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ON THE CANTOR SET
CHAPTER I
INTRODUCTION

The Cantor set plays a very important role in analysis, but it
appears to us that its construction is somewhat specialized. It is
our hope to generalize the construction of this set without losing any
of its nice properties.

In Chapter II, there will be theorems involving properties of
the Cantor set, and from some of these properties a characterization
of the Cantor set is derived. In ChapterIIl, a generalized form of the

Cantor set and some examples are given.



CHAPTER II

CHARACTERIZATION OF THE CANTOR SET

2-1. Definition of the Cantor Set

Let I be the closed unit interval on the real line. Remove

-1

from I an open interval with center at and of measure 3

1
2
I

From each of the two remaining parts of remove again a central

open interval of measure 3" . There remain four mutually
exclusive parts of I, and again from each remove a central open
. -3 N . .

interval of measure 3 . Continuing in this way, a sequence of

mutually exclusive open intervals is removed from I The set C

of the remaining points of I is the Cantor set.

2-2. Properties of the Cantor Set

Consider the real line R as atopological space with the usual

topology. Then the Cantor set is a topological space with its relative

topology as a subspace of R .

Theorem 1.

C is non-empty.



Proof:

Since the end-points 0 and 1 of I and allthe end-points

of the open intervals being removed belongto C, C is non-empty.

In fact, it is easy to give an arithmetic characterization for the
points of the Cantor set. Let each point x of the closed unit inter-

val be represented as its ternary expansion,

x = 0. ajayaz e where a = 0, 1 or 2.
. . . 1 2
Each point of x of the first removed open interval (3 3 ) must
have a, = 1. Each of the end-points of this interval allows two

1

ternary expansions:

1
— = 0' e o e
3 1000
= 0’ 0222. .. ,
2
£ - 0.1 “.
3 222
= 0.2000- -

Except these points no other points of the unit interval can have 1
immediately following the decimal point. So, at the first step of the
process of construction, those and only those points are removed

whose ternary expansions must have 1 immediately following the



decimal point. In a similar way at the second step those and only
those points x are removed for which a, = 1 necessarily, and
so on. After completing the process, those and only those points re-
main which can be represented as ternary expansions 0.a. a_a

13,8y
in which each a is equalto 0 or 2. In other words, the
Cantor set consists of those points of the closed unit interval whose
ternary expansion is possible without the use of 1.

Furthermore, since we can easily set up a one-to-one cor-

| a, =0 or 2} and

respondence between the set {0.a .

1%2%3° 7
the class of all subsets of a denumerable set which has cardinal

number ¢ (the cardinal number of continuum) (2, p- 39), we see that

C also has cardinal number c .

Theorem 2.

C is a metrizable topological space.

Proof:

Define a function d for every twopoints x and y of R
as

dix,y) = 'x-y

Then d satisfies



d(x, x)

o,

d(x, y) dfy, x)

dx, z) < dix, y) +dfy, z) ,

hence is a metric on R. This implies that R 1is a metric space.
Since the class of open sets of the metric space R with metric d
and the class of open sets of the topological space R both are the
class of all unions of open intervals on R, thus R is metrizable.
C is a subspace of the topological space R, therefore is also

metrizable.

Theorem 3.
C is totally disconnected.

Proof:

After the pth step of our construction there remain 2P
mutually exclusive closed intervals on I, each of length less than
2-p- Let x, y be any two distinct points of C. If p is suf-
ficiently large, there is at least one removed open interval between
x and y. Let this open interval be (a, b), then

([0, al NC)U([ b, 1]NC) is a disconnection of C which separates

x and vy.



Theorem 4.

C is compact.

Proof:

C is bounded, and it is obtained by removing a countable disjoint
class of open intervals from a closed interval hence is closed. By the
Heine-Borel theorem (2, p. 114), every closed and bounded subspace

of the real line is compact. Hence, C 1is compact.

Theorem 5.

C is perfect.
Proof:

We first consider under what condition a point of C is an iso-
lated point. Let x be an isolated point of C, then there exists an
open interval (a,b) of R containing x and containing no points
of C other than x. The intervals (a,x) and (x,b) thus con-
tain no points of C at all. There are three cases:

1. if 0<x< 1, them x 1is a common end-point of two
distinct removed open intervals;

2. if x =0, then x is the left end-point of a removed
open interval;

3, if x=1, then x 1is the right end-point of a removed

open interval.
But in each step of our construction, we took out from the middle of
each remaining closed interval an open interval of length equal to

one-third of the closed interval, a point of C can not be a common



7
end-point of two distinct removed open intervals, nor is the point 0
or 1 of C an end-point of a removed open interval. We conclude
that C has no isolated points.
C is the complement of a denumerable union of open intervals
relative to a closed interval, hence is closed. Being closed and

having no isolated points, therefore C is perfect.

Theorem 6.
C 1is of measure zero.
Proof:

The part being removed from the unit interval has measure equal

to
2
-%+—2-7: +%+--- =1,
3 3
thus the remaining part, C, has measure zero.

2-3. Characterization of the Cantor Set

We have proved that the Cantor setis a totally disconnected, com-
pact, perfectmetric space. In this section, we shallprove thatevery
two totally disconnected, compact, perfect metric spaces are homeo-
morphic and hencewillhave a topological characterization of the Cantor
set.

Our steps to lead to this result are as follows. We shall first
construct a new topological space from each compact totally discon-
nected metric space. It will follow that the compact totally discon-

nected metric space is in fact homeomorphic to this topological space
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constructed from it. Then, we can prove any two totally disconnected,
perfect, compact metric spaces are homeomorphic by means of
proving the two topological spaces constructed from them are homeo-

morphic.
Definition 1.

An open covering {Vﬁ} of a topological space X 1is saidto
be a refinement of an open covering {Ua} of X if for each open

set V;3 of {V

contains V

B} there is an open set Ua of {Ua} such that Ua

8"
Lemma 1.

Let X be a compact totally disconnected topological space.
Then if P is a componentof X andif U 1is any set containing

P there is an open and closed set V lyingin U and containing

P.
Proof:

We first prove that P is a single point. Suppose x and
y aretwo distinct points in P . Let X = AUB be a disconnec-

tionof X with x in A and y in B, then
(PNA)U(PNB) is a disconnection of P which contradicts the

hypothesis that P is a component. Therefore P is a single



point, we denote it by x.

Since X is compact and the complement of U, (denoted by CU)
is a closed subspace of X, CU is also compact. For each point
z of CU, by the total disconnectedness of X, there exists a set
Hz which is both open and closed and contains z but not x.
Since CU 1is compact, there is some finite class of HZ' s, which

we denote by {Hl, H .. ,Hn} , with the property that its union

2
n
contains CU butnot x. Let V be the complement of U Hi'
i=1

it is both open and closed lying in U and containing P as we
wanted to prove.
Lemma 2.

If G 1is any open covering of a metric space M, andif n

is any integer, then there is a refinement Gn of G composed of

B |

open sets of diameter < If M 1is compact, then G can
n

be taken to be finite.
Proof:

For every point x in M, thereis an open set U of G
X
such that x is in Ux. Since Ux is open, there is an open

sphere Sx with center x and radius less than —Zl—n—- lying in

U . Let G ={S lxeM}, then G is a covering of M and it
X n X n
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is a refinement of G composed of open sets of diameter less than
1
n

If M is compact, then Gn’ being an open covering of M,

has a finite subclass which also covers M.

Theorem 7.

Let M Dbe a compact totally disconnected metric space. Then
M has a sequence Gi, GZ’ S of open coverings, each Gn
1
being a finite collection of disjoint sets of diameter less then o

which are both open and closed and Gn being a refinement of

+1

G for each n.
n
Proof:

Begin with any covering G of M, by lemmma 2, thereis a

0
refinement QO of GO composed of open sets of diameter less
than 1. Eachpoint x of M 1is a component of M and lies in
an open set UX of QO. By lemma 1, there is an open and closed
set Vx containing x and lying in Ux. Diameter of Vx <
diameter of UX < 1. By compactness, a finite number
Vl’ VZ’ s Vn of these sets covers M. Consider the sets

n-1

U1 = Vl’ U2 = V2 - Vl,--- ’Un = Vn - (ik_jl Vi)’ each of these is an

open set minus a closed set and is open, but also each is a closed set
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minus an open set and is closed. No two of them intersect and di-
ameter of Ui < diameter of Vi < 1. Let G1 = {Ui}'
Again from Gl’ there is a refinement Q1 of Gr1 composed

. 1
of open sets of diameter < B and by the same process as above we

can find GZ’ and so on. Therefore the sequence exists.

Definition 2.

Let XO’ Xl', XZ’ s be a denumerable collection of topological

spaces and, for each n > 0, let there be given a continuous mapping
f . X =X . The sequence of spaces and mappings {Xn, fn} is

n n n-1

called an inverse limit sequence.

Definition 3.

Let {Xn,fn} be an inverse limit sequence. The set of all
o0
points (xo, Xpptr X ) of the product space 1:;1=0 Xrl such
that each x is a point of Xn, and x fn+1(xn+1) for all n>0,

o0
taken with the relative topology of Pnzoxn, is called the inverse

limit space of the sequence {Xn, fn} and is denoted by Xoo‘

Lemma 3.

If each topological space Xn in the inverse limit sequence
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{Xn, fn} is a non-empty compact Hausdorff space, then Xoo is not

empty.
Proof:

For each integer n> 1, let Yn be the set of all points

o0 . -
(pO’pl’pZ’.”) of Pn=OXn such that for 1< j< n, pj_l—fj(pj).

00
We will show that every Yn is closed in Pn:OXn' Suppose that

for a given n, q 1is not a point of Yn. If q-= (qO, a5 9, "7 ),

then for some j < n, we have qj f-fj ). Now Xj is a

+l(qj+l

Hausdorff space, so there exist disjoint open sets Uj and Vj in

X., with . in U, and f. ,(q.,,) in V,. Define V. =
J % j i+ %41 J j+l
fj-:l(Vj). Let B denote any rectangular basis element in PriOXn
containing q and having Uj and Vj+1 as factors. Then no
pointof Y = lies in Bq. For if b= (bo, byrrub e ) is in
B , then b, liesin V., ., b. in U, andnotin V., hence
q j+l j+l ] ] j
b is not in Yn. Thus the complement of Yn is open; Yn is

closed. Since any finite number of these Yn s have a non-empty

o0
intersection and P:zoxn is compact, the intersection (\ Yn is
00 n=1
not empty. But each point in M Yn satisfies the condition for
n=1
being a point in Xoo. Hence Xoo is not empty.

Lemma 4.

If each topological space X in the inverse limit sequence

n
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{x ,fn} is a compact Hausdorff space, then X_  is also a compact

n

Hausdorff space.
Proof:

By hypothesis each Xn is a compact Hausdorff space, there-

00
fore Pn-OXn is a compact Hausdorff space. From the proof of

00
0
Lemma 3, N Yn is closed in P Xn, hence is also a compact
n=1 n=0
Hausdorff space. Since X00 is contained in every one of the Yn' s,
0 00

it is contained in M\ Yn. Conversely, each point of NY

n=1 n=1
satisfies the condition for being a point in Xoo, hence
o0 [s¢]
Ny is contained in X . Therefore X = [\ Y ; itis a
=1 2 * % n=1
n= =

compact Hausdorff space.

Theorem 8.

Let M Dbe a non-empty, compact, totally disconnected metric
space. Then M is homeomorphic to the inverse limit space of an

inverse limit sequence of finite, discrete topological spaces.

Proof:
Let Gl’GZ s be a sequence of coverings of M as given
in theorem 7. TFor each n, let n denote the space whose

points are the open sets of Gn and which has the discrete topology.
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We will use the same notation for an element of Gn and the cor-

: : % ' i f:G*— G* _,
responding point of Gn A continuous mapping o S *1
n> 1, may be defined as follows. If Un ; is an element of Gn’
then there is a unique element U . of G containing U_ .
n-1,j n-1 n,i
because the elements of G are disjoint. We set f (U ) =
n-1 n' n,i
U .. The mappings f are continuous since each G¥* is
n-1,j n n
discrete. With these definitions, then {Gn, fn} is an inverse limit

sequence, and each Gn is a non-empty compact Hausdorff space
since M is non-empty and G;1 contains only a finite number of
points and is discrete. By lemma 3, the inverse limit space Goo is
non-empty.

i i : — M. If =(U s
We next define a mapping h: G_ p=( Ln UZ, n
is a point of G_, then the sets U , U , 77" in M form a
0 1: nl 21 n2
sequence of closed sets, each containing the succeeding one. Thus
o0

the intersection (M U, is not empty (2, p. 73-74). Since diameter
1 j=l 7]
of Uj n < 3-, there can be at most one point q of M in this

J
intersection, let h(p) = q. Itis left toprove that h is a homeo-

morphism.

First, h is one-to-one, for if p 1is a point of Goo’ then
h(p) 1is in each of the point sets in M that are coordinates of p.
Hence if two points p and p' of Goo differ in the nth coordi-
nates, then h(p) # h(p') because the elements of Gn are dis-

joint. Second, h 1is onto, for eachpoint q of M lies in the
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intersection of such a sequence of sets. Third, h is continuous.
Note first that the collection of all sets Uj ; is a basis for the
topology of M since it contains arbitrarily small open sets about

each point. Then, if we can prove that for every Uj i h_l(Uj ;

-1
is openin G_, h is continuous. h (Uj .) consists of all
points of Goo having Uj ; for their jth coordinate, and the point
-1

U, ., of G¥ is openin G¥% hence h (U, ) is openin G

), 1 J J Js1 0

M 1is compact, and it is a Hausdorff space since it is totally

disconnected., From lemma 4, Goo is a compact Hausdorff space.
Then h 1is a one-to-one continuous mapping of a compact Hausdorff

space onto a compact Hausdorff space, hence is a homeomorphism

(2, p. 131).

Lemma 5.

If U 1is anon-empty open set in a totally disconnected perfect
topological space, and n is an integer, then U 1is a union of n

disjoint non-empty open sets.
Proof:

We prove by induction on n.
For n=1, U itself satisfies the condition. Suppose that for

n = k we have



where the Ui” s are open, disjoint and non-empty.

Since the space is perfect, every point is a limiting point; so a
single point is not open. And from the total disconnectedness, Uk
is not connected since it contains more than one point. Thus we can
find a disconnection U, = Uk, 1 Uu where U and U

k k, 2 k, 1 k,2

are disjoint and non-empty. Each of these sets is open in Uk and
hence in the space. Then Ul,' R Uk-l’ Uk, 1’ Uk, , isa decompo-

sition of U for n =k + 1. This completes the induction proof.

Lemma 6.

o0 0
Let X =P Xn and Y = Pz)'r Yn be two product spaces and

n=0 0

let fn: Xn—* Yn be continuous for each n. Then the mapping

f{(x} =y, where x = (xl,xz,' ) is inX and

y = (fl(xl), fz(x7),"' ), is a continuous mapping of X into Y.

Proof:
0

I.et S ©be the class of all open sets B = %"03‘1 of Y suck

- i

that for some N, BN is open in YN and Bi = Yi for i# N

Then S is an open subbase of Y. If we can show that the inverse

image under f of each B in S 1is openin X, then { 1is con-

0
tinuous. Let B = I;r Bn be a setin S such that B is open

0 N

in Y and Bi = Yi for i # N, then by the continuity of f

N N
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-1 . . - p>° -
AN = fN (BN) is openin A, Let A= Pn=OAn where AN = AN

and Ai=Xifori # N. Then f-l(B) A and A is openin X,

hence f 1is a continuous mapping of X into Y.
Theorem 9.

Any two non-empty, totally disconnected, perfect, compact

metric spaces are homeomorphic.

Proof:

ILet S and T be two such spaces, and let GI’GZ’ +-+ and
Ql’ QZ,- -+ be sequences of open coverings of S and T, respec-
tively, where Gk = {Uk, o Uk, nk} and Qk = {Vk, T ’Vk, mk}

as produced in the proof of theorem 8. If G1 and Q1 have the

same number of elements, we set G'1 = Gl and Q'1 = Ql. If n1>m1,

then by lemma 5, V1 1 is the union of n, - m, + 1 disjoint open

sets (each set is the complement of an open set, so is also closed).

Take Cr'1 =G and let Q'l consist of V o,V together

1 1,2 I, my

with the sets into which Vl ] has been decomposed. If m >n,

then the roles of Cr1 and Ql are interchanged. Denote

(- t 1 - ! 1
G {Ul,l’ ’Ul,Nl} and Q) {Vl,l’ ’Vl,Nl}‘ Let h)

be any one-to-one correspondence between G'l and Q'l.

Suppose the open coverings GJ! = {UJ' v UJ! N} and

b H J-
Q'={v! ,- -, V! }, and the one-to-one correspondence h.
j jr 1 J» N. P J

J
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between GJ? and QJ! have been defined. Since the elements of

GJ! are disjoint closed sets, there is an integer rJ.> j such that no

set of diameter < r—l intersects any two different UJ? i's , and
j H
there is a similar integer sj for QJ! . Let m denote the larger
ofr. and s,. Then G refines G! and Q refines Q.
J J m J m J

Consider the elements of G in U! . and the elements of Q
m jsi m
in hJ.(UJ! i) for each i. If there are more elements of Gm in

U' . than elements of Q in h (U! ), then we use lemma 5 to
joi m ARG PE

decompose one of the elements of Qm in h.(UJ! i), and vice versa.

Carrying out this process for each i< Nj yields coverings GJ!+1

and QJ!+1’ which refine GJ! and QJ!, respectively. Denote

G! = = {U! , 0, Ul and Q! _=}V! s, V! }.

h - G — ' . I '
Let i+1 Gj+1 Qj+1 be defined by assigning to each Uj+1,i
; ' ' ; '
in Gj an element of Qj+1 in hj(pj+l(Uj+l, i) ), where Pt

is the projection of GJ!+1 onto GJ! . This assignment is made in

+1

such a way that hj+l is a one-to-one correspondence between G_]!+1

and QJ!+1. The inductive definitions of sequences G'l, G'Z; *++  and

Q'l, Q'z, -++ of open coverings and the one-to-one correspondence hn

between G;1 and QI'1 » n=1,2,""", are complete.
We let G’iﬂ G’;, ‘++  and Q”l‘, Q>52<, *++ be the associated se-
quences of discrete spaces from the sequences G'l, G'Z,' " and

Q'l, Q'Z, ‘** , respectively, as defined in the proof of theorem 8.

Then each h can be considered as a one-to-one correspondence
n
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between G;l and QI:; Since Gr'; and Qr'; are discrete spaces,
each hn and 1its inverse are continuous.

Welet G _, Q_  bethe inverse limit spaces of the sequences
e b3 3
{Gn,pn} , {Qn, qn} , respectively, where 1 and q, are the

projections of G* onto G¥%
n n-1

and QI‘; onto Q;:-l’ respectively.

We define a mapping h: G_— Q_  as follows. For each point

- 1 t .. : 1y = 1 1 vl
U (Ul,il’UZ,iz’ Yy in Goo, let h(U') (hl(Ul,il)’hZ(UZ,i ), )
For each n, since p (U' . ) =TU!' , and h (U' ) is in

n n,i n-1,1 n' n,i
n n-1
1
hn- l(pn( n,i )
1 = 1 = 1
qn(hn(Un,i ) hn- l(pn(Un,i )) hn- l(Un-l,i )
n n n-1

h(U) is indeed a point of Qoo. h 1is one-to-one since each hn is.

For every point V' = (V' . , V! ©) in Q_, let

L,j, Z,jz’
1 = 1 1 el 1 =y :
U (Ul, K’ UZ, kz, ) where hn(Un, K ) Vn,j . We claim that
n n
U' is a point of G- Since
1 = 1 - 1
hn-l[pn(Un,k )] Cln(Vn,j ) Vn-l,j ’
n n -1
h (u y = V! ,
n-1 n-l,kn__1 n-1,j REE
and h is one-to-one,
n-1
1 = 1
then pn(Un, K ) Un- 1,k , and
n n-1

U' is a point of Goo' This implies h is onto. Furthermore,

by lemma 6, h and its inverse are both continuous, therefore h
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is a homeomorphism of Goo onto Qoo‘ We have from theorem 8,
Goo and Qoo are homeomorphic to S and T, respectively, it
follows that S and T are homeomorphic (1, p. 99-100).
From theorems 1,2,3,4,5 of section 2-2 and theorem 9 of
section 2-3, we get the result that any non-empty, compact, totally

disconnected, perfect metric space is homeomorphic to the Cantor

set.



21

CHAPTER III

GENERALIZATION OF THE CANTOR SET

3-1. Generalization of the Cantor Set

In this section, we will characterize the structure of a non-empty,
compact, totally disconnected, perfect subset of the real line, R, and
hence will have a generalized form (up to homeomorphism) of the
Cantor set.

First, we will characterize the structure of a non-empty compact
subset of R; second, the structure of a non-empty compact perfect
subset of R; third, the structure of a totally disconnected subset of
R; and finally, the structure of a non-empty, compact, totally dis-

connected, perfect subset of R.

Definition 4.

If G 1is an open subset of R, then an open interval which is
contained in G, but whose end-points do not belong to G, is called

a component interval of G.

We will use the notation [a,b], a,b), [a,b), (a,b], to denote
a closed, open, left closed and right open, left open and right closed

interval respectively, and CE to denote the complement of the set

E.
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Lemma 7.

Every non-empty bounded open subset G of R can be repre-

sented as the union of pairwise disjoint component intervals.
Proof:

First we shall prove that each point of G belongs to a compo-
nent interval of G. Let ¥e G and F =[x,+0)NCG. Both of
the sets [x, +©) and CG are closed, hence F is close‘d. Since
G is bounded, F is non-empty. Because none of the points of F
lies to the left of x, F is bounded below. Thus F contains a
left end point b, and x<b. But xe G and hence x{ F, so
that x # b, therefore x< b. We next establish that [x,b) CG.
bd G, since be FCCG. Suppose there exists a point y such that
ye[x,b) and y¢ G, then yeF and y < b, this contradicts the
definition of b. We thus have x< b, b{¢ G and [x,p)CcG. By a
similar argument, we can prove the existence of a point a such that
a<x, aéG and (a,x]CG. Then (a,b) is a component interval
of the set G containing the point x.

Second we shall prove that if (a,b) and (c,d) are two com-
ponent intervals of G, then they are either disjoint or identical.
Suppose there is a point x lying in both (a,b) and (c,d), then

a<x<b and c< x<d. Assume that b<d, then c¢c<x< b<d,
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so that be(c,d). But this is impossible, since (c,d)CG and b¢G.
This implies that b > d, Since b and d are interchangeable, it
follows from the same reasoning that b<d and hence b =d.
Similarly, we can prove a = ¢, and therefore (a,b) and (c,d)
are identical.

Then G is the union of pairwise disjoint component intervals,

We can get a further result from this lemma. The set of distinct
component intervals of a non-empty, bounded open set of R is finite
or denumerable. Since we can choose a rational point in each of
these intervals, the set of component intervals is put into one-to-one
correspondence with a subset of all rational numbers, hence must be

finite or denumerable.
Theorem 10.

A non—'empt}’r subset X of K is compact if and only if it is either a
closed interval or is obtained from a closed interval by removing a class

of pair-wise disjoini open intervals whose end pvbints belong to X.
Proof:

If X 1is a non-empty compact subset of R, then X is
closed and bounded. Since X 1is bounded, there is a smallest

closed interval S containing X. Let CsX be the complement
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of X with respectto S, then CsX is bounded and open. By
lemma 7, CSX is either empty or is the union of pairwise disjoint
component intervals, the end points of which do not belong to CSX.
Therefore X is either a closed interval or obtained from some
closed interval by removing a class of pairwise disjoint open intervals
whose end points belong to X.

If X 1is aclosed interval or is obtained from some closed
interval by removing a class of pairwise disjoint open intervals
whose end points belong to X, then S is closed and bounded,

hence it is compact.

From the statement immediately following lemma 7, those inter-
vals being removed from a closed interval to form a compact set are

either finite or denumerable in number.
Lemma 8.

Let G be a non-empty open subset of R and (a,b)CG.
Then, among the component intervals of G there exists one which

contains (a,b).
Proof:

Let xe(a,b), then there is a component interval (m,n) of

G such that xe(m,n). Assume that b>n, then ne(a,b) which
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is impossible, therefore b<n. In the same way, we can prove
m < a, and hence (a,b)C (m,n).

Definition 5.

Two disjoint open intervals of R are said to be adjacent to

each other if they have a common end point.

Definition 6.

Let X Dbe a non-empty bounded closed subset of R, and let
S be the smallest closed interval containing X, then a component
interval of the complement CSX of X with respectto S is

called a complementary interval of X.
Lemma 9.

If X contains more than one point and it is a compact subset of
R and S =[a,b] is the smallest closed interval containing X,
then x is an isolated point of X if and only if it is either the
common end point of two distinct adjacent complementary intervals
of X, or x isthepoint a (or b) and a (or b) is an end

point of a complementary interval of X.
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Proof:

Let x be an isolated point of X. First suppose that a < x < b,
then there exists an open interval (p,q) such that (p,q) contains
x and contains no points of X other than x, then (p,q)C[a,Db]
since a and b arein X. Let CSX be the complement of X
with respect to S, then (x, q)CCsX. By lemma 8, there is a
complementary interval (m,n) of X containing the interval
(x,q). I¥ x>m, then x isnotin X; soitis necessary that
x<m. But x<m would contradict the fact that (x, q)C(m,n),
therefore x = m, i.e., x is the left end point of the complementary
interval (m,n) of X. In the same way, we can prove that x is
the right end point of some complementary interval of X.

For the case x = a, since X contains more than one point,

a # b. We can find an open interval (r,s) such that (r,s) con-
tains no points of X other than x, then (x, s)CCsX. By lemma
8, there exists a complementary open interval (u,v) of X such
that (x,s)C(u,v). By the same reasoning as above x =u. There-
fore when x = a, itis an end point of a complementary interval of
X. Similarly we can prove the case when x = b.

The other way around, let x be a common end point of two
adjacent complementary intervals of X, or let x be the point

a (or b) and be the end point of a complementary interval of X.
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In either case there is an open interval which contains x and con-

tains no points of X other than x, hence x is an isolated point.

Theorem 11.

X is a non-empty, perfect, compact subset of R if and only if
it is obtained from some closed interval [a,b], where a # b, by
removing a class of pairwise disjoint open intervals any two of which
are not adjacent to each other and none of which has a or b as

end point,

Proof:

Let X be a non-empty, perfect,compact subset of R. Since
X is non-empty and compact, by theorem 10, X is obtained from
some closed interval [a,b] by removing a class of pairwise dis-
joint open intervals whose end points belong to X. Since a single
point is not a perfect subset of R, a =* b. Suppose among the
open intervals being removed, there are two of them adjacent to each
other. Then their common end-point belongs to X and it is an
isolated point. But this is impossible since X 1is perfect. By the
same reasoning, none of the open intervals being removed has a
or b as its end point.

If X is obtained from a closed interval [a,b] by removing
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a class of pairwise disjoint open intervals any two of which are not
adjacent to each other and none of which has a or b as end-point,
then X 1is closed and bounded, hence it is compact. Since a # b,
X contains more than one point, then by lemma 9, X has no iso-

lated points, hence it is perfect.

Theorem 12.

A subset X of R is totally disconnected if and only if between
any two different points of X there is a point which does not belong

to X.

Proof:

The theorem is clearly true if X is an empty subset or contains
only a single point. We may assume that X contains more than
one point.

If X is a totally disconnected subset of R and x<y are
two different points of X, then there exist two disjoint open sets
U, V. of R suchthat X = (XNU)UXNV) and xeU, yeV.

By lemma 7, U is the union of pairwise disjoint open intervals the
end-points of which do not belong to U. Let (a,b) be the open
interval such that xe¢(a,b)CU and ad U, b¢dU. Since V is also

the union of pairwise disjoint open intervals the end-points of which



29

do not belong to V, and V 1is disjointfrom U, b¢V. Since
y¢ U and (a,b)CU, yé¢(a,b). Then x<b<y. Thus b is a
point between x and y which does not belong to X.

If between any two points of X, there is a point which does not
belong to X. Let x and y be any two points of X, with
x <y, thereis apoint e suchthat x<e<y and e¢X. Then
X =[(-0,e),X]\U[X,(e,+0)] is a disconnection of X separating

x and vy, hence X 1is totally disconnected.

Definition 7.

Let S be a subsetof R. Aclass G of open intervals is
said to be dense in S if for any two distinct points x <y in S,

there is an open interval (a,b) in G such that (a,b)C(x,y).

Theorem 13.

A non-empty subset of R is compact, totally disconnected,
perfect if andonly if it is obtained from a closed interval [a,b],
where a # b, by removing a disjoint class of open intervals which
is dense in the remaining set, no two of the open intervals are ad-

jacent to each other and none has common end-point with [a,b].

Proof:

From theorem 12, a subset X of R 1is totally disconnected
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if and only if between any two different points of X there is a point
which does not belong to X, but from theorem 11, X is non-empty
perfect compact if and only if it is obtained from some closed
interval [a,b], where a # b, by removing a class of pairwise dis-
joint open intervals any two of which are not adjacent to each other and
none of whichhas a or b as end-point, therefore between any two
points of X there must be an open interval being removed from X.
Thus a non-empty subset of R is compact, totally disconnected,
perfect if and only if it is obtained from a closed interval [a,b],
where a #b, by removing a disjoint class of open intervals such that
the class is dense in the remaining set, no two of the open intervals

are adjacent to each other and none has common end-point with the

closed interval [ a,b].
We can also state theorem 13 as

Theorem 14.

A non-empty subset of ‘R is compact, totally disconnected,
perfect if and only if it is obtained from a closed interval [a,b],
where a #b, by removing a disjoint class of open intervals such
that no two are adjacent to each other and none has common end-point

with [a,b], and such that every open interval contained in [a,b]
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contains an open interval which is in the complement of the remaining

set.

Proof:

By using theorem 11, we can assume X is a compact and per-
fect subset of R and prove that X 1is totally disconnected if and
only if every open interval contained in [a,b] contains an open
interval which is in the complement of X. But from theorem 12
it is sufficient to prove the following two statements are equivalent

for the set X :

1. Dbetween any two different points of X there
is a point which does not belong to X;
2. every open interval contained in [a,b] contains

an open interval which is in the complement of X.

If statement one is true, then from the structure of compact
perfect set, between any two points of X there is an open interval
being removed. ILet (c,d) be any open interval contained in [ a, b].
If (c,d) contains two different points of X, then by the above argu-
ment between these two points there is an open interval being re-
moved, and hence this open interval is contained in the complement of
X. Since X is perfect, (c,d) can not contain a single point of

X. I (c,d) contains no points of X, then (c,d) itself is an
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open interval contained in the complementof X. Thus statement one
implies statement two.

If statement two is true, then every open interval contained in
[a,b] contains an open interval which is in the complement of X.
Let x <y be two different points of X, then (x,y) contains an
open interval which is in the complement of X, hence there is a
point between x and y which does not belong to X. Therefore
statement two implies statement one and the two statements are

equivalent. This completes the proof of the theorem.

3-2. Examples

In the following, we shall give some special constructions of
compact, totally disconnected, perfect subsets of R based on

theorem 13.

Example 1.

From a closed interval of R, we remove an arbitrary open
interval provided that it has no common end-points with the original
closed interval. From the remaining parts we remove again an
arbitrary open interval provided that it has no common end-points
with the original closed interval nor with the open interval already

removed. Again do the same to the remaining parts. Continue in
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this way an infinite number of times and arrange that between any two
remaining points, there is an open interval being removed. Then by
theorem 13, the remaining set is a set homeomorphic to the Cantor
set. Therefore from a closed interval we can construct infinitely

many different forms of generalized Cantor sets.

From theorem 6 in section 1-2, the Cantor set is of measure
zero. We would raise the question: Can a compact, totally dis-
connected, perfect subset of R have measure other than zero?
The answer is yes. The following example 2 gives us a method of
constructing a generalized Cantor set of arbitrary measure, and
example 3 gives us a method of constructing a generalized Cantor
set of any measure less than the measure of the closed interval with

which we begin.
Example 2.

For any real number r > 0, take an arbitrary closed interval
X of measure r + 1 from the real line. Remove from X a cen-
tral open interval of measure 3 , and from each of the two re-
maining parts of X remove again a central open interval of
measure 3-2. And again from the four remaining parts of X

. -3 e .
remove a central open interval of measure 3 ~. Continuing in this

way, a sequence of mutually non-adjacent open intervals which is
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dense in the remaining set is removed from X. By theorem 13,
the remaining part is a set homeomorphic to the Cantor set. The

measure of the part being removed is

2
—;—+—2—2+—2—3+ =1
3 3

Hence the measure of the remaining set is equal to r.
Therefore we can construct a subset of R of any given measure

such that it is a generalized Cantor set.

Example 3.

Let S be aclosed interval of measure r and let q be any
real number such that 0< g<1l. Let a= —%%g— . Remove from
S a central open interval of measure ar. From each of the re-
maining parts remove a central open interval such that their total
measure is aZr. And again from each of the four remaining parts
remove a central open interval such that their total measure is a3r.
Continuing in this way, a sequence of mutually non-adjacent open
intervals which is dense in the remaining set is removed from S.

By theorem 13, the remaining set is a set homeomorphic to the

Cantor set. The total measure being removed is
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ar+a2r+a3r+ cee = =- = (1-g)r

Hence the total measure of the remaining set is

r-(l-qr = qgr.

Therefore we can construct from a closed interval of measure r

N
—

a generalized Cantor set of measure qr for any 0 <q
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