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ON THE CANTOR SET

CHAPTER I

INTRODUCT ION

The Cantor set plays a very irnportant role in analysis, but it

appears to us that its construction is sornewhat specialized. It is

our hope to generalize the construction of this set without Iosing any

of its nice properties.

In Chapter II, there will be theorerns involving properties of

the Cantor set, and frorn sorne of these properties a characterization

of the Cantor set is derived. In ChapterIII, a generalized forrn of the

Cantor set and sorrle exarnples are given.



CHAPT ER II

CHARACTERIZATION OF THE CANTOR SET

Z-1. Definition of the Cantor Set

Let I be the closed unit interval on the real line. Rernove

frorn I an open interval with center at + and of measure 3'L
z

Frorn each of the two rernaining parts of I rernove again a central

-)open interval of rneasure 3 - There rernain four rnutually

exclusive parts of I, and again {rorn each rernove a central oPen

interval of rneasure 3'3 Continuing in this way, a sequence of

rnutually exclusive open intervals is rernoved frorn I. The set C

of the rernaining points of I is the Cantor set.

2-2. Properties of the Cantor Set

Consider the real line R as a topological space with the usual

topology. Then the Cantor set is a topological space with its relative

topology as a subspace of R .

Theorern l.

C is non- ernpty.



Proof:

Since the end-points 0 and I of I and all the end-points

of the open intervals being rernoved belong to C, C is non-ernpty.

In fact, it is easy to give an arithrnetic characterization for the

points of the Cantor set. Let each point x of the closed unit inter-

vaI be represented as its ternary expansion,

x = 0."1 uzu3.'.' where "k=0, I or Z.

Each point of x of the first rernoved open interval (+ , il rnust

have .l = I. Each of the end-points of this interval allows two

ternary expansions:

I

^ = 0.1000...
5

= 0.0ZZZ"' ,

)
: = 0' IZZZ"'
3

= 0.2000''.

Except these points no other points of the unit interval can have 1

irnrnediately following the decirnal point. So, at the first step of the

process of construction, those and only those points are rernoved

whose ternary expansions rnust have I irnrnediately following the
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decirnal point. In a sirnilar way at the second step those and only

those points x are removed for which 
^Z 

= L necessarily, and

so on. After cornpleting the process, those and only those points re-

rnain which can be represented as ternary expansions 0. ararar" '

in which each "k 
is equal to 0 or Z. In other words, the

Cantor set consists of those points of the closed unit interval whose

ternary expansion is possible without the use of I.

Furtherrnore, since we can easily set up a one-to-one cor-

respondence between the set t 0."t ^Z^3"' | "i = 0 or Z\ and

the class of all subsets of a denurnerable set which has cardinal

nurnber c (the cardinal nurnber of continuurn) (2,p. 39), we see that

C also has cardinal nurnber c

Theorern 2.

C is a rnetrizable topological space.

P roof:

Define a function d f or every two points x and y of R

d(x,y) = l*-y I

Then d satisfies

as



d(x,x) - 0 ,

d(x,y) = d(y,x) ,

hence is a rnetric on R. This irnplies that R is a rnetric space'

Since the class of open sets of the rnetric space R with rnetric d

and the class of open sets of the topological sPace R both are the

class of all unions of open intervals on R, thus R is rnetrizable.

C is a subspace of the topological space R, therefore is also

rnetrizable.

Theorern 3.

C is totally disconnected.

Proof :

After the pth step of our construction there rernain ZP

rnutually exclusive closed intervals on I, each of length less than

Z'p Let x, y be any two distinct points of C. If P is suf-

ficiently large, there is at least one rerrroved open interval between

x and y. Let this open interval be (a b1, then

([ o, a] n c) u ([ b, I] n c) is a disconnection of c which separates

x and y.



Theorern 4.

C is cornpact.

Proof :

C is bounded, and it is obtained by rernoving a countable disjoint

class of open intervals frorn a closed interval hence is closed. By the

Heine-Borel theorern (2, p. 114), every closed and bounded subspace

of the real line is cornpact. Hence , C is cornpact.

Theorern 5.

C is perfect.

Proof :

We first consider under what condition a point of C is an iso-

lated point. Let x be an isolated point of C, then there exists an

open interval (a, b) of R containing x and containing no points

of C other than x. The intervals (", *) and (*, b) thus con-

tain no points of C at all. There are three cases:

l. if 0 < x < 1, then x is a cornrnon end-point of two

distinct rernoved open intervals;

Z. if x = 0, then x is the left end-point of a rernoved

open interval;

3. if x = 1, then x is the right end-point of a rernoved

open interval.

But in each step of our construction, we took out frorn the rniddle of

each rernaining closed interval an open interval of length equal to

one-third of the closed interval, apoint of C can not be a cornrnon
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end-point of two distinct rernoved open intervals, nor is the point 0

or I of C an end-point of a rernoved open interval. We conclude

that C has no isolated points.

C is the cornplernent of a denurnerable union of open intervals

relative to a closed interval, hence is closed. Being closed and

having no isolated points, therefore C is perfect.

Theorern 6.

C is of measure zero.

Proof :

The part being removed frorn the unit interval has rneasure equal

to

lz
t* ?

thus the rernaining part,

*zz+...
33

C, has

= I.,

rneasure zffo.

Z-3. Characterization of the Cantor Set

We have proved thatthe Cantor setis atotally disconnected, corrr-

pact, perfectrnetric space. In this section, we shallprove thatevery

two totally disconnected, cornpact, perf ect rnetric spaces are horneo-

rnorphic and hence will have a topological characterization of the Cantor

s et.

Our steps to lead to this result are as follows. lrVe shall first

construct a new topological space frorn each cornpact totally discon-

nected rnetric space. It will follow that the cornpact totally discon-

nected rnetric space is in fact horneornorphic to this topological space
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constructed frorn it. Then, we can prove any two totally disconnected,

perfect, cornpact rnetric spaces are horneornorphic by rneans of

proving the two topological spaces constructed frorn thern are horneo-

rnorphic.

Definition l.

An open covering trp) of a topological space X is said to

be a refinernent of an open covering {Uo} of X if for each open

set ,p of {Vp} there is an open set Uo of {Uo} such that U

contains Vp .

Lernrna I.

Let X be a cornpact totally disconnected topological space.

Then if P is a cornponent of X and if U is any set containing

P there is an open and closed set V lying in U and containing

P.

Proof :

We first prove that P is a single point. Suppose and

y are two distinct points in P . Let X = AUB be a disconnec-

tion of X with x in A and y in B, then

( PnO U (PnB) is a disconnection of P which contrad.icts the

hypothesis that P is a cornponent. Therefore P is a single



point, we denote it by x'

Since X is cornpact and the cornplernent of lJ, (denoted by CU)

is a closed subspace of X, CU is also cornpact. For each point

z of CU, by the total disconnectedness of X, there exists a set

H which is both open and closed and contains z but not x.
Z

Since CU is cornpact, there is sorne finite class of Hrt s, which

we denote by {H,, H,, ... , H.^} , with the property that its unionLZnn
contains CU but not x. Let V be the cornplernent of 

.Y 
,r,

1=r
it is both open ald closed lying in U and containing P as we

wanted to prove.

Lernrna Z.

If G is any open covering of a rnetric space

is any integer, then there is a refinernent G, of

open sets of diarneter a + . If M is cornpact,
n

be taken to be finite.

P roof:

there is an open set

U is open, there isx

radius less than I
Zn

G is a covering of
n

M, and if n

G corrlposed of

then G can
n

UofGx

an oPen

Iying in

M and it

For every point x in M,

such that x is in U Sincex

sohere S with center x and,x

U Let G = {S lxe M}. thenx n 'x'
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I
n

is a refinernent of G corrrposed of open sets of diarneter less than

If M is cornpact, then Grr, being an open covering of M,

has a finite subclass which also covers M.

Theorern 7:

Let M be a cornpact totally disconnected rnetric space. Then

M has a sequence Gi,GZ, ' ' ' of open coverings, each G,

being a finite collection of disjoint sets of diarneter less then -Ln'

which are both open and closed and Gn+I being a refinernent of

G for each n.
n

Proof l

Begin with any covering GO of M, by lernrna Z, there is a

refinernent QO of GO corrrposed of open sets of diarneter Iess

than I. Each point x of M is a cornponent of M and lies in

an open set U* of Q0. By lernrna I, there is an open and dosed

set V* containing x and lying in Ux. Diarneter of V* S

diarneter of ,* a l. By cornpactness, a finite nurnber

YL,YZ, "'; Vr, of these sets covers M. Consider the sets
n-l

u, = v' uz= vz - vr,... , ur,. = vr, - (ry trr, each of these is an

open set rninus a closed set and is open, but also each is a closed set
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rninus an open set and is closed. No two of thern intersect and di-

arneter of U. < diarneter of V. < I. Let G, = {U.}1- i I - 1-

Again f rorn G' there is a refinernen, Qt of G, cornposed

I
of open sets of diarneter < 7 and by the sarrre process as above we

can find G., and so on. Therefore the sequence exists.
L

Definition Z.

Let X0,,l,XZ,' ' ' be a denurnerable collection of topological

spaces and, for each n > 0, 1et there be given a continuous rnapping

frr, Xrr* Xr_1. The sequence of spaces and rnappings {Xrr, frr} is

called an inverse lirnit sequence.

Definition 3.

Let {X_, f_} be an inverse lirnit sequence. The set of allnn
points (*0,*, ,. . . ,*rr,' " ) of the product space 

"r1Or, 
such

that each *r, is a point of Xr' and *r,. = frr+I(*rr*r.) for all n ) 0'

taken with the relative topology of 
"I=O*.,, 

is called the inverse

lirnit space of the sequence {Xrr, trr} and is denoted by Xoo.

Lernrna 3.

If each topological space Xr. in the inverse lirnit sequence



is a non-ernpty cornpact Hausdorff space, then X

L2

is not{x ,f }nn

ernpty.

Proof:

I.or each integer n > I, let Y, be the set of aII points

00(P0,R1,P2,"') of Prr=OXr,. suchthatfor l< j<r, oj-r=tr(nr).
co'We will show that every Y, is closed in Prr='X.r. Suppose that

for a given n, q is not a point of Yn. If q = (q0, g1,92,'.' ),

then for sorne j ( rr, we have oj I tj*r(e3+t). Now 
"j 

is a

Hausdorff space, so there exist disjoint open sets ,j and tj in

X., with qj in ,j and fi*t (e3*t) in tj. Define tj*, =

-l oo
f.., (V.). Let B denote any rectangular basis elernent in Prr=,X.,
J+IJq
containing q and having ,j and tj*, as f actors. Then no

point of Y' lies in UO. For if O = (bO, bl, ,br,., ) is in

B , then b. lies in V. ,, b. in U. and not in V., henceq' j+I j+l' j j J'

b is not in Y . Thus the cornplernent of Y is open; Y isn'nn
closed. Since any finite nurnber of thes. Yr,t s have a non-ernpty

@

intersection and OrI=Or, is cornpact, the intersection n Y is

not ernpty. But """n-n"rl, ,. ; Y satisfies the condi,l;i r""-nn=I
being a point in X Hence X_ is not ernpty.

Lernrna 4.

lf each topological space xn in the inverse lirnit sequence
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{X ,f } is a cornpact Hausdorff space, then X - is also a cornpact
t),' @

Hausdorff space.

Proof :

By hypothesis each X, is a cornpact Hausdorff space, there-
00fore Prr.=OX,. is a compact Hausdorff space. Frorn the proof of

Lernrna 3, n Y is closed in P* X--, hence is also a cornpact
n=l n n=0 n

Hausdorff space. Since X_ is contained in every one of the Y--I s,
@oo

it is contained in A 
_ 
trr. Conversely, each point of A y

n=I n=I n

satisfies the condition for being a point in X_, hence
@oo

Ay iscontainedin X-. Therefore X = nY; itisan@oo-nn=I n=l
cornpact Hausdorff space.

Theorern 8.

Let M be a non-ernpty, cornpact, totally disconnected rnetric

space. Then M is horneornorphic to the inverse lirnit space of an

inverse lirnit sequence of finite, discrete topological spaces.

Pr oof l

Let G,, Gz be a sequence of coverings of M as given
Lu

in theorern 7. For each n, let G* denote the space whose

points are the open sets of G, and which has the discrete topology.
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'W'e will use the sarrre notation for an elernent of G, and the cor-

responding point of G* . A continuous rnapping frr: G'r - GI_1,

n> 1, rnay be defined as follows. It U, . is an elernent of G-,rrrl n

then there is a unique elernent Urr_ l, j of Grr_ I containing Urr, i

bec aus e the elernents of Grr_ I ar e di sj oint. W e s et tr(Urr, ,) =

Urr_ l, j. The rnappings f' are continuous since each G>r is

discrete. With these definitions, then 1Gx, trr) is an inverse lirnit

sequence, and each G>K is a non-ernpty cornpact Hausdorff space

since M is non-ernpty and G* contains only a finite nurnber of

points and is discrete. By lernrna 3, the inverse lirnit space G is

non- ernpty.

We next define a rnapping h: G- * M. If D =( U ,U- - , "')L rl Z,nZ

is a point of G*, then the sets Ul, rl ,UZ,nZ,' ' in M f orrn a

sequence of closed sets, each containing the succeeding one. Thus
@

the intersection A U. _- is not ernpty (2,p. 73'741. Sincediarneter

I j=I J'tj
of U. .^ <: there can be at rnost one point q of M in this

J,[, J
J

intersection, let h(p) = q. It is left to prove that h is a horneo-

rnorphisrn.

First, h is one-to-one, for if p is a point of G_, then

fr(p) is in each of the point sets in M that are coordinates of p.

Hence if two points p and p' of Goo differ in the nth coordi-

nates, then fr(p) I h(pt ) because the elernents of G., are dis-

joint. Second, h is onto, for each point q of M lies in the
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intersection of such a sequence of sets.

Note first that the collection of a1I sets

Third, h is continuous.

U. is a basis for the
J,1

topology of M since it contains arbitrarily srnall open sets about

each point. Then, if we can prove that for every U. ., t',-I(U.. .,)' J,r J,l
is open in G-, h is continuous. fr- 

1(U., 
.,) consists of all' J,1'

points of G* having ,j, , f or their jth coordinate, and the point

U. of GiJ is open in Gll', henc. fr- 
l1U. 

,) is open in G -.j,i J J J'L'

M is cornpact, and it is a Hausdorff space since it is totally

disconnected. Frorn lernrna 4, G- is a cornpact Hausdorff space.

Then h is a one-to-one continuous rnapping of. a corrrpact Hausdorff

space onto a cornpact Hausdorff space, hence is a horneornorphisrn

(2, p. 131).

Lernrna 5.

If U is a non-empty open set in a totally disconnected perfect

topological space, and n is an integer, then U is a union of n

disj oint non- ernpty open sets.

Proof :

We prove by induction on n.

For n = I, IJ itseU satisfies the condition.

n=k wehave

u=ur\,/"'UUo

Suppose that for
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,.rrhere the

@Let X=P ^X and J=n=u n
f : X ' Y becontinuousnnn

= y, where x = (xr, xr,

(rr("r), r.r(xrl,"' ), is

ar e op e1l , di sj oint and non- enrpty.

P ^Y be two product spaces andn=0 n
for each n. '-lhen lher rnapping

) rs inX anC

a continuous rnapping of X into Y.

U',., s
1

Since the space is perfect, every point is a limiting point; so a

singie point is not open. And frorn the total disconnectedness, Ut

is not connected slnce it contains rnore than one point. Thus we can

find a Cisconnection ,O = ,O, t U Uk, , where Uk, I and Uk, 
Z

are disjoint. and non-ernpty. Each of these sets is open in UX and

hence in the space. Then Url"' , Uk_1, Uk, I,Uk, Z i" a decornpo-

srtion of U for n = k + I. This cornpletes the induction proof .

Lernrna 6.

1e. t

1'(x)

y=

Pr oof :

l,et S be the class of all open sets e = e,!^R of Y suci:n=U i)

iirat for sorne N, tir,t is open in ,N and Bi = Yi {or i t N.

'.i'hen S is an open subbase of Y. l-f we can r;horv that the rnverse

irnage under f of each B in S is open rn X, then f is con-

tinuous. Let U = OrrlOU, be a set in S such that BN is open

in YN and Bi = Yi for i I N, then by the continuity of fN,
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AN = r* ^(B*) is open in

and A.=X.fori + N.
11

hence f isacontinuous

Theorern 9.

L7

A. Let O = of=Oor, where AN = \
I

Then f-'(n) = 4 and A is open in X,

rnapping of X into Y.

Any two non-ernpty, totally disconnected, perfect, cornpact

rnetric spaces are horneornorphic.

Proof :

Let S and T be two such spaces, and let G r,Gr,. 
. . and

Q,yQZ,"' be sequences of open coverings of S and T, respec-

tively, where Gk = {rU, ,,... , Uk, rrU} "rrd Qk = {tO, ,,... , rU,.rrO}

as produced in the proof of theorern 8. If G, and Qt have the

sarrre nurnber of elernents, we set Gt, = G, and atf = at. If nr>rnr,

then by lernrna 5, tr,, is the union of n, - rn, * I disjoint open

sets (each set is the cornplernent of an open set, so is also closed).

Take Gt, = Gr, and let Ol consist of , r,rt... t Vl, 
-I 

together

with the sets into which ,r, , has been decornposed. If *l)rl,

then the roles of G, and Qt are interchanged. Denote

o', = {rtr, ,,"' , rtr,*, } and ot, = {ttr, , 
t..- t ttr,*r}. Let n,

be any one-to-one correspondence between Gl and O!.

Suppose the open coverings Gj = tuj, t, 
. , Uj, *,) and

-J
= {vj, I, ' ,,rj, *j}, and the one-to-one correspondenc" njo:

J
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between Gl and O: have been defined. Since the elernents ofJJ
Gl are disjoint closed sets, there is an integer r, ) j such that noJ"
set of diarneter a + intersects any two different Ul .t" , and

"j -i,i -

there is a sirnilar intege" s; for Oi . Let m denote the largerJJ
of r. and s.. T hen G refines Gl and O refines Ol.J J rrr -j -rrr -j.
consider the elernents of Gr., in tj,, and the elernents of er'

in h,(u: .,) for each i. rf there are more elernents of G inJ J,l rn
Ul - than elernents of O- - in h.(Ul .), then we use lernrna 5 toJ,l -rn j'-j,i"
decornpose one of the elernents of O in h.(Ul .), and vice versa.rn J' JrI'
carrying out this process for each i S Nj yields coverings

and Qi , ,, which refine G! and e:, respectively. DenoteJ+r j -_ - -j' ---rv!

oj*, = {uj+r, l' ' 'uj*r, N,+r} and oj*, = }vj*r, r, ' ' ,ti*r, N,+r}.
Let ni*rt oj*r* oj*, be defined by assigning to each uj*r,,
in oj*, an element of oj*, in rrr(n3+r(uj+r, 

i) ), where pj*t
is the projection of oj*, onto GJ . This assignrnent is rnade in

such a way that nj*, is a one-to-one correspondence between oj*,

and Oj+f . The inductive definitions of sequences Gtr, G:, . . . and

o'r, oi, " ' of open coverings and the one-to-one correspondenc. h,

between Gr and Q:, n = 1,2,..., are cornplete.nn
W'e let G,f , Gr,. .. and O,i, O,j,. . . be the associated se_

quences of discrete spaces frorn the sequences Grr, G:,. . . and

Q'l'Q'2,"' , respectively, as defined in the proof of theorern g.

Then each h can be considered as a one-to-one correspond.encen

oj*,
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between G,i. and OI. Since GI and Qi. are discrete spaces,nnnn
each h and its inverse are continuous.

n
'W'e let G_ , Qoo be the inverse lirnit spaces of the sequences

{G'r,p } , {Q'r,q } , respectivelv, where p and q are the.n-^n..-n'.n-.n

projections of G'>r onto GI_ f and OX onto Ofr_ r, respectively.

We define a rnapping h: G** Q* as follows. For each point

ut = (ui,i1,ul, ,r,... \ in G*, tet h(u') = (ht(ui,rr,,hlur,. ),,,.1.

For each 11, since prr(Uir, i ) = Ul.r_ t, i and n.r(Ui.,, ) is in

h,r- r(nrr(ui.,, ) ), 
n n- r n

n

qrr(hrr(ul,rrrr, = hrr- r(nrr(uf,, in) ) = hrr_ t(ui._ r, rrr_ r) 
,

h(U) is indeed a point of Qoo. h is one-to-one since each h' is.

For every point Vt = (V1 . , Vl ,. . . ) in Q*, let' r'Jl Z'JZ

Ur =(U1 ,Ul , ,"') where h (Ut . ) =Vt Weclairnthat- I, Kl Z, RZ n' n, Kn ,r, Jn

Ur is a point of G -. Since

h.r- tIP,r(ul, kr) ] = qrr(vi.,irr) = vl- r,ir_ l

hrr- l (ui.- r,k 
r_ r) 

= v;- l,irr_ r ,

and hrr_ I is one- to- one,

then nrr(ulr, t r) 
= u;-r- r, k 

r_ r 
, and

Ur is a point of Goo. This irnplies h is onto. Furtherrnore,

by lernrna 6, h and its inverse are both continuous, therefore h
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is a horneornorphisrn of Goo onto Qoo. 'W'e have frorn theorern 8,

G - and O^^ are horneornorphic to S and T, respectively, itoo oo

f ollows that S and T are horneornorphic ( l, p. 99- 100).

Frorn theorerns L,2,3,4,5 of section Z-Z and theorem 9 of

section Z-3, we get the result that any non-ernpty, cornpact, totally

disconnected, perfect rnetric space is horneornorphic to the Cantor

s et.
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CHAPTER III

GENERALIZATION OF THE

3-1. Generalization of the Cantor Set

CANTOR SET

In this section, we will characterize the structure of a non-ernpty,

cornpact, totally disconnected, perfect subset of the real line, R, and

hence will have a generalized forrn (up to horneornorphisrn) of the

Cantor set.

First, we will characterize the structure of a non-ernpty compact

subset of R; second, the structure of a non-ernpty cornpact perfect

subset of R; third, the structure of a totally disconnected subset of

R; and finally, the structure of a non-ernpty, cornpact, totally dis-

connected, perfect subset of R.

Definition 4.

If G is an open subset of R, then an open interval which is

contained in G, but whose end-points do not belong to G, is called

a cornponent interval of G.

'We will use the notation [ ",b] , ,(a, b), I r, b), (., b] , to denote

a closed, open, left closed and right open, left open and right closed

interval respectively, and CE to denote the cornplernent of the set

E.
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Lernrna 7.

Every non- ernpty

sented as the union of

Proof :

bounded open subset G of R can be repre-

pairwis e disj oint cornponent intervals.

First we shall prove that each point of G belongs to a compo-

nent interval of G. Let xe G and F = [x, +oo)A CG. Both of

the sets [x, *oo) and CG are closed, hence F is closed. Since

G is bounded, F is non-ernpty. Because none of the points of F

lies to the left of x, F is bounded below. Thus F contains a

left end point b, and x ( b. But xe G and hence xl F, so

that * I b, theref ore x ( b. 'We next establish that [*, b) C C.

b/ G, since b e F CCG. Suppose there exists a point y such that

y< [x, b) and y I G, then y€ F and y < b, this contradicts the

definition of b. We thus have x ( b, U/ C and [x,b)CG. By a

sirnilar argurrrent, we can prove the existence of a point a such that

o ( xr al G and (a, x] C G. Then (", b) is a cornponent interval

of the set G containing the point x.

Second we shall prove that if (r, b) and (., d) are two corn-

ponent intervals of G, then they are either disjoint or identical.

Suppose there is a point x lying in both (", b) and (., d), then

a(x(b and c(x(d. Assurnethat b<d, then c(x<b<d,
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so that be (c, d). But this is impossible, since (c, d) CG and bC G,

This irnplies that b > d, Since b and d are interchangeable, it

follows frorn the sarrre reasoning that b < d and hence b = d.

Sirnilarly, we can prove a = cr ?.nd therefore (a, b) and (c, d)

are identical.

Then G is the union of pairwise disjoint cornponent intervals,

We can get a further result frorn this lernrna. The set of distinct

corrlponent intervals of a non-ernpty, bounded open set of R is finite

or denurnerable. Since we can choose a rational point in each of

these intervals, the set of corrrponent intervals is put into one-to-one

correspondence with a subset of all rational nurnbers, hence rnust be

finite or denurnerable.

Theorern l0^

A non-ernpty subset X of R is

closed interval or is obtained frorn

of pair-wise disjoint open interval's

Proof:

If X is a non-ernpty cornpact

closed and bounded. Since X is

closed interval S containing X.

compact if and only if it is either a

a closed interval by removing a class

whose end points belong to X.

subset of R, then X is

bounded, there is a srnallest

Let C X be the cornplernent
s
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of X with respect to S, then C"X is bounded and open. By

lernrna 7, C_X is either empty or is the union of pairwise disjoint
s

corrrponent intervals, the end points of which do not belong to C"X.

Therefore X is either a closed interval or obtained frorn sorne

closed interval by rernoving a class of pairwise disjoint open intervals

whose end points belong to X.

If X is a closed interval or is obtained frorn sorne closed

interval by rernoving a class of pairwise disjoint open intervals

whose end points belong to X, then S is closed and bounded,

hence it is compact.

Frorn the staternent imrnediately following lernrna 7, those inter-

vals being rerrroved frorn a closed interval to form a cornpact set are

either finite or denurnerable in nurnber.

Lemma 8.

Let G be a non-ernpty open subset of R and (a, b)CC.

Then, arnong the corrlponent intervals of G there exists one which

contains (r, b).

Proof:

Let xe (a, b), then there is a corrrponent interval (.r., rt) of

G such that xe (rn, n). Assurne that b ) n, then ne (a, b) which
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is irnpossible, therefore b < n.

rn < a, and hence (a, b)C (rn, n).

In the sarne way, we can prove

Definition 5.

Two disjoint open intervals of R are said to be adjacent to

each other if they have a cornrnon end point.

Definition 6.

Let X be a non- ernpty bounded closed subset of R, and let

S be the srnallest closed interval containing X, then a cornponent

interval of the cornplernent C"* of X with respect to S is

ca11ed a cornplernentary interval of X.

Lernrna 9.

If X contains more than one point and it is a cornpact subset of

R and S = [ a, b] is the srnallest closed interval containing X,

then x is an isolated point of X if and only if it is either the

cornrrlon end point of two distinct adjacent cornplernentary intervals

of X, or x is the point a (o, b) and a (o" b) is an end

point of a cornplernentary interval of X.
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Proof :

Let x be an isolated point of X. First suppose that a ( x ( b,

then there exists an open interval (p, q) such that (p, g) contains

x and contains no points of X other than x, then (p,q)C Ia, b]

since a and b are in X. Let C", be the cornplernent of X

with respect to S, then (*, q) CCsX. By lernrna 8, there is a

cornplernentary interval (.rr, rr) of X containing the interval

(*, q). If x > m, then x is not in X., so it is necessary that

x < m. But x < rn would contradict the fact that (*, q)C(rn, n),

therefore x = rn, i. e,, x is the left end point of the cornplernentary

interval (*, rr) of X. In the sarrre w31r r we can prove that x is

the right end point of sorrre cornplernentary interval of X.

For the case X = &, since X contains more than one point,

a f A. We can find an open interval (r, ") such that (", 
") con-

tains no points of X other than x, then (*, 
")CCsX. By lernrna

8, there exists a cornplernentary open interval (o, r.) of X such

that (*, 
")C 

(u, v). By the sarrre reasoning as above x = u. There-

f ore when X = a, it is an end point of a cornplernentary interval of

X. Sirnilarly we can prove the case when x = b.

The other way around, let x be a cornrnon end point of two

adjacent cornplernentary intervals of X, or let x be the point

a (o" b) and be the end point of a cornplernentary interval of X.
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In either case there is an open interval which contains x and con-

tains no points of X other than x, hence x is an isolated point.

Theorern I I.

X is a non-ernpty, perfecL cornpact subset of R if and only if

it is obtained frorn sorne closed interval [", b] , where a * b, by

rernoving a class of pairwise disjoint open intervals any two of which

are not adjacent to each other and none of which has a or b as

end point.

Proof :

Let X be a non-ernpty, perfect,cornpact subset of R. Since

X is non-ernpty and cornpact, by theorern 10, X is obtained frorn

sorne closed interval Ir,b] by rernoving a class of pairwise dis-

joint open intervals whose end points belong to X. Since a single

point is not a perfect subset of R, a 1 A. Suppose arnong the

open intervals being rernoved, there are two of thern adjacent to each

other. Then their cornrrron end-point belongs to X and it is an

isolated point. But this is irnpossible since X is perf ect. By the

sarne reasoning, none of the open intervals being rernoved has a

or b as its end point.

If X is obtained frorn a closed interval [ ,,b] by rernoving
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a class of pairwise disjoint open intervals any two of which are not

adjacent to each other and none of which has a or b as end-point,

then X is closed and bounded, hence it is cornpact. Since a + b,

X contains rrrore than one point, then by lernrna 9, X has no iso-

lated points, hence it is perfect.

Theorern 12.

A subset X of R is totally disconnected if and only if between

any two different points of X there is a point which does not belong

to X.

Proof :

The theorern is clearly true if X is an ernpty subset or contains

only a single point. We rnay assurne that X contains rnore than

one point.

If X is a totally disconnected subset of R and x < y are

two different points of X, then there exist two disjoint open sets

IJ, V of R such that X = (XnU)U(Xn V) and xe (J, y€ V.

By lernrna 7, U is the union of pairwise disjoint open intervals the

end-points of which do not belong to U. Let (", b) be the open

interval such that x< (a, b) C U a-nd al lJ, bl U. Since V is also

the union of pairwise disjoint open interrals the end-points of which
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do not belong to V, and V is disjoint frorn IJ, b/Y. Since

yl U and (a, b)CU, y/ (a, b). Then x ( b ( y. Thus b is a

point between x and y which does not belong to X.

If between any two points of X, there is a point which does not

belong to X. Let x and y be any two points of X, with

x(yi thereisapoint e suchthat x<e<y and e/X. Then

x = [(-*,.),x] U Ix, (", -F-)] is a disconnection of x separating

x and \, hence X is totally disconnected.

Definition 7.

Let S be a subset of R. A class G of open intervals is

said to be dense in S if for any two distinct points x < y in S,

there is an open interval (a, b) in G such that (", b) C(*, y).

Theor ern 1 3.

A non-ernpty subset of R is cornpact, totally disconnected,

perfect if andonly if it is obtained frorn a closed interval [",b] ,

where a * b, by rernoving a disjoint class of open intervals which

is dense in the rernaining set, no two of the open intervals are ad-

jacent to each other and none has cornrnon end-point with [.,b] .

Proof :

Frorn theorern I2, a subset X of R is totally disconnected
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if and only if between any two different points of X there is a point

which does not belong to X, but frorn theorern I1, X is non-ernpty

perfect cornpact if and only if it is obtained frorn sorrle closed

interval [",b] , where a * b, by rernoving a class of pairwise dis-

joint open intervals any two of which are not adjacent to each other and

none of which has a or b as end-point, therefore between any two

points of X there rnust be an open interval being rernoved frorn X.

Thus a non-ernpty subset of R is cornpact, totally disconnected,

perfect if and only if it is obtained frorn a closed interval [",b] ,

where a 1b, by rernovirrg a disjoint class of open intervals such that

the class is dense in the rernaining set, no two of the open intervals

are adjacent to each other and none has cornmon end-point with the

closed interval [ ", bl.

W'e can also state theorern 13 as

Theorern I4.

A non-ernpty subset of R is cornpact, totally d.isconnected,

perfect if and only if it is obtained frorn a closed interval [",b] ,

where a 1b, by rernoving a disjoint class of open intervals such

that no two are adjacent to each other and none has cornmon end-point

with [ ",b] , ?rld such that every open interval contained in [ ",b]
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contains an open interval which is in the cornplernent of the rernaining

s et.

Proof :

By using theorern 11, we can assurrre X is a cornpact and per-

f ect subset of R and prove that X is totally disconnected if and

only if every open interval contained in [ ", 
bJ contains an open

interval which is in the cornplernent of X. But frorn theorern 1Z

it is sufficient to prove the following two staternents are equivalent

for the set X:

between any two diff erent points of X there

is a point which does not belong to X;

every open interval contained in [ ", 
bJ contains

an open interval which is in the cornplernent of X.

If staternent one is true, then frorn the structure of cornpact

perfect set, between any two points of X there is an open interval

being rernoved. Let (", d) be any open interval contained in [., b].

If (., d) contains two different points of X, then by the above argu-

rnent between these two points there is an open interval being re-

rnoved, and hence this open interval is contained in the cornplernent of

X. Since X is perfect, (", d) can not contain a single point of

X. If (., d) contains no points of X, then (., d) itseU is an

Z.
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open interval contained in the cornplernentof X. Thus statement one

irnplies staternent two.

lf staternent two is true, then every open interval contained in

[", bJ contains an open interval which is in the cornplernent of X,

Let x < y be two different points of X, then (*,y) contains an

open intervalwhich is in the complernent of X, hence there is a

point between x and y which does not belong to X. Therefore

staternent two irnplies staternent one and the two staternents are

equivalent. This cornpletes the proof of the theorern.

3- Z. Exarnples

In the following, we sha1l give sorrre special constructions of

cornpact, totally disconnected, perfect subsets of R based on

theorern 13.

Exarnple 1.

Frorn a closed interval of R, we rernove an arbitrary open

interval provided that it has no cornrrron end-points with the original

<, losed i.nterval. Fror:r the rernaining parts we rerrrove again an

arbitrary open intr:rvai provioed tir:rt ii. ir;rs no corrllrlon end-points

with the original closed interval nor with the open intervai already

removed. Again do tire sarne to the rernaining parts. Continue in
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this way an infinite number of tirnes and arrange that between any two

rernaining points, there is an open interval being rernoved. Then by

theorern 13, the rernaining set is a set horneornorphic to the Cantor

set. Theref ore f rorn a closed interval we can construct infinitely

rrrany diff erent f orrns of generalized Cantor s.lts.

Frorn theorern 6 in section l-2, the Cantor set is of rneasure

zero. We would raise the question: Can a cornpact, totally dis-

connected, perfect subset of R have measure other than zero?

The answer is yes. The following exarnple Z gives us a rnethod of

constructing a generalized Cantor set of arbitrary rrreasure, ard

exarnple 3 gives us a rnethod of constructing a generalized Cantor

set of any rneasure less than the rneasure of the closed interval with

which we begin.

Exarnple Z.

For any real nurnber r > 0, take an arbitrary closed interval

X of rneasure r * I frorn the real line. Rernove frorn X a cen-

tral open interval of rneasure 3-1, and frorn each of the two re-

rnaining parts of X rerrrove again a central open interval of

_)rneasure 3 ". And again frorn the four rernaining parts of X

rernove a central open interval of rneasure 3-3. Continuing in this

way, a sequence of rnutually non-adjacent open intervals which is
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dense in the rernaining set is removed frorn X. By theorern I3,

the rernaining part is a set horneornorphic to the Cantor set. The

lneasure of the part being rernoved is

--1
rzzz
z*? *; *

Hence the rrreasure of the rernaining set is equal

Therefore we can construct a subset of R

such that it is a generalized Cantor set.

to

of

r.

any given rneasure

Exarnple 3.

Let S be a closed interval of rrleasure r and let q be any

I.
real nurnber such that 0 < q < I. Let ^ = fr 

Rernove frorn

S a central open interval of rneasure at. Frorn each of the re-

rnaining parts rernove a central open interval such that their total

.zrneasure is a r. And again frorn each of the four rernaining parts

rerrlove a central open interval such that their total rneasure is 
^3r.

Continuing in this way, a sequence of rnutually non-adjacent open

intervals which is dense in the rernaining set is rernoved frorn S.

By theorern 13, the rernaining set is a set horneornorphic to the

Cantor set. The total fireasure being rernoved is
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ar*6,2y+a3r+ = ft =,*H = (r-q)r

Hence the total rrreasure of the rernaining set is

r-(1-q)r = qr

Therefore we can construct frorn a closed intervalof rneasure r

a generalized Cantor set of Ereasure qr for any 0 < q < l.
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