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CN THE CAICHY-DAVENPCRT 
INEQALITY FR THE SUM OF 
SUBSETS OF A CCLIC GROUP 

CHAPTER I 

IN TR OD LC TI CN 

In 1935 H. Davenport [6], published the following 

theorem on the addition of sets of residue classes. 

Theorem 1.1: Let a1, a5, a be m different 

residue classes modulo a prime p, and let b1, b2, ", 

b be n different residue classes modulo p. Let 

c1, C5,...,C be all the different residue classes re- 

presentable as a1 + 1 i m, 1, < j < n. Then 

(1.1) > m + n - i 

if m + ri - i < p, otherwise t- p. 

In this paper we are going to investigate some of the con- 

sequences of this publication by Davenport. 

Shortly after Davenport's publication appeared, 

and also in 1935, I. Chowla [3] published a statement of 

the extension of Theorem 1.1 to the case of a composite 

modulus (cf. Theorem 2.1). However, the proof, which is 
almost identical with Davenport's proof of Theorem 1.1, 

did not appear until 1937 [4]. It is interesting to 
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note that A. Cauchy ([1], [2]) had used essentially the 

same method to prove Theorem 1.1 in 1813 [7]. Because 

of these results Theorem 1.1 will be referred to as the 

"Cauchy-Davenport Theorem", and the extension of Theorem 

1.1 to the composite modulus case will be called 'Chowla's 

Theorem". 

Since the set of all residue classes modulo an in- 

teger in forms a cycle group of order in, we may re- 

state Theorem 1.1 in terms of subsets of a cyclic group. 

However, before restating the theorem we introduce some 

definitions. 

Definition 1.1: By the symbol EA] we shall mean the 

number of elements in the set A. 

Definition 2.1: By the sum C of the sets A and B 

we mean 

C = A + B = a+b / a C A, b C B). 

In general, capital letters will be used to denote sets 

of group elements, and small letters will be used to de- 

note the elements themselves. Unless otherwise stated, 

the letter C will be used to designate the sum of two 

sets. 

Theorem 1.1 now becomes: 

Theorem 1.1(a): Let G be the group of residue classes 
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modulo a prime p, and let A, B and C A + B be sub- 

sets of G. Then 

(1.1(a)) [C] min (p, [A] + [B] - i) 

The inequality 1.1(a), with the modulus arbitrary, will 

be referred to as the Cauchy-Davenport inequality. 

In 1952 H. B. Mann [li] published a new proof of 

Chowla's Theorem in which he used a transformation he 

had previously used to prove the famous a Theorem of 

Additive Number Theory. Mann did not apply his trans- 

formation directly to Chowla's Theorem, but instead he 

proved Theorem 3.2 which permits him to give a non- 

inductive proof of Chowla's Theorem. I have applied 

Mann's transformation directly and obtained a new proof 

of the Cauchy-Davenport Theorem. Also, by combining the 

transformation with double induction I have obtained 

another proof of Chowla's Theorem. Mann [12] also uses 

Theorem 3.2 to prove Theorem 3.4 which is similar to 

Chowla's Theorem and which is true for abelian groups 

in general. 

Since Mann was able to prove Chowla's Theorem by 

using his famous transformation, I considered a transfor- 

mation which F. J. Dyson [81 used for an alternate proof 

of the " Theorem. This resulted in a new proof of 

Chowla's Theorem (cf. Theorem 4.1). Using Dyson's trans- 

formation the proofs of the Cauchy-Davenport Theorem and 



4 

Chowla's Theorem are essentially the same. Also, one 

can use Dyson's transformation to obtain the Cauchy- 

Davenport inequality under several different hypotheses. 

This has been done by P. Scherk [14], J. H. B. Kemperrnan 

and P. Scherk [15], and the author. These theorems are 

presented in Chapter XV with the other work concerning 

Dyson's transformation. 

If one experiments with the Cauchy-Davenport in- 

equality he discovers that equality will sometimes hold, 

but generally there is strict inequality. Thus one is 

led to speculate on the nature of the sets for which 

equality holds. For the case of a prime modulus A. G. 

Vosper [16] [17] has solved this problem by characteriz- 

ing the sets for which equality holds in Theorem 1.1(a). 

Vosper offers two proofs of his theorem. The first proof 

is given here in Chapter II as the proof of Theorem 2.2, 

and the second proof, which uses Dyson's transformation, 

appears as the proof of Theorem 4.5. Mann [5] has of- 

fered a somewhat simpler proof of Voer's Theorem which 

uses a transformation similar to the one used to prove 

Theorem 3.2. Mann's proof appears as the proof at Theo- 

rem 38. It might be remarked that many of the original 

proofs are difficult to read and have been presented here 

in a more readable form. 

Some work has been done towards extending the 
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results for cyclic groups to the more general abelian 

groups. In Chapters III, IV and V I present these re- 

suits. 

As a final remark I present two unsolved problems. 

Throughout the text we give several sufficient conditions 

for the validity of the Cauchy-Davenport inequality, but 

nowhere have we stated a necessary condition when the 

modulus is composite. Also, we have not found a genera- 

lization of Vosper's Theorem to the case of a composite 

modulus. 



CHAPTER II 

PROOFS BY CHOWLA AND VOS PER 

In this chapter we consider Chowla's generaliza- 

tion of the Cauchy-Davenport Theorem and Vosper's first 

proof of his theorem which characterizes those sets for 

which equality holds in the Cauchy-Davenport inequality. 
We consider first Chowla's theorem: 

Theorem 2.1: Let G be the group of residue classes 

modulo an integer m. Let A, B and C A + B be 

non-empty subsets of G with O B, and for every 

b C B, if b 4 0 then (b,m) = 1. Then 

(2.1) [C) > min (m, [A] + [B] - 1). 

Proof: Since there is nothing to prove if 

[AIl + [B] - i m, we assume that [A] + [B] - i < m 

and show that [G] > [A] + [B] - 1. We prove the theorem 

by induction on [B]. For [B) = i the assertion is tri- 

vially true. Suppose that the assertion is false for 

E B] = 2, and denote the non-zero element of B by b1. 

Then a+b1 must be in A for every a C A. Hence, 

adding b1 k times, we have a + kb1 C A for every 
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natural number k. Since (b1, m) 1, a + kb1 gene- 

rates G, and therefore A = G; which contradicts the 

assumption that [A] + [B] - i < m. Thus the assertion 

is true for [B] = 2. 

Assume that Theorem 2.1 is true if [B]< n and 

consider the case where [B] = n. As before, we may 

assume that [C] < m Then there is a residue class 

d E G such that d C, and d-b C C for some b E B. 

For if not, we apply the same argument as before and ob- 

tain d - kb E C for any natural number k and any 

non-zero b E B. Therefore C is empty, and we have a 

contradiction to the hypothesis that A and B are non- 

empty. We use d then to define the new sets 
13* B** 

and C as 

and 

B = [b 
¡ d-b1 E C, b1 E B}, 

= [b 
I 

d_bi C, b E 

C' = [c ¡ cj = d-b1, b1 E B') 

By these definitions we immediately have that 

[B"] = [B] - [B'] 

Also, since Cj - b = a, (b E B** and c1 E C'), 

Implies that a + b = c = d - b1, and hence that 

a + b1 = d -b. which is impossible since bj E 
ß**, 



we have that Cj 

** 
next the set C 

Cj - b EA, for 

C flC is empt 

- b A for any c1 E C*. We define 

as C = A + B. Then since 

Cj C C and b C B**, we have that 

y. Therefore 

[C**] < [c] - [c*] = [C] - [B*] 

Also, since O E B, we know that B** Is not empty. 

Then by the inductive hypothesis 

Or 

[C] - [B] [c**J LAI + [B**] - 

[A] + [B] - 113*] - 1, 

[C] > [A] + [B] - 1, 

which completes the proof. 

If we require m to be a prime then the condition 

that (b,m) = i for b 4 0 is automatically satisfied. 

Thus, to obtain the Cauchy-Davenport theorem we need only 

show that we may assume that O E 3. This is easily 

accomplished, for if O B, form the set b' defined as 

B' = tbj- b1 I b1 E B, i = 1, 2, '', [B]} 

Then O E B', and 

[c] = [A+B] = [A+B'] 

a [A] + [e'] - i 

= [A] + [B] - 1, 



and we have the result. Note that when m is not a 

prime the above transformation may be incompatible with 

the hypothesis that (b,m) = 1. 

The hypotheses of Theorem 21, which are due to 

Chowla, may be replaced by other conditions which are 

sufficient for the inequality 2.1. Some of these condi- 

tions ar given in the following chapters. 

We consider next a simple example which shown that 

one must add hypotheses in order to extend the Cauchy- 

Davenport Theorem to the case of a composite modulus. 

Examp: Let G be the group of residue classes modulo 

2n, n>2. 

Let A = 2k 
I 

k = 1, 2, , n), 

and B = 2k-1 
j 

k = 1, 2, , n). 

Then C=A+B=B, 
and since [A] > 1 [C] < [A] + [B] - 1. 

It is clear that equality will hold in the Cauchy- 

Davenport inequality for the trivial case where the 

min ([A], [B] = 1. The following example shows that 

equality will hold in less-trivial cases. 

Example: Let G be the group of residue classes modulo 

a prime of the form 3n + 1. Let A 1, 4, 7,...,3n-2), 

and let B = [O, 3, 6, 3n). Then 

C = O, 1, 3, 4, .., 3n-5, 3n-2}, 
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[A] = n, [b] = n+l and [C] = 2n, 

so that [c] = [A] + [B] - J. 

Since it is clear that equality will often not 

hold in the Cauchy-Davenport inequality, the question 

naturally arises as to the nature of the sets for which 

equality will hold. A. G. Vosper [16] has answered this 

question in the theorem which we consider next. before 

stating Vosper's theorem we make the following definitions: 

Definition 1: A pair of subsets (A, B) of the group of 

residue classes modulo a prime p is said to be a cri- 

tical pair if [cl = min (p, [A] + [] - 1). 

Definition 2: by the difference A-B of the sets A and 

B we mean A-B = ja-b/ a E A, b E B}. The set contain- 

ing the single element a will often be written as tIat 

instead of as [a). Thus, in particular, 

A - a1 = [aja1 / aj C A}. 

Definition 3: The set A will be called a "standard" set 

if it can be represented as an arithmetic progression; 

je if for some a C A and some k C G with k 0, 

A - a - ik / o i [A] - i).. The pair (A, B) is 

said to be a "standard pair" if for some a C A, b E B 

and kCG with k0, 

A - a = [ik / O < j < [A] - 



and 

B - b = [ik / o < i < [B] - i}. 
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Definition 4: The complement of A in G is denoted 

by . 

Theorem 2.2: Let G be the group of residue classes 

modulo a prime p, and let (A, B) be a pair of sub- 

sets of G. The pair (A, B) is a critical pair if and 

only if A and B satisfy one of the following four 

conditions: 

(1) [A] + [B] > p 

(2) min ([A], [B]) i 

(3) A= for some dEG. 

(4) (A, B) is a standard pair. 

Proof: In the proof we will use the following easily 

verified observations: 

For A, B, C and D any subsets of G, and 

the empty set: 

(i) If A-B = C-D, then A fl B = p implies 

C n D = p. 

(ii) (M-B) nc = if and only if A fl(C-B) p. 

(iii) (A-B) n (c+D) = if and only if 

(A-c) n (B+D) = p. 

We consider first the sufficiency of the four 
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conditions. That conditions (i) and (2) are sufficient 

is immediate. If A = , for some d C G0 then 

[A] =t:a;j = [] = p - [B]. Hence [A] + [B] p. Also, 

A ( (d-B) = ,, so that by (ii) (A+B) (1 d = q. There- 

fore CC] p - i = [A] + [B] - 1. Thus, by the Cauchy- 

Davenport theorem, [C] = [A] + [B] - 1. Therefore con- 

dition (3) is sufficient. If (A, B) is a standard 

pair then A - a ik / O i [A] - 1) and 

B- b= ik/O< i<[B] - i). 

Hence, 

(A-a) + (B-b) = ik / O < j < [A] + [B] - 2}. 

Since k 4 0 by the definition of a standard set, k is 

a generator of G. Therefore [cl [A + B] 

[(A-a) + (B-b)] 

=[[ik/oi[A] + [B] -2)] 

= min (p, [A] + [B] - i). 

For, i runs through [A] + [BI - i values, and if 

this number is greater than p then C G. Therefore 

condition (4) is sufficient. 

Suppose now that (A, B) is a critical pair. If 

[A] + [B] > we have condition (i). If min([AJ,[B])1 

we have condition (2). If [A] + [B] p then [CJp-1. 

Therefore d for some d C G. Hence (A+B) n d = p. 

Then by (ii), A (1 (d-B) p, so that A But, 

[A] = p - [B] = p - [d-B] = []. Therefore A = 
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which is condition (3). For the remainder of the proof 

we may assume that 2 < [A] + CB] < p. Since we are 

supposing that (A, B) is a critical pair our assump- 

tion that CA] + [B] < p implies that [C] < p. Ve 

establish the remaining condition (4) by induction, but 

first we prove the following four lemmas. 

Lemma 2.1: If A is a standard set then (A, B) is a 

standard pair. 

Proof: As we have shown earlier we may assume that 

o E A and O C B. Therefore we may assume that 

A = Iik / o i [A] -i. Since the transformation 

't, O (mod p), applied to the sets A, B and C 

leaves [Al, [B] and [C] unchanged, we may assume that 

A = O, 1, 2, ..', [A] - i), (i.e., we may assume that 

k = i). Denote the set of consecutive integers 

m, m+1, , n by (m, n). The set (m, n) is said to 

be a "gap" in 8, if for all i E (nL, n), i B. Let 

(r, s) be the gap of maximum length t. Then t > [A), 

for if not C = G, which contradicts the hypothesis 

that [c] < p. Let B' = B - (s+l) = n/ O < i < [Bi-1). 

We will show that the n1 are consecutive, and hence 

that (A, B) is a standard pair. We may take 

o < Since s + 1 B we have no = O. 

Since r - i is the largest x < s which is in B we 
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have n1j1 = P t - 1. Define the set A' as 

A' A + (p-t-l) [i / p-t-1 < i p-t+[A]-2). 

Since t > [A] we have p - t + [A] - 2 < p-l. Since 

= p-t-1 we have A + B' J A' U B', and 

A' fl B' = p-t-1. 

[A' U B'] = [A'] + [o'] - i 

= [A] + [B] - i 

= [A + B] 

[A + B']. 

Hence, A' U B' A + B'. Suppose now that x C B' for 
any arbitrary, but fixed x in the interval O x < p-t-2. 

Then since i C A, x + i C A + B' = h' U B', but x + i 

is in the interval i < x + i < p-t-i, and therefore 

x + i E B'. Since n0 = O, we have the ni are conse- 

cutive, and the proof of the lemma is complete. 

Corollary 1: If [A] = 2 or [B] = 2 then (, B) is 

a standard pair. 

Proof: If [A] = 2 or [B] 2 then A or B is a 

standard set and the corollary follows from Lemnia 2.1. 

Lemma 2.2: If [A] = [B] = 3, then (A, B) is a standard 

pair. 
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Proof: Let B = jb1, b2, b3). If [(A+b1) lì (Mb2)] 1, 

then [(A+b1) 
u (A+b2)] > 5 = [C]. Therefore 

C = ((A+b1) u (A+b)) J A+b. Thus 

[(A+b1) 

n (A+b3)J > 2, for i = 1 or i = 2. 

We may suppose that [(A+b1) lì (A+b3)J 2. 

Then [(A+b1) U (A+b)} ( 4. Therefore (A,B1) is a 

critical pair for B1 = {b1, b1. Then (A, B1) is a 

standard pair by the corollary to Lemma 2.1. Hence A 

is a standard set, and therefore (A, B) is a standard 

pair by Lemma 2.1. 

Lemma 2.3: The pair (-A, ) is a critical pair. 

Proof: By the 

(A+B) flq. 
Let D = (-A, 

that, by (ii), 

Since B C D, 

Therefore [B] 

Therefore - 

Since [J p 

p - [B] = [] 

definition of ' we have that 

Therefore, by (ii), B 1 (A) p. 

then B C D. Also, D fl (e-A) = ,, so 

(A+D) n = . Therefore A+D C C. 

A+D = C, and hence 

[A) + [B] - i = [A+B] 

= [MD] 

= min (p, [A) + [B] - 1. 

= [D], which implies that B D. 

A=U, sothat [-A]=P-[B]. 

- [A] - [B] + 1, we have 

[AI - 1. Therefore 
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[ - A] = min (p, [] + [-A] - 1, and 

(,-A) is a critical pair. 

Corollary 2: If [A] = [B] = (p-l) then (A,B) is a 

standard pair. 

Proof: By Lemma 2.3 (-A, ) is a critical pair. Then 

by the corollary to Lemma 2.1 (-A, ) is a standard 

pair if [] = 2. If [A] = [B] (p-l) then 

[A] + [B] - i = p-2, and [J = 2, so that (-A, ) 

is a standard pair. Thus -A, and hence A, is a 

standard set, so that by Lemma 2.1 (A,B) is a standard 

pair. 

Lemma 2.4: If [B] > [A] > 3 and [B] > 4 then, unless 

[A] = [BI = (p-l), there are elements b1 and b2 in 

B such that 

(c+B) n (T ) 
n (c+b ) i * 

Proof: Form the set C-fB. Since [c] = [A] + LB] - i, 

we have by Theorem 2.1 that [C+B] > min (p, [A] + 2[B]-2). 

Suppose that Lemma 2.4 is false. Then the sets D1 de- 

fined by 

D1 = (c+B) n (E), i = i, 2, '; [B], 

are all disjoint. Since (C+b) C (CB), for 

i = 1. 2, . [B], we have that for each i 
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[Di] = [c+B] - [c+b] 

= [c+B] - [A] - [s] + 1. 

Also, DC C+B for each i, so that 

[B] 

[ U D.] < [c+B] 
i=l 

Therefore, 

or 

[s] ([c+s] - [A] - [B] + 1) < [c+B], 

(I) [B] ([A] + [B] - 1) [c+B] ([B] - i). 

We consider now three cases, each of which leads to a 

false conclusion. 

Case 1: p > [A] + 2 [B] - 2. 

Then [C+B] > [A] + 2 [B] - 2. Hence, by (.1), 

[B] ([A] + [B] - 1) > ([A] + 2 [B] - 2) ([B] - i). 

Therefore, [B]a < 3 [] + [A] - 2 4 [B] - 2, which 

cannot be true since [B] 4. 

Case 2: p < [A] + 2 [B] - 2 and [A] < [B] - 1. 

Then [C+B] = P. Since p > [A] + [B] + 1, we have by 

(I) that 

[B] ([A] + [B] - 1) ([A] + [B) + 1) ([B] - 1). 

Therefore [A] > [B] - 1, and hence [A] [B] - 1. 

Since p is a prime and p > [A] + [B]+1 = 2[B], we 

have that p 2 [B] + 1. Therefore by (I), 
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[B] (2[B]-2) .> (2[B] + i) ([B] - i), which cannot be 

true with [B] > 4. 

Case 3: p ( [A] + 2[B] - 2 and [A] = [B] 

Then [C+B] = p > 2 [B] + 1. Since we are assuming the 

lemma false the case that [A] = [B] = 3 (p-l) is ex- 

cluded. Therefore we may assume that p 2[B] + 3. 

Then by (i) we have that 

[B] (2[B] - 1) (2[B] + 3) ([B] - 1), 

so that 3 
.a 2[B], which again is false since [B] 4. 

Since the three cases exhaust all possibilities. 

Lemma 2,4 is established. 

We now complete the proof of the theorem by in- 

duction on [A] + [B]. If [A] = [B] 2 then (A, B) 

is a standard pair by Corollary 1. Assume that (A, B) 

is a standard pair if 3 [A], 3 [B] and 

[M] + [B] < n1, and consider the case that 3 < [A], 

3 CB] and [A] -s [B] = n+l. Supposa that (A,B) is 

not a standard pair. If [A] [B] (p-l) then by 

Corollary 2, (A, B) is a standard pair. and we are 

through. Therefore if [A] = [B] we assume that 

[A] (p-l). Also, we may assume that [Al [B] and 

that [B] > 4. Then by Lenna 2.4 there exist b1, b5 

and b3 in B, c C C and d C C+B such that 

d = (c+b3) c (c+B) ri (E) n 



19 

Define B1 and B2 by 

B1 = b / b B and (d-b) C CI 

and B = B fl. 

Since b1 C B2, b2 C B2 and b3 C B1, we have that 

2 < [B2] n. Now, (d-B2) flC p, and therefore 

(d-B2) ri (A+B1) = p. Hence by (iii). (dB1)uì(MB)cp. 

Therefore, since (d-B1) C C and (A+B) C C, 

EA+B2] [C] - [d-B1] = [C] - [B1] 

Hence, [c] [A+BZJ [B1] 

> [A] + [B2] - i [B1] 

= [A] + [B] - 1, 

which contradicts the hypothesis that (A,B) is a 

critical pair. Therefore (A,B) is a standard pair. 

and the proof is complete. 
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CHAPTER III 

PROOF BY MANN 'S TRANSFMATIONS 

In this chapter we will consider results that 

have been obtained using two transformations attributed 

to H. B. Mann. The first of these transformations was 

used to prove the u Theorem of additive number theory 

and is used here to prove (howla's Theorem. The second 

transformation is used to prove Chowla's Theorem and 

Vosper's Theorem. These transformations are also used 

to establish some other interesting results such as 

Theorem 3.4 which gives a sufficient condition for the 

Cauchy-Davenport inequality when G is simply an 

abelian group. 

We prove first Theorem 3.1, which will be useful 

in proving later theorems. 

Theorem 3.1: Let G be a finite abelian group, and let 

A and B be subsets of G. Then either A+B G, or 

Cc] > [A] + [B]. 

Proof: If A+B + G let be an element of . Then 

a 4 -b for any a E A and any b B. Therefore 

[] [B], and hence [G] - [A] > [B], which proves 
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the theorem. 

The following theorem is proved using flfl9 fa- 

mous transformation and furnishes a basis from which 

Mann proves (:howla's Theorem. 

Theorem 3.2: Let A, B and C A+B be subsets of an 

abelian group G, and let be an element of . 

Then there is a B* J B such that 

(i) + H for some subgroup 

H of G. 

(ii) [c*] - [C] [B*] - [B] 

Proof: The proof is by induction on [e]. The assertion 

is trivially true for [] = i and H = o). Assume 

then that the theorem is true for [] < n and consider 

the case where [] = n. Let = (, Z, Z}, and 

set 
- 

= d1. Let H be the subgroup of G gene- 

rated by the d1. We have then two cases to consider. 

Case 1: For every i and every k. (i 1, 2, 

k = 1, 2, ', n) there is an in such that dk 

Since 
= 1_ d. and hence - d1- dk Cm 

for every i and k, we have that for every h E H 

there is an m such that 4' h = 
m' 

Since also 

1 Cm dm implies that - dm m 
so that 
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Em = + h for every m, we have that = + H. 

Let B* = u and for Case i we have the theorem. 

Case 2: For some i and k, (i = i, 2, , n; 

k = i, 2, , n) , E - dk E C. 

Form then the set B' consisting of ail elements 

b + d such that 

(U a + b i- d = Z for some t, a E A, b B1 

From (1) we have also 

(2) a + b + dt = 

By the definition of B' we have that B il B' . De- 

fine the new sets B" arid C" as B" = B U 13' and 

Cn = A+B" Then Z -C", for E E C" implies that 

E1 = a+b+dj. Therefore a+b = E - d = 
. 

which is 

impossible. Thus " is not empty. '.e prove now 

(3) [C»] - [C] = [B"] - [B] = [B'] 

That [B"] = [B] [B'] is immediate from the fact that 

B fi B' = ç. Let Ej C", then E, a-fb' for some 

b' c B". Therefore b' C- B', so that b' b+dt for 

some t. Hence Z. = ab i dt. and by (2) a+b+d = 

so that b + d C B'. On the other hand, if b -f d E B' 

then a + b + d = E, and by (2) a + b i dt = 

Hence a + b + dt E MB' C C", and we have C C". 
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Thus there is a l-1 correspondence between the elements 

of C" not in C and the elements of B'. Hence (3) is 

established. 

By the definition of C" we have that [C"] > [C], 

and hence [e»] < [] . since also C", we have 

by the inductive hypothesis a set B J B" J B such 

t ha t 

(i) + H, H a subgroup of G, 

and 

(4) [c*] - [c"] = [B*] - [B"] 

Adding (4) to (3) we obtain 

(ii) [c*] - [cl = [B*] - [B], 

which establishes the theorem for Case 2 and completes 

the proof. 

With the aid of Theorem 3.1 and Theorem 3.2 we 

are able to give another proof of Chowla's Theorem. 

This proof is due to H. B. Mann [li]. For ease of re- 

ference we restate Chowla's Theorem. 

Theorem 3.3: Let G be the group of residue classes 

modulo an integer in. Let A, B and C A+B be non- 

empty subsets of G with O C A and (a1, m) = i if 

aj + O. Then 

(3.4) [c] min (p, [A] + [B] - 1). 
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Proof: If C G we are through. If C 4 G then by 

Theorem 3.2 there is a BD B such that 

(i) + H for some subgroup 

H of G, CCC' 
and 

(ii) [c] - fc] = LBS] [B] 

Consider the factor group (G/H). Let ' and h' be 

sets of cosets (mod H) that contain the elements of A 

and B* respectively. Then by Theorem 3.1 we have 

that [GÍH] > [A'] + [B'], and hence 

(1) [G] [H) [s/H] [H] [A'] + [H] [B']. 

Also, O E H, but ai 
H unless aj O for 

(a1, m) = 1. and since H is a subgroup, a 4 H 

would imply that H G which is contradictory to the 

fact that H G since 4 ç. Therefore aj is con- 

tamed in some coset f of H for every i, 

(i = 1, 2, , [A]). Hence 

(2) [H] ([A'] - 1) > [A] - t. - 
cip bt IP. 

Considering now the b. we havi b EB' for every 

b E B, and thus 

(3) [H]' [B'] > [Bt] 

Combining (1), (2) and (3) we have 

[G] > [A] + [H] + [Bt] - j 

or 
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[G] - [H] [A] + [B} - i. 

But by (i) [c*] [G] - [H]. Therefore 

(4) [c*] 
.a [A] i. [B*] 1. 

Subtracting (ii) from (4) we have 

[C] [A] + [B] - 

which completes the proof. 

In the introduction we stated that if was pos- 

sible to give alternate conditions for the validity of 

the Cauchy-Davenport inequality. Using Theorem 3.1 and 

Theorem 3.2 we will next establish a sufficient condi- 

tion for the Cauchy - Davenport inequality in the case 

that G is a finite abelian group. This theorem is due 

to Mann [12]. 

Theorem 3.4: Let G be an abelian group of order m, 

and let A B and C = A+B be non-empty subsets of G. 

If for every subgroup H of G, 

[A+H] > min m, [A] + [H] - 1), 

then for any subset B of G, 

[cJ > min m, [A] + [B) - lì 

Proof: If A+B = G we are through. If 

A+B (3 then p and by Theorem 3.2 there is a set 

B J B such that 

(i) + H for some subgroup H of 

G, and 
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(ii) [c*] - [c] = [B*] - [B]. 

Let A' and B' be sets of cosets of H that contain 

the elements of A and B* respectively. Consider 

then the factor group [C/H]. By Theorem 3.1 and (i)we have 

that [G/H] > [A'] + [B']. Since also 

[G] = [H] [C/H], [B*] < [H] [B'] 

and [A+H] = [H] . [A'], we have that 

[G] > [A+H] + [B J. Then by the hypothesis it fol- 

lows that 

(i) [G] > [A] + [H] + [B*] 1. 

Subtracting [H] fron each side and using the fact that 

(i) implies that [G] - [H] z [C*], we have 

(2) [c*] [A] + {B*] - 1. 

Subtracting (ii) from (2) we get 

[c] > [A] + [B] - 1, 

and the theorem follows. 

Mann was able to prove Chowla's theorem by first 

using his famous transformation to prove Theorem 3.2 and 

then giving a non-inductive proof of Chowla's Theorem. 

I have applIed Mann's transformation directly and have 

thus obtained new proofs of both the Cauchy-Davenport 

Theorem and Chowla's Theorem. We consider first the proof 

of the Cauchy-Davenport Theorem. 
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Theorem 3.5: Let G be the group of residue classes 

modulo a prime p, and let A, B and C = A+B be 

subsets of G. Then [C] > min p,[A] + [B] - i}. 

Proof: The proof is by induction on [e]. If [] = O, 

we are through. If [] 1, then the assertion is 

false if [C] < [A] + [B] - j.. Since [C] = p - 1 it 

must be that [A] + [B] > p, but by Theorem 3.1 if 

[A] + [s] > p then C = G and we have a contradiction. 

Thus the Theorem is established for [] = 1. Assume 

now that the Theorem is true for i < [] < n and con- 

sider the case where [J = n. Form the set 

D = d1/ d = 
- 

i = 2, 3, ..., n, C 

Let b0 be an element of B such that a + b0 + d1E 

for sorne a and some d1, and define B* as 

(i) B* = [b0 + d / a+b0 + d1 C 

Since the definition of B* depends upon 

of a b0 which satisfies (i) we show nex 

exists. Suppose that there is no b C B 

as the b0 in (i). Then a + b + d C C 

a C A, b E B and d1 C D. but [a+bI 

the existence 

t that such a b0 

which will work 

for every 

C ,and therefore 

C + d1 C C for every c and every d1. Fix d1 O. 
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Then c + kd1 C for every c and every natural number 

k. As before, since p is a prime, C f kd1 generates 

G, and thus C = G; a contradiction to the hypothesis 

that [] > 1. Thus there is a b0 B which satisfies 

(i). 

Now that we have established the existence of ß*, 

let B B U B* and C = A + B . Then we establish 
i i i 

the following four relationships: 

(1) B*flB,, 

(2) [c1] > fc] 

sci 

(4) fc1) - [c] = - [B] 

That the relations (1) and (2) are valid is immediate from 

the definitions. Suppose that C- C1, then 

a f b0 + dk _ Z1 for some dk. But dk - Ckl and 

therefore a + b0 + 
- k 

or a + b0 
k 

which 

is a contradiction. Thus (3) is verified. Finally, 

a +b+dj=k ifandonlyif a+b+dk=j. sothat 

there Is a l-1 correspondence between the elements of 

* . . 

B and the elements of C1 which are not in C. This 

establishes (4). 

Since (2) and (3) imply that C] < [] and 
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that is not empty, th induction hypothesis yields 

(5) [C1] > [J + [Bi] - i. 

Subtracting (1) from (5) we obtain 

[C] > [A] + [B] - 1, 

which completes the proof. 

As the reader Is by now probably well aware, the 

above proof would also hold for Chowla's Theorem if .._- 

could establish the existence of the b0 used to define 

B*. However, this is impossible as is shown by the fol- 

lowing example. 

Example 3.1: Let G be the cyclic group of integers 

mod 16, and set A [O, 1 3), 

B = [o, 4, 8, 12) and C = A+B. Then 

C = [o, i, 3, 4, 5. 7, 8, 9, 11, 12, 13, 15), 

: [2, 6, 10, 14), 

and 

D = [4, 8, 12). 

Then a + b s dt C C for every a, every b and 

every dt. Since B satisfies Chowla's hypotheses 

we must extend the above proof to include the case where 

b0 does not exist. This will be done in the proof of 

Theorem 3.6. 

We consider next a direct application of Mann's 
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transformation to prove Chowla's Theorem. This proof is 

somewhat simpler than Mann's proof which was discussed 

earlier. 

Theorem 3.6: Let G be the group of residue classes 

modulo an integer m, and let A, B and C = A+B be 

subsets of G such that OEA and for aj 4 0, 

(a1, m) = I. Then [C] > min (m, [A] + [B] - i). 

Proof: The proof is by double induction on [] and in. 

If R] = o the theorem is trivial. If [] = i then 

(i-a) E for every a C A. Therefore, [A] 

Hence, [C] m - i [] + [B] - i > [Al + [B] - 1, and 

the assertion is true for [] i and m < 2. Assume 

that m > 2, n = [] > i and that the theorem is true 

for modulus less than m and for modulus m if [] < n. 

Let [5] = n, and define the set D as 

D = [d1 / d1 = - i = 2, 3, 

Form the sum c1 + d; C1 C C and d C O. There are 

then two cases to consider. 

Case 1: There is at least one d such that c1 + d4C 

for some c1. 

In this case we define B' as 

B' + d / a+b+d c}. 
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Then B' q). Define B" and C" as B" = B L) B' and 

C" = A + B". Since C" will contain at least one more 

element than C, the induction hypothesis yields 

[c"] > min (min (m, [A] + [B"] - 1). 

Also, since a + b + dj Z implies a + b + d. 
= 

Therefore, 

[B"] - LB] > [C"] - [C] 

[C] > min (m, [A) + [B] - 1), 

and the assertion is true for Case 1. 

Case 2: For every c C C and every d E D, c + d C. 

Since c + d E C for every C and every d, C 

consists of the union of arithmetic progressions of the 

form Ck + rd where ck C, r = O, 1, 2, ', and 

Ck and d are fixed for each progression. Therefore, 

C is the union of arithmetic progressions of the form 

C + re where c C and e = g.c.d (di). j23,,n. 

Note that if e 1 we are through, since then C G, 

and we have a contradiction. Thus, if m is a prime 

the proof is complete. Assuming m is not a prime, C 

is also the union of arithmetic progressions of the form 

Cn + rd where c, E C and d = (e, m). Let H be the 

normal subgroup of G generated by d, and consider 
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the factor group G/H. Let A', b' and C' be the 

sets of cosets which contain elements of A, B and C 

respectively. Lenote the index of H by h. Then 

h [C'] = [C], and h. CB'] [B]. Since O C A and 

(a1,d) = i for every non-zero a in A, there is one 

coset S C A' whose only element in A is zero. There- 

fore, h [A') >[A]+h-1. Since cVH is isomorphic to the 

group of residue classes mod d, and since the non-zero 

elements of A' are relatively prime to d, the induc- 

tion hypothesis gives 

Therefore, 

[c'i > min (d, [A'] + [B'] - i). 

h '[C'] > min (hd, h [A'] + h. [B']-h). 

If we substitute our above results we get 

[C] > min (m, [A] + CB] - 1), 

and the proof is complete. 

We consider next an unpublished proof of Chowla's 

Theorem by R. D. Stalley, which uses a second transforma- 

tion attributed to Mann. 

Theorem 3.7: Let G be the group of residue classes 

modulo an integer m, and let A, B and C ì-+B be 

non-empty subsets of G such that O E A and for 

a1 O, (a1 m) 1. Then [C] > min (m, [A] + [B] - i). 
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Proof: The proof is by double induction on m and 

n []. If [] = O the theorem is trivial. If 

[] = i then (E-a) E for every a E A, E E . 

Hence CA] < C} so that Cc] = m-i = [J + [B]- i 

[A] + [B] - 1. 

Therefore the theorem is true for m < 2 and for n<i. 

Assume then that the theorem is true if in < m0 and 

n < n0, and consider the case where m = m0 and 

n = n0. Also we may assume that [J 2. Let 

= [E1, E, s.., E}, and let d1= E1-E 

i = 2, ', n. Ve have then two cases to con- 

s ider. 

Case 1: There is a b0 E B and a dt - such 

that b0 + dt t B. 

Def in 

B' 

B* 

Then, since 

[B*J > [B]. 

e the sets B', 

= [b0+ d / b0 

=BIJB' and 

B' fl B = p an 

Therefore [B* 

B* and C by 

+ d B), 

c* = A + B. 

:i B' 4 q, we have 

I < [EJ, and by the induction 

hypothesis we have 

(i) [Ce] > [A] + [B4] - 1. 

Since a + b0 + d = Cv implies that a + b + d = 
o y u 
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and hence that b0 + d E L we have 

(ii) [cJ - [C] < [Bk] - [B]. 

Subtracting (ii) from (i) we have [cJ [A] + [B] - 1; 

which proves the theorem for Case 1. 

Case 2: '.e have b + dt Q B for all b E B and all 

dt. Then B, and therefore C, is the union of arith- 

metic progressions with common difference 

e = g.c.d. [d/2 < u< n}. 

and hence with common difference d (e, m). Let H 

be the subgroup generated by d, and consider the factor 

group G/-. Denote the index of H by h. Let A1, 

and C1 denote the sets of cosets mod H which con- 

tain elements of A, B and C respectively. Then 

h[B1] 2: [B] and h[C1] = [C]. 

Let a :j: O be an element of A1. Since (a + kd, m) = i 

and d divides m we have (a, m) 1. Since [] > O, 

we have d > 1, so that (kd, m) > i if k > O. Since 

O A, we have h [A1] > [A] + h - i. Since [] > 2, 

we have d < d2 < m. Finally, C1 = A1 + B, and by 

the induction hypothesis 

[C] = h[C;1] > h min (d, [A1] + [B1] - 1) 

> min (hd, h[A1] + h[B1] - i) 
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> min (in, [Al + [] - i) ; 

which establishes the theorem for Case 2 and completes 

the proof. 

As the concluding theorem for this chapter we con- 

sider next Mann's proof of Vosper's Theorem [5]. This 

proof is not simple and is presented here in detail. 

However, Mann's proof is shorter and simpler than Vosper's 

own proof. For reference I restate Vosper's Theorem: 

Theorem 3,8: Let G be the group of residue classes 

modulo a prime p and let (A, B) be a pair of subsets 

of G. The pair (A, B) is a critical pair if and only 

if A and B satisfy one of the following four condi- 

t ions: 

(i) [A]+ [B] > p 

(2) min ([A], [B]) = i 

(3) A = d- B for some d C G 

(4) (A, B) Is a standard pair. 

Proof: The proof is by induction on [] and will make 

use of the following lemma: 

Lemma 3.1: Theorem 3.6 is true if A is a standard set. 

Proof: As we have shown earlier we may assume that 

o C A fl B, and that A = [o, i, 2, ', [A] - i), (refer 

to the proof of Lemma 2.1). Also, because of (2), we may 
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assume that min([A], [B])> 2. Consider then the gaps 

in B. If B has no gaps of length greater than or 

equal to [A], then [A] + [B] > p and we have condi- 

tion (1). If B has one gap of length at least [A], 

and no other gaps, then B is a standard set with corn- 

mon difference 1, and we have condition (4). If B has 

one gap of length at least [A] and at least one other 

gap, then C will contain besides IB] at least [A] 

elements in the gap in B of length at least [A]. There- 

fore [c] > [A] + [B], and the lemma is established. 

We now prove the theorem. Conditions (1) and (2) 

are immediate. If [cJ = p - 1, then = and 

D Z - A, so that [] > [A]. Therefore, 

[A] [B] = [A] + p- [] 
< [A] + p - [A] 

= [c] + i. 

Since equality will hold if and only if = - A we 

have established condition (3). e now establish condi- 

tion (4) by induction on []. Assume that the assertion 

of Theorem 3.7 is true if 2 < [] < r and consider the 

case where [] = n. Also we may assume that conditions 

(i), (2) and (3) are not satisfied. Let Z, , Z be 

the elements of and set - Z1 = di, = ' n. L., ...., 

'e have then two cases to consider. 
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Case 1: There is a b C B and indices s and t such 

that b+dcB and b+dc$-B. 

In this case we form the sets 

B' = [ + d /b + d 

B*=BUB and C*=A+B*. 

Since a + b + d = Ç implies a f b + d = , 
and 

therefore that b + d '4- B; we have 

(i) [ce] - [C] 'Z [B*} - [B] 

As a consequence of the definitions we have 

(ii) [B*] > [B] and [c] > [C] 

Now, conditions (i) and (2) are clearly not satisfied 

by A, B* and C. Suppose that [C*] = 
_ 1. Then, 

since [] = n implies that [C] = p - n and therefore 

that [C*] [cl = p - i - (p-n) = n-1, it follows from 

(i) that [B*] [B] > n-l. But [B*] [B] = [B'], so 

that [B'] .. n-1, which contradicts the hypothesis that 

b + d5 C B for some index s. Hence A, B* and C* 

do not satisfy (3). Then since [C*] > IC]. 
[*] 

< [e], 
and therefore by induction either (4) is satisfied, or 

(iii) [c*J > [A] + 
[ß*J 

Subtracting (i) from (3) we get 

[C] > [A] f [B] - 1, 

and have the proof for Case 1. 
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Case 2: Either b + dt C B or b+dt B for all b C B 

and all dt. 

Then either B is a standard set with common dif- 
ference d2 and we are through by the lemma, or there 

are elements b and b in B such that b + ci B 
1 2 1 s 

and b2 + d2 B. Form then the sets 
B' = [b1 -F d / b1 + d 

B" = [b2 + d / b2 + d -B}, 

B* = B U B' u B" 

and 

C = A + B*. 

Then again we have C. Also, 

(b1+ d) - (b2+ d) = (n-l) (b1- b5) O (mod p). 

U=2 u=2 

Hence B' 4 b", and [B' U B"] > n, 

Therefore 

(iv) [B] > B + n. 

Since p = [C] + n and Z1 

we have [C*J < [C] + n-l. Then by (iv) and the (Jauchy- 

Davenport Theorem 

[C] + n-j. [c*J [A] + [B*11 1 

(A] + [] + n - 1. 



Thus, 

[C] > [A] + [BI, 

and the proof is complete. 
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CHAPTER IV 

IROOFS BY DYScZ1 'S TRANSFRMAT ION 

In this chapter we will use Dyson's transforma- 

tion to prove Chowla's Theorem Vosper's Theorem and 

several theorems which yield the Cauchy-Davenport In- 

equality under different hypotheses. In particular, 

Theorem 4.2 is true for abelian groups in general. 

Before proceeding to the theorems we first prove 

the following lemma which makes use of Dyson's trans- 

formation: 

Lemma 4.1: Let G be the group of residue classes mo- 

dub m; let A, B and C = A + B be non-empty sub- 

sets of G with Q C B, [B] > 2, and such that there 
is an a1 E A for which a1+ b A for some b E B. 

Then there are sets A1, B1 and C1 A1 + B1 such that 

(1) [A1] + [Bi] = [A] + [B] 

(2) [B1] < [B] 

and 

(3) C1 C C. 

Proof: Define the sets A' and B' by 
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A' = [ a1 + b / b C B'). 

Let B1 = B n ' and A1 = A L-J A'; then we immediately 

have: 

(i) [B1] = LB] - LB'] 

(ii) [A1] LA] + [A'] 

and 

(iii) [A'] = [B']. 

Substituting (iii) into (i) and adding to (ii) we get 

[A1] + [B1] = [A] + [B], and thus establish (1). Since 

we stipulated that a1 exists, B' is not empty, and 

therefore [B1] < [B], which is (2). Also O E B and 

o B', so that B1 and C1 are not empty. ve next 

establish that C1 C C, Let c' be an element of C1. 

Then C' = a' + b' with a' E A1 and b' B1. If 

a' C A1 then either a' E A or a' C A'. If a' E A 

then, since B1 C B, c' C C. If a' C A' then 

a' = a1 + b, and therefore C' = a1 f b+b'. But 

a1 + b' E A, for ii a1 + b' A then b' B', and 

we have a contradiction to the fact that b' E B. There- 

fore C' : C, and hence C1 C C. This completes the 
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proof of the lemma. 

We next use Lemma 4.1 to prove a Theorem which 

yields Chowla's Theorem as a special case. 

Theorem 4.1: Let G be the group of residue classes 

modulo an integer m; let \, B and C = A + B be sub- 

sets of G for which (b1 - b0, m) = i for some b0 and 

every b1 4 b0, b1 B. Then 

LC] > min{LA] + LB] - 1, in]. 

It is apparent that Theorem 4.1 implies Chowla's 

Theorem,for if b0 = O then O C B and (b1, m) = I 

for every b 4 b0, and these results are precisely 

Chowla's hypotheses. Actually we may assume O G B, for 

if O B we transform B into B0 by B B - b0 

and define C0 as C0 = A + B0, Then 
= LB], 

Ic0] = [C], O E B0, (b1, m) = i if b G B0 and 

b1 4 and we just need to prove the theorem for A, B0 

and C0. We now prove the theorem with the assumption 

that OB. 

Proof: Since there is nothing to prove if C G we 

assume that C 4 G and show that [C] > LA] + LB] - 1. 

The proof is by induction on LB]. If [B] 1 the 

assertion is trivial. Therefore we assume that the 
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theorem is true for i < LB] K r m arid consider the 

case where [B] = r. Then there is an a1 E A such that 

a1 + b E A for non-zero b B. For if not, then 
- 

./, 
*p. 

a + b E A for every a E A, and therefore a + kb E A 

for every a C A and every natural number k. But by q 

hypothesis (b, m) = 1, so that a + kb generates G 

and-therefore A = G in contradiction to our assumption 

that C 4 G. Therefore there is an a, A for which 

a1 + b A for any non-zero b E B. Hence by Lemma 4.1 

there are sets A1, B1 and C1 such that 

and 

(i) [] + LB1] = LA] + [B] 

(ii) [B1] < [B] 

(iii) C1 C C. 

Then by our inductive hypothesis and (ii) we have 

[C1] 2: [A1] + [B1] - 1. Combining this result with (i) 

and (iii) we get Ic] [A] + LB] 1, 

i8 proved. 

In the following theorem we will 

ceeding method to prove a theorem which 

condition for the Cauchy-Davenport ineq 

G is simply an additive abelian group. 

and the theorem 

apply the pre- 

gives a sufficient 

uality to hold when 

This theorem is 



44 

attributed to L. Moser and was proved by P. Scherk 

i i i. 

Theorem 4.2: Let G be an additive abellan group of 

order m, and let A, B and C = A + B be non-empty 

subsets of G with O A (1 B, and for a C A, b C B, 

a + b = O if and only if a O and b O. Then 

Lc] > min (m, IA) + IB) - 1). 

Proof: The proof is by induction on 113]. If C G 

there is nothing to prove, so we assume that C G. 

Likewise the theorem is trivial if [B] 1, so we may 

assume that [B] > 2. Let IB] be fixed and assume that 

the theorem is true for all smaller values of Lb]. Then 

there is an a1 C A for which a3 + b E A for some 

b C B. For, since [B] > 2, there is a non-zero b E B, 

and this, together with the hypothesis that a + b O 

unless a = O and b = O, implies that O A + b. 

But IA+b] = [A], and therefore a + b A for some 

b E B. Thus we have satisfied the hypotheses of Lemma 4.1, 

and hence there are sets A1, B1 and C1 such that 

and 

(1) [A1] + LB1] = LA] f LB]. 

(2) LB] < [B] 

(3) C1CC, 
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Also, from the definitions of A1, B1 and C1 in Lemma 

4,1 we know that O C A and O C B1. We establish 

that if a' E A and b' E B then a' + bt O if 
i i 

and only if a' = O and b' = O. Since B1 C B we have 

the assertion immediately if a' G A. Therefore let 

a' + b' O and assume that a' -A. Then a' = a1 + b 

so that a' + b' = a1 + b + b' = (a1+ b') + b = O. But 

a1 + b' C A, for otherwise b' G B'. Therefore 

(a1 + b') + b = a+b = O, and by the hypotheses a = O 

and b = O. But since a1 + b A, b cannot be zero, 

and we have a contradiction. Therefore a' C A and we 

have established that a' + b' = O if and only a' = O 

and b' = O. 

Then, since A1, B and C1 satisfy the hypothe- 

ses of the theorem, the inductive hypothesis yields 

[c1] > min (m, LA1] + LB1] - 1), 

which together with (1), (2) and (3) gives: 

[C] > min (m, LA] + [B] - i). 

The proof is now complete. 

In connection with the extensions of the Cauchy- 

Davenport Inequality to more general abelian groups than 

the groups of residue classes mod m, we consider briefly 
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two theorems from a paper by J. H. B. Kemperrnan and 

p. Scherk [153. Each of these theorems gives a suffi- 

dent condition for the ouchy-Davenport Inequality, and 

the first one is proved using Dyson's Transformation. 

The second theorem gives a condition under which the hy- 

potheses of the first theorem are satisfied. Kemperman 

and Scherk offer other theorems similar to second one 

mentioned in that the third implies the second and so 

on, but these theorems are not considered here. We now 

investigate the first theorem in Kempermari and Scherk's 

pa per. 

Theorem 4.3: Let G be an arbitrary abelian group, 

written additively, and let A, B and C A + B be 

non-empty, finite subsets of G. Denote the order of G 

by m. If there is a b0E B such that A + B A + b. 

then 

[ci > min (m, LA) + [Bi - i). 

Proof: The proof of this theorem is so similar to the 

proof of Theorem 4.2 that I will only present an outline 

of the proof. As in the proof of Theorem 4.2 we use 

Lemma 4.1, (or its immediate extension if G is not fi- 

nite). Since the assertion is trivial if LB] 1, or 

if C = G, we may assume that c 4 G and that the theo- 

rem is true if LB] < n. We will show that the hypotheses 
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of the theorem are sufficient to permit us to perform 

Dyson's Transformation as in Lemma 4.1, and then the re- 

sult will follow as in the proof of Theorem 4.2. Since 

by the hypothesis A + B A + b for some b B, there 

is an a E A and elements b and b in B such 
1 0 1 

that a + b - b 4 A. For otherwise a + b - b = a 
i i o I i. O O 

or a1 + b1 = a0 + b0 and we have a contradiction. De- 

fine then B* as B* = B - b0. Then [B*] = LB], 

O C B* and b2 = b1 - b0 satisfies a1 + b2 4 A. Therefore 

as in Lemma 4.1 there are sets A1 and B1 such that 

(1) LA1] + [B1] = [A] + [B*] 

(2) [B1] < LB] 

and 

(3) C1CC. 

Then by our inductive hypothesis 

[C1] > min (m, LA1) + [B1] - i) 

and hence 

LC]>min (m [A] + [B*] -1) 

min (m, LA] + [B] - 1). 

The next theorem by Kemperman and Scherk gives an- 

other sufficient condition for the Cauchy-Davenport in- 

equality and is proved by showing that the hypotheses 
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imply that the conditions of Theorem 4.3 are satisfied. 

Theorem 4.4: Let G be an abelian group, written addi- 

tively, and let A, B and C = A + B be non-empty sub- 

sets of G. If there are elements b0 and b1 in B 

such that [A] (b1 - b0) O then A + B A + b for 

some bEB. 

Proof: Suppose that A + B CA + b for some b B, 

and denote the b by b0. Then a + b - b0 C A for 

every a and b. Therefore LB] < LA], for otherwise 

by fixing a and letting b range through B we could 

determine more than LA] elements in A and have a con- 

tradiction. Fix then b1 so that [A] (b1 - b0) O, 

and let a run through A. Since b1 and b0 are 

fixed, if a ranges through A then so will a + b1 - b0. 

Therefore 

a = L(a+b1 - b0) = La + [A] (b1 - b0), which 

implies that LA] (b1 - b0) = o. Again we have a contra- 

diction and so the theorem is proved. 

Following the last diversion from the proofs by 

Dyson's Transformation we return to this method to give 

a somewhat shorter proof of Vosper's Theorem. This method 

of proof has been published by A. G. Vosper L 173 after its 
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use was suggested to him by M. Kneser. Instead of re- 

proving the whole theorem we will just prove the diffi- 

cult part; i.e., that condition (4) is necessary. Since 

Vosper's Theorem is somewhat long, we restate it for re- 

ference. 

Theorem 4.5: Let G be the group of residue classes mo- 

dub a prime p, and let (A, B) be a pair of subsets of 

G. The pair (A, B) is a critical pair if and only if 

A and B satisfy one of the following four conditions: 

(1) LA] + [B] > P 

(2) min ([A], LB] i 

(3) A= for some dCG. 

(4) (A, B) is a standard pair. 

Proof: Since we are here only trying to establish that 

(4) is necessary, we will assume some of the lemmas from 

Chapter II and prove two more. Also we will assume that 

(A, B) is a critical pair and that conditions (i), (2) 

and (3) are not satisfied. For reference we state the 

lemmas we need from Chapter II. 

Lemma 2.1: If A is a standard set then (A, B) is a 

standard pair. 

Corollary: If min (LA], LB])= 2 then (A, B) is a 

standard set. 
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Lema 2.3: (-A, ) is a critical pair. 

In addition to these lemmas we need the following 

two lemmas: 

Lemma 4.2: If C is a standard set then (A, B) is a 

standard pair. 

Proof: If C is a standard set then so is C. For, if 

C = c + 1k / o i IC] - i} then c+1k/[C]<i<p}. 

By Lemma 2.3, (-A ) is a critical pair. By the 

assumptions IC] p EA] - [B] + i < p and 

min (1A], [e']) > 1. Therefore, by Lemma 2.1, (-A, ) 

is a standard pair. Hence -A, and therefore A, is 

a standard set. Then by Lemma 2.1 (A, B) is a standard 

pa ir. 

Lemma 4.3. If [B] > 3 and O cE B then [B] > [B1] > 2, 

where B1 is defined as in Lemma 4.1. 

Proof: By the corollary to Lemma 2.1 we may assume that 

[A] 3. Let A* be the subset A such that LB1] < [B] 

for every a cE A*. (A* is the set of all a E A which 

could be chosen as the a1 in the definition of B1.) 

If A* = A then [A*] 
.?: 2. If A* 4 A let A** = 

A n 4 . Then no a cE A** will work as the a1 in 

the definition of B1. Therefore B + a C A for every 
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** ** 
a C A Hence A + B C A. Therefore 

[AJ>[A**+BJ>[A**)+ LB] -1 
LA**] i. 2. 

Hence LA*J LA] _ LA**J > 2. 

Suppose now that it is impossible to find an 

a1 C A* for which the corresponding B1 satisfies 

[B1] 2. Then since O E B, B fl (A-a) = O, and 

(B+a) fl A = a for every a E A*. Let B B fl [}. 
Then (B* + a) n A = , for every a E A*. Hence 

(B* + A) n A = p. But A + ß* C A + B, and A C A+B. 

Therefore 

1A + B*) < LA + B] . LA] 

= [B] - i 

= LB*J 

But this is impossible since LA*] > 2, and therefore 

the lemma is true. 

We are now ready to complete the proof of the the- 

orem. By the corollary to Lemma 2.1, the pair (A, B) is 

a standard pair if [B] = 2. Therefore assume that the 

pair (A, B) is a standard pair if [B] < n and consider 

the case where [B] n. As we have shown earlier, we 

may assume that O E B. Therefore by Lemma 4.3, 

[B] > [Bi] > 2, where B1 is defined as in Lemma 4.1. 

Then by Lemma 4.1 and the assumption that (A, B) is a 
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critical pair 

LA] + La] - i = LA+B] 

> LA + B3,] 

> [A1] + LB1) - i. 

Hence 

= [A J + LB J - i 

(I) [A+BJ = LA1 
+ 
B] 

Therefore [A1 + B1) = [A1] + [a3,] - i, and the pair 

(A1, B3,) is a critical pair. Since LB1] < LB], the 

pair (A1, B3,) is a standard pair by the inductive hypo- 

thesis. By (I) and Lemiïa 4.1 (3), A + B = A1 + B1. 

Therefore C is a standard set. Hence, by Lemma 4.2, 

(A, B) is a standard pair, and the theorem is established. 
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CHAPTER V 

FUTH RESULTS 

In this last chapter we will state two other 

results that have been obtained by famous mathematicians 

in connection with the Cauchy-Davenport Inequality. The 

first of these theorems appears in a short article by 

M. Kneser L1O],and the second is the object of a monu- 

mental paper by J 1-1. B. Kemperman '93. Kneser's re- 

suit is similar to many of the preceeding theorems in 

that it giesanoer sufficient cordition for the Cauchy- 

Davenport Inequality but in this case G is only re- 

stricted to being abelian and A and B are required 

to be finite. In his paper Kemperman derives a result 

for abelian groups which is similar to Vosper's Theorem. 

Like Kneser's result, the group G is required to be 

abelian and the subsets A and B are required to be 

finite. No attempt is made here to prove these two theo- 

reme. 

Before stating the results of Kneser and 

Kemperman we introduce some definitions: 

Definition 5.1: Let G be an abelian group, and let H 

be a non-empty subgroup of G, not consisting of the 
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identity element alone. A subset C of G is said to 

be "periodic" if for every element g of some subgroup 

H, C + g C. If C is not periodic it is said to be 

"aperiodic". Since H is determined by C we will de- 

signate this relationship by writing H(C) for H. 

Definition 5.2: A subset C of G is said to be "quasi- 

periodic" if there is a subgroup F of G with LFJ >2, 

such that C is the disjoint union of a non-empty set 

C' consisting of F-cosets and a set C" contained in a 

remaining F-coset. 

Definition 5.3: A subset C of G is said to be in 

arithmetic progression if C can be written as: 

C = [c + jd / j = o, l,2,''.,[C]-l; c0 C; d G}. 

The element d is called the common difference. 

We now can state iKneser's Theorem: 

Theorem 5,1: Let G be an abelian group an let A, B 

and C = A+B be non-empty subsets of G. The set C is 

periodic if 

IC] [A] f [B] - 2. 

That this theorem gives us the Cauchy-Davenport 

Inequality is immediate; for if C is aperiodic, then 

[C] 2: [A] + [B] - 1. If G is the set of residue classes 

modulo a prime p, and C 4 G, then C is aperiodic 
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and Theorem 5.1 yields the Cauchy-Davenport Theorem. 

To continue on to Kernpermann's theorem we intro- 

duce one more definition. 

Definition 5.4: The paìr (A1, B1) of non-empty sub- 

sets of G is said to be "elementary" if one of the 

following conditions holds: 

(i) min [A], [B] = 1. 

(2) A1 and B1 are in arithmetic progression 

with common difference d such that the 

order of d is greater than or equal to 

[A] + [B] - 1. 

(3) For some finite group H, each of A1 and 

B1 is contained in an H-coset while 

[A1] + LB1] = [H] + 1. Moreover, precisely 

one element c of C has only one repre- 

sentation as a suai a+b, where a e A1 and 

b B,. 

(4) The set A1 is aperiodic, and for some sub- 

group H of G, A1 is contained in an H- 

coset while B1 is of the form B1 

g - n (a+H)). Moreover, no element c 

of C has only one reprecentation as a sum 



a t b where a A1 and b B1. 

Finally, we state Kemperrnan's Theorem: 

Theorem 5,5: Let G be an abelian group of order not 

less than 2, and let A, B and C m A + B be non- 

empty subsets of G. A necessary and sufficient cortdi- 

tion that 

(I) IC] = [A) + IB] - i 

and, moreover, 

(II) if C is periodic then a least one element 

of C has only one representation as a + b, 

a C A, b C B, is the existence of a non- 

empty subset of A1 of A, a non-empty sub- 

set B1 of B and a subgroup F of G 

of order not less than 2 such that: 

(i) The pair (A1, B1) is elementary and each 

of A and B is contained in an F-coset. 
I i 

(ii) The element = C (A1 + B1) has 

C' = c A1 + c B1 as its only representation 

of the form = + , where ¡ C C A and 

. C o B. Here, 0 represents the quotient 

mapping G -+ G/F. 

(iii) The complement A' of A1 in A satisfies 
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A' + F = A', similarly B' of B1 satis- 

fies B' + F = B'. 

(iv) [c A + d B] = [o A] + [C B] - 1. 

It is worth noting that although Kemperman's Theorem in 

some way resembles Vosper's Theorem, it is not a generali- 

zation of Vosper's Theorem to abelian groups. For if we 

specialize G to the group of residue classes modulo a 

prime, then F G, A' = G, A1 is empty and we are 

left with the conclusion that not both (I) and (II) can 

hold. Vosper's Theorem of course, only gives us neces- 

sary and sufficient conditions for (I) to hold. The 

problem of generalizing Vosper's Theorem is as yet un- 

solved, but perhaps Kemperman's work will lead to the 

solution. 
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