on surface air temperature changes

(e.g. more ice melts for warmer temperatures), it is appropriate to normalize by the

surface air temperature, especially for surface albedo. Normalizing the atmospheric

temperature seasonal amplitude is not as meaningful because the temperature change
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at 850 hPa should be very close to that at the surface. We don't expect normalizing

the water vapor seasonal amplitude to be very meaningful since we are looking at the

natural log of water vapor. However, normalizing by TAS seasonal amplitude and

then comparing these normalized seasonal amplitudes with other normalized metrics

adds in another factor that could explain any relationship. For example, if the sur-

face air temperature seasonal amplitude is related to the TAS 100-year trend, then

any relationship seen in the normalized water vapor amplitude and normalized water

vapor 100-year trend, could be due to the relationship in the surface air temperature

metrics and not the water vapor metrics themselves. For this reason, comparisons of

non-normalized metrics are also presented when there is a large di�erence between

comparing normalized and non-normalized metrics.

Interannual

On the interannual scale, we look at the standard deviation of TOA �ux anomalies for

each time series as a measure of the spread of the anomaly distribution. See Figure

4.6 (left plot). Before any statistical calculations are performed on the time series of

area-averaged TOA radiative �ux anomalies, the series is detrended. What remains

are month-to-month �uctuations around the zero mean of the �ux anomalies. For

the 20-year time slices, a least square linear trend is calculated (plot a in Figure 4.5)

and removed. The standard deviation is then computed from the resulting time series

(plot c in Figure 4.5). For the 100-year time periods, a better �tting least squares

quadratic trend is removed from the time series. The linear trend is also shown in

plot b of Figure 4.5. The standard deviation is then computed for the quadratically

detrended TOA �ux anomalies (plot d in Figure 4.5). The standard deviation is

calculated as:

σ =

√∑
i=1,n (Xi −X)

2

n− 1
, (4.7)

The standard deviation is calculated for each variable and each geographical area

(global, NH, and SH) average and is in units of Wm−2.
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Figure 4.5: An example of a 20-year (left) and 100-year (right) global average time
series of longwave water vapor TOA �ux anomalies. The least square linear trend
is shown in blue in plots a & c, but only removed from the time series in plot a to
produce the time series in plot c. The least square quadratic trend (red) in plot b is
removed to produce time series in plot d. Horizontal lines in bottom plots mark ± 1
standard deviation.

Other characteristics calculated for the deseasonalized, detrended TOA �ux anoma-

lies were the autocorrelation function (see Figure 4.6, center plot) and frequency spec-

tra (Figure 4.6, right plot). The auto-correlation will give us an idea of the memory

intrinsic in observations versus climate models. The autocorrelation function vali-

dates our use of subsequent 20-year periods as `independent' realizations of possible

observed periods because the `decorrelation time', as de�ned by the time the auto-

correlation function falls below the 95% line is almost always less than 20-years. We

also computed a frequency spectra to look at whether the variability is operating on

the same length scales, like ENSO cycles of 2-7 years. While we calculated these sta-

tistical characteristics for all models, we decided to focus on the standard deviation

of TOA �ux anomalies as the primary interannual variability metric.

Normalizing the standard deviation of TOA �ux anomalies by the standard de-

viation in TAS anomalies gives us a measure of how large the TOA �ux anomaly
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Figure 4.6: Example of various statistical characteristics calculated for the interannual
time scale. The 20-year time slices are shown here from CM21. Plot a is a histogram
of de-trended TOA �ux anomalies; vertical lines mark the average standard deviation.
Plot b is the autocorrelation function. Plot c is the frequency spectra.

variability is compared to the TAS variability, but it does not give us information

about how the TOA �ux anomalies and TAS anomalies vary together. For this reason,

we use the standard deviation of detrended TOA �ux anomalies as the interannual

metric in units of Wm−2.

Decadal

The decadal variability is characterized by 20-year and 100-year trends. The trend

used in subsequent analyses and comparisons is de�ned as the slope of the least square

linear regression line and is in units of Wm−2 per month and converted to Wm−2 per

century. Alternatively, for the 100-year period, since a linear trend does not best �t

the data, the trend is also calculated as the di�erence between the �rst and last 10-

year averages and has units ofWm−2. We normalize the long-term trends by dividing

by the corresponding trend in the deseasonalized surface air temperature anomalies.

4.5 Regressions

We have separated and characterized the variability in the top of the atmosphere

radiative �ux anomalies due to water vapor, atmospheric temperature and surface

albedo into the seasonal cycle, trend, and de-trended �ux anomalies. It is useful to

note that we can reconstruct the original time series with these three components,
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though the trend from the 100-year runs used for the trend comparisons is di�er-

ent from the trend subtracted out in the interannual analysis. In total, this thesis

considers 21 metrics of variability per feedback variable:

• 20-year seasonal amplitude (global, NH, SH) � 3 total

• 20-year standard deviation (global, NH, SH) � 3 total

• 20-year least squares linear trend (global, NH, SH) � 3 total

• 100-year seasonal amplitude (global, NH, SH) � 3 total

• 100-year standard deviation (global, NH, SH) � 3 total

• 100-year least squares linear trend (global, NH, SH) � 3 total

• 100-year end minus beginning trend (global, NH, SH) � 3 total

The regression coe�cient and signi�cance of each pair of variables are calculated in

three ways. The �rst way (method 1) is by using each model ensemble member as an

independent point in the analysis with the assumption that each ensemble member

has the same uncertainty. There are thirteen models and each model has a set of

ensemble members ranging from 1 to 9. In total, there are 44 ensemble members

included in the analysis. When comparing two 100-year metrics, the fact that each of

the 44 ensemble members are given equal weight could introduce some biases in the

regressions, because models with more ensemble members will have more points in the

analysis (i.e. more votes). When comparing two 20-year metrics, there are �ve 20-year

sections for each 100-year ensemble member, resulting in 220 independent points in

the analysis. Like before, the ensemble members aren't independent, nor are the �ve

20-year sections within an ensemble member really independent. However, the �ve

sections could be considered independent realizations of a twenty year snapshot of the

Earth's climate, since the autocorrelation function of the entire 100-year time series

indicates a decorrelation time of less than 20 years. See Figure 4.6, plot b, bottom

center. When comparing a 20-year and a 100-year metric, the �ve 20-year sections of

each 100-year ensemble member are ensemble averaged resulting in 44 points in the

analysis. Signi�cance of the regression coe�cient is determined by the p-value for a

two-tailed student-t test using a t-statistic and degrees of freedom (number of points

less 2) of the regression line and tested against the null hypothesis that the regression

coe�cient is zero (the metrics are unrelated, H0 = 0). This regression on all points

is indicated by the dashed line in result �gures in the following chapter.
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The second way (method 2) of calculating the regression coe�cient and signi�-

cance of a pair of metrics is by using an average value for each model (13 points) with

the same regression analysis described in the previous paragraph. Again, we assume

each model average has the same uncertainty (variance). For the 100-year metrics,

the average is taken across the ensemble members for each model. For the 20-year

metrics, the average is taken across all 20-year sections covering all ensemble members

for each model (the number of values being averaged for each model is the number of

ensemble members multiplied by �ve). This regression on 13 points is indicated by

the solid line in result �gures in the following chapter.

However, each model has a spread of values across ensemble members and 20-year

sections. Since there is variance in both the x and y data, we ideally want to weight

each average model value by the variance in both dimensions when computing the

linear regression coe�cient for the 13 model points. To account for the spread of the

20-year sections in the calculation of linear regressions, regression coe�cients were

computed a third way (method 3) by attaching weights to each model based on the

inverse of the variance of the data. Of the signi�cant regression coe�cients, there is

little di�erence (≈10%) between the unweighted (method 2) and weighted regressions.

For the purpose of this thesis, we focus on results for the regression coe�cient and

signi�cance of the unweighted regressions. Results for the weighted regression are

occasionally noted when very di�erent from the unweighted regressions.
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Chapter 5

Results

This thesis compares the variability of top of the atmosphere �ux anomalies due to

three variables (water vapor, atmospheric temperature, and surface albedo) over two

time lengths (20 years and 100 years) in three geographic regions (global, northern

hemisphere, and southern hemisphere) in thirteen global climate models. The vari-

ability is characterized on three time scales: annual, interannual, and decadal trends.

A goal of this thesis is to test how well any information about variability in the TOA

�ux anomalies (due to individual variables) obtained from a short record, analogous

to the length of the observed record, is related to variability in TOA �ux anomalies

and feedbacks obtained from a long record.

A metric has been computed for each combination of variables, time periods, geo-

graphic locations, and models in each of the time scales of interest: annual (amplitude

of the global-averaged seasonal cycle of the feedback variable), interannual (standard

deviation of global averaged TOA �ux anomalies), and decadal (trends of global av-

erage TOA �ux anomalies and feedbacks). All possible combinations of metrics are

compared resulting in 210 total comparisons. However, we focus on those comparisons

that are pertinent to determining any relationships between short-term (20-year) and

long-term (100-year) variability. Each of the nine 20-year metrics are compared with

each of the twelve 100-year metrics, resulting in 108 possible combinations of metrics.

These metrics are compared by performing a least squares linear regression of each

metric on every other metric and computing the signi�cance of the regression coe�-

cient. Then, metrics within a variable are compared across time scales and periods

by using a least squares linear regression of pairs of metrics from each model.

This approach uses the 13 models as an ensemble to test for any short-term to

long-term relationships within models as relates to the �rst research goal addressing

the nature of variability in TOA �ux anomalies between short and long time scales.
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Then observational values of short-term variability are compared to corresponding

short-term modeled variability as relates to my second research goal addressing the

constraint of modeled variability of TOA �ux anomalies by observations. Of most

interest are any relationships in measurements of variability found between the 20-

year period and 100-year period.

First, I will present results indicating that the two ways in which the 100-year

trends are calculated are virtually equivalent (Section 5.1). Then each of the follow-

ing sections presents results for each variable of the following short-term and long-

term metric comparisons: 20-year trend with 100-year trend (Section 5.2), 20-year

interannual variability with 100-year interannual variability (Section 5.3), 20-year sea-

sonal amplitude with 100-year seasonal amplitude (Section 5.4), 20-year interannual

variability with 100-year trend (Section 5.5), and 20-year seasonal amplitude with

100-year trend (Section 5.6). Section 5.7 presents results of the water vapor, atmo-

spheric temperature, and surface albedo feedbacks calculated by regressing TOA �ux

anomalies onto surface air temperature anomalies.

5.1 100-year Trend Calculation

There are two ways that the 100-year trend in TOA �ux anomalies is calculated. The

�rst is a least squares linear trend (method 1); the second uses the di�erence between

10-year averages at the beginning and end of the 100-year period (method 2). The

`method 2' trend, is in units of Wm−2 calculated over 90 years. By using 10-year

averages at the beginning and end of the time series, we are essentially decreasing

the length of the series by 5 years at either end. We multiply this trend by a factor

of 10/9 to produce an equivalent trend over 100 years. Figures 5.1, 5.2, and 5.3 show

that there is very good correspondence between the two methods of trend calculation,

but the trends calculated by `method 1' tend to be slightly larger than the `method

2' trends. The blue line marks the one-to-one correspondence between the two trend

calculation methods. For water vapor (Figure 5.1) and atmospheric temperature

(Figure 5.2) TOA �ux anomalies, the `method 1' trend is about 1.12 times larger

in magnitude than the `method 2' trend. For albedo (Figure 5.3), the `method 1'

trend is about 1.15 times larger than `method 2' trend. The standard error for

these regression coe�cients is about 0.03, so the coe�cients are not very di�erent.

Figures 5.1 and 5.2 show that for water vapor and atmospheric temperature, as the

magnitude of the trend increases, the di�erence between the two trend calculation
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methods becomes larger. If the models were ranked according to the size of the

di�erence between the two methods, we'd see a very similar ranking for water vapor

and atmospheric temperature. For example, CGCMT47 and CGCMT63 show the

largest trend and discrepancy between methods in both water vapor and atmospheric

temperature �gures. Those models that have a large discrepancy between trend

calculation methods also are less described by a linear �t with respect to time. That

is, the time series of global TOA �ux anomalies increases (decreases) non-linearly for

water vapor (atmospheric temperature). For example, see plot b in Figure 4.5.

All models behave as expected with trends in water vapor and atmospheric tem-

perature TOA �ux anomalies consistent with climate warming (i.e. water vapor

increases, decrease OLR and cause warming; atmospheric temperature increases, in-

crease OLR and cause cooling). However, two models have negative trends in surface

albedo TOA �ux anomalies. A negative surface albedo TOA �ux anomaly trend

indicates that there is actually an increase in albedo and cooling over the century.

This is inconsistent with a warming climate. Those same models also appear to be

farther from the one-to-one line than the models with positive trends. By convert-

ing feedback variable anomalies into TOA e�ects, we can compare the magnitude of

the trend in TOA e�ects among feedback variables. For water vapor, the range of

trends among these 13 climate models is about 0.7 to 2.5 Wm−2century−1 with an

average of around 1.3 Wm−2century−1. The approximate mean and range for atmo-

spheric temperature is -2.0 Wm−2century−1 (-0.85 to -4.0); for surface albedo is 0.12

Wm−2century−1 (-0.1 to 0.35).

Even if the time series of TOA �ux anomalies is not described well by a linear �t,

the least squares linear trend can still be used to describe the overall rate of change

over the 100-year period. In subsequent comparisons of 20-year measures of variability

with 100-year trends and feedbacks, the 100-year trend calculated by a least squares

linear �t (`method 1') is used in the regressions. Results for regressions using trends

calculated with the end and beginning di�erence (`method 2') are occasionally shown

as well to indicate little dependence in the results on choice of trend calculation.
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Figure 5.1: 100-year trend calculation comparison for LW water vapor TOA �ux
anomalies. The `method 1' trend is on the Y-axis; the `method 2' trend is on the
X-axis. Each color represents a di�erent climate model as indicated in the legend
below the graph. Each dot refers to one ensemble member. The stars indicate the
model average of all ensemble members (i.e. same colored dots). The blue line marks
the one-to-one correspondence. The regression coe�cient and signi�cance of non-zero
slope are given at the top of the plot for all dots (dashed) and all stars (solid).
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Figure 5.2: 100-year trend calculation comparison for atmospheric temperature TOA
�ux anomalies. As in Figure 5.1, `method 1' trend is on the Y-axis and `method 2'
trend is on the X-axis.
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Figure 5.3: 100-year trend calculation comparison for surface albedo TOA �ux anoma-
lies. As in Figure 5.1, `method 1' trend is on the Y-axis and `method 2' trend is on
the X-axis.

5.2 20-year Trend vs. 100-year Trend

In this framework, if 20 years were long enough to give information about a trend

over a longer period, there should be a relationship between average 20-year trend

and 100-year trend. In fact, there is a signi�cant relationships between the average

20-year trends and the 100-year trends for all variables and almost all geographic

locations (Figures 5.4 through 5.8). We expect this to be the case, especially if

enough 20-year points are included, such that an ensemble of 20-year trends converges

to the 100-year trend. However, it is of interest to ask how many 20-year points are

enough to determine a 100-year trend. Do we �nd a relationship between one 20-year

trend from each model and the subsequent 100-year trend? Because of the spread

in the 20-year trends, some 20-year trends will be closer to the 100-year trend than
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others. A measure of the 20-year spread is the ensemble average of the standard

deviation divided by the mean. This gives the standard deviation as a percent of

the mean and represents how well one 20-year period can be used to represent the

mean 20-year periods used in subsequent analysis to estimate 100-year feedbacks. For

water vapor, the percent standard deviation of the mean is 94.7%; for atmospheric

temperature, 100.6%; for surface albedo, 163.9%. Because these values are close to

100% or over indicates that trends are not a good metric with which to constrain

long-term feedbacks. Figures 5.4 through 5.8 show that one 20-year trend in TOA

�ux anomalies, similar to what we can currently calculate from satellite or reanalysis

observations, cannot give us a con�dent estimate of the longer trend. The blue line on

the following �gures indicates the one-to-one correspondence of the average 20-year

trend and the 100-year trend.

However, the average 20-year trends are not `converging' to the 100-year trend

because the regression slope is less than one. This might mean that by deseasonalizing

each 20-year period and calculating a linear trend separately, we are excluding some

information about the entire period. Most of the average 20-year trend values are

actually larger than the average 100-year trend values resulting in a positive, non-zero

y-intercept. This indicates that even for a 100-year period without an overall trend,

the ensemble average of 20-year trends can still be positive.

Water vapor

In the case of water vapor TOA �ux anomalies (Figure 5.4), the 100-year trend is

always positive for all ensemble members of all models. This is consistent with the

warming that occurs in all models over the 20th century. However, there are some (9)

individual 20-year sections within the 100-year records that have a negative trend. If

modeled variability is similar to observed variability in TOA �ux anomalies due to

water vapor, with only 20 years, it cannot necessarily be con�rmed that the trend

in water vapor TOA �ux anomalies is representative of 100-year trends, even though

only ≈ 4% of the 20-year trends are negative. We don't expect every 20-year trend

to match up with the 100-year trend because climate change isn't linear. The 20-year

trend in water vapor TOA �ux anomalies in the reanalysis is weakly positive at ≈
0.06 Wm−2century−1 (vertical black line in �gure). The 100-year trends in models

range from 0.57 to 2.62 Wm−2century−1, but almost all model simulations include

20-year periods with a similar trend magnitude as the reanalysis 20-year trend. Thus,
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it would be di�cult, by observational constraint, to further narrow what the 100-year

trend in water vapor TOA �ux anomalies might be.

The general relationship of large 20-year trends implying a large 100-year trend is

signi�cant with 99.7% con�dence, but the relationship is not one-to-one. On average,

the 20-year trends are larger in magnitude than the 100-year trends, although that

is not necessarily the case when looking at one model individually. For example,

the average 20-year trend in IPSL is smaller than the 100-year trend. The results

presented above are for the 100-year trend calculated using `method 1', that of a

linear least squares trend. When using trends calculated by `method 2', the slope of

the regression decreases slightly (from 0.67 to 0.56), and the signi�cance decreases

slightly by ≈ 0.3%. There is a signi�cant relationship using either trend calculation

method.

Figure 5.4: 20-year trend vs. 100-year trend for global average longwave water vapor
TOA �ux anomalies calculated by `method 1'. Reanalysis value is indicated by the
vertical black line.
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Atmospheric Temperature

Globally (Figure 5.5) and in the NH and SH (not shown), the average 20-year trends

are signi�cantly and positively related to the 100-year trends. All 100-year trends

in TOA �ux anomalies are negative. A negative trend in the TOA e�ect of atmo-

spheric temperature indicates that more energy is escaping the system due to higher

atmospheric temperatures and increased emission. Most 20-year trends are negative;

however, ten (less than 5%) 20-year periods have a positive trend, indicating a cooling

of the atmosphere and reduction of OLR. The 20-year trend in atmospheric temper-

ature TOA �ux anomalies in the reanalysis is negative at ≈ -3.7 Wm−2century−1

(vertical black line in �gure). Again, all models include 20-year trends spanning this

value so the 100-year trend in TOA �ux anomalies due to atmospheric temperature,

which ranges from -0.61 to -4.18Wm−2century−1, is di�cult to constrain with the re-

analysis observations. Like in the water vapor TOA �ux anomaly trends, CGCMT47

and CGCMT63 are outliers with noticeably larger 100-year trends than the rest of the

models. The northern and southern hemispheres plots look very similar to the global

plot. Also, average 20-year trends are larger in magnitude than 100-year trends.
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Figure 5.5: 20-year trend vs. 100-year trend for global average atmospheric temper-
ature TOA �ux anomalies calculated by `method 1'. Reanalysis value indicated by
vertical black line.

Surface Albedo

Globally and in the northern hemisphere, the average 20-year trends in albedo are

signi�cantly, positively related to the respective 100-year trend, but not the southern

hemisphere. Globally (Figure 5.6), the regression coe�cient is 0.84 (99.8% signif-

icance). In the northern hemisphere (Figure 5.7), the regression coe�cient is 0.79

(99.9% signi�cance). In the southern hemisphere (Figure 5.8), the regression coe�-

cient is 0.27, but not signi�cant (69%). The northern hemisphere shows a stronger

relationship between 20-year and 100-year trends than in the SH. In the global and

NH averages, while the general relationship between 20-year and 100-year trends is

positive (i.e. big 20-year trend = big 100-year trend), there are many individual 20-

year trends that are negative for a positive 100-year trend, though we don't expect
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all the 20-year trends to match the 100-year trend if the 100-year trend is changing

(i.e. nonlinear). In fact, ≈ 30% of the 20-year periods have a negative trend for

simulations where the 100-year trends are positive. A similar percentage is seen for

the NH (32%) and SH (36%). In the southern hemisphere, average 20-year trends

can be either positive or negative for models with positive 100-year trends. It is in-

teresting to note that not all models produce positive 100-year trends. CGCMT47

and CGCMT63 both have a negative 100-year trend, globally and in the NH, with

both positive and negative 20-year trends. In the SH, CGCMT47 and CGCMT63

have positive SH trends. Also, the ordering of 100-year trends in the NH and SH

is not the same suggesting that there isn't a uni�ed process occurring in both hemi-

spheres. Most of the average 20-year trends are more positive than the 100-year trend

as evident by their position below the one-to-one line. The 20-year trend in surface

albedo TOA �ux anomalies in the reanalysis is negative at ≈ -0.26 Wm−2century−1

(vertical black line in �gure). Most models include 20-year trends around this value

and some models do show some larger negative 20-year trends. Using the `method 2'

trend instead of the `method 1' trend slightly improves the one-to-one relationship,

but the di�erence is within the standard error of the �t; the signi�cance remains over

99%.
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Figure 5.6: 20-year trend vs. 100-year trend for global average surface albedo TOA
�ux anomalies calculated by `'method 1'.
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Figure 5.7: 20-year trend vs. 100-year trend for surface albedo northern hemisphere
average TOA �ux anomalies calculated by `method 1'.
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Figure 5.8: 20-year trend vs. 100-year trend for surface albedo southern hemisphere
average TOA �ux anomalies calculated by `method 1'.

Discussion points

A general observation across all variables is that the average 20-year trends tend to

be larger than the 100-year trends as is evident by the values lying below (or above

for atmospheric temperature) the one-to-one line. However, this is not necessarily

the case for an individual model. The slope of the global average surface albedo

regression is closest to the one-to-one relationship between 20-year trends and 100-

year trends with a slope of 0.84. The slope of the water vapor and atmospheric

temperature regressions are 0.67 and 0.75, respectively. However, the y-intercept of

all these regression lines is non-zero. The systematic underestimation of the 100-year

trend by the average 20-year trend could be due to non-linear behavior of the time

series and how the records were divided to calculate individual 20-year trends.
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5.3 20-year Interannual Variability vs. 100-year Interannual Variability

Table 5.1 lists regression slopes and signi�cances from comparisons of average 20-year

standard deviation of TOA �ux anomalies and 100-year standard deviation. There

is good agreement between the two time periods indicating that the distribution of

anomalies sampled in 20-years is similar to the distribution of anomalies over 100-

years. Though in general, the 20-year standard deviations are smaller than the 100-

year standard deviations because there may be some extreme anomalies or cycles that

occur over longer periods that aren't captured in 20-years. Any di�erence in standard

deviation due to sample size is not important because n is large for both the 20-year

and 100-year periods. The ensemble average percent standard deviation of the mean

for all of these 20-year values over the global average is 12.7% for water vapor, 13.3%

for atmospheric temperature, and 9.3% for surface albedo.

Table 5.1: Regression slopes and signi�cance between 20-year standard deviation and
100-year standard deviation of TOA �ux anomalies for all three variables and regions.
Normalized regressions and signi�cances are shown in parenthesis.

Var TA TA WVLW WVLW AL AL

Region Slope Sig (%) Slope Sig (%) Slope Sig (%)

GL 0.99 (1.08) 100 (100) 0.99 (1.01) 100 (100) 0.87 (0.86) 100 (100)

NH 0.98 (1.07) 100 (100) 0.98 (1.00) 100 (100) 0.94 (1.01) 100 (100)

SH 1.00 (1.05) 100 (100) 0.99 (1.01) 100 (100) 0.73 (0.70) 100 (100)

The values outside the parenthesis refer to the regression coe�cients and signif-

icance levels for the 20-year to 100-year standard deviation comparison. The values

within parenthesis are the comparisons of the normalized standard deviations. Nor-

malization of the standard deviation is done by dividing by the standard deviation

in the detrended surface air temperature time series. Normalizing in this way gives

information about how much the TOA �ux anomalies vary with reference to how

much the surface air temperature varies. Notice that the relationship is changed very

little and agree mostly within the standard error.



52

Surface Albedo

Overall, the average 20-year standard deviations tend to be smaller than the 100-year

standard deviations, although there are some individual 20-year periods with larger

standard deviation than the 100-year period. These 20-year periods are seen below

the blue one-to-one line in Figure 5.9. As the magnitude of the standard deviation

increases there appears to be more spread between the 20-year periods. The NH

shows the closest one-to-one relationship, followed by global, then SH (right columns

in Table 5.1). The reanalysis 20-year standard deviation is 0.079 globally, 0.099 in

NH, and 0.118 in SH.

Figure 5.9: 20-year standard deviation with 100-year standard deviation for global
average surface albedo TOA �ux anomalies. Reanalysis value indicated by vertical
black line.
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Water Vapor & Atmospheric Temperature

The relationship between standard deviation of 20-year and 100-year periods is essen-

tially one-to-one for global, NH and SH regions. To a lesser degree than albedo, the

spread of 20-year periods increases with standard deviation magnitude. There does

not appear to be much di�erence in the relationships of the three regions. This is so

for atmospheric temperature too. The reanalysis 20-year standard deviation for water

vapor is 0.303 globally, 0.35 in NH, and 0.414 in SH. The reanalysis 20-year standard

deviation for atmospheric temperature is 0.503 globally, 0.593 in the NH, and 0.524

in the SH. These reanalysis values fall within the range of climate model standard

deviations of TOA �ux anomalies with some models better matching the reanalysis

than others. This means that given a relationship in the models between the 20-year

standard deviation and the 100-year feedback, then the reanalysis observations might

be used to constrain the 100-year feedback.

5.4 20-year Seasonal Amplitude vs. 100-year Seasonal Amplitude

It should be that the average 20-year seasonal cycle amplitudes are related essentially

one-to-one to the 100-year seasonal cycle amplitudes because of how the seasonal cycle

for each period is de�ned. See Table 5.2 for regression coe�cients of 20-year seasonal

amplitudes with 100-year seasonal amplitudes for all three variables and regions.

Table 5.2: Regression slopes and signi�cance for 20-year seasonal amplitudes with
100-year seasonal amplitude for all three variables and regions. Regressions and
signi�cances for normalized amplitudes are given in parenthesis.

Var TA TA WVLW WVLW AL AL

Region Slope Sig (%) Slope Sig (%) Slope Sig (%)

GL 0.99 (0.88) 100 (100) 1.06 (1.07) 100 (100) 0.97 (0.88) 100 (100)

NH 1.00 (1.00) 100 (100) 1.00 (1.00) 100 (100) 1.00 (1.00) 100 (100)

SH 1.00 (0.98) 100 (100) 1.01 (0.98) 100 (100) 0.99 (0.850) 100 (100)

The following �gures (5.10, 5.11, & 5.13) show the 20-year seasonal amplitude

regressed onto the 100-year seasonal amplitude for the northern hemisphere for surface

albedo, water vapor and atmospheric temperature. The global and SH �gures (not
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shown) are essentially the same (or within the standard error) except for the global

water vapor shown in Figure 5.12. The 20-year global seasonal amplitudes for water

vapor are slightly larger than the 100-year global amplitudes (Figure 5.12). This may

be due to the fact that we use the seasonal cycle of the natural log of speci�c humidity

instead of speci�c humidity itself.

The reanalysis surface albedo seasonal amplitude for the northern hemisphere is

3.2% (vertical black line in Figure 5.10). In the southern hemisphere, the reanalysis

albedo seasonal amplitude is 1% and globally is 1.1%. It is of note that the reanalysis

surface albedo seasonal amplitude is much smaller in magnitude than the amplitude

in almost all of the models. The water vapor seasonal amplitude in the reanalysis is

0.184 globally, 0.781 in NH, and 0.444 in SH. The atmospheric seasonal amplitude in

the reanalysis is 2.786 globally, 10.358 in NH, and -4.785 in SH. Table 5.3 gives the

range of 20-year seasonal amplitudes for climate models for each variable and region.

Table 5.3: ERA-Interim reanalysis seasonal amplitude values (column 2) for all vari-
ables and regions with the minimum (column 3) and maximum (column 4) modeled
20-year seasonal amplitudes.

Albedo ERA Min Max

Global 0.011 0.018 0.052

NH -0.032 -0.084 -0.035

SH 0.01 -0.002 0.070

LW Water Vapor ERA Min Max

Global 0.184 0.097 0.248

NH 0.781 0.565 0.886

SH 0.444 0.359 0.571

Atm Temp ERA Min Max

Global 2.786 K 1.884 K 3.410 K

NH 10.358 K 8.481 K 11.578 K

SH -4.785 K -7.07 K -3.919 K
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Figure 5.10: 20-year seasonal amplitude vs. 100-year seasonal amplitude for NH
surface albedo TOA �ux anomalies. Note that all lines are essentially on the one-to-
one line (blue).
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Figure 5.11: 20-year seasonal amplitude vs. 100-year seasonal amplitude for NH LW
water vapor TOA �ux anomalies.
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Figure 5.12: 20-year seasonal amplitude vs. 100-year seasonal amplitude for global
LW water vapor TOA �ux anomalies.
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Figure 5.13: 20-year seasonal amplitude vs. 100-year seasonal amplitude for NH
atmospheric temperature TOA �ux anomalies.

It is worthwhile to note that the ordering of models are di�erent for all three

variables. Models with large atmospheric temperature cycle don't always have large

water vapor cycles and vice versa. For example, GISSAOM has the smallest NH

atmospheric temperature seasonal amplitude while a di�erent model has the smallest

NH LW water vapor seasonal cycle. Another example is INM, which has the sec-

ond smallest NH water vapor amplitude and is among the largest NH atmospheric

temperature seasonal amplitude. Because each of the models is essentially distinct,

with regard to seasonal cycle amplitudes, we can easily identify short-term model

performance compared to the reanalysis observations. However, this does not indi-

cate that the same models will perform similarly with respect to long-term feedbacks.

The ensemble average percent standard deviation of the mean for global annual cycle

amplitude is 1.5% for water vapor, 1.2% for atmospheric temperature, and 1.4% for
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surface albedo. This close clustering of points within each model, in addition to the

model separation, suggest that the seasonal amplitude is essentially constant with

time. While the mean state may change over time, this suggests that one 20-year pe-

riod can be used to represent the mean of 20-year periods which is used in subsequent

analysis to estimate 100-year feedbacks. The annual cycle amplitude may be a good

metric to constrain long-term feedbacks.

5.5 20-year Interannual Variability vs. 100-year Trend

Surface Albedo

There is a signi�cant relationship between the 20-year standard deviation in TOA

�ux anomalies due to albedo and the 100-year trend for the southern hemisphere

(Figure 5.14). The northern hemisphere and global domains do not show a signi�cant

relationship (not shown). In the SH, the regression slope is 1.66 with a signi�cance of

98.2%. The y-intercept of the regression slope is not at zero because even with no 100-

year trend, we would still expect there to be natural interannual variability in these

�ux anomalies. The weighted and unweighted regression slopes in this case are quite

di�erent, so taking account of the variance in the standard deviation is important,

though only the unweighted regression is presented for consistency. Regressing 20-

year standard deviation on to 100-year trend calculated with `method 2' instead of

`method 1', results in a ≈ 20 % change in the regression slope and slight increase in

signi�cance.

When normalizing by the standard deviation of the surface air temperature and

comparing with the normalized 100-year trend, or feedback, (Figure 5.15) we see

that the regression slope is 0.42 and the slope seems to depend on the inclusion of a

few models that sample higher standard deviations and feedbacks. The normalized

standard deviation is a measure of the variability of TOA �ux anomalies compared

to the variability of surface air temperature anomalies. The reanalysis SH surface

albedo TOA �ux anomaly normalized standard deviation is 0.84 Wm−2. When using

the reanalysis and the regression relationship in Figure 5.15 to estimate the 100-year

feedback, the value and error range is 0.21 (0.027 to 0.44) Wm−2K−1. There is little

di�erence when using the normalized trend (feedback) calculated with `method 1'

instead. The error in the regression slope and y-intercept is included, as well as the

spread of the 20-year values. The reanalysis observations are assumed to be `perfect'.
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The inclusion of its error would widen the estimates. The estimates presented here,

then, are best case estimates. Though the error range is smaller than the range

of models, there is substantial overlap among the models. The range of models

within the observation bounds is larger than the estimated range. The bounds on the

observations come from the spread in the modeled 20-year values. This overlap makes

it more di�cult to estimate long-term feedbacks from 20-year normalized standard

deviation. It is similarly so for non-normalized standard deviation (not shown) with

an estimate and range of 0.20 (0.013 to 0.42) Wm−2K−1.

Figure 5.14: 20-year standard deviation vs. 100-year trend for SH surface albedo
TOA �ux anomalies. Trend calculated by `method 2'.



61

Figure 5.15: 20-year normalized standard deviation vs. 100-year feedback (normalized
trend calculated by `method 2') for SH surface albedo TOA �ux anomalies. Reanalysis
value indicated by vertical black line.

Atmospheric Temperature & Water Vapor

There are not any signi�cant relationships between 20-year standard deviation and

100-year trends for neither atmospheric temperature nor water vapor. This may in-

dicate that some factors that contribute to the natural variability of the atmospheric

temperature and water vapor are not related to factors contributing to the overall

increasing temperature (e.g. ENSO and sensible and latent heat). The lack of rela-

tionships between interannual variability and trends in both atmospheric temperature

and water vapor TOA e�ects is probably due to their close anti-correlation. Table

5.4 shows the regression slopes and signi�cance for 20-year standard deviations with

100-year trends for surface albedo, atmospheric temperature, and water vapor TOA

�ux anomalies over global, NH and SH domains.
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Table 5.4: Regression slopes and signi�cance for 20-year standard deviation and 100-
year trends calculated by `method 1'. Values in parenthesis correspond to regressions
of normalized standard deviations with feedbacks (i.e. normalized trends).

Var TA TA WVLW WVLW AL AL

Region Slope Sig (%) Slope Sig (%) Slope Sig (%)

GL 1.46 (0.18) 67.4 (58.1) -0.53 (0.08) 28.8 (29.4) 0.64 (0.21) 28.8 (48.6)

NH 1.79 (0.05) 70.1 (11.9) -0.33 (0.44) 16.5 (80.9) 0.61 (-0.25) 38.8 (49.4)

SH 1.10 (0.34) 56.4 (91.8) -0.03 (-0.10) 1.9 (39.6) 1.55 (0.41) 88 (98)

There is a signi�cant relationship between the 20-year normalized standard devi-

ation and the 100-year normalized trend (feedback) in the SH for atmospheric tem-

perature (Figure 5.16). The reanalysis normalized SH standard deviation is 3.73

Wm−2K−1. The corresponding 100-year feedback estimate is -6.66 (-1.79 to -3.43)

Wm−2K−1. There is also a signi�cant relationship (91.4%) between the 20-year nor-

malized standard deviation and the 100-year feedback in the NH for water vapor

(Figure 5.17). The reanalysis normalized NH standard deviation is 1.76 Wm−2K−1.

The corresponding 100-year feedback estimate is 1.58 (1.08 to 2.15) Wm−2K−1.
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Figure 5.16: Regression between 20-year normalized standard deviation and 100-year
feedback calculated with trend method 2 for the southern hemisphere atmospheric
temperature TOA �ux anomalies. Reanalysis value indicated by vertical black line.
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Figure 5.17: Regression between 20-year normalized standard deviation and 100-year
feedback calculated with trend method 2 for the northern hemisphere LW water vapor
TOA �ux anomalies. Reanalysis value indicated by vertical black line.

5.6 20-year Seasonal Variability vs. 100-year Trend

Surface Albedo

Because of previous work (i.e. Hall and Qu, 2006), we expected to �nd that intra-

seasonal changes in surface albedo normalized by surface air temperature change are

related to longer term changes such that we �nd a relationship between the seasonal

cycle amplitude and the 100-year trend. Normalizing by surface air temperature

changes is important for albedo changes because albedo changes are most closely

related to temperature changes. In fact, the 20-year northern hemisphere normal-

ized seasonal amplitude is signi�cantly related to the 100-year global (not shown)

and northern hemisphere (Figure 5.18) normalized trend, or feedback, when using
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all data points. However, when using model averages, we do not �nd a signi�cant

relationship. The regression coe�cient is in units of (Wm−2K−1)/(%K−1) or simply

(Wm−2)/%. Furthermore, if we don't normalize the seasonal albedo change (and the

100-year trend) by the corresponding surface air temperature change, the relationship

is insigni�cant.

On the other hand, the best relationship between 20-year seasonal amplitude and

100-year trends is in the southern hemisphere for the non-normalized seasonal ampli-

tude and the normalized 100-year trend (i.e. feedback). See Figure 5.19. Why we see

a relationship in the southern hemisphere with the non-normalized 20-year amplitude

and we see a relationship in the northern hemisphere with the normalized 20-year

amplitude can possibly be explained by the dominant processes in each hemisphere.

In the northern hemisphere, there is more land area so snow cover changes over the

season is an important process that is especially dependent on surface temperatures

within a given season. The southern hemisphere is more dominated by sea ice changes

which may depend more on the mean climate state and ocean temperatures than on

the seasonal air temperature changes.

The reanalysis 20-year normalized seasonal NH amplitude is 0.57%, which is most

consistent with GISSER & GISSEH. Their corresponding 100-year NH feedbacks are

between ≈ 0.1 to 0.2Wm−2K−1. However, several other models have similar 100-year

feedbacks, but much larger seasonal amplitudes. Using 100-year feedbacks calculated

using trend calculation `method 2' slightly improves the signi�cance though it remains

a weak relationship. In the southern hemisphere, the reanalysis seasonal amplitude

is 1.1%. Using the NH and SH amplitudes from the reanalysis and the respective

regression relationships from Figures 5.18 and 5.19, the estimated 100-year feedbacks

are 0.07 (-0.12 to 0.26) Wm−2K−1 for the northern hemisphere, and 0.37 (0.26 to

0.50) Wm−2K−1 for the southern hemisphere. However, since neither regression

relationship is signi�cant, long-term feedback constraint with this methodology for

surface albedo is not very useful.
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Figure 5.18: 20-year normalized seasonal amplitude vs. 100-year feedback for NH
surface albedo TOA �ux anomalies. Feedback trend calculated by `method 2'.
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Figure 5.19: 20-year seasonal amplitude vs. 100-year feedback for SH surface albedo
TOA �ux anomalies. Feedback trend calculated by `method 2'.

Atmospheric Temperature

Table 5.5 shows the regression slopes and signi�cance for 20-year seasonal amplitude

onto 100-year trend for global, NH and SH regions. Only the SH 20-year seasonal am-

plitude is signi�cantly related to the 100-year SH trend as shown by the signi�cance

level in Figure 5.20. The seasonal amplitude is computed as the JJA-DJF so values

are negative for the southern hemisphere because this is winter minus summer. The

general relationship of increasing atmospheric temperature seasonal amplitude mag-

nitude with increasing TOA �ux trend magnitude is also seen in Table 5.5 for the NH

and global domains, but of less signi�cance. Regressing the seasonal amplitude on to

the 100-year trend calculated by `method 2' tends to weaken the signi�cance, but the

general relationship persists. The relationship between non-normalized 20-year sea-

sonal amplitude and non-normalized 100-year TOA �ux trends due to atmospheric
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temperature anomalies depends on the inclusion of a few models that seem to be

outliers, although these `outliers' might not necessarily be outside the physically rea-

sonable possible trajectories. CGCMT47 and CGCMT63 have the greatest 100-year

trend and the greatest magnitude of seasonal amplitude. INM has a 100-year trend

similar to the majority of models, but with a much higher seasonal amplitude.

The relationship between the 20-year seasonal amplitude and 100-year feedback for

the NH, SH, and globe are shown in Table 5.5. The reanalysis 20-year SH seasonal

amplitude is -4.78 K and falls within the realm of the majority of models. The

reanalysis seasonal amplitude for the NH is 10.36 K and globally is 2.78 K. Using the

SH reanalysis value and the relationship in Figure 5.21, the estimated SH feedbacks is

-2.64 (-2.09 to -3.19) Wm−2K−1. The NH feedback estimate (not shown in �gures) is

-2.63 (-0.88 to -4.37) Wm−2K−1. Using `method 2' trend calculation results in little

di�erence.

Normalizing by the corresponding surface air temperature seasonal amplitude

worsens the relationship. This comparison relates the seasonal amplitude of atmo-

spheric temperature at 850 hPa and the net TOA e�ect of atmospheric tempera-

ture changes throughout the entire atmosphere. Normalizing the seasonal amplitude

should result in a value close to one since the seasonal temperature change at 850

hPa would be very similar to that at the surface. If all 20-year normalized atmo-

spheric temperature seasonal amplitudes are close to one, then the correlation with

100-year TOA �ux anomaly trend would tell us something other than how the sea-

sonal amplitude relates to the 100-year TOA �ux trend. Instead it would tell us how

the relative di�erence between the seasonal amplitude at 850 hPa versus that at the

surface relates to the 100-year trend. If all models had a similar seasonal amplitude

at 850 hPa and at the surface, the comparison with 100-year trend would essentially

just show the range of 100-year trend values among the models. Figure 5.22 shows

the normalized global atmospheric temperature seasonal amplitude regressed onto

the normalized 100-year trend in TOA �ux anomalies (i.e. feedbacks). It appears

that the seasonal amplitude at 850 hPa is less than at the surface for all models, but

that models tend to group in two areas: those models with almost equal 850 hPa

and surface amplitudes, and those with a 850hPa seasonal amplitudes of ≈ 20% less

than the seasonal amplitude at the surface. Figure 5.22 seems to suggest a di�erence

among models rather than an ensemble relationship.
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Figure 5.20: 20-year seasonal amplitude vs. 100-year trend for SH atmospheric tem-
perature TOA �ux anomalies. Note that CGCMT47 and CGCMT63 fall outside of
the majority of models.

Table 5.5: Regression slopes and signi�cance for 20-year seasonal amplitudes and
100-year trends for all three variables and regions. Values in parenthesis correspond
to regressions and signi�cances between 20-year seasonal amplitude and 100-year
normalized trends (i.e. feedbacks).

Var TA TA WVLW WVLW AL AL

Region Slope Sig (%) Slope Sig (%) Slope Sig (%)

GL 0.81 (-0.09) 70 (18.6) 0.11 (4.02) 2 (96.2) -0.01(-0.06) 25.8 (69.6)

NH -0.49 (-0.35) 80.6 (94.7) 2.66 (2.51) 85.2 (98.7) 0.0 (-0.01) 5.7 (23.2)

SH 0.65 (0.30) 97.5 (94.3) 6.0 (2.76) 98.8 (98.2) -0.0 (-0.04) 2 (74.8)
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Figure 5.21: 20-year seasonal amplitude vs. 100-year feedback for SH atmospheric
temperature TOA �ux anomalies. Feedback trend calculated by `method 1'.
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Figure 5.22: 20-year normalized global seasonal amplitude vs. 100-year global feed-
back for atmospheric temperature. Feedback trend calculated by `method 1'.

Water Vapor

As seen from Table 5.5, there is no relationship between the global 20-year water

vapor seasonal amplitude and global 100-year trend in TOA �ux anomalies (Figure

5.23). The northern hemisphere dominates the global water vapor seasonal cycle, so

it is no surprise that the NH seasonal amplitude versus trend plot (Figure 5.24) is

similar to Figure 5.23 (global). The biggest di�erence is the stronger NH seasonal

amplitude of CGCMT63 and CGCMT47, without which the relationship might not

be there. The relationship between seasonal amplitude and 100-year trend is stronger

in the southern hemisphere than in the northern hemisphere. For the SH (Figure

5.25), there is a signi�cant positive relationship such that larger 20-year seasonal

amplitudes correspond to larger trends in 100-year water vapor TOA �ux anomalies.

Even excluding CGCMT63 and CGCMT47, a relationship would appear to remain.
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Notice that NH seasonal amplitudes are greater than in the SH. While seasonality is

more pronounced in the NH, the relationship between seasonal amplitude and 100-

year trends is stronger in the SH. This could be due to a larger ocean surface area in

the SH. It could be that the global relationships are not signi�cant because of the NH

and SH are seasonally out of phase and taking a global average seasonal cycle combines

information from opposite seasons. Regressing 20-year seasonal amplitude on to 100-

year trend calculated by `method 2' only reduces the signi�cance of the relationship.

Normalizing the seasonal amplitude by corresponding surface air temperature changes

worsens the relationships, though we don't expect the natural log of water vapor to

be linearly proportional to surface air temperature.

Figure 5.23: 20-year seasonal amplitude vs. 100-year trend for global average LW
water vapor TOA �ux anomalies. Trend calculated by `method 1'.
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Figure 5.24: 20-year seasonal amplitude vs. 100-year trend for NH LW water vapor
TOA �ux anomalies. Trend calculated by `method 1'.
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Figure 5.25: 20-year seasonal amplitude vs. 100-year trend for SH LW water vapor
TOA �ux anomalies. Trend calculated by `method 1'.

Since atmospheric temperature and water vapor are closely coupled, it is not sur-

prising that the signi�cant relationships occur in the same region, the southern hemi-

sphere. In the discussion section we expand on why we might see these relationships

in the SH instead of in the NH where seasonality is more pronounced.

The regression of the 20-year seasonal amplitude with the 100-year feedback (i.e.

normalized trend) is strongest for the northern and southern hemispheres. The global

regression is weaker because the global seasonal amplitude is essentially a residual be-

tween the northern and southern hemisphere seasonal cycles since they are seasonally

out of phase. The reanalysis 20-year seasonal amplitude of water vapor in the north-

ern and southern hemispheres are 0.781 and 0.444, respectively, and are indicated by

vertical black lines in the �gures. Using the respective linear regression relationships

in Figures 5.26 and 5.27, accounting for the standard error in slope and y-intercept,
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the estimated feedbacks are 1.76 (1.09 to 2.44) Wm−2K−1 for the northern hemi-

sphere and 1.96 (1.51 to 2.42) Wm−2K−1 for the southern hemisphere. Using the

trend calculation `method 2' instead yields similar results.

Figure 5.26: 20-year seasonal amplitude vs. 100-year feedback for NH LW water
vapor TOA �ux anomalies. Feedback trend calculated by `method 1'. Reanalysis
value indicated by vertical black line.
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Figure 5.27: 20-year seasonal amplitude vs. 100-year feedback for SH LW water
vapor TOA �ux anomalies. Feedback trend calculated by `method 1'. Reanalysis
value indicated by vertical black line.

5.7 TOA Radiative Flux Anomalies and TAS regressions

Feedbacks associated with the transient 20th century simulations for surface albedo,

water vapor and atmospheric temperature were calculated another way using the

method outlined by Gregory et al. (2004). That is, global TOA �ux anomalies

due to each of the three variables (calculated using the radiative kernel technique)

over the 20th century were regressed onto anomalies of global surface air temperature

(TAS) over the same period for each ensemble member of each model. Table 5.6

lists the feedback values in Wm−2K−1. Figures 5.28, 5.29 and 5.30 are examples of

the regressions for the three variables for one climate model, CCSM. All y-intercepts

are essentially zero and the regressions for each ensemble member are not necessarily
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within the standard error of each other. Feedbacks were calculated for the entire 20th

century as well as each individual 20-year period for each ensemble member of each

models (not shown).

Table 5.6: 20th century radiative feedbacks for atmospheric temperature (left column),
long wave water vapor (middle column), and surface albedo (right column) calculated
using the Gregory et al (2004) method. An ensemble mean, minimum and maximum
value are given for each model. All values are in Wm−2K−1.

Model Atm Temp LW Water Vapor Surface Albedo

CM20 -2.72 (-2.74 to -2.67) 1.61 (1.57 to 1.67) 0.26 (0.22 to 0.28)

CM21 -3.18 (-3.21 to -3.17) 1.98 (1.91 to 2.02) 0.17 (0.16 to 0.18)

GISSAOM -2.19 (-2.19 to -2.19) 1.31 (1.31 to 1.31) 0.47 (0.47 to 0.47)

GISSEH -2.49 (-2.67 to -2.34) 1.43 (1.22 to 1.61) 0.15 (0.11 to 0.18)

INM -2.49 (-2.49 to -2.49) 1.60 (1.60 to 1.60) 0.27 (0.27 to 0.27)

IPSL -3.07 (-3.07 to -3.07) 1.96 (1.96 to 1.96) 0.23 (0.23 to 0.23)

ECHAM -3.31 (-3.53 to -3.14) 2.09 (2.02 to 2.21) 0.23 (0.18 to 0.26)

CCSM -2.21 (-2.29 to -2.14) 1.28 (1.24 to 1.36) 0.27 (0.23 to 0.31)

CGCMt47 -3.24 (-3.32 to -3.14) 1.98 (1.88 to 2.04) -0.04 (-0.06 to -0.01)

CGCMT63 -3.09 (-3.09 to -3.09) 1.91 (1.91 to 1.91) 0.02 (0.02 to 0.02)

MIROCHI -2.60 (-2.60 to -2.60) 1.67 (1.67 to 1.67) 0.30 (0.30 to 0.30)

MIROCMED-2.65 (-2.74 to -2.56) 1.75 (1.65 to 1.89) 0.18 (0.16 to 0.21)

GISSER -2.32 (-2.38 to -2.21) 1.38 (1.33 to 1.44) 0.12 (0.04 to 0.16)
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Figure 5.28: Example of surface albedo TOA �ux anomaly regression with surface
air temperature following Gregory et al. (2004). Each color represents a di�erent
ensemble member of CCSM, as indicated in the legend below the plot.
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Figure 5.29: Same as Figure 5.28, but for LW water vapor.
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Figure 5.30: Same as Figure 5.28, but for atmospheric temperature.

In Figures 5.31, 5.32, and 5.33, global feedbacks derived from 20-year periods

are regressed onto global feedbacks derived from 100-year periods. There is a large

spread in the 20-year feedbacks, but signi�cant non-zero relationships with 100-year

feedbacks. The 20-year global surface albedo feedback is best related to the 100-year

global feedback with a slope and signi�cance of 1.21 and 99.6%. For water vapor, the

regression slope is 0.38 with a signi�cance of 98.9%. For atmospheric temperature, the

regression slope is 0.41 with a signi�cance of 98%. These results are simply presented

as an intriguing extension of this work. Since the spread in the 20-year feedbacks is

so large, it may not be very useful to try and estimate the 100-year feedbacks from

20-year observations. However, the correspondence between the 20-year and 100-year

feedbacks using this method is encouraging. Further interpretation and analysis is

reserved for future work.



81

Figure 5.31: 20-year global feedbacks compared with 100-year global feedbacks for
surface albedo as calculated with the RKT and Gregory et al. (2004) method.

Figure 5.32: 20-year global feedbacks compared with 100-year global feedbacks for
LW water vapor as calculated with the RKT and Gregory et al. (2004) method.
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Figure 5.33: 20-year global feedbacks compared with 100-year global feedbacks for
atmospheric temperature as calculated with the RKT and Gregory et al. (2004)
method.
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Chapter 6

Discussion

The ultimate goal of exploring radiative feedback variability between time scales is

to �nd a short-term to long-term link supported by the climate model data of the

20th century. Ideally, if a strong, consistent relationship exists between variability

in TOA �ux anomalies derived from short and long time periods in models, the

short-term variability can then be compared against variability over the same short

time scale in observations (or reanalysis data in this case), which could then provide

a constraint on the modeled long-term variability. In other words, a one hundred

year linear trend can be narrowed down such that the maximum and minimum long-

term trend allowed by the constraint of the short-term observations can be extended

from the current observations to project and constrain a future state. The work of

this thesis motivates this goal by presenting results indicating for which time scales

(Section 6.1), variables (Section 6.2), and regions (Section 6.3) long-term constraint

by observations might be possible. Through comparing reanalysis observations with

models, this work also presents �ndings on models that consistently behave di�erently

than most models (Section 6.4). Section 6.5 summarizes several feedback estimates

and compares results with previous studies. Finally, Section 6.6 brie�y discusses ideas

for future work.

6.1 Time Scales

This thesis explores the relationship between short-term and long-term feedbacks and

feedback variability by comparing 20-year and 100-year characteristics of variability

in TOA �ux anomalies due to atmospheric temperature, water vapor and surface

albedo variability. Variability is characterized over annual, interannual, and decadal

time scales. The most desirable short-term measure of variability would be one that
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does not change very much depending on which 20-year period is used because then

one 20-year period of observations would be su�cient.

In this study, the spread in the 20-year seasonal cycle amplitudes for each model

is small compared to that of 20-year trends and 20-year standard deviations. The

spread for each model is de�ned as a percentage of the standard deviation of the

20-year points over the average of the 20-year points for each model. The spread is

then presented as the ensemble average. For seasonal amplitude, the spread is about

1%. Also, the annual cycles of models di�er more between models than within a

single model. Because of the small spread in 20-year seasonal amplitude, we might

have more con�dence in any relationship found with 100-year trends and feedbacks.

However, most of the relationships found between 20-year seasonal amplitudes and

100-year trends and feedbacks depend on the inclusion of a few models that behave

di�erently from the rest. Since models have seasonal amplitudes distinct from one

another, this is something that can easily be compared with observations. But, this

doesn't necessarily mean that the long-term feedback predicted by the best performing

model in terms of seasonal amplitude would be correct.

The spread in the 20-year standard deviation is larger than the spread in seasonal

amplitude. The spread is close to 10%. This means that one 20-year period of obser-

vations may not be as good a representation of the 100-year standard deviation. The

20-year standard deviation underestimates the 100-year standard deviation because

one 20-year period doesn't capture all the extremes and low frequency cycles of the

longer period. The spread of the 20-year trends is even larger (≈100%) making its

use to estimate 100-year feedbacks more uncertain.

For all variables, 20-year trends were related to 100-year trends with a regression

slope of slightly less than one-to-one, but the 20-year trends (when linearly extrap-

olated to 100-years) were generally larger than the 100-year trends. This is because

the y-intercept is not zero for this regression. The discrepancy between the 20-year

and 100-year trends is most likely due to a combination of the non-linear behavior of

the 100-year time series and the way in which the 20-year segments were separated

and analyzed within each segment. The relationship was closest to one-to-one for

surface albedo, but the spread in the 20-year trends was also quite large. The spread

in the 20-year trends does not come from just a few outliers, but rather from natural

variability inherent in the record. Because climate change in these models is not a

constant linear change through the 100 years, sampling just 20-years could capture
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a much larger or smaller trend than the overall 100-year trend leading to the large

spread. Some models show a steady or slow increase in temperature at the begin-

ning of the record and a much steeper temperature increase toward the end of the

record indicating a blend of natural variability and climate change in the 20th century

simulations. It is also important to note that the spread of 20-year trends is model

dependent. For an individual ensemble member, the spread in 20-year trends will

di�er among models. Models with multiple ensemble members will contribute to the

total spread in 20-year trends because there is also some natural variability in the

20-year trend for a particular period across all ensemble members of one model.

While the general relationship between 20-year trends and 100-year trends is pos-

itive and almost one-to-one, there are some individual 20-year periods that are of

opposite sign to the general trend: a negative 20-year trend corresponding to a pos-

itive 100-year trend. This means that 20 years might not be long enough to infer

anything about the longer time period of which a particular 20-year period is a part,

especially if the long-term trend is very non-linear. To explore this question fur-

ther using this framework, one would need to repeat the analysis testing di�erent

lengths of time over which to average, like 10 years, 25 years, or 30 years. One would

(hopefully) be able to see if the relationship between short-term trends and long-term

trends becomes stronger as the short-term record is lengthened and to then determine

what length of record gives a con�dent estimate of the longer period trend. Another

approach would be to use the same 20-year period across all models and ensemble

members and explore how much information about the 100-year trend one particular

20-year period might contain. Using an ensemble of 20-year trends from just one

common period across all ensemble members and models would help determine the

20-year trend variability since the same 20-year period should have about the same

corresponding long-term trends. The length of the short-term period could be varied

as well as the long-term period about which information is desired. The particu-

lar time bounds of the speci�c short-term period length could also be varied. This

would hopefully result in a more comprehensive picture of the time lengths in which

information about a `long' record might be contained in a `short' record.

6.2 Feedback Variables

The 100-year feedbacks are calculated in this methodology as the trend in TOA

�ux anomalies due to water vapor, atmospheric temperature, and surface albedo
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normalized by the linear trend in surface air temperature anomalies. Normalizing

by the surface air temperature trend allows comparison between variables. Using

`method 1' trend calculation, the ensemble average longwave water vapor feedback

is 1.83Wm−2K−1 with a range in the 13 models from 1.42 to 2.45. For atmospheric

temperature, the mean and range is -2.73 (-1.98 to -3.51) Wm−2K−1; for surface

albedo, 0.18 (-0.09 to 0.52) Wm−2K−1. The feedbacks calculated with `method 2'

are within a few hundredths of the `method 1' values. The feedbacks calculated using

the Gregory et al. (2004) method are a couple tenths smaller in magnitude for water

vapor and within a few hundredths for the other variables, and the ranges are all

contained within the previous ranges. The longwave water vapor feedback is largest

positive feedback and is canceled by the negative atmospheric temperature feedback.

There is close coupling between the water vapor and temperature feedbacks because

of the dependence of saturation speci�c humidity on the temperature according to

the Clausius-Clapeyron relationship. The surface albedo feedback is positive on av-

erage (although a few ensemble members have a negative feedback) and smaller in

magnitude compared with the water vapor feedback. The surface albedo feedback

operates at a longer time scale than water vapor. Water vapor responds to warming

much quicker than snow or sea ice melts.

6.3 Regions

Seasonality is more pronounced in the northern hemisphere than in the southern

hemisphere and thus the northern hemisphere tends to dominate the global seasonal

cycle of all three variables. As Colman (2003b), Hall and Qu (2006), and Taylor et al.

(2011) point out, the northern hemisphere seasonality contributes most to long-term

feedbacks. However, in this study, there tended to be stronger relationships between

time scales in the southern hemisphere rather than in the northern hemisphere or

globally for surface albedo. That is, the southern hemisphere interannual variability

tended to be slightly more related to the southern hemisphere trend than likewise in

the NH or globally.

Why would southern hemisphere interannual variability in albedo TOA �ux anoma-

lies be more related to long-term trends than globally or in the northern hemisphere?

One reason the SH variability might be more related to the SH trend than NH or

global variability is to their corresponding trends is that a single process is dominating

surface albedo changes in the SH while competing processes are a�ecting changes in
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the NH. For example, the SH surface albedo changes are likely dominated by sea ice

changes whereas in the NH, sea ice changes and snow cover changes occur at slightly

di�erent times, and the interannual variability for each process might be unrelated or

out of phase. Performing this analysis on narrower latitude regions might help iso-

late reasons for this apparent relationship. Perhaps repeating this analysis for high

latitude regions (60◦N to 90◦N) could isolate interannual variability due to sea ice

changes. Mid-latitude region from 30◦N to 60◦N could isolate interannual variability

due to snow cover changes.

While the NH has stronger seasonality in water vapor, the SH has a stronger re-

lationship between 20-year seasonal amplitude and 100-year trend. The temperature

annual cycle is larger in the NH, due to more land area, so that seasonal cycle is

propagated to the water vapor seasonal cycle because warmer temperatures allow the

atmosphere to hold more water vapor. The SH seasonal amplitude is more related

to SH trend than the NH or global amplitudes are to their corresponding trends.

This could be because the NH has more land area complicating the relationship with

a long-term trend. Also, because the global seasonal cycle re�ects the cancellation

between the NH and SH, a relationship with trends becomes more complicated.

6.4 Models

Thirteen global climate models are used, but not all 13 models are independent.

There are probably only about 4 or 5 originally independent models from which all

subsequent models were developed. (Knutti, 2010). Some models are even more

closely related, such as CGCMT63 and CGCMT47, which di�er only in resolution

as do MIROCHI and MIROCMED. CM20 and CM21 are di�erent versions of the

same model where as GISSEH and GISSER have di�erent ocean models. The linear

regression technique assumes that all points are independent. This is technically not

the case here; however, the literature is full of studies that use the model ensemble

approach to study and interpret ranges of feedback estimates (e.g. Colman, 2003a; So-

den and Held, 2006). Adding more models to an analysis doesn't necessarily increase

the certainty of the result, but on the other hand including even one `bad' model can

decrease the uncertainty (Knutti, 2010). As suggested by Knutti (2010), if we think

of each ensemble member of each model as a possible trajectory of the actual Earth's

climate, we can consider these ensemble members to be independent. Further study

into how the results might be altered depending on how many and which particular
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models are included is an interesting question that is not quantitatively addressed in

this thesis.

Upon examining the �gures, it appears that the inclusion of certain models some-

times results in a signi�cant relationship while other times the exclusion of those

models results in a signi�cant relationship. We wouldn't want to exclude a model

just because its behavior is di�erent from the rest of the models if still physically rea-

sonable (Knutti, 2010). For example, for surface albedo, it appears that one model

(with two resolutions) in particular behaves di�erently from the rest of the models:

CGCMT47 and CGCMT63. For starters, this model has a negative feedback calcu-

lated with the Gregory et al. (2004) method while all other models have a positive

feedback. These two models have larger 100-year trends for water vapor and atmo-

spheric temperature. While these two models seem to stand out among the rest of

the models, there are examples where these models fall within the pack of models;

SH surface albedo trends and surface albedo seasonal cycle amplitude, for example.

6.5 Comparison with previous results

It is also an interesting result if there isn't a relationship where we thought there

should be one, because then we can conclude that 20 years is not a su�cient record

to see a relationship or the processes involved on short time scales behave di�erently

on long time scales. Taking surface albedo for example, snow melts seasonally and

glaciers melt over decades of climate change. Hall and Qu (2006) found a relationship

between the northern hemisphere percent seasonal change in snow albedo normal-

ized by the surface temperature change and the 2200-2000 di�erence in NH albedo

normalized by temperature change. However, we don't �nd a signi�cant relationship

between the northern hemisphere normalized seasonal albedo change and the normal-

ized 100-year trend in NH TOA �ux anomalies due to surface albedo. Figure 5.18

does show that there is a general relationship of larger amplitude to larger trend.

This is consistent with Hall and Qu's work. But, this analysis does not �nd a sig-

ni�cant relationship on these time scales. It appears that by excluding CGCMT47

and CGCMT63 in the regression in Figure 5.18, we might get a completely di�erent

regression coe�cient. It is also important to note that Hall and Qu (2006) used only

`snow' points over land whereas this thesis analysis includes all land and ocean points

in the NH, including sea ice. Also, the long-term temperature change calculated in
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Hall and Qu's (2006) study is larger than that calculated in this study so we may not

be seeing a large enough signal.

The global 20th century feedbacks calculated in this research are similar to, but

slightly smaller than the 21st century feedbacks from the IPCC. The external radiative

forcing and climate response over the 20th century is much smaller than over the 21st

century which could explain the smaller values. Feedbacks over the 20th century are

1.83 (1.42 to 2.45)Wm−2K−1 for LW water vapor, -2.73 (-1.98 to -3.51)Wm−2K−1 for

atmospheric temperature, and 0.18 (-0.09 to 0.52)Wm−2K−1 for surface albedo. The

20th century contains natural climate variability in addition to a small climate change

signal. Comparing these values with the feedbacks calculated from an unforced,

natural variability simulation by one climate model (Colman and Power, 2010), would

be useful. The climate model used in Colman and Power (2010) is not included in

this work. Colman and Power (2010) �nd that the water vapor feedback in unforced

simulations is about two-thirds that of the forced case. The smallest LW water

vapor feedback calculated over the 20th century is roughly three-fourths that of the

21st century. Colman and Power (2010) also �nd a near-zero lapse rate feedback

and some models in this study have atmospheric temperature feedbacks that suggest

near-zero lapse rate feedbacks, assuming a reasonable value for the Planck feedback

of about -3.2 Wm−2K−1 (Soden and Held, 2006). Colman and Power (2010) �nd a

stronger surface albedo feedback in unforced simulations than in forced simulations,

and some models in this study have larger surface albedo feedbacks than the 21st

century feedbacks given by the IPCC.

6.6 Future Work

The range of feedback estimates using reanalysis observations and 20-year to 100-

year relationships depend on several factors. One is the selection of models used

in the analysis. Many of the relationships between a 20-year feedback variability

metric and the 100-year feedback were dependent on the inclusion of a few particular

models. Other relationship may be strengthened by the exclusion of the same models.

Future work exploring the dependence of these results on model inclusion would

be an interesting extension, as well as including more of the IPCC models to the

analysis. Feedback estimates may also depend on the time scale metrics used and

the time period lengths used. Another interesting expansion of this research would

be to explore the dependence of any of the relationships on the time periods used to
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compute the metrics. For example, one could test how these results would be altered

by using a short-term period of 30 years instead of 20 years. One might also select

di�erent de�nitions of feedback variability metrics to compute and compare.
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Chapter 7

Conclusion

The climate is warming. It is of scienti�c and societal interest to know how much

the climate will warm in the future. The amount of warming depends partly on the

climate sensitivity of the Earth, that is, for a given radiative perturbation that forces

the climate system out of equilibrium, by how much will the climate warm until reach-

ing a new balance in the Earth's radiative energy balance. The climate sensitivity

can be separated into components of internally driven processes that act to either

amplify or dampen the initial response of the climate to an external radiative forcing.

These internal processes are radiative feedbacks. Scientists use global climate models

to learn about climate sensitivity and feedbacks. The current suite of atmospheric

global climate models coupled to slab ocean models calculate climate sensitivity val-

ues of 2.1 to 4.4 Kelvin. This spread in the estimated climate sensitivity is due in

part to the uncertainties of the individual climate feedbacks including: water vapor

with a mean and range of 1.8 ± 0.18Wm−2K−1, lapse rate with a mean and range

of −0.84 ± 0.26Wm−2K−1 and corresponding atmospheric temperature feedback of

−3.2±0.3Wm−2K−1, surface albedo with a mean and range of 0.26±0.08Wm−2K−1,

and clouds with a mean and range of 0.69 ± 0.38Wm−2K−1 (Randall et al., 2007).

While the cloud feedback contributes most to the uncertainty in the climate sensi-

tivity, the uncertainty in the water vapor, lapse rate (related to atmospheric temper-

ature), and surface albedo feedbacks also contribute. Using observationally derived

estimates of climate sensitivity and feedbacks is one way in which to attempt to con-

strain the climate sensitivity estimates from models. Because only a few decades of

radiation observations from satellites exist, climate sensitivity and feedbacks inferred

from this short record can most con�dently be used to constrain modeled climate sen-

sitivity and feedback estimates using the same time period. If the goal is to constrain

the estimates of climate sensitivity and feedbacks over the long-term (century scale),
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there must be a relationship between modeled climate sensitivity and feedbacks esti-

mated from a short record and those estimated using a longer record. To establish a

foundation to be able to address the question of constraining climate sensitivity and

feedbacks using observations, this thesis characterizes the short-term and long-term

feedback variability using climate model data.

7.1 Does the short-term variability in TOA �ux anomalies tell us any-
thing about future trends in models?

The radiative kernel technique was used to calculate TOA �ux anomalies and ra-

diative feedbacks due to water vapor, atmospheric temperature, and surface albedo

over the 20th century as simulated by the current suite of coupled atmosphere-ocean

global climate models. Feedbacks of the 20th century were computed in two ways:

using the full 100 years and using �ve sequential, non-overlapping 20-year periods

within the 20th century. First, metrics of feedback variability from the short-term

(collective 20-year segments) were regressed onto metrics of feedback variability from

the long-term (entire 20th century). Relationships between the amplitude of the sea-

sonal cycle of feedback variables and the 100-year trend in TOA �ux anomalies due

to feedback variables were quanti�ed (Results, Section 5.6); as were relationships be-

tween feedbacks calculated over interannual variability and 100-year trends in TOA

�ux anomalies (Results, Section 5.5).

Did we �nd any signi�cant relationships between a short-term metric of feedback

variability and a long-term metrics of feedback variability? We �nd a signi�cant rela-

tionship between the 20-year annual time scale metric and the 100-year feedbacks for

water vapor and atmospheric temperature in the northern and southern hemispheres.

We don't �nd this relationship for surface albedo. While large 20-year interannual

metrics relate to large 100-year feedbacks, we do not �nd a signi�cant relationship

between surface albedo metrics for any variable or region. With relationships (to vary-

ing degrees of signi�cance) between short-term and long-term feedback variability, we

then characterized short-term feedback variability from an observational dataset to

compare with modeled short-term feedback variability, especially for the 20-year an-

nual cycle amplitude.
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7.2 Can climate sensitivity components be constrained by observations
through this method of analysis?

We computed TOA �ux anomalies and feedbacks from twenty years of the ECMWF

ERA-Interim observational reanalysis product. Using the seasonal amplitude of feed-

back variables and interannual feedbacks calculated from the reanalysis data, a con-

straint on 100-year trends in TOA �ux anomalies normalized by surface air temper-

ature anomalies (i.e. feedbacks) was estimated using any `short-term' to `long-term'

relationship established from the model data. These estimates of long-term feedbacks

were compared with other previous feedback estimates.

The reanalysis provided a constraint on the 20-year interannual metric that cor-

responded to a range in the estimated 100-year feedback that was smaller than the

range of modeled atmospheric temperature and water vapor feedbacks that fell within

the range of reanalysis 20-year observations. Because the 20-year interannual metric

is not signi�cantly related to the 100-year feedback, we cannot determine a constraint

using this methodology. For the 20-year annual cycle amplitude, only a few models

fell within the range of the reanalysis values. The corresponding estimates of 100-year

feedbacks were close to the total range of modeled 100-year feedbacks.

However, even if the estimated feedback ranges are smaller than existing ranges,

we assume in this analysis that the observational values are perfect. Including an

error estimate in the reanalysis observations may expand our estimated range to be

consistent or larger than existing ranges. This suggests that these results are at

least consistent with existing ranges or suggest that this may not be a very fruitful

method in which to constrain estimates of long-term feedbacks and climate sensitivity,

at least until GCMs show better agreement or until we can objectively determine

which models to use in this type of analysis. While these results may depend on

several factors including selection of models included in the analysis, reliability of

observational product, and time scale metrics and time periods used, this research

does suggest that long-term feedbacks may be better constrained by the annual cycle

than interannual variability.
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