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Chapter 1: General Introduction

Online video consumption is rising rapidly, and is currently at almost 90 minutes per day
for the average viewer [1]. The Internet landscape is shifting accordingly, with video and
content delivery networks projected to account for 82% and 71% of all Internet traffic by
2021, respectively [2].

Meeting today’s high video demands is made possible not only by advances in network-
ing speeds, but also lossy compression. The H.264 codec, which is the most common video
encoding standard, drastically reduces the volume of transmissible video data while offering
features such as error resiliency in poor network conditions. Chapter 2 of this dissertation
evaluates wireless H.264 video streaming between devices in various challenging wireless
network conditions. Since wireless networks are highly prone to packet losses, our find-
ings demonstrate the importance of performing error concealment in order to reduce video
quality degradation and improve quality of experience (QoE). A common error concealment
technique is spatial motion vector recovery. Chapters 3 and 4 describe Weighted Nearest
Valid Motion Vector Averaging (WNVMVA), which is used to estimate lost motion vectors
based solely on available ones.

On a broader scale, HTTP, due to its ubiquity, has become the de facto mechanism for
video delivery across the Internet. This has led to the state-of-the-art in video streaming,
i.e., HTTP Adaptive Streaming (HAS). The Transmission Control Protocol (TCP), HTTP’s
typical underlying protocol, offers several advantages, most notably reliability. However,
TCP often results in high latency, which leads to rebuffering and poor QoE. On the other
hand the User Datagram Protocol (UDP) is better suited towards low-latency applications,
but its lack of reliability makes it highly prone to packet loss, which leads to degraded video
quality. We proposed a hybrid approach called the Flexible Dual TCP-UDP Streaming
Protocol (FDSP). It combines the reliability of TCP with the low latency characteristics of
UDP. FDSP delivers the more critical parts of the video data via TCP and the rest via UDP.
In addition, Bitstream Prioritization (BP) provides a sliding scale that is used to throttle
the proportion of TCP data based on the level of network congestion. Chapters 5 shows
that FDSP achieves improved latency, lower rebuffering time and less rebuffering instances
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compared to TCP-based streaming, as well lower packet loss than UDP-based streaming.
This is shown on a physical testbed that mimics a client-server model in a video-on-demand
(VoD) service. Chapter 6 then shows FDSP’s improvements to adaptive streaming compared
to HAS in congested networks through higher average bitrate and a more stable client buffer.

The manuscript in chapter 7 succeeds the work in chapters 5 and 6 through an alternative
view of adaptive streaming. Reinforcement learning is used to develop an adaptive streaming
algorithm called qMDP that observes streaming metrics and learns the optimal policy for
maximizing QoE. Unlike other adaptive streaming RL algorithms, qMDP analyzes client
buffer characteristics via queueuing theory in order to develop a more robust reward signal.

The appendices contain manuscripts that show further improvements to FDSP. Since
FDSP operates on one substream at a time, the substream lengths ultimately affect the
quality of the received video. The manuscript in appendix A shows that TCP rebuffering
time decreases as substream lengths increase. However, this also leads to increased rebuffer-
ing instances. , which necessitates finding the optimal substream length for the highest
possible QoE. Meanwhile, appendix B shows that the extent to which UDP and TCP data
streams are overlapped directly affects rebuffering and packet loss. An adaptive scheme is
shown to optimize QoE.
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Chapter 2: Evaluation of Wireless High Definition Video Transmission
using H.264 over WLANs

Many challenges and limitations stand in the way of streaming high resolution video content
over a wireless network. A shift towards the 60-GHz band is taking place in order to accom-
modate for current High Definition streaming demands. However, today’s Wi-Fi networks
are able to provide the necessary bandwidth with the help of compression. In this paper we
evaluate the effectiveness of streaming video over wireless LANs using the H.264 codec. Our
study shows that streaming HD content wirelessly over 802.11n is a viable option. However,
perceptual quality of video is affected by the amount of background traffic and the presence
of interfering nodes, i.e., hidden nodes.

2.1 Introduction

Wireless video transmission is an important technology for consumer electronics, such as digi-
tal television (DTV), mobile multimedia devices (e.g., smartphones, mobile video terminals,
and pad/tablet devices), and video telephony. However, streaming video, especially high
definition (HD) video, over bandwidth limited wireless media poses a significant challenge.
Recently, technologies such as Wireless Home Digital Interface (WHDI) [1] and Wireless
High Definition (WirelessHD) [2] have emerged to allow transmission of uncompressed HD
video. WHDI operates at 5 GHz at a data rate of 3 Gbps with a Non-line-of-sight (NLOS)
range of about 100 feet. On the other hand, WirelessHD operates in the 60 GHz spectrum
at a maximum data rate of 28 Gbps, but requires Line-of-sight (LOS) that limits its range to
about 30 feet. These technologies, referred to as wireless HDMI, are attractive replacements
for HDMI cables.

Alternatively, existing 802.11 networks also make wireless transmission of video possible
with the help of compression, and the ubiquity of such networks allows for a wide range
of consumer applications. However, the question still remains as to how 802.11 fares with
enormous demands of HD video transmission. Full HD video (1080p @60fps) encoded with
H.264 using Main Profile and Level 4.2 can require a data rate of up to 50 Mbps, which may
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stress a typical 802.11g network. Moreover, the crowded WiFi spectrum needs to be shared
with multiple devices within carrier sense range of each other and is prone to interference
from other on-going transmissions due to the hidden node effect. However, the future of
802.11 networks is bright for wireless video transmission as new strides are being made to
increase their bandwidth with efforts such as 802.11ac [3] and the Wireless Gigabit Alliance
(WiGig) [4].

Numerous studies have been performed to analyze video transmission of H.264 over
802.11b [5, 6, 7, 8, 9], 802.11g [10] and 802.11n [11]. Error resilient features of H.264 have
been observed by way of corrupting videos with synthetic packet loss [12, 13, 14, 15]. Studies
have also been performed on the proposed 802.11e standard for QoS [16, 17, 18]. However,
with the exception of [9], which studied Scalable Video Coding (SVC), none of the prior
efforts are based on experimentation of real testbeds. Typically, Network Simulator 2 (NS2)
is the main platform used. In addition, most of these studies (with the exception of [11,
10, 18]) used videos no larger than CIF resolution (352×288), which are not consistent with
current home entertainment demands. There are also 802.11n-based commercial solutions
such Apple’s AirPlay™[19], Intel’s WiDi[20], and Cavium’s WiVu™[21]. However, as with
any commercial products, their measured quality is unknown.

Therefore, this paper presents our evaluation of wireless transmission of HD video over
WLANs using H.264. The evaluation was performed using both a real testbed and simula-
tion. The testbed consisted of three laptops that serve as receivers and a laptop, iPad2, and
iPod Touch as a set of senders. The simulation was carried out using the Open Evaluation
Framework for Multimedia Over Networks (OEFMON) [22], which was developed at Korea
Advanced Institute of Science and Technology (KAIST) and integrates a multimedia module
and a network simulator. The OEFMON tool allows us to not only study networks that are
difficult to create with testbeds, but also facilitates evaluation of perceptual video quality
as well as network performance to provide additional insight into the issues that take place
within the network.

Our study shows that streaming HD content wirelessly over 802.11n is a viable option.
However, perceptual quality of video is affected by the amount of background traffic and
the presence of interfering nodes, (i.e., hidden nodes). The rest of the paper is organized
as follows: Sec. 7.5 presents the experimental study using a testbed. Sec. 2.3 discusses the
simulation study using OEFMON. Finally, Sec. 2.4 concludes the paper and discusses our
future work.
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Table 2.1: Device Specification.

Device Specification

Laptop1∼3 2.4 GHz Intel Core 2 Duo processor
4GB 1067 MHz DDR3 memory

Laptop4 2.5 GHz Intel Core 2 Duo processor
4 GB 667 MHz DDR2 memory

iPad2 1 GHz dual-core A5 Application processor
512 MB memory

iPod 1 GHz A4 Application processor
256 MB memory

2.2 Experimental Study

Our testbed consists of HD video streamed among six mobile devices (four laptops, an iPad2,
and an iPod Touch) connected as an ad hoc network using both 802.11n and 802.11g radios
on channel 9. The specifications for the devices are listed in Table 2.1. The open source
VLC Media Player is run on all devices for streaming and playback [23]. The RTP protocol
is used for streaming and network statistics are gathered using Wireshark [24]. The test
video is a 10-second clip from Battlefield 3 encoded with H.264 (Main Profile, L4.2) at 1080p
@60fps generating an average bitrate of 20 Mbps. This video is representative of current
trends in high-end video entertainment. The trailer is in fact a new video game title that
will soon hit the market.

Our experiments were based on the following three configurations: (1) laptop-to-laptop
stream (L2L), which serves as the primary video stream for the performance study, (2) L2L
with an iPod-to-laptop interference stream (L2L+iPod), and (3) L2L+iPod with a second
iPad-to-laptop interference stream (L2L+iPod+iPad). Note that all video streams are the
same Battlefield clips.

Fig. 2.1 shows the throughput, packet loss ratio (PLR), and luminance peak signal-to-
noise-ratio (Y-PSNR) for both 802.11n and 802.1g from the perspective of the primary video
stream (L2L) for all three configurations. Fig. 2.1a shows throughput for 802.11n, which
closely matches the encoded bitrate of the corresponding video clip for all three configura-
tions. Fig. 2.1b shows throughput for the same configurations in an 802.11g network. These
results show that throughput for the primary video stream suffers with reduced bandwidth
of 802.11g and becomes worse as additional interference streams are added. This can be
explained by the higher maximum transmission rate available in 802.11n, which was con-



7

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

 

 
L2L
L2L+iPod
L2L+iPod+iPad

(a) Throughput for 802.11n.
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(b) Throughput for 802.11g.
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(c) Packet Loss Ratio for 802.11n.
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(d) Packet Loss Ratio for 802.11g.

0 60 120 180 240 300 360 420 480 540 600
0

5

10

15

20

25

30

35

40

Frames

Y−
PS

N
R

 

 
L2L
L2L+iPod
L2L+iPod+iPad

(e) Y-PSNR for 802.11n.
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Figure 2.1: Experimental Results
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sistently at 145 Mbps versus 54 Mbps for 802.11g. This in turn leads to higher packet loss
as shown in Figs. 2.1c and 2.1d, particularly when throughput of the primary video stream
reaches its peak (16% for 802.11n and 35% for 802.11g).

Figs. 2.1e and 2.1f show the quality of the received videos. Both the sent and received
videos are decoded to raw YUV sequences. These graphs clearly indicate the advantage
of using 802.11n for streaming full HD video. Perfect PSNR (the blank segments of the
graph) is observed for large portions of the streamed video with background traffic. No
distortion is observed throughout the entire video for the L2L configuration. In contrast,
major degradation is experienced by the primary video stream for 802.11g, especially when
both the iPod and iPad2 generate additional background traffic. The portions of degraded
video come to an average Y-PSNR of 19.56 dB for the latter case. Note that I-frames occur
at intervals of every 60th frame, as depicted by the dotted lines in the figures, and do have
a role in restoring quality to the primary stream. However, when packet losses are severe as
in the case of 802.11g, this is short-lived and the quality of the video quickly degrades. For
the L2L+iPod+iPad configuration, 69 frames are dropped as opposed to 15 for L2L+iPod
and 9 for L2L alone. Lost frames are replaced by duplication of the previous frame, which
is a typical decoder behavior.

For the most part, PLR shown in Figs. 2.1c and 2.1d coincide well with the reduction
in video quality depicted in Figs. 2.1e and 2.1f, respectively. Increases in PLR cause no-
ticeable degradation in video quality, particularly for the L2L+iPod+iPad case in 802.11g.
However, for the L2L configuration in 802.11n, there is some packet loss but no degradation
in Y-PSNR. This is most likely due to the nature of the video, types of packet losses, miss-
ing packets (i.e. not captured), the error concealment features used in VLC, and as with
any testbed, limitations that prevent precise control over the various parameters. We are
currently investigating these relationships and their effect on video quality.

2.3 Simulation Study

The simulation portion of our evaluation was performed using OEFMON [22]. OEFMON
integrates the DirectShow multimedia framework and the QualNet [25] network simulator,
resulting in a versatile, modular framework for evaluating video quality with respect to
network performance. OEFMON requires three primary inputs. The first input is a YUV
4:2:0 video source. The primary video selected for this study was 300 frames (10 seconds of
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Figure 2.2: Simulated Network Scenarios

1920×1080 @30fps) from the African Cats trailer. The second input is a DirectShow filter
graph, which is used to specify the encoding/transmission/decoding process that the YUV
input file will go through. For this evaluation, the raw input file was encoded using the
MONOGRAM H.264 encoder [26] and then passed to QualNet via the OEFMON QualNet
Connector filter to undergo simulated wireless network transmission. The received packets
are then passed to a decoder (for this evaluation, the CoreAVC decoder [27] was used) and
then saved as a decoded YUV file. The third input is a QualNet network configuration file,
which details node placements, types of communications between nodes, and other various
network settings such as network type and link speed.

Three network configurations were constructed for the purposes of this simulation study.
Configuration 1 represents a typical single source, single destination scenario where one de-
vice streams the primary video to another device via an ad-hoc network. Configuration
2 represents a dual source, dual destination scenario where two videos are being streamed
simultaneously. The primary video is streamed from Device 1 to Device 2, as before, but a
secondary video is streamed from Device 3 to Device 4. The secondary video is a 10 Mbps
of CBR data representing a video encoded at H.264 Level 3.1 (1280×720 @30fps). Configu-
ration 3 repeats the network traffic of Configuration 2, but the nodes are now positioned in
a classical hidden-node arrangement.

Fig. 2.2 shows the placement of devices for all three configurations implemented as ad-
hoc 802.11g (QualNet does not currently support 802.11n) networks with a link speed of 18
Mbps.

Fig. 2.3 shows the performance from the perspective of the primary video stream in terms
of end-to-end delay, throughput, PLR, and Y-PSNR for all three configurations. Fig. 2.3a
shows that there is an increase in delay from Configuration 1 to Configuration 2, and a
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further increase in delay from Configuration 2 to Configuration 3. The former can be
attributed to a significant increase in average time spent by packets in the outbound queue.
This is a direct result of competition to seize the wireless medium between the primary
video stream and the CBR stream. The latter is also due to increased average time spent
by packets in the outbound queue. However, in this case the extra delay is due to increased
packet retransmissions due to ACK timeouts at the MAC layer, caused by packet collisions
resulting from the hidden-node effect.

Fig. 2.3b shows that the throughput for Configuration 1 is the highest among the three
configurations and serves as an indication of the amount of data the video transmission
generates when unconstrained. Fig. 2.3b also shows that in Configurations 2 and 3, the
network is unable to meet the throughput demands of the video source due to severe network
congestion and hidden-node-induced collisions, respectively. Although there are a couple
data points where Configurations 2 and/or 3 appear to achieve a higher throughput than
Configuration 1, this is simply a side effect of the whole-second averaging process used by
OEFMON to generate performance results. When averaged over the entire 10 seconds, the
throughput of Configuration 1 is clearly higher than Configuration 2, which in turn achieves
a higher throughput than Configuration 3.

Fig. 2.3c shows that Configuration 1 exhibited no packet loss while Configuration 2
exhibited minor packet loss during parts of the transmission, sometimes even leading to lost
frames. On the other hand, Configuration 3 resulted in major packet loss. These packet loss
ratio results also relate directly to the throughput results. Figs. 2.3c and 2.3b together clearly
show that the larger the difference between throughput demand and achieved throughput,
the larger the percentage of packets lost. Additional packet losses in Configuration 3 occur
due to hidden-node collisions.

Occasionally, there are no packet losses in the congestion scenario, or even in the hidden-
node scenario. This is a result of the bursty characteristics of CBR traffic generation used
in QualNet. In our simulations, CBR data is generated as a 2500 byte item being sent every
2 ms, which yields an effective bitrate of 10 Mbps. If a 2500 byte item is successfully sent
relatively early within its 2 ms interval, then the primary video stream will have uncontested
use of the wireless medium for the rest of the 2 ms. This is a limitation of using CBR to
represent a second, background video stream.

Fig. 2.3d shows the Y-PSNR results for all three configurations. These results are best
interpreted in terms of packet loss. When Figs. 2.3c and 2.3d are considered together,
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Figure 2.3: Simulation results

there is a direct correlation between packet loss and degradation in user-perceived quality.
For packet loss of 0∼15%, there is a significant decrease in user-perceived quality. Fig. 2.4
shows the received frame 24 for Configurations 1 and 2 (frame 24 for Configuration 3 was
lost entirely and thus not shown). For Configuration 1, this received frame has a Y-PSNR of



12

(a) Configuration 1 (b) Configuration 2

Figure 2.4: Received frame number 24.

37.8 dB, with a corresponding high user-perceived quality. For Configuration 2, this received
frame has a Y-PSNR of 21 dB, with a corresponding low user-perceived quality. The low
quality of this Configuration 2 frame is due to the loss of AC component and motion vector
data for many macro blocks from the previous several frames. The exact PLR values that
lead to entire frames being lost is mostly a function of a specific decoder’s implementation.
For the CoreAVC decoder, our results show that when packet loss is more than 15%, entire
frames are lost. As an example of this relationship, Fig. 2.3d shows that frames 188∼300
are lost for Configuration 3, while in Fig. 2.3c, frames 188∼300 correspond to PLRs that
are consistently above 15%.

2.4 Conclusion and Future Work

The results of our experimental and simulation studies show that, while 802.11g has funda-
mental bandwidth limitations that prevent successful wireless transmission of multiple HD
videos, 802.11n with H.264 continues to be a viable method for wireless streaming of HD
video. This conclusion is supported by the recent increase in popularity of consumer devices
that utilize 802.11n to facilitate wireless video transmission. However, there are still some
situations which can have a diminishing effect on 802.11n’s ability to provide wireless video
content, specifically severe network congestion and hidden-node scenarios.

Our future plan is to continue developing and expanding our wireless video transmission
evaluation toolset, with the goal of researching and evaluating new techniques in error re-
siliency, error concealment, and MAC-layer optimizations, all in order to make H.264 over
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802.11n more robust and efficient.
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Chapter 3: Weighted Nearest Valid Motion Vector Averaging for Spatial
Motion Vector Recovery in Wireless HD Video Transmission using

H.264 over WLANs

High definition (HD) video is the standard of choice for today’s video demands. HD video is
characterized by high data rates, but it can be compressed using H.264 and transmitted over
802.11 wireless networks. However, such networks are prone to packet losses, which result
in degraded perceptual video quality. It is thus important to perform error concealment.
Spatial motion vector recovery is a key error concealment technique. This paper proposes a
new spatial motion vector recovery technique called Weighted Nearest Valid Motion Vector
Averaging (WNVMVA), which uses properly decoded motion vectors to estimate lost ones.

3.1 Introduction

Wireless HD video transmission (WHDVT) is an important technology for mobile devices
and setting up highly customizable systems, such as home entertainment. However, WHDVT
presents many challenges because it is bandwidth-intensive. A full HD video (1080p at 60
fps) compressed using H.264 Main Profile @Level 4.2 would require a data rate of up to
50 Mbps [1]. Currently, 802.11 wireless technology provides a ubiquitous and relatively
inexpensive solution for WHDVT. For example, 802.11n transmits up to 150 Mbps per
stream and up to 600 Mbps for four MIMO streams [2]. However, WHDVT still poses
challenges for 802.11n, especially with multiple streams on the same channel. Moreover,
802.11n transmission is prone to interference from other devices operating at 2.4 GHz or
5 GHz. In spite of these limitations, 802.11 is still very promising and there are on-going
efforts to increase its throughput, i.e. 802.11ac [3]. Also, WiGig [4] is backward compatible
with 802.11, and promises to deliver a maximum data rate of 7 Gbps.

Although lost network packets lead to distorted video, error concealment (EC) can be
used to minimize the perceived visual distortion of received video. EC involves reconstruct-
ing lost video information using received data by utilizing redundancy in the spatial and
temporal domains.
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This paper proposes a new spatial EC technique called Weighted Nearest Valid Motion
Vector Averaging (WNVMVA), which performs motion vector (MV) recovery by exploiting
spatial relationships among valid (i.e., properly received and decoded) MVs. This is different
from existing EC techniques, such as zero MV, mean MV, median MV and last MV, which
utilize estimated MVs in addition to valid ones. This leads to approximation errors and
error propagation due to estimating lost MVs based on previously estimated MVs. The
proposed method reduces these effects by estimating lost MVs based exclusively on valid
MVs. WNVMVA is combined with pre-existing techniques into an aggregate method, which
will be referred to as Competitive MV Recovery (CMVR), to provide multiple candidates
for estimating each lost MV. Our experimental results show that CMVR in many cases
outperforms CMVR without WNVMVA, which is the default EC method in our decoder of
choice FFmpeg [5]. Furthermore, WNVMVA outperforms frame copy, which is very basic yet
is commonly used to conceal slice-based losses in popular media players such as QuickTime
and Windows Media Player.

3.2 Background

This section provides the necessary background to better understand the motivation behind
the proposed method.

3.2.1 H.264

H.264 compression is done via intra-prediction and inter-prediction [1]. Intra-prediction uses
samples (i.e., contiguous groups of pixels) from the current frame as references and results
in intra-macroblocks (I-MBs), which make up I-frames. Inter-prediction uses samples from
past and/or future frames as references and results in P-MBs and B-MBs, which make up P-
and B-frames, respectively. For every block that is to be inter-predicted, motion estimation
is used to search for the best-match block in the previous frame(s). An offset between
the current block and the best-match block is measured. This offset is called a motion
vector (MV). The difference between the actual and inter-predicted block is prediction error.
Both the MV and the prediction error are encoded, which is more efficient than encoding
a complete image block. Sometimes the prediction error is too large for efficient coding,
e.g., complex movement (stretching, contortion, etc.) and when a frame’s contents at the
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(a) Original frame. (b) Corrupted frame
(slices 2 and 4 are
lost).

(c) EC via frame
copy.

(d) Error
propagation 5 frames
later.

Figure 3.1: Portion of original frame vs. corrupted frame (slices 2 and 4 are lost). Poor EC
via frame copy results in error propagation five frames later.

edges lack suitable references in past frames. In these situations, an H.264 encoder performs
intra-coding rather than inter-coding resulting in some I-MBs within both P-frames and
B-frames.

When an MV is lost, its corresponding block cannot be properly decoded. Furthermore,
this usually results in the absence of an accurate reference for a future inter-predicted block.
This degradation process continues until an intra-coded block is encountered. This phe-
nomenon is called error propagation. Therefore, in order to conceal inter-prediction errors
within a particular frame and reduce error propagation, lost MVs need to be estimated.
Spatial MV recovery is a type of EC that estimates lost MVs by inferring from data within
the current frame.

3.2.2 Packet Loss and Its Effect on Video

H.264 data is coded as packets called Network Abstraction Layer (NAL) Units, which readily
adapt well to different networks. Lost packets directly correspond to lost NAL Units and
result in missing slices or parts of slices. A loss of an entire slice may occur due to severe
packet loss or loss of packets containing slice header NAL Units. Figs. 4.3a and 4.3b show
a comparison between part of an original frame and the same frame with slices 2 and 4
missing due to packet losses. A simple form of EC can be performed via frame copy as
shown in Fig. 4.3c, which involves simply copying video data from a previous frame by using
a zero MV for motion compensation. As can be seen, this is not visually sufficient and also
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results in significant error propagation as shown in Fig. 4.3d. Therefore, more accurate EC
techniques are needed, for instance, spatial MV recovery using spatial relationships that
exist among MVs.

3.2.3 Error Concealment Techniques

This section discusses the default H.264 EC techniques found in FFmpeg, the underlying
software of VLC Media Player, which was the media player of choice for our previous work [6].
The FFmpeg H.264 decoder applies EC through spatial mean MV, spatial median MV, last
MV, and zero MV [5]. The Mean MV averages the surrounding MVs to recover a lost MV,
while Median MV uses the median instead. Last MV copies the MV from the same spatial
location of the previous inter-predicted reference frame, while Zero MV, also known as frame
copy, uses a zero-valued MV.

Each EC technique generates an estimated MV and resultant MB. Each estimated MB
is compared against neighboring MBs via a Boundary Matching Algorithm (BMA) that
calculates the total absolute pixel value difference between the edge pixels of the estimated
MB and the adjacent pixels of surrounding MBs. The estimated MB that yields the least
absolute difference is picked as the final estimated MB.

FFmpeg EC is based on available surrounding MVs, which are either properly decoded
or previously lost and estimated. These surrounding MVs will be referred to as MV esti-
mators. Each lost MV is surrounded by a maximum of four orthogonal MV estimators. If
a neighboring MB is intra-coded, then its corresponding MV estimator is set to zero. The
MV estimators are then used to generate mean MV and median MV.

Lost MBs are concealed in a convergent manner as shown in Fig. 4.4, which illustrates
a simplified lost slice scenario. The outer lost MBs are concealed first as they are initially
the only ones with neighboring MBs. This is followed by the next inner row of MBs and
the process is repeated until the whole slice is completely concealed. Also, for each row
of lost MBs, the even-entry MBs are concealed first, followed by the odd-entry MBs. The
even-entry MBs are then re-concealed considering the new MV estimators provided by the
recently concealed odd-entry MBs. Similarly, the odd-entry MBs are then re-concealed.
This is repeated for each row until the estimated MVs do not change through the iterations
or for up to 10 iterations, whichever comes first.
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Figure 3.2: FFmpeg error concealment MB sequence.

3.3 Related Work

Our EC method is spatial in nature and thus orthogonal to temporal methods [7, 8, 9, 10].
Spatial techniques utilize the redundancy provided by surrounding MVs or pixel values for
EC. In the case of using MVs, this may include estimating the lost MV via the median or
mean of surrounding MVs, interpolation of missing MVs using surrounding ones, or some
variation of these. The FFmpeg decoder [5] utilizes mean and median MVs. However, its EC
algorithm tends to default to frame copy or weighted pixel averaging (WPA) [11], depending
on the decoder settings. In WPA, each lost pixel is concealed by using a distance-weighted
average of the four orthogonally closest pixels. WPA is based on the assumption of spatial
continuity and produces blurry distortion.

Although WPA is a common spatial EC technique, it does not utilize MVs. For this
reason it is more suitable for I-frames. In fact, spatial EC methods are commonly applied
towards I-frames while our work is applied towards inter-frames. For instance, Kim et al.
proposed directional interpolation (DI) for damaged MBs based on the prediction modes of
neighboring intra-MBs [12]. Similarly, Nemethova et al. used spatial interpolation with edge
preservation and smoothing based on two or four neighboring blocks relative to the missing
one [13]. Jin-wang et al. combined WPA and DI into an algorithm that adaptively switches
between the two [14]. This not only preserves existing edges but also avoids introduction of
significantly erroneous ones. WPA is also improved in [15], where multi-directional interpo-
lation is used rather than just bilinear interpolation.

Most of the existing work in MV recovery, and EC in general, is limited to sub-HD
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videos, which do not present the challenges associated with HD videos such as high data
rates. Furthermore, packet losses in sub-HD H.264 video often result in whole frame losses
due to low bitrates. However, packet losses in WHDVT often result in partially lost frames,
making it necessary to utilize incomplete frames for EC.

3.4 The Proposed Method

The goal of WNVMVA is to exploit the spatial relationships among MVs by using only valid
MVs, i.e., only properly decoded MVs that are spatially closest to the lost MVs. Note that
MVs could be invalid due to intra-coding or packet loss. The spatially closest valid MVs are
then used to estimate lost MVs. This is in contrast to the default methods, which use both
estimated and valid MVs. By analyzing only valid MVs, a more accurate spatial relationship
among MVs can be exposed.

Fig. 4.5 illustrates WNVMVA, where for each lost MV, one valid MV above (MV1) and
another below (MV2) are initially selected based on the availability of properly decoded
MVs. The distance between MV1/2 and the lost MV is d1/2. Note that the MVs between
the lost MV andMV1/2 are assumed to be invalid because either they are intra-MBs or lost.

The corresponding valid MVs in the horizontal direction are usually unavailable because
lost H.264 visual information stretches across the whole frame as illustrated in Fig. 4.3b.
However, some of the top and/or bottom rows of lost slice regions could start or end in the
middle of a frame, which would result in a limited number of horizontally available valid
MVs. For example, a typical frame in a HD video contains 8 slices and each slice consists of
8 or 9 rows of MBs. If one of these slices is lost and begins or ends in mid-frame, then only
about half a row of lost MVs (less than 10% of the total lost MVs in a slice) would have
horizontally neighboring valid MVs. This attribute is not considered in WNVMVA, but will
be considered as part of our future work. Therefore, WNVMVA assumes that in general
there are no available valid MVs in the horizontal direction from the perspective of a lost
MV.

As shown in Fig. 4.5, once MV1 and MV2 are established, their respective orthogonal
neighboring valid MVs, if available, are then determined. The nearest valid neighbors for
MV1/2 are the left (MV1L/2L), right (MV1R/2R) and the top/bottom (MV1T/2B) neighbors.
Again, any MVs that may exist between MV1, or MV2, and its nearest valid neighbor, are
assumed to be invalid due to intra-coding or packet loss.
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Figure 3.3: MV1 and MV2 and their neighbors are used to estimate the value of the lost
MV via inverse distance weighting.

The orthogonal neighboring valid MVs of MV1 and MV2 provide complimentary spatial
dependence information that is useful in more accurately estimating the lost MV. Further-
more, the left and right neighbors, in particular, account for horizontal spatial dependence
in the absence of valid MVs that horizontally neighbor the lost MV.

An estimate for the lost MV is then computed using MV1 and MV2 and their valid
orthogonal neighbors via inverse distance weighting (IDW), which is an interpolation tech-
nique that estimates unknown values using a weighted average of known values. The weight
of each valid MV is assumed to be inversely proportional to its distance from the lost MV.
The formula for estimating a lost MV based on WNVMVA, MVest, is given as

MVest =

∑
iwiMVi∑
iwi

, i ∈ {1, 1L, 1R, 1T, 2, 2L, 2R, 2B},

where wi = 1
di

and di represents the distance of ith valid MV from the lost MV.
The effectiveness of valid MVs chosen for WNVMVA can be analyzed by spatial auto-
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correlation, which measures the spatial dependence of valid MVs based on their values and
locations. Positive dependence among the valid MVs would justify not only their choice, but
also the IDW formula. This can be calculated using Moran’s I [16], which is an index rang-
ing from -1 (perfect dispersion) to +1 (perfect correlation). Zero values indicate a random
spatial relationship. Moran’s I is defined as

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2
,

where N is the number of valid MV values indexed by i and j according to MB (x, y) coor-
dinates in a frame, Xi/j represents valid MV values (i.e., Xi/j ∈ {MV1,MV1L, · · · ,MV2B}),
X̄ is the mean of X, and wij is an element of an N ×N spatial weights matrix (SWM).

In order to perform Moran’s I analysis, consider the case when all 8 valid MVs are
available. In addition, the supposedly lost MV is also considered as the 9th MV by obtaining
its value from an uncorrupted version of the lossy video. The initial 8 valid MVs will be
tested for spatial dependence relative to the actual value and position of the supposedly lost
MV.

A total of 9 MVs implies that N = 9. Subsequently, the SWM is a 9×9 matrix that
expresses the potential for spatial dependence between two MV values at each i, j loca-
tion [17]. Each of these interactions is represented in the form of a weight. Below is a
general 9×9 SWM. By definition, diagonal elements (wii) are set to zero while the rest (wij)
are distance-based weights. For example, the spatial weight relationship between MV1 and
MV1L is represented by element w12 in the SWM. If these MVs are, for example, five MBs
apart, then w12 = 1

5 .  w11 w12 · · ·w19
w21 w22 · · ·w29
...

...
. . .

...
w91 w92 · · ·w99


Using the SWM, Moran’s I is calculated for each MV x- and y-component with respect

to the nearest valid MVs. This is repeated for the next nearest valid MVs, and so on, for
up to 12 iterations. The same procedure is repeated for default EC (i.e., CMVR without
WNVMVA) using up to four orthogonal neighboring MVs. For each iteration, the average
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Figure 3.4: A comparison between average Moran’s I values for the default method vs.
WNVMVA.

Moran’s I values are plotted against the average distance of neighboring MVs as shown in
Fig. 3.4. The graph shows an analysis of MV x-component values for frame 30 of the X-Games
(gap) test video (see Table 4.1). Similar behavior applies not only for the corresponding
y-component values, but also for the other frames as well as the other test videos.

In the graph, the vertical axes representing Moran’s I values for WNVMVA and the
default method are equally scaled. Thus, it can be seen that WNVMVA exhibits higher
spatial correlation than the default method, even as its values decay. WNVMVA also shows
that the closer the nearest valid MVs, the more spatially correlated they are relative to a
lost MV. In addition, the exponential decay of Moran’s I values for WNVMVA shows that
the closer the nearest valid MVs relative to the lost MV, the more sensitive they are to
spatial correlation. In the future, this could be useful for determining a suitable distance
threshold, e.g., using WNVMVA only if the average distance of valid MV neighbors is 9 MB
units or less. The horizontal axes are scaled differently since MV neighbors corresponding
to WNVMVA and the default method occur in different regions. Valid neighboring MVs
for WNVMVA are assumed to be in adjacent slices or further as shown in Fig. 4.5, whereas
neighboring MVs for the default method are much closer and orthogonally adjacent to the
lost MB.

WNVMVA ignores properly decoded intra-MBs, since they lack MVs, when searching
for valid MVs. In order to investigate the validity of this procedure, additional experiments
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(a) Low1
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(b) Med1
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(c) High1
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(d) Low2
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(e) Med2

6 7 8 9 10 11
20

30

40

50

60

70

Frame number

P
S

N
R

 (
dB

)

 

 

2intW
2int
3intW
3int
4contW
4cont
botW
bot
topW
top
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Figure 3.5: PSNR measurements for 6 test videos with 5 loss scenarios concealed using
CMVR. 2int = 2 intermittent slices, 3int = 3 intermittent slices, 4cont = 4 continuous
slices, top = top slice and bot = bottom slice. The legends appended with W indicate
CMVR with WNVMVA.

were performed by recursively applying WNVMVA. This was done by using WNVMVA to
first estimate MVs for properly decoded intra-MBs encountered while searching for valid
MVs. These estimated MVs were then used as valid MVs for finally applying WNVMVA
towards EC. The corresponding PSNR and visual results showed that recursively applying
WNVMVA to estimate MVs based on estimated ones, as is also done in the default method,
yields worse results that applying WNVMVA just once.
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3.5 Evaluation

3.5.1 Experiment Environment

Table 4.1 summarizes the test videos used in our experiment. There are two videos per speed
level in overall motion – low, medium and high. Each video is about 60 frames long with
five different lossy versions as follows: two intermittent slices (2int), three intermittent slices
(3int), four continuous slices (4cont), top slice (top), and bottom slice (bot). These simulated
losses resemble the effects of actual network losses. The lossy videos are then decoded
and concealed using CMVR, which includes WNVMVA. The decoded results are compared
against their corresponding original uncorrupted versions and their PSNR measurements are
recorded.

3.5.2 Results and Analysis

Fig. 4.7 shows the PSNR comparisons for the six different videos, each with the five different
loss scenarios. For each video, the corrupted frame corresponds to where the PSNR results
decline sharply. These results compare CMVR against the default method (i.e., CMVR
without WNVMVA) for all five loss scenarios. The amount of video degradation is pro-
portional to the number of lost slices as the average PSNR drops in the following order:
top/bot, 2int, 3int, and 4cont. CMVR offers PSNR improvement over the default method
for most cases by 0.5 to 2 dB. Note that PSNR differences are most visually significant when
below 25 dB.

Table 3.2 shows the percentage distribution of the five EC techniques within CMVR and
the four EC techniques within the default method. WNVMVA offers decent improvement
by contributing to approximately 50% of CMVR. This shows that there is a considerable
amount of spatial dependence between lost MVs and surrounding valid MVs.

The visual significance of WNVMVA is shown in Fig. 4.11, which is compared against

Low1 Low2 Med1 Med2 High1 High2
Title Beautiful

Nature
Planet
Earth

African
Cats

X-Games
(skate)

X-Games
(gap)

Motorcross

Bitrate (Mbps) 9.6 9.3 24.5 12.7 10 22.1
fps 29.97 29.97 23.98 23.98 23.98 23.98

Table 3.1: 1080p HD test videos.



26

the default EC techniques by concealing a single corrupted frame (see Fig. 4.3b). Fig. 4.12
shows the visual improvement in error propagation after 10 frames by employing CMVR over
the default method for the 4cont case of Med1. Only a portion of the frame is considered
in order to highlight the differences.

The major exceptions to WNVMVA improvements are some of the 4cont cases (High2,
Med1, and Med2), where CMVR degrades video by up to 2 dB. Note that the top and bot
loss scenarios exhibit minimal degradation and thus do not need extensive EC. The decoder
may choose erroneous WNVMVA-based candidates due to the following two related reasons.
First, the larger the lost slice region, the further apart and less spatially dependent the valid
MVs are, resulting in poor WNVMVA. Second is the limited efficiency of BMA. WNVMVA-
based MVs can end up generating MBs that have better BMA performance within their
immediate surroundings but end up degrading overall video quality.

3.6 Conclusion and Future Work

The future of H.264 HD video over 802.11 wireless networks is bright. However, network
losses necessitate EC, which can be performed through spatial MV recovery by estimation
based on MVs available within the same frame. This paper proposed a new method called
WNVMVA, which captures the spatial dependence among MVs by exclusively analyzing
valid MVs. Our experiment showed that among the multiple candidates in CMVR for

Videos Methods Contribution of Individual EC Technique (%)
Zero
MV

Mean
MV

Median
MV

Last
MV

WNVMVA

Low1 Default 13.6 10.4 14.9 61.1 -
CMVR 2.9 11.9 5.0 34.6 45.6

Low2 Default 13.6 8.3 22.3 55.6 -
CMVR 1.8 6.9 7.8 28.7 54.9

Med1 Default 22.8 8.8 39.0 29.4 -
CMVR 0.9 5.8 18.6 21.9 52.7

Med2 Default 18.2 7.6 29.6 44.5 -
CMVR 3.7 7.5 18.2 23.6 47.0

High1 Default 25.4 11.0 40.6 23.0 -
CMVR 6.0 5.7 25.7 17.6 45.0

High2 Default 23.4 10.8 39.1 26.7 -
CMVR 4.3 5.1 18.6 17.0 54.9

Table 3.2: Percentage distribution of estimated MVs for the default method (Default) and
CMVR (Default + WNVMVA) for six test videos.
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(a) Zero MV (b) Last MV (c) Mean MV

(d) Median MV (e) WNVMVA

Figure 3.6: WNVMVA compared against pre-existing EC techniques (zero MV, last MV,
mean MV and median MV)

estimating lost MVs, WNVMVA was chosen around 50% of the time and provided up to 2
dB in PSNR improvement.

There are a number ways WNVMVA can be improved. For example, since intra-
prediction modes in H.264 are directional gradients potentially related to the direction of lost
MVs, neighboring intra-MBs can be considered by predicting their MVs. Also, even though
the limited number of available horizontal neighboring valid MVs are ignored as explained
in Section 4.4, taking them into account could reveal extra spatial characteristics for MVs
and improve WNVMVA. We also plan to investigate a temporal technique for MV recovery
where estimated MVs can be forecasted using time series analysis. Temporal MV recovery
can in turn supplement spatial MV recovery in a decision algorithm that chooses between
spatial and temporal MV estimates. Alternatively, a unified spatial-temporal realization can
be used.
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(a) Original frame

(b) Default EC

(c) CMVR EC

Figure 3.7: Comparison between the original frame and error propagation 10 frames after
the corrupted frame for the 4cont case of Med1 concealed with both the default method and
CMVR.
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Chapter 4: Spatial Motion Vector Recovery for Wireless HD Video
Transmission over WLANs using Weighted Nearest Valid Motion Vector

Averaging

High definition (HD) and, more recently, 4K video are the standards of choice for today’s
video demands. These video standards are characterized by high data rates, but they can
be compressed using H.264 and transmitted over 802.11 wireless networks. However, such
networks are prone to packet losses, which result in degraded perceptual video quality. The
problem is exacerbated by the ever-growing number of wireless mobile devices. It is thus
important to perform error concealment. Spatial motion vector recovery is a key error
concealment technique. This paper proposes a new spatial motion vector recovery technique
called Weighted Nearest Valid Motion Vector Averaging (WNVMVA), which uses properly
decoded motion vectors to estimate lost ones.

4.1 Introduction

Wireless HD video transmission (WHDVT) over 802.11 is an important technology for di-
rect, peer-to-peer streaming applications, such as screen mirroring for home entertainment
[1] and N-screen services [2, 3]. Recently, a number of technologies have become available for
WHDVT. For example, Google’s Chromecast uses remote control from a mobile device to
pull multimedia content from the Internet [4] and can also perform mirroring between An-
droid devices [5]. Similarly, Intel’s Miracast-based Wireless Display (WiDi) [6] and Apple’s
AirPlay [7] enable multimedia streaming and mirroring between compatible devices.

Despite the availability of these technologies, WHDVT still presents many challenges
because each video stream is bandwidth-intensive and multiple peer-to-peer streams will
have to be simultaneously supported. For example, a full HD video (1080p at 60 fps)
compressed using H.264 Main Profile @Level 4.2 would require a data rate of up to 50
Mbps [8]. For most general-purpose 1080p videos, YouTube recommends at least 8 Mbps [9].
Thus, supporting multiple streams (video or other data) on the same channel would quickly
saturate the network. Moreover, 802.11 transmission is prone to interference from other
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devices operating at 2.4 GHz or 5 GHz. In spite of these limitations, 802.11 is still very
promising. For example, 802.11ac has recently become available and boasts a throughput
of 1.3 Gbps [10]. Also, WiGig promises to deliver a maximum data rate of 7 Gbps and is
backward compatible with 802.11 [11].

Due to the challenges of WHDVT via 802.11, network packet losses are common leading
to distorted video. Nevertheless, error concealment (EC) can be used to minimize the per-
ceived visual distortion of received video. EC involves reconstructing lost video information
by utilizing redundancy and correlation of the received data in the spatial and temporal
domains.

In [12], we presented a new spatial EC technique called Weighted Nearest Valid Motion
Vector Averaging (WNVMVA), which performs motion vector (MV) recovery by exploiting
spatial relationships among valid (i.e., properly received and decoded) MVs. This is different
from existing EC techniques, such as zero MV, mean MV, median MV and last MV, which
utilize estimated MVs in addition to valid ones. This leads to approximation errors and error
propagation due to estimating lost MVs based on previously estimated MVs. WNVMVA was
combined with pre-existing techniques to provide a set of candidates for estimating lost MVs.
Our experimental results show that including the proposed WNVMVA in the EC candidate
system in many cases improves performance. Furthermore, WNVMVA outperforms frame
copy, which is very basic yet is commonly used to conceal slice-based losses in popular media
players such as QuickTime and Windows Media Player. WNVMVA also outperforms other
common spatial EC methods within the MV candidate system.

This paper extends our earlier work on WNVMVA by making the following contributions:

• Two additional methods, directional interpolation [13], which is a pixel-based method,
and polynomial interpolation [14], which a MV-based method, are implemented and
compared against WNVMVA.

• Performance evaluation is significantly expanded to include additional spatial analy-
sis, three additional test videos, and accompanying PSNR calculation and statistical
evaluation.
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4.2 Background

This section provides the necessary background to better understand the motivation behind
the proposed method.

4.2.1 H.264

H.264 compression is done via intra-prediction and inter-prediction [8]. Intra-prediction
uses samples from the current frame as references and results in intra-macroblocks (I-MBs),
which make up I-frames. Inter-prediction uses samples from past frames as well as both
past and future frames as references and results in P-MBs and B-MBs, which make up P-
and B-frames, respectively. For every block that is to be inter-predicted, motion estimation
is used to search for the best-match block in the previous frame(s). This generates a motion
vector (MV) representing a linear offset between the current block and the best-match block.
The pixel difference between the actual (current) and inter-predicted (best-match) block is
the prediction error. Both the MV and the prediction error are encoded, which is more
efficient than encoding a complete image blocks. Sometimes the prediction error is too
large for efficient coding, e.g., complex movement (stretching, contortion, etc.) and when a
frame’s contents at the edges lack suitable references in the past frames. In these situations,
an H.264 encoder performs intra-coding rather than inter-coding resulting in some I-MBs
within both P-frames and B-frames.

When an MV is lost during transmission, its corresponding block cannot be properly
decoded. Furthermore, this usually results in the absence of an accurate reference for a
future inter-predicted block. This degradation process continues until an intra-coded block
is encountered. This phenomenon is called error propagation. Therefore, in order to conceal
inter-prediction errors within a particular frame and reduce error propagation, lost MVs
need to be properly estimated. Spatial MV recovery is a type of EC that estimates lost MVs
by inferring from data within the current frame.

4.2.2 Packet Loss and Its Effect on Video

H.264 data is coded as packets called Network Abstraction Layer (NAL) Units, which struc-
ture the H.264 bitstream into a format compatible with different types of transport networks.
For example, NAL Units are typically packetized via the Real-time Protocol (RTP) Payload
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Format [15]. Fig. 4.1 shows the three different packetization schemes for NAL Units using
this specification.

The RTP Payload Format for H.264 video is robust because more important NAL Units,
such as those containing slice headers, are small enough to fit within individual RTP packets,
e.g., NAL Unit 1 in Fig. 4.1a. Large NAL Units that contain slice data can be fragmented,
such as NAL Unit 3 in Fig. 4.1b. Aggregation of multiple NAL Units, as in NAL Units 4, 5
and 6 in Fig. 4.1c, is also possible. This differs from Transport Stream (TS) packetization,
which is used in legacy MPEG streaming. TS packetization disregards the H.264 NAL Unit
structure and uses fixed-size RTP packets – seven 188-byte TS packets per RTP packet
as shown in Fig. 4.2. A possible, and detrimental, consequence of TS packetization is
fragmentation of a slice header NAL Unit. If a packet containing even just part of a slice
header is lost, then the whole slice is considered lost regardless of how much of the rest ofRTP$Packets$(larger$fonts)$
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(a) Original frame. (b) Corrupted frame
(slices 2 and 4 are
lost).

(c) EC via frame
copy.

(d) Error
propagation 5 frames
later.

Figure 4.3: Portion of original frame vs. corrupted frame (slices 2 and 4 are lost). Poor EC
via frame copy results in error propagation five frames later.

the slice information is properly received.
Aside from slice headers, most NAL Units directly correspond to actual video frame

slices. Therefore, lost packets result in lost NAL Units, which lead to missing slices or parts
of slices. A loss of an entire slice may occur due to severe packet loss or loss of packets
containing slice header NAL Units.

For example, Fig. 4.3a shows part of an original frame and Fig. 4.3b shows the same
frame sample with slices 2 and 4 missing due to packet losses. A simple form of EC is to
perform frame copy as shown in Fig. 4.3c, which involves simply copying video data from a
previous frame by using a zero MV for motion compensation. As can be seen in Fig. 4.3d,
this is not visually sufficient and also results in significant error propagation. Therefore,
more accurate EC techniques are needed.

4.2.3 Error Concealment Techniques

This section discusses the default H.264 EC techniques found in FFmpeg, the underlying soft-
ware of VLC Media Player, which was the media player of choice for our previous work [16].
The FFmpeg H.264 decoder applies EC to each lost MV using orthogonally adjacent MVs,
spatial mean MV, spatial median MV, last MV, and zero MV [17]. The orthogonally adja-
cent MVs consist of Left MV, Right MV, Top MV and Bottom MV. The Mean MV averages
the orthogonally adjacent MVs to recover a lost MV, while Median MV uses the median in-
stead. Last MV copies the MV from the same spatial location of the previous inter-predicted
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Figure 4.4: FFmpeg error concealment MB sequence.

reference frame, while Zero MV, also known as frame copy, uses a zero-valued MV.
Each EC technique generates an estimated MV and resultant MB. Each estimated MB

is compared against neighboring MBs via a Boundary Matching Algorithm (BMA) that
calculates the total absolute pixel value difference between the edge pixels of the estimated
MB and the adjacent pixels of surrounding MBs. The estimated MB that yields the least
absolute difference is picked as the final estimated MB.

FFmpeg EC is based on available surrounding MVs, which are either properly decoded or
lost and thus estimated. These surrounding MVs will be referred to as MV estimators. Each
lost MV is surrounded by a maximum of four orthogonal MV estimators. If a neighboring
MB is intra-coded, then it has no corresponding MV estimator, and thus ignored. The MV
estimators are then used to generate multiple MV candidates.

Lost MBs are concealed in a convergent manner as shown in Fig. 4.4, which illustrates
a simplified lost slice scenario. The outer lost MBs are concealed first as they are initially
the only ones with neighboring MBs. This is followed by the next inner row of MBs and
the process is repeated until the whole slice is completely concealed. Also, for each row
of lost MBs, the even-entry MBs are concealed first, followed by the odd-entry MBs. The
even-entry MBs are then re-concealed considering the new MV estimators provided by the
recently concealed odd-entry MBs. Similarly, the odd-entry MBs are then re-concealed.
This is repeated for each row until the estimated MVs do not change through the iterations
or for up to 10 iterations, whichever comes first.
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4.3 Related Work

EC techniques are categorized as spatial, temporal, or a combination of both. Spatial
techniques utilize correlation between the lost MV and the MVs surrounding the lost MV
within a frame. On the other hand, temporal techniques use information from past and
future frames relative to the current frame.

Temporal EC techniques are used in situations where spatial information is missing, e.g.,
an entire frame is lost. The most basic temporal EC is to recover lost video frames through
frame copy, where the visual contents of the previous frame are copied in place of the lost
frame. This can be improved via motion copy, whereby the co-located MVs are copied
instead [18]. Motion copy can be further improved via the Motion Copy MV refinement
algorithm proposed by Chien et al. [19]. In this method, motion copy MVs (MCMVs) are
initially used to conceal the lost frame. MV differences between previous successive frame
pairs are then calculated. This is then followed by finding the maximum MV difference
(MMVD) between MCMVs in the lost frame and valid MVs in the previous frame for both
the x- and y-components of the MVs. MMVDx and MMVDy are then used to define the x
and y dimensions of a refinement area in which to find new MMVD values. This process
is repeated until the refinement area does not change through the iterations. The MV
difference with the highest occurrence within the final refinement area is then added to the
original MCMVs. Note that the MCMV refinement is used to recover lost frames based on
the assumption that frame sizes are small, i.e, QCIF (176×144), CIF (352×288) and 4CIF
(704×576) resolutions. Thus, each H.264-encoded frame is contained within a single network
packet, and any lost packets would result in lost frames.

In another related work, Yan et al. proposed a method called Hybrid Motion Vector
Extrapolation (HMVE) [20], where the MVs of lost pixels are formed by extrapolating MVs
from the previously decoded frame. For each lost pixel, an estimated MV is formed by
averaging the MVs corresponding to the extrapolated 4×4 block(s) that overlap the lost pixel.
HMVE is also tested on QCIF and CIF video sequences and whole frames are contained
within individual network packets.

Li et al. proposed an entire frame recovery algorithm using MV extrapolation and median
filtering [21]. In this method, candidate MVs are formed for the lost frame by extrapolating
MVs from previous available frames at the 8 × 8 block level. If an estimated 8 × 8 block
in the lost frame has dissimilar candidate MVs, the process is repeated for the same block
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at the 4 × 4 level and, if necessary, at the 2 × 2 level. Any areas without extrapolated
MVs are accounted for via median filtering and linear interpolation. This algorithm is used
to address lost network packets containing whole frames. The accompanying experiments
involve randomly dropping packets containing P-frames at QCIF and CIF resolution. Our
proposed WNVMVA method is spatial in nature and thus orthogonal to temporal methods.
Therefore, it is possible to combine WNVMVA with these temporal EC techniques.

The most basic spatial EC techniques estimate the lost MV based on surrounding MVs.
For example, the FFmpeg decoder utilizes eight interpolation techniques consisting of Left
MV, Right MV, Top MV, Bottom MV, Zero MV, Mean MV, Median MV, and Last MV [17].
However, these methods perform estimations based on both valid and previously estimated
MVs. On the other hand, WNVMVA uses exclusively valid MVs to estimate lost MVs.

As explained in Section 4.2.1, it is possible to have I-MBs within inter-frames (i.e., P-
and B-frames). Therefore, there are also spatial EC methods based on estimating pixel
information, rather than MVs, since I-MBs lack MVs. A common example of such spatial
EC techniques is Weighted Pixel Averaging (WPA) [22], where each lost pixel is concealed
by using a distance-weighted average of the four orthogonally closest pixels. WPA is based
on the assumption of spatial continuity and produces blurry distortion. For this reason it
is more suitable for I-frames. In fact, spatial EC methods are commonly applied towards
I-frames, while our work is applied towards inter-frames.

An example of a spatial EC method geared towards I-frames is Directional Interpolation
(DI) with edge preservation and smoothing [13]. This method performs edge detection
by calculating a gradient field through convolution between a Sobel filter and luminance
values of the boundary pixels surrounding the lost block. The boundary pixels are typically
provided by only the top and left neighboring blocks since lost blocks are recovered in raster
order, thus rendering the bottom and right neighboring ones unavailable. Dominant gradient
directions are then calculated for the top and left boundary pixels. Corresponding partitions
(top and left) are also determined for the lost block. Each pixel in the lost block is then
interpolated along the dominant gradient direction corresponding to the partition in which
it is located. Although spatial in nature, DI does not take advantage of available MVs. Also,
it can be computationally intensive, especially in the context of HD video.

Jin-wang et al. combined WPA and DI into an algorithm that adaptively switches
between the two using a threshold determined by directional entropy [23]. The more similar
the edge directions of surrounding pixels, the lower the directional entropy and the higher
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the likelihood of using DI rather than WPA. This not only preserves existing edges but also
avoids introduction of significantly erroneous ones. WPA is also improved in [24], where
multi-directional interpolation is used rather than just bilinear interpolation. In addition to
traditional WPA, this method performs interpolation based on boundary pixel pairs obtained
from gradient fields produced by applying the Sobel mask as in DI. Like DI, however, these
WPA improvements can be computationally intensive as they are pixel-based operations
and also disregard available MVs. Our proposed method is not only block-based, and thus
less computationally intensive, but it also utilizes available MVs.

In addition to sub-HD video resolution, most of the existing work in EC, especially
spatial EC, only accounts for isolated lost MBs rather than slice-based losses. For instance,
Zheng et al. used Lagrange interpolation [25] and a polynomial model [14] to approximate a
missing MV based on orthogonally adjacent valid (properly decoded) MVs. Similarly, Seth
et al. used a B-spline method to estimate isolated lost MVs via statistical interpolation [26].

Furthermore, network packet losses in WHDVT typically result in loss of partial slices,
whole slices, or multiple slices, rather than isolated lost MBs. Even a single bit error
within an H.264 bitstream, which is variable-length-coded, can result in adverse visual effects
manifested as slice-like losses. In addition, if a slice header, despite its limited size, is lost or
corrupted, the entire slice will be undecodable, thus rendering the slice lost as described in
Section 4.2.2. To address such issues, our proposed WNVMVA conceals slice-based losses.

4.4 The Proposed Method

The goal of WNVMVA is to exploit the spatial relationships among MVs by using only
valid MVs, i.e., properly decoded MVs, that are spatially closest to the lost MVs. Note that
MVs could be invalid due to intra-coding or packet loss. The spatially closest valid MVs are
then used to estimate lost MVs. This is in contrast to the existing methods, which use both
estimated and valid MVs. By analyzing only valid MVs, a more accurate spatial relationship
among MVs can be exposed.

Since not all MBs contain MVs, the number and location of valid MVs for estimating
each lost MV vary with the distribution of the valid MVs around a lost region. Furthermore,
the unified distribution of both valid and lost MVs is unknown. Therefore, nonparametric
regression is used to estimate lost MVs. A simple machine learning algorithm for implement-
ing nonparametric regression is k-nearest neighbors (k-NN).The k-NN algorithm determines
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Figure 4.5: MV1 and MV2 and their neighbors are used to estimate the value of the lost
MV via inverse distance weighting.

the number and location of valid MVs for estimating each lost MV. Ideally, this can be
reiterated for each lost MV. However, this would be too computationally expensive. There-
fore, using offline analysis, the optimal number of k neighboring valid MVs per lost MV is
determined relative to the distribution of valid MVs.

Fig. 4.5 illustrates WNVMVA, where for each lost MV, one valid MV above (MV1) and
another below (MV2) are initially selected based on the availability of properly decoded
MVs. The distance between MV1/2 and the lost MV is d1/2. Note that the MVs between
the lost MV and MV1/2 are assumed to be invalid because either the MVs are lost or they
are intra-MBs.

The corresponding valid MVs in the horizontal direction are usually unavailable because
lost H.264 visual information stretches across the whole frame as illustrated in Fig. 4.3b.
However, some of the top and/or bottom rows of lost slice regions could start or end in the
middle of a frame, which would result in a limited number of horizontally available valid
MVs. For example, a typical frame in a HD video contains 8 slices and each slice consists



40

of 8 to 9 rows of MBs. If one of these slices is lost and it begins or ends in mid-frame, then
only about half a row of lost MVs (less than 10% of the total lost MVs in a slice) would have
horizontally neighboring valid MVs. However, WNVMVA assumes that, in general, there
are no available valid MVs in the horizontal direction from the perspective of a lost MV.

As shown in Fig. 4.5, once MV1 and MV2 are established, their respective orthogonal
neighboring valid MVs, if available, are then determined. The nearest valid neighbors for
MV1/2 are the left (MV1L/2L), the right (MV1R/2R) and the top/bottom (MV1T/2B) neigh-
bors. Again, any MVs that may exist betweenMV1, orMV2, and its nearest valid neighbor,
are assumed to be invalid due to intra-coding or packet loss.

The orthogonal neighboring valid MVs of MV1 and MV2 provide complimentary spatial
dependence information that is useful in more accurately estimating the lost MV. Further-
more, the left and right neighbors, in particular, account for horizontal spatial dependence
in the absence of valid MVs that horizontally neighbor the lost MV.

An estimate for the lost MV is then computed using MV1 and MV2 and their valid
orthogonal neighbors via inverse distance weighting (IDW), which is an interpolation tech-
nique that estimates unknown values using a weighted average of known values. The weight
of each valid MV is assumed to be inversely proportional to its distance from the lost MV.
The formula for estimating a lost MV based on WNVMVA, MVest, is given as

MVest =

∑
iwiMVi∑
iwi

, i ∈ {1, 1L, 1R, 1T, 2, 2L, 2R, 2B},

where wi = 1
di

and di represents the distance of ith valid MV from the lost MV.
The effectiveness of the configuration of valid MVs chosen as MV estimators for WN-

VMVA (see Fig. 4.5) can be measured and analyzed using spatial autocorrelation statistics.
This is shown to be superior to the corresponding results for the orthogonal arrangement of
MV estimators as seen in existing methods. Such statistical analysis can achieved through
Moran’s I, which is a measure of the dependence among spatial units based on their values
and locations simultaneously [27]. Moran’s I calculations are done for each MV, yielding
values that range between -1 and +1, i.e., perfect dispersion and perfect correlation respec-
tively. Perfect correlation means that the MV being analyzed is completely dependent on its
neighbors. A simple example of this would be if the MV being analyzed and its neighbors are
all identical. On the other hand, perfect dispersion implies that the MV in question behaves
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in direct opposition to its neighbors, e.g., if its value is very small while its neighbors are
very large or vice versa. A zero value indicates no correlation and thus a random spatial
relationship.

Moran’s I is defined as

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Xi − X̄)(Xj − X̄)∑

i(Xi − X̄)2
,

where N is the number of valid MV values indexed by i and j according to MB (x, y) coor-
dinates in a frame, Xi/j represents valid MV values (i.e., Xi/j ∈ {MV1,MV1L, · · · ,MV2B}),
X̄ is the mean of X, and wij is an element of an N × N spatial weights matrix (SWM).
Each SWM element (i, j) expresses the potential for spatial dependence between a pair of
MV values. Each of these interactions is represented in the form of a numerical weight.

For the sake of describing Moran’s I analysis for WNVMVA, consider the case when all
8 valid neighboring MVs are available as shown in Fig. 4.5. In addition, the supposedly lost
MV is also considered as the 9th MV by obtaining its value from an uncorrupted version of
the lossy video. The initial 8 valid MVs will be tested for spatial dependence relative to the
actual value and position of the supposedly lost MV. Note that, in practice, it is possible to
perform the analysis with less than 8 neighboring MVs.

A total of 9 MVs implies that N = 9. Subsequently, the SWM is a 9×9 matrix such as
the one shown below. By definition, diagonal elements (wii) are set to zero while the rest
(wij) are distance-based weights. For example, the spatial weight relationship betweenMV1

and MV1L is represented by element w12 in the SWM. If these MVs are, for example, five
MBs apart, then w12 = 1

5 . 
w11 w12 · · · w19
w21 w22 · · · w29

...
...

. . .
...

w91 w92 · · · w99


Using the SWM, Moran’s I is calculated for each MV x- and y-component with respect

to the nearest valid MVs. This is repeated for the next nearest valid MVs, and so on, for
up to 12 iterations. As a comparison, the same procedure is repeated for the default EC
method, where there are up to four orthogonal neighboring MVs per MV to be analyzed.

For each iteration, the average Moran’s I values are plotted against the average distance
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Figure 4.6: A comparison between average Moran’s I values for the default method vs.
WNVMVA.

of neighboring MVs as shown in Fig. 4.6a. The graph shows an analysis of MV x-component
values for frame 30 of the X-Games (gap) test video (see Table 4.1). Similar behavior applies
not only for the corresponding y-component values, but also for the other frames as well as
the other test videos. This can be inferred from Fig. 4.6b, which shows the average Moran’s
I analysis for multiple videos and multiple frames for both x and y MV components.

Each graph shows that WNVMVA exhibits higher spatial correlation compared to the
default method, even with increasing average distance of neighboring MVs. This means
that the configuration of MV estimators for WNVMVA is more spatially dependent than
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Low1 Low2 Low3 Med1 Med2 Med3 High1 High2 High3

Title Beautiful
Nature

Planet
Earth

Alpine African
Cats

X-Games
(skate)

BMX
(pipe)

X-Games
(gap)

MotorX BMX
(gap)

Bitrate
(Mbps)

9.6 9.3 3.8 24.5 12.7 12.4 10 22.1 13.6

fps 29.97 29.97 29.97 23.98 23.98 23.98 23.98 23.98 23.98

Table 4.1: 1080p HD test videos.

the orthogonal arrangement seen in the default method. The graphs also show that in the
case of WNVMVA, the closer the nearest valid MVs, the more spatially correlated they are
relative to a lost MV. This is further supported by the exponential decay of the graphs.

The range of x-values for WNVMVA is offset from that for the default method because
valid neighboring MVs for WNVMVA are in adjacent slices as shown in Fig. 4.5, whereas
neighboring MVs for the default method are much closer and orthogonally adjacent to the
lost MB. The Moran’s I values for the default method are close to 0 because of the presence
of one or more intra-coded MBs orthogonally adjacent to a lost MB, which effectively reduces
the average spatial correlation.

4.5 Evaluation

4.5.1 Experiment Environment

Table 4.1 summarizes the test videos used in our experiment. There are three videos per
motion level – low, medium, and high. Each test video is 60 frames long and contains the
frame sequence IPPPP... For each video, the 7th frame is corrupted using five different
loss scenarios as follows: two intermittent slices (2int), three intermittent slices (3int), four
continuous slices (4cont), top slice (top), and bottom slice (bot). These simulated losses re-
semble the effects of actual network losses. The lossy videos are then decoded and concealed
using three EC candidate systems. The first is the default method used by FFmpeg (De-
fault), which consists of Zero MV, Left MV, Right MV, Top MV, Bottom MV, Mean MV,
Median, MV, and Last MV. The second is the default method together with WNVMVA (De-
fault+WNVMVA). The third candidate system (Default+WNVMVA+PI+DI ) adds polyno-
mial interpolation (PI) [14] and edge-preserving directional interpolation (DI) [13] to De-
fault+WNVMVA. This provides further evaluation of WNVMVA because PI and DI (and
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(b) Low2
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(c) Low3
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(d) Med1
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(e) Med2
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(f) Med3
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(g) High1

6 7 8 9 10 11
20

30

40

50

60

70

Frame number

P
S

N
R

 (
dB

)

 

 

2intW
2int
3intW
3int
4contW
4cont
botW
bot
topW
top

(h) High2
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Figure 4.7: PSNR measurements for 6 test videos with 5 loss scenarios concealed using
Default and Default+WNVMVA. 2int = 2 intermittent slices, 3int = 3 intermittent slices,
4cont = 4 continuous slices, top = top slice and bot = bottom slice. The legends appended
with W indicate Default+WNVMVA
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their variants) are popular spatial EC methods, which perform interpolation of MVs and
pixel values respectively. The decoded results are compared against their corresponding
original uncorrupted versions and their PSNR measurements are recorded.

Due to the lack of neighboring valid MVs in the horizontal direction, their estimated
versions were incorporated into WNVMVA calculations for evaluation purposes. These es-
timated horizontally neighboring MVs were produced by the Default methods as described
in Section 4.2.3. However, this produced negligible improvement in both PSNR and per-
ceptual quality at the expense of significantly higher computation complexity. Therefore,
horizontally neighboring MVs were ignored altogether.

Additional experiments were performed in order to investigate the validity of ignoring
properly decoded intra-MBs when searching for valid MVs during WNVMVA calculations.
This was done by applying WNVMVA recursively as follows. First, WNVMVA was used
to estimate pseudo-MVs for the ignored intra-MBs as if these intra-MBs were lost MBs.
The pseudo-MVs were then used as part of the nearest valid MV set for finally applying
WNVMVA towards EC. The corresponding PSNR and visual results showed that recursively
applying WNVMVA to estimate MVs based on estimated ones yields worse results than
applying WNVMVA just once. Therefore, it is better to ignore intra-MBs when searching
for valid MVs.

4.5.2 Results and Analysis

(a) Frame copy (b) Default+WNVMVA

Figure 4.8: Error concealment comparison for Low1 using (a) Frame copy and (b) De-
fault+WNVMVA
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Table. 4.2 shows the average PSNR values, including the corrupted frame and 5 subse-
quent frames. The results are reported for the nine different test videos, each with the five
different loss scenarios. Fig. 4.7 shows the corresponding graphical comparison. For each
video, the corrupted frame (i.e., frame 7) corresponds to where the PSNR results degrade
sharply. These results compare Default against Default+WNVMVA for all five loss scenarios.
The amount of video degradation is proportional to the number of lost slices as the aver-
age PSNR drops in the following order: top/bot, 2int, 3int, and 4cont. Default+WNVMVA
offers PSNR improvement over Default for most cases by 0.5 to 2 dB. Although the improve-
ment appears to be small, PSNR differences are most visually significant when they occur
below about 35 dB. This is due to the logarithmic nature of the dB scale. In fact, even larger
PSNR differences higher up on the dB scale do not exhibit any significant visual difference.
For example, Fig. 4.8 shows an EC comparison between frame copy and Default+WNVMVA
for the 4cont case of Low1. The results are virtually indistinguishable despite the PSNR
result for Default+WNVMVA being 1 dB higher than Default as shown in Fig. 4.7a. This
PSNR difference occurs above the 40-dB mark.

The results in Fig. 4.8 also show that simple frame copy provides sufficient EC for low
motion video. This is because low motion results in small changes through successive frames,
which in turn result in minimal MV differences.

Fig. 4.7 shows that the top/bot loss scenarios exhibit the best PSNR results. This is be-
cause these scenarios are limited to just single-slice losses resulting in the lowest degradation.
Furthermore, the PSNR differences between Default and Default+WNVMVA occur above
the 35-dB mark thus resulting in minimal corresponding visual differences. This is true even
when Default outperforms Default+WNVMVA, e.g., in High2 as shown in Fig. 4.7h (PSNR)
and Fig. 4.9 (visual).

On the other hand, the 4cont loss scenario results in the worst PSNR performance.
This is because 4cont leads to the largest number of lost slices, i.e. four, which are also
contiguous. The four-slice gap diminishes the spatial relationship between valid MVs above
and below the lost slices, thus reducing the effectiveness of WNVMVA. In fact, the worst
PSNR performance below the 35 dB mark can be found in the 4cont cases for Med2 and
High1. In spite of these shortcomings, Default+WNVMVA shows PSNR improvement over
Default for most cases.

In contrast to 4cont, the 2int and 3int loss scenarios result in intermittent lost slices,
where there is only a one-slice gap between valid slices, and thus spatial correlation between
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Video Method Loss Scenario

top bot 2int 3int 4cont

Low1 Default 53.28 63.52 45.28 44.41 40.22
Default+WNVMVA 53.30 63.52 45.58 44.56 41.49

Low2 Default 49.97 57.73 42.40 41.61 37.34
Default+WNVMVA 49.97 57.73 42.85 41.90 38.79

Low3 Default 39.51 40.93 38.81 37.59 33.26
Default+WNVMVA 39.38 39.13 38.41 37.27 33.56

Med1 Default 44.34 42.62 29.73 29.43 19.61
Default+WNVMVA 43.77 42.37 30.85 30.47 19.61

Med2 Default 43.06 37.91 30.16 29.81 22.74
Default+WNVMVA 43.17 37.89 30.27 29.90 22.12

Med3 Default 54.85 36.27 33.75 31.35 28.18
Default+WNVMVA 54.29 36.33 33.65 31.34 27.75

High1 Default 49.62 32.34 30.76 30.05 26.19
Default+WNVMVA 46.62 31.60 31.76 30.93 25.28

High2 Default 34.52 37.31 28.48 28.02 23.83
Default+WNVMVA 33.07 33.29 29.68 29.16 24.18

High3 Default 47.10 35.92 29.34 29.24 24.64
Default+WNVMVA 47.41 33.79 28.79 28.53 24.20

Table 4.2: Average PSNR (dB) values for each test sequence including corrupted frame and
5 frames later.

valid MVs is improved. Subsequently, the corresponding PSNR performance is better. For
all intermittent loss cases, except for High3, Default+WNVMVA is better than Default.
Isolated situations such as poor PSNR performance in High3 occur when the original lost
slices have smaller and less visually significant portions, which happen to be responsible for
the bulk of the poor PSNR performance. These portions mostly include intra-coded MBs,
which are detrimental towards MV spatial correlation.

For example, Fig. 4.10 shows the MB energy map for the original version of the corrupted
frame in High3. The MBs with higher amounts of data are brighter, i.e., have more energy,
and are mostly intra-coded. Such MBs can be found in the highlighted area of slice 4, which
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represents less than 12% of the slice. Considering the 3int case for High3, where slices 2, 4
and 6 are lost, the PSNR of just the highlighted area of slice 4 for Default is 23.6 dB while
the corresponding PSNR for Default+WNVMVA is 23.4 dB. However, the PSNR values for
the rest of the slice, which is more visually significant, are 25 dB and 25.4 dB respectively.

(a) Default (b) Default+WNVMVA

Figure 4.9: Error concealment comparison for top slice loss in High2 using (a) Default and
(b) Default+WNVMVA

In conclusion, Default+WNVMVA works best for cases with intermittent lost slices (2int
and 3int) as opposed to continuous lost slices (4cont) due to the relative differences in spatial
MV correlation. In addition, the effect of Default+WNVMVA on top/bot cases relative to
Default is similar to EC in low motion video, where more complex EC techniques are not
necessary.

Tables 4.3, 4.4, and 4.5 show the percentage distribution of the EC techniques for the
three MV candidate systems for 4cont, 3int, and 2int loss scenarios, respectively. The top
and bottom slice loss scenarios are not included as there is no noticeable visual improvement
by applying more sophisticated EC methods for these scenarios. These results show that
WNVMVA offers significant improvement by contributing to approximately 10 to 20% in
most cases. As a result, the impact of individual Default techniques is reduced in favor of
WNVMVA. This shows that there is a considerable amount of spatial dependence between
lost MVs and surrounding valid MVs. Furthermore, this trend continues when WNVMVA is
further evaluated by including PI and DI. However, the effectiveness of WNVMVA is slightly
reduced in Default+WNVMVA+PI+DI. This is because PI and DI create candidates that
favor the choice of default EC techniques, especially Last MV. Nonetheless, PI and DI are
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Figure 4.10: Heat map of MB sizes in the original version of the corrupted frame in High3.
Brighter MBs are larger and thus more likely to be intra-coded. The high-energy region in
slice 4 is highlighted and labeled X.

not used in the final EC scheme and they also contribute only approximately 0% (very few
instances) to the candidate system and are thus not as effective as WNVMVA.

The visual significance of WNVMVA is shown in Fig. 4.11, which is compared against
the default EC techniques by concealing a single corrupted frame shown in Fig. 4.3b. In
addition, Fig. 4.12 shows the visual improvement in error propagation after 10 frames by
employing Default+WNVMVA (Fig. 4.12e) over Default (Fig. 4.12b) for the 4cont case of
Med1. Only a portion of the frame is shown in order to highlight the differences. In further
experiments, PI and DI were individually substituted in place of WNVMVA as shown in
Figs. 4.12c and 4.12d. The resultant visual results are inferior to Default+WNVMVA, which
provides the best visual result.

The decoder may choose erroneous WNVMVA-based candidates due to the following two
related reasons. First, the larger the lost slice region, the further apart and less spatially
dependent the valid MVs are, resulting in poor WNVMVA. Second is the limited efficiency
of BMA. WNVMVA-based MVs can end up generating MBs that have better BMA perfor-
mance within their immediate surroundings but end up degrading overall video quality.

4.6 Conclusion and Future Work

The future of H.264 HD video over 802.11 wireless networks is bright. However, network
losses necessitate EC, which can be performed through spatial MV recovery by estimation
based on MVs available within the same frame. This paper proposed a new method called
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(a) Surrounding MVs (b) Zero MV (c) Last MV

(d) Mean MV (e) Median MV (f) WNVMVA

Figure 4.11: WNVMVA compared against pre-existing EC techniques (surrounding MVs,
zero MV, last MV, mean MV and median MV)
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(a) Original frame (b) Default

(c) Default+PI (d) Default+DI

(e) Default+WNVMVA

Figure 4.12: Comparison between (a) the original frame and error propagation 10 frames
after the corrupted frame for the 4cont case of Med1 concealed with (b) Default, (c) De-
fault+PI, (d) Default+DI, and (e) Default+WNVMVA.
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WNVMVA, which captures the spatial dependence among MVs by exclusively analyzing
valid MVs. Our experiment showed that among the multiple candidates in CMVR for
estimating lost MVs, WNVMVA was chosen about 10 to 20% of the time and provided up
to 2 dB in PSNR improvement compared to common spatial EC techniques.

There are a number ways WNVMVA can be improved. For example, since intra-
prediction modes in H.264 are directional gradients potentially related to the direction of
lost MVs, neighboring intra-MBs can be considered by predicting their MVs. We also plan
to investigate a temporal technique for MV recovery where estimated MVs can be forecasted
using time series analysis. Temporal MV recovery can in turn supplement spatial MV re-
covery in a decision algorithm that chooses between spatial and temporal MV estimates.
Alternatively, a unified spatial-temporal realization can be used.
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Chapter 5: Experimental Study of Low-Latency HD VoD Streaming
using Flexible Dual TCP-UDP Streaming Protocol

The Flexible Dual TCP-UDP Streaming Protocol (FDSP) combines the reliability of TCP
with the low latency characteristics of UDP. FDSP delivers the more critical parts of the
video data via TCP and the rest via UDP. Bitstream Prioritization (BP) is a sliding scale
that is used to determine the amount of TCP data that is to be sent. BP can be adjusted
according to the level of network congestion. FDSP-based streaming achieves lower rebuffer-
ing time and less rebuffering instances than TCP-based streaming as well lower packet loss
than UDP-based streaming. Our implementation and experiments on a real testbed shows
that FDSP with BP delivers high quality, low-latency video, which is especially suitable for
live video and subscription-based video.

5.1 Introduction

Global Internet traffic is projected to increase nearly threefold until 2021, with video ac-
counting for 82% of the total traffic [1]. Currently, consumer video is dominated by High
Definition (HD), but higher resolutions such as 4K are gaining mainstream popularity [2].
Furthermore, there is an increasing number of video-capable devices and platforms being
added globally everyday. For instance, the current 2 billion LTE subscribers are expected to
double by 2021 [3]. Together, these factors will continue to increase global network conges-
tion and pose even greater challenges to seamlessly delivering video at HD resolution and
beyond.

This situation is further exacerbated by the unicast delivery model in major Video on
Demand (VoD) services such as Netflix, Hulu, and Amazon Video, where each client requests
video directly from a server. Therefore, as more clients connect to the server, the bandwidth
requirements grow rapidly. VoD content providers have mitigated increased bandwidth
demands by decentralizing their infrastructure through Content Delivery Networks (CDNs),
which brings proxy servers closer to the end-user.

Another major development in managing VoD network resources is HTTP Adaptive
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Streaming (HAS). In HAS, the client requests video from a selection of multiple quality
versions based on its perceived network conditions. Several HAS implementations exist,
including proprietary ones such as Microsoft Smooth Streaming (MSS) [4], Adobe HTTP
Dynamic Streaming [5], Apple’s HTTP Live Streaming (HLS) [6], and the open-source
standard, Dynamic Adaptive Streaming over HTTP (DASH) [7].

However, even the combination of HAS and CDNs is challenged by extremely large audi-
ences, resulting in high bandwidth requirements for Internet video content providers. This
is especially the case for live video streaming for events such as sports (e.g., the Olympics
and the World Cup) and presidential debates. Furthermore, HAS suffers from high latency
– often 20 seconds or more [8]. This is because two or more substreams, typically 10 sec-
onds each, need to be buffered prior to playout. Such initial startup delay is acceptable for
pre-recorded content (e.g., movies) as this maximizes the client’s video quality with reduced
rebuffering. However, the latency for live events needs to be minimized. Low latency is
also required for subscription-based live video services such as Internet Protocol television
(IPTV). When a client switches between different channels of streaming video, the tran-
sition needs to be as close as possible to traditional broadcast television, with hardly any
noticeable delay.

The Transmission Control Protocol (TCP) is the transport layer protocol used in HAS.
When outstanding packets are acknowledged by the receiver, TCP additively increases the
transmission rate of the sender by a constant amount. On the other hand, when acknowl-
edgments are lost due to congestion, the sender retransmits the lost packets and halves
the transmission rate. This is detrimental towards meeting playout deadlines for achieving
low-latency video streaming. The User Datagram Protocol (UDP) is better suited for low-
latency applications compared to TCP. As a result, there have been hybridization efforts
at the transport layer in order to combine the reliability of TCP with the low latency of
UDP, pioneered by Reliable UDP [9] and culminating in the more advanced Quick UDP
Internet Connections (QUIC) [10]. However, QUIC has been shown to have higher protocol
overhead than TCP at low bitrates [11]. UDP has also been useful from an infrastructural
point-of-view by supplementing CDNs with UDP-based peer-to-peer (P2P) networks [12,
13].

Based on the aforementioned discussion, the objective of this paper is to show that low-
latency VoD streaming can be achieved using a hybrid streaming protocol called Flexible
Dual Streaming Protocol (FDSP). Our previous work showed that FDSP is suitable for
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improving direct device-to-device streaming using simulation studies [14, 15, 16]. In this
paper, FDSP is tailored for a physical testbed with network emulation for a VoD streaming
environment. Our findings show that FDSP-based streaming achieves lower latency than
pure-TCP-based streaming while having less packet loss than pure-UDP-based streaming.

5.2 Related Work

HAS is the most popular streaming mechanism for delivering Internet video today. For this
reason, there has been research and development in trying to reduce the latency that is
caused by video segmentation. A client maintains a video buffer of two or more segments of
typically 10 seconds each [6, 17], which results in latency of 20 seconds or more. Reducing
the segment size to just a few seconds can reduce the size of a client’s playout buffer, which
in turn reduces latency. However, this increases the total number of segments and, therefore,
the number of HTTP requests that the client sends to the server in order to retrieve the
video segments. These requests use precious bandwidth at a rate of one round-trip time
(RTT) per video segment. For instance, a client that requests 2-second video segments on a
network path with an RTT delay of 300 ms will experience 300 ms of additional delay every 2
seconds. In [18], Swaminathan et al. use HTTP chunked encoding to disrupt this correlation
between live latency and segment duration by using partial HTTP responses. However, the
persistent connections that are needed for chunked encoding transfer are prone to timeout
issues and security concerns such as injection attacks and denial-of-service attacks [19]. Al-
ternatively, HTTP/2 provides server push mechanisms such that the client receives multiple
video segments per request [20, 21, 22]. However, HTTP/2 is not as widely available as
legacy HTTP. HTTP/2 only has 15% worldwide deployment and, at a current growth rate
of 5% additional coverage every year, it has a long way to go before becoming a widely
recognized standard [23].

Other improvements in reducing video latency include modifications to the transport
layer. For instance, Chakareski et al. used multiple TCP connections in conjunction with
Scalable Video Coding (SVC) [24]. More important packets were transmitted via better
quality TCP connections and were, therefore, less prone to retransmissions. While this
method addresses delay within the transport layer, there is still significant delay in the
application layer due to the typical video segment sizes in HAS. On the other hand, Houze
et al. proposed a multi-path TCP streaming scheme based on the application layer, where
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larger video frames were subdivided based on media container formats [25]. They were then
transmitted across two concurrent TCP connections and reassembled by the client. However,
this method uses HTTP chunked encoding.

Peer-to-peer (P2P) networks have been used to supplement CDNs and help content
providers save on deployment and maintenance costs [26]. This also reduces HTTP re-
quests made to CDN servers thus lowering the latency for live streaming [27, 28]. In fact,
CDN caching increases delay by 15-30 seconds [29]. CDN-P2P architectures have been
commercialized for some time now by global CDN companies such as ChinaCache [12] and
Akamai [13]. These hybrid architectures primarily rely on CDNs for HTTP-based retrieval
of initial or critical video segments while using P2P networks for bandwidth relief or for
retrieving future segments. Even though the P2P networks are UDP-based, standardized
NAT/firewall traversal for UDP-based transmission is gaining traction primarily through
WebRTC [30], which is a collection of protocols and browser APIs.

This paper shows that FDSP-based streaming achieves much lower latency compared
to HTTP-based streaming at comparable video quality levels. Our study also shows that
FDSP transmission results in lower packet loss compared to UDP-based streaming, even in
congested networks. Furthermore, FDSP is orthogonal to adaptive streaming and can thus
be used as a transport protocol for today’s segment-based video delivery systems.

5.3 FDSP Overview

This section provides an overview of FDSP, including its architectural features and video
streaming using substreams. For more details, see [14], [15] and [16]. FDSP is a hybrid
streaming protocol that combines the reliability of TCP with the low latency characteristics
of UDP. Figure A.3 shows the FDSP architecture consisting of a server and a client.

At the server, the H.264 Syntax Parser processes video data in order to detect critical
H.264 video syntax elements (i.e., Sequence Parameter Set (SPS), Picture Parameter Set
(PPS), and slice headers). The MPEG-TS Packetizer within the Demultiplexer (DEMUX)
then encapsulates all the data according to the RTP MPEG-TS specification. The DEMUX
then directs the packets containing critical data to a TCP socket and the rest to a UDP socket
as Dual Tunneling keeps both TCP and UDP sessions simultaneously active during video
streaming. The BP Selection module sets the Bitstream Prioritization (BP) parameter,
which is a percentage of I-frame data that is to be sent via TCP in addition to the original
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Figure 5.1: Flexible Dual TCP-UDP Streaming Protocol (FDSP) Architecture [14].

critical data. At the client, the Multiplexer (MUX) sorts TCP and UDP packets based
on their RTP timestamps. This reordering is essential for the H.264 Decoder to decode
incoming data correctly.

When a stream is initiated, the FDSP server transmits the packets for the first 10-
second substream. All the TCP packets for this substream must be received (i.e., buffered)
before playback begins. This startup delay (Tinit) is low since only the TCP portion of the
data is sent rather than the whole 10 seconds of video. In order to minimize rebuffering,
the TCP packets for the next substream are sent at the same time as the UDP packets
for the current substream through a process called substream overlapping as illustrated in
Figure A.4. Substream overlapping is repeated throughout the duration of the stream.
However, when playback for a particular substream is complete and the TCP packets for
the upcoming substream are not yet all available, the client has to wait thus causing a
rebuffering instance. The playout deadline for all subsequent packets is then incremented
by the rebuffering time.
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Figure 5.3: Experiment testbed.

5.4 Experiment Setup

Our experimental testbed is shown in Figure 6.3, which consists of a client-server pair and
a traffic controller. The client-server pair is running VLC Media Player [31] on Mac OS X.
The following modifications were made to integrate FDSP with BP into VLC:

1. Simultaneous streaming via UDP and TCP protocols.

2. Parsing H.264 video data at the server and subdividing it into TCP-bound and UDP-
bound elements.

3. Reordering TCP and UDP packets and reconstructing the H.264 bitstream at the
client prior to decoding.

The traffic controller, running on CentOS, connects the server to the client via a network
bridge across interfaces eth2 and eth3, respectively. The Linux traffic control (tc) utility
was then used to perform traffic control on the network bridge. The tc configures the Linux
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Parameters Value(s)
Bridge interface eth2, eth3
Delay (ms) 0, 25, 50, 75, 100,

125
Jitter (ms) 0, 5, 10, 15, 25
Loss 0.2%
Duplicate 0.2%
Corrupt 0.2%
Reorder 0.2%

Table 5.1: Network emulation settings for traffic control (tc).

kernel primarily through queueing disciplines (qdiscs). A qdisc is an interface between
the kernel and a network interface, where packets are queued and released according to tc
settings. For example, a loss setting drops packets from the qdisc according to a specified
percentage, while a delay setting keeps the packets in the qdisc longer. Multiple settings can
be used together. A summary of tc settings used in the experiments is shown in Table 6.1.

The tc parameters chosen represent an array of Wide Area Network (WAN) scenarios,
which would typically plague Internet video streaming performance. The Delay setting was
primarily used to simulate different levels of real-world Internet congestion [32]. The core
network RTT latency is about 30 ms within Europe, 45 ms within North America, and 90
ms for Trans-Atlantic routes [33]. However, the edge network introduces additional latency.
Therefore, Delay ranging from 0 to 125 ms in increments of 25 ms was used for each of the
two bridged interfaces (eth2 and eth3), resulting in a total RTT delay range of 0 to 250 ms.
The corresponding random Jitter value was set at 20% of the delay. The Duplicate setting
simulates duplicate packets, e.g., due to TCP retransmissions. The Loss setting simulates
packets randomly dropped by the network. The Corrupt setting introduces a random bit
error in a specified percentage of the packets. Finally, the Reorder setting simulates multi-
hop routing by further delaying a specified percentage of packets according to the delay and
jitter settings.

The test videos used for streaming are two full HD (1920×1080 @30fps) 30-second clips
from an animation video, Bunny, and a documentary video, Nature. These videos are
encoded using x264 with an average bit rate of 4 Mbps and four slices per frame. They are
then streamed from the server to the client using FDSP, TCP, and UDP. For each streaming
protocol, the five different levels of network congestion are created via the network delay
settings (i.e., 50 ms, 100 ms, 150 ms, 200 ms, and 250 ms). Furthermore, FDSP-based
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Figure 5.4: Rebuffering time and PLR for FSDP, TCP and UDP at 100 ms delay.
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Figure 5.5: Rebuffering for different levels of network congestion for FDSP-based streaming
at different values of BP and TCP-based streaming.

streaming is done for five different BP values (i.e., 0%, 25%, 50%, 75%, and 100%) per
congestion level.

5.5 Results

This section discusses the results of our experiments. FDSP-based streaming generally out-
performs TCP-based streaming in terms of both rebuffering time and number of rebuffering
instances. FDSP also incurs lower PLR than UDP. Figure 6.4 shows a sample of the video
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Figure 5.6: PLR for different levels of network congestion for FDSP-based streaming at
different values of BP and UDP-based streaming.

streaming improvements of FDSP over either TCP or UDP at 100 ms delay. The other levels
of network congestion show similar results. Overall, FDSP rebuffering time is significantly
lower than TCP rebuffering time. In addition, as BP increases within a recommended range,
PLR decreases. The BP range recommendations are 0% to 75% for Nature and 0% to 25%
for Bunny. Since the overall rebuffering of FDSP-based streaming is significantly lower than
that of TCP-based streaming, BP range recommendation was based on minimizing PLR.
The rest of this section provides more details in the context of the two major improvements,
i.e., lower rebuffering and lower PLR.

5.5.1 FDSP Improvement over TCP in Rebuffering

Reduction in both rebuffering time and instances is important towards improving the user’s
Quality of Experience (QoE). Figure 6.5 shows the total amount of rebuffering time and
the number of rebuffering instances for the different levels of network congestion. For each
congestion level, rebuffering is shown for FDSP with different values of BP as well for TCP.
For instance, in Nature at 150 ms delay, FDSP rebuffering time ranges from 108 ms to 1,616
ms, compared to 9,410 ms in TCP. In addition, the number of rebuffering instances ranges
from 2 to 3 for FDSP compared to 7 for TCP. Meanwhile, in Bunny at 150 ms delay, FDSP
rebuffering time ranges from 92 ms to 1,441 ms with 1 to 6 instances, compared to 8,764 ms
with 5 instances for TCP. Note that the first rebuffering instance (Rebuff 1 in Figure 6.5) is



66

(a) UDP (b) Basic FDSP (0% BP)

Figure 5.7: Visual comparison between UDP-based streaming and FDSP-based streaming
for Bunny.

the startup delay. As can be seen, FDSP exhibits lower startup delay than TCP at almost
all BP levels.

While FDSP is significantly better than TCP in terms of rebuffering, it is important to
note that rebuffering does increase with BP.

5.5.2 FDSP Improvement over UDP in PLR

FDSP-based streaming results in not only less rebuffering, but it also produces better video
quality by reducing PLR. Figure 6.7 shows the effect of BP on PLR across different levels
of network congestion for both Nature and Bunny. For each congestion level, PLR is shown
for FDSP with different values of BP as well as for UDP. As BP increases, there is less PLR
and thus better video quality. For Nature, the best BP value is 75% while for Bunny it is
25%. This implies that there is an optimal range of BP values based on the type of video.

As BP increases within the optimal range, more packets are sent via TCP rather than
UDP. This protects them from network-induced losses. Since the bulk of PLR is due to lost
UDP packets, the overall PLR decreases as BP increases. For example, in Nature, the PLR
at 50 ms delay decreases from 9% to 0.32% as BP increases from 0% to 75%. Similarly, in
Bunny, the PLR decreases from 1.19% to 0.51% as BP increases from 0% to 25%. Figure 6.8
shows a sample of the visual improvement of FDSP-based streaming with 0% BP over pure-
UDP streaming in Bunny. The video frame in Figure 6.8a is intact while the frame in
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Figure 6.8b shows the effects of packet loss under UDP-based streaming. In such situations,
the loss of just a slice header or the first few bytes of a slice renders the rest of the slice data
useless to the decoder, thus resulting in error concealment as shown in slice 4 of Figure 6.8b.
On the other hand, FDSP-based streaming, even with no BP, protects slice headers through
TCP transmission thus producing better quality video frames as shown in Figure 6.8a.

If BP surpasses the optimal range and becomes too high, the network can become sat-
urated with TCP packets. This is because when there is network congestion, more packets
are delayed, reordered or lost. The TCP packets are then more prone to retransmissions
so as to guarantee in-order, reliable delivery. Meanwhile, the IP queue is filled with staged
TCP and UDP packets. As the IP queue fills up with TCP packets, additional UDP packets
are dropped. This is the cause of most of the PLR when BP becomes too high. In addition,
some packets (both UDP and TCP) arrive at the client too late, past the decoder’s playout
deadline, and are thus also considered lost.

The frequency of I-frames can be used to categorize the type of video and determine
the optimal range of BP. For videos such as Bunny, where there are many scene changes,
there is usually a corresponding higher number of I-frames. In fact, there are 37 I-frames in
Bunny compared to just 5 in Nature. Since I-frames contain significantly more data than
other frames, the probability of network saturation increases with the frequency of I-frames,
which leads to high PLR. For instance, Figure 6.7 shows much higher PLR for UDP-based
streaming in Bunny (26.4%∼33.3%) compared to Nature (2.2%∼4.3%). In such scenarios
(Bunny), small BP values (0%∼25%) are effective towards reducing PLR while higher values
(>25%) will saturate the network with TCP packets from I-frame data.

In comparison, videos exemplified by Nature have lower PLR to begin with for UDP-
based streaming. This is because of less network saturation as a result of lower I-frame
frequency. When such videos are streamed through FDSP, the introduction of TCP packets
increases the likelihood of network saturation and UDP PLR. However, higher BP values
(up to 75% in the case of Nature) can be applied to the point of lowering UDP PLR below
that of UDP-based streaming.

5.6 Conclusion and Future Work

This paper shows that FDSP with BP is suitable for low-latency HD video streaming over the
Internet while maintaining high video quality by combining the reliability of TCP with the
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low-latency characteristics of UDP. Our implementation and experiments on a real testbed
consisting of a server and a client and an intermediate node for network emulation through
the Linux traffic control utility showed that FDSP with BP results in significantly less
rebuffering than TCP-based streaming and much lower PLR than UDP-based streaming.

As future work, BP will be dynamically adjusted with varying network conditions. A
separate QoE study based on FDSP streaming is currently in progress. Its results will be
used to determine when BP should be changed based on variation in PLR and rebuffering.
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Chapter 6: Experimental Study of QoE Improvements Towards
Adaptive HD Video Streaming using Flexible Dual TCP-UDP

Streaming Protocol

The Flexible Dual TCP-UDP Streaming Protocol (FDSP) combines the reliability of TCP
with the low latency of UDP, thus providing transport layer improvements towards main-
taining high QoE of multi-bitrate videos in adaptive streaming. FDSP delivers the more
critical parts of the video data via TCP and the rest via UDP. FDSP also uses Bitstream
Prioritization (BP), a sliding scale that determines the proportion of video data that is sent
using TCP. BP can be adjusted according to the level of network congestion. FDSP-based
streaming reduces total rebuffering time by over 90%, and rebuffering instances by 50% in
many cases compared to TCP-based streaming. At the same time, packet loss reduces by
over 75% for most BP levels compared to UDP-based streaming. In addition, FDSP-based
streaming is potentially more suitable for adaptive streaming compared to the state-of-the-
art TCP-based HTTP Adaptive Streaming (HAS), which is often plagued by high latency
and high bandwidth requirements. In contrast, FDSP requires significantly less bandwidth
than TCP in congested networks while exhibiting more stable client buffers.

6.1 Introduction

Global Internet traffic is projected to increase nearly threefold between 2016 and 2021, with
video accounting for 82% of the total traffic, of which 13% will be live video [1]. Currently,
consumer video is dominated by High Definition (HD), but higher resolutions such as 4K
are gaining mainstream popularity, with up to 10% market penetration in the US alone [2].
Furthermore, there is an increasing number of video streaming devices and platforms being
added globally everyday. For instance, the current 2.7 billion LTE subscribers are expected
to double by 2023, including 1 billion 5G subscribers. All these factors will continue to
increase global network congestion and pose even greater challenges to seamlessly delivering
video at HD/4K resolution and beyond.

The unicast delivery model used in major Video on Demand (VoD) services such as Net-
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flix, Hulu, and Amazon Video further exacerbates this situation. Since each client requests
video directly from a server, the bandwidth requirements grow rapidly as the number of
clients increases. VoD content providers have mitigated some of the increased bandwidth
demands by decentralizing their infrastructure through Content Delivery Networks (CDNs),
which brings proxy servers closer to end-users.

Another major development in streaming high quality video over networks with limited
and varying bandwidth resources is HTTP Adaptive Streaming (HAS). In HAS, the client
dynamically adjusts the video quality according to perceived network conditions by request-
ing video from a selection of different bitrate versions. That is, the higher the available
bandwidth, the higher the selected video bitrate and its corresponding quality.

The HAS model introduces a number of factors that influence viewers’ Quality of Expe-
rience (QoE). These include startup delay, rebuffering time and instances, bitrate switching
frequency, and average video bitrate [3]. The main goal of improving QoE is minimizing
startup delay and rebuffering as they have the greatest impact on viewers and are signifi-
cantly affected by network congestion and thus latency [4]. Startup delay in HAS is often
20 seconds or more because two or more substreams, typically 10 seconds each, need to
be buffered prior to playout [5]. Such a high startup delay is acceptable for pre-recorded
content (e.g., movies) as this maximizes a client’s video quality with reduced rebuffering.
However, every 1-second increase in startup delay increases the video abandonment rate by
5.8%, and viewing time decreases by 5.02% when rebuffering exceeds just 1% of the video
duration. [4]. Furthermore, low latency is critically important for live streaming as well as
subscription-based live video services such as Internet Protocol television (IPTV), where
channel switches need to be performed with hardly any noticeable delay.

Transmission Control Protocol (TCP) is the underlying transport protocol of HAS, and
it provides transport services such as reliable in-order delivery, congestion control, and flow
control. As a result, applications which rely on TCP often experience high latency, and this
adversely affects the HAS model as well. On the other hand, User Datagram Protocol (UDP)
is a low-latency alternative without the services provided by TCP. Our hybrid streaming
protocol, called Flexible Dual TCP-UDP Streaming Protocol (FDSP), combines the reliabil-
ity of TCP with the low latency of UDP through a simple application-layer combination,
thus eliminating special network-layer modifications or additional protocols [6, 7, 8, 9]. This
is especially important for media content providers who need to deploy videos to heteroge-
nous networks and diverse devices. Our initial simulation studies of FDSP have shown that
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it is effective in improving direct device-to-device (D2D) streaming in a wireless local area
network [6]. The basic FDSP was then improved by adding Bitstream Prioritization (BP),
where a percentage of more important elements of the H.264 bitstream were prioritized via
TCP transmission [7, 8]. This was followed by a study using a client-server VoD testbed,
which showed that FDSP-based streaming achieves lower latency and less packet loss than
TCP-based and UDP-based streaming, respectively [9].

This paper extends the work in [9] to show that FDSP is a suitable protocol for future in-
tegration into the transport layer of today’s overwhelmingly TCP-based adaptive streaming
systems for VoD. Therefore, in addition to providing a discussion of FDSP in the context of
video streaming server-client systems, for completeness, this paper presents a performance
comparison among FDSP, TCP, and UDP for multiple bitrate versions of videos in congested
networks. Our study shows that FDSP utilizes significantly less bandwidth resulting in bet-
ter QoE than TCP for different video bitrate versions. Therefore, FDSP has the potential
for improving adaptive streaming in the following ways:

1. FDSP can sustain a particular bitrate version of video longer than TCP in congested
networks with less packet loss and rebuffering. This can decrease the frequency of
bitrate switches and increase average video bitrate.

2. The FDSP client buffer is more stable than in TCP-based streaming. This provides
the client with a more reliable measure for assessing the available bandwidth and de-
veloping more accurate buffer-based adaptation algorithms [10]. This is in accordance
with the DASH implementation guidelines, which emphasizes the importance of a rate
adaptation algorithm to smooth out fluctuations in available bandwidth [11].

The rest of this paper is organized as follows. Section A.3 provides a background of
HAS, FDSP with BP, and UDP firewall traversal. Section B.2 discusses the related work.
Section B.5 describes the experiment setup using a physical testbed. This is followed by
a discussion of the results in Section B.6. Finally, Section A.6 concludes the paper and
discusses possible future work.
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6.2 Background

6.2.1 HAS

Several HAS implementations exist, including proprietary ones such as Microsoft Smooth
Streaming (MSS) [12], Adobe HTTP Dynamic Streaming [13], and Apple’s HTTP Live
Streaming (HLS) [14], as well as the open-source standard Dynamic Adaptive Streaming
over HTTP (DASH) [15]. In HAS, each video on the server is encoded into different bi-
trate versions called representations. Each representation is subdivided into 2∼10-second
segments. The basic idea is for a client to send an HTTP request to a server for a segment
whose encoded bitrate can be supported by the current available bandwidth. The client
adapts to the varying available bandwidth using a bitrate adaptation algorithm to request
segments from different representations. In general, the higher the available bandwidth, the
higher the bitrate of the requested segment.

Bitrate adaptation algorithms can be broadly classified into three major categories:
client-side, server-side, and network-level [16]. This paper will focus on client-side algo-
rithms, which can be further classified into throughput-based, buffer-based, and hybrid [16].
In general, throughput-based methods select video bitrates according to bandwidth estima-
tion while buffer-based methods do so based on a target client buffer occupancy. Hybrid
methods are a combination of the two. There is a growing consensus on the greater impor-
tance of analyzing buffer occupancy compared to bandwidth estimation towards developing
bitrate adaptation algorithms. For instance, Huang et al. demonstrated the ineffectiveness
of bandwidth estimation [17], especially when there are competing flows, and proposed a
buffer-based approach to bitrate adaptation [10]. Similarly, Spiteri et al. ignored bandwidth
estimation in favor of buffer occupancy [18]. Furthermore, Yin et al. formulated an opti-
mization model between buffer occupancy and bandwidth estimation, and found that their
effectiveness for bitstream adaptation was limited by the latter [19]. Our study on FDSP-
based streaming showed that it exhibits a more stable client buffer compared to TCP-based
streaming. Therefore, FDSP provides a more reliable reference in the transport layer for
designing better buffer-based bitrate adaptation algorithms. This is important, especially
given the growing evidence of how unreliable bandwidth estimation can be.
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Figure 6.1: Flexible Dual TCP-UDP Streaming Protocol (FDSP) Architecture [6].

6.2.2 FDSP Overview

This section provides an overview of FDSP, including its architectural features and video
streaming using substreams. For more details, see [6], [7] and [8]. FDSP is a hybrid streaming
protocol that combines the reliability of TCP with the low latency characteristics of UDP.
Figure A.3 shows the FDSP architecture consisting of a server and a client.

At the server, H.264 Syntax Parser processes video data in order to detect critical H.264
video syntax elements (i.e., Sequence Parameter Set (SPS), Picture Parameter Set (PPS),
and slice headers). MPEG-TS Packetizer within the Demultiplexer (DEMUX) module then
encapsulates all the data according to the RTP MPEG-TS specification. DEMUX then
directs the packets containing critical data to a TCP socket and the rest to a UDP socket
as Dual Tunneling keeps both TCP and UDP sessions simultaneously active during video
streaming. The BP Selection module sets the Bitstream Prioritization (BP) parameter,
which is a percentage of I-frame data that is to be sent via TCP in addition to the original
critical data. At the client, Multiplexer (MUX) sorts TCP and UDP packets based on their
RTP timestamps. This reordering is essential for H.264 Decoder to decode incoming data
correctly.

When a stream is initiated, the FDSP server transmits the packets for the first 10-
second substream. All the TCP packets for this substream (T1 . . . Tn) must be received
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Figure 6.2: Substream overlapping. Each packet is either UDP (U) or TCP (T), where the
subscript represents the packet number within a substream.

(i.e., buffered) before playback begins. This startup delay (Tinit) is low since only the TCP
portion of the data is sent rather than the whole 10 seconds of video. In order to minimize
rebuffering, the TCP packets for the next substream are sent at the same time as the UDP
packets (U1 . . . Un) for the current substream through a process called substream overlapping
as illustrated in the transmission stream section of Figure A.4. In this particular example,
note that the TCP packets for substream 2 are all transmitted together with UDP packets of
substream 1. This is done before transmitting the UDP packets for substream 2. Substream
overlapping is repeated throughout the duration of the stream. However, when playback for
a particular substream is complete and the TCP packets for the upcoming substream are
not yet all available, the client has to wait, thus causing a rebuffering instance. The playout
deadline for all subsequent packets is then incremented by the rebuffering time.

6.2.3 UDP Firewall Traversal

FDSP’s TCP-UDP hybrid form is a useful and relevant technology for current innovations
in HAS and video streaming transport in general. Even though HAS is primarily built on
HTTP/TCP mainly due to HTTP’s ability to traverse network address translators (NATs)
or firewalls [20], UDP-based technologies are also critical to supplementing the latest HAS
systems, e.g., as in CDN-P2P architectures (see Section B.2 for more details on UDP-based
streaming). As a result, there exist several UDP firewall traversal techniques.

For example, Peer5 offloads up to 98% of CDN bandwidth [21] via Web Real-Time
Communications (WebRTC), which is a popular open-source project that provides APIs
for UDP-based peer-to-peer (P2P) connections. WebRTC provides a practical example of
how UDP-based transport can traverse NATs. Similarly, UDP NAT Traversal can also be
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extended to additional networking scenarios including the UDP portion of FDSP streaming
servers and clients.

For instance, consider two hosts within individual NAT-protected private networks that
wish to establish a UDP connection. This could be a video server attempting to send
a client UDP data via FDSP streaming. An intermediate well-known globally reachable
server can be used to establish UDP addresses and ports for both hosts prior to direct
communication. This is achieved using protocols such as Session Traversal Utilities for
NAT (STUN), Traversal Using Relay around NAT (TURN), and Interactive Connectivity
Establishment (ICE) [22]. Each host requests a public IP address and port number from a
STUN server. This creates an external NAT address that can be used for direct connections,
including UDP, between the hosts. In some special cases (e.g., symmetric NATs), a proxy
server connection for data transport is also needed via TURN. A host can build multiple IP
and port pair candidates for connecting to other hosts by making a series of requests to a
STUN server. Finally, ICE determines the best candidate for creating a connection. STUN
is preferred over TURN since it is faster and does not require a relay service.

6.3 Related Work

TCP is the default transport protocol for HAS, but it exhibits shortcomings mainly due
to latency. TCP’s reliable transmission requires available bandwidth that is about twice
the bitrate of video for satisfactory streaming performance [23]. In addition, the slow-start
mechanism results in initial low throughput that requires pre-buffering as well as rebuffering
when idle connections are restarted [24]. Furthermore, when congestion occurs, the sender
retransmits TCP packets while halving the transmission rate. These factors result in low
TCP throughput, which further jeopardizes low-latency streaming.

Since low latency is vital towards meeting the most significant QoE metrics in HAS,
i.e., startup delay and rebuffering [4], several strategies have been proposed in order to
either decrease latency or improve startup delay and rebuffering. For instance, reducing the
segment size to just a few seconds is commonly used to decrease startup delay. However, this
increases the total number of segments and, therefore, the number of client HTTP requests.
These requests use precious bandwidth at a rate of one round-trip time (RTT) per video
segment. For instance, a client that requests 2-second video segments on a network path
with an RTT delay of 300 ms will experience 300 ms of additional delay every 2 seconds.
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FDSP drastically decreases latency by transmitting most of the data via UDP rather than
HTTP/TCP.

Chakareski et al. used multiple TCP connections in conjunction with Scalable Video
Coding (SVC) [25] in order to decrease latency. Packets belonging to higher quality bit-
streams in the SVC hierarchy were transmitted via better quality TCP connections. There-
fore, these packets were less prone to retransmissions thus reducing delay in the transport
layer. However, there is still potential for significant delay in the application layer due
to buffering video segments (typically 10-second). FDSP’s dual streaming significantly re-
duces application layer delay by only buffering the TCP portions of future segments while
streaming the UDP portion of the current segment. In addition, FDSP’s implementation is
orthogonal to multipath-TCP schemes.

Swaminathan et al. used HTTP chunked transfer encoding to disrupt the correlation
between latency and segment duration, particularly in live streaming [26]. This was done by
using partial HTTP responses rather than waiting for complete responses (i.e., full segments)
to be generated by the server. Houze et al. also used HTTP chunked encoding, but to
supplement an application layer multi-path TCP streaming scheme [27]. Here, video frames
were subdivided in proportion to network path speeds and reassembled by the client, thereby
reducing latency and rebuffering. However, HTTP transfer chunked encoding can lead to
extra overhead due to the increased volume of HTTP transfers. This is especially the case
in congested networks, where timeout issues can occur when complete HTTP responses
are not assembled punctually. Rather than requiring chunked encoding, FDSP is readily
compatible with basic HTTP while still reducing latency and rebuffering. At the same time,
HTTP chunked encoding is an orthogonal issue and could optionally be implemented on
FDSP.

Alternatively, HTTP/2 provides server push mechanisms that allow the client receives
multiple video segments per request instead of just a single segment [28, 29, 30]. This reduces
the overall time needed for the client-server request-response mechanism, thus reducing la-
tency. However, HTTP/2 is not as widely available as the more established HTTP/1.1.
HTTP/2 only has 15% worldwide deployment and, at a current growth rate of 5% addi-
tional coverage every year, it has a long way to go before becoming a widely recognized
standard [31]. However, FDSP is a simple application-layer combination of UDP and TCP,
making it compatible with HTTP/1.1. FDSP’s straightforward implementation also makes
it compatible with HTTP/2.
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UDP is well-suited for low-latency applications as it lacks the extra overhead necessary
for TCP’s features, such as flow control and reliable delivery. However, UDP’s simplicity can
result in packet loss, especially in congested networks. In addition, the lack of congestion
control can lead to depletion of network resources due to bandwidth over-utilization, placing
UDP out of favor compared to TCP in the broader Internet landscape. Nevertheless, UDP’s
low-latency offers an attractive option for contemporary HAS systems by supplementing
CDNs with UDP-based P2P networks [32, 33]. This helps content providers lower deploy-
ment and maintenance costs [34]. At the same time, P2P networks improve live streaming
latency by decreasing HTTP requests made to CDN servers [35, 36]. In fact, CDN caching
can increase live streaming delay by 15-30 seconds [37]. CDN-P2P architectures have been
commercialized for some time now by companies such as ChinaCache [32] and Akamai [33].
These hybrid architectures primarily rely on CDNs for HTTP-based retrieval of initial or
critical video segments while using P2P networks for bandwidth relief or for retrieving future
segments. Similarly, FDSP prioritizes the more important parts of the video bitstream via
TCP while offloading the rest to UDP. Therefore, it can be integrated into a CDN-P2P-
like framework, where the UDP portion of FDSP, in particular, can be reserved for a P2P
network.

The work closest to ours are hybridization efforts at the transport layer in order to
supplement the low latency and low overhead of UDP with TCP-like features [38, 39, 40,
41]. Velten et al. initially proposed the Reliable Data Protocol [38], which was designed to be
a minimal variation of TCP for bulk data transfer with simplified flow control, buffering, and
connection management. Bova and Krivoruchka followed this with the improved Reliable
UDP (RUDP) [39]. RUDP extends UDP mainly by making some features mandatory, e.g.,
packet retransmissions, in-order delivery, and flow control. However, it is not standardized
and is primarily limited to specific tasks, e.g., Microsoft’s proprietary version for its TV
software, Mediaroom [40]. There are also several RUDP-like protocols, but they are mostly
application-specific. For example, Floyd et al. proposed the Datagram Congestion Control
Protocol (DCCP), which adds congestion control to streaming media but without reliable in-
order delivery [41]. FDSP is also a hybrid streaming protocol, in that the services it provides
fall somewhere between pure TCP and pure UDP. However, FDSP has an advantage over
other hybrid methods because it simply uses the existing TCP and UDP protocols without
any modification to either.

More recently, Google has done work on an experimental transport protocol built on
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Figure 6.3: Experiment testbed. The client consumes video provided by the server, while
the traffic controller sets the level of network congestion.

UDP called Quick UDP Internet Connections (QUIC) [42]. Its main goal is to improve
the performance of TCP-based applications by reducing latency and connection time. This
is achieved by customizing UDP with encryption support, real-time bandwidth estimation,
and bitstream compression. However, QUIC has been shown to have higher protocol over-
head than TCP at low video bitrates [43]. On the other hand, FDSP demonstrates good
performance across a wide range of video bitrates, including low ones.

6.4 Experiment Setup

As in our previous work [9], the experimental testbed is shown in Figure 6.3, which consists
of a client-server pair and a traffic controller. The client and the server are each running
VLC Media Player [44] on Mac OS X. The following modifications were made to integrate
FDSP with BP into VLC:

1. Simultaneous streaming via UDP and TCP protocols.

2. Parsing H.264 video data at the server and subdividing it into TCP-bound and UDP-
bound elements.

3. Reordering TCP and UDP packets and reconstructing the H.264 bitstream at the
client prior to decoding.

The traffic controller, running on CentOS, connects the server to the client via a network
bridge across interfaces eth2 and eth3, respectively. The Linux traffic control (tc) utility
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Parameters Value(s)

Bridge interface eth2, eth3
Delay (ms) 25, 50, 75, 100, 125
Jitter (ms) 5, 10, 15, 20, 25
Loss 0.2%
Duplicate 0.2%
Corrupt 0.2%
Reorder 0.2%

Table 6.1: Network congestion settings for for tc.

is then used to perform traffic control on the network bridge, which, in turn, sets the avail-
able bandwidth. The tc configures the Linux kernel primarily through queueing disciplines
(qdiscs). A qdisc is an interface between the kernel and a network interface, where packets
are queued and released according to tc settings. These settings are then used to create
different levels of network congestion. For example, a loss setting drops packets from the
qdisc according to a specified percentage, while a delay setting prolongs the duration the
packets spend in the qdisc.

This testbed provides a physical platform for two sets of experiments. The first is a
fundamental video streaming comparison among the relevant protocols, i.e., FDSP, UDP,
and TCP. This is used to corroborate our findings in favor of FDSP from our simulation-only
device-to-device studies [6, 7, 8]. The second set of experiments are then used to explore the
advantages of FDSP over TCP towards future integration into HAS. The rest of this section
details each set of experiments, while the corresponding results are discussed in Section B.6.

6.4.1 Basic Comparison of FDSP, UDP and TCP

A summary of tc parameters used to compare the three protocols is shown in Table 6.1.
The values chosen represent an array of Wide Area Network (WAN) scenarios that would
typically plague Internet video streaming performance. The Delay setting, in conjunction
with the other settings, was primarily used to generate five different levels of real-world
Internet congestion [45]. The core network RTT latency1 is about 30 ms within Europe, 45
ms within North America, and 90 ms for Trans-Atlantic routes [46]. However, edge networks

1RTT latency and RTT delay are used interchangeably.
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introduce additional latency. Therefore, Delay ranging from 25 to 125 ms in increments of
25 ms was used for each of the two bridged interfaces (eth2 and eth3), resulting in a total
RTT latency of 50 to 250 ms in increments of 50 ms. This corresponds to five different levels
of congestion dictated by RTT latency, i.e., 50 ms, 100 ms, 150 ms, 200 ms, and 250 ms. In
addition, for each delay setting, the corresponding random Jitter value was set at 20% of the
delay, while the Duplicate setting generates duplicate packets, e.g., due to retransmissions.
The Loss setting causes a minimum ratio of packets to be randomly dropped by the network.
The Corrupt setting introduces a random bit error in a specified percentage of the packets.
Finally, the Reorder setting simulates multi-hop routing by further delaying a specified
percentage of packets according to the Delay and Jitter settings. For brevity, the Delay
setting will be used to represent the 6-tuple settings.

The test videos used for streaming were two full HD (1920×1080 @30fps) 30-second
clips from an animation video, Bunny, and a documentary video, Nature. These videos are
encoded using x264 with an average bit rate of 4 Mbps and four slices per frame. They
were then streamed from the server to the client using FDSP, TCP, and UDP. For each
streaming protocol, the five different levels of network congestion were created via the net-
work congestion settings. Furthermore, FDSP-based streaming was done for five different
BP values (0%, 25%, 50%, 75%, and 100%) per congestion level. The general structure of
the tc command applied to each interface is illustrated in the example below.

tc qdisc add dev eth2 root netem delay 50 ms 10 ms loss 0.2% duplicate 0.2%

corrupt 0.2% reorder 0.2%

6.4.2 Comparison of FDSP and TCP in Multi-Bitrate Streaming

For multi-bitrate streaming, the tc settings were chosen to control the amount of available
bandwidth corresponding to different video bitrates. The general structure of the tc com-
mand applied to each interface is given by the example below:

tc qdisc add dev eth2 root tbf rate 5mbit latency 50ms burst 625

The token bucket filter (tbf) is a packet queue model that releases tokens according
the ratio between the rate parameter, i.e., the desired available bandwidth, and the kernel
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Figure 6.4: Rebuffering time and packet loss ratio (PLR) for FDSP, TCP, and UDP at 100
ms delay.

frequency. The burst parameter must be set to at least this ratio in bytes. In this example,
the rate is 5 Mbps and the kernel frequency is 1000 Hz for our testbed, which yields a burst
of 625 bytes. A packet at the head of the queue is transmitted once there are enough tokens
corresponding to the packet size in bytes.

The test videos consist of three sets of full HD (1920× 1080 @30fps) clips (approximately
2.5 minutes in length). They are Bunny2 (an animation), Bears (a documentary), and
Hobbit (a movie trailer). Each video set includes three bitrate representations of 1 Mbps, 2
Mbps, and 4 Mbps. These videos were also encoded using x264 with four slices per frame.
The videos were then streamed using FDSP and TCP in four different available bandwidth
settings as shown in Table 6.2, which can be categorized as static and dynamic. The static
settings indicate constant available bandwidth, while the dynamic settings include upper
and lower limits of available bandwidth that oscillate with a 4-second duty cycle, which
is similar to the recommended network profiles provided by the DASH Industry Forum
Guidelines [47].

Each category is further subdivided into congested and non-congested settings. Al-
though our results are primarily focused on congested settings, the experiments were also
repeated for non-congested settings for completeness. In our prior simulation studies, con-
gestion was set at the average bitrate of the video, which proved sufficient. However, in our
physical testbed, this severely hampered streaming, particularly with the addition of the
traffic control latency parameter, which specifically refers to network latency. Our experi-
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Encoded Bitrate
1 Mbps 2 Mbps 4 Mbps

Static congested 1.25 2.5 5
Dynamic congested 1-1.5 2-2.5 4-6
Static non-congested 2 4 10
Dynamic non-congested 1.75-2.25 3-5 7.5-12.5

Table 6.2: Available bandwidth settings (Mbps) for comparing FDSP to TCP
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Figure 6.5: Rebuffering for different levels of network congestion for FDSP-based streaming
at different values of BP and TCP-based streaming.

ments showed that available bandwidth set at 25% above the average video bitrate provided
sufficient congestion for making useful comparisons between FDSP and TCP.

6.5 Results

This section discusses the results of our experiments. Section 6.5.1 analyzes the improve-
ments of FDSP relative to both TCP and UDP in rebuffering and packet loss ratio (PLR) as
BP increases from 0% to 100%. The corresponding tradeoffs are also discussed in detail. In
summary, as BP increases, PLR decreases while rebuffering increases. Then, Section 6.5.2
shows why FDSP is more suitable than TCP for multi-bitrate streaming and, consequently,
its potential as a transport protocol for improved adaptive streaming.
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Figure 6.6: An in-depth look at rebuffering time for different levels of network congestion at
different values of BP. TCP has been omitted here as it has much higher rebuffering than
FDSP.

6.5.1 FDSP Improvement over both UDP and TCP

Figure 6.4 shows an example of basic video streaming improvements of FDSP over TCP and
UDP at 100 ms RTT delay for Nature and Bunny. Note that this and every other RTT
delay setting is accompanied by corresponding tc parameters as described in Table 6.2 and
Section 6.4.1. In general, FDSP rebuffering time is significantly lower than TCP rebuffering
time even though it increases with BP. At the same time, PLR also decreases within a
particular range of BP. The other levels of network congestion chosen for our experiments
(i.e., 50 ms, 150 ms, 200 ms and 250 ms) show similar results.

The rest of this subsection provides more details on results that demonstrate the funda-
mental improvements of FDSP over UDP and TCP, i.e., lower rebuffering and lower PLR,
as well as the fact that there is an optimal range of BP that provides these improvements.

6.5.1.1 FDSP Improvement over TCP in Rebuffering

Reducing both rebuffering time and the number of rebuffering instances is important to-
wards improving the user’s QoE. Figure 6.5 shows the total amount of rebuffering time and
instances for the different levels of network congestion. For each congestion level, rebuffering
for FDSP is shown with different values of BP as well for TCP. For instance, for Nature
with 150 ms RTT delay, FDSP rebuffering time ranges from 108 ms to 1,616 ms, compared
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Figure 6.7: PLR for FDSP-based streaming at different values of BP and UDP-based stream-
ing for different levels of network congestion.

to 9,410 ms in TCP. In addition, the number of rebuffering instances ranges from 2 to 3
for FDSP compared to 7 for TCP. Meanwhile, for Bunny with 150 ms RTT delay, FDSP
rebuffering time ranges from 92 ms to 1,441 ms with 2 to 6 instances, compared to 8,764 ms
with 5 instances for TCP. The rest of the rebuffering results for the two videos are summa-
rized in Tables 6.3 and 6.4. Note that the first rebuffering instance (Rebuff 1 ) is the startup
delay. As can be seen, FDSP exhibits lower startup delay than TCP for all BP values.

While FDSP is significantly better than TCP in terms of rebuffering, it is important to
note that rebuffering does increase with BP. This is because higher BP values result in more
TCP data, which increases the chance of retransmissions and thus rebuffering. A closer look
at the behavior of just FDSP is illustrated by Figure 6.6, which shows the rebuffering time
and instances across the different network congestion levels for each BP value.

6.5.1.2 FDSP Improvement over UDP in PLR

FDSP-based streaming results in not only less rebuffering, but better video quality by re-
ducing PLR. Figure 6.7 shows the effect of BP on PLR across different levels of network
congestion for both Nature and Bunny. For each congestion level, PLR is shown for FDSP
with different values of BP as well as for UDP. PLR can be minimized by increasing BP,
which leads to better video quality. For example, in Nature, the PLR for 50 ms RTT delay
decreases from 9% to 0.32% as BP increases from 0% to 75%. Similarly, in Bunny, the PLR
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(a) Basic FDSP (0% BP) (b) UDP

Figure 6.8: Visual comparison between FDSP-based streaming and UDP-based streaming
for Bunny.

decreases from 1.19% to 0.51% as BP increases from 0% to 25%. In addition, this implies
that there is an optimal range of BP operation based on the type of video as shown in
Figure 6.4. As BP increases, more packets are sent via TCP rather than UDP. This protects
them from network-induced losses. Since PLR is due to lost UDP packets, the overall PLR
decreases as BP increases from 0% through the optimal range. Further details are discussed
in Section 6.5.1.3.

Figure 6.8 shows a sample of the visual improvement of FDSP-based streaming with 0%
BP over UDP-based streaming in Bunny. The video frame in Figure 6.8a is intact while
the frame in Figure 6.8b shows the effects of packet loss under UDP-based streaming. In
such situations, the loss of just a slice header or the first few bytes of a slice renders the
rest of the slice data useless to the decoder, even if properly received. This results in the
decoder performing error concealment on the lost data as shown in slice 4 of Figure 6.8b. On
the other hand, FDSP-based streaming, even at 0% BP, protects at least the slice headers
through TCP transmission, thus making any available slice data useful to the decoder. As
a result, FDSP produces better quality video frames as shown in Figure 6.8a.

6.5.1.3 Optimal Range of BP

Since overall rebuffering time is significantly lower in FDSP than TCP across all BP values
as shown in Figure 6.4, there is an optimal range of BP values for decreasing PLR as shown.
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Figure 6.9: Throughput for FDSP-based streaming with 100% BP under static congested
conditions (bw = bandwidth).

If BP surpasses the optimal range and becomes too high, the network can become saturated
with TCP packets. This will cause more packets to be delayed, reordered, or lost when there
is network congestion. The TCP packets are then more prone to retransmissions so as to
guarantee in-order, reliable delivery. Meanwhile, the IP queue at the sender is filled with
staged TCP and UDP packets. These additional TCP packets in the IP queue then cause
subsequent UDP packets to be dropped. This is the cause of most of the PLR when BP
becomes too high. Note that additional PLR also occurs when some UDP packets arrive at
the client too late, past the decoder’s playout deadline, and are thus also considered lost.

The frequency of I-frames can be used to categorize the type of video, and therefore
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determines the optimal range of BP. Videos such as Bunny are characterized by fast motion,
many scene changes, and a corresponding higher number of I-frames. In fact, there are 37
I-frames in Bunny compared to just 5 in the low-motion Nature. UDP-based streaming PLR
in low-motion videos is much lower than in high-motion videos. For instance, as shown in
Figure 6.7, Nature has 2.2%∼4.3% UDP-based streaming PLR across all congestion levels
compared to 26.4%∼33.3% in Bunny. This is because Nature’s lower I-frame frequency
reduces the likelihood of making network saturation worse.

However, when low-motion videos are streamed via FDSP, the introduction of TCP pack-
ets at low BP values increases network saturation, thus increasing PLR. However, applying
higher BP values (up to 75% in the case of Nature) lowers PLR significantly below that of
UDP-based streaming. On the other hand, low BP values (0%∼25% for Bunny) are effec-
tive towards minimizing PLR for high-motion videos. In both cases, BP values beyond the
optimal range (>25% for Bunny and >75% for Nature) will tend to saturate the network
with TCP packets containing I-frame data and increase PLR. Nevertheless, PLR in this
range is still less than that of UDP-based streaming. Determining an optimal BP range
that minimizes PLR while keeping rebuffering low based on the type of video will be left as
future work.

6.5.2 FDSP Improvement over TCP for Multi-bitrate Streaming

FDSP-based streaming improves the transmission of multi-bitrate video representations for
HAS in two ways: (1) lowers bandwidth requirements compared to TCP-based streaming and
(2) maintains a more stable client buffer occupancy. The lower bandwidth requirement makes
FDSP-based streaming more suitable in congested networks. This also lays a foundation
for more fairness when there is additional traffic, including multiple video streams. At the
same time, a more stable client buffer provides a reliable reference for developing buffer-
based adaptation algorithms for adaptive streaming. The following discusses these two
improvements in more detail.

6.5.2.1 Lower Bandwidth Requirement

Figure 6.9 shows the throughput results for the three sets of videos streamed via FDSP
with 100% BP in static congested scenarios. The throughput profiles for the BP values 0%,
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Delay (ms) Protocol Rebuff 1 Rebuff 2 Rebuff 3 Rebuff 4 Rebuff 5 Rebuff 6 Total (ms) Instances

0% 8 85 - - - - 93 2
25% 12 2 114 - - - 128 3

50 50% 8 6 62 52 151 - 279 5
75% 122 3 7 23 3 68 226 6

100% 122 76 20 42 31 31 322 6
TCP 1147 - - - - - 1147 1

0% 9 73 - - - - 82 2
25% 10 154 - - - - 164 2

100 50% 6 473 - - - - 479 2
75% 465 237 - - - - 702 2

100% 9 159 249 358 - - 775 4
TCP 1090 - - - - - 1090 1

0% 9 83 - - - - 92 2
25% 25 65 105 - - - 195 3

150 50% 7 5 135 120 375 - 642 5
75% 479 51 158 584 118 371 1761 6

100% 34 706 26 142 40 493 1441 6
TCP 1941 755 1309 2114 2645 - 8764 5

0% 8 77 - - - - 85 2
25% 9 3 226 - - - 238 3

200 50% 33 5 129 11 665 - 843 5
75% 532 3 155 537 115 342 1684 6

100% 349 180 56 250 273 752 1860 6
TCP 2611 2813 4420 103 - - 9947 4

0% 60 171 - - - - 231 2
25% 8 68 177 - - - 253 3

250 50% 54 710 165 345 600 - 1874 5
75% 869 437 394 801 - - 2501 4

100% 175 196 85 210 934 1317 2917 6
TCP 3009 2626 2109 3376 3377 - 14497 5

Table 6.3: Rebuffering time and instances for Bunny. The percentage entries under Protocol
represent BP values for FDSP.
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Delay (ms) Protocol Rebuff 1 Rebuff 2 Rebuff 3 Rebuff 4 Rebuff 5 Rebuff 6 Rebuff 7 Total (ms) Instances

0% 46 64 - - - - - 110 2
25% 117 10 - - - - - 127 2

50 50% 91 77 - - - - - 168 2
75% 141 100 115 - - - - 356 3

100% 253 53 - - - - - 306 2
TCP 948 - - - - - - 948 1

0% 26 100 - - - - - 126 2
25% 100 8 - - - - - 108 2

100 50% 156 7 - - - - - 163 2
75% 464 85 - - - - - 549 2

100% 505 467 - - - - - 972 2
TCP 1578 910 520 - - - - 3008 3

0% 37 71 - - - - - 108 2
25% 71 93 - - - - - 164 2

150 50% 104 10 289 - - - - 403 3
75% 789 85 130 - - - - 1004 3

100% 901 158 557 - - - - 1616 3
TCP 2112 1357 1129 1345 1507 1810 150 9410 7

0% 52 79 - - - - - 131 2
25% 9 116 - - - - - 125 2

200 50% 68 43 195 - - - - 306 3
75% 585 131 - - - - - 716 2

100% 1428 1335 911 - - - - 3674 3
TCP 2395 3012 4619 734 - - - 10760 4

0% 60 171 - - - - - 231 2
25% 27 54 - - - - - 81 2

250 50% 99 16 650 - - - - 765 3
75% 805 137 89 - - - - 1031 3

100% 1183 439 1623 - - - - 3245 3
TCP 3014 5023 4219 - - - - 12256 3

Table 6.4: Rebuffering time and instances for Nature. The percentage entries under Protocol
represent BP values for FDSP.
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(b) Bunny2 – 2 Mbps, 2.5 Mbps bw
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(c) Bunny2 – 4 Mbps, 5 Mbps bw
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(d) Bears – 1 Mbps, 1.25 Mbps bw

 0

 1000

 2000

 3000

 4000

 5000

 6000
Bu

ffe
r L

ev
el

 (m
s)

Time (s)

FDSP BP 100%
TCP

(e) Bears – 2 Mbps, 2.5 Mbps bw
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(g) Hobbit – 1 Mbps, 1.25 Mbps bw
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(h) Hobbit – 2 Mbps, 2.5 Mbps bw
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Figure 6.10: Client buffer occupancy for FDSP- and TCP-based streaming at 100% BP for
2 and 4 Mbps videos and 75% BP for 1 Mbps.

25%, 50%, and 75% are very similar with minor proportional differences. FDSP-streaming
required much less bandwidth than TCP-streaming in congested networks. For instance, the
average throughput for Hobbit encoded at 4 Mbps was 2.87 Mbps at 0% BP and 2.91 Mbps
at 100% BP. The average throughput was lower than the average encoded bitrate for two
reasons: (1) packet loss reduced the overall amount of data; and (2) rebuffering lengthened
the playback time and, therefore, increased the time value used in the average throughput
calculations.

In contrast, TCP-based streaming utilized practically all of the available bandwidth.
For example, the TCP throughput for 4 Mbps Bunny2 streamed on 5 Mbps of available



92

bandwidth varied between ∼4.9 and 5 Mbps. This is due to a couple of reasons. First, even
when there is no congestion, TCP streaming requires bandwidth that is about twice the
average video bitrate as discussed in Section B.2. Second, TCP transmission requires signif-
icantly more bandwidth than FDSP due to retransmissions. For instance, when streaming
the 4 Mbps version of Bunny2 in 5 Mbps of available bandwidth, 94,477 KB of video data
was transmitted and received for FDSP-based streaming compared to 155,441 KB for TCP-
based streaming. This shows that FDSP would be more suitable for adaptive streaming
in congested networks than TCP due to its lower bandwidth requirements. This would
result in less bitrate switching, especially in congested networks. Furthermore, less bitrate
down-switching would also raise the average bitrate.

FDSP-based streaming also exhibited very similar results for the dynamic congestion
scenarios. However, the video completely stalled in the case of TCP-based streaming. This
is because pure-TCP throughput is adversely affected by the available bandwidth oscillation
due to the inability of TCP slow-start to achieve a sufficiently large congestion window,
which results in persistently low throughput and increased retransmissions. In contrast,
FDSP’s UDP portion utilizes the oscillating bandwidth more effectively. Finally, neither
FDSP nor TCP was negatively affected by non-congested scenarios.

6.5.2.2 More Stable Client Buffer Occupancy

FDSP-based streaming showed more stable client buffer levels than TCP-based streaming.
Figure 7.2 shows the client buffer occupancy for all the test videos and encoded bitrates
streamed via FDSP and TCP at different static congestion levels. In general, FDSP-based
streaming shows a consistent client buffer occupancy compared to more erratic results ex-
hibited by TCP. This is the case for 0%∼100% BP for the videos encoded at 2 or 4 Mbps
and 0%∼75% BP for the 1 Mbps videos. Since the client buffer behaves similarly for these
BP ranges, the results for the highest respective BP values are shown in Figure 7.2.

Among the three encoded bitrates, 1 Mbps videos exhibit the highest proportion of TCP
data when streamed via FDSP. This is because most of the frames are so small that they
have very little data beyond the slice headers. Consequently, protecting their slice headers
via TCP transmits almost all of the corresponding frame data via TCP. As a result, FDSP-
based streaming and the corresponding buffer occupancy at higher BP values (beyond 75%)
greatly resembles TCP-based streaming for 1 Mbps videos. Therefore, the recommendation
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is to use the FDSP client buffer occupancy for buffer-based adaptation at the full BP range
only when streaming at higher video bitrates. In this regard, lower video bitrates call for
a more limited BP range. A scheme that maps a given video bitrate to the BP range that
best leverages the buffer occupancy towards buffer-based adaptation is beyond the scope of
this experimental study and reserved for future work.

6.6 Conclusion and Future Work

This paper shows that FDSP is suitable for high-quality, low-latency HD video streaming
over the Internet by combining the reliability of TCP with the low-latency of UDP. Our
implementation and experiments on a real testbed showed that FDSP results in significantly
less rebuffering than TCP-based streaming and much lower PLR than UDP-based streaming.

Our testbed experiments also show that FDSP-based streaming outperforms TCP-based
streaming of multi-bitrate videos in terms of lower bandwidth requirements and more stable
client buffer occupancy. As a result, FDSP can be used to potentially improve QoE in
adaptive streaming by reducing bitrate switches, increasing the average video bitrate and
providing a platform for more precise buffer-based adaptation algorithms.

As future work, BP will be dynamically adjusted in a physical testbed based on the results
of an ongoing simulation study that looks at the interaction of PLR and rebuffering and its
effect on user QoE. Furthermore, FDSP will be integrated into adaptive streaming to provide
an orthogonal option for adaptation algorithms via BP adjustment. Key developments would
include an optimal BP range based on the network condition and the type of video in order
to minimize both PLR and rebuffering while also providing a reliable buffer occupancy for
an adaptation algorithm.
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Chapter 7: qMDP: DASH Adaptation using Queueing Theory within a
Markov Decision Process

7.1 Introduction

Online video consumption is rising rapidly. The average viewer is projected to consume close
to 90 minutes of video a day by 2020 [1]. The Internet landscape is also shifting rapidly to
keep up with increasing video demands. For instance, video and content delivery networks
will account for 82% and 71% of all Internet traffic by 2021, respectively [2]. In the wake of a
video-dominated Internet, HTTP has become the de facto mechanism for video delivery due
to its ubiquity. This has led to the state-of-the-art in video streaming, i.e., HTTP Adaptive
Streaming (HAS).

There are several proprietary implementations of HAS, such as Microsoft Smooth Stream-
ing (MSS) [3], Adobe HTTP Dynamic Streaming [4], and Apple’s HTTP Live Streaming
(HLS) [5]. There is also the open-source standard called Dynamic Adaptive Streaming over
HTTP (DASH) [6]. The DASH standard defines a streaming framework, where a client
makes a series of HTTP requests to a server for a series of video chunks called segments.
The segments are classified according to different quality versions called representations.
The client requests segments from different representations based on its perceived available
bandwidth. This process is dynamically repeated between segments in a process called
bitrate adaptation.

The main goal of a bitrate adaptation is to ensure the highest possible quality of experi-
ence (QoE) for the viewer. This includes maximizing the average bitrate while minimizing
bitrate switches, rebuffering time and instances, and startup delay [7]. There are three ma-
jor categories of bitrate adaptation algorithms: server-side, in-network, and client-side [8].
Client-side methods tend to be the most applicable across a wide range of streaming archi-
tectures since they are agnostic of both the server and network configurations. Therefore,
this paper will focus on client-side bitrate adaptation. There are three main types of client-
side bitrate adaptation algorithms: throughput-based, buffer-based, and hybrid. In general,
throughput-based methods select video bitrates according to estimated bandwidth, while
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buffer-based methods do so based on a target client buffer occupancy. Hybrid methods are
a combination of the two.

Buffer-based adaptation algorithms typically drive the client buffer level towards a pre-
determined threshold. When the available bandwidth is lower than the requested segment’s
bitrate, the buffer gets filled at a slower rate than the normal playback speed. As a result,
when the buffer level falls below the threshold, the client requests a segment whose bitrate
is lower than the available bandwidth so as to refill the buffer to avoid potential buffer
starvation and rebuffering. Conversely, when the available bandwidth is higher than the
requested segment’s bitrate, the buffer level rises beyond the threshold. The client then
requests the next segment at an even higher bitrate (if possible) in order to avoid buffer
overflow. This reduces the buffer level towards the threshold.

This is important because buffer overflow causes off periods (i.e., pauses) in an individual
client’s download stream, which negatively impacts its bandwidth utilization. Furthermore,
this leads to poor bandwidth estimation when there are competing TCP flows [9]. On the
other hand, throughput-based methods perform bandwidth estimation for bitrate adapta-
tion. However, bandwidth estimation just by itself is error-prone due to inaccuracies [9] thus
leading to hybrid methods [10, 11].

Most bitrate adaptation algorithms, however, tend to have significant ad hoc compo-
nents [12], often having parameters that, are in many cases, set arbitrarily and require lots
of fine-tuning and heuristics, e.g., buffer threshold values [13]. In response to this short-
coming, several adaptation algorithms based on Reinforcement Learning (RL) have recently
been proposed. RL involves an agent learning from experience the actions that will yield
the best rewards in an environment [14]. In the context of a video streaming environment, a
DASH adaptive bitrate controller represents the agent, while its actions are optimal bitrate
choices that maximize the rewards respresented by Quality of Experience (QoE).

RL in DASH streaming exhibits the Markov property, i.e., future states depend only
on the current state. Therefore it can be modeled as a Markov Decision Process (MDP).
An MDP is a memoryless stochastic process with decisions that yield rewards and transi-
tions between states. Most RL-based adaptation algorithms, however, suffer from a tradeoff
between speed and efficiency [15]. An MDP that models an environment with high accu-
racy tends to be complex due to keeping track of many states, i.e., the variables in the
environment. As result, the MDP converges too slowly towards an optimal solution. This
paper proposes a queueing-theory-based Markov Decision Process (qMDP), which features
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an enhanced state characterization based on anM/D/1/K queueing model for the playback
buffer. qMDP has two advantages. First, its fast convergence towards an optimal solution
relative to pre-existing RL methods, which makes it well-suited for online optimization.
Second, by focusing on the buffer, qMDP minimizes latency by limiting the buffer size.

The rest of this paper is organized as follows. Section B.2 discusses the related work,
and Section 7.3 describes qMDP. Section 7.5 details the experiments, followed by results in
Section B.6. Finally, Section A.6 summarizes the paper and recommends future work.

7.2 Related Work

This section presents some prominent, more traditional bitrate adaptation algorithms fol-
lowed by recent proposals in the realm of reinforcement learning.

Huang et al. demonstrated the ineffectiveness of using bandwidth estimation alone by
analyzing three major HAS services, i.e., Netflix, YouTube, and Vudu [9]. They show that
the negative interaction between competing TCP flows and a video flow with an on-off cycle
exhibited by periodic chunk scheduling leads to severe bandwidth underestimation. For
example, when a client buffer becomes full, downloading pauses, which results in an off
period. Meanwhile, competing TCP flows greedily use up the available bandwidth. When
the client buffer has more room, the video flow resumes, but its TCP congestion window
is stunted due to congestion brought about by greedy competing TCP flows. As a result,
the client underestimates the available bandwidth as its buffer becomes depleted faster, and
then requests a lower video bitrate in order to restore the buffer to a healthy level. This
process repeats during the next off period of the video flow resulting in an even lower bitrate
selection. This is referred to as the downward spiral effect.

Huang et al. then used the rate of change of buffer occupancy to infer the difference
between the available bandwidth and the requested bitrate [16]. For instance, a rapidly
growing buffer indicates a high available bandwidth and a relatively low requested bitrate.
They then developed a fixed rate map that linearly maps buffer occupancy to video bitrate
based on a simplified model that used segments encoded with constant bitrate (CBR).
Segments with variable bitrate (VBR) were normalized relative to the average segment size in
order to use the rate map. This approach required bandwidth estimation at startup in order
to determine a suitable initial buffer level that corresponds to the available bandwidth [10].
Moreover, in order to account for VBR, a large buffer is required on the order of minutes,
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thus making it unsuitable for shorter videos.
Our proposed qMDP method also analyzes the buffer occupancy as an indicator of the

available bandwidth in comparison to the current requested bitrate. However, rather than
using a fixed rate map, our method incorporates bandwidth estimation beyond the startup
phase to create a more dynamic relationship between the buffer occupancy and the requested
bitrate via an MDP. In addition, rather than initially assuming CBR, qMDP works with
both CBR and VBR videos.

Jiang et al. proposed the Fair, Efficient, and Stable adapTIVE (FESTIVE) algorithm
to address the fairness issue related to the downward spiral effect [17]. They performed ran-
domized chunk scheduling, stateful bitrate selection, delayed update, and harmonic mean
bandwidth estimation. FESTIVE resolves unfairness caused by pre-determined periodic
chunk scheduling by randomizing chunk scheduling. It also chooses a random buffer occu-
pancy from a uniform distribution around a target buffer level. This creates a variation in
chunk requests. In addition, FESTIVE’s stateful bitrate adaptation accounts for the cur-
rent bitrate trend (going up or down) in addition to just looking at the current available
bandwidth. Otherwise, the downward spiral effect would afflict players resuming chunk re-
quests. qMDP features a deterministic target buffer rather than a randomized one. This
provides the option of future work involving a platform for coordinating multiple clients
deterministically.

Li et al. also addressed the fairness issue via Probe AND Adapt (PANDA) by computing
segment inter-request times [18]. The network is probed during off periods by increasing the
sending rate until the available bandwidth is fully utilized. The resultant bandwidth esti-
mation is then used to perform chunk scheduling. As previously noted, however, throughput
spikes can lead to the downward spiral effect. In that regard, qMDP estimates the available
bandwidth without exploiting network resources.

Cicco et al. proposed fEedback Linearization Adaptive StreamIng Controller (ELASTIC).
This method uses client-side feedback control theory to address the on-off traffic pattern
that leads to unfairness and bandwidth underutilization when multiple video flows share a
bottleneck. ELASTIC uses a single controller to throttle the video level in order to drive
the buffer to a set-point. As a result, it achieves better bandwidth utilization than PANDA
in spite of having more bitrate switches. At the same time, ELASTIC achieves fair share
regardless of the number of video flows compared to PANDA and FESTIVE, which are more
prone to the downward spiral effect. qMDP optimizes both bitrate selection and buffer level
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instead of controlling the bitrate in order to achieve a desired buffer level. This leads to
better bandwidth utilization and less bitrate switches.

Yin et al. proposed a Model Predictive Control (MPC) algorithm that maximized QoE
via optimal bitrate selection based on throughput prediction. This method requires extensive
offline optimization over an exhaustive set of scenarios. In addition, the optimization was
done over a fixed horizon, i.e., with respect to a limited number of future video segments. A
compressed table was then used online instead of repeating the optimization calculations for
each bitrate selection decision. The authors proposed using MDPs for analyzing throughput
and buffer state transitions. The proposed qMDP addresses the limitations of MPC by not
only using an MDP-based optimization, but also a limited set of states, making it suitable
for online optimization.

Yadav et al. proposed QUEuing Theory-based Rate Adaptation (QUETRA), which ana-
lyzes the effect of buffer occupancy on rate adaptation [13]. It uses an M/D/1/K queueing
model to study the relationship between buffer occupancy, buffer capacity, network through-
put, and the selected video bitrate. In particular, it calculates the expected buffer occupancy
given a bitrate, throughput, and buffer capacity. The segment arrival is modeled as a Pois-
son distribution (M) and serviced at a deterministic (D) rate of one segment at a time by
a single (1) server with a finite (K) buffer capacity. QUETRA’s queueing model partially
addresses the ad hoc nature of many adaptation algorithms. However, it arbitrarily sets the
buffer slack or availability (i.e., the empty buffer space) equal to the current buffer occu-
pancy. This is done by using a slack-bitrate mapping derived from an M/D/1/K queue
occupancy formula to pick a bitrate that will drive the buffer towards the desired slack. As
a result, high buffer occupancy leads to a bitrate selection that aims to increase buffer slack,
which subsequently results in decreased occupancy. Conversely, low buffer occupancy leads
to a bitrate choice that aims towards low slack and a correspondingly high buffer occupancy.
Ultimately, the buffer occupancy converges to K/2. This prevents buffer underflow (which
results in buffering), or overflow (which causes off periods in traffic). QUETRA performs
throughput estimation and rate adaptation every 5 segments rather than every segment
in order to minimize video bitrate switches leading to better QoE. Throughput smoothing
techniques can either overestimate (e.g., EMA, average of last 3) or underestimate (e.g.,
gradient-based EMA, low pass EMA, and KAMA). The former methods are preferred since
they follow the throughput more closely and call for a higher bitrate selection. They are also
simpler as they operate on a smaller time scale. The latter methods are more conservative
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(and more complex) due to a larger time scale and result in initially low bitrates compared
to the available bandwidth. The buffer then fills up faster because low bitrate segments
are smaller in size and can be downloaded relatively quickly. This then leads to requests
for higher bitrates, which results in more bitrate changes and thus lower QoE. qMDP also
features an M/D/1/K queue to model the buffer dynamics. However, rather than setting
the buffer slack arbitrarily equal to the buffer occupancy, the deviation between the actual
and model-based buffer levels are factored into the MDP’s decision-making process.

More recently, dynamic learning algorithms have been proposed to counter the pre-
exisiting methods, which are often hard-coded and based on heuristics. Jarnikov et al.
proposed a client-based MDP controller that lets users trade off between average bitrate and
bitrate switches. The MDP uses two states: previous quality level and relative progress,
i.e., the time difference between download completion and playout deadline. The reward
function penalizes deadline misses and quality level changes. This method provides high
average quality, but at the expense of high bitrate switches. Furthermore, the MDP model
depends on approximated network behavior and average segment sizes. Drastic changes in
either would require a new model. The relative progress metric considers buffer occupancy
implicitly, but qMDP does so explicitly using a queueing model. In addition, the control
strategy used in qMDP has more flexibility without being limited by specific network and
video characteristics.

Claeys et al. proposed a client-based Q-Learning adaptation algorithm [19]. The main
contribution of this method is a weighted sum of reward functions that is used to measure
QoE. The first reward function is based on segment quality levels and the total number
of quality levels, while the second is based on bitrate oscillations that are described by
duration and amplitude. The third reward function heavily penalizes buffer occupancy that
is at or below 10% while rewarding or penalizing a growing or decaying buffer, respectively.
This Q-Learning-based method, however, had a large state space and converged too slowly.
Frequency-Adjusted Q-Learning offered improvements by increasing sensitivity to changes
in video and network characteristics [20]. This was done by reducing the state space to
just buffer occupancy and estimated bandwidth, which significantly decreased convergence
time. However, this simplified model was detrimental to overall QoE. qMDP addresses this
tradeoff by offering fast convergence without adversely affecting QoE. In addition, while the
Q-Learning-based methods proposed by Claeys et al. are useful for adaption, their benefits
over other state-of-the-art methods are not clear as they were only shown to outperform
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MSS by about 10% based on a QoE metric. qMDP shows improvements over state-of-the-
art methods that already outperform proprietary solutions such as MSS.

Chiariotti et al. proposed an online MDP-based algorithm that addresses the tradeoff
between convergence speed and model complexity [15]. Rather than solving an exact opti-
mization problem that would require prior knowledge of the network conditions, this method
uses soft constraints that penalize rebuffering as well as deviation from a safe buffer level.
Convergence is sped up using compact state definitions, and intermediate deterministic (non-
stochastic) states that are updated in parallel. However, this method is simulation-based
and lacks any of the dynamics of TCP network transmission. On the other hand, qMDP
will be deployed on a physical testbed, while also utilizing a limited state space.

Zhou et al. proposed an MDP-based DASH adaptation algorithm called mDASH [21].
This method features a state vector containing current buffer occupancy, buffer changing
rate, video bitrates for previous segments, a bitrate consistency function, and bandwidth con-
ditions. This extensive state space necessitates a sub-optimal version of the original method
for efficiency. On the other hand, qMDP uses a limited state space and anM/D/1/K queue
to model buffer occupancy instead of using additional states in the MDP.

Mao et al. proposed Pensieve to address the use of fixed control rules based on inaccu-
rate models in state-of-the-art adaptation algorithms [22]. Pensieve uses RL to automatically
generate adaptation decisions based on a neural network whose inputs are client observa-
tions, e.g., buffer occupancy, last selected bitrate, previous throughput measurements, etc.
Pensieve is server-based and is based on a simulator that simplifies network dynamics by
assuming 100% bandwidth utility, which is achieved by disabling TCP slow-start on the
server. On the other hand, qMPD is client-based, thus requiring no modification to video
servers while also providing more immediate feedback for bitrate adaptation.

7.3 The Proposed Method

The proposed qMDP method models the DASH client as an MDP and the client buffer as
an M/D/1/K queue [23]. The rest of this section includes a brief overview of an MDP,
followed by a contextualized description of the DASH client model. The client buffer is then
presented as an M/D/1/K queue as a part of the MDP model.



102

7.3.1 Markov Decision Process

An MDP is made up of a set of states S, a set of actions A, a state transition probability
matrix P, and a reward function R. The probability of transitioning from state s to s′ via
an action a at time t is given by

Pass′ = Pr
{
st+1 = s′ | st = s, at = a

}
,

where {st, st+1} ∈ S and at ∈ A. The value of a state is a measure of how good it is to be
in that state and is defined by the expected future reward, which, in turn, consists of the
immediate reward Rass′ and the discounted values of future states V (s′). Therefore,

V (s) =
∑
s′

Pass′
{
Rass′ + γV (s′)

}
= E

{
Rass′ + γV (s′)

}
= E

{
rt+1 + γ

∞∑
k=0

γkrt+k+2

}

= E

{ ∞∑
k=0

γkrt+k+1

}
(7.1)

where γ ∈ [0, 1] is a discounting factor that is applied to future state rewards in order to
account for prediction uncertainty. Furthermore, a policy π maps each state to an action
with probability π(s, a). Therefore,

V π(s) = Eπ {V (s)}

=
∑
a

π(s, a)

(∑
s′

Pass′
(
Rass′ + γV π(s′)

))
,

(7.2)

where Eπ is the expected value under the probability distribution given by policy π. There-
fore, V π(s) is the probability-weighted average of all possible actions while in state s. The
value of just a single action, Qπ(s, a), is V πwithout the expectation Eπ. Therefore,
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Qπ(s, a) =
∑
s′

Pass′
(
Rass′ + γV π(s′)

)
. (7.3)

Combining Equations (7.2) and (7.3) gives

V π(s) =
∑
a

π(s, a)Qπ(s, a). (7.4)

Since Qπ(s, a) accounts for just a single action, Equation (7.3) can be reformulated by
focusing the probabilty-weighted average on just the values of future states to give

Qπ(s, a) = Rass′ + γ
∑
s′

Pass′V π(s′). (7.5)

Combining Equations (7.4) and (7.5) yields a recursive formula that forms the basis for
solving MDPs, i.e.,

V π(s) =
∑
a∈A

π(s, a)

(
Rass′ + γ

∑
s′∈S
Pass′V π(s′)

)
(7.6)

Qπ(s, a) = Rass′ + γ
∑
s′∈S
Pass′

∑
a′∈A

π(s′, a′)Qπ(s′, a′). (7.7)

Solving an MDP means finding an optimal policy that maximizes V π and Qπ. Therefore,
the optimal state value function V ∗(s) is defined as:

V ∗(s) = max
π

V π(s)

= max
a
Rass′ + γ

∑
s′∈S
Pass′V π(s′).

(7.8)

Similarly, the optimal action value function Q∗(s, a) is defined as:

Q∗(s, a) = max
π

Qπ(s, a)

= Rass′ + γ
∑
s′∈S
Pass′ max

a′
Qπ(s′, a′).

(7.9)
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V π and Qπ can be estimated using Monte Carlo simulation by averaging many random
samples of state and action values. However, for large state spaces, function approximators
can be used to represent the states using a finite state of parameters, which are then adjusted
according to observed returns. The latter is the basis for solving qMDP as discussed in
Section 7.3.5.

7.3.2 Modeling a DASH Client as an MDP

Consider a DASH client that has just downloaded segment i of playback length L seconds
and encoded with bitrate q. The resulting buffer level, Bi+1, measured in seconds of video
data, is given by:

Bi+1 = Bi + L− S(qi+1)

wi
, (7.10)

where Bi is the previous buffer level, wi is the measured bandwidth during downloading, qi
is the encoded bitrate of the segment, and S(·) is a byte size indicator function. Therefore,
the new buffer level is determined by adding the playback length of the downloaded segment
and subtracting the time it takes to download the segment.

Let ai(qi) be the action associated with choosing segment i from the representation whose
encoded bitrate is q. Then, Equation (7.10) can be rewritten as

Bi+1 = Bi + L− S(ai(qi))

wi
, (7.11)

and the segment bitrate transition qi+1 can be expressed as

qi+1 = ai(qi). (7.12)

Let the state of the DASH client be si = {Bi, B∗i , wi}, where B∗i is the desired buffer
occupancy for the upcoming state. Based on QoE requirements, 3 out of 4 reward functions
are defined. The higher the average bitrate, the higher the average quality of the video,
which leads to higher QoE. Therefore, the reward function of choosing bitrate q for segment
i, rqi , is an average of the bitrates of the previous j segments defined as
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rqi =
1

j

i∑
k=i−j+1

qk. (7.13)

The average is limited to j past segments to avoid averaging bitrates over the whole video
duration. Since a bitrate switch is detrimental to QoE, it constitutes a negative reward,
which is defined as the difference between the last bitrate and the upcoming bitrate selection
rsi given as

rsi = |ai(qi)− qi|. (7.14)

Finally, rri , is a negative reward based on rebuffering time, which is calculated as the excess
of download time over buffer capacity.

7.3.3 Modeling the Optimal Buffer Occupancy as an M/D/1/K Queue

The desired buffer occupancy B∗i is modeled as the average occupancy of an M/D/1/K
queue with finite capacity (K), Poisson (M) arrivals and a deterministic (D) service time of
one (1) segment at a time. Poisson arrivals are characterized by an exponential probability
distribution with arrival rate λ, which is also the parameter for an exponential distribution,
X ∼ exp(λ), given by

Furthermore, the Poisson process is characterized by independent and exponentially
distributed arrival times. Therefore, the expected value of the Poisson process, E[X], is
given by

E[X] =

∫ ∞
−∞

fX(t)dt, t ≥ 0

=

∫ ∞
0

λe−λtdt

=
1

λ

(7.15)

The segment arrival rate is given as the ratio of the network throughput, w, and the
segment size. At the same time, the segment size is a product of the segment’s encoded
bitrate q and playback length L, i.e., λ = w/(qL). For example, a 2-second segment of 4
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Mbps quality downloaded at 5 Mbps of network throughput yields the following arrival rate:

λ =
w

qL

=
5Mbps

(4Mbps)(2s)

= 0.625/s

Assuming normal playback speed, the service rate µ is 1 segment per segment duration,
i.e., µ = 1/L. Therefore, the utility of the queue ρ is given by

ρ =
λ

µ
=

w
qL
1
L

=
w

q
.

(7.16)

Brun et al. derived the steady state distribution equations for an M/D/1/K queue [24]
(see Appendix for the derivation). Let XK be the average number of customers in an
M/D/1/K queue. Therefore,

XK = K −
∑K−1

i=0 zi
1 + ρzK−1

(7.17)

where

zi =
i∑

j=0

(−1)j

j!
(i− j)je(i−j)ρρj

The queue capacity XK depends on the utility ρ, which in turn depends on the ratio of
the available bandwidth w and the encoded bitrate of the requested segment q. Therefore,
choosing q determines the buffer occupancy. However, since there is no prior knowledge of
w, a bandwidth estimation algorithm is required. This paper follows the recommendations
laid out by Yadav et al. [13] and uses an exponential moving average with the last three
throughput measurements. This method leads to the highest average bitrate with relatively
low bitrate switches for their method, which also models the client buffer as an M/D/1/K
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Figure 7.1: A graph of buffer reward (rb) vs. the difference between the current buffer (B)
and buffer target (B∗) for a 60-second buffer.

queue.
Our queueing model provides an optimal buffer occupancy, B∗i , according to the esti-

mated bandwidth. This is used in calculating the final reward function, rbi , defined by how
closely the current buffer occupancy, Bi, matches the optimal buffer level B∗i , i.e.,

rbi = 1−
(
| Bi −B∗i |

K

)k
, (7.18)

where k ∈ (0, 1) and is proportional to the rate of reward increase as the buffer approaches
its target. For instance, Figure 7.1, shows rb for different values of k. The graph gets steeper
as |Bi−B∗i | approaches 0, which corresponds to the maximum reward of 1. This incentivizes
the agent to seek higher rewards by choosing actions that minimize | Bi −B∗i |.

The total reward ri is a weighted sum of the individual reward functions expressed as

ri = cqr
q
i − csr

s
i − cfr

f
i + cbr

b
i (7.19)
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7.3.4 The qMDP State Space

Based on Sections 7.3.2 and 7.3.3, let the state of the DASH client be s = {B,B∗, w}. The
average queue length, XK , given in Equation (7.17), can be used to obtain the desired buffer
occupancy, B∗. The buffer generally needs to be filled up when the occupancy is low and
drained when the occupancy is high. Such control is usually done from the perspective of
one or more typically fixed thresholds that distinguish between starvation and overflow as
discussed in Section B.2. However, the optimal buffer occupancy in the proposed qMDP is
based on observed experience instead.

The buffer slack will be denoted as B̂∗ such that B∗ + B̂∗ = K. Recall that XK is a
function of ρ, which, in turn, depends on bandwidth and bitrate as shown in Equation (7.16).
B∗ can be set in two ways. On one hand, choosing a particular bitrate explicitly sets the
desired buffer occupancy. This strategy will be referred to as ψ and the corresponding buffer
occupancy B∗ψ. On the other hand, B∗ can also be determined implicitly using strategy ω to
set the desired slack, B̂∗ω. This strategy includes a simple heuristic from QUETRA, which
outperforms many state-of-the-art methods [13], but with an important addition. In order
to sufficiently explore our RL environment, the slack is sampled from a normal distribution,
rather than simply setting the slack equal to the current buffer occupancy. The QUETRA
slack target (current buffer occupancy) is used as the mean parameter, µω, in a normal
distribution, f(B̂∗ω | µω, σ2ω), where σ2ω is the variance. In addition, σ2ω is proportional to the
distance, D(X,µω), between µω and the buffer terminal (i.e., zero or maximum capacity),
depending on which one is closer. As a result, the further µω is from either buffer terminal,
the larger the sample space for B̂∗ω. D(X,µω) is defined as

D(X,µω) =

| µω − 0 | µω <
XK
2

| µω −XK | µω >
XK
2 .

B∗ is then picked using the strategy ψ with probability PB and the strategy ω with
probability 1 − PB. The state space is then upgraded to include the parameter PB, which
ranges from 0.1 to 0.9 at intervals of 0.1. With the definition of B∗, the state space is now
completely defined as s = {B,B∗, w, PB}. Figure 7.2 shows the difference between B̂∗ω and
the QUETRA slack target.



109

Figure 7.2: A client buffer showing the difference between B̂∗ω and the QUETRA slack target.
Note that | a |=| b | .

7.3.5 Solving qMDP

There are several approaches to solving qMDP. Since the probability transitions and the
rewards are unknown, a model-free solution is required. RL can be used to obtain the optimal
action-value function, Q∗(s, a). In particular, an agent learns the optimal policy through
interactions with an environment. It observes a state then takes a corresponding action.
It then receives an immediate reward and transitions to a new state. This is illustrated in
Figure 7.3 in the context of qMDP, where the adaptive bitrate controller is the agent, the
actions are bitrate decisions, rewards are based on QoE metrics, and the state is a set of
observed metrics as described in Section 7.3.4.

RL can be used to obtain the optimal action-value function, Q∗(s, a) by iteratively
updating the the action-value function. A greedy policy achieves this by always selecting an
action, a∗, that maximizes Q, i.e,
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Figure 7.3: Reinforcement learning in the context of qMDP.

a∗ = argmax
a

Q(s, a).

This is referred to as Q-learning [25]. However, a purely greedy policy ignores states
that result from actions with lower Q-values, thus limiting potential policy improvement. In
order to explore these additional states, a random action is chosen with a small probability,
ε, while the greedy action is picked with probabilty 1− ε. This is referred to as an ε-greedy
policy and it converges to the optimal policy better than a purely greedy one [26].

A basic approach is to build an initial Q-table with arbitrarily set Q-values (i.e., state-
action pairs) for the function Q(s, a). An action is selected using the ε-greedy policy, the
reward is measured, and a Q-update is performed as follows:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)], (7.20)

where α ∈ [0, 1] is the learning rate. This is repeated until an optimal Q-table, Q∗(s, a), is
obtained.

In practice, however, this approach is too inefficient for our application, which has a con-
tinuous state space, i.e., an effectively infinite number of states, each comprising a network
bandwidth estimation and a buffer occupancy measurement. Even if the available band-
width range was just 1,000 bps and the buffer capacity was 10 seconds, this would result in
10,000 states. In reality, available bandwidth can range from hundreds of Kbps to tens of
Mpbs, while the buffer capacity can be on the order of minutes. Furthermore, the number
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of state-action pairs is vast and is equal to the number of states multiplied by the number
of actions (i.e., the available video bitrate choices).

Besides the inefficiency, this simple approach is unstable as small Q-updates lead to
drastic changes in the policy. At the same time, Q∗(s, a) tends to be biased towards a specific
sequence of states and actions and would need to be repeated for each different sequence [27].
The large state space can be fit into a compact representation using function approximation,
while experience replay can be used to reduce instabilility by removing correlations in the
state-action sequence. Furthermore, this produces a generalized version of Q∗(s, a) that can
be applied to different state-action sequences.

A typical function approximator is a deep neural network (DNN), which results in
Q(s, a; θ) ≈ Q∗(s, a), where θ is a limited set of parameters used to represent a large state
space. A DNN is a multi-layer representation of data that becomes increasingly abstracted
with the number of layers. In the context of Q-learning, it is referred to as a deep Q-network
(DQN) [27]. Experience replay adds stability to the DQN by storing experiences such that
Dt = {e1, . . . , et}, where et = (st, at, rt, st+1) is an experience at at time t. During learining,
Q-updates are done only on samples of experience drawn uniformly at random from D rather
than the complete sequence.

A DQN can be trained towards Q∗ by optimizing a loss function across a series of itera-
tions. Each iteration consists of reducing the mean square error between an approximate cur-
rent action-value function, Q∗(s, a; θi), and an approximate target value r+γmaxa′ Q(s′, a′; θ−i ),
where θi is the set of parameters to be adjusted at iteration i, while θ−i is a set of parameters
from some previous iteration. This results in the following loss function:

Li(θi) = Es,a,r,s′
[(

r + γmax
a′

Q(s′, a′; θ−i )−Q(s, a; θi)

)2
]
, (7.21)

Since the loss function is quadratic in nature, optimization is reduced to finding a global
minimum. This can be done using gradient descent, which involves tracing loss function in
the direction of the steepest decline by taking its derivative with respect to the weights, θ,
for each iteration i as follows:
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Figure 7.4: Asynchronous advantage actor-critic training model.

∇θiL(θi) =



∂L(θi)
∂θi,1

∂L(θi)
∂θi,2

...

∂L(θi)
∂θi,n


.

The resulting gradient descent is:

Es,a,r,s′
[(
r + γmax

a′
Q(s′, a′; θ−i )−Q(s, a; θi)

)
∇θiQ(s, a; θi)

]
. (7.22)

Once the L is minimized, the resulting weights consitute the parameters for a model of
Q, given by Q(s; a; θ).

7.4 Training Algorithm

This section describes the training algorithm for qMDP. It employs a state-of-the-art method
called asynchronous advantage actor-critc (A3C) [28]. It includes two neural networks, i.e.,
an actor network and a critic network as shown in Figure 7.4. Both networks take the state
variables as input. The output of the actor network is the optimal policy, πθ(s, a), i.e., the
probability distribution over possible actions given a state input.

Meanwhile, the critic network evaluates the performance of the actor via an advantage
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function,

Aπθ(s, a) = Qπθ(s, a)− V πθ(s). (7.23)

Based on Equation 7.2, V πθ(s) is the expected total reward from state s under policy πθ.
Therefore, Aπθ(s, a) shows how good the value of an action a is compared to the average
action taken. Temporal Difference (TD) learning [14] is used to learn an estimate of V πθ

from the critic network by training its own set of parameters. The actor network parameters
are then updated via policy gradient. Let a policy objective function, J(θ), be the expected
advantage under policy πθ. If πθ is differentiable then the gradient of J(θ) maximizes the
advantage, i.e.,

J(θ) = Eπθ(A
πθ)

∇θJ(θ) = Eπθ [∇θlogπθ(s, a)Aπθ(s, a)] .
(7.24)

Similar to the vanilla Q-update in Equation 7.25, the actor network parameters, θ, are
then updated as follows:

θ ← θ + α
∑
t

∇θlogπθ(st, at)A(st, at), (7.25)

where α ∈ [0, 1] is the learning rate. Once θ is optimal, the critic network’s job is done and
the actor network can be used to make bitrate decisions in a streaming environment.

7.5 Experiment Setup

A Python-based simulator was used to implement and test qMDP. Simulation offered quick
prototyping by being able to play several hundered hours of videos in less than an hour.
The streaming environment was based on the DASH reference player [29]. When the client
requested a video bitrate, its buffer was filled with the playback time of the video chunk
it received. At the same time, the buffer was drained by the time it took to download the
chunk and the concurrent playback time. When the buffer was empty while waiting for a
chunk to be downloaded this was registered as a rebuffering instance. The time it took for
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playback to resume was the corresponding rebuffering time.
The network traces used in our experiment consist of 269 4G/LTE traces collected on

trips by mass transit, bicycle, and foot [30]. Video encoded in H.264 was served continuously
with bitrate choices of {300, 750, 1200, 1850, 2850, 4300} Kbps. The NN architecture was
implemented using TensorFlow [31].

QoE Metrics

Video quality is highly subjective and there are several ways of measuring QoE. In our
experiments, we used a common version proposed by Yin et al. [11], i.e.,

N∑
n=1

q(Rn)− µ
N∑
n=1

Tn −
N−1∑
n=1

| q(Rn+1)− q(Rn) |, (7.26)

where N is the total number of video segments, Rn is the bitrate of segment n, q(Rn)

is a corresponding subjective quality rating, and Tn is rebuffering time due to downloading
segment n. The first term rewards higher bitrates, while the second and third terms penalize
rebuffering and bitrate changes respectively. We then add a third

qMDP Settings

In order to speed up convergence, 16 agents are trained in parallel, each with its own actor
and critic networks. Each agent experiences video streaming on a random network trace.
At each training step, video metrics are used to calculate reward and the actor network
generates a probability distribution for the different bitrates. At every 100 training steps,
a central agent gathers experience from all the parallel agents and create a mini-batch that
is used for performing gradient descent. The central agent then updates the parallel agents
with the updated network parameters. A discount factor γ = 0.99 is used during training.
The learning rate, α, is 10−4 for the actor network and 10−3 for the critic network.

7.6 Results

Our results compare qMPD against a RL base case provided by Pensieve [22]. Figure 7.5
shows the average reward per network trace for qMDP and Pensieve. On average, qMDP’s
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Figure 7.5: Total average reward of qMDP and Pensieve for 142 traces.

Figure 7.6: Cumulative Distribution Function of total rewards for Pensieve and qMDP.

reward is 16.6 points better than Pensieve, with a maximum of 46.95 points at trace index
24. Figure 7.6 shows a cumulative distribution funciton (CDF) of total rewards for both
Pensieve and qMDP. Since we want to maximize reward, the more the graph is to the right,
the better. For instance, a CDF value of 50 shows that about 99 videos have a maximum
reward of 50, compared to just 49 for qMDP. This means that there is greater proportion
of videos whose reward exceeds 50 for qMDP compared to Pensieve. Similarly, 128 videos
have a maximum reward of 75 compared to 117 for qMDP.
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Figure 7.7: Cumulative Distribution Function of total rewards for k ∈ {0.4, 1.4} in rb.

7.6.1 Buffer Reward Function Parameter

The buffer reward function, rb includes an exponential parameter, k, that was evaluated to
provide the optimal results. We found that, in general, rb improves as k increases. Each of
the values shown in Figure 7.1 was evaluated with performance increasing from k = 0.4 and
plateauing at k = 1.4. Figure 7.7 shows CDF of the total reward between these two values.

7.7 Conclusion

This paper has demonstrated a queueing-theory-based approach to building a state space
for reinforcement learning towards improving adaptive streaming. A reward signal based
on conventional QoE metrics has been augmented with a reward function based on an
ideal buffer target as dictated by the M/D/1/K queue. Our results show that this offers
reinforcement learning an alternative approach to constructing the state space while also
delivering improved QoE.
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This appendix presents the derivations for the steady-state distribution equations for
an M/D/1/K queue for completeness, which is based on the analysis provided by Brun et
al. [24]. Let qj be the probability that j customers are left in the queue and αn be the
probability that there are n arrivals during a customer service. Therefore, based on Poisson
arrivals,

αn =
ρn

n!
e−ρ.

The probability transition matrix Π is given by [32]:

Π =



α0 α1 α2 · · · αK−2 1−
∑K−2

0 αn

α0 α1 α2 · · · αK−2 1−
∑K−2

0 αn

0 α0 α1 · · · αK−3 1−
∑K−3

0 αn

...
...

...
. . .

...
...

0 0 0 · · · α0 1− α0


.

Each entry in Π represents a transition probability πi,j from state i to j, where the rows
are indexed by i and the columns by j. Since Π is ergodic [33], there exists a stationary
distribution Q = [q0, · · · , qK−1] that is an eigenvector to Π. Therefore, QΠ = Q, which
produces the following system of linear equations:

α0 + αq1 = q0

α1 + α1q1 + α0q2 = q1

...

αK−2 + αK−2q1 + · · ·+ α0qK−1 = qK−2.

(27)

Let qn = anq0 for all n ≥ 0. Therefore, a0 = 1, a1 = eρ − 1, and

ak = eρ

(
ak−1 −

k−1∑
i=1

αiak−i − αk−1a0

)
, (28)
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where 2 ≤ k ≤ K − 1. Let A(z) be the z-transform for the sequence an, i.e.,

A(z) =
∞∑
n=0

anz
n. (29)

Combining Equations (28) and (29), gives

∞∑
n=0

anz
n =

∞∑
n=0

αna0z
n +

∞∑
i=1

∞∑
n=0

αnaiz
n+i−1,

which leads to

A(z) = a0e
−ρ

∞∑
n=0

(ρz)n

n!
+

1

z

∞∑
i=1

aiz
i
∞∑
n=0

αnz
n

= a0e
ρ(z−1) +

eρ(z−1)

z
(A(z)− a0)

=
1− z

1− zeρ(1−z)
.

Furthermore, let A(z) take the form (1− z)B(z), where B(z) = 1/(1− zeρ(1−z)). Therefore,

∞∑
n=0

anz
n =

∞∑
n=0

bnz
n − z

∞∑
n=0

bnz
n

= b0 + z

∞∑
n=1

(bn − bn−1)zn),

which implies a0 = 1 and an = bn− bn−1 for n ≥ 1. In order to obtain an explicit expression
for bn, let

F (z) =

∞∑
m=0

emρ(1−z)zm,

where m = n− k. Setting F (z) = B(z) yields
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bn =
n∑
k=0

(−1)k

k!
(n− k)ke(n−k)ρρk

—

By normalization,
∑N−1

k=0 qk = 1. Therefore,

q0 =
1∑N−1

k=0 ak
=

1

bN−1
,

and

qn = anq0 =
bn − bn− 1

bN−1
, n > 0.

The queue length distribution is given by P = [P0(N), · · · , PN (N)], where PK(N) is
the probability that the queue length is K out of a capacity N . Therefore, P0(N) is the
probability that the queue is empty and PN (N) is the probability that it is full. It thus
follows that the probability that the queue is not full is given by (1−PN (N), while (1−P0(N)

denotes the probability that the queue is not empty. Therefore, the arrival and service rates
follow the following conservation law:

λ(1− PN(N)) = µ(1− P0(N))

1− PN (N) =
1

ρ
(1− (1− PN (N))q0)

1− PN (N) =
bN−1

1 + ρbN−1

PN (N) = 1− bN−1
1 + ρbN−1

.

Let XN be the average queue length, which can also be viewed as the expected length
of the queue. Therefore,
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XN = E[N ]

=
N∑
k=0

kPk(N)

= N +

∑N−1
k=1 k(bk − bk−1)−NbN−1

1 + ρbN−1

= N −
∑N−1

i=0 bk
1 + ρbN−1

(30)
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Appendix A: General Conclusion

The ubiquity of high quality video along with the proliferation of wireless devices has neces-
sitated advancements in both video technology and networking infrastructure. The state-of-
the-art in video streaming is HTTP adaptive streaming. Through several manuscripts, this
dissertation presented various solutions for adaptive streaming using both dual protocols
and reinforcement learning.

Chapter 2 evaluated H.264-encoded video streaming in 802.11 networks, and charac-
terized the problems posed by congestion and hidden nodes. From this study, the H.264
specification demonstrated specific ways of addressing degraded video quality. One of these
was through error concealment. Chapters 3 and 4 showed that spatial motion vector re-
covery using WNVMVA is able to capture properly received motion vectors and conceal
lost ones better than most spatial methods. VLC, a popular multimedia framework favored
WNVMVA around 50% of the time from a pool of 8 candidate error concealment algorithms.

Chapters 5 and 6 reviewed FDSP and showed that it is suitable for for high quality, low-
latency HD video streaming over the Internet by combining the reliability of TCP with the
low-latency of UDP. Our implementation and experiments on a real testbed showed that
FDSP results in significantly less rebuffering than TCP-based streaming and much lower
PLR than UDP-based streaming. Furthermore, FDSP was shown to provide improved QoE
relative to HAS through a higher average bitrate and a more stable client buffer. Chapter
7 showed that there is great potential in constructing a reinforcement learning state space
beyond observable streaming metrics. By characterizing the client buffer using queueing
theory, we are able to not only achieve an enhanced state space, but also improve QoE
relative to pre-existing reinforcement learning algorithms.

Appendices A and B analyzed the effect of varying FDSP substream lengths and the
extent to which UDP and TCP data streams are overlapped. These studies showed that
substream length can be increased while decreasing rebuffering.

The future of video streaming is bright as advances in networking and video content
continue to rise simultaneously. As 5G technology marches on towards being mainstream,
immersive media such as 360 video and augmented/virtual/mixed reality is becoming in-
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creasingly common. As a result, corresponding advances in codecs and content delivery will
be required to not only accommodate these new technologies, but also rising video demand.



124

APPENDICES



125

Analysis of Optimum Substream Lengths for Dual TCP/UDP
Streaming of HD H.264 Video Over Congested WLANs

Arul Dhamodaran, Kevin Gatimu, and Ben Lee

Proceedings of the 14th Annual IEEE Consumer Communications and Networking Confer-
ence (CCNC),
Las Vegas, NV, USA, January 8-11, 2017
https://doi.org/10.1109/CCNC.2017.8015366



126

Appendix A: Analysis of Optimum Substream Lengths for Dual
TCP/UDP Streaming of HD H.264 Video Over Congested WLANs

Flexible Dual-TCP/UDP Streaming Protocol (FDSP) is a new method for streaming H.264-
encoded High-definition (HD) video over WLANs. FDSP streaming is done in sequential
video segments or chunks called substreams. Substreams are typically used in HTTP/TCP
streaming for efficient switching between different quality levels of video. However, in FDSP,
substream lengths are used to control the amount of TCP data that needs to be sent prior
to the playback of that substream. Substream length choice also affects the corresponding
amount of UDP data. This paper presents an analysis of substream length modification in
the context of FDSP. Our results show that as substream length increases, TCP rebuffering
time decreases while the number of TCP rebuffering instances increases. However, our
results also show that substream length alone does not have a clear correlation with UDP
packet loss.

A.1 Introduction

High-definition (HD) video streaming is a critical technology for today’s multimedia appli-
cations. These video streaming applications can be broadly classified into Video on Demand
(VoD) services and direct device-to-device steaming over WLANs. VoD services generally
involve streaming servers that deliver HD video content to the end-user via the Internet, e.g.,
Netflix, Hulu, Amazon Video, etc. On the other hand, direct device-to-device streaming over
WLANs is typically seen in home entertainment systems. They facilitate HD video sharing
through screen mirroring and other N-Screen applications [1]. However, as more wireless
devices become inter-connected, networks will need to support multiple video streams. This
will pose significant challenges for providing uninterrupted HD video streaming.

Video streaming is based on either Transmission Control Protocol (TCP) or User Data-
gram Protocol (UDP). TCP facilitates HTTP-based streaming as is the case with VoD
services. Meanwhile, direct device-to-device streaming applications that require real-time
responsiveness rely on UDP. Using either UDP or TCP has its advantages and disadvantages.
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Frame distortion due to UDP packet loss 

Error propagation

Playback
t

UDP packet loss

Figure A.1: Frame distortion due to UDP packet loss. Note that packet loss also causes
frame distortion in subsequent frames due to error propagation.

UDP is better suited for applications that require low latency, e.g., live video streaming, in-
teractive video, and screen mirroring. However, UDP suffers from packet loss due to its
unreliable nature, which results in degraded video quality. On the other hand, TCP is a re-
liable protocol that guarantees packet delivery, which ensures perfect video quality. However,
TCP suffers from packet delay that leads to rebuffering, and thus stalled video playback.

Figure A.1 illustrates the video quality degradation due to UDP packet loss, which affects
not only the frame for which the packet loss occurred but also subsequent frames that use
this frame as the reference frame (referred to as error propagation). Figure A.2 illustrates
the effect of rebuffering caused by TCP packets arriving at the receiver after the playout
deadline. This delay causes the received video to stall and wait for more packets to arrive
before resuming playback.

Our prior work in [2] proposed a new hybrid H.264 video streaming technique called
Flexible Dual-UDP/TCP Streaming Protocol (FDSP) that leverages the advantages of both
UDP and TCP for HD video streaming between devices over a WLAN. FDSP uses TCP
to guarantee delivery of the more important elements of a H.264-coded bitstream, such as
Sequence Parameter Set (SPS), Picture Parameter Sets (PPSs), and slice headers, while the
rest of the data is transported via UDP. This gives the H.264 decoder a better chance of
decoding received video even when packet loss occurs. Overall, FDSP was shown to strike
a balance between visual quality and delay by achieving higher video quality than pure-
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Figure A.2: Rebuffering due to late TCP packets.

UDP and less rebuffering than pure-TCP. FDSP was improved upon in [3] by introducing
Bitstream Prioritization (BP) to reduce UDP packet loss and error propagation. BP is
an adjustable metric that is used to select additional H.264 data to be transported over
TCP. Increasing BP decreased UDP packet loss but also increased TCP rebuffering time
(i.e., the total amount of time the video spends in the stalled state) and instances (i.e., the
number of times the video stalls). FDSP-BP was further improved by using Adaptive BP
that dynamically adjusts the BP parameter based on estimated TCP rebuffering time and
UDP packet loss ratio (PLR) [4]. This further reduced both packet loss and rebuffering.

FDSP-based streaming is done in sequential video chunks called substreams. For each
substream, the important syntax elements are sent first via TCP and then the rest of the
data is sent via UDP. Therefore, the substream length determines the amount of TCP data
that needs to be sent prior to the playback of that substream. In addition, the amount
of TCP data affects rebuffering time (i.e., delay) between substreams. It also determines
TCP transmission time, which in turn affects whether or not UDP packets meet the playout
deadline at the receiver. The substream length also affects the total number of substreams,
which is directly related to the number of possible rebuffering instances. In our prior work
on FDSP, the substream length was chosen to be fixed at 10 seconds [5]. This paper analyzes
how varying substream lengths affect UDP PLR and TCP rebuffering time and instances.
Based on our results, better insight can be developed on how FDSP-based streaming can be
furthered enhanced.
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A.2 Related Work

Substream implementations for video streaming applications are commonly found in HTTP
Adaptive Streaming (HAS) technology [6]. HAS aims to adjust video to the best possi-
ble quality (i.e., bitrate) under fluctuating network conditions. As such, HAS segments a
video into multiple substreams, and dynamically switches between different quality levels
(i.e., bitrates) as the video transitions from one substream to the next based on network
conditions.

Existing proprietary HAS technologies use different substream lengths. For example,
Microsoft Smooth Streaming (MSS) specifies 2-second substreams [7], Apple HTTP Live
Streaming (HLS) typically targets a maximum of 10 seconds per substream [8], and Adobe
HTTP Dynamic Streaming (HDS) substreams vary between 2 and 5 seconds [9]. These
substream lengths are relatively short so that the streaming system can react fast enough
to changes in network conditions while avoiding extra overhead [10].

In addition to these proprietary solutions, Dynamic Adaptive Streaming over HTTP
(DASH) is an open standard for HAS introduced by MPEG in 2012 [11]. DASH provides no
specification on substream lengths, and instead, this is left to the implementer. For example,
in [12], Scalable Video Coding (SVC) is used to provide different bitrate versions of a video
in a single media file rather than using multiple files with varying quality levels. Since all
versions are encoded in the same file, there is flexibility in choosing not only the quality
level but also the substream length based on media content.

Another HAS improvement based on substream length was proposed in [5]. A substream
length of around 10 seconds is found to be sufficient for calculating how quickly a receiver
fetches a substream. The network bandwidth can be determined solely from the application
layer by observing the difference between fetch time and playout duration for a particular
substream, and used by the adaptation algorithm.

The aforementioned substream length implementations are designed for HTTP stream-
ing, which is TCP-based. Furthermore, they are aimed at efficient switching between dif-
ferent quality levels of the same video in order to achieve the best quality of experience
(QoE) [6]. As a result, they are orthogonal to FDSP-based streaming since it can be com-
bined with HAS and used within each quality level. However, to the best of our knowledge,
there is no prior work on substream lengths for video streaming that is based on both
TCP and UDP. Therefore, this paper looks at how different substream lengths affect FDSP
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Figure A.3: Flexible Dual-UDP/TCP Streaming Protocol (FDSP) Architecture [2] aug-
mented with modified MUX and DEMUX modules for FDSP-BP.

streaming. In addition, rather than optimizing bitrate switching, our analysis is focused on
minimizing UDP packet loss and TCP rebuffering for a single version of high quality video.

A.3 Background on FDSP

This section provides an overview of FDSP, including its architectural features, video stream-
ing using substreams, and factors affecting video quality. For more details, see [2], [3] and
[4].

A.3.1 FDSP Architecture

FDSP is a new hybrid streaming protocol that combines the reliability of TCP with the
low latency characteristics of UDP. Figure A.3 shows the FDSP architecture consisting of a
sender and a receiver.

At the sender, H.264 video data is first processed by the H.264 Syntax Parser in order
to detect critical NAL units, i.e., SPS, PPS, and slice headers. The rest of the NAL units
are primarily slice data. The RTP Packetizer then encapsulates each NAL unit according
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to the RTP Payload Format for H.264 video [13]. The Demultiplexer then directs the
RTP packets containing critical NAL units to the TCP stream and the rest to the UDP
stream. Meanwhile, Dual Tunneling keeps both TCP and UDP sessions active during video
streaming. The BP Selection module sets the Bitstream Prioritization (BP) parameter,
which represents a percentage of I-frame data that is also sent via TCP in addition to the
original critical NAL units. BP is adjusted dynamically according to available network
bandwidth.

In the receiver, the Multiplexer discards late UDP packets while rearranging TCP and
UDP packets based on their RTP timestamps. This reordering is important for the H.264
Decoder to receive NAL units in the original decodable bitstream order.

A.3.2 FDSP Video Streaming using Substreams

During streaming, the FDSP sender subdivides the video into 10-second substreams. This
minimizes initial buffering since all the TCP packets for a particular substream must be
received before playback begins for that substream. To further minimize rebuffering, the
TCP packets for the next substream are sent at the same time as the UDP packets for
the current substream. This is called substream overlapping as illustrated in Figure A.4.
However, rebuffering occurs whenever TCP packets for the current substream are not yet
all available and the receiver has to wait. The rebuffering time then postpones the playout
deadline for all subsequent packets.

Substream overlapping is initiated only when the network device’s IP queue is below the
TCP threshold as shown in Figure A.5. This prevents having too many TCP packets for the
next substream in the queue, which would interfere with successful UDP packet transmission
for the current substream (see Section A.3.3 for more details on UDP packet loss). In [2], it
was determined that 30% of the queue limit was the most suitable threshold.

A.3.3 Factors Influencing Video Quality in FDSP Streaming

FDSP-streamed video quality is affected by several factors, i.e., queue size, TCP threshold,
estimated available bandwidth, BP parameter, and substream length. Since the main focus
of this paper is to examine how different substream lengths affect FDSP video streaming,
this subsection briefly discusses the other four factors and their impact on FDSP. These four
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Figure A.5: IP queue containing both UDP and TCP packets. TCP packets are inserted
when the queue size is below 30% of the limit (300 Kbytes). UDP packets inserted beyond
the limit are considered lost.

factors are kept constant during our experiments (see Section B.5 for more details on the
experiment setup).
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A.3.3.1 Queue Size

This is the number of packets staged in the network device’s IP queue prior to transmission.
When the IP queue’s limit is reached, any extra packets that are inserted are lost, which are
referred to as queue drops. In FDSP, queue drops affect UDP packets, resulting in degraded
video quality due to packet loss and error propagation.

A.3.3.2 TCP Threshold

This is the queue size threshold below which TCP packets can be inserted into the queue.
The threshold is chosen such that TCP packets do not saturate the network due to retrans-
missions, which would lead to increased UDP packet loss and TCP rebuffering. Therefore,
the TCP threshold helps mitigate these effects.

A.3.3.3 Estimated Available Bandwidth and BP

TCP round-trip time and UDP packet loss are used to estimate the available bandwidth,
which determines how much data should be sent via TCP versus UDP based on the BP
parameter. This further reduces UDP packet loss while keeping TCP rebuffering time and
instances low.

A.4 Experimental Setup

For our experiments, two full HD (1920×1080 @30fps) 3-minute clips from a high-motion
(animation) video Bunny, and a low-motion (documentary) video Bears are used. These
videos are encoded using x264 with an average bit rate of 4 Mbps with four slices per frame.
Our simulation environment is Open Evaluation Framework For Multimedia Over Networks
(OEFMON) [14], which is composed of a multimedia framework, DirectShow, and a network
simulator, QualNet 7.3 [15].

OEFMON, which originally worked with only single-slice video, was modified to allow
for simulation of multi-slice H.264 videos. Within OEFMON, an 802.11g1 ad-hoc network
with a total bandwidth of 54 Mbps is set up as shown in Figure B.5. The distance between
each source and destination pair is 5 m and the distance between pairs of nodes is 10
m. These distances were chosen to mimic the proximity of multiple pairs of neighboring
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Figure A.6: Network configuration with 54 Mbps total bandwidth for simulating FDSP-
based streaming with background traffic.

streaming devices in an apartment setting. The primary video is streamed between nodes
1 and 2. At the same time, the remaining three node pairs simulate either a partially or
fully congested network by producing three constant bitrate (CBR) background streams that
induce interference within Carrier Sense Multiple Access (CSMA) range of the primary 4
Mbps video stream. The partially congested configuration has a total 20 Mbps of background
CBR traffic (i.e., 5, 10, and 10 Mbps streams), while the fully congested configuration has
a total of 50 Mbps of background CBR traffic (i.e., 10, 20, and 20 Mbps streams).

The primary video is streamed using FDSP with BP of 0% and 100%. These two
choices of BP values are based on our prior work [3], which showed that they represent
the two extreme effects of FDSP-based streaming, i.e., UDP PLR and TCP rebuffering are
maximized at BP of 0% and 100%, respectively, for 10-second substreams. Therefore, UDP
PLR and TCP rebuffering are effectively separated via their corresponding BP values in
order to study how substream length changes affect FDSP. For each BP value, 15 different
substream lengths, ranging from 1 to 15 seconds, are evaluated for each video.

Finally, the IP queue size limit and the TCP threshold are set at 300 Kbytes and 30%,
respectively, as shown in Figure A.5. Most video streaming applications today use a dynamic
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queue size that is application specific [16]. For our simulations, a fixed queue size of 300
Kbytes is used.

A.5 Results

This section presents the results of our study on how substream length affects FDSP stream-
ing in terms of TCP rebuffering and UDP PLR.

A.5.1 Impact of Substream Length on TCP Rebuffering

Figures A.7 and A.8 show the effects of substream length on the two test videos in both
partially and fully congested networks, respectively, with BP of 100%.

For the partially congested network scenario, the number of FDSP rebuffering instances
for both videos decreases slightly as the substream length increases, and then remains con-
stant. For example, in the Bunny video (Figure A.7a), substream lengths of 1 and 2 seconds
incur 6 and 2 rebuffering instances with a total rebuffering time of 3.26 and 3.34 seconds,
respectively. In the Bears video (Figure A.8a), 1- and 2-second substreams incur 8 and 5 re-
buffering instances with a total rebuffering times of 2.41 and 2.87 seconds, respectively. The
results in Figures A.7a and A.8a also show that even with sufficient bandwidth, pure-TCP
rebuffering still occurs and is greater than FDSP-TCP rebuffering. For example, the total
pure-TCP rebuffering times for Bunny and Bears are 19.6 and 16 seconds, respectively.

In comparison to the partially congested network scenario, the rebuffering results for the
fully congested network scenario are much more pronounced. For example, in the Bunny
video (Figure A.7b), there are 51 instances of rebuffering for 1-second substreams, compared
to 8 instances for 15-second substreams. This is because longer substreams result in fewer
substreams for a given video duration, and thus fewer substream transitions. Therefore,
there are correspondingly fewer opportunities for the video to stall. Meanwhile, 1-second
substreams have a total buffering time of 26.52 seconds compared to 42 seconds for 15-second
substreams.

Figure A.8b shows that the rebuffering characteristics of Bears are similar to those
of Bunny for the fully congested network scenario. However, rebuffering in Bears is less

1The version of the QualNet simulator used for our study only supports the IEEE 802.11g standard.
However, the simulation study can be easily adopted to 802.11n and 802.11ac by having more background
traffic to saturate the network.
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(b) Fully congested network

Figure A.7: Impact of substream length on TCP rebuffering time and instances in Bunny
in partially and fully congested networks with BP of 100%.
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(b) Fully congested network

Figure A.8: Impact of substream length on TCP rebuffering time and instances in Bears in
partially and fully congested networks with BP of 100%.

pronounced than that in Bunny due to lower level of motion. The Bunny video has a
significantly higher level of motion than Bears, and thus includes more TCP packets for
I-frames [17]. This is especially the case for BP of 100%, where all I-frame data is sent
through TCP.

Note that the overall number of TCP packets for a video at a particular BP value remains
constant in spite of changes in substream length. However, a longer substream will result in a
larger number of UDP packets in the IP queue, which causes the queue size to be larger than
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the TCP threshold for longer periods. Therefore, there are fewer opportunities to insert TCP
packets into the IP queue. This means that less TCP packets are sent through substream
overlapping and, instead, more are buffered in between substreams, thus increasing the total
TCP rebuffering time. Furthermore, the network becomes more saturated as the IP queue
fills up with more UDP packets. This increases the TCP average round-trip time and packet
loss, and thus the number of retransmissions.

Nevertheless, the FDSP rebuffering times for both scenarios are less than pure-TCP
rebuffering time, which is consistent with results from our previous work [3]. For this reason,
the average time per instance of pure-TCP rebuffering is high despite the corresponding low
number of rebuffering instances. For example, in the fully congested network scenario with
Bunny, there are just 10 instances of pure-TCP rebuffering, but each one lasts an average
of 7.8 seconds.

In comparison to BP of 100%, a BP value of 0% has minimal effect on TCP rebuffering,
which is consistent with our prior work for fixed 10-second substreams [3, 4]. For example,
in the fully congested network scenario with Bunny, only one instance of rebuffering occurs
with a total rebuffering time of 1.54 seconds for 1-second substreams compared to 6.3 seconds
for 15-second substreams.

A.5.2 Impact of Substream Length on UDP Packet Loss

Figure A.9 shows how substream length affects UDP packet loss with BP of 0% in partially
and fully congested network scenarios for both videos. The partially congested network
scenario has less PLR than the fully congested one due to higher bandwidth availability.
Nonetheless, FDSP streaming in both scenarios exhibits erratic fluctuations in UDP PLR
with respect to substream length changes.

Furthermore, there are multiple peaks in PLR at different substream lengths. This
behavior can be attributed directly to peaks in TCP transmission time. For example, in
Figure A.9b, there are spikes in UDP PLR for substream lengths of 8, 11 and 13 seconds
in the fully congested network scenario. Table A.1 shows the relationship between the total
TCP Transmission time and UDP PLR for these substream lengths (indicated in bold) as
well as the adjacent ones. As can be seen, peaks in UDP PLR correspond to peaks in TCP
transmission time. At the same time, TCP transmission time is affected by factors such as
IP queue limit, average IP queue level, and TCP threshold. Analysis of these factors in the
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context of UDP packet loss is left as a future work. Nevertheless, UDP packet loss for FDSP
at different substream lengths is always less than pure-UDP packet loss, which is consistent
with results in our previous work [2].

These results show that there is no significant correlation between substream length
changes and UDP PLR. Our results also show that there is minimal UDP packet loss for BP
of 100%, i.e., less than 1%. This is because the high ratio of TCP-to-UDP packets decreases
the chances of UDP packet loss. This matches our results for fixed 10-second substreams [3,
4].

A.5.3 Recommendation on Substream Length Choice

Our study shows that the most appropriate range of substream length is from 6 to 10 seconds.
This is based on the fully congested network scenario because it affects TCP rebuffering and
UDP PLR more adversely compared to the partially congested network scenario. The lower
bound is chosen because the number of rebuffering instances increases almost exponentially
for every 1-second decrease in substream length below 6 seconds (see Figures A.7b and A.8b).
Furthermore, the number of rebuffering instances decreases up to the 12-second substream
mark. Beyond this, there is no further improvement in rebuffering instances. However,
the upper bound on substream length was chosen to be 10 seconds based on suitable initial
buffering time. The 6-second and 10-second substream length videos have an initial buffering
of about 5 seconds and 8 seconds, respectively, under the fully-congested network condition.
However, in an ideal network condition, this initial delay is only 3 seconds and 5 seconds,
respectively. These results show that initial delay incurred by FDSP streamed videos falls

Substream
Length (sec)

Total TCP Tx
Time (sec)

UDP
PLR (%)

7 96.83 7
8 99.64 25
9 95.26 6
10 95.48 7
11 98.96 20
12 95.2 7
13 100.12 33
14 96.83 25

Table A.1: Relationship between the total TCP transmission time and UDP PLR in Bears.
The bold entries correspond to spikes in UDP PLR.
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Figure A.9: Impact of substream length on UDP packet loss in partially and fully congested
network scenarios with BP of 0%.

well within the user-acceptable range of 8 to 16 seconds [18].
Our recommendation for substream length choices does not take into account UDP PLR,

which requires further analysis based on the results as discussed in Section A.5.2.

A.6 Conclusion and Future Work

This paper analyzed the effect that different substream lengths have on video streaming in
the context of Flexible Dual-TCP/UDP Streaming Protocol (FDSP). Our study showed that
substream lengths have a direct effect on TCP rebuffering time and instances. As substream
length increases, TCP rebuffering time decreases while the number of TCP rebuffering in-
stances increases. However, substream length changes do not have a clear correlation with
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UDP packet loss. This lack of correlation is mainly attributed to its dependence on other
parameters such as IP queue size, TCP threshold, etc. Our results show that a substream
length of 6 to 10 seconds is best suited for FDSP video streaming.

As future work, we plan to analyze the effects of changing IP queue limit and TCP
threshold together with varying substream length in order to further investigate FDSP-
UDP packet loss. We also plan on modifying BP and substream length together towards
developing a system with dynamic substream length modification.

Adaptive Queue Management Scheme for Flexible Dual TCP/UDP
Streaming Protocol

Arul Dhamodaran, Kevin Gatimu, and Ben Lee

Proceedings of the 9th International Conferences on Advances in Multimedia (MMEDIA),
Venice, Italy, April 23-27, 2017
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Appendix B: Adaptive Queue Management Scheme for Flexible Dual
TCP/UDP Streaming Protocol

Flexible Dual-TCP/UDP Streaming Protocol (FDSP) is a new method for streaming H.264-
encoded High-definition (HD) video over wireless networks. FDSP streaming is done in se-
quential video segments or chunks called substreams. In FDSP, substream lengths are used
to control the amount of Transmission Control Protocol (TCP) data that needs to be sent
prior to the playback of that substream. To avoid frequent rebuffering, TCP packets of the
next substream are overlapped with the User Datagram Protocol (UDP) packets of the cur-
rent substream. The TCP threshold parameter determines when to overlap new TCP packets
with the current UDP stream. This paper analyzes the TCP threshold parameter in the con-
text of FDSP. Our results show that user Quality of Experience (QoE) can be enhanced by
adaptive adjusting of the TCP threshold using the additive-increase/multiplicative-decrease
(AIMD) algorithm based on the UDP packet loss rate and the TCP rebuffering.

B.1 Introduction

High-definition (HD) video streaming technologies have fundamentally changed the way mul-
timedia content is consumed. These video streaming applications can be broadly classified
into client-server and device-to-device streaming applications. Client-server based stream-
ing applications, such as Netflix, Hulu, Amazon Video, etc., typically involve a streaming
server to deliver multimedia content to the end user through the internet. On the other
hand, device-to-device wireless HD video streaming is enabled by technologies such as Ap-
ple AirPlay®, Google Chromecast®, and Wi-Fi Alliance’s Miracast® to facilitate various
multi-screen (i.e., N-screen) applications [1]. However, the explosion of wireless enabled
devices will strain the bandwidth limits due to the need to support multiple streams in the
same network.

All the aforementioned video streaming services and applications rely on either Transmis-
sion Control Protocol (TCP) or User Datagram Protocol (UDP) protocol. The client-server
streaming techniques rely primarily on HTTP-based streaming, which, in-turn, is based on
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Figure B.1: Rebuffering due to late TCP packets.

TCP. On the other hand, device-to-device streaming applications Chromecast and Miracast
rely on UDP while Airplay uses TCP for video streaming and screen mirroring applications.
However, both TCP- and UDP-based streaming protocols have their own set of challenges.
TCP guarantees packet delivery ensuring perfect video frame quality, but suffers from freeze
frames during video playback due to packet delay caused by bandwidth bottleneck. Fig-
ure B.1 illustrates the effect of rebuffering caused by TCP packet delay, which occurs when
TCP packets arrive at the receiver after the playout deadline due to network congestion.
This delay causes the received video to freeze frame and stall for more TCP packets to
arrive at the receiver before resuming playback. UDP, on the other hand, minimizes delay
but suffers from packet loss. Figure B.2 illustrates the video quality degradation due to
UDP packet loss, which affects not only the frame for which the packet loss occurred but
also subsequent frames that use it as the reference frame (referred to as error propagation).

In our previous work, a new H.264 based video streaming technique called Flexible Dual
Streaming Protocol (FDSP) was proposed [2]. FDSP sends packets containing important
H.264 video syntax elements (i.e., Sequence Parameter Set (SPS), Picture Parameter Set
(PPS), and slice headers) via TCP for guaranteed delivery and the rest of the slice data
packets via UDP giving an H.264 decoder a better chance of decoding received video even
when packet losses occur. Therefore, FDSP exploits the combined benefits of TCP and UDP
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Figure B.2: Frame distortion due to UDP packet loss. Note that packet loss also causes
frame distortion in subsequent frames due to error propagation.

by adding reliability to UDP while reducing the latency caused by TCP. This enables FDSP
to strike a balance between visual quality and delay by achieving higher video quality than
pure-UDP and less rebuffering than pure-TCP.

FDSP was enhanced in [3] using Bitstream Prioritization (BP) to reduce the impact of
UDP packet loss. This method statically chooses the BP metric to classify a select percentage
of originally UDP-designated packets from an H.264 bitstream as high priority, which are
then transported over TCP for guaranteed delivery. FDSP-BP was further enhanced by
introducing Adaptive-BP [4], where the percentage of packets sent over TCP versus UDP is
dynamically adjusted based on the estimated rebuffering time for TCP packets and estimated
packet loss ratio (PLR) for UDP packets. FDSP with Adaptive-BP further improved the
performance by reducing both packet loss and rebuffering time.

FDSP-based streaming is done in sequential video chunks called substreams. For each
substream, the important syntax elements are sent first via TCP, and then the rest of the
data is sent via UDP. Therefore, the substream length determines the amount of TCP data
that needs to be sent prior to the playback of that substream. To allow TCP packets to arrive
on time, substream overlapping is performed where TCP packets for the next substream are
sent at the same time as the UDP packets for the current substream. However, an important
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issue with substream overlapping is the decision on when to insert new TCP packets into
the outgoing IP queue of the sender, which is referred to as TCP Threshold. In our prior
work on FDSP, the TCP threshold was chosen to be fixed at 35% of the maximum IP
Queue size [3]. This paper analyzes how varying the TCP threshold affects UDP PLR and
TCP rebuffering time and develops an Adaptive TCP Threshold technique to improve user
Quality of Experience (QoE).

This paper is organized as follows. Section B.2 discusses other TCP and UDP streaming
techniques. An overview of the FDSP streaming method is shown in Section B.3. Section B.4
discusses the effects of substream overlapping and TCP threshold. Sections B.5 goes over
the experimental setup and Section B.6 discusses the results of our analysis on how the
changes in the TCP threshold affect FDSP streaming. Finally, Section B.7 concludes the
paper.

B.2 Related Work

Queue management techniques for video streaming applications have been well studied.
The two basic approaches proposed for queue management are Random Early Detection
(RED) [5] and Blue [6]. Both of these techniques use queue length as an indicator of
congestion and use this information to regulate the packet drop rates. Xu et al. proposed
an active queue management technique for wireless ad hoc networks, called Neighborhood
RED (NERD) [7]. This technique uses channel utilization to estimate the queue length to
help determine the packet drop probability.

However, all the above queue management techniques are designed for data communica-
tion in general, without any consideration for the unique characteristics of video streaming
(i.e., multimedia communication). Chen et al. proposed an active queue management
technique where packets that may potentially be late are actively dropped before they are
transmitted to reduce the strain on the network resources and to effectively control the trans-
mission queue length [8]. Shy et al. proposed another active queue management (AQM)
system, which employs routers that deal with both best-effort traffic flows and multimedia
traffic flows [9]. Round trip time (RTT) is used in the packet dropping probability calcu-
lations to assure rate reductions in both multimedia and best-effort flows before the queue
becomes full.

The aforementioned queue management techniques are designed for video streaming
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Figure B.3: The architecture of FDSP with Adaptive BP [4]

systems that are based either on TCP or UDP. Furthermore, all of these systems focus on
techniques such as prioritized dropping based on queue length, fairness based scheduling al-
gorithms for packet delay optimization, etc. On the other hand, FDSP is a hybrid streaming
protocol that uses both TCP and UDP for video streaming, and thus it presents a unique
set of challenges, such as the TCP threshold, that play a crucial role in packet delay opti-
mization. Therefore, this paper expands on the scope of our prior research on FDSP with
Adaptive-BP [4] by analyzing the TCP threshold parameter and its impact on UDP PLR
and TCP rebuffering.

B.3 FDSP Overview

FDSP was proposed as a new device-to-device video streaming technique for H.264 con-
tent [2]. This section provides a brief overview of its various architectural features and
factors affecting video quality (see [2]-[4] for details).

FDSP with Adaptive-BP architecture is shown in Figure B.3 [4], which consists of a
sender and a receiver. The FDSP sender processes H.264 video data using the H.264 Syntax
Parser to detect important Network Abstraction Layer (NAL) units, i.e., SPS, PPS, and
slice headers (SH). The rest of the NAL units are primarily slice data packets. It also works
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with the RTP Packetizer to encapsulate each NAL unit into the RTP payload format for
H.264 video [10]. The Demultiplexer (DEMUX) then routes the important NAL units (SPS,
PPS, SH, and prioritized I-frame data) through TCP and the rest of the NAL units through
UDP. The BP selection module sets the BP parameter, which represents the percentage of
the I-frame data to be prioritized and sent over TCP. In FDSP with Adaptive-BP, BP is
adjusted dynamically based on the estimated available network bandwidth. Finally, Dual
Tunneling is employed to keep both TCP and UDP sessions active during video streaming.

In the receiver, Dual Tunneling is employed to receive packets from both the TCP and
UDP streams. The Multiplexer (MUX) then discards the late TCP packets and rearranges
the TCP and UDP packets based on their RTP timestamps.

During FDSP streaming, the sender first segments the input video into 10 sec. sub-
streams, as done in HTTP live Streaming (HLS) [11]. Then, all the TCP packets containing
SPS, PPS, SH, and BP prioritized I-frame data for each substream are sent over TCP prior
to sending UDP packets containing the slice data. Thus, the receiver must wait for its re-
spective TCP data to arrive before playback. To avoid rebuffering caused by TCP packet
delay, the transmission of UDP packets for the current substream is overlapped with the
transmission of TCP packets for the next substream (i.e., substream overlapping).

BP is only applied to packets containing I-frame data because they serve as reference
frames and any loss in I-frame data leads to error propagation to the entire Group Of Picture
(GOP) sequence. If the BP parameter is set to zero, then it defaults to basic FDSP, where
SPS, PPS, and slice headers are the only packets that will be sent via TCP. If BP is 25%
then a quarter of all I-frame packets would be sent via TCP. Although it is possible to select
any distribution of the I-frame to be sent via TCP, a sequential order of I-frame packets are
selected to be sent via TCP to achieve better QoE. Increasing BP results in increasing the
number of TCP packets, thus increasing the probability of TCP rebuffering, but it reduces
UDP packet loss and error propagation due to the proportional reduction in the number of
UDP packets.

Since FDSP is a hybrid streaming technique that uses both TCP and UDP protocols,
its performance is affected by both packet loss and rebuffering. The various factors that
influence packet loss and rebuffering are the BP parameter, the substream length, and
substream overlapping. The BP parameter is used to determine the percentage of I-frame
packets that are to be sent through TCP. The BP parameter is computed based on TCP
round-trip time and UDP packet loss rate, which in turn determines the percentage of TCP
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versus UDP packets to be sent for each substream. Adaptively adjusting the BP parameter
for each substream helps further reduce UDP packet loss while keeping TCP rebuffering time
and instances low. The substream length trades off between the likelyhood of rebuffering
and the frequency of adaptive BP selection process. Since the BP and substream length
have been analyzed in our previous work, this paper focuses on examining how different
TCP thresholds affects FDSP video streaming.

B.4 Substream Overlapping and TCP Threshold

In FDSP, the important syntax elements for each substream are sent first via TCP, and
then the rest of the data is sent via UDP. Therefore, the substream length and the BP
parameter determine the amount of TCP data that needs to be sent prior to the playback
of that substream. However, rebuffering occurs whenever TCP packets for a substream are
not yet all available at the time of playback of that substream. To avoid rebuffering, the
TCP packets of the next substream (i.e., substream i + 1) are overlapped with the UDP
packets of the current substream (i.e., substream i).

The important issue with substream overlapping is the decision on when to insert new
TCP packets for the next substream into the outgoing IP queue of the sender. This is because
inserting TCP packets for the next substream into the queue too soon would interfere with
successful UDP packet transmission for the current substream. On the other hand, inserting
TCP packets into the queue too late would result in rebuffering. Therefore, substream
overlapping is initiated only when the number of packets in the network device’s IP queue
is below the TCP Threshold. Increasing the TCP threshold would result in increased UDP
packet loss due to network saturation caused by flooding of TCP packets. On the other hand,
decreasing the TCP threshold results in increased TCP rebuffering due to the reduction in
the number of new TCP packets being inserted into the queue. The various factors that
affect the TCP threshold are: (i) the number of UDP packets in the current substream;
(ii) the number of TCP packets in the next substream; (iii) the average queue occupancy;
and (iv) the average number of UDP packets per frame. The number of UDP packets for
the current substream and the number of TCP packets for the next substream are used to
calculate the estimated TCP rebuffering time and the estimated UDP PLR [4]. The average
queue occupancy and the average number of UDP packets per frame are used to estimate
the number of instances for substream overlapping.
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Figure B.4a shows an example of the IP queue occupancy as a function of time for a
static TCP threshold during FDSP streaming. In this example, the TCP threshold is set to
30% of the maximum queue size. For substream 1, the queue size decreases as UDP packets
are streamed. When the queue size falls below the TCP threshold, the TCP packets for
substream 2 are inserted into the queue. In substream 2, the average number of UDP packets
per frame is higher than in substream 1 resulting in reduced opportunities to insert new
TCP packets from substream 3, which in-turn increases the probability of TCP rebuffering
(indicated by an extra time slot). In substream 3, both the queue occupancy and the average
number of UDP packets per frame are high indicating a network congestion. In this scenario,
inserting more TCP packets into the queue would exacerbate network congestion and result
in UDP packet loss.

Figure B.4a clearly shows that having a static TCP threshold is not always optimal
for FDSP streaming. Figure B.4b shows that adaptively adjusting the TCP threshold can
reduce both UDP PLR and TCP rebuffering resulting in better QoE. In this example, the
TCP threshold is also set to 30% by default for substream 1, and thus the queue behavior
is identical to that of Figure B.4a. In substream 2, the average number of UDP packets
per frame is higher than substream 1, this reduces the number of TCP packet insertions
resulting in increased TCP rebuffering probability. However, since the queue occupancy for
substream 2 is not very high, the TCP threshold is increased, which increases the number of
TCP packets that can be inserted into the queue and in turn reduces the TCP rebuffering
probability.

In substream 3, both the queue occupancy and the average number of UDP packets per
frame are very high, indicating network congestion, which in-turn increases UDP packet
loss. In Figure B.4b, the TCP threshold is decreased for substream 3 to reduce the number
of TCP packets inserted into the queue. This in-turn increases the number of UDP packets
transmitted, thus reducing UDP PLR. Note that although the TCP threshold is decreased
there is no change in the queue level for the first three time slots of substream 3 because there
is no substream overlapping. During time slots 4-6, the number of TCP packets inserted
into the queue is reduced compared to the case in Figure B.4a. This reduction allows for
more UDP packets to be transmitted. The increased UDP packet prioritization reduces the
queue occupancy levels during time slots 7-9, which reduces the overall UDP packet loss
rate for substream 3. This reduction in TCP threshold may increase the TCP rebuffering
probability, but there are enough opportunities for TCP overlapping for substream 3 to
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avoid rebuffering.

B.4.1 Adaptive TCP Threshold

The Additive-Increase/Multiplicative-Decrease (AIMD) algorithm is well suited to adap-
tively adjust the TCP threshold because the TCP threshold is progressively increased, which
in-turn increases the number of TCP packets inserted into the queue reducing the likelihood
of rebuffering. On the other hand, AIMD prioritizes UDP packets by exponentially reduc-
ing the TCP threshold at the first sign of network congestion (based on estimated UDP
packet loss). For example, FDSP streaming begins with a default TCP threshold of 30% for
the first two substreams. From the third substream on, the TCP threshold is progressively
incremented based on the estimated TCP rebuffering probability until UDP packet loss is
estimated at which point the TCP threshold is reduced in half. Note that the estimated
TCP rebuffering probability and the estimated UDP PLR are computed using TCP round
trip time and queue statistics, respectively (for more details please refer to FDSP with
Adaptive-BP [4]).

B.5 Experimental Setup

This section discusses the experimental setup for the analysis of TCP threshold parame-
ters and its impact on both UDP packet loss and TCP rebuffering for FDSP-based video
streaming. For our experiments, two full HD (1920×1080 @30fps, 4300 frames) clips from
a high-motion (animation) video Bunny, and a low-motion (documentary) video Bears are
used. These clips are encoded using the x264 encoder with an average bit rate of 4 Mbps
and four slices per frame.

Our simulation environment is Open Evaluation Framework For Multimedia Over Net-
works (OEFMON) [12], which is composed of a multimedia framework DirectShow, and a
network simulator QualNet 7.3 [13]. OEFMON allows a raw video to be encoded and redi-
rected to a simulated network to gather statistics on the received video. Within OEFMON,
an 802.11g ad-hoc network with a bandwidth of 54 Mbps is setup. Note that the version of
the Qualnet simulator used for our study only supports the IEEE 802.11g standard. How-
ever, the simulation study can easily be adapted to 802.11n by having more background
traffic to saturate the network. The network scenario used is an 8-node configuration shown
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Figure B.5: Simulated network scenario.

in Figure B.5. The distance between each source and destination pair is 5 m and the dis-
tance between pairs of nodes is 10 m. These distances were chosen to mimic the proximity
of multiple pairs of neighboring streaming devices in an apartment setting. The primary
test video is being streamed between nodes 1 and 2, while the remaining three node pairs
produces three streams of constant bit rate (CBR) background traffic of 50 Mbps to fully
saturate the network.

For the TCP threshold analysis, the primary video is streamed using FDSP with BP
of 0% and 100%. These two choices of BP values are based on our prior work [14], which
showed that they represent the two extreme effects of FDSP-based streaming, i.e., UDP
PLR and TCP rebuffering are maximized at BP of 0% and 100%, respectively, for 10-second
substreams. Therefore, the effects of UDP PLR and TCP rebuffering are effectively isolated
via their corresponding BP values in order to study how TCP threshold changes affect FDSP
streams. For each BP value, 20 different TCP threshold values, ranging from 5% to 100%,
are evaluated.
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Figure B.6: Impact of TCP threshold changes on UDP packet loss and TCP rebuffering in
a fully congested network scenario with BP of 0%.

B.6 Results

B.6.1 Impact of TCP threshold changes on UDP PLR and TCP Re-
buffering

Figures B.6 and B.7 show the effects of the TCP threshold changes on both test videos in a
fully congested network with BP of 0% and 100%, respectively. These figures also include
the results for pure UDP and pure TCP as a comparison. In a fully congested network
scenario, the total TCP rebuffering time incurred by both test videos that are streamed
using FDSP with 0% BP decreases as the TCP threshold increases. Conversely, the UDP
PLR incurred by both test videos increases as the TCP threshold increases. For example,
in the Bears video (Figure B.6a), TCP thresholds of 10%, 15%, and 20% incur UDP PLRs
of 3.8%, 7.4%, and 10.2% and TCP rebuffering times of 43 seconds, 9.8 second, and 1.98
seconds, respectively. Similarly, in the Bunny video (Figure B.6b), TCP thresholds of 10%,
15%, and 20% incur UDP PLRs of 7.2%, 10.62%, and 12.93% and TCP rebuffering times of
20.21 seconds, 9.64 seconds, and 1.05 seconds, respectively.

In comparison to FDSP with 0% BP streaming, UDP PLR and TCP rebuffering incurred
by FDSP with 100% BP in a fully congested network scenario are much more pronounced.
For example, in the Bears video (Figure B.7a), TCP thresholds of 10%, 15%, and 20%
incur UDP PLRs of 2.1%, 1.7%, and 2.4% and TCP rebuffering times of 75.1 seconds, 38.95
seconds, and 14.47 seconds, respectively. Similarly, in the Bunny video (Figure B.7b), TCP
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Figure B.7: Impact of TCP threshold changes on UDP packet loss and TCP rebuffering in
a fully congested network scenario with BP of 100%.

thresholds of 10%, 15%, and 20% incur UDP PLRs of 0.8%, 0.81%, and 0.74% and TCP
rebuffering times of 75.38 seconds, 60.34 seconds, and 27.63 seconds, respectively. These
results show that having a large TCP threshold results in greater opportunities to insert
new TCP packets into the IP queue reducing TCP rebuffering time. This, in turn, will cause
UDP PLR to increase due to the increase in UDP packet delay resulting in late packets.
On the other hand, a smaller TCP threshold results in fewer opportunities to insert TCP
packets into the IP queue. This means that fewer TCP packets are sent through substream
overlapping and, instead they are buffered in between substreams, thus increasing the total
TCP rebuffering time.

The ideal TCP threshold region is the one that minimizes both UDP PLR and TCP
rebuffering. For the Bears video using FDSP with 0% BP (Figure B.6a), the ideal TCP
threshold region lies between 15% to 30%. For the Bunny video using FDSP with 0%
BP (Figure B.6b), the ideal TCP threshold region lies between 15% to 25%. Similarly,
for the Bears video using FDSP with 100% BP (Figure B.7a), the ideal TCP threshold
region lies between 25 to 50%. For the Bunny video with FDSP 100% BP (Figure B.7b),
the ideal TCP threshold region lies between 25 to 55%. The optimal threshold range for
both videos increases as BP increases to accommodate the increase in the number of TCP
packets. These results show that the ideal TCP threshold is not constant for all types of
videos. Furthermore, the ideal TCP threshold region is affected by the changes in the BP
parameter. Hence, the TCP threshold has to be adaptively adjusted for each substream to
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(a) Static TCP threshold results.
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(b) Adaptive TCP threshold results.

Figure B.8: Comparison of static vs. adaptive TCP threshold performance of Bunny video
with Adaptive-BP.

optimize the substream overlapping and improve FDSP’s performance.

B.6.2 Performance of Adaptive TCP Threshold

Figures B.8a and B.8b show UDP PLR and TCP rebuffering time for the Bunny video
streamed based on FDSP with Adaptive-BP using static and adaptive TCP threshold tech-
niques, respectively. Note that the figures are also stacked with plots of the TCP threshold
values. These results show that adaptively adjusting the TCP threshold for each substream
reduces both UDP PLR and TCP rebuffering time as compared to having a static TCP
threshold. For example, using the adaptive TCP threshold scheme incurs only one instance
of rebuffering that lasts for 0.83 seconds as compared to the static TCP threshold scheme,
which incurs three instances of rebuffering with 0.4 seconds, 1.02 seconds, and 0.12 seconds
of rebuffering times. Similarly, the adaptive TCP threshold scheme incurs three instances
of UDP packet loss with PLRs of 0.13, 0.04, and 0.08, where as the static TCP threshold
scheme also incurs three instances of UDP packet loss but with slightly higher PLRs of 0.13,
0.06 and 0.1. Thus, adaptively adjusting the TCP threshold reduces the TCP rebuffering
incurred by 50% and also slightly reduces UDP PLR for the Bunny video.

Figures B.9a and B.9b compare the visual quality of the static and adaptive TCP thresh-
old schemes for frames 2918 and 3391, respectively. These figures clearly show that the
adaptive TCP threshold scheme achieves better visual quality than the static TCP thresh-
old scheme by reducing UDP PLR as well as TCP rebuffering time. For frame 2918, the
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adaptive TCP threshold scheme incurs no packet loss resulting in perfect frame quality. For
frame 3391, adaptively adjusting the TCP threshold results in slightly lower packet loss as
compared to using a static TCP threshold value even though the difference in visual quality
is marginal.

These results clearly show that the adaptive TCP threshold scheme reduces both UDP
PLR and TCP rebuffering time as compared to the static TCP threshold scheme resulting
in better end user QoE.

B.7 Conclusion and Future Work

This paper studied the effects that different TCP threshold values have on video streaming
in the context of Flexible Dual-TCP/UDP Streaming Protocol (FDSP). Our analysis showed
that TCP threshold has a direct effect on both TCP rebuffering and UDP PLR. Our results
showed that adaptively adjusting the TCP threshold using an AIMD algorithm reduces
both packet loss ratio and rebuffering time, and leads to a better overall video streaming
experience. As future work, we plan to study the impact of UDP packet loss and TCP
rebuffering on end user Quality of Experience for FDSP streaming.
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(a) Video quality comparison of Frame 2918.
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(b) Video quality comparison of Frame 3391.

Figure B.9: Visual quality comparison of static vs. adaptive TCP threshold for frames 2918
and 3391.
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