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ON THE CAUCHY~-DAVENPCRT
INEQALITY FOR THE SUM OF
SUBSETS OF A CYCLIC GROUP

CHAPTER I

INTRODUCTION

In 1935 H. Davenport [6], published the following

theorem on the addition of sets of residue classes.

Theorem 1.1: Let ay0 85, **t, A be m different

residue classes modulo a prime p, and let bx' Dao %

bn be n different residue classes modulo p. Let

Cys c',-n-CL be all the different residue classes re-

presentable as ay + bj, l1<idm 1, £jJ £n. Then

(1'1) ‘L?_m“’n"l

if m+n-1¢<p, otherwise 1 = p.

In this paper we are going to investigate some of the con-
sequences of this publication by Davenport.

Shortly after Davenport's publication appeared,
and also in 1935, I. Chowla [3] published a statement of
the extension of Theorem l.1 to the case of a composite
modulus (cf. Theorem 2.1). However, the proof, which is
almost identical with Davenport's proof of Theorem 1.1,
did not appear until 1937 [4]. It is interesting to
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note that A. Cauchy ([1], [2]) had used essentially the
same method to prove Theorem 1.1 in 1813 [7]. Because
of these results Theorem 1.1 will be referred to as the
"Cauchy-Davenport Theorem", and the extension of Theorem
1.1 to the composite modulus case will be called "Chowla's
Theorem".

Since the set of all residue classes modulo an in-
teger m forms a cycle group of order m, we may re~
state Theorem 1.1 in terms of subsets of a cyclic group.
However, before restating the theorem we introduce some

definitions.

Definition 1.1: By the symbol [A] we shall mean the

number of elements in the set A.

Definition 2.1t By the sum C of the sets A and B

we mean
C=A+B={ath/ a €A, b€ B}.

In general, capital letters will be used to denote sets

of group elements, and small letters will be used to de-
note the elements themselves. Unless otherwise stated,

the letter C will be used to designate the sum of two

sets.

Theorem 1.1 now becomes:

Theorem 1l.1(a): Let G be the group of residue classes
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modulo a prime p, and let A, B and C=A + B be sub~-
sets of G. Then

(1.1(a)) [c] > min (p, [A] + [B] - 1) .

The inequality l.1(a), with the modulus arbitrary, will
be referred to as the Cauchy-Davenport inequality.

In 1952 H, B. Mann [11] published a new proof of
Chowla's Theorem in which he used a transformation he
had previously used to prove the famous af Theorem of
Additive Number Theory. Mann did not apply his trans-
formation directly to Chowla's Theorem, but instead he
proved Theorem 3.2 which permits him to give a non-
inductive proof of Chowla's Theorem, I have applied
Mann's transformation directly and obtained a new proof
- of the Cauchy-Davenport Theorem. Also, by combining the
transformation with double induction I have obtained
another proof of Chowla's Theorem. Mann [12] also uses
Theorem 3.2 to prove Theorem 3.4 which is similar to
Chowla's Theorem and which is true for abelian groups
in general.

Since Mann was able to prove Chowla's Theorem by
using his famous transformation, I considered a transfor-
mation which F. J. Dyson [8] used for an alternate proof
of the af Theorem. This resulted in a new proof of
Chowla's Theorem (cf. Theorem 4.1). Using Dyson's trans-

formation the proofs of the Cauchy~-Davenport Theorem and



Chowla's Theorem are essentially the same. Also, one
can use Dyson's transformation to obtain the Cauchy~
Davenport inequality under several different hypotheses.
This has been done by P. Scherk [14], J. H. B. Kemperman
and P, Scherk [15], and the author. These theorems are
presented in Chapter IV with the other work concerning
Dyson's transformation.

If one experiments with the Cauchy-Davenport in-
equality he discovers that equality will sometimes hold,
but generally there is strict inequality. Thus one is
led to speculate on the nature of the sets for which
equality holds. For the case of a prime modulus A. G.
Vosper [16] [17] has solved this problem by characteriz-
ing the sets fcr which equality holds in Theorem l.1l(a).
Vosper offers two proofs of his theorem. The first proof
is given here in Chapter II as the proof of Theorem 2.2,
and the second proof, which uses Dyson's transformation,
appears as the proof of Theorem 4,5. Mann [5] has of-
fered a somewhat simpler proof of Vosper's Theorem which
uses a transformation similar to the one used to prove
Theorem 3.2, Mann's proof appears as the proof at Theo-
rem 3.8. It might be remarked that many of the original
proofs are difficult to read and have been presented here
in a more readable form.

Some work has been done towards extending the




results for cyclic groups to the more general abelian
groups. In Chapters III, IV and V I present these re-
sults.

As a final remark I present two unsolved problems.
Throughout the text we give several sufficient conditions
for the validity of the Cauchy-Davenport inequality, but
nowhere have we stated a necessary condition when the
modulus is composite. Also, we have not found a genera-
lization of Vosper's Theorem to the case of a composite

modulus.



CHAPTER I1I
PROOFS BY CHOWLA AND VOSPER

In this chapter we consider Chowla's generaliza-
tion of the Cauchy=-Davenport Theorem and Vosper's first
proof of his theorem which characterizes those sets for
which equality holds in the Cauchy~Davenport inequality.

We consider first Chowla's theorem:

Theorem 2.1t Let G be the group of residue classes
modulo an integer m. Let A, B and C=A + B be
non-empty subsets of G with O € B, and for every
b€B, if b % 0 then (b,m) = 1. Then

(2.1) [C] 2 min (m, [A] + [B] - 1).

Proof: Since there is nothing to prove if

[A] + [B] =1 2>m, we assume that [A] + [B] - 1 <m

and show that [C] > [A] + [B] = 1. We prove the theorem
by induction on [B]. For [B] = 1 the assertion is tri-
vially true. Suppose that the assertion is false for

[(B] = 2, and denote the non-zero element of B by b,.
Then a+b1 must be in A for every a € A. Hence,

adding b, k times, we have a + kb, € A for every
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natural number k. Since (b,, m) =1, a + kb, gene-

rates G, and therefore A = G} which contradicts the
assumption that [A] + [B] = 1 < m. Thus the assertion
is true for [B] = 2.

Assume that Theorem 2.1 is true if [B]< n and
consider the case where [B] = n. As before, we may
assume that [C] < m. Then there is a residue class
d €G such that d €C, and d=b €C for some b € B,
For if not, we apply the same argument as before and ob-
tain d - kb € C for any natural number k and any
non-zero b € B. Therefore C is empty, and we have a
contradiction to the hypothesis that A and B are non-
empty. We use d then to define the new sets B*, B**

and "ol as

“
B

= {b; | d-b; €C, b, € B},

= _ s

B {bjldbjesc. bjGB},
and

C. = {ci l ci = d-bi’ bi € B.} .
By these definitions we immediately have that

(8**1 = [B] - [B"] .
Also, since ¢y = bJ = a, (bJ € B** and c; € c*),
implies that a + bJ =cy = d - bi' and hence that

a+b =d- by, which is impossible since by € B,
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we have that c, - bj ¢ A for any cy € C*. We define

next the set C** as C** = A + B*., Then since

cj B bJ €A, for cj e c** and bj E'B", we have that
c* Nc** 4is empty. Therefore
[c**] < [c] - [c*] = [c] - [B*] .

Also, since O € B, we know that B** is not empty.
Then by the inductive hypothesis

[c] - [B*] > [C**] > [A] + [B™] -1

[A] + [B] - [B*] - 1,

v

or

[c] > [A] + [B] -1,

which completes the proof.

If we require m to be a prime then the condition
that (b,m) =1 for b #$ O is automatically satisfied.
Thus, to obtain the Cauchy-Davenport theorem we need only
show that we may assume that O € B. This is easily
accomplished, for if 0 ¢ B, form the set B' defined as

B' = {bi- b1 l bi G'B. 1 = 1. 2. .... [B]} .

Then 0 € B', and
(c] = [A+B] = [A+B']
> [A]l + [B'] -1
= [A] + [B] - 1,



and we have the result. Note that when m is not a
prime the above transformation may be incompatible with
the hypothesis that (b,m) = 1.

The hypotheses of Theorem 2.1, which are due to
Chowla, may be replaced by other conditions which are
sufficient for the inequality 2.1. Some of these condi-
tions are given in the following chapters.

We consider next a simple example which shown that
one must add hypotheses in order to extend the Cauchy~

Davenport Theorem to the case of a composite modulus.

Examplet Let G be the group of residue classes modulo

2n, n 2 2,

Let A={2 | k=1, 2, **+, n},
and B={2=l | k=1, 2, *++, n}.
Then C=A+B=2B8,

and since [A]l > 1 [c] < [A] + [B] - 1.

It is clear that equality will hold in the Cauchy-
Davenport inequality for the trivial case where the
min ([A], [B] = 1. The following example shows that
equality will hold in less-trivial cases.

Example: Let G be the group of residue classes modulo
a prime of the form 3n + 1. Let A = {1, 4, 7,+++,3n-2},
and let B = {0, 3, 6, *++, 3n}. Then

c ={0, 1, 3, 4, +++, 3n=5, 3n-2},
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[A] =n, [B] =n+l and [C] = 2n,
so that [c] = [A] + [B] - 1.

Since it is clear that equality will often not
hold in the Cauchy-Davenport inequality, the question
naturally arises as to the nature of the sets for which
equality will hold. A. G. Vosper [16] has answered this
question in the theorem which we consider next. Before

stating Vosper's theorem we make the following definitions:

Definition 1: A pair of subsets (A, B) of the group of

residue classes modulo a prime p is said to be a cri-

tical pair if [C] = min (p, [A] + [B] = 1).

Definition 2: by the difference A-B of the sets A and
B we mean A-B = {a-b/ a € A, b € B}. The set contain-
ing the single element a will often be written as "a"
instead of as {a}. Thus, in particular,

A-a ={a-a / a; € A},

Definition 3: The set A will be called a "standard" set
if it can be represented as an arithmetic progression;
ie., if for some a €A and some k € G with k % 0,
A-a={ik / 0< i< [A] - 1}. The pair (A, B) is
said to be a "standard pair" if for some a € A, b € B

and k €G with k % 0,

A~-a={ik/0<1ixgI[A] -1},
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and

B=b={ik/ 0<1i<[B] -1}.

Definition 4: The complement of A in G is denoted
by A.

Theorem 2.2: Let G be the group of residue classes
modulo a prime p, and let (A, B) be a pair of sub-
sets of G. The pair (A, B) is a critical pair if and
only if A and B satisfy one of the following four

conditions:

(1) [A]l + [B] > p

(2) min ([A], [B]) =1

(3) A=d-B for some d € G.
(4) (A, B) 1is a standard pair.

Proof: In the proof we will use the following easily
verified observations:
For A, B, C and D any subsets of G, and ¢
the empty set:
(i) If A-B =C-D, then ANB = ¢ implies
CND = g¢.
(i1) (A+B) NC = ¢ if and only if A N(C-B) = g¢.
(iii) (A-B) N (C+D) = ¢ if and only if
(A=C) N (B4D) = 9.
We consider first the sufficiency of the four
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conditions. That conditions (1) and (2) are sufficient
is immediate. If A = d-B, for some d € G, then
[A] =[3-B] = [B] = p = [B]. Hence [A] + [B] = p. Also,
A N (d=B) = ¢, so that by (ii) (A+B) Nd = 9. There-
fore [C] < p-1=[A] + [B] ~ 1. Thus, by the Cauchy-
Davenport theorem, [C] = [A] + [B] = 1. Therefore con-
dition (3) is sufficient. If (A, B) is a standard
pair then A - a = {ik / 0 < i < [A] - 1} and
B-b={ik/ 0<i<[B] -1}

Hence,
(A-a) + (B=b) = {ik / 0 < i < [A] + [B] - 2}.
Since k % O by the definition of a standard set, k is
a generator of G. Therefore [C] = [A + B]
= [(A=a) + (B=b)]
= [{ik / 0 < i < [A] + [B] - 2}]
= min (p, [A] + [B] - 1).

For, i runs through [A] + [B] = 1 wvalues, and if
this number is greater than p then C = G. Therefore
condition (4) is sufficient.

Suppose now that (A, B) is a critical pair. If
[A] + [B] > p we have condition (1). If min([A],[B])=1
we have condition (2). If [A] + [B] = p then [C]=p-l.
Therefore C = d for some d € G. Hence (A+B) Nd = g.
Then by (ii), A N (d-B) = ¢, so that A € d-B. But,
[(A] = p - [B] = p = [d=B] = [d=B].  Therefore A = d-B,
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which is condition (3). For the remainder of the proof
we may assume that 2 < [A] + [B] < p. Since we are
supposing that (A, B) is a critical pair our assump-
tion that [A] + [B] < p implies that [C] < p. We
establish the remaining condition (4) by induction, but

first we prove the following four lemmas.

Lemma 2.1: If A is a standard set then (A, B) is a

standard pair.

Proof: As we have shown earlier we may assume that

OE€EA and 0 € B, Therefore we may assume that

A={ik / 0 < i < [A] - 1}. Since the transformation
2x, L % 0 (mod p), applied to the sets A, B and C
leaves [A], [B] and [C] unchanged, we may assume that
A={0, 1, 2, +++, [A] = 1}, (i.e., we may assume that

k = 1). Denote the set of consecutive integers

m, mtl, ***, n by (m, n). The set (m, n) is said to
be a "gap"™ in B, if for all i € (m, n), i § B. Let
(r, s) be the gap of maximum length t. Then t > [A],
for if not C = G, which contradicts the hypothesis

that [C] < p. Let B' =B - (s+l) = {n;/ 0 < i < [B]-1]}.

We will show that the n; are consecutive, and hence
that (A, B) is a standard pair. We may take

0 <ny Sngyy <pe Since s +1E€B we have n, = 0.

Since r - 1 1is the largest x < s which is in B we
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have Nfp].y = P = t - 1. Define the set A' as

A' = A + (p=t=l) = {i / p-t-1l < i < p-t+[A]-2].

Since t > [A] we have p - t + [A] = 2 < p=1. Since
N(gl-l = p~t-l we have A + B' D A' UB', and

A' N B' = p-t-1,

(A'] + [B'] -1
(A] + [B] -1
[A + B]

[A' UB']

[A +B'].

Hence, A' UB' = A + B'. Suppose now that x € B' for
any arbitrary, but fixed x in the interval 0 < x < p-t-2,
Then since 1 €A, x+ 1 €A+ B'"=A'"UB', but x + 1

is in the interval 1 < x + 1 < p~t-l, and therefore

x + 1 €B', Since n, = 0, we have the n are conse-

i

cutive, and the proof of the lemma is complete.

Corollary 1: If [A] =2 or [B] =2 then (A, B) is
a standard pair.

Proof: If [Al] =2 or [B] =2 then A or B is a

standard set and the corollary follows from Lemma 2.1.

Lemma 2.2: If [A] = [B] = 3, then (A, B) is a standard

pair.
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Proof: Let B = {b, by, b}, If [(A+b ) N (A+p,)] < 1,

then [(A+b,) U (A+by)] 2 5 = [C]. Therefore

C = ((A+by) U (A+bg)) O A+by. Thus
[(A+tby) N (A+bg)] 2 2, for i=1 or i=2,

We may suppose that [(A+b1) N (A+ba)] > 2,
Then [(A+b,) U (A+b,)] < 4, Therefore (A,B,) is a
critical pair for B = {b,, b‘}. Then (A, B,) is a

standard pair by the corollary to Lemma 2.1. Hence A
is a standard set, and therefore (A, B) is a standard

pair by Lemma 2.1.
Lemma 2.3t The pair (=~A, C) is a critical pair.

Proof: By the definition of T we have that
(A+B) NC = 9. Therefore, by (ii), B N (C-A) = g.
Let D = E’-_A. then B C D. Also, D N (C-A) = ¢, so
that, by (ii), (A+4D) NC = ¢. Therefore A+D CC.
Since BCD, A+D =C, and hence
[A] + [B] - 1 = [A+B]

= [A+4D]

= min (p, [A] + [B] - 1.
Therefore [B] = [D], which implies that B = D,
Therefore C - A = B, so that [C - A] = P - [B].
Since [C] = p = [A] = [B] + 1, we have

p - [B] = [C] + [A] = 1. Therefore
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[C - Al = min (p, [C] + [-A] = 1, and
(C,-A) is a critical pair.

Corollary 2: If [A] = [B] = % (p-1) then (A,B) 1is a
standard pair,

Proof: By Lemma 2.3 (-A, C) 4is a critical pair. Then
by the corollary to Lemma 2.1 (=-A, C) is a standard
pair if [C] = 2. If [A] = [B] = % (p-1) then

(Al + [B] - 1 =p-2, and [C] =2, so that (-A, C)

is a standard pair. Thus =A, and hence A, 1is a
standard set, so that by Lemma 2,1 (A,B) 4is a standard

pair.
Lemma 2,4: If [B] > [A] >3 and [B] > 4 then, unless
(A] = [B] = %(p-1), there are elements b, and b, in

B such that
(c+B) N (C¥B ) N (C+b,) # ¢ .

Proof: Form the set C+B. Since [C] = [A] + [B] - 1,
we have by Theorem 2.1 that [C+B] > min (p, [A] + 2[B]-2).
Suppose that Lemma 2.4 is false. Then the sets D; de-

fined by
D; = (c+B) N (C¥+py), 4 =1, 2, *+*; [B],

are all disjoint. Since (C+b1) C (C+B), for

i=1, 2, *++ [B], we have that for each i,
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[Di] = [C+B] - [c+b1]

= [c+B] - [A] - [B] + 1.
Also, DiC C+B for each i, so that

(B]

[ v Dyl < [ceB] .
i=1

Therefore,
(B] ([c+B] - [A] = [B] + 1) < [C+B],
or

(1) [B] ([A] + [B] = 1) > [c+B] ([B] - 1).

We consider now three cases, each of which leads to a

false conclusion.

Case 1t p > [A]l + 2 [B] - 2.

Then [C+B] > [A] + 2 [B] - 2. Hence, by (I),

(8] ([A] + [B] - 1) > ([A] + 2 [B] - 2) ([B] - 1).
Therefore, [B]® < 3 [B] + [A] - 2 < 4 [B] - 2, which

cannot be true since [B] > 4.

Case 2: p < [A] + 2 [B] =2 and [A] < [B] - 1.
Then [C+B] = P. Since p > [A] + [B] + 1, we have by
(I) that

(8] ([A] + [B] = 1) > ([A] + [B] + 1) ([B] - 1).
Therefore [A] > [B] - 1, and hence [A] = [B] - 1.
Since p 4is a prime and p 2 [A] + [B]+l = 2[B], we
have that p > 2 [B] + 1. Therefore by (I),
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[B] (2[B]-2) > (2[B] + 1) ([B] - 1), which cannot be
true with [B] > 4.

Case 3t p < [A] + 2[B] = 2 and [A] = [B] .

Then [C4B] = p > 2 [B] + 1. Since we are assuming the
lemma false the case that [A] = [B] = % (p=1) is ex-
cluded. Therefore we may assume that p > 2[B] + 3.
Then by (I) we have that

[B] (2[B] - 1) > (2[B] + 3) ([B] - 1),

so that 3 > 2[B], which again is false since [B] > 4.

Since the three cases exhaust all possibilities,
Lemma 2.4 is established.

We now complete the proof of the theorem by in=-
duction on [A] + [B]. If [A] = [B] = 2, then (A, B)
is a standard pair by Corollary 1. Assume that (A, B)
is a standard pair if 3 < [A], 3 < [B] and
[(A] + [B] < n, and consider the case that 3 < [A],

3 < [B] and [A] + [B] = n+l. Suppose that (A,B) is
not a standard pair. If [A] = [B] =% (p-1) then by
Corollary 2, (A, B) 4is a standard pair, and we are
through. Therefore if [A] = [B] we assume that

[A]l 4 ¥ (p-1). Also, we may assume that [A] < [B] and
that [B] > 4. Then by Lemma 2.4 there exist b,, b,

and b’ in B, ¢c €C and d € C+B such that
d = (c+by) € (C+B) N (C¥B,) N (TFE,) .
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Define B and B, by

1
B, ={b/ b€B and (d-b) CC}
and B, = B NE,.
since b, € B,, by € By and b, € B,, we have that
2 < [Bg] < n. Now, (d=Bg) NC = ¢, and therefore
(d=B,) N (A+B,) = g. Hence by (iii), (d-B,)(A+B,)=g.
Therefore, since (d-B,) CC and (A+B,) CC,
[a+B,] < [C] - [d-B,] = [c] - [B,] .
Hence, [C] > [A+B,] + [B,]
> [A] + [B,] -1+ [B,]
= [A] + [B] - 1,

which contradicts the hypothesis that (A,B) is a
critical pair. Therefore (A,B) is a standard pair,

and the proof is complete.
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CHAPTER III
PROOF BY MANN'S TRANSFORMATIONS

In this chapter we will consider results that
have been obtained using two transformations attributed
to H, B. Mann. The first of these transformations was
used to prove the af Theorem of additive number theory
and is used here to prove Chowla's Theorem. The second
transformation is used to prove Chowla's Theorem and
Vosper's Theorem. These transformations are also used
to establish some other interesting results such as
Theorem 3.4 which gives a sufficient condition for the
Cauchy-Davenport inequality when G is simply an
abelian group.

We prove first Theorem 3.1, which will be useful

in proving later theorems.

Theorem 3.1: Let G be a finite abelian group, and let
A and B be subsets of G. Then either A+B = G, or

[c] > [A] + [B].

Proof: If A+B % G let ¢ be an element of A+B. Then
atc-b forany a €A and any b € B. Therefore

[AX] > [B], and hence [G] - [A] 2> [B], which proves
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the theorem,
The following theorem is proved using Mann's fa-
mous transformation and furnishes a basis from which

Mann proves Chowla's Theorem.

Theorem 3.,2: Let A, B and C = A+B be subsets of an
abelian group G, and let ¢ be an element of C.

Then there is a B* D B such that

(i) C* =A#E* =¢ + H for some subgroup
H of G.
(i1) [c*] - [c] = [B*] - [B] .

Proof: The proof is by induction on [C]. The assertion
is trivially true for [C] =1 and H = {0}. Assume
then that the theorem is true for [C] < n and consider

the case where [C] =n. Let T = {C,, ¢, *** En}, and
set C, - ¢y =d;. Let H be the subgroup of G gene-

rated by the di' We have then two cases to consider.

Case 1: For every i and every k, (i =1, 2, ***, nj

k =1, 2, *+*+, n) there is an m such that E&- d, = E;.
Since Ei = 31- dy, and hence 31- dg= d, = Em
for every i and k, we have that for every h €H

there is an m such that 31 + h= Eﬁ. Since also

£y mogs dm implies that €g = dm = Cye 80O that
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€y = Ez + h for every m, we have that T =7¢  +H.

Let B* =8 and for Case 1 we have the theorem.
Case 2: For some i and k, (i=1, 2, **+, nj
k = 1. 2. a4 n)' -C-i - dk €C.

Form then the set B' consisting of all elements
b + dj such that
(1) a+b+ dy = Et for some t, a € A, b € B,

From (1) we have also

By the definition of B' we have that B N B' = g. De-
fine the new sets B"™ and C" as B" = B UB' and
C" = A+B" . Then ¢ &C", for ¢, €C" implies that

c, = a+b*dj. Therefore a+b = c, - dj = cj. which is

impossible. Thus C" is not empty. We prove now

(3) [cv] - [c] =[B"] - [B] = [B'] .
That [B"] = [B] = [B'] 4is immediate from the fact that
BNB' =¢. Let EJ € C", then 'EJ = a+b' for some

b' € B", Therefore b' € B', so that b' = btd, for
some t. Hence Ej = ath + di, and by (2) atbtdy = Et'
so that b + dj € B'. On the other hand, if b + dj € B!
then a + b +dy = Cyr and by (2) a +b+d; = EJ.

Hence a + b+ dy € A+B' CC", and we have Ej € c",




23
Thus there is a l-1 correspondence between the elements
of C" not in C and the elements of B'. Hence (3) is
established.
By the definition of C" we have that [C"] > [C],

and hence [C"] < [C] . S5ince also E‘ ¢-C”. we have

by the inductive hypothesis a set B D B" D B such
that

(i) C*=A%B* =¢c + H, H a subgroup of G,
and

(4) [c*] - [c"] = [B*] - [B"] .
Adding (4) to (3) we obtain

(i1) [c*] - [c] = [B*] - [B],
which establishes the theorem for Case 2 and completes

the proof.

With the aid of Theorem 3.1 and Theorem 3.2 we
are able to give another proof of Chowla's Theorem.
This proof is due to H. B. Mann [11]. For ease of re-

ference we restate Chowla's Theorem.

Theorem 3.3: Let G be the group of residue classes
modulo an integer m. Let A, B and C = A+B be non-

empty subsets of G with 0 €A and (a;, m) =1 if
a; # 0. Then

(3.4) [C] > min (p, [A] + [B] - 1).



24

Proof: If C = G we are through. If C % G then by
Theorem 3.2 there is a B*D B such that

(1) C*=A+B* =¢c + H for some subgroup

H of G, c€C,

and

(1) [c*] - [c] = [B*] - [B] .
Consider the factor group (G/H). Let A' and B' be
sets of cosets (mod H) that contain the elements of A
and B* respectively. Then by Theorem 3.1 we have
that [G/H] > [A'] + [B'], and hence

(1) [G] = [H] [G/H] > [H] [A'] + [H] [B'].
Also, O €H, but ay ¢ H unless a; =0, for

| 4
(aj, m) =1, and since H is a subgroup, a; ¢ H

would imply that H = G which is contradictory to the
fact that H + G since C # 9. Therefore a; is con-

tained in some coset f of H for every |,
(L1 =1, 2, *°°, [A]S. Hence
(2) [H] ([A'] - 1) > [A] - 1.

Considering now the by, we have by €'B' for every

r ] .
o a \ ane o S
gavamanst In O

by € B*, and thus

(3) [W]-[B'] > [B*].
Combining (1), (2) and (3) we have
[G] > [A] + [H] + [B*] -1




(G] - [H] > [A] + [B*] - 1.
But by (i) [C*] = [G] = [H]. Therefore
(4) [c*] > [A] + [B*] - 1.

v

Subtracting (ii) from (4) we have

(€] > [A] + [B] -1,
which completes the proof.

In the introduction we stated that if was pos-
sible to give alternate conditions for the validity of
the Cauchy-Davenport inequality. Using Theorem 3.1 and
Theorem 3.2 we will next establish a sufficient condi-
tion for the Cauchy - Davenport inequality in the case
that G 1is a finite abelian group. This theorem is due
to Mann [12].

Theorem 3.4: Let G be an abelian group of order m,
and let A, B and C = A+B be non-empty subsets of G.
If for every subgroup H of G,

[A+H] > min {m, [A] + [H] - 1},
then for any subset B of G,

[C] > min {m, [A] + [B] - 1} .

Proof: If A+B = G we are through. If
A+B% G then C % ¢ and by Theorem 3.2 there is a set
B* DB such that

(1) C*=A¥B* =¢C + H for some subgroup H of

G, and
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(11) [c*] - [c] = [B*] - [B].

Let A' and B' be sets of cosets of H that contain
the elements of A and B* respectively. Consider
then the factor group [G/H]. By Theorem 3.1 and (i)we have
that [G/H] > [A'] + [B']. Since also

(6] = [H] - [6/H], [B*] < [H] «[B']
and [A+H] = [H] . [A'], we have that

[G] > [A+H] + [B *].Then by the hypothesis it fol-
lows that

(1) [G] > [A] + [H] + [B*] - 1.
Subtracting [H] from each side and using the fact that
(1) implies that [G] - [H] = [C*], we have

(2) [c*]1 > [A] + [B*] - 1.
Subtracting (ii) from (2) we get
(c] > [A] + [B] =1,

and the theorem follows.

Mann was able to prove Chowla's theorem by first
using his famous transformation to prove Theorem 3.2 and
then giving a non-inductive proof of Chowla's Theorem.

I have applied Mann's transformation directly and have
thus obtained new proofs of both the Cauchy=-Davenport
Theorem and Chowla's Theorem. We consider first the proof

of the Cauchy-Davenport Theorem.
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Theorem 3.5t Let G be the group of residue classes
modulo a prime p, and let A, B and C = A+B be
subsets of G. Then [C] > min {p,[A] + [B] - 1}.

Proof: The proof is by induction on [C]. 1If [C] = o,
we are through. If [C] = 1, then the assertion is
false if [C] < [A] + [B] - 1. Since [C]=p -1 it
must be that [A] + [B] > p, but by Theorem 3.1 if

[A]l + [B] > p then C =G and we have a contradiction,
Thus the Theorem is established for [C] = 1. Assume
now that the Theorem is true for 1 < [C] < n and con-

sider the case where [C] = n. Form the set

D={dy/ dy =¢ -cy, 1=2,3, vev, n, ¢c; €T},

Let b, be an element of B such that a + b, + diE-E

for some a and some d,, and define B* as
(i) B* = {b, + d; / a+b, + d; €T},

Since the definition of B* depends upon the existence

of a b, which satisfies (i) we show next that such a b

0
exists. Suppose that there is no b € B which will work

as the b, in (i). Then a + b+ d; €EC for every

0

a€A, bEB and d; €D. But {a+b} = C,and therefore

¢ +d; €C for every ¢ and every d;. Fix d,; # O.
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Then c¢ + kdi €C for every ¢ and every natural number
k. As before, since p is a prime, c¢ + kdi generates

G, and thus C = G; a contradiction to the hypothesis
that [C] > 1. Thus there is a b, € B which satisfies

(1).
Now that we have established the existence of B¥,
le¢ B = BUBY and C;, =A +B,. Then we establish

the following four relationships:
(1) B*NB =g,
(2) [c,] > [c]
(3) c, $C1
(4) [c,] - [c]=1[B,] - [B].
That the relations (1) and (2) are valid is immediate from
the definitions. Suppose that ¢, €C,, then
a +by,+d =¢C, for some dy. But d =T, -T,, and

therefore a + b, + ¢, - E& = El. or a+b, = Eﬁ which

is a contradiction. Thus (3) is verified. Finally,
a+b+dy= ¢, if and only if a + b + d, = EJ. so that

there is a 1-1 correspondence between the elements of

B* and the elements of C, which are not in C. This

establishes (4).
Since (2) and (3) imply that [€,1 <[C], and
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that C, 4s not empty, thes induction hypothesis yields

(5) [c,]12[(A] +[B] -1,

Subtracting (1) from (5) we obtain
(€] 2 (Al + [B] - 1,
which completes the proof.
As the reader is by now probably well aware, the
above proof would also hold for Chowla's Theorem if we

could establish the existence of the b used to define

0o

B*. However, this is impossible as is shown by the fol-

lowing example.

Example 3.1t Let G be the cyclic group of integers
mod 16, and set A = {0, 1, 3},

{0, 4, 8, 12} and C = A+B. Then
10,15 8 8y 8 T 8595 18,2213, 153;
{2, 6, 10, 14},

o O
" "

and
D

{4, 8, 12},
Then a + b + d, €C for every a, every b and
every dy. Since B satisfies Chowla's hypotheses

we must extend the above proof to include the case where

b, does not exist. This will be done in the proof of

Theorem 3.6.

We consider next a direct application of Mann's
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transformation to prove Chowla's Theorem. This proof is
somewhat simpler than Mann's proof which was discussed

earlier.

Theorem 3,6t Let G be the group of residue classes
modulo an integer m, and let A, B and C = A+B be
subsets of G such that 0 € A and for a; 3 0,

(ai, m) = 1, Then [C] > min (m, [A] + [B] - 1),
Proof: The proof is by double induction on [C] and m.
If [C] = 0 the theorem is trivial. If [C] =1 then
(c-a) € B for every a € A. Therefore, [A] < [B].
Hence, [C] =m - 1= [B] + [B] - 1> [A] + [B] = 1, and
the assertion is true for [Ej =1 and m £ 2. Assume
that m > 2, n=[C] > 1 and that the theorem is true
for modulus less than m and for modulus m if ([C] <n.
Let [C] = n, and define the set D as
D={dg/dy=¢, -c;3 1=2,3, , [C]].
Form the sum c; + dj; ¢c; €C and dj € D. There are

then two cases to consider.

Case 1t There is at least one dj such that ¢, + djq-c
for some Cye
In this case we define B' as

B' = {b + dy / atbtd, €cl.
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Then B' % ¢. Define B" and C" as B" =B UB' and
C" = A + B", Since C" will contain at least one more

element than C, the induction hypothesis yields
[C"] > min (min (m, [A] + [B"] = 1),

Also, since a + b+ dy = Eu' implies a + b +d, = Ej,

(B*] - [B] > [c"] - [C] .
Therefore,
[c] > min (m, [A] + [B] - 1),

and the assertion is true for Case 1.
Case 2: For every ¢ CGC and every d €D, c +d E€C,

Since ¢ +d €C for every ¢ and every d, C
consists of the union of arithmetic progressions of the

form Cyp + rdy where cx GGy 2w Oy Ll Dy "sB0Y and
€, and dy are fixed for each progression. Therefore,

C 1is the union of arithmetic progressions of the form

¢, + re where c €C and e = g.c.d (dj)’ j=2,3,¢*%,n.

Note that if e = 1 we are through, since then C = G,
and we have a contradiction. Thus, if m is a prime
the proof is complete. Assuming m is not a prime, C
is also the union of arithmetic progressions of the form

¢, + rd where ¢ €C and d = (e, m). Let H be the

normal subgroup of G generated by d, and consider
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the factor group G/H. Let A', B' and C' be the
sets of cosets which contain elements of A, B and C
respectively. Denote the index of H by h. Then
he[C'] = [C], and h+[B'] > [B]. Since 0 € A and

(aj,d) = 1 for every non-zero a in A, there is one

coset S € A' whose only element in A is zero. There-
fore, h°*[A'] >[A]+h-1. Since G/H is isomorphic to the
group of residue classes mod d, and since the non-zero
elements of A' are relatively prime to d, the induc-
tion hypothesis gives

[C'] > min (d, [A'] + [B'] - 1),

Therefore,

h*[C'] > min (hd, h*[A'] + h. [B']-h).
If we substitute our above results we get
[C] > min (m, [A] + [B] - 1),

and the proof is complete.
We consider next an unpublished proof of Chowla's
Theorem by R. D. Stalley, which uses a second transforma~-

tion attributed to Mann.

Theorem 3,7: Let G be the group of residue classes
modulo an integer m, and let A, B and C = A+B be
non-empty subsets of G such that 0 € A and for

ay $ 0, (aj, m) = 1. Then [C] > min (m, [A] + [B] - 1).
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Proof: The proof is by double induction on m and
n=[B]. If [C] =0 the theorem is trivial. If
(€1 =1 then (c-a) €EB for every a €A, ¢ €C.
Hence [A] < [B] so that [C] = m-1l = [B] + [B]- 1
> [A] + [B] - 1.
Therefore the theorem is true for m < 2 and for n<l.

Assume then that the theorem is true if m < m, and
n <n,, and consider the case where m =m, and

n=n. Also we may assume that [C] > 2. Let

C={c,, cqy *++y .}, and let dy= c,-cy,
i=2, ***, n, We have then two cases to con~-

sider.

Case 1l: There is a bo €EB and a dt "¢, =C such

that b, + d, ¢ B.

Define the sets B', B* and C* by
B* = {by+ d,/ by +d, & B},
B* =B UB' and C* = A + B*,
Then, since B' N B =¢ and B' % ¢, we have
[B*] > [B]. Therefore [B*] < [E], and by the induction
hypothesis we have
(1) [c*] 2 [A] + [B*] - 1.

Since a + b, + du = E; implies that a + b, + dv *E




and hence that by +id € B, we have

(i) [c*] - [c] < [B*] - [B].
Subtracting (ii) from (i) we have [C] > [A] + [B] - 1;

which proves the theorem for Case 1l.

Case 2: We have b + dt €B for all bEB and all

d Then B, and therefore C, is the union of arith-

t.
metic progressions with common difference

e = g.c.d. {d,/2 < ugn},

and hence with common difference d = (e, m). Let H
be the subgroup generated by d, and consider the factor
group G/H. Denote the index of H by h. Let Ajv B

and Cl denote the sets of cosets mod H which con-

tain elements of A, B and C respectively. Then
h(B,] 2 [B] and h[c ] = [C].

Let a ¥+ 0O be an element of A,. Since (a + kd, m) =1

and d divides m we have (a, m) = 1. Since [C] > 0,
we have d > 1, so that (kd, m) > 1 4if k > 0. Since
O €A, we have h [A;] 2> [A] +h - 1. Since [C] > 2,

we have d < d; < m. Finally, C, = A, + B,, and by

the induction hypothesis
(c] = h[01] 2 h min (d, [Ax] + [Bxl - 1)

2 min (hd, h[A,] + h[B,] - 1)
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2 min (m, [A] + [B] - 1) ;

which establishes the theorem for Case 2 and completes
the proof.

As the concluding theorem for this chapter we con-
sider next Mann's proof of Vosper's Theorem [5]. This
proof is not simple and is presented here in detail.
However, Mann's proof is shorter and simpler than Vosper's

own proof. For reference I restate Vosper's Theorem:

Theorem 3,8t Let G be the group of residue classes
modulo a prime p and let (A, B) be a pair of subsets
of G. The pair (A, B) 4is a critical pair if and only
if A and B satisfy one of the following four condi-
tions:

(1) [Al+ [B] > p

(2) min ([a], [B]) =1

(3) A=d-E for some d €G

(4) (A, B) is a standard pair.

Proof: The proof is by induction on [C] and will make

use of the following lemma:
Lemma 3.1t Theorem 3.6 is true if A is a standard set.

Proof: As we have shown earlier we may assume that
OE€ANB, and that A= {0, 1, 2, *++, [A] = 1}, (refer

to the proof of Lemma 2.1). Also, because of (2), we may
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assume that min([A], [B])> 2. Consider then the gaps
in B. If B has no gaps of length greater than or
equal to [A], then [A] + [B] > p and we have condi-
tion (1). If B has one gap of length at least [A],
and no other gaps, then B 1is a standard set with com-
mon difference 1, and we have condition (4). If B has
one gap of length at least [A] and at least one other
gap, then C will contain besides [B] at least [A]
elements in the gap in B of length at least [A]. There~
fore [C] > [A] + [B], and the lemma is established.

We now prove the theorem. Conditions (1) and (2)
are immediate., If [C] = p -1, then C =c¢ and
BDc - A, sothat [B] > [A]. Therefore,

(Al + [B] = [A] + p = [B]
< [A] + p = [A]
= [C] + 1.

Since equality will hold if and only if B=¢C - A we
have established condition (3). We now establish condi-
tion (4) by induction on [C]. Assume that the assertion
of Theorem 3.7 is true if 2 < [C] < n and consider the
case where [C] = n. Also we may assume that conditions

(1), (2) and (3) are not satisfied. Let Cys *°°y En be
the elements of C and set c, - Ei =dg, £ =2, 3,°,n,

We have then two cases to consider.
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Case 1l: There is a b€ B and indices s and t such
that b+ d  €B and b+dt$8.

In this case we form the sets

B' = {b+d, /b+d ¢ B},
B*=B UB' and C* = A + B*,

Since a +b +d = c and

% implies a + b + dv = C

u.

therefore that b + d, ¢ B; we have
(1) [c*] - [c] < [8*] - [B] .

As a consequence of the definitions we have

(1) T, ¢c*, [B*] > [B] and [c*] > [c].

Now, conditions (1) and (2) are clearly not satisfied

by A, B® and C*. Suppose that DS*] =p=1. Then,
since [C] = n 4implies that [C] = p = n and therefore
that [c*] - [C] =p =1~ (p=n) = n=1, it follows from
(1) that [B*] - [B] > n-1. But [B*] - [B] = [B'], so
that [B'] > n-l, which contradicts the hypothesis that

b + d‘ € B for some index s. Hence A, B* and c*

do not satisfy (3). Then since [C*] > [C], [C*] < [T],
and therefore by induction either (4) is satisfied, or
(i14) [c*] > [A] + [B*] - 1.
Subtracting (i) from (3) we get
[c] > [A] + [B] - 1,

and have the proof for Case l.




38
Case 2t Either b +d, €B or b+d, €B for all bGB

and all dt'

Then either B 1is a standard set with common dif-

ference dyy, and we are through by the lemma, or there
are elements b and b, in B such that b +d, ¢ B

and b, + d, € B. Form then the sets
B' = {b, +d,/ b, +d, € B},

B" = {b, +d,/ b, +d, €8],

B* = B UB' UB"

and

c* = A + B,

Then again we have ¢, ¢c” Also,

n n
), (by+ d) =) (bt d ) = (n=1) (b= b,) £ 0 (mod p).
u=2 u=2

Hence B' # B", and [B' UB"] > n.
Therefore

(iv) [B*] > B + n.
Since p=[C] +n and 31 Y (ot B
we have [C®] < [C] + n-1. Then by (iv) and the Cauchy-
Davenport Theorem

[C] + n-1 > [c*] > [A] + [B*] -1

2 (Al + (B] +n - 1.




Thus,
(c] > [A] + [B],

and the proof is complete.

39
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CHAPTER IV
PROOFS BY DYSON'S TRANSFORMATION

In this chapter we will use Dyson's transforma-
tion to prove Chowla's Theorem, Vosper's Theorem and
several theorems which yield the Cauchy-Davenport In-
equality under different hypotheses. In particular,
Theorem 4.2 is true for abelian groups in general,

Before proceeding to the theorems we first prove
the following lemma which makes use of Dyson's trans=-

formation:

Lemma 4.1t Let G be the group of residue classes mo-
dulo m; let A, B .and C =A + B be non-empty sub-

sets of G with 0 € B, [B] > 2, and such that there
is an a, € A for which a,+ b § A for some b € B.

Then there arefset; A, B and C, = A, + B, such that
(1) [A]+ [B ] =[A] + [B]
(2) [B,]1 < [B]

and

(3) c, €C.

Proof: Define the sets A' and B' by
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B'S{b/a1+b¢A},
and

A'={a, +b/ bEB'}.
Let B, = BNB' and A, = AUA"; then we immediately

have:

(1) [B,]1 = ([B] - [B']
(i1) [A,] = [A] + [A']

and

(111) ([A'] = (B'].

Substituting (iii) into (i) and adding to (ii) we get
[A1] + [B1] = [A] + [B], and thus establish (1). Since

we stipulated that a,6 exists, B' is not empty, and

1

therefore [B,] < [B], which is (2). Also 0 € B and
0 ¢ B', so that B, and C  are not empty. We next
establish that C, CC. Let c¢' be an element of C,.

Then c' =a' + b' with a' €A, and b' €B,. If
a'! € A1 then either a' € A or a' €A', If a' €A
then, since B1 CB, ¢'"€C, If a' € A' then

a' = a, +b, and therefore c' =a, + b+b'. But

a, +b' €A, for if a, + b' § A then b' €EB', and

1

we haye a contradiction to the fact that b' € By There~

fore c¢' €C, and hence C, CC. This completes the
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proof of the lemma.

We next use Lemma 4.1 to prove a Theorem which

yields Chowla's Theorem as a special case.

Theorem 4.1t Let G be the group of residue classes

modulo an integer mj; let A, B and C=A + B be'sub-
sets of G for which (bi - by, m) = 1 for some b, and

every b, $ b,y by € B. Then
(C] > min{[A] + [B] - 1, m]}.

It is apparent that Theorem 4.1 implies Chowla's
Theorem,for if by = 0 then 0€B and (by, m) =1

for every b; # by, and these results are precisely

Chowla's hypotheses. Actually we may assume O € B, for

if 0¢ B we transform B into B, by By =B = b,

and define C, as C, =A + B,. Then [B,] = [B],
[ClJ=1I[c]l,0€B, (b, m)=1 if by €B, and

by $# 0, and we just need to prove the theorem for A, B,
and C, . We now prove the theorem with the assumption
that 0 € B.

Proof: Since there is nothing to prove if C =G we
assume that C $ G and show that [C] > [A] + [B] - 1.

The proof is by induction on [B]. If [B] =1 the

assertion is trivial. Therefore we assume that the
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&l fet8 oW A '
theorem is true for |1 < [B] < r £ m and consider the

case where [B] = r. Then there is an a, €A such that

L 7
QoM

a, +b € A for aay non-zero b € B. For if not, then
{ f/ )

. - o Lo } ,
Tna eyery g & - We crndese p 290 ¥

a +b€A for every a €~A,,L;ﬁ&jt£;£§fore— a+kb€A
for every a € A and every natural number k., But by 7~
hypothesis (b, m) =1, so that a + kb generates G,

and therefore A =G in contradiction to our assumption

that C # G. Therefore there is an a, € A for which

ome

a, + b ¢ A for any non-zero b € B, Hence by Lemma 4,1

1

there are sets A,, B, and C;-'ghch that

(1) [A,1 + (B,] = [A] + [B]
(i1) [B,] < (B]

and

(1i1) c, cc.

Then by our inductive hypothesis and (ii) we have
(c,]12([A,]+[B,]~-1. Combining this result with (1)

and (iii) we get [C] > [A] + [B] - 1, and the theorem
is proved.

In the following theorem we will apply the pre-
ceeding method to prove a theorem which gives a sufficient
condition for the Cauchy=Davenport inequality to hold when
G 1is simply an additive abelian group. This theorem is
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attributed to L. Moser and was proved by P. Scherk
(14].

Theorem 4,2t Let G be an additive abelian group of

order m, and let A, B and C = A + B be non-empty
subsets of G with OE€A NB, and for a € A, b € B,
a+b=0 if and only if a =0 and b = 0., Then

(C] 2 min (m, [A] + [B] - 1).

Proof: The proof is by induction on [B]. If C =G
there is nothing to prove, so we assume that C # G.
Likewise the theorem is trivial if [B] =1, so we may
assume that [B] > 2. Let [B] be fixed and assume that
the theorem is true for all smaller values of [B]. Then

there is an a, € A for which a, + b § A for some

b € B. For, since [B] > 2, there is a non-zero b € B,
and this, together with the hypothesis that a + b % 0
unless a =0 and b =0, implies that O ¢ A + b.

But [A+b] = [A], and therefore a, + b§A for some

b € B. Thus we have satisfied the hypotheses of Lemma 4.],

and hence there are sets A;, By and C, such that
(1) [A,] + [B,] = [A] + [B],
(2) [31] < [B]

and

(3) ¢, cc,
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Also, from the definitions of A;' B and C1 in Lemma

i

4,1 we know that 0 € A, and 0 G—Bl. We establish
that if a' € A1 and b' € B1 then a' + b' = 0 {if
and only if a' =0 and b' = 0. Since B, CB we have

the assertion immediately if a' € A. Therefore let

a' + b' = 0 and assume that a' ¢ A. Then a' =a, +b
so that a' + b' =a, + b+ b' = (a,+ b') + b =0, But

a, + b' € A, for otherwise b' € B', Therefore

(a1 4+ b') + b= atb =0, and by the hypotheses a = 0
and b= 0. But since a, + b § A, b cannot be zero,

and we have a contradiction, Therefore a' € A and we
have established that a' + b' = 0 if and only a' =0
and b. = 0.

Then, since A ,, B, and C, satisfy the hypothe-

1

ses of the theorem, the inductive hypothesis yields

(C,] > min (m, [A,] + [B,] - 1),

which together with (1), (2) and (3) gives:
(C] > min (m, [A] + [B] = 1).

The proof is now complete.
In connection with the extensions of the Cauchy=-
Davenport Inequality to more general abelian groups than

the groups of residue classes mod m, we consider briefly
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two theorems from a paper by J. H. B. Kemperman and
P. Scherk [15]. Each of these theorems gives a suffi-
cient condition for the Couchy-Davenport Inequality, and
the first one is proved using Dyson's Transformation.
The second theorem gives a condition under which the hy-
potheses of the first theorem are satisfied. Kemperman
and Scherk offer other theorems similar to second one
mentioned in that the third implies the second and so
on, but these theorems are not considered here. We now

investigate the first theorem in Kemperman and Scherk's

paper.

Theorem 4,33 Let G be an arbitrary abelian group,
written additively, and let A, B and C=A +B be
non-empty, finite subsets of G. Denote the order of G
by m. If there isa b€ B such that A+ B¢ A+ b

then

(C] > min (m, [A] + [B] - 1).

Proof: The proof of this theorem is so similar to the
proof of Theorem 4.2 that I will only present an outline
of the proof. As in the proof of Theorem 4.2 we use

Lemma 4.1, (or its immediate extension if G is not fi~-
nite). Since the assertion is trivial if (B] =1, or

if C =G, we may assume that ¢ ¥+ G and that the theo-
rem is true if [B] < n. We will show that the hypotheses
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of the theorem are sufficient to permit us to perform
Dyson's Transformation as in Lemma 4.1, and then the re-
sult will follow as in the proof of Theorem 4.2. Since
by the hypothesis A+ B¢ A + b for some b € B, there

is an a1 € A and elements bo and b1 in B such
that a +b - b, ¢ A. For otherwise a, +b -b =a,

or a, + b1 = a_+ b° and we have a contradiction. De-

0

fine then B* as B*

0CB* and b, = b, - b, satisfies a, + by § A, Therefare

=B = by,s Then [(8*] = [B],

as in Lemma 4,1 there are sets A1 and B1 such that

(1) (A1 + [B,] = [a] + [B*]
(2) [B,] < [B*]

and

(3) c, cc.

Then by our inductive hypothesis

[c,] 2 min (m, [A ]+ [B,] - 1)

and hence
(C] > min (m, [A] + [B*] - 1)
> min (m, [A] + [B] - 1).
The next theorem by Kemperman and Scherk gives an-
other sufficient condition for the Cauchy-Davenport in-

equality and is proved by showing that the hypotheses
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imply that the conditions of Theorem 4.3 are satisfied.

Theorem 4.,4: Let G be an abelian group, written addi-

tively, and let A, B and C = A + B be non-empty sub-
sets of G, If there are elements b° and b1 in B

such that [A] (b, = b,) $0 then A+BC¢A+ b for

some b € B.

Proof: Suppose that A + BCA + b for some b € B,
and denote the b by b,. Then a + b =-b, CA for

every a and b. Therefore [B] < [A], for otherwise
by fixing a and letting b range through B we could
determine more than [A] elements in A and have a con-

tradiction. Fix then b, so that [A] (b, - b,) $ 0,
and let a run through A. Since b, and b, are
fixed, if a ranges through A then so will a + b, - b,.
Therefore

Za = Z(atb, - b,) = Za + [A] (b, = b,), which
implies that [A] (b, = b,) = O. Again we have a contra-

diction and so the theorem is proved.

Following the last diversion from the proofs by
Dyson's Transformation we return to this method to give
a somewhat shorter proof of Vosper's Theorem. This method

of proof has been published by A. G. Vosper [ 17 after its



49
use was suggested to him by M. Kneser. Instead of re-
proving the whole theorem we will just prove the diffi-
cult part; i.e., that condition (4) is necessary. Since
Vosper's Theorem is somewhat long, we restate it for re-

ference.

Theorem 4.5: Let G be the group of residue classes mo-

dulo a prime p, and let (A, B) be a pair of subsets of
G. The pair (A, B) is a critical pair if and only if
A and B satisfy one of the following four conditions:

(1) (Al +([B]I>P

(2) min ([A], [B] =1

(3) A =d-B for some d € G.

(4) (A, B) is a standard pair.

Proof: Since we are here only trying to establish that
(4) is necessary, we will assume some of the lemmas from
Chapter II and prove two more. Also we will assume that
(A, B) is a critical pair and that conditions (1), (2)
and (3) are not satisfied. For reference we state the

lemmas we need from Chapter II.

Lemma 2.1t If A 1is a standard set then (A, B) is a

standard pair.

Corollary: If min ([A], [B])= 2 then (A, B) is a

standard set.
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Lemma 2,3: (-A, C) 4is a critical pair.
In addition to these lemmas we need the following

two lemmas:

Lemma 4.2: If C 1is a standard set then (A, B) is a
standard pair.

Proof: If C 4is a standard set then so is C. For, if
C= fe+ik/0<1<[C]=-1} then T = {c+ik/[CI<igp}.
By Lemma 2,3, (-A C) 4is a critical pair. By the
assumptions [C] = p - [A] - [B] +1 < p and

min ([-A], [C]) > 1. Therefore, by Lemma 2.1, (-A, C)
is a standard pair. Hence <-A, and therefore A, is

a standard set. Then by Lemma 2.1 (A, B) is a standard
pair.

Lemma 4.3. If [B] >3 and O E€ B then [B] > [81] 32

where B, 1is defined as in Lemma 4.1.

Proof: By the corollary to Lemma 2.1 we may assume that

[A]l > 3. Let A* be the subset A such that [B,] < [B]

for every a € A*, (A" 1is the set of all a € A which
could be chosen as the a, in the definition of B,.)

If A* = A then [A*] > 2. If A* + A let A*™ =
ANA* 4 ¢. Then no a € A** will work as the a, in

the definition of Bz‘ Therefore B + a C A for every
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G A**. Hence ! ! B C A. Therefore

(Al > [A™ + B] > [A**] + [B] - 1
> [A**] + 2.
Hence [A*] = [A] - [A**] > 2,
Suppose now that it is impossible to find an
a, € A* for which the corresponding B, satisfies

(By] > 2, Then since 0€B, BN (A-a) =0, and

(B+a) NA = a for every a € A", Let B* =B n {0}.
Then (B* +a) NA=¢ for every a € A*. Hence
(B* + A*) NA =g, But A* + B*CA +B, and A C A+B.
Therefore
[A* + B*] < [A + B] = [A]
= [B] - 1
= [B*] .

But this is impossible since [A®] > 2, and therefore
the lemma is true.

We are now ready to complete the proof of the the=-
orem. By the corollary to Lemma 2.1, the pair (A, B) is
a standard pair if [B] = 2. Therefore assume that the
pair (A, B) 4is a standard pair if [B] < n and consider
the case where [B] = n. As we have shown earlier, we
may assume that O € B, Therefore by Lemma 4.3,

(B] > [B,] > 2, where B, is defined as in Lemma 4.1,

i

Then by Lemma 4.1 and the assumption that (A, B) is a
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critical pair
(Al + [B] - 1 = [A+B]
2 (A, +B,]
> [A,]+[B] -1

[A]l+([B]=-1.

Hence

(1) (A+B] = [A, +B,] .
Therefore [Aa + 81] = [Ax] + [51] - 1, and the pair
(Ax' B‘) is a critical pair. Since [B,] < [B], the
pair (Ax' Bx) is a standard pair by the inductive hypo-
thesis. By (I) and Lemma 4.1 (3), A + B = A, + B,

Therefore C 1is a standard set. Hence, by Lemma 4.2,

(A, B) is a standard pair, and the theorem is established.
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CHAPTER V
FURTHER RESULTS

In this last chapter we will state two other
results that have been obtained by famous mathematicians
in connection with the Cauchy-Davenport Inequality. The
first of these theorems appears in a short article by
M. Kneser [10],and the second is the object of a monu~
mental paper by J. H. B. Kemperman [9]. Kneser's re-
sult is similar to many of the preceeding theorems in
that it giwes another sufficient condition for the Cauchy-
Davenport Inequality, but in this case G is only re-
stricted to being abelian and A and B are required
to be finite. In his paper Kemperman derives a result
for abelian groups which is similar to Vosper's Theorem.
Like Kneser's result, the group G 1is required to be
abelian and the subsets A and B are required to be
finite. No attempt is made here to prove these two theo-
rems.

Before stating the results of Kneser and

Kemperman we introduce some definitions:

Definition 5.1: Let G be an abelian group, and let H

be a non-empty subgroup of G, not consisting of the
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identity element alone. A subset C of G is said to
be "periodic" if for every element g of some subgroup
H, C+g=C, If C is not periodic it is said to be
"aperiodic". Since H is determined by C we will de-
signate this relationship by writing H(C) for H.

Definition 5.2: A subset C of G is said to be "quasi-
periodic" if there is a subgroup F of G, with [F] >2,
such that C is the disjoint union of a non-empty set
C' consisting of F-cosets and a set C" contained in a

remaining F-coset,

Definition 5.3: A subset C of G is said to be in

arithmetic progression if C can be written as:

C={c,+3d/ j=0,1,2-++,[Cll; ¢, €C; d € G}.

The element d is called the common difference.

We now can state Kneser's Theorem:

Theorem 5.1: Let G be an abelian group and let A, B
and C = A+B be non-empty subsets of G. The set C is
periodic if

[C] < [A] + [B] - 2.

That this theorem gives us the Cauchy-Davenport
Inequality is immediate; for if C is aperiodic, then
(C]>[A]l +[B] -1, If G is the set of residue classes
modulo a prime p, and C 3% G, then C is aperiodic
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and Theorem 5.1 yields the Cauchy=Davenport Theorem.

To continue on to Kempermann's theorem we intro-

duce one more definition.

Definition 5.4: The pair (A,, B,) of non-empty sub-

sets of G 1is said to be "elementary" if one of the

following conditions holds:

(1)

min [A], [B] = 1.

(2) A, and B, are in arithmetic progression

(3)

(4)

with common difference d such that the
order of d 1is greater than or equal to
[A] + [B] - 10

For some finite group H, each of A, and
B, is contained in an H-coset while

[A‘] + [81] = [H] + 1. Moreover, precisely

one element ¢ of C has only one repre-
sentation as a sum a+b, where a € A; and
b € B, .

The set A1 is aperiodic, and for some sub-
group H of G, A, is contained in an H-
coset while B, is of the form B, =

g - (K1 N (a+H)). Moreover, no element ¢

of C has only one reprecentation as a sum
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atb where a € A, and b € By

Finally, we state Kemperman's Theorem:

Theorem 5,5t Let G be an abelian group of order not

less than 2, and let A, B and C = A + B be non-
empty subsets of G. A necessary and sufficient condi-

tion that
(1) [c]=[A]l+[B]-1

and, moreover,
(II) if C 1is periodic then a least one element
of C has only one representation as a + b,
a€A, b€B, is the existence of a non-

empty subset of A, of A, a non-empty sub-

set B, of B and a subgroup F of G

of order not less than 2 such that:

(1) The pair (A,, B,) 1is elementary and each

of A1 and B‘ is contained in an F-coset.

(11) The element ¢ = o (A, + B,) has
c' =g¢ A, + © B, as its only representation

of the form ¢ =a + b, where a € 6 A and
b € 0 B. Here, © represents the quotient
mapping G - G/F.

(iii) The complement A' of A, in A satisfies
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A' + F = A', similarly B' of B, satis-

fi‘s B' + F = B'o
(iv) [0 A+ oB] = [cA] + [6B] - 1.

It is worth noting that although Kemperman's Theorem in
some way resembles Vosper's Theorem, it is not a generali-
zation of Vosper's Theorem to abelian groups. For if we
specialize G to the group of residue classes modulo a

prime, then F =G, A' = G, A‘ is empty and we are

left with the conclusion that not both (I) and (II) can
hold. Vosper's Theorem of course, only gives us neces~-
sary and sufficient conditions for (I) to hold. The
problem of generalizing Vosper's Theorem is as yet un-
solved, but perhaps Kemperman's work will lead to the

solution,
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