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STEADY-STATE ANALYSIS TECHNIQUES FOR COUPLED DEVICE AND
CIRCUIT SIMULATION

Chapter 1

INTRODUCTION

1.1 Motivation and Contributions

Simulation is very important in the design of modern integrated circuits,

devices, and processes. It provides an efficient way to explore the design space

without time-consuming and costly fabrication cycles. With the continued increasing

demand for radio frequency (RF) ICs there is a critical need for accurate and

efficient simulation of circuits in the steady state. Certain aspects of system

performance are easier to characterize and verify in the steady state. Examples of

these are large-signal distortion, power, frequency, noise, and transfer characteristics

such as gain and impedance.

Steady-state analyses are available in several commercial circuit simulators.

However, not much attention has been given to the model accuracy. For RF

applications, distributed device effects are important and must be included in

simulations via accurate device models. Otherwise the simulated circuit performance

will deviate significantly from the actual circuit. In the absence of accurate compact



2

models, coupled or mixed-level circuit and device simulators [1-4] can be used.

These simulators provide a framework in which physical (numerical) models for

critical devices can be simulated in conjunction with standard circuit-level compact

models. To enable accurate simulation of RF circuits, steady-state analyses are

required in coupled device and circuit simulators.

The steady-state responses of RF circuits can be obtained by using a

conventional transient simulation from some arbitrary initial condition until the

transient behavior dies out. However, this straightforward approach can take a long

time to be practical for RF ICs. There are a variety of methods that directly compute

the steady-state solution more efficiently than the conventional transient simulation.

These methods can be classified as frequency-domain and time-domain methods [5].

Harmonic balance is a frequency-domain method in which the coefficients for a

truncated Fourier series expansion of the steady-state solution are determined. In the

time domain, the shooting method is a popular method to find an initial condition

which leads to the steady-state solution.

These two methods have been successfully implemented in circuit-level

simulators with only compact models. However, prior to this work they were not

available in general coupled device and circuit simulators. The harmonic balance

method has previously been applied for the simulation of semiconductor devices in

[6, 7]. The emphasis there was on device internal behavior and the analysis was not

extended to general coupled device and circuit simulation. This work presents the

first implementation of time-domain shooting method and frequency-domain
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harmonic balance method in the context of coupled device and circuit simulation [8-

12].

The focus has been on a general coupled device and circuit simulator -

CODECS [2]. In the implementation, the original architecture of CODECS is

exploited and the existing coupling simulation framework is used. With critical

devices modeled by physical (numerical) models, this simulator can obtain the

steady-state solution accurately and efficiently for RF ICs.

For the time-domain method, several modifications and heuristics have been

applied to improve the reliability and convergence of the Newton shooting

algorithm. A new scheme to bias the numerical devices is implemented to improve

the efficiency. A circuit unknown implementation is developed to eliminate the

inconsistency and discontinuity in the standard state-based implementation.

Three different implementation approaches of the harmonic balance method

for coupled device and circuit simulation are investigated and implemented. These

include the quasi-static (QS), non-quasi-static (NQS), and modified-Volterra-series

(MVS) approaches. Comparisons of simulation and performance results identify that

there is a tradeoff between simulation accuracy and complexity among these

approaches. The complex computation of the linearized terminal parameter in the

MVS approach is eliminated by using a reasonable approximation. In the QS

approach, the computation of the static charge (not available from the device

simulator) is avoided by an equation reformulation. A new biasing scheme for



numerical devices is proposed that significantly improves the performance of the QS

and MVS approaches.

1.2 Dissertation Outline

This dissertation is organized as follows. The current chapter presents the

motivation and contributions of this work and outlines the organization of the

dissertation. In Chapter 2 the basic RF IC building blocks are reviewed and several

different types of steady-state solutions are defined. Three methods to compute the

steady state for RF circuits are introduced, along with their advantages and

drawbacks. Mixed-level simulation is reviewed in Chapter 3. The circuit levels and

device levels of simulation are introduced. Then the coupling algorithms used in

CODECS are described and the architecture is illustrated.

The time-domain shooting method and its implementation are presented in

Chapter 4. Modifications and heuristics are introduced to improve the reliability and

convergence of the Newton shooting method. For coupled device and circuit

simulation, a new biasing scheme for numerical devices to improve the efficiency

and reliability is described. A circuit unknown implementation of the shooting

method is proposed to eliminate the inconsistency and discontinuity presented in

state-based implementation.

Chapter 5 first presents an overview of the harmonic balance algorithm.

Various harmonic truncation schemes are introduced. The basic theory on frequency

remapping is discussed and the remapping scheme is illustrated by an example. The
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formulation of the harmonic balance equations and the resulting system matrices are

shown in detail. To solve the autonomous systems, the standard harmonic balance

method is modified and the concept of voltage probe is used to improve

convergence.

In Chapter 6, the harmonic balance method for coupled device and circuit

simulation is described in the context of CODECS. Three different implementation

approaches are introduced. These include quasi-static (QS), non-quasi-static (NQS),

and modified Volterra series (MYS) approaches. Qualitative comparison between

these three approaches is made.

In Chapter 7, first example circuits with 1D and 2D numerical models have

been chosen to demonstrate accurate and efficient steady-state simulation in

CODECS. Then, the qualitative comparison between the three implementation

approaches for the harmonic balance method identified in Chapter 6 is verified by

examples. Finally, a performance comparison of the time-domain shooting method

and the QS harmonic balance method for coupled simulation is presented.

Conclusions and future work are summarized in Chapter 8.



Chapter 2

STEADY-STATE ANALYSIS FOR RF ICS

2.1 Basic Radio Frequency (RF) IC Building Blocks

Radio frequency (RF) integrated circuits are used in high-frequency

communication applications. Figure 2.1 shows the configuration of a simple

heterodyne receiver [13]. In this receiver, the signal received from the antenna is first

filtered and amplified to get the desired RF signal. Then the first mixer down-

converts the RF signal to the intermediate frequency (IF) by mixing with the

frequency of the first local oscillator (LO). After filtering and amplification, the

signal is down-converted again by the second mixer to the base band. From this

example, we can see that RF front ends are constructed primarily of four basic

building blocks. They are filters, amplifiers, mixers, and oscillators.

RF filter IF filter
andand

amplifier I_*[ ]___ amplifier

Local Local
Oscillator! Oscillator2

Figure 2.1: The simple heterodyne receiver configuration.
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2.1.1 Filters

In a RF application, a high-frequency carrier is modulated by the original

information signal. To obtain this signal at the specified bandwidth around the high

carrier frequency, band-pass filters are used to filter out the undesired signal such as

interference and noise. In this section a parallel RLC band-pass filter is used as an

example to illustrate the filter design.

A simple parallel RLC circuit is shown Figure 2.2. The admittance of the

RLC tank in s-domain is given by:

(2.1)
sL

where G =1. For a sinusoidal input current i1, (t) of frequency w, when the output

voltage (t) reaches the steady state, the frequency-domain admittance of the

RLC tank is given by substituting s = jw into Equation (2.1):

(2.2)
jwL wL

±i(t)
R C L

v0(t)

Figure 2.2: The parallel RLC band-pass filter.



From Equation (2.2) we can see that at a certain frequency the inductive and

capacitive admittances cancel each other. This frequency is called the resonance

frequency w and is given by:

(00C-----O
w0L

(2.3)

At w0, V in Equation (2.2) is real and reaches its minimum magnitude given by G.

Another parameter describing the tuned circuit is the quality factor Q defined as:

Q=w energy stored

average power dissipated

For the parallel RLC circuit, the Q factor at resonance is given by:

R R
Q= w0RC = =

w0L

(2.4)

(2.5)

The frequency response of the parallel RLC circuit is given by Z(w)
1

where
Y(w)

Y(w) is from Equation (2.2). The magnitude of Z(w) is plotted in Figure 2.3, where

the bandwidth of this band-pass filter is o [14]. From a simple derivation, the

bandwidth for the parallel RLC circuit is given as:

1
=

RC
(2.6)

Considering Equations (2.5) and (2.6) we have a relation between the bandwidth and

the Q factor:



1

(O Q
(2.7)

A higher Q factor means a narrower bandwidth and the filter has better frequency

selectivity.

U)

Figure 2.3: The magnitude of Z(v) for the parallel RLC band-pass filter.

2.1.2 Amplifiers

In analog and RF applications, amplifiers are used to increase the amplitude

of the signal without introducing distortion. Therefore, a good amplifier should

provide gain with high linearity. In reality, all amplifiers are nonlinear.

Nonlinearities generate harmonic distortion for a sinusoidal input signal.

To characterize the nonlinearity and harmonic distortion, let us consider a

general amplifier configuration in Figure 2.4(a) with the transfer characteristic

shown in Figure 2.4(b). For low frequency analysis, all capacitors in the amplifier
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are ignored and there are no energy-storage elements. The output can be written as a

function of the input and expressed as a power series [14]:

V0 = F(VJ +v) = a0 +a1v +a2v2 +a3v3 + (2.8)

where a0 = F(V1) = V0 is the quiescent output voltage when v, =0. Equation (2.8)

can be rewritten as:

2 3=a1v +a2v, +a3v1 +

1'

Amplifier

(a)

(2.9)

V

VI

(b)

vi

Figure 2.4: (a) A general amplifier configuration and (b) its transfer characteristic.

We now assume the input voltage v, is a pure sinusoidal signal V cosolt.

Substituting v, = V cos(w1t) into Equation (2.9), we obtain:

= a1(Vcosw1t)+a2(V cosw1t)2 +a3(V cosw1t)3 +

a2VL4
+(aIVM +a3V)coscolt+ a2VL4 cos21t+ a3V4

cos3w1t+ (2.10)

Equation (2.10) can be rewritten as:

= b0 + b1 cos w1t + b2 cos 2w1 t + b3 cos 3w1t +... (2.11)



where:

b
a2VA

°
2

b1 =aIVA+a3V4+alVA

b2
a2V

+
2

a3V
+

4
(2.12)

11

Form Equations (2.10) and (2.11) we can see that due to the nonlinearity of the

amplifier, harmonics of the input frequency are generated at the output. To reduce

the harmonics at the output, usually a band-pass filter tuned at the desired frequency

is connected at the output of the amplifier. The overall configuration is a band-pass

amplifier.

To quantify the levels of the distortion present in the output signal, the n th

order harmonic distortion factors HD are widely used. HI),, is defined to be the

magnitude of the ratio of the n th harmonic to the fundamental. For in Equation

(2.11) the 2' and 31(1 harmonic distortion factors are given as:

HD2 a2VM/V
1b11 2 2a1

b31 2ND3 =
b11 4a1

(2.13)

To characterize the level of distortion in the entire waveform, the total harmonic

distortion (THD) is defined to be:
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,tJI1,nI2

THD= n=2
=1JJHDnI2 (2.14)

Ib1J

2.1.3 Mixers

As shown in Figure 2.1, the mixer is the heart of the simple heterodyne

receiver and has two inputs and one output. One input is for the information signal

and the other is for the local oscillator, LO. The mixer translates the information

signal from one frequency range to another. It combines signals at two frequencies

and produces an output at a third frequency. Ideally, the signal at the output is the

input information signal shifted in frequency by an amount equal to the frequency of

the LO. Since linear time-invariant networks can not produce spectral components

not present in the input, we have to rely on nonlinear or time varying networks to

provide the mixing function.

Usually the information input signal is small and the LO is a large periodic

signal. For best performance, mixers are designed to respond in a strongly nonlinear

fashion to the LO. Thus, mixers behave both near linearly (to the information input)

and strongly nonlinearly (to the LO). Since the LO signal is independent of the

information signal, it can be considered to be part of the circuit rather than an input

to the circuit. As shown in Figure 2.5, the nonlinear mixer circuit driven by the LO

can be treated as a linear periodically time-varying circuit [15]. Then the mixer has a

single input and a linear periodically time-varying transfer function.
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Figure 2.5: The nonlinear mixer circuit driven by the LO can be treated as a linear
periodically time-varying circuit.

Using the linear time-varying concept for mixer analysis, the mixer can be

represented as:

i01 = g(t)v, (2.15)

where i0 is the output current, v1, is the input voltage, and g(t) is the periodically

time-varying transconductance of the mixer. Since g(t) is due to the LO at a

frequency 0LO , we can represent it as:

g(t) = g0 + g1 cosot + g2 cos2wLOt + (2.16)

For v (t) = V coswRFt we have from Equations (2.15) and (2.16):

i0(t) = (g0 + g1 cos4v Lot + g2 cos2wt + )V coso)RFt

= g0V coswRFt+____cos(wLO ±WRF)t+
g2V1

cos(2w ±WRF)t+.(2.l7)

If the component of i0 (t) at frequency 0fF = WRF is the desired output, the

conversion transconductance is given as:
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(IF current output( g1V/2 = (2.18)
(RF voltage input( 2

The frequency translation behavior of the mixer described by Equations

(2.15)-(2.17) can be illustrated in the frequency domain by Figure 2.6 [15]. The input

is a modulation signal at low frequency. It is up-converted to sidebands above and

below each harmonic of the LO. At the output of the mixer, only one sideband is of

interest. Therefore, a high Q bandpass filter is used after the mixer to remove all but

the desired sideband.

Modulation Input

Mixer Transconductance

f 2fLo 3fLo
Output

f

f

Figure 2.6: The frequency translation behavior of an up-conversion mixer. The input
modulation signal is up-converted to the sidebands above and below each harmonic
of the LO.
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2.1.4 Oscillators

In Figure 2.1, one input of the mixer is driven by a local oscillator.

Oscillators generate a periodic reference signal at a particular frequency. This signal

is used in the mixer to realize the frequency conversion. In some oscillators, referred

to as voltage-controlled oscillators (VCO), the frequency of the output varies

proportionally to some input signal. To generate a periodic output, the oscillator

circuit must have a self-sustaining mechanism that allows its own noise to grow and

eventually become a periodic signal. There are two analysis points of view for

oscillators, the negative resistance approach and the feedback approach [14].

An ideal oscillator is a simple LC tank without losses as shown in Figure

2.7(a). Its output voltage is given by:

v(t) =Vsin(w0t+ço) (2.19)

where
1

, V and are determined by the initial conditions. However, a

real tank circuit has losses represented by the resistance R in Figure 2.7(b). The tank

by itself does not oscillate indefinitely because some of the stored energy is

dissipated in R for every cycle. To sustain oscillations this loss of energy must be

compensated. In the negative resistance approach an active network is used to

generate a resistance equal to R. Then the equivalent parallel resistance seen by

the pure LC tank is infinite and the whole circuit can be viewed as a lossless LC

tank. In essence, the energy lost in R is replenished by the active circuit in every

cycle.



r1

=R

Circuit

(a) (b)

Figure 2.7: (a) An ideal lossless LC tank oscillator, (b) Negative resistance from an
active circuit compensates the loss resistance R so that oscillations are sustained.

In the feedback approach, the oscillators are viewed as circuits with feedback.

For the simple linear feedback system shown in Figure 2.8(a) [16], its overall

transfer function is given as:

Y(s) H(s)

X(s) 1H(s)
(2.20)

For some s = s, if H(s0) = +1, then the oscillation builds up. The oscillation

reaches its steady state if s is purely imaginary such that H(s0 = icy0) = +1. To

stabilize the frequency and eliminate harmonic components, a frequency selective

network such as a LC tank can be included in the system. Figure 2.8(b) shows the

case when the frequency selective network is included in the feedback path.
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+ H(s)I
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X(s)

Frequency'
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i
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Figure 2.8: (a) Oscillator with simple linear feedback. (b) The frequency selective
network is included in the feedback path.

2.2 Steady State

With the continued increasing demand for RF ICs there is a critical need for

accurate and efficient simulation of circuits in the steady state. Certain aspects of

system performance are easier to characterize and verify in steady state. Examples of

these are distortion, power, frequency, noise, and transfer characteristics such as gain

and impedance. In the following, we define the meaning of the steady state solutions

and introduce several different types of steady state.

A steady state solution of a system of differential equations is a solution that

is asymptotically approached as the effect of the initial conditions dies out [5]. In

general, a given system of differential equations may not have a steady-state

solution, a single steady-state solution, or many such solutions. If there are multiple

steady-state solutions, the steady state that is asymptotically approached will depend

on the initial conditions. Most practical RF circuits will have at least one steady-state

solution [6].
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In general, the steady state can be classified in several different types. The

DC steady state is an equilibrium point of the circuit and can be obtained by DC

analysis. The AC steady state represents the sinusoidal wavefonns of the linear

circuit driven by sinusoidal inputs. For nonlinear circuits, the system should be first

linearized around a DC solution. Obviously this corresponds to the regular small-

signal AC analysis.

If the steady-state solution of a circuit is periodic, it is called a periodic

steady state. The spectrum of the periodic steady state consists of the components at

DC, fundamental frequency, and corresponding harmonics. In the time domain, the

periodic steady state can be represented by the solution state vector x(t) which

satisfies the periodicity constraint:

x(t + T) = x(t) (2.21)

where - Co <t <oo and T is the period. In the frequency domain, due to the

harmonically related components, the periodic steady state can be represented by a

Fourier series. For a specified accuracy, the Fourier series with a finite number of

terms can be used.

If a nonlinear circuit is driven by several periodic sources at unrelated

frequencies, the circuit will have a quasipenodic steady-state response. The spectrum

of the quasiperiodic steady state consists of the components at the frequencies which

are the linear combination of the fundamental frequencies of the inputs. It is natural

to represent the quasiperiodic signal in the frequency domain. Theoretically if time-
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domain waveforms are used to represent the quasiperiodic signal, the time interval

should be infinite.

The quasiperiodic steady state reduces to a periodic one if the nonlinear

circuit is driven by only one periodic input or the multiple periodic inputs are

harmonically related. If the circuit is linear or linearized for an infinitesimally small

input, the periodic steady state becomes an AC steady state. Further, if the periodic

input is zero, then it becomes a DC steady-state problem. Since the steady state with

large-signal inputs is of the interest in this work, by default "steady state" will refer

to quasipenodic and/or periodic steady state.

23 Computing the Steady State

In RF circuits, large dynamic elements such as large inductors, large

capacitors, and high-Q filters are typically used to realize the desired functions.

These elements introduce very long time constants in the circuits which make the

circuits approach the steady state very slowly. Several methods to compute the

steady state for RF circuits are introduced in the following subsections.

2.3.1 Conventional Transient Simulation

Conventional transient simulation numerically integrates the circuit

differential equations from an initial condition. The simulation can be run long

enough such that the effect of the initial condition dies out. For RF circuits, due to



high-Q filters and wide frequency separations, this simulation will be too long to be

practical. In these cases, the time interval over which the simulation should be

carried out is determined by the large time constants or the lowest frequencies, while

the time-steps used by the numerical integration algorithm are limited by the highest

frequency. Therefore, a large number of time points have to be simulated. To

overcome the difficulty with the conventional transient simulation, a variety of

methods have been derived that compute the steady-state solution more efficiently.

For RF circuits, the most attractive ones are the time-domain shooting method and

the frequency-domain harmonic balance method.

2.3.2 Time-Domain Shooting Method

In the time domain, finding the periodic steady-state solution of a circuit can

be recast to finding the initial condition for the circuit's differential equations such

that the solution at the end of one period matches the initial condition [17-20, 5].

This can be formulated as a two-point boundary-value problem where the solution

over the interval [0, T] is required to satisfy the periodic boundary constraint:

x(0) = x(T) (2.22)

where x(0) is the initial value and x(T) is the final value. In shooting methods, first

the circuit is simulated for one period using some guess for the initial condition.

Then the final value x(T) is checked with the guess for the initial value x(0). If they

don't match each other, the initial value is adjusted. The circuit is simulated again for
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one period with the adjusted initial value. This process is repeated until the initial

value and the final value are in close agreement. The time-domain shooting method

is explained further in Chapter 4.

Usually the shooting method uses the transient analysis over one period to

obtain the final value at the end of the period. Compared with the conventional

transient simulation method, the shooting method can be viewed as a transient

simulation that is accelerated for the circuit to approach the periodic steady state.

The acceleration is obtained by adjusting the initial condition at the beginning of

each one-period transient simulation. Although the shooting method overcomes the

problem due to the large time constants, it still has difficulty in handling circuits with

wide frequency separation as does the conventional transient simulation. The time-

domain shooting method can only solve periodic steady-state problems and can not,

in general, handle the quasiperiodic ones. The frequency-domain harmonic balance

method introduced in the following subsection tackles the above problems naturally.

2.3.3 Frequency-Domain Harmonic Balance Method

The basic idea behind the frequency-domain harmonic balance method [5] is

to represent the circuit waveforms by the Fourier sine and cosine series. As

mentioned in Section 2.2, for a specified accuracy, practically the Fourier series with

a finite number terms is sufficient to represent the periodic and quasipenodic steady

states. The advantage of the frequency-domain representation of signals is that for

signals with wide frequency separation or unrelated frequencies only the frequency
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bins with significant energy need to be chosen to approximate the signals. Thus the

actual values of frequencies are not important and the difficulty in simulating and

representing quasipenodic signals using the time-domain methods as described in

Section 2.3.1 is avoided.

Linear dynamic operations such as differentiation and integration are

transformed to simple algebraic operations in the frequency domain

multiplication and division by the frequency, respectively. Therefore, nonlinear

integro-differential equations that describe a circuit in the time domain are replaced

by a system of nonlinear algebraic equations in terms of the Fourier coefficients. For

this reason, the coefficients of the steady-state solution are an algebraic function of

the coefficients of the stimulus and the dynamic aspects of the time-domain steady-

state problem are eliminated. The natural approximation of signals as Fourier series

guarantees that the solution of the nonlinear algebraic equations is indeed the

periodic or quasiperiodic steady state of the system. The frequency-domain harmonic

balance method is described in detail in Chapter 5.

A weakness of the harmonic balance method relative to the time-domain

methods is its potentially poor handling of strongly nonlinear circuits because their

responses have a rich frequency spectrum. These responses are difficult to represent

efficiently with sinusoidal basis functions in the frequency domain.
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2.4 Summary

In this chapter the basic RF IC building blocks are reviewed. These include

filters, amplifiers, mixers, and oscillators. Their basic functions and methods of

analysis were described.

Several different types of steady-state solutions are described. Among them,

the periodic and quasiperiodic steady states are of interest in this work. Three

methods to compute the steady state for RF circuits were introduced. The difficulty

with the conventional transient simulation method is discussed. The time-domain

shooting method and the frequency-domain harmonic balance method which are

implemented in this work are briefly described, along with their advantages and

drawbacks.
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Chapter 3

MIXED-LEVEL SIMULATION AND CODECS

3.1 Introduction

Simulation is a very important step in the design of modern integrated

circuits, devices, and processes. It provides an efficient way to explore the design

space without time-consuming and costly fabrication cycles. There are various levels

of simulations currently available. From the detailed to the high level, they are IC

process simulation, device simulation, and circuit simulation. A simulator that

combines two or more levels of simulations is called a mixed-level simulator [1-4].

The key idea behind a mixed-level simulator is the use of detailed forms of

simulation on the critical parts of a circuit, to get precise waveform information, and

less accurate but faster forms of simulations for the rest of the circuit. Clearly, there

is a tradeoff between the accuracy of the simulations and the runtime. The mixed-

level circuit and device simulator CODECS is introduced in this chapter.

In the upled device and ircuit imulator (CODECS) [2], devices can be

simulated under realistic dc and time-dependent boundary conditions imposed by the

surrounding circuit in which they are embedded. Conventional device-level

simulation typically allows only voltage or current boundary conditions for a device;

and, hence, cannot account for circuit embedding. Since the doping profile and the

geometry of the device is supplied to CODECS, the simulator provides a direct link
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between technology and circuit performance and a predictive capability at the circuit

level.

The simulation environment of CODECS enables one to model critical

devices within a circuit by physical (numerical) models based upon the solution of

Poisson's equation and the current-continuity equations. Analytical models can be

used for the noncritical devices. The numerical models in CODECS include physical

effects such as bandgap narrowing, Shockley-Hall-Read and Auger recombinations,

concentration- and field-dependent mobilities, concentration-dependent lifetimes and

avalanche generation. CODECS supports dc, transient, small-signal ac, and pole/zero

analyses of circuits containing one- and two-dimensional numerical models for

diodes and bipolar transistors, and two-dimensional numerical models for

MOSFETs. In addition, dc and transient sensitivities to doping profiles can be

computed at the device level. However, steady-state analyses are not available in

CODECS which are essential for the accurate simulation of RF circuits. In this work,

we extend the capabilities of CODECS using the time-domain shooting method and

the frequency-domain harmonic balance method for accurate RF IC steady-state

simulation.

This chapter is organized as follows. An overview of the circuit simulation

problem and semiconductor device modeling for circuit-level simulation is provided

in Section 3.2. The semiconductor device-level simulation and its solution methods

are described in Section 3.3. In Section 3.4, the algorithms used to couple the device-
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and circuit-level simulators in CODECS are presented and the architecture of

CODECS is illustrated.

3.2 Circuit Simulation and Modeling

Circuit-level simulation is one important component of a mixed-level circuit

and device simulation. This section provides an overview of the circuit-simulation

problem. The nonlinear dc, transient, and small-signal ac analyses are introduced.

These analyses are the building blocks for the steady-state analyses described later.

Modeling of semiconductor devices plays an important role in circuit simulation.

The simulation results are reliable only if accurate models are used for the devices.

Commonly used approaches to modeling of semiconductor devices can be classified

as: analytical models, empirical/table models, and numerical models. The modeling

task involves use of a particular technique to model accurately the static (dc) and

dynamic (transient) operation of the device. These approaches result in models with

differing accuracy and speed of evaluation.

3.2.1 Circuit Simulation Problem

Circuit simulation involves assembling of the circuit equations and then

solving these equations to obtain the solution of the output variables. The assembly

of circuit-level equations is based on Kirchoff's current and voltage laws along with

the branch-constitutive relations for each element in the circuit [21]. Modified Nodal
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Analysis (MINA) [22, 23] is the most popular circuit-level equation assembly

approach. MNA accommodates non-nodal elements such as independent voltage

sources and yields a smaller system of equations. The unknowns from the MINA

approach are the nodal voltages and currents through inductors and voltage sources.

A. DC and Transient Analyses

DC operating point analysis can be seen as a special case of the general

transient problem. The dc operating point solution provides the initial condition for

transient analysis and is computed before starting the transient simulation.

The dynamic response of a circuit can be described by a system of nonlinear

differential algebraic equations obtained from the equation-assembly phase. These

can be represented as:

f(±(t), x(t), u(t)) = 0

z(t) = g(x(t)) (3.1)

where x is the vector of unknowns, u is the excitation vector, z is the vector of

capacitor charges and inductor fluxes, f is a nonlinear function obtained from the

MNA formulation of the circuit equations, and g is a nonlinear function that relates

the capacitor charges and inductor fluxes to the capacitor voltages and inductor

currents, respectively. To obtain the dc operating point, we set =0 and obtain the

following nonlinear algebraic equations:

f(0,x*,u)=0 (3.2)
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The solution vector x is called the dc operating point solution of the circuit. The

capacitor charges and inductor fluxes at the dc operating point, z, are given by:

z* = g(x) (3.3)

Use of Newton's method to solve the nonlinear algebraic Equation (3.2)

results in the solution of a linear system of equations for each iteration and is given

by:

J(x" )&k+1 = _f(xc) (34)

where J(x") = [.ti]" is the Jacobian matrix, &1 = - x", and k is the

iteration number. Equation (3.4) is solved for &' at each iteration and the new

solution is given by x" = x' When and If(x')I are less than a

user-specified error tolerance, the Newton iteration converges and the dc solution is

obtained. Alternatively, Equation (3.4) can be written as:

xk+1 = - {J(xk )II' f(xk) (3.5)

The linear equations (3.4) or (3.5) can be solved by Gaussian elimination or LU

decomposition. In general, the system of circuit equations is very sparse and sparse-

matrix techniques are used [24].

For transient analysis, the simulation interval is divided into time points and

Equation (3.1) is solved at each of these time points. At time point ç,. Equation

(3.1) can be expressed as:

f(±, x+1, u,,1) = 0



z+1 = (3.6)

Using integration formulas where time derivatives are replaced by discretized

approximations [22, 24], can be expressed in terms of the values of the

unknown x at the present and previous time points. This step is called time

discretization. For the backward-differentiation formula (BDF) of order k, is

given by:

Zn+i = z+1_1 = g (x1_)
n i=O ,, i=O

(3.7)

Substituting n+1 from Equation (3.7) into Equation (3.6), we obtain a system of

nonlinear algebraic equations. These can be expressed in a general form as:

f(x1) = 0 (3.8)

The nonlinear equations can also be solved using Newton's method as in Equation

(3.2) for the dc operating point analysis. Once the Newton iteration converges, the

solution at the present time point t,1 is obtained. Then a new time step is selected

and the equations are solved at the new time point in a similar manner. The time step

should be selected small enough such that the error in time discretization due to the

integration formula is less than a user-specified error tolerance.

B. Small-Signal AC Analysis

Small-signal ac analysis is used to determine the response of a circuit to a

small frequency-domain input at a dc operating point. The magnitude of the input is
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so small that the operation of the nonlinear circuit is approximately linear around the

dc operating point and no significant harmonics are generated.

Assume the dc operating point is given by x0 and u0 for the circuit equation

(3.1). The small input sinusoidal perturbation is given by u = u0 + lie'02 and the

corresponding solution is x = x0 + e'02, where w is the frequency of the source.

Equation (3.1) can be expressed by its Taylor series expansion around the dc

operating point. As mentioned earlier the magnitude of the input is small enough

such that the operation of the circuit is approximately linear. So we can omit the

higher order terms and only keep the linear terms in the Taylor series:

(3.9)
az ax au

f (0, x0, u0) is zero since x0 is the dc operating point solution and the linearized

equations are given by:

(3.10)

The small signal ac solution I is given by:

afl... df[Jwg(x0)+tx=--u (3.11)
[ a± ax] au

Notice that g'(x0) = is the linearized capacitance and inductance and is

the linearized conductance at the dc operating point.
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3.2.2 Semiconductor Device Modeling for Circuit Simulation

In the equation-assembly phase of circuit simulation, branch-constitutive

relations are required that model the semiconductor devices. Device models describe

the physical operation of a device and a relationship between the terminal currents

and the terminal voltages is provided. There is always a tradeoff between the

accuracy of a model and the computation time required for model evaluation, which

includes the calculation of the equivalent conductances, capacitances, charges, and

terminal currents. A simulation is accurate only if the models used for the

semiconductor devices are accurate. An inaccurate model results in incorrect

simulation results. Therefore, modeling is very critical for circuit simulation and this

section addresses the different approaches used in modeling.

A. Analytical Models

Analytical models are based on a set of analytical equations from which

closed-form expressions can be obtained for the terminal characteristics. These

analytical equations are derived from an understanding of the physics of device

operation under some restricted conditions. The drift-diffusion equations are used to

obtain the current-voltage characteristics under dc conditions. Empirical parameters

are introduced to model higher-order physical effects. A model that is used for a

particular device is characterized by a set of parameters called the model parameters.

These parameters are the various constants that appear in the closed-form

expressions relating the terminal currents to the terminal voltages. Their values are
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determined form the measured characteristics of a device using curve fitting.

Although the model is originally based on the physics of device operation, the

parameters loose their physical significance due to curve fitting. Therefore, any

correlation that existed between the process parameters, such as the doping levels,

may disappear, and the model cannot be used to predict the effect of process

variations on circuit performance

Once the dc model has been obtained for the device it is extended to account

for the dynamic or transient operation. This requires identifying the depletion regions

and the charge-storage regions within the device and modeling them as capacitors

attached between the various internal and external terminals of the device. The

capacitance models are based on the concept of incremental-charge partitioning.

Physical insight into device operation is necessary to determine the charge

partitioning. For MOSFET-capacitance models, the application of incremental-

charge partitioning provides correct results only for capacitances connected between

the gate contact and the other contacts [25].

Even if the analytical model works well under dc conditions, the transient

response may be questionable for some regions of device operation. For example, the

standard SPICE analytical models for the diode and BJT are inaccurate for operation

under high-level-injection conditions. In spite of some of these shortcomings

analytical models have been and are extremely useful for circuit design.
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B. Table Methods

Unlike analytical models, table models are not based on the physical

operation of the device. The basic idea in table models is to store a set of discrete

data, for the current-voltage and charge-voltage characteristics, in multi-dimensional

arrays or tables. The model-evaluation subroutine of the circuit simulator interpolates

between the discrete values that are stored to obtain the current and conductance

values for a given set of terminal voltages. Table models ensure accuracy in the

current-voltage characteristics, but in general do not address the accuracy in

conductances which is of concern for analog circuits. The models are very efficient

since no complex function evaluations are required and only simple arithmetic

operations have to be performed to compute the conductance and current values.

Since table models rely on measured data after devices have been fabricated with a

process, they do not posses any predictive capability. The use of table models for

modeling the intrinsic capacitance of a MOSFET has been very limited. A charge-

partitioning scheme has to be incorporated in the table model similar to that for

analytical models.

C. Numerical Models

Numerical models use the solution of the basic physical laws governing

device operation for determining the characteristics of a device. The basic physical

laws are described by Poisson's equation and the current-continuity equations. Since

these equations are partial differential equations (PDEs), numerical methods have to
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be used to obtain the solution, hence the name numerical device models. These

models are accurate and useful for detailed simulations. Since these models are

specified by their geometry and doping profile, they can predict the impact of

process variations on circuit performance. However, since the evaluation of

numerical models requires a long simulation time, it is impractical to simulate a large

circuit with a large number of numerical devices. To reduce the simulation time for

the numerical models, some simplifications can be introduced such that the equations

can be solved efficiently by numerical techniques. These models are referred to as

quasi-numerical models since complete numerical solutions are not used. Obviously

here the accuracy is sacrificed for efficiency. Numerical models of semiconductor

devices will be introduced in detail in the following section.

3.3 Device-Level Simulation

The semiconductor device simulation problem can be formulated as a set of

three coupled nonlinear partial differential equations (PDEs) in space and time,

which are obtained from the underlying physics. Based on applied terminal voltages

the boundary conditions for the PDEs are established and these equations can be

solved. The set of continuous PDEs is discretized in both space and time. Space

discretization plays an important role in the overall accuracy of a simulation. By

space discretization the set of PDEs is transformed into a system of nonlinear

differential algebraic equations. For time-domain transient analysis a suitable

integration scheme can be applied for time discretization and a system of nonlinear
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algebraic equations is obtained. These equations are solved using the Newton's

method. Small-signal ac analysis is carried out by linearizing the space-discretized

device equations at a dc operating point.

3.3.1 Device Simulation Problem

The fundamental equations from the Boltzmann transport equation [26] can

be used to describe the operation of a semiconductor device. These are Poisson's

equation and the electron- and hole-current continuity equations.

where

V.eE=q(N -NA +pn) (3.12a)

(3.12b)
q

(3.12c)
q

E=V (3.13a)

J,, =qpnVqi+qDVn (3.13b)

J, =q,upVqiqDVp (3.13c)

and e is the dielectric constant of the material, q is the electron charge, ' the

electrostatic potential, n (p) electron (hole) concentration, E electric field, J,,

(Jr) electron (hole) current density, p,, (u) electron (hole) mobility, D (Dr)

electron (hole) diffusivity, ND (NA) donor (acceptor) concentration, and G and R
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are net generation and recombination rates, respectively. The variables , n, and p

are of different orders of magnitudes, hence the device equations have to be scaled in

an appropriate manner. The semiconductor device equations after scaling can be

expressed as:

VE=(NDNA+pn) (3.14a)

VJ, =(GR) (3.14b)
at

VJ =+(GR) (3.14c)

and the electric field and current densities are given by:

E=V (3.15a)

J, =u[nVvVn] (3.15b)

= u[pVv+VpJ (3.15c)

The solution of the above system of equations provides the internal distributions of

the electrostatic potential and the carrier densities, and the external terminal currents.

These equations cannot be solved analytically and numerical methods have to be

used.

3.3.2 Space Discretization

To solve the above basic semiconductor equations numerically these

continuous equations are discretized in the space over a simulation domain. The

domain is divided into smaller regions, and the discrete problem is solved for each of
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these regions. For the regions which are part of the boundary, the applied boundary

conditions should be considered. After space discretization, a system of nonlinear

differential-algebraic equations is obtained.

In CODECS the finite-difference scheme [27] is used for space discretization.

The rectangular simulation domain is divided into small nonoverlapping rectangular

regions by grid lines parallel to the x and y axes. The discretized equations are

assembled at each grid node by approximating the spatial derivatives with difference

expressions. For a rectangular mesh with grid spacing h. = x1 x, and

k = y1, the spatial derivatives of a function f(x, y) at grid node (i, f) are

approximated by:

[.L]

f(x1112, y1) f(x_112, y1)
(3. 16a)

ax h+h1
2

[ti]

f(x1, y1112)f(x1, YJ-v2)
(3.16b)

a)) k + k1

2

h. h. k. k.
where x112 =x1 -----, x2 =x, +--, Yj-v2 = y3 _Li, and = y1 +L as

shown in Figure 3.1.



(x_1, y)

(x1, p1+1)

(x1, y11)

xi+1, Y1)

Figure 3.1: Schematic of the grid used for finite-difference space discretization.

Use of this approximation results in the following discretizations for the Possion' s

and the current-continuity equations:

E E
i+i/2,j X :-/2,j

+
i,j+1/2 i,jI,/2

= [N + p n], (3.17a)h+h.. k.+k..
2 2

Jn+2 rani r _i -.
+

k1 +k11 [--j [(iKL (3.1/b)

2 2

PXL+l/2J JPXIIV2,J
+ L12 Rpl

+ [G R], (3.17c)
h + h1 k + k11

2 2

In the above equations the values of J,. and J), are required at the

midpoints of each interval [x1, x.1 I or y+]. These values can be approximated

from the nodal values of the electrostatic potential and the carrier concentrations and

are given as:



E =
Wi+Lj

X 1+1/2,1 h
(3.18a)

Ii+1/2,j

' L+1/2, [n11B(11 n1 1B((11 (3.18b)

1+1/2

PX /j h
' [p,B(v+1,1 p11,1B((qt1, (3.1 8c)

where B(x) = is the Bernoulli's function. So far the device equations havee 1
been discretized in space using a suitable grid and the unknowns are the electrostatic

potential and the electron and hole concentrations at each grid node.

3.3.3 Solution Methods for Device Equations

After space discretization, the equations at all grid nodes can be expressed in

a symbolic form as:

Poisson's equation: F,(qJ, n, p) =0 (3.19a)

an
n continuity equation: F(v, n, p)---- = 0 (3.19b)

ap
p continuity equation: F (v, n, p)+ = 0 (3.19c)

p at

The complete system of equations can be represented in a general form as:

F(''(t), w(t)) =0 (3.20)

where w is the vector of electrostatic potential, ii, electron concentration, n, and

hole concentration, p. at each grid node.
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A. DC and Transient Analysis

For DC analysis, the system of nonlinear differential-algebraic equations

(3.20) reduces to a system of nonlinear algebraic equations by setting ' = 0 and is

given by:

F(0,w*)=0 (3.21)

These equations can be solved by a direct method using a Newton scheme. A large

amount of storage and computational effort is required, since a large system of

equations has to be solved. Some relaxation-based approaches can be used to solve

the problem efficiently. However, under high-level injection conditions the

relaxation methods converge extremely slowly and may require a very large number

of iterations to reach convergence [2].

an ap
For transient analysis, the time-derivative terms and in Equation

at at

(3.20) have to be discretized in time. As in the circuit-simulation problem described

in Section 3.2.1.A this can be done by use of an integration formula. The time

discretization results in a system of nonlinear algebraic equations and again this can

be solved by Newton's method or relaxation-based approaches.

B. Small-Signal AC Analysis

Small-signal ac analysis involves finding the ac response at an established dc

operating point n0, p0, V0) where V0 is the applied bias. Following the same



41

derivation as in the circuit simulation problem described in Section 3.2.1.B, the

small-signal ac solution is given by:

[a aF aF 1 [aF1
an ap ri

aF aF aF II I

V (3.22)
i a an ap ii av I

I a- a- jwl Ii I

I aF aF a IL] I aF
--+jwiI [jan ap

where all the derivatives are evaluated at the dc operating point.

3.4 Coupled Device and Circuit Simulation (CODECS)

In this section, first the circuit-level dc problem is used to illustrate the

relationship between the analytical model evaluation and circuit simulation. If the

same relationship is used between the numerical device models and circuit

simulation, then the result is a two-level Newton algorithm. The algorithm is used to

describe the architecture for coupling the device simulator to the circuit simulator.

This architecture allows complete decoupling between the circuit and device

simulators. Since the algorithm is motivated by analytical models, the numerical

models are viewed as another model type from the circuit simulation point of view.

The interface between the two simulators is well defined and the interface routines

necessary for this coupling are described. The full-Newton algorithm, the general

formulation for coupling the device and circuit simulators, is then described. The
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full-Newton algorithm can also be implemented in this architecture in a decoupled

manner.

3.4.1 Two-Level Newton Algorithm

Consider a dc problem for a circuit with semiconductor devices modeled by

nonlinear analytical models. For these analytical models, the terminal characteristics

are described by a closed-form expression, i = 1(V). Then the nonlinear algebraic

equations describing the dc problem are given by:

f(I(V), V, u) = 0 (3.23)

where V is the unknown vector and u is the dc excitation. When Newton's method

is used to solve the nonlinear circuit equations, a linear system of equations is solved

at each iteration until convergence is achieved. As in Section 3.2.1.A, the linear

iteration equation is:

[af +j
1V =_f(1(Vk),Vk,u) (3.24)

Ti7IVk aVVkJ

where k is the iteration number. The equivalent conductance, Geq is defined as:

Gc
eq

EW Vk

(3.25)

The task of analytical model evaluation is to calculate G and 1(V") for the

terminal voltage V". These are then used in Equation (3.24) to carry out the circuit

simulation.



To couple the numerical devices with a circuit simulator in a similar manner,

the equivalent conductances and terminal currents have to be calculated for

numerical devices. But unlike analytical models, the current-voltage characteristics

are not known as closed-form expressions for the numerical devices. So Geq and

1(V) cannot be calculated by function evaluations and numerical techniques as

described in Section 3.3 must be used. The partial-differential equations describing a

numerical device have to be solved for each operating point specified by the terminal

voltages. As shown in Section 3.3, these device-level nonlinear equations are also

solved by a Newton's method. Once the equations have been solved for an applied

terminal voltage V. the equivalent conductances and terminal currents can be

calculated as described in Section 3.4.2 and the circuit-level iteration from Newton's

method as in Equation (3.24) can be performed. The overall solution technique is a

two-level Newton scheme. The inner Newton's method is used for the device-level

simulation and the outer one is for the circuit-level simulation.

3.4.2 Calculation ofConductances

After space and time discretization the device-level equations can be

represented as a set of nonlinear algebraic equations:

F(w,V)=0 (3.26)

where w is the vector of internal variables. The dependence of the boundary

condition V is explicitly written in the above equation. Let i = 1(w, V) represent the

terminal currents as a function of w and V. i is calculated by summing the current



density components around a contact. It should be noted that w can be expressed as

a function of V from Equation (3.26). The system of Equation (3.26) is solved for an

applied voltage V0 by Newton's method where

LiW = J1F(w, V0) (3.27)

is solved at each iteration. J = is the Jacobian matrix of the device-level

equations. When Newton's method converges, w is the solution of F(w, V0) = 0

and I(w, V0) can be calculated.

To calculate the lineanzed conductance G = -' the chain rule has to be
eq

av

used:

G
aZaIaW ai

eq awaV
(3.28)

where and
a'

are obtained by symbolic differentiation of the function
av

aw. .

I(w, V). is calculated in the following manner. The partial denvative of

Equation (3.25) with respect to V is:

=0 (3.29)

or as:with J, -. From Equation (3.29) we can solve f
a

J'J (3.30)

Since J is available in its LU factors that were calculated during the solution of

Equation (3.26) by use of Equation (3.27), only forward and backward substitutions

are required in calculating which is computationally inexpensive. Then Geq can

be calculated from Equation (3.28) and is given by:
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-1Geq=_!_Jw (3.31)

3.4.3 Architecture of CODECS

It is clear from the previous sections that a numerical device model is similar

to an analytical device model in several respects for circuit simulation. Given the

terminal voltage, the equivalent conductances and terminal currents have to be

calculated and used in the circuit-level equations. For an analytical model this task

involves function evaluations, whereas for a numerical device the three PDEs have to

be solved. The interface to a circuit simulator can be identical for the two types of

models as shown in Figure 3.2, where the task of model evaluation is illustrated. The

interface to the circuit simulator is through routines for model evaluation, and for

loading the equivalent currents and conductances in the circuit-level Jacobian and

right-hand side vector.

1/1

I Currents
I Analytical or numerical I

V2 models I

I Conductances

Vn

Figure 3.2: The task of model evaluation.
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The overall framework of CODECS is shown in Figure 3.3. The circuit

simulator is the controlling program. It supports analytical models for the circuit

elements and also stores the vector of node voltages. These voltages are available to

the model-evaluation subroutines that calculate the equivalent conductances and

terminal currents for a device. The numerical devices are simulated by the device

simulator of CODECS, and the interface to the circuit simulator is identical to that

for analytical models. Device-level simulation is used to solve the PDEs for a

numerical device for given terminal voltages. Then the terminal conductances and

currents are calculated at the operating point, and assembled in the circuit-level

Jacobian matrix and right-hand side vector.
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Figure 3.3: Architecture of CODECS. Numerical devices are interfaced with the
circuit simulator in a manner similar to that for analytical devices. The circuit node
voltages establish the boundary conditions for the numerical devices. The PDEs are
solved by the device-level simulator of CODECS.

3.4.4 Full-Newton Algorithm

An alternate way to view coupled device and circuit simulation is to treat the

numerical devices and circuit-level elements as one problem. Then the device-level

and circuit-level equations are combined and expressed as one system of equations.

The complete system of nonlinear equations can be solved by Newton's method.

Unlike the two-level Newton algorithm where the device and circuit-level unknowns

are solved separately in a decoupled manner, the complete set of unknowns is solved



simultaneously. Combining the device-level Equation (3.26) with the circuit-level

Equation (3.23), the complete system of equations is given by:

F(w, V) = 0 (3.32)

f(I(w, V), V, u) = 0 (3.33)

Using Newton's method Equations (3.32) and (3.33) are solved and the

iteration equations are:

JAw+ J%,AV = F(w, V) (3.34)

af(aI ai
aI'aw E3V J V
Aw+ AV + AV =f(I(w,V),V,u) (3.35)

From Equation (3.34), Aw can be solved as:

= J'(F(w, V) JVL\V) (3.36)

Substituting Aw from Equation (3.36) into Equation (3.35), we obtain:

tJ_
' + --')+--LV = f(I(w, V), V. u)+ i-i[.!_J'F(w V)]

[aII. aw V aV) av]

(3.37)

This equation can be rewritten as:

+ = f(I(w, V), v,
'

(w, V)] (3.38)u)+jJ Feq avj alLaw

dl -i dl
with Geq = Th1w

J +-. Although this Geq has the same form as Equation

(3.31) for the two-level Newton algorithm, they are different. This Geq is evaluated

based on the device internal state at the current iteration, while Geq in Equation
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(3.31) is evaluated based on the converged device internal state for given terminal

voltages. The same situation applies to I(w, V) in these two cases. Equation (3.38)

is similar in form to that obtained with the analytical models or by use of the two-

level Newton algorithm. Now the numerical model evaluation consists of calculation

of Gq I(w, V), and V) at each iteration. These are then used in the

circuit-level Equation (3.38). Thus the full Newton algorithm can also be used to

embed numerical models within a circuit-simulation program and implemented in

the framework of CODECS shown in Figure 3.3.
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Chapter 4

TIME-DOMAIN SHOOTING METHOD

4.1 Introduction

The time-domain shooting method [5, 17-20] as introduced in Section 2.3 is

an efficient approach to compute the steady-state solution of RF circuits. Due to

extremely large time constants introduced by large inductors, large capacitors, and

narrowband high-Q filters, RF circuits approach the steady state very slowly with the

DC solution as an initial condition. For this reason, conventional transient simulation

can become impractical especially when computationally expensive models

(numerical models) are included as in CODECS. In this chapter we describe in detail

the shooting algorithm and its practical implementation.

This chapter is organized as follows. The formulation of the periodic steady-

state problem with the shooting method is presented in Section 4.2. An efficient

approach to obtain the sensitivity matrix required by the shooting method is provided

in Section 4.3. In Section 4.4, the formulation of the shooting method is modified to

obtain the steady state of autonomous systems where the period is also an unknown.

In Section 4.5, the implementation details and convergence heuristics are described.

Some implementation issues specific to CODECS are discussed in Section 4.6 and

this chapter is summarized in Section 4.7.
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4.2 Solution of the Periodic Steady-State Problem with the Shooting Method

4.2.1 The Shooting Method

Consider the system of equations

f(1,x,t)=O (4.1)

where x(t) is a vector of state variables and f is a nonlinear algebraic function.

Define 0 to be the function that maps the state x0 at t0 to the solution of Equation

(4.1). That is:

x(t) = Ø(x0, t0, t) (4.2)

This function is referred to as the state-transition function. In circuit-level simulation,

the state vector, x, includes the voltages across the capacitors and currents through

the inductors. The state-transition function 0 can be obtained by a regular transient

analysis starting from the initial state x0 at t0.

From the definition of a periodic function, the state variable x(t) is periodic

with T if x(t) = x(t + T) for all t. This is a difficult condition to apply in practice

because the condition must be verified over all t. However, if x(t) is the solution of

a differential equation that is smooth, then by uniqueness,

x(t) = x(t +T) (4.3)

for some t implies that the condition is true for all t [5]. Fortunately, the system of

differential equations used to describe practical circuits with analytical and/or

numerical devices has a unique transient solution starting from an arbitrary initial
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condition. With t in Equation (4.3) set to zero and using Equation (4.2), the periodic

boundary constraint (4.3) becomes:

x(0) x(T) = x(0) Ø(x(0), 0, T) =0 (4.4)

The condition of Equation (4.4) is illustrated in Figure 4.1 where

x(T) = Ø(x(0), 0, T) is the final state corresponding to the initial state x(0).

x(0

Ø(x(0), 0, t)

A d1IJ.& A

Figure 4.1: Periodic boundary constraint.

t

Therefore, finding the periodic solution of Equation (4.1) is equivalent to

solving for the root of the implicit nonlinear Equation (4.4). This is the starting point

for the shooting method. Once x(0) in Equation (4.4) is found, a numerical solution

of Equation (4.1) with x(0) as the initial condition leads directly into the periodic

steady-state solution.
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4.2.2 Shooting with Newton's Method

If Newton's method is used to solve the nonlinear Equation (4.4), the

following iterative equation is obtained:

(0) = (0) [i j (T)]' [x (0) (T)1 (4.5)

where I is the identity matrix, x (T) = Ø(x (0), 0, T) is computed by a

conventional transient analysis starting from the initial state x (0) over the time

interval T, and

J(T) ax(T)I

ax(o)
(4.6)

is the sensitivity matrix of the final state (T) with respect to changes in the initial

state x (0). This sensitivity matrix is used to determine the correction in the initial

state once the difference between the initial state and the final state is found. In the

next section, an efficient computation of the sensitivity matrix by means of

sensitivity circuits is described.

From the point of view of a Newton iteration, the shooting method solves the

periodic boundary constraint (4.4) by computing the solution for a succession of

transient analyses over the period T. Each of these transient analyses starts out with

an improved guess for the initial state eventually resulting in the steady-state

solution. First the circuit is simulated for one period using some guess for the initial

state. Then the final state x (T) is checked with the guess for the initial state x' (0).

If they don't match each other, the initial state is adjusted according to Equation
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(4.5). The circuit is simulated again for one period with the adjusted initial state. This

process is repeated until the initial state and the final state match within some

specified tolerances. The solution procedure for the shooting method is illustrated in

Figure 4.2 where x° (0) is the initial guess for the initial condition and x * (0) is the

initial condition leading to the steady-state solution.

Transient simulation for one
period of T to obtain x(T)

I Iteration

:ompute sensitivity matrix tc H Equation

obtain J(T)
(4.5)

Newton Loop

Figure 4.2: Solution procedure for the shooting method.

An alternative method to solve the nonlinear Equation (4.4) is the

extrapolation method [28]. However, the extrapolation method has been shown to be

not as robust as the Newton's method in [29]. Recently, the homotopy method [30,

31] was successfully implemented to solve Equation (4.4) [32-35]. The homotopy

method is a robust and accurate numerical technique for solving nonlinear algebraic

equations and can be used as a backup when Newton's method fails. In this work

Newton's method is used to solve the nonlinear equation in the shooting method

formulation. Some modifications and heuristics will be described in Section 4.5

which considerably improve the reliability and convergence of Newton's method.
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4.3 Sensitivity Matrix Computation by Sensitivity Circuits

In this section, an efficient computation of the sensitivity matrix in Equation

(4.6) by means of sensitivity circuits is described.

4.3.1 Sensitivity Circuits

Sensitivity circuits [36] are an efficient approach to compute the sensitivity

matrix j (T) in Equation (4.6). To develop the sensitivity circuits, a general

sparse-tableau formation of the circuit equations is used such that the result will be

valid for any other specific formulation. The sparse-tableau formulation [37] is:

where

Ai =0 (KCL) (4.7)

ATe = v (KVL) (4.8)

= fr(Vr) (resistive branch) (4.9)

q = f(v) (capacitive branch) (4.10)

= f1 (i1) (inductive branch) (4.11)

dqdc v(0)=v0

dA,=v1;
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and i and v are the vectors of branch currents and voltages respectively, and e is

the vector of node voltages.
r

and V,. are the vectors of currents and voltages of

resistive branches, i and v are the vectors of currents and voltages of capacitive

branches, and i1 and v, are the of vectors of currents and voltages of inductive

branches. q. is the vector of charges for capacitive branches and 2 is the vector of

fluxes for inductive branches. The branch constraints due to the independent sources

i and are:

+ = F(t) (4.12)

The branch current and voltage vectors have been partitioned so that:

[r1 [Vrl

ic
Vj

t=I Iandy=I
Ii, I Iv I

LJ []

and the initial state vector is partitioned as:

rvco1
x(0)=I I (4.13)

Lioi

The sensitivity of the circuit with respect to the initial state of one of the state

variables x, (0) is given by the first-order partial derivatives of Equations (4.7)-

(4.13) to the initial state and described by the following set of equations:

A =0 (KCL) (4.14)
ax (0)

AT
aV

(KVL) (4.15)
ax (0) ax (0)



where

Finally,

dl,. _I dVr

dx(0)dv I dx,,(0)
r Iv,(t)

dq,. I av

dx (0) dv dx (0)
C Iv(z)

d2, di,

dx(0) di, Ij,() dx(0)

t a1,, 1= ai

dt[dx(0)] dx(o)

and

(resistive branch)

(capacitive branch)

(inductive branch)

dv (0) Je1. if x,, is the branch voltage of the jth capacitor

dx (0) 1O, if x,, is an inductor current

where e is the unit vector.

4_dA, _
dv,

dt[ax(o)j dx(o)

and

di, (0) Je1, if x,, is the current in the jth inductor

dx (0) 10, if x,, is a capacitor branch voltage

dv
0

dx(o) dx(0)

(4.16)

(4.17)

(4.18)

(4.19)
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Equation (4.19) means that the independent current and voltage sources become

open and short circuits, respectively, in the sensitivity circuits.



Equations (4.14)-(4.19) describe a linear version of the original circuit with

the same topology. This linear circuit is called the sensitivity circuit. The major

difference between the two circuits is in the initial conditions for the differential

equations and the independent sources. In the sensitivity circuit, all the independent

sources are zero as shown in Equation (4.19), the initial condition of the capacitor

(inductor) with respect to which the sensitivity is calculated is 1, and all other initial

conditions are 0. There is a sensitivity circuit for each capacitor and each inductor in

the circuit. The solutions of each of these sensitivity circuits, with the initial

condition mentioned above, at t = T is the set of partial derivatives required to form

the sensitivity matrix, J(T), used in the Newton iterative Equation (4.5).

4.3.2 Sensitivity Computation along with Transient Simulation

In the numerical calculation of the transient response employing implicit

integration methods the nonlinear elements are replaced by linear approximations. In

calculating the circuit response at time t, when the Newton iteration converges, the

linear circuit matrix at time t is available in a LU-factored form. Since the

sensitivity circuit is a linearized version of the original circuit at the current operating

point, the sensitivity circuit will have the same linear circuit matrix at each time

point during the transient simulation. if the sensitivity circuit is solved together with

the original circuit at each time point, the already LU-factored linear circuit matrix

can be used and only inexpensive forward and backward substitutions have to be

carried out to solve the sensitivity circuit.
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To illustrate this further, let us consider the system of nonlinear differential

algebraic equations describing a circuit as:

f((t), x(t), u(t)) = 0 (4.20)

The linear circuit matrix with respect to x(t) at time t is obtained by:

af(c,x,u)af a af

ax
(4.21)

For a linear multistep integration formula used during a transient simulation:

I = a + fl (4.22)

where a is a constant and J3 is a function of x at previous timepoints. The linear

circuit matrix in Equation (4.21) is:

afa(oX-f-fl) afaf
+

ax axa. ax
(4.23)

The sensitivity of Equation (4.20) with respect to the initial condition x(0) is given

as:

af(I,x,u)af a a ax a.a0
(4.24)

ax(o) ax ax(o) + ax ax(o) ax

where z
ax

is the sensitivity matrix that has to be computed. If the same
ax(o)

integration formula as Equation (4.22) is used here, Equation (4.24) can be

transformed as:

L. a!
(a+fl )+ z 0 = (-a+-)z (4.25)

ax aI ax



where /1. is a function of z at previous time points. It can be seen that the system

matrix for the sensitivity Equation (4.25) is the same as Equation (4.23) obtained

from the transient simulation.

4.4 Shooting Method for Autonomous Systems

A system is autonomous if both the system and its inputs do not vary with

time. For a circuit, it means all the branch relationships are time invariant and the

independent sources are constant valued. Oscillators are autonomous circuits that

have non-constant periodic solutions [5]. Compared with forced circuits, oscillators

have two problems associated with the steady-state analysis. The first is that the

period of the steady state of an oscillator is not prefixed and should be solved in the

steady-state analysis. The second is that since there is no input to fix the phase, if one

steady state exists, any time shifted version is also a steady-state solution.

To handle autonomous systems, shooting methods for the forced system

should be modified to handle the above two problems. Since the phase of the steady

state solution is not of importance, some value can be assigned to one of the state

variables so that the phase is fixed and the shooting method targets one solution. At

the same time, the period of oscillation T is added to the list of unknowns. Thus, a

solvable system with N unknowns and the same number of equations is obtained.

With these modifications, the modified Newton equation for the shooting

method is given by [18]:



(i+l) y(J) [i' ji) (T' )j' [x (0) (T)] (4.26)

where y is given by [x1(0) x2(0) xk_l(0) T xk+l(0) xN(0)IT, i.e., the

initial value of the state variable Xk is replaced by the unknown period T. I' is the

identity matrix with the k th diagonal element set to zero instead of one. The k th

column of I' is zero because the initial state chosen obviously does not depend on

the period of the current iteration. The sensitivity matrix J (Tw) is given by:

ax(T)I

x(0)=x' (0), T=T

(4.27)

Compared with the sensitivity matrix in Equation (4.6), in j (T°) the k th

ax(T)
column is replaced by which is the sensitivity vector of the

oT

final state with respect to changes in the period This sensitivity

vector can not be obtained from the sensitivity circuits. The following shows an easy

way to calculate this sensitivity vector. For a capacitor and inductor:

1 T v(T)1.v(T)v(0) =-J i(t)dt --i(T) (4.28)

1 r ai1(T)1
i1 (T) i1 (0) = I v (t)dr = - v1 (T) (4.29)

L° ' T L

Where v and v, are the voltages of the capacitor and inductor, and i and i1 are the

currents of the capacitor and inductor, respectively. The capacitor currents i. and

inductor voltages v, are calculated during transient simulation and the sensitivity of

the final state to the period can be obtained readily by Equations (4.28) and (4.29).
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The remaining question that needs to be answered is which state variable in

x(0) should be chosen and replaced by the unknown period T. In other words, how

(j+1)should k be selected? First, k should be selected such that Xk (0) lies in the

range of the orbit of the oscillator. Otherwise, the algorithm can not converge to that

orbit and the steady-state oscillatory response cannot be determined. Secondly,

aXk(T) should not be zero. Because this element of the vector
aT x(0)=xoJ)(0),T=To1>

ax(T)
will become a diagonal element in the new sensitivity matrix

xo=x' (0), T=T>

j (T), and a zero value will cause the matrix to be nonsingular. We choose k

ax(T)
by selecting the maximum element of [29], i.e.,

uT x(0)=x'>(0), T=TW

aXk(T)I
, n=1,.,N (4.30)

L(0)=x(0), T=T> Ix(0)=x'>(0), T=T>

aX,, (T)I
such that I 0. This selection rule also ensures that x' (0) is

Ix(0)=x(0), T=T'

Xk (j)in the range of the oscillation orbit. = 0 means that Xk (t) is at its
at x(0)=x(0)

minimum or maximum values or local extreme points. Therefore, if

ax,, (T)
0, x (Tm) is between those extreme values and thus in

JT x(0)=x>(0), T=T

the range of the oscillation orbit. This is illustrated in Figure 4.3 where Xk (T) at
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point C lies between the extreme values at points A and B. The new initial value of

the k th state variable, (0), is not given by Equation (4.26) since it has been

replaced by the unknown period T. Usually (0) is set to the final value of the

current iteration, Since x(T°) is in the range of the oscillation orbit,

so is (0).

xk(t)

Figure 4.3: Waveform of a state variable Xk (t) in one period. If aXk(T) 0, then

Xk (T) lies between the extremes and thus is in the range of its orbit.

4.5 Implementation Consideration and Heuristics

In this chapter, the time-domain shooting method has been presented for both

nonautonomous and autonomous systems. The basic idea is the use of Newton's

method to solve the periodic boundary constraint of Equation (4.4) to obtain an
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initial state from which the transient analysis leads directly to the periodic steady-

state solution. As with all Newton-based algorithms, good convergence is not

achieved for a wide variety of practical nonlinear problems unless some

modifications and heuristics are used. In this section, the implementation details and

convergence heuristics to the Newton algorithm are described which considerably

improve the reliability and convergence of the algorithm.

4.5.1 State Elimination

As discussed in Section 2.3, the long time constants in RF circuits are usually

introduced by the large linear capacitors and inductors that make the circuits

approach the steady state very slowly. The states of these linear capacitors and

inductors are the more dominant ones in determining the steady state. Compared

with these dominant states, the states associated with the parasitic capacitances of

semiconductor devices have less of an effect on the steady state. Even though their

effect is small, it is found that they are very sensitive to the more dominant states and

hinder convergence. One way to solve this problem is to not update these states

based on the Newton shooting method. Thus, (0) = 4/) (T) for these states and

they are eliminated from the sensitivity matrix. Also the size of the sensitivity matrix

is reduced in this way and the simulation is more efficient. Therefore, only the states

of linear capacitors and inductors in the circuit are considered in this implementation

of the shooting method.
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4.5.2 Damped Newton Algorithm

The Newton iteration may overshoot if the current guess is far from the

solution. To prevent the overshoot, a damped Newton algorithm should be used since

damping reduces the effect of the sensitivity matrix on the iteration. The Newton

iteration Equation (4.5) with a damping parameter a is [19, 20]:

(0) = x (0) [i W (T)]1 (0) x (T)J (4.31)

where 0 a 1. When an iteration result is close to the final solution, a should be

close to one and Equation (4.31) reduces to the undamped Newton method. When

the iteration result is far away from the final solution, a should be close to zero and

then x' (0) x (T), that is, the method degenerates to a regular transient

analysis. Therefore, the damping parameter should be a proper function of the

distance between the iteration result and the final solution. In [29], the function used

is:

a=1dm (4.32)

where m is a positive integer and chosen experimentally to be 10. d is the distance

and is given by:

d = max lx/ (T) x (°)I--N)l
(4.33)

The above method to determine the damping parameter is implemented in the

shooting method of CODECS.



4.5.3 More Heuristics for Autonomous Systems

The oscillator is an example of an autonomous system for which the period of

oscillation is an unknown. Heuristics are necessary to ensure reliable convergence of

Newton's algorithm for such a system. The heuristics that have been used in this

implementation are described here.

A transient analysis is performed in the beginning for several periods without

any sensitivity computation and Newton iteration. This ensures that the extremely

fast transients in the start-up phase have died out. In this way the initial guess is

closer to the solution and Newton's method should be more reliable and efficient.

Also in this interval a pulse is applied to a voltage source to build up the oscillations.

The sensitivity computation is carried out for the current period to calculate the

new initial state only when the error of the last period is less than an acceptable

threshold. Otherwise, the transient analysis continues to the next period. d in

Equation (4.33) is used as the error which indicates the distance of the latest value of

the state vector from the solution. This heuristic prevents the iterations from going

to a wrong solution.

As for nonautonomous systems, a damped Newton iteration is used to prevent

overshoot with the regular Newton method. The damped Newton iteration equation

for an autonomous system is:

(J) {i' czl7) )r [x° (0) )J (4.34)
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It should be emphasized that the k th diagonal element of j (T1),

aXk (T)I _L. aXk (T)I
. When damping isis replaced byaT'

Ix(0)=x>(0), T=T> a2 T x(0)=xU)(0), T=T

strong and a is close to zero, the k th diagonal element of I' aJ

laXk(T)I
a T

, is going to be very large and the desired result
Ix(0)=x'(0), T=T

T'' is obtained.

Finally, the change in the period T is not allowed to exceed ten percent of

the current period to prevent overshoot of the Newton iteration.

4.6 Shooting Method for Coupled Device and Circuit Simulation

In this work, the time-domain shooting method has been implemented in the

coupled device and circuit simulator CODECS. As described in Chapter 3, in

CODECS the circuit-level simulation engine controls the analytical device evaluator

and the numerical device simulator. Accurate terminal conductances and

capacitances for the numerical devices are supplied by the device-level simulator and

included in the circuit-level system of equations. Following this structure, the

shooting method is implemented at the circuit level in this work. Also CODECS has

the standard transient analysis that is required for the shooting method. During the

implementation some problems which are specific to numerical devices were found

and solved.



4.6.1 Numerical Device Biasing

In CODECS, the numerical devices are biased up to an initial state starting

from the equilibrium point. The equilibrium point is the device state when all the

terminal voltages are zero. Usually the terminal voltages from the initial state are so

large that many small voltage steps are needed for convergence of the numerical

devices. At each bias increment several iterations are required for convergence.

Thus, the present biasing scheme is inefficient and time consuming. Notice that at

the end of j th period the final state xCi) (T) and the new initial state x' (0) are

obtained and at the same time the numerical devices have been biased to x (T) by

the transient simulation. To bias the numerical devices to (0), we only need to

bias them up a step Ax = (0) x (T) from (T). Since the damping

scheme in Section 4.4.2 is used in the Newton iteration, Ax is always a relatively

small step even when the iteration is far away from convergence. It can even be zero

when the new initial state is given the value of the final state of the last period, i.e.,

x' (0) = x (T). For small-step bias increments, the numerical device simulator

converges readily. The new biasing scheme is illustrated in Figure 4.4 where

= (0) is the large voltage step if the device is biased from the equilibrium

point. A significant improvement in the efficiency of the shooting method for

coupled device and circuit simulation is achieved.



Voltage

(0)

Time
Equilibrium

point *-----------------------------*
period j period 3+1

j th Newton
iteration

Figure 4.4: At the end of j th period the numerical devices have been biased to

x (T) by the transient simulation. To bias the numerical devices to (0), one

only needs to bias them by a small step Ax = (0) x (T) from x (T)

instead of the large voltage step &1) = (0) from the equilibrium point.

4.6.2 Circuit Unknown Implementation vs. State Implementation

It should be realized that so far the unknowns x are the circuit states which

only include the voltages across capacitors and the currents through inductors. We

call this the state implementation of the shooting method and most of the previous

work has used this approach. From this implementation approach, the Newton

iteration at the end of a one-period transient can only provide the new initial values

for capacitor voltages and inductor currents. However, to start a new transient

simulation other devices have to be evaluated based on the final values of the last

transient analysis. Obviously there is an inconsistency between these new initial

conditions which represent the circuit solution at the t = 0 time point. This
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inconsistency causes a discontinuity between the t = 0 time point and the first time

point after that. The symptom is that the local error can not be reduced using smaller

time steps. Finally the simulator issues a "Time step too small" error and the

simulation is aborted. A circuit description that includes only analytical devices can

handle this discontinuity better and the simulation is seldom aborted. However, for

numerical devices, this problem occurs frequently.

A solution to this problem is motivated from the ordinary transient

simulation. An ordinary transient simulation starts with a DC analysis. The DC

solution vector of circuit unknowns is used as the initial condition for the transient

analysis. These circuit unknowns include the nodal voltages and currents through

inductors and voltage sources. Since all the initial conditions of devices are derived

from the same vector of circuit unknowns, the initial values for capacitor voltages

and inductor currents are consistent with the ones for other devices. If the new

transient analysis in the shooting method also started from a solution vector of circuit

unknowns, the problem due to the inconsistent initial conditions can be overcome.

This requires that the circuit unknowns are used as the unknowns in the shooting

method instead of the circuit states. Then the Newton iteration of the shooting

method can provide a solution vector of the circuit unknowns from which the initial

conditions of all devices can be derived. This approach is referred to as the circuit

unknown implementation. In this approach, the sensitivity matrix to the circuit

unknowns are required and can also be computed efficiently by the sensitivity

circuits described in Section 4.3.
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Since the unknowns for the shooting method now are the circuit unknowns

instead of the circuit states, the implementation of the state elimination discussed in

Section 4.5.1 needs further explanation for the circuit unknown approach. Let us

recall the computation of the sensitivity matrix along with the transient analysis in

Section 4.3 and rewrite Equation (4.25) here:

(a+)z =-i3 (4.35)

where z is the sensitivity matrix at the current time point and /J is a function of z

at previous time points. When forming the right-hand side of Equation (4.35), only

the sensitivities of the components corresponding to the considered states are loaded.

Then the effect of other states is eliminated from the computation of the sensitivity

matrix.

Because the unknowns have changed, Equations (4.28) and (4.29) that are

used to calculate the sensitivity of the final values to the unknown period for

autonomous systems are invalid for the circuit unknown implementation. However,

again the sensitivities can be obtained by simple calculations. Note that the

sensitivity of the final values to the unknown period is just the time derivative

evaluated at the end of the period, i.e.,

ax(T) ax(t)

JT at t=T

(4.36)

This time derivative can be numerically approximated by an integration formula. The

natural choice is the use of the same formula as the transient simulation since the

coefficients of the integration formula are already available. When using this
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method, to ensure the accuracy of the approximation it is necessary to use a small

enough time step during the transient simulation. In fact, Equations (4.28) and (4.29)

are using the same method because the capacitor currents i and the inductor

voltages v1 in those equations are calculated in device evaluation routines by

applying the same integration formula on the capacitor voltages v. and the inductor

currents i.

4.7 Summary

In this chapter, the periodic steady-state problem was formulated as a

periodic boundary constraint equation. The root of this implicit nonlinear equation

provides the solution and the method is referred to as a shooting method. When

Newton's method is applied to the solution of these equations a sensitivity matrix

computation is needed. The sensitivity matrix can be obtained simultaneously with

the transient analysis. By fixing the value of one state variable and adding the period

as an unknown, the shooting method can be modified to handle autonomous systems

such as oscillators. Modifications and heuristics that have been applied to improve

the reliability and convergence of the Newton shooting algorithm have been

described.

When the shooting method is implemented in a coupled device and circuit

simulator, two problems associated with numerical devices need to be solved. These

include a scheme to bias the numerical devices to the new initial condition and a
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circuit unknown implementation to eliminate the inconsistency and discontinuity in

the standard state implementation. These modifications are essential for efficient and

reliable time-domain periodic steady-state analysis for coupled device and circuit

simulation.
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Chapter 5

FREQUENCY-DOMAIN HARMONIC BALANCE METHOD

5.1 Introduction

Harmonic balance (HB) is a nonlinear frequency-domain method [5]. This

name is due to the original view that this method balanced the currents between the

linear and nonlinear subcircuits in the frequency domain. An application of the FIB

method yields a system of equations for a circuit in the frequency domain. This

formulation provides significant advantages in terms of accuracy and efficiency

compared with the time-domain method.

First consider the problems with the time-domain method for high frequency

RF applications. From Section 2.1, we can see that the mixer converts the RF signal

to the IF frequency band by mixing with the LO signal. Usually the frequency

separation between these signals is very wide and can be of several orders of

magnitude. In other words, the period of the lowest frequency is several orders larger

than the period of the highest frequency. To capture the steady state of this circuit,

even with the time-domain shooting method that is used to speed up the periodic

steady state simulation, tens of periods of the lowest frequency have to be simulated.

To resolve the highest frequency signal, adequate time points should be sampled in

one period of this signal. As a consequence, a large number of time points have to be

simulated. Furthermore, if the frequencies are incommensurate (two frequencies are
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said to be incommensurate if their ratio is not a rational number), strictly speaking it

is impossible to represent the steady-state waveforms in the time domain. To obtain

accurate results in the time domain, the time step should be very small and

simulations should be carried out with tight tolerances. These require a long

simulation time. Also the time-domain method generally has difficulty in handling

frequency domain device models used in RF applications.

The harmonic balance method overcomes these difficulties by solving the

system of equations in the frequency domain. The periodic and quasiperiodic steady-

state solutions are directly computed. Since the system is formulated in the frequency

domain, the HB method can handle multi-tone widely separated frequencies and

incommensurate frequencies naturally. It is ideal for handling models represented in

the frequency domain and provides accurate frequency-domain solutions.

In the harmonic balance method, the circuit waveforms are represented by the

Fourier sine and cosine series. Then the unknowns are the frequency-domain Fourier

coefficients instead of the time-domain waveforms. This approximation of a time-

domain waveform as a Fourier series naturally and efficiently guarantees that the

solution obtained is indeed the periodic or quasiperiodic steady state of the system.

Since the coefficients of the steady-state response are an algebraic function of the

coefficients of the stimulus, the dynamic aspect of the problem is eliminated.

Therefore, the nonlinear integro-differential equations that describe a circuit are

converted by the Fourier transform into a system of nonlinear algebraic equations
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whose solution is the steady-state response of the circuit. Usually these equations are

solved iteratively by a Newton method.

This chapter is organized as follows. The discrete Fourier transform for a

periodic signal is presented in Section 5.2. In Section 5.3, the quasiperiodic steady-

state problem is described. Harmonic truncation methods that choose the significant

frequency components for both periodic and quasiperiodic signals are described in

Section 5.4. Frequency remapping transforms a quasiperiodic problem to a simpler

periodic one which is easier to solve by the harmonic balance method. In Section 5.5,

the basic theory on remapping is discussed and the remapping scheme is illustrated

by an example. The general form of the harmonic balance equations is derived in

Section 5.6 and the solution of these equations with Newton's method is detailed in

Section 5.7. The harmonic balance techniques for autonomous systems are reviewed

in Section 5.8. This chapter is summarized in Section 5.9.

5.2 Discrete Fourier Transform

Since the harmonic balance method requires the system of equations in the

frequency domain, the Fourier transform has to be used to transform the circuit

unknowns between the time and frequency domains. Because the circuit unknowns

in the time domain are real-valued waveforms, a simplified version of the standard

Discrete Fourier Transform is introduced here.
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Consider a periodic waveform x(t) with period T. This waveform can be

represented by a Fourier series with the fundamental frequency w = 2t / T:

x(t) = X0 + coswmt + X 51flU.),7t) (5.1)

where wm = mw1 is the m th harmonic, X0 is the DC value, and X and X are

the Fourier coefficients of the cosine and sine terms, respectively. To represent the

problem on a computer, we have to truncate the harmonics to a finite set. If the

energy in the harmonics higher than M is negligible, the waveform x(t) can be

approximated as:

x(t) X0 + cos + X sin Wmt) (5.2)

As the spectrum of x(t) is finite, it is possible to sample the waveform at a finite

number of time points and calculate its Fourier coefficients. Since the number of

unknown Fourier coefficients is 2M +1, at least the same number of time points

have to be sampled on the waveform. This results in a set of 2M +1 equations which

in the matrix form are given as:

xo 1 [x01

x1
I

X2 Xs
(5.3)

X2M_l AM I
IvsI

X2M I LAMJ

where



1 cos W1t0 Sin (Ot COS W t0 Sfl '0M 0

1 cos colt1 sin c01t1 COS (D t1 Sfl (DM tl

1 cos c01t2 Sin cos °M 2 Sfl (L)M t2

1 COSWIt2M_I S1flWIt2M_l COSWMt2M_I S1flWMt2M_l

1 COSWit2m SlflU)It2M COSWMt2M S1flO)Mt2M

and x is the value of x(t) at the time sample point t (s = 0, 1, 2, ... 2M). In our

implementation, we simply choose time points such that they are equally spaced

within the period, i.e. t = sT/(2M +1) (s = 0, 1, 2, ... 2M). Equation (5.3) can be

compactly written as x = ['1X. F is the inverse of F. F and ['' are a discrete

Fourier transform pair which transform a signal between the time-domain samples

and the frequency-domain Fourier coefficients.

5.3 Quasiperiodic Steady-State Problem

If the frequencies of the input periodic sources for a nonlinear circuit are

unrelated, the steady-state response of the circuit is quasiperioidic. The spectrum of a

quasipenodic response has significant energy at the frequencies of a linear

combination of the fundamental frequencies. Consider H linearly independent

fundamental frequencies the quasiperiodic waveform x(t) with

these H fundamentals can be expressed as:

x(t) = X0 + (X coswmt + X sin wmt) (5.5)

where X0 is the DC component and
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O)m E {wIw= k11 +k222 ++kH2H; kl,k2,...,kH E Z} (5.6)

which is an integer combination of the fundamentals H An order

number equal to the absolute sum of the fundamental indices kh can be assigned to

each frequency component in Equation (5.6). For example, the frequency component

(Om = k121 + k22 + + k H has an order number of 1k1 I + Jk2
I
+ + IkH I For a

physical system with a finite energy, similar to the periodic case where the

amplitudes at the high-order harmonics decrease rapidly, the frequency components

in Equation (5.6) with large enough order numbers should be negligible.

5.4 Harmonic Truncation

To represent the harmonic balance problem on a computer, a finite number of

frequency components have to be chosen as in Equations (5.2) and (5.5). This is

done by keeping the frequency components with significant energy and truncating

the ones with negligible energy. Therefore, the error introduced by the harmonic

truncation is negligible

For a periodic signal there is only one fundamental frequency, hence, the

truncation is straightforward. Practically the high order harmonics have negligible

energy, so only the DC and low order harmonics are kept as in Section 5.2. The

frequency set with the fundamental frequency Q and a truncation of order P is given

by:

T={olw=kc2,OkP} (5.7)



Obviously the total number of frequencies generated by this scheme is P +1. Figure

5.1 illustrates the truncation of order P = 9 for a periodic signal.

0 9

Figure 5.1: The truncation scheme of order P = 9 for a periodic signal.

For a quasiperiodic signal with multiple fundamental frequencies, the

truncation should be chosen carefully such that all frequencies containing significant

energy are kept in the finite set and the same frequency is not chosen twice. Two

popular methods for harmonic truncation are the box and diamond truncation

methods [5]. In the box truncation, an order P truncation is given by:

B ={vIo=k11 +k22 +..+kHH,IklI<P,Jk2IP,...,IkHIP} (5.8)

k1 0, kh 0 if k1 = =... = k1 = 0 for 1 h H (5.9)

Equation (5.9) ensures that the image frequencies which are negative to each other

are not both included for the real-value waveforms. The box truncation scheme

generates a total of -((2P + 1)' + i) frequencies. Figure 5.2 illustrates the box

truncation of order P = 3 for the H = 2 case. In this two-fundamental case, the

truncation results in a rectangular grid on frequency indices as shown in Figure 5.2.
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Figure 5.2: The two-tone (H = 2) box truncation scheme of order P =3.

In a P order diamond truncation, any frequency component of the chosen

frequency set has an order number less than or equal to P:

D ={wIw=k11 +k2Q2 +...+kHcH,IklI+1k21+...+IkHIP} (5.10)

The same constraint Equation (5.9) should also be applied here to exclude one of the

image frequencies. The diamond truncation scheme generates approximately a total

2H1PH
of frequencies. Figure 5.3 illustrates the diamond truncation of order P = 3

H!

for the H = 2 case. In this two-fundamental case, the truncation results in a

"diamond" grid as shown in Figure 5.3. The diamond truncation is more efficient

than the box truncation since more higher order frequency components containing

negligible energy are excluded.
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Figure 5.3: The two-tone (H =2) diamond truncation scheme of order P =3.

5.5 Frequency Remapping

Once the spectrum of a signal has been truncated to a finite-frequency set

using one of the truncation schemes in above section, the waveform should be

sampled at a finite number of time points and its Fourier coefficients can be

calculated as in Equations (5.3) and (5.4). For quasiperiodic signals, if the time-

points are not chosen carefully, for example time points are simply equally spaced,

the transform matrix F' in Equations (5.3) and (5.4) can be ill-conditioned [51. This

ill-conditioning can make inverting F' difficult and magnify numerical and aliasing

errors. Several techniques have been developed to tackle this problem. The most

efficient and attractive approach is the frequency remapping method [6]. As we can

see in the following explanation, after frequency remapping the quasipenodic signals

can be treated essentially identical to periodic signals. The same discrete Fourier



transform as in Section 5.2 can be used for quasipenodic signals without the ill-

conditioning problem.

Another approach to solve the quasiperiodic problem is the use of a

complicated multi-dimensional discrete Fourier transform [38] to transform the

quasiperiodic signals between the time and frequency domains. In this work the

simple frequency remapping method is used.

5.5.1 Basic Theory on Frequency Remapping

Let us examine a quasiperiodic signal x(t) applied to a algebraic nonlinearity

g(x). The complex form of Equation (5.5) is:

x(t)
m=-M

exp(jwmt) (5.11)

where 0)m = m' X_m = Xm* and X0 is real such that x(t) is a real-value signal.

Using the Taylor series to expand the nonlinearity around X0 and applying the

multinomial theorem, g(x) is given by:

g(x(t)) =

g(k) (X0)(
Xm exp(jwmt)

xoJk
(5.12)

k=O k! '\n1-M

g(k)(xo)
X" .X"M+I exp(j(nloM +nM+1WM))-M M

k=O k! n,+-+nM+I=k n1!. .

where = m. + M +1. From Equation (5.12), one can see that the amplitude of the

frequency component exp(j(nlwM + + M OM)) is not a function of the



frequencies 0M From this one should not conclude that the Fourier

coefficient at (0= 10-M + M °M is independent of the frequencies O,

This is because different integer combinations of w, 0M may result in the same

frequency value. Recall from Equation (5.6) that wm is an integer combination of the

fundamentals H. Since these fundamentals are linearly independent,

the possibility of resulting in the same frequency value from different integer

combinations of w, -M only depends on indices k1, k2, ..., kH, i.e., the

harmonic and mixing relation among w, M Therefore, the Fourier coefficients

of the output of the nonlinearity are only independent of the fundamental frequencies

1' 2' '

For the purposes of evaluating the nonlinear devices, the actual fundamental

frequencies are of no importance and can be chosen freely. In particular, the

fundamentals can be chosen to be multiples of some arbitrary frequency so that the

resulting signals will be periodic. We can see the ill-conditioning problem with the

quasipenodic Fourier transform is avoided because the original frequency set is

mapped to a new one such that it becomes a periodic case. The Fourier coefficients

of the nonlinear device can be evaluated using the new frequency set. The actual

time-domain waveform is obtained by evaluating Equation (5.5) with the resulting

Fourier coefficients and the actual frequency set. This is the basic theory of

frequency remapping.

The discussion above can be summarized in matrix form:



f'g(F'X) = Fg(F'X) (5.13)

where F and F are the Fourier transform matrix using the original frequency set and

the remapped frequency set, respectively. If the Fourier coefficients of the input

signal are known, then the Fourier coefficients of the output of a nonlinearity can be

obtained using the Fourier transform based on another frequency set. Notice that in

order to use the same frequency set for F and F1, the components of g(x) in

Equation (5.12) at frequencies other than (Urn are ignored. This is a good

approximation because in the harmonic balance analysis the frequency set of (Urn is

large enough such that the magnitudes of the components that are ignored are very

small.

5.5.2 Remapping Scheme and Example

A remapping scheme maps the original frequency set to a new one. The

requirements for the scheme are that the resulting signal in the new frequency set is

periodic and no two original frequencies can be mapped to the same new frequency.

The optimal scheme will generate a new frequency set which is densely packed,

where each remapped frequency corresponds to an original frequency such that there

is a one-on-one relationship between the original and remapped frequencies.

In [5, 6], the remapping principle was discussed and various remapping

schemes for different frequency truncations were introduced. Here, an example is

used to illustrate how the frequencies are remapped. Consider a box truncation of



order P = 2 shown in Figure 5.4. The fundamental frequencies are f1 =1GHz and

f2=1MEz. Based on the box truncation remapping scheme in [6], the new

fundamental frequencies are f1 = 2P +1 = 5 and f2 = 1, respectively. In Table 5.1

the actual frequencies and remapped integer frequencies are listed. The remapped

integer frequencies are also labeled on the frequency grids in Figure 5.4. The actual

and remapped spectral representations of the truncated quasiperiodic waveform are

illustrated in Figure 5.5. Obviously the originally sparse spectrum is densely packed

by this frequency remapping scheme.

Remapped f Actual f (GHz)

0 0 0 0

1 0 1 0.001

2 0 2 0.002

3 1 -2 0.998

4 1 -1 0.999

5 1 0 1

6 1 1 1.001

7 1 2 1.002

8 2 -2 1.998

9 2 -1 1.999

10 2 0 2

11 2 1 2.001

12 2 2 2.002

Table 5.1: Correspondence between the actual and remapped integer frequencies for
the box truncation remapping scheme.
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f(x(t),t) = i(x(t)) +--q(x(t)) + s(t) = 0 (5.14)

where x is the vector of circuit waveforms, i is the vector of contributions from

nonreactive elements to the circuit equations such as linear and nonlinear resistors, q

is the vector of contributions from reactive elements such as capacitors and

inductors, and s is a quasiperiodic stimulus vector.

When applying harmonic balance to Equation (5.14), x, s, and f(x) are

transformed into the frequency domain using the Fourier transform in Equation (5.4).

The frequency domain representation of Equation (5.14) is:

F(X) = Fi(F1X) + Fq(F1X) + S =0 (5.15)

where X is the vector of circuit waveforms in the frequency domain represented by

their Fourier coefficients, F and F' are the Fourier transform matrix pair, S is the

frequency-domain representation of the stimulus vector s, is a block-diagonal

matrix representing the time derivative operation:

ro

-[

1 1,
m = (5.16)

[0 0)m]
Q

tI7MJ

L0m 0

Note that FI-f-q(x)') = 2Fq(FX) follows the differentiation rule of the Fourier
dt )

series. Equation (5.15) is a nonlinear algebraic equation that is solved to obtain the

frequency-domain solution X. If frequency remapping is used for the quasiperiodic

case, F and F' are the Fourier transform matrix pair using the remapped frequency



set. It is important to realize that frequency remapping is only valid for evaluating

algebraic nonlinearities. So when assembling and S, the original frequency set

must be used. Equation (5.15) shows that in the harmonic balance method the

nonlinear components (i and q) are evaluated by transforming the spectrum of

circuit unknowns X into time-domain waveforms x, calculating the response

waveforms i(x) and q(x), and then transforming these waveforms back into the

frequency domain.

Another form of the harmonic balance equation is obtained by transforming

Equation (5.15) into the time domain by multiplication with F'

i(x) + F'['q(x) + s =0 (5.16)

Here x and s are the vectors of 2M +1 time-domain samples of unknown

waveforms and stimuli, respectively, if M frequencies are chosen by harmonic

truncation. This form clearly shows the relation between the harmonic balance

equation and its time-domain counterpart. We can see that the time derivative in

Equation (5.14) is approximated by F'F in the harmonic balance method.

5.7 Solving Harmonic balance Equations with Newton's Method

In this section, the harmonic balance equation is solved by Newton's method.

The assembly of system matrices used in the Newton iteration equation is discussed

in detail.



5.7.1 Newton Iteration Equation for the Harmonic Balance Problem

Since the harmonic balance method results in a system of nonlinear algebraic

equations, Newton's method can be applied to solve these equations iteratively. The

(j + 1 )th iteration using Newton's method for Equation (5.15) is:

' -1

(aFI t

x'' = I I F(X')
XIX(J))

(5.17)

where x (3+1) is the vector of unknowns at iteration j+1. The initial guess x

takes the DC solution of the system. The iterative process given by Equation (5.17)

will converge quadratically when the iterates are close to the final solution.

The Jacobian matrix
-r

of the harmonic balance problem in Equation (5.17)

can be derived by applying the chain rule to differentiate Equation (5.15):

= F
ai(x)

+ = FGF1 + FCF1 (5.18)
aX aaX axaX

ai(x) aq(x)
where G = and C = are the linearized conductance and capacitance

ax ax

matrices, respectively. These linearized matrices can be obtained by multiple small-

signal analyses around the operating points specified at each time sample point.

To illustrate the solution procedure, consider a nonlinear capacitor example.

Let its current and voltage in the frequency domain be represented by I and V and

in the time domain by i and v, respectively. The frequency domain equation for the

nonlinear capacitor is given by the second term in Equation (5.15):
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I = Fq(F'V) (5.19)

The (j + 1 )th iteration equation using Newton's method is:

j(i+l) = + F(q(v) C(v°)v°) (5.20)

where v = ['V and C(v') = is the linearized capacitance in the time

domain. To form the linear equations for the (j +1 )th iteration, FC(v )F' is

stamped into the harmonic balance Jacobian and the second term

F(q(v) C(v' )v°) is loaded into the right-hand side. The derivation for a

nonlinear resistor is similar.

5.7.2 System Matrices in Our implementation

The actual structure of matrices F, G, , and C depends on how the time

samples and Fourier coefficients of all circuit waveforms are arranged in their vector

forms. Theoretically there is no advantage of one arrangement over another except

that some of them make these matrices easier to assemble and manipulate. As shown

in Section 5.2, if M frequencies (excluding DC) are chosen to represent the circuit

waveforms in the frequency domain, for each circuit waveform the number of

unknown Fourier coefficients is 2M +1 and the same number of time points have to

be sampled on the waveform. If there are N waveforms in the circuit, the total

number of unknown Fourier coefficients is N(2M + 1). Then the number of

equations from the harmonic balance analysis is also N(2M +1) and the size of
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matrixes F, G, , and C is N(2M +1) x N(2M + 1). The following Fourier

transform shows the arrangement of these N(2M +1) Fourier coefficient unknowns

and time sample points in our implementation:

x=
:

=r1
:

=x

vc
X2M_l

X2M

xis Xlo Xm Xm
x2 - X20 Xc - X

where x , X0 = .' , X 2,m
, and X =

XNS XNO Xim XZm

(5.21)

is the

value of x(t) at the time point (s = 0, 1, 2, ... 2M), X,0 is the DC value of

x, (t), and Xm and Xm are the Fourier coefficients of x, (t) at the m th

frequency 0m for cosine and sine terms, respectively. The Fourier transform matrix

F' is:

I C10 S10 CMQ SMQ

I C11 S11 CMI SMJ

F' =
I C,2 S,2 ... CM2 M2

(5.22)

I C,,2M_, S,2M, CM2M_, SM,2M_j

I C,2M S12M CM,2M SM,2M



where I is the N x N identity matrix,

COS

Cms = = COSU?mtS .1, and Sms = sin (Omts 1. F is

cos mmts

obtained by inverting F1. According to the unknown arrangement in Equation

(5.21), the structure of is:

0
r i

1

' 11m =1
m

(5.23)
L°m 0]

COrn

where 0 is an NxN zero matrix, rn = °m and I is the

(Urn

N x N identity matrix. As mentioned in Section 5.6, it is important to realize that

here 0m is the frequency from the original frequency set rather than the remapped

frequency set. G and C in Equation (5.18) are block diagonal matrices, with the

diagonal elements representing the circuit linearized at the sampled time points:

C=
C1

(5.24)

'2M C2M

where
al(X

and C5 are the N x N linearized conductance and

capacitance matrices at time point t, respectively. The correspondence between the



block matrices on the diagonal of G and the sampled points on circuit waveforms is

illustrated in Figure 5.6. and are similar to the Jacobian matrixes used in

time-domain circuit analysis, hence, they are very sparse.

Circuit Waveform

time

Figure 5.6: The correspondence between the block matrices on the diagonal of G
and the sampled points on circuit waveforms.

It is interesting to inspect the structure of the harmonic balance Jacobian

matrix in Equation (5.18) and compare it with the time-domain Jacobian matrix. Due

to the Fourier transform matrices F and F', each structural non-zero entry in the

time-domain Jacobian matrix inflates into a dense (2M +1) x (2M +1) block in

harmonic balance Jacobian matrix. The inflation and structure of the harmonic

balance Jacobian matrix is illustrated in Figure 5.7. For a large number of unknown



waveforms due to a large circuit size or device-level simulation, factorization of such

a large dense harmonic balance Jacobian matrix by a direct method is prohibitively

expensive. Krylov subspace methods [39-41] have been shown to be effective when

applied to the solution of the large-scale system of harmonic balance equations.

'V

Harmonic balance Jacobian matrix

Time-domain dense

Jacobian matrix blocks

I+1i

N(2M +1)

Figure 5.7: The structure of the harmonic balance Jacobian matrix. Each structural
non-zero entry in the time-domain Jacobian matrix inflates into a dense
(2M +1) x (2M +1) block in the harmonic balance Jacobian matrix.

5.8 Harmonic Balance Techniques for Autonomous Systems

In this section, the harmonic balance method is modified to handle

autonomous systems. To improve the convergence, the concept of a probe [42] is

introduced. The circuit-probe combined system and its solution methods from [42,

43] are reviewed.



5.8.1 Problem with Autonomous Systems

As discussed in Section 4.4, compared with forced circuits, autonomous

systems such as oscillators have two problems associated with the steady-state

analysis. The first is that the period of the steady state of an oscillator is not prefixed

and should be solved in the steady-state analysis. The second is that since there is no

input to fix the phase, if one steady state exists, any time shifted version is also a

steady-state solution. As with the time-domain shooting method, the harmonic

balance method can be modified to handle oscillators by adding the fundamental

frequency w to the list of unknowns and an equation to enforce the constraint that

isolates equivalent solutions from one another.

One easy way to isolate solutions is to choose some signal in the circuit and

force the sine or cosine part of its fundamental to be zero [5]. For this approach to

work it is necessary that the magnitude of the chosen signal at the fundamental

frequency is not zero originally. With this strategy, the harmonic balance equations

for the oscillator problem are:

F(X, w) = ITi(F1X) + (w)rq(F'x) + S =0 (5.25)

=0

Where is the sine part of the fundamental of the chosen signal. Using Newton's

method to solve the two equations, the (j +1 )th iteration is obtained:
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raF(x (P0(J))

ax

[
(e)

aF(X', [F(x, w)1
(5.26)LJ [ xnl

J

ao)

JI

sf)
0

aF(X, w) a2(U))
['q(F1X) = Fq(F1X) (5.27)where =

w

e1 is the unit vector that selects the X1 from the unknown vector X and

is given in Equation (5.18).
ax

The above method is very restrictive on the initial guess for the oscillator

frequency and circuit unknowns. Without a good initial guess it will converge to the

trivial DC solution or diverge. The reason of the convergence difficulty is that the

oscillator frequency and circuit unknowns are included in the same unknown vector

and updated at the same time for each iteration. Before the final solution is reached,

the circuit unknowns don't satisfy the KCL and may be unphysical. Updating the

oscillator frequency along with these solutions causes the Newton iteration

convergence difficulties.

5.8.2 Voltage Probe

To overcome the above convergence difficulty, the concept of probe is

introduced in [42]. The analysis of an autonomous circuit is converted into the

analysis of a series of closely related non-autonomous circuit-probe combined

systems. Then the numerical efficiency of the harmonic balance method for non-

autonomous circuits can be made use of.



The voltage probe is a voltage source at a specified frequency and open

circuit at all other frequencies. As shown in Figure 5.8(a), a probe is composed of an

ideal independent voltage source and a filter. The filter disconnects the probe from

its terminal for frequencies different from that of the probe source. For the circuit-

probe combination shown in Figure 5.8(b), the condition for oscillation is satisfied

when the probe current is zero for a finite probe voltage. In this case, all the circuit

equations are satisfied with the probe not being a part of the circuit. The frequency of

the probe is taken as the oscillation frequency which is added as an unknown.

Vprobe

Zprobe ()
= probe

100 , U) probe

(a)

Vprobe

(b)

Figure 5.8: (a) The voltage probe, and (b) the circuit-probe combination.

5.8.3 Two-Level Newton Method for the Circuit-Probe System

In [42] the harmonic balance analysis of an oscillator is formulated as a two-

level Newton problem. The upper level solves the probe current to be zero and is

given by:



'probe (V,obe w) = 0

'probe (VIobe, w) = 0 (5.28)

where 'obe and 'probe are the cosine and sine components of the probe current,

respectively. Vobe is the cosine component of the probe voltage and w is the

oscillation frequency. The sine component of the probe voltage, V)9Srobe is set to zero

to fix the phase of Vprobe and select one of the many equivalent solutions. The probe

current is obtained at the lower level using a standard harmonic balance analysis on

the forced system for the circuit-probe combination. The probe magnitude and

frequency is solved by the upper level iteration and applied to the lower level. It

should be noted that the frequency is updated only at the upper level and based on

the lower level solution which satisfies KCL for the circuit-probe combination. This

results in an improved convergence.

The (j + 1 )th iteration using Newton's method for Equation (5.28) is:

rC
probe probe

aVpcobe a c (j+1) 1 I jc (VC (i)
) LVprObe - j probe probe

aIs a,5
[

(j+1)

]
I jS IVC (i) (J))j

(5.29)
probe probe

L pro be ' probe

aVpobe ao)

Since the probe current is one of the unknowns at the lower level, the right-hand side

of the above equation is available when the lower-level Newton iteration converges.

The 2x2 Jacobian matrix in Equation (5.29) can also be obtained by a simple
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computation using the lower level solution. From Equation (5.25), the frequency

domain representation of the circuit-probe combination is given as:

F(X,w)=0 (5.30)

where X is the vector of the circuit unknowns plus the current through the voltage

probe. The sensitivity with respect to Vpobe and w can be computed as:

aF ax aF
aXaVC aVC

(5.31)
probe probe

aF aXaF
axaw aw

(5.32)

The lower-level Jacobian matrix, f-, is available in LU-factored form when the
ax

lower-level Newton iteration converges and is calculated using Equation (5.27).
ao)

Since the probe voltage Vprobe is a component of the unknown vector X, is
u Vpro be

ax axthe corresponding column in -. Therefore and can be obtained from
ax aVobe aw

Equations (5.31) and (5.32), respectively. Since the probe current is also a

component of the unknown vector X, all entries of the 2x2 Jacobian matrix in

Equation (5.29) can be extracted from the sensitivity solution of Equations (5.31)

and (5.32).

For the unknowns in the upper level, the probe voltage and oscillation

frequency, the two-level Newton method requires an initial guess. In [42], with the

initial guess for the frequency, the initial guess for the probe voltage is selected to
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minimize the magnitude of the probe current. The curve (a) in Figure 5.9 shows the

relation between the magnitude of the probe current and the initial guess for the

probe voltage. The minimum is used as the initial guess for the probe voltage. Since

the goal is to solve the probe current to zero, this minimum can serve as a good

starting point for the Newton iterations. However, if the initial guess for the

frequency is far from the oscillation frequency, a minimum for the probe current may

not exist as shown by curve (b) in Figure 5.9 and the method fails. Even when there

is a minimum, the starting point selected using this scheme may not lead to

convergence. As a natural extension of the two-level Newton method, a continuation

method as presented in [43] can be used.

initiai guess V,,,0b Probe voltage V1probe

Figure 5.9: Selection of the initial guess for the probe voltage by using the minimum
of the magnitude of the probe current at the initial estimate for the oscillation
frequency. Curve (a) depicts the condition when there is a minimum, whereas for
curve (b) no minimum exists and the scheme fails.
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5.8.4 Continuation Method for the Circuit-Probe System

The continuation strategy in [43] is similar to the selection of the initial guess

for the probe voltage in [42]. Instead of keeping the frequency fixed while searching

for a good initial guess for the probe voltage, 'obe is fixed to zero and the frequency

is varied. That is, a curve is traced for:

'probe (V,,obe, = 0 (5.33)

with Vobe as a continuation parameter. The tracing starts with a small signal for the

probe voltage and the oscillation frequency estimated from a linear analysis. This

method works because the actual process of oscillation build-up starts from a small

amplitude. As the probe voltage increases, we let the frequency adjust to satisfy

Equation (5.33). As the curve is traced, a change in sign of
'probe indicates that the

probe current (both sine and cosine components) crosses zero and the solution at the

point where the sign changes is the steady-state solution of the oscillator. Figure 5.10

illustrates typical curves traced and the corresponding solution point. Because the

curve can be very complex with many turning points, the probe voltage increments

should be small enough to ensure convergence. A curve tracing algorithm in [43] can

be used to control the step-length automatically. Since the frequency is an unknown,

a two-level Newton's formulation should be used to solve Equation (5.33) to ensure

the convergence. Instead of Equation (5.33) the curve of (Vpobe (0) = 0 can

also be traced in this continuation method.
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Figure 5.10: The curves traced in the continuation method. The solution is obtained
when 'probe changes sign.

5.9 Summary

This chapter first presents an overview of the harmonic balance algorithm.

The harmonic balance method overcomes several difficulties faced by time-domain

methods by solving the system of equations in the frequency domain. The periodic

and quasiperiodic steady-state solutions are computed directly. Multi-tone problems

with widely separated frequencies and incommensurate frequencies can be easily

handled. Furthermore, accurate frequency-domain solutions are obtained. Various

harmonic truncation schemes are introduced. The basic theory on frequency

remapping is discussed and a remapping scheme is illustrated by an example. The

formulation of the harmonic balance equations and solution with Newton's method is
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also described. The assembly of system matrices used in the Newton iteration

equation is shown in detail. To solve autonomous systems, the standard harmonic

balance method has to be modified and the voltage probe method improves

convergence.



105

Chapter 6

HARMONIC BALANCE METHOD FOR COUPLED DEVICE AND
CIRCUIT SIMULATION

6.1 Introduction

The harmonic balance method has previously been applied for the simulation

of semiconductor devices in [6, 7]. Although numerical devices can be connected

with linear circuit elements, the emphasis there is on device internal behavior and the

harmonic balance method is not extended to general coupled device and circuit

simulation.

In this chapter, the harmonic balance method discussed in Chapter 5 is

implemented in the coupled device and circuit simulator CODECS [2]. Three

different implementation approaches are introduced. These include quasi-static (QS),

non-quasi-static (NQS), and modified Volterra series (MVS) approaches. All the

implementations follow the coupling simulation framework illustrated in Figure 3.3.

From the circuit-level point of view, the coupled simulation can handle and interpret

device-level models in different ways. As discussed later in this section, the NQS

approach makes use of all the information provided by the numerical device models,

the QS approach simplifies the models based on the quasi-static assumption, and the

MVS approach approximates models by the modified Volterra series [44, 45]. These

approaches are described and compared qualitatively in this chapter. Then in Chapter
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7 simulation examples are used for verification and quantitative comparisons. It will

be shown that the accuracy of the QS and MVS methods depends on the operating

condition of numerical devices and that there is a tradeoff between simulation

accuracy and complexity among these methods.

This chapter is organized as follows. The NQS approach, which applies the

harmonic balance method on the complete coupled system, is derived in Section 6.2.

The QS approach motivated from the circuit-level point of view is introduced in

Section 6.3. The method is also derived mathematically and its quasi-static property

is identified. In Section 6.4, the derivation of the modified Volterra series model [44]

is reviewed and its implementation details in conjunction with the harmonic balance

analysis of CODECS are described. The qualitative comparison between these three

approaches is summarized in Section 6.5. The implementation details of QS and

MVS approaches are presented in Section 6.6. Finally this chapter is summarized in

Section 6.7.

6.2 Non-Quasi-Static (NQS) Implementation

The complete system of equations with both circuit-level and device-level

unknowns is

d
fd =d(w,v)+(aw)=0

dt
(6.1)

f = I(w, v)+_D(w,v)+i(v)+-f!_q(v)+s =0 (6.2)
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where Equation (6.1) represents the device-level equations after space discretization.

w and v are the device-level and circuit-level unknowns, respectively. d(w,v) is

the static term of the device-level equations. Comparing with Equations (3.19a-c),

w = [t' n p1', d = [F F Fr]', and a is a constant vector whose elements take

values +1, -1, or 0 depending on the hole continuity equation, electron continuity

equation, or Poission's equation, respectively. In Equation (6.1) the dependence on

the terminal voltages v is explicitly written. Equation (6.2) represents the circuit-

level equations. I and dD/dt are the conduction and displacement terms of the

terminal currents from numerical devices described by Equation (6.1). i is the

current through nonreactive elements described by compact models and q is the

contribution from compact models for the reactive elements.

Using the harmonic balance method, d/dt can be represented by T =

as in Equation (5.32). Solving the complete set of nonlinear equations using

Newton's method results in the following iteration equation

[[Jw

]

r a 0 T\[jw [fdl

G G
+TI

+G Lc c+c]J[Avj[f]
(6.3)

G'=-- G'=1, C'=±where: J= J=--
at''aw

av

Let: A=J+Ta

AdC = 'V



ACd = GL + TC

= G + TC

Equation (6.3) becomes

rA AdC ][w1 rfdl

[ACd + (G + TC)][vj -[j
(6.4)

From the first equation, t,w can be solved as

Aw = Add' (fd AdCAV) (6.5)

Substituting into the second equation, we have

where

(Geq + (G + TC))Av = -f 'eq (6.6)

Geq (6.7)

'eq 4do.ti'(fd) (6.8)

ui:i

Geq and 'eq + I(w, v) + TD(w, v) are the contributions of the numerical device to the

circuit-level Jacobian matrix and RHS. The solution procedure for the non-quasi-

static implementation approach in CODECS is shown in Figure 6.1, where Geq and

'eq are computed from A, AdC, ACd, and as in Equations (6.7) and (6.8). We

can see that the harmonic balance method is implemented at the device level and

interfaces with the circuit-level harmonic balance equations by Geq and

'eq + I(w, v) + TD(w, v). In this way, the numerical device model can be treated as a

conventional model and the non-quasi-static approach can also be implemented
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within the existing framework of CODECS. It should be noted that, Geq the device

contribution to the circuit-level Jacobian matrix, is a full matrix. This is because not

only the displacement current TD(w, v) but also the conduction current I(w,v) are

functions of the terminal voltages at all sampled time points due to the internal

dynamics of the device.

Device-

I Newton Loon I

level Solve
harmonic Geq
balance and Ieq

equations

Non-quasi-static
coupled device

and circuit matrix

Circuit-
level

equations

I.
S I

S
S I

S I
S

4 I

Device-level
AdC

martix A

IsI,I,
A 1*

cd A+(GTC)

Figure 6.1: Solution procedure for the non-quasi-static approach in CODECS.

For the non-quasi-static approach, the internal dynamics of the

semiconductor devices are taken into account and the results are as accurate as the

numerical models themselves. Since the harmonic balance method is implemented at

the device level, the Fourier coefficients of a large number of device-level unknowns
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have to be solved. For a numerical device with L mesh points, the number of

device-level unknowns is approximately 3L because each mesh points has three

variables, the electrostatic potential and the electron and hole concentrations. If M

frequencies are chosen, the total number of Fourier coefficients to be solved by the

harmonic balance method is 3Lx (2M + 1). With fine meshed numerical devices L

can be very large. This results in a large device-level system matrix A = J + Ta.

As mentioned at the end of Section 5.7, factorization of such a large dense harmonic

balance Jacobian matrix by direct methods is prohibitively expensive and the

simulation is extremely time and memory consuming. Krylov subspace methods

have to be used to make the simulation feasible. Furthermore, since the harmonic

balance method is implemented at the device level, this approach requires extensive

modifications to the internals of the device simulator.

6.3 Quasi-Static (QS) Implementation

From the circuit-level point of view, the numerical device can be treated as a

combination of nonlinear conductances and capacitances as discussed in Section 3.4.

For the quasi-static implementation, the harmonic balance method is implemented

only at the circuit level. For each sampled time point, using the device-level

simulator, the numerical device is biased to the corresponding terminal voltages and

the low frequency terminal conductances and capacitances are calculated by an AC

analysis. These parameters for different time points are loaded into the Jacobian
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matrix and the right-hand side to assemble the circuit-level harmonic balance

equations. Obviously this approach is consistent with the framework of CODECS

and can be implemented easily. The solution procedure for the quasi-static

implementation in CODECS is illustrated in Figure 6.2. In the figure, x° is the

frequency-domain initial guess of the circuit-level waveforms and is set to the value

at the DC operating point and X is the final solution when the convergence

criterion is met. With M chosen frequencies, 2M +1 low-frequency AC analyses

for numerical devices at 2M +1 sampled time points are required to obtain the

linearized conductance g, linearized capacitance c, current i, and charge q. g and

c are stamped into the circuit-level system matrix G and C to generate the

harmonic balance Jacobian. i and q are used to load the right hand side. Here the

contribution of numerical device to matrices G and C are block-diagonal with each

diagonal block corresponding to each sampled time point. In contrast, for the non-

quasi-static approach the device-level contribution to the circuit-level Jacobian

matrix, Geq is a full matrix as discussed in Section 6.2. Here the semiconductor

devices are represented as nonlinear terminal conductances and capacitances which

are instantaneous functions of the terminal voltages, hence, this is a quasi-static

approach.
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Figure 6.2: Solution procedure for a quasi-static implementation of the harmonic
balance method in CODECS. Low-frequency AC analyses of the device are carried
out at different sampled time points to construct the circuit-level matrix and RHS.

The quasi-static approach can also be explained mathematically by using

Equations (6.1) and (6.2). Since the device internal dynamics are ignored, Equation

(6.1) becomes

fd =d(w,v)=0 (6.9)

The terminal current of the device is given by

d =I(w,v)+--D(w,v) (6.10)
dt

From Equation (6.9), the internal state w can be expressed as a static function of v

w=d(v) (6.11)

Substituting into Equation (6.10), we have

= I(d(v),v)+--D(d(v),v) = Iqs(V)+Dqs(v) (6.12)
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Where 1q5 () = I(d(),) is the static current of the device and Dqs () = D(d(),.) is

the static charge. Obviously, the nonlinear current and nonlinear charge Dqs are

functions of the instantaneous terminal voltage v and their linearization can be

obtained from an AC analysis of the numerical devices at a low frequency.

In the quasi-static approach, the circuit-level harmonic balance method

combined with a device simulator uses only circuit-level waveforms as unknowns.

The size of the system matrix is very small and the burden of solving a large system

matrix from the non-quasi-static method in Section 6.1 is eliminated. Due to the

small system matrix at the circuit level, Newton's iteration doesn't take much time

even when the direct method is used to factorize the harmonic balance Jacobian. The

overall simulation is efficient and usually the 2M +1 AC analyses that are applied to

the numerical devices take a significant portion of the simulation time. Any device

simulator that can provide the terminal capacitances and conductances for numerical

models can be used in this approach. Thus, application specific device simulators can

be included in this harmonic balance analysis framework without extensive

modifications as required in the non-quasi-static approach. Since the terminal

parameters are evaluated based on a static solution of devices, this is a quasi-static

approach. Hence, the results may not be accurate when the input frequency is

comparable with the device transition frequency.

The limitations of the quasi-static approach are outlined in the following two

observations. First, the behavior of the internal states of the numerical devices, such

as the electrostatic potential and the carrier concentrations, is approximated by the
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static solution at the sampled time points. This static solution is then used as the DC

operating point to compute the terminal characteristics by an AC analysis. This

approximation is only valid for sufficiently slow variations in the boundary

conditions (the terminal voltages). Secondly, the terminal conductances and

capacitances of the numerical devices are frequency dependent [25], which requires

knowledge of the frequency to calculate these correctly. The quasi-static approach

uses the low-frequency terminal conductances and capacitances.

To obtain an accurate steady-state solution for high-frequency applications,

the device internal dynamics have to be considered. The non-quasi-static approach in

Section 6.1 addresses this problem by solving a large number of device-level

dynamic equations using the harmonic balance method. This approach is accurate for

any frequency but time and memory consuming. In contrast, the accuracy of the

quasi-static approach is limited by the device transition frequency but the simulation

is very efficient. An approach that uses the harmonic balance method only at the

circuit level (as in the quasi-static approach) and accounts for the device internal

dynamics as well is desirable. Such a method will be more efficient than the non-

quasi-static approach and more accurate than the quasi-static approach.

Recall that the terminal conductances and capacitances are frequency

dependent and the quasi-static approach uses the low frequency values. A modified-

Volterra-series approach makes use of the frequency dependence to include the

device internal dynamics and is discussed in the next section.



115

6.4 Modified Volterra Series (MVS) Implementation

In this section, the derivation of the modified Volterra series method [44, 45]

is reviewed and its implementation details in conjunction with harmonic balance

analysis of CODECS are described.

6.4.1 Modified Volterra Series Method

A nonlinear dynamic system model based on the modified Volterra series is

proposed in [44] and used to simulate electronic devices with a 50 linear load by

the harmonic balance method.

The output current i(t) of a nonlinear dynamic device with an input voltage

v(t) can be modeled by the well-known Volterra series [46]

i(t) = y0 + y, (t) (6.13)

where y0 is a constant independent of the input voltage and

+00 n

(6.14)
i=1

h (r1 , r2,- , r) is the n th-order time-domain Volterra kernel of the system.

Practically a dynamic device has finite memory time such that TA r +TB. Then

Equation (6.14) becomes

yn(t)=JFT.Jhn(ni,Tz,.,mn)fl[v(t_ni)dni} (6.15)
TA i=1
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By introducing the difference v(t r) v(t) which represents the difference of the

signal v(t r) with respect to v(t), Equation (6.13) is transformed to the modified

Volterra series

i(t) = Z0 (v(t))
+

z (t) (6.16)

where z0(v(t)) is the response without the system dynamics, i.e., the static current of

the device, and

n

z(t) J...+TB ...Jgn{v(t),ri,r2,...,rn}fl[(v(t_rj)_v(t))drj} (6.17)
TA i=1

represents the n th-order dynamic current. g { } is the n th-order modified Volterra

kernel and is a nonlinear function of v(t). When the difference v(t r) v(t) is

small, a truncation to the first order dynamics is a reasonable approximation. So we

have

i(t) z0 (v(t)) g {v(t), r } [v(t r1) v(t)]dr1 (6.18)

In the harmonic balance method, the input voltage v(t) can be expressed as

v(t) =
m=-M

(6.19)

where M is the number of frequencies chosen for the harmonic balance analysis and

Vm is the Fourier coefficient of the m th frequency. With this input voltage, Equation

(6.18) can be expressed in the form

i z0 (v) +
m=-M

fm }Vme21" (6.20)



where D{v, fpn } = Y(v, fm) Y(v,0) (6.21)
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is the difference between the terminal admittances at frequency fm and DC when the

device is biased at a terminal voltage v [44, 45]. This can be obtained from a small-

signal analysis at the device simulator level. Equations (6.20) and (6.21) are the

modified Volterra series representation for devices implemented in the harmonic

balance analysis of CODECS.

As stated earlier, Equation (6.18) is obtained by truncating Equation (6.16) to

the first order of the device dynamics based on the assumption that the difference

v(t r) v(t) is small. The region of validity for this assumption is one of the

limitations of the MVS approach. A small difference can be achieved by a relatively

slow change of v(t) in the finite memory interval TA <r +TB. For a given

system (i.e., given TA and TB), a slow change of v(t) means a low frequency,

and/or small amplitude, A,,. For a sinusoidal input voltage, [45] shows that the

truncation error of the MVS model is bounded by k(f,,A,,)2 (where k is a constant).

This suggests that the constant error loci have an upper limit defined by a hyperbolic

function in the k/f space. The constant error locus of the MVS model is

qualitatively illustrated in Figure 6.3. Form the figure we can see that the MVS

model can obtain accurate results for high frequency input signals as long as the

magnitudes are relatively small.
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Figure 6.3: Constant truncation error locus of the modified Volterra series model.

Equation (6.20) shows that in the MVS model the device dynamic current is

obtained by multiplying the harmonic components of the terminal voltage with the

terminal admittance differences D{} at the corresponding frequencies. It can also be

shown that if Y(v, fm) are approximated by using the low-frequency terminal

parameter, then the MVS model will degenerate to the quasi-static model described

by Equation (6.12). In this case, D{} is given by

D{v, fm } = [gLF (v) + J22mCLF (vYi Y(v,0) (6.22)

where LF (v) and CLF (v) are the terminal conductance and capacitance at a low

frequency, respectively. Since gLF (v) = Y(v,0), Equation (6.22) becomes

D{V,fm} = f2mCLF(V) (6.23)

Substituting into Equation (6.23) and considering Equation (6.20), we have

dv(t)
zo(1')+CLF(l") = zo(v)+cLF(v) (6.24)

m=-M dt
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Compared with Equation (6.12), Equation (6.24) represents the same quasi-static

model because CLF (v) = D (v).

6.4.2 Implementation in Harmonic Balance Analysis

The terminal current of the MVS model can be readily calculated from

Equation (6.20), but the linearized terminal parameter for stamping into the circuit-

level harmonic balance matrix needs further derivation. Equation (6.20) shows that

the terminal current is a function of voltage in both time and frequency domains.

D{.} is also a function of the terminal voltage. Taking the derivative with the

terminal voltage, can be expressed as
dv

[dD{Vfm}
+D{v,fm}.X!!L1eJ2f (6.25)

dv dv m=-M dv dv

= Y(0) is the DC terminal conductance and is available from an AC analysis. In
dv

the harmonic balance analysis, --'- is a column of the DFT transform matrix F.
dv

dD{v,f } .
involves the second-order denvative of the terminal current. Usually the

dv

device simulator only provides the terminal admittances which are the first-order

derivatives. The second-order derivatives have to be calculated. This can be done

numerically from tables of the first-order derivatives as a function of the terminal

voltages. However, the simulation complexity increases and the numerical stability
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and convergence are degraded. For this reason, a more efficient calculation

procedure needs to be developed.

Since the linearized parameters of the nonlinear circuit elements stamped in

the Jacobian matrix only affect the search direction of Newton's method, and not the

final solution, approximations can be made. Usually the magnitude at the

fundamental frequency is dominant in a spectrum with one tone. Thus a reasonable

approximation is the use of the linearized terminal admittance at the fundamental

frequency. With this approximation, only an AC analysis at the fundamental

frequency is required to obtain the admittance. Therefore, the complex calculation

from Equation (6.25) is eliminated along with any associated numerical stability and

convergence problems. Simulations using this approximation show that the steady-

state results are accurate and the simulation is efficient. For our MVS harmonic

balance implementation, the terminal admittances at the fundamental frequency are

used to stamp the system matrix while the right-hand-side is stamped by the terminal

currents from Equation (6.20).

The solution procedure for the MVS implementation in CODECS is

illustrated in Figure 6.4. In this figure, g1 and c1 are the linearized conductance and

capacitance at the fundamental frequency. i is the total terminal current including

the dynamic part calculated from Equation (6.20). For the quasi-static approach in

Figure 6.2, i is only the dc current and charge q has to be used to account for the

dynamic current. From Figure 6.4, M AC analyses at the M frequencies used for

the harmonic balance analysis are carried out at each sampled time point. In contrast,
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only one low frequency AC analysis is required at each sampled time point in the

quasi-static implementation. Therefore, the MVS implementation requires more time

per Newton iteration compared with the quasi-static approach.

Newton Loop

M-freq
-*j__g1,

c1, i at t0

AC at_r0

Circuit-
M freq

g1 c1 1 at t1

level

x(0
ACat t1 system

matr
G,C&

__________IH,
M-freq

c1, i at t2M+I
AC at t2M+1 ___

Figure 6.4: Solution procedure for a modified-Volterra-series approach of the
harmonic balance method in CODECS. AC analyses of the numerical device at M
chosen frequencies are carried out at different sampled time points to construct the
circuit-level matrix and RHS.

6.5Qualitative Comparison

Equation (6.21) shows that the MVS approach also computes the terminal

parameters based on the static solution of the internal states of devices as in the QS

approach. For this reason, the large-signal internal dynamics are not considered.

However, in the MVS approach the terminal admittance is obtained by AC analyses

at each chosen frequency fm as in Equation (6.21). These AC analyses take into

account the device small-signal internal dynamics. Therefore, one can say that the
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MVS approach "partly" considers the internal dynamics of numerical devices. In

contrast, for the QS approach only the low frequency terminal admittances are used

and no small-signal internal dynamics are considered. Therefore, an improvement in

accuracy is expected for the MVS approach compared with the QS approach,

especially for high frequency and small amplitude input signals. For the NQS

approach, since the harmonic balance method is also applied to the device-level

equations as in Section 6.2, all the device internal dynamics are considered. From a

device modeling point of view, the MVS approach is in between the NQS and QS

approaches. The difference between these three implementation approaches is based

on the handling of the numerical device dynamics as summarized in Table 6.1. The

device terminal dynamics represent the displacement terminal currents from the

numerical devices.

Device terminal
dynamics

Large-signal
internal dynamics

Small-signal
internal dynamics

NQS method Yes Yes Yes

QS method Yes No No

MYS method Yes No Yes

Table 6.1: The differences between three approaches for harmonic balance analysis
in a coupled device and circuit simulator.

Based on the discussion of the previous three sections, the performance

comparisons of these three implementation approaches for harmonic balance analysis
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in the coupled device and circuit simulation are summarized in Table 6.2. These

conclusions will be verified by examples and results in Section 7.2.

NQS method QS method MVS method

HB level Circuit & device Circuit Circuit

# Unknowns Large Small Small

Memory used Large Small Small

Simulation time Slow Fast Fair

Result accuracy Excellent Limited by fT
Improved for

small amplitude
signals

Modification to
device_simulator

Extensive None None

Table 6.2: Summary of the performance comparison of NQS, QS, and MVS
approaches for harmonic balance method in coupled device and circuit simulation.

6.6 Implementation Details of QS and MVS Approaches

As shown in Equation (5.36), the terminal charge q due to the nonlinear

capacitors from the previous iteration is required to load the right hand side for the

present iteration. For the QS approach, this is the static charge given by
Dqs (v) in

Equation (6.12). In CODECS, although the terminal capacitance can be obtained by

an AC analysis, the corresponding static charge at a DC bias is not provided by the

device simulator. A reformulation solves this problem as shown below. From

Equation (5.35) we have the current of the nonlinear capacitor in the time domain as:

i(v) çlj(i) = T'Fq(v) (6.26)
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j indicates the solution at the j th Newton iteration. Since current is the time

derivative of charge, we can also express the current of the nonlinear capacitor as:

i(v1) I VI = C(vdI))__
atL(i) aVL(i) at(J)

(6.27)

Similar to Equation (6.26), can be expressed as VFv in the harmonic balance

method and Equation (6.27) becomes:

i(v') = (6.28)

From Equations (6.26) and (6.28) we can solve for Fq(v):

Fq(v') = (6.29)

Therefore, Equation (5.36) can be rewritten as:

j(j+I) = FC(v )F'V' + FC(v' )F'2Fv cr'C(v (6.30)

The terminal charge of the nonlinear capacitors is, therefore, not required to

assemble the harmonic balance equations.

During the harmonic balance simulation of circuits with numerical devices

using the QS and MVS approaches, it is found that the performance bottleneck is the

multiple AC analyses for numerical devices at each Newton iteration. These AC

analyses take most of the simulation time. The AC analysis is carried out at a DC

operating point. Therefore, before the calculation of the linearized parameters, a DC

analysis has to be performed. Originally in CODECS, for each DC analysis of

numerical devices, first the equilibrium point where the terminal voltages are zero is

established and then devices are biased up to the desired terminal voltages. Usually
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the terminal voltages are so large that it takes many small voltage steps and many

iterations in each voltage step to bias the device voltages from their equilibrium

points. This voltage stepping at each sampled time point makes the DC analysis and

further AC analyses time-consuming. Before stepping the device bias voltages for

the next time point, the numerical devices have been biased to the voltages at the

current time point, which can be made use of for the next time point. So an

alternative biasing scheme similar to the one in Section 4.6.1 is to bias the numerical

devices using the voltage difference between these two time points, instead of

biasing devices to the large terminal voltages from the equilibrium point. Usually the

voltage difference between two neighboring time points is small and the device

simulator converges rapidly. Using this new biasing scheme, each numerical device

is biased from the equilibrium point only once at the first sampled time point of the

first iteration and then the voltages of the numerical device are stepped by the small

voltage differences, thereafter. The new biasing scheme is illustrated in Figure 6.5. A

significantly improvement in the performance of the harmonic balance analysis is

obtained. Simulation time comparison between the two biasing schemes is provided

in Section 7.2.2 for several example circuits. Results verify the efficiency

improvement.
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Figure 6.5: Numerical devices need to be stepped by only the small voltage
difference between the two consecutive time points Av instead of the large voltage
difference from the equilibrium point v.

6.7 Summary

In this chapter, approaches for implementing the harmonic balance method in

the coupled device and circuit simulator CODECS are explored. Three different

approaches were introduced. These include the quasi-static (QS), the non-quasi-static

(NQS), and the modified Volterra series (MVS) approaches. The architecture of

CODECS is exploited and all the implementations follow the existing coupling

simulation framework.

In the NQS approach, the harmonic balance method is implemented at both

the device and circuit levels. All the internal dynamics of semiconductor devices are

considered and the results are as accurate as the numerical models themselves. Also

because of the device-level implementation, a large system of equations has to be
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solved and the simulation is time and memory consuming. Furthermore, this

approach requires extensive modification of the device simulator. In the QS

approach the harmonic balance method is implemented only at the circuit level. The

terminal parameters of the numerical devices obtained by a low frequency AC

analysis are loaded into the circuit-level harmonic balance equations. Since the

internal dynamics of the semiconductor devices are not considered, this is a quasi-

static analysis and the accuracy is limited by the transition frequency of devices. Due

to the circuit-level implementation, the system of harmonic balance equations is

small and the simulation is very efficient. Furthermore, no modifications are required

for the device simulator. The MVS approach improves the accuracy of the QS

approach for high frequency and small amplitude signals. The improvement is

achieved at the price of a longer simulation time.

The complex computation of the linearized terminal parameter in the MVS

approach is eliminated by using a reasonable approximation. In the QS approach, the

static charge is not available from the device simulator and its calculation is avoided

by an equation reformulation. A new biasing scheme for numerical devices is

proposed that significantly improves the performance of the QS and MVS

approaches.
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Chapter 7

EXAMPLES AND RESULTS

7.1 Time-Domain Shooting Method

The time-domain shooting method implemented in CODECS is used to

obtain the periodic steady state solution for several example circuits. The results

from our implementation are verified with the results obtained by conventional

transient simulations. Also the computational performance of these two methods is

compared.

7.1.1 Examples

The first example is a X3 frequency multiplier circuit of Figure B.5 of [29].

A one-dimensional numerical model with 61 mesh points is used for the bipolar

transistor in the circuit with the doping profile shown in Figure 7.1. The steady-state

solution of this circuit is obtained after 6 periods of transient analysis using the time-

domain shooting method. The conventional transient simulation takes 1500 periods

to reach the steady state. Newton's algorithm in the shooting method speeds up the

convergence of the steady-state simulation significantly. The output voltage

waveforms for several periods during the analysis are plotted in Figure 7.2. The

Newton iteration is carried out at the end of each period to calculate the initial
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guesses for the next period. The output waveform starts from its DC value and very

quickly approaches the steady-state solution as shown in the second, third, and fourth

periods. The magnitude of the waveform in the fourth period is larger than the final

solution, and Newton's algorithm corrects this by finding a new initial guess for the

fifth period. Finally the analysis converges in the sixth period where the initial value

at t = 0 is equal to the final value at t = O.21w. Also, in the steady state the output

voltage waveform has three cycles in each original period and thus the "X3

frequency multiplier" is realized.

1O

E
9- 10

1015

0 0.5 1 1.5 2 2.5 3
x (,m)

Figure 7.1: Doping profile and dimension of the 1D numerical NPN bipolar
transistor used in the X3 frequency multiplier.
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Figure 7.2: Output voltage waveforms for four periods during the steady-state
simulation of the X3 frequency multiplier circuit using the time-domain shooting
method.

The second example is the DC power supply circuit of Figure BA of [29].

The diode in this circuit is modeled by a one-dimensional numerical model with 191

mesh points and the doping profile is plotted in Figure 7.3. The steady state is

obtained after 6 periods of the transient analysis using the time-domain shooting

method. The normalized harmonics of the steady-state voltage waveform at the

cathode of the diode are obtained by applying a FF1' on the time-domain waveform

and are plotted in Figure 7.4. From this figure, the magnitude of the harmonics drops

slowly due to the strong nonlinearity of the diode. If the harmonic balance method is

used to determine the steady state of this circuit, many harmonics have to be

computed to obtain an accurate result. With the time-domain shooting method this

circuit can be readily simulated. In each period of the time-domain shooting method,
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circuits are analyzed by a transient simulation. Generally, the transient simulation

handles strongly nonlinear circuits efficiently. Thus the time-domain shooting

method is robust for accurate steady-state simulation of strongly nonlinear circuits

[151.
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Figure 7.3: Doping profile and dimension of the 1D numerical diode used in the DC
power supply circuit.
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Figure 7.4: Normalized harmonics of the steady-state voltage waveform at the
cathode of the diode for the DC power supply circuit using the time-domain shooting
method followed by a FF1.
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As an autonomous system, a typical BJT Colpitts oscillator is chosen from

[47]. The same one-dimensional numerical BJT as in Figure 7.1 is used here. The

steady-state solution of this circuit is obtained with 18 periods of the transient

simulation using the Newton shooting algorithm. Among them, sensitivity

computation is carried out in 13 periods and the Newton iteration as in Equation

(4.5) is performed 10 times. At the end of the 6th and 12th periods, the sensitivity

matrix has been calculated but the Newton iteration is not performed. This is because

the error is larger than the acceptable threshold as discussed in the heuristics of

Section 4.4.3. The steady-state solution is verified with a conventional transient

simulation.
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To demonstrate the effect of the numerical model on the steady-state

solution, a high frequency Colpitts oscillator (Figure B.8 of [29]) is used. The one-

dimensional numerical BJT model as in Figure 7.1 is used and the corresponding

analytical model is extracted from the numerical one. The steady-state solutions of

this circuit with the analytical and numerical models are obtained by the time-

domain shooting method. The oscillation frequency is 0.8GHz for the analytical

model and 0.72GHz for the numerical model. The normalized harmonics of the

output waveforms for both models are shown in Figure 7.5. The total harmonic

distortions are 7.7% and 13.4% for the analytical and numerical models,

respectively. The same simulation has been performed for the Colpitts oscillator

from [47]. The oscillation frequency is 60.9 MIHz for the analytical model and

61.6MHz for the numerical model. The normalized harmonics of the output

waveforms are shown in Figure 7.6. The total harmonic distortions are 1.6% and

0.8% for the analytical and numerical models, respectively. The differences in

oscillation frequencies and harmonic distortion are much larger for the high

frequency oscillator than the low frequency oscillator.
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Figure 7.5: Normalized harmonics of the steady-state output waveforms for the high
frequency Colpitts oscillator comparing analytical and numerical models.
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Figure 7.6: Normalized harmonics of the steady-state output waveforms for the BiT
Colpitts oscillator from [47] comparing analytical and numerical models.
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Figure 7.7: Phase shift due to a current impulse at the output node for phase noise
analysis of the high frequency oscillator comparing analytical and numerical models.

Finally, for phase noise analysis of the high frequency oscillator [29], the

impulse sensitivity functions (1SF) [47] at the output node are simulated with both

the analytical and numerical models. The phase shift is plotted in Figure 7.7 and it

can be seen that the difference between the two models is significant. These results

show that numerical models are essential for accurate simulation of high frequency

RF circuits.

7.1.2 Performance Results

To evaluate the performance efficiency of the time-domain shooting method,

the conventional transient simulation is used to determine the steady state for several

example circuits with one- and two-dimensional numerical models for
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semiconductor devices. The number of periods required by the conventional transient

simulation and the time-domain shooting method are summarized in Table 7.1. It is

seen that the time-domain steady-state method is much more efficient than the

conventional transient simulation method.

Example Circuits
Conventional transient

simulation (# of periods)
Time-domain shooting
method (# of periods)

DC supply* 80 6

CB amplifier* 30 4

ECxfrmrosc* 185 25

Freq multiplier* 1500 6

LC EC osc 22 9

SCP amplifier [14] 182 6

H.F. Colpitts* 20 12

Colpitts [47] 84 18

Demodulator [48] 12000 4

Table 7.1: Performance comparison for conventional transient simulation and the
time-domain shooting method. The numbers of periods are directly proportional to
the runtime performance. ('*'__circuits from [291).

In transient simulation of circuits containing numerical devices, the

computationally intensive part is the numerical model evaluation. The overhead due

to the sensitivity computation required by the time-domain shooting method is

negligible, especially when state elimination as described in Section 4.4.1 is

implemented. Therefore, the ratio of the numbers of periods required is
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approximately equal to the ratio of the simulation time required. The time-domain

shooting method is much more efficient with high-Q and lightly damped circuits

where conventional transient simulation approaches the steady state very slowly.

Furthermore, it will result in a significant reduction of simulation time when fine

meshed numerical devices are used in circuits.

7.2 Frequency-Domain Harmonic Balance Method

In this section, several example circuits with 1D and 2D numerical models

have been chosen to demonstrate accurate and efficient simulation of the quasi-static

harmonic balance implementation in CODECS. For these examples the operating

frequencies are relatively low such that the device internal dynamics are not

significant. The quasi-static characteristics are illustrated by fast turn-on and turn-off

transients of a MOS transistor. The quasi-static implementation is compared with the

non-quasi-static and MVS implementations in terms of accuracy and simulation

performance. Their advantages and disadvantages identified in Chapter 6 are

verified. All the following simulations are carried out on SUN UltralO workstation.

7.2.1 Results from Quasi-Static Implementation

A single-BJT mixer circuit is taken directly from [14]. The configuration is

shown in Figure 7.8. The mixer circuit down-converts a 499.9MHz RF signal to a

100KHz IF, using a 500MHz LO. A resonant RLC circuit having a Q of 100
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(R = 15k12, C = 66.667nF, L = 37.995,uH ) and a resonant frequency of 100KHz is

used. The high-Q filter, filters out the IF-band distortion products and other LO

harmonic bands. The voltage source parameters used are V. = 1OV, VDC = 0.7V,

VRF = 0.05V at 499.9MHz, and VLO = 0.15V at 500MHz. A 2D numerical BJT

device is used and the doping profile is shown in Figure 7.9. A harmonic balance

analysis with 27 frequencies chosen by the box truncation method in Section 5.4 was

carried out. The simulation took 11 iterations and the output voltage spectrum is

shown in Figure 7.10. A magnified baseband is shown in Figure 7.11. If the time-

domain method is used to solve this mixer, at least 50,000 time points need to be

simulated in each cycle to obtain the same result. The high Q tank also requires

additional cycles to reach the steady state. Therefore, the time-domain method is

impractical here while the harmonic balance method can get the result readily.

vw

VDC

vcc

Figure 7.8: A single-BJT mixer circuit.
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Figure 7.9: Doping profile of a 2D numerical BJT.
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Figure 7.10: Output voltage spectrum for the single-BJT mixer.
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Figure 7.11: Baseband spectrum of the output voltage for the single-BJT mixer.

The second example is a double-balanced mixer circuit from [14] shown in

Figure 7.12. The circuit is first simulated using the quasi-static harmonic balance

method and then the result is verified with the spectrum obtained from a long

transient simulation. The mixer circuit down-converts a 1MHz RF signal to a

0.1MHz IF, using a 1.1MHz LO. A resonant RLC circuit having a Q of 50

(Rc5K2, C=7.958nF, L=318.31pH) and a resonant frequency of 0.1MHz is used.

The voltage and current source parameters used are VCC=VEE=!OV, IEE=4mA,

VRF=O.O1V at 1MHz, and V=0.1V at 1.1MHz. A 2D numerical BJT model shown

in Figure 7.9 was used for transistors Qi and Q2 while a compact analytical model

was used for Q3Q6. A harmonic balance analysis with 27 frequencies chosen by

the box truncation method was carried out. The simulation took 7 iterations and 24
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minutes. The output voltage spectrum is shown in Figure 7.13. Also shown in this

figure is the spectrum obtained from a long transient simulation which took about 6

hours. In practice, the separation between the IF and LO frequencies is usually much

larger than in this example and the time-domain simulation will be impractical. From

the result we can see that the harmonic balance method is accurate and efficient.

+

VL

VR

-VEE

Figure 7.12: The circuit schematic of a double-balanced mixer.
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Figure 7.13. Output voltage spectrum for the double-balanced mixer from quasi-
static harmonic balance and transient simulations.

To observe the performance of the quasi-static harmonic balance analysis,

steady-state solutions of more example circuits from [29] and [14] were obtained.

The number of Newton iterations required and the simulation times are summarized

in Table 7.2. Given that numerical devices are used in the circuits, the simulations

are very efficient as shown in the table.
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Example circuits # of iters Time (mm)

Simple rectifier 16 0.6

Single-BiT mixer 11 2.1

MOSFET CS amplifier 6 0.6

SCP amplifier 3 0.9

DC power supply 39 0.75

CB Class-C amp. (Q=10) 14 1

CB Class-C amp. (Q=50) 13 1

CB ampi. (w/ parasitics) 53 6.4

X3 frequency multiplier 8 0.5

Double-balanced mixer 7 24

Table 7.2: Performance of the quasi-static harmonic balance analysis for coupled
device and circuit simulation.

To verify the quasi-static property of the steady-state solution obtain by the

QS harmonic balance analysis, we consider the turn-on and turn-off transients of a

MOS transistor. Figure 7.14 shows the simple circuit used to perform the simulation

[2]. The 2D numerical MOSFET in the circuit has 31x19=589 mesh points and its

doping profile is shown in Figure 7.15. The gate voltage is ramped from OV to 5V in

5Opsec for turn on and from 5V to OV for turn off. The voltage is held constant at 5V

for 1 50psec such that all transients die out before the start of another ramp. These are

fast switching conditions for the MOS transistor and lead to non-quasi-static

behavior.
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Figure 7.14: The simple circuit to observe the non-quasi-static behavior during the
turn-on and turn-off transients of a MOSFET. A 2D numerical model is used for the
MOSFET.
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Figure 7.15: Doping profile of a 2D numerical MOSFET.

Due to the extremely fast transition in the currents, 100 harmonics are chosen

for the harmonic balance analysis. The steady-state analysis of this circuit is first

carried out using quasi-static harmonic balance method. The simulated quasi-static

drain and source currents as a function of time, during turn on, are plotted in Figure
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7.16. The currents for the turn off are plotted in Figure 7.17. The small ringing in the

current waveforms is due to the Gibb's phenomena [49]. Then the non-quasi-static

currents are obtained by a transient analysis of CODECS. For comparison, these

results are also plotted in Figures 7.16 and 7.17 for turn on and turn off, respectively.

Here using transient analysis instead of non-quasi-static harmonic balance is based

on two considerations. First if the non-quasi-static harmonic balance is used, the total

number of nonlinear equations to be solved is 186,327, even with one-carrier

simulation. Obviously it is very expensive. Secondly, for this one-tone simple circuit,

startup transient quickly dies out and steady-state solution is readily obtained in only

several periods of transient simulation.
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Figure 7.16: Comparison of the quasi-static and non-quasi-static source and drain
currents of a MOSFET for the turn-on transient simulated by quasi-static harmonic
balance and transient analyses, respectively.
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Figure 7.17: Comparison of the quasi-static and non-quasi-static source and drain
currents of a MOSFET for the turn-off transient simulated by quasi-static harmonic
balance and transient analyses, respectively.

Figure 7.16 shows that as the gate voltage exceeds the threshold voltage the

currents from the QS harmonic balance simulation respond sharply. This is because

for the quasi-static analysis channel charge reaches the steady-state value

instantaneously. While for the currents from non-quasi-static analysis, due to the

finite transit time of the carriers, the drain current increases after a time delay. Both

the drain and source currents increase more smoothly as show in Figure 7.16. Based

on the same reasoning, when the gate voltage reaches its steady-state value and

becomes a constant, the quasi-static currents reach their steady-state values

instantaneously whereas the non-quasi-static currents decrease or increase
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exponentially. Similar arguments can be used to explain the turn-off characteristics

of the source and drain currents as shown in Figure 7.17.

7.2.2 Comparison between the QS and NQS implementations

To compare the accuracy of the quasi-static and non-quasi-static

implementations, a simple common-source amplifier with a 2D numerical MOSFET

model is used and shown in Figure 7.18. The input voltage waveform to the gate is

given as 2 + O.5sin(2t . t). The transition frequency of the MOSFET is

2GHz at Vgate = 2V and Vdrajfl = 5V. To evaluate the accuracy of the results at

different frequencies, simulations were carried out at f1 =500MHz, 2GHz, and

5GHz, respectively. The steady-state output voltages obtained from the quasi-static

and non-quasi-static harmonic balance methods were compared with accurate results

from a time-domain analysis as shown in Figure 7.19. From this figure we can see

that the results from the non-quasi-static implementation are in perfect agreement

with the transient simulation while the quasi-static method is good only for relatively

low frequencies. For this particular example, the maximum error is 3.8% for the

quasi-static result at a frequency of 2GHz and 16.8% at 5GHz.
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Figure 7.18: A simple common-source amplifier with a 2D numerical MOSFET
model.
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Figure 7.19: The steady-state output voltages of a simple common-source amplifier
from transient, quasi-static and non-quasi-static harmonic balance simulations with
(a) f1 =500MHz and 2GHz, and (b) f =5GHz.
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The simulation complexity of the quasi-static and non-quasi-static

implementations is compared for the simple common-source amplifier in Table 7.3

and a source-coupled-pair amplifier in Table 7.4. The numerical MOSFET has 589

mesh points and a two-carrier simulation is carried out. The simulation time for the

non-quasi-static method is obtained using both the default solver Sparse in CODECS

and a more efficient linear solver UTVIFPACK [50] to solve the large system of

device-level equations. From these tables we can see that, for the same number of

chosen frequencies, the quasi-static method is very efficient due to a smaller matrix

size. Since a much larger number of harmonic balance equations at the device level

have to be solved, the non-quasi-static method requires a significantly larger

computational time and memory even when an efficient sparse matrix solver such as

UIMFPACK is used. The non-quasi-static simulation can be even impractical with

fine meshed numerical devices and a large number of simulation frequencies.
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Quasi-static

method

Non-quasi-static method

Sparse IJMFPACK

#Freqs chosen 4 4 4

Simulation time 83s 10737s 1853s

Memory used 9.9M 215M 141M

#Eqns for HB at circuit level 35 35 35

#Eqns for HB at device level 9429 9429

Largest matrix 1347 x 1347 9429x9429 9429x9429

Table 7.3: Comparison of simulation complexity using quasi-static and non-quasi-
static approaches to obtain the steady state of a simple common-source amplifier
with a numerical MOSFET model. The quasi-static method is orders of magnitude
faster than the non-quasi-static implementation even when an efficient sparse matrix
solver UIMIFPACK is used.

Quasi-static

method

Non-quasi-static method

Sparse UMFPACK

#Freqs chosen 4 4 4

Simulation time 121s 19650s 3471s

Memory used 13.4M 409M 165M

#Eqns for HB at circuit level 63 63 63

#Eqnsforl{Batdevicelevel o 18858 18858

Largest matrix 1347 x 1347 9429x9429 9429x9429

Table 7.4: Comparison of simulation complexity using quasi-static and non-quasi-
static approaches to obtain the steady state of a source-coupled-pair amplifier with a
numerical MOSFET model. The quasi-static method is orders of magnitude faster
than the non-quasi-static implementation even when an efficient sparse matrix solver
UMFPACK is used.
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7.2.3 Comparison between the QS and MVS Implementations

The MVS harmonic balance analysis is carried out on the same simple

common-source amplifier as used in Section 7.2.2 with Vm = 2 + 0.1sin(2t fin t)

and f, =100Hz. The steady-state drain current is compared with the results from the

quasi-static harmonic balance and accurate time-domain simulations as shown in

Figure 7.20. From this figure we can see that the current from the quasi-static

method has significant magnitude and phase errors at high frequencies. These errors

are corrected by the MVS method and a more accurate result is obtained.
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Figure 7.20: The steady-state drain currents of a simple common-source amplifier
with f =100Hz from time-domain, quasi-static and MVS harmonic balance
simulations.
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To study the accuracy improvement of the MVS method over the QS method

and their regions of validity, the 5% constant error loci of the simple CS amplifier

are plotted as functions of the amplitude VA and the frequency f,, of the sinusoidal

input voltage. The error is given by the ratio of maximum discrepancy of the

instantaneous value and the fundamental magnitude of the drain currents. Figure 7.21

is the loci without the output load and Figure 7.22 shows the loci with 2K resistor

load. For the NQS method the region of validity is the whole plane whereas for the

QS and MVS methods it is the area to the lower left of the corresponding loci. The

MVS method has a larger region of validity than the QS method and is more accurate

for high frequencies and small amplitudes. The error loci of the MYS method are in

agreement with the qualitative plot shown in Figure 6.3. The accuracy of the MVS

method depends on a trade off between the amplitude and frequency of the

sinusoidal input voltage. For the QS method, the accuracy is mainly dependent on

the input frequency. Comparisons between these two figures show that the error loci

are configuration dependent. The loci are shifted to the right and regions of validity

are enlarged for the configuration with the output load. For this numerical MOSFET,

the QS method is accurate enough (error < 5%) up to 1GHz which is the half of the

MOSFET transition frequency of 2GHz.
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Figure 7.21: 5% constant error loci of MVS and QS methods for the simple
common-source amplifier without an output load.
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Figure 7.22: 5% constant error loci of MYS and QS methods for the simple
common-source amplifier with a 2K resistor load.
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To compare the performance of the QS and MVS methods, several example

circuits with numerical devices and different number of harmonics are simulated

using both methods. The simulation time and the memory used are summarized in

Table 7.5. The table shows that the MVS method is slower than the QS method. This

is because the MVS method requires multiple AC analyses for all frequencies chosen

at each sampled time point while the QS method needs only one low frequency AC

analysis. When more frequencies are used, more AC analysis are required in the

MVS method at each sampled time point, and the MVS method is slower compared

with the QS method. From the table we can also see that memory requirements of the

MVS method are the same as the QS method because additional AC analyses in the

MVS method do not require more memory.
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# of freqs
QS method MVS method

Time
(sec.)

Memory
(MB)

Time
(sec)

Memory
(MB)

Simple rectifier
10 9 6.5 35 6.5

30 37 7.2 365 7.2

CS amplifier
3 14 7.7 21 7.7

10 30 7.9 87 7.9

SCP amplifier
3 22 9.3 52 9.3

10 54 9.7 369 9.7

DC supply
10 84 6.8 100 6.8

20 100 7.7 390 7.7

CB Class-C
amp. (Q=10)

10 73 7.9 152 7.9

20 259 10.4 579 10.4

CB Class-C
amp. (Q=50)

10 78 8.0 155 8.0

20 232 10.5 624 10.5

X3 frequency
multiplier

6 12 7.2 25 7.2

12 26 7.8 80 7.8

Table 7.5: Performance comparison of the QS and MVS harmonic balance methods
for circuits with numerical devices and different number of harmonics.

7.3 Comparison Between Shooting and QS Harmonic Balance Methods

In this section, the comparison of the simulation performance of the time-

domain and QS harmonic balance analyses for coupled device and circuit simulation

is demonstrated using some typical RF circuits. The steady-state analyses of the

circuits [29, 14] with large-signal inputs and numerical models using both methods
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were performed. The simulation results are the same for the two methods. The

performance results and memory usage are summarized in Table 7.6.

Circuit
Shooting method Harmonic balance

.

#iter
Time
(sec)

Memory
used (MB)

.#iter Time
(sec)

Memory
used (MB)

Periodic forced circuits

Simple rectifier 2 28 6.4 16 37 7.2

DC power supply 6 81 6.6 39 45 6.8

CB amplifier 4 82 7.0 13 58 8.0

CB (wI parasitics) 4 254 7.1 53 385 7.7

X3 freq. multiplier 6 10 6.2 8 32 6.8

MOS CS amplifier 3 554 9.8 5 188 10

SCP amplifier 6 1170 13 3 225 14

Mixers

Single-BJT mixer X X X 11 127 9.0

Double-bal. mixer X X X 7 1440 20

Oscillators

Colp. Oscil. (6OMIHz) 18 108 6.7 C 267 6.4

LC EC oscillator 10 41 6.4 C 1210 8.4

TNT oscillator 7 42 6.4 * * *

Wien oscillator 5 33 6.4 * * *

Table 7.6: Performance and memory comparison of time-domain and QS harmonic
balance methods for coupled device and circuit simulation. ("X"time-domain
method is impractical, "*"_harmonic balance method fails to converge, "C"
continuation method is used.)
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From these tables it is clear that both methods solve periodic forced circuits

for coupled device and circuit simulation with good computational performance. The

QS harmonic balance method uses slightly more memory than the shooting method.

Comparing the number of iterations, for highly nonlinear circuits the QS harmonic

balance method required a significantly larger number of iterations for convergence

than the time-domain method. However, each iteration consumes less time and the

overall performance is usually comparable with the time-domain method. It should

be noted that for the MOS CS amplifier and the SCP amplifier with numerical device

models, the harmonic balance method takes 3 and 5 times less simulation time than

the shooting method, respectively. This is because these two circuits are weakly

nonlinear and the harmonic balance method converges in a small number of

iterations. The transient simulation is time-consuming in these cases.

In handling multi-tone circuits such as mixers, the harmonic balance method

is excellent while the time-domain shooting method is usually impractical. Let us

take the single-BJT mixer circuit in the table as an example. The harmonic balance

analysis took 11 iterations and 127 seconds. For the time-domain method a

simulation of several periods with at least 50,000 time points in each period should

be carried out.

For autonomous circuits such as oscillators, the time-domain shooting

method is efficient due to several modifications and heuristics in Chapter 4. To

improve the convergence property of the harmonic balance method for oscillator

circuits, the voltage probe and a technique based on a continuation method were
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introduced in [42] and [43], respectively. With numerical models in CODECS, the

harmonic balance method is not very reliable. Furthermore, the computational costs

are higher than that of the time-domain shooting method.

Finally the performance comparison of the two methods for coupled

simulation is summarized in Table 7.7.

Shooting method QS Harmonic balance

Periodic forced highly
excellent Excellent

nonlinear_circuits
Multi-tone cases

poor Excellent
(Mixers)

Oscillators excellent Fair

Numerical devices with
Good Excellent

a large # of mesh points

Table 7.7: Summary of performance comparison of the time-domain shooting
method and the QS harmonic balance method for coupled device and circuit
simulation.

7.4 Summary

In this chapter several examples are used to verify the implementations of the

time-domain shooting method and the frequency-domain harmonic balance method

in the context of coupled device and circuit simulation. Also the steady state results

of RF circuits with analytical and numerical models for semiconductor devices were

compared. The differences between these indicate that numerical models are

essential for accurate simulation of high frequency circuits.
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The advantages and limitations of the QS, NQS and MVS harmonic balance

implementations are verified as well. The non-quasi-static approach is accurate but

requires significant computing resources. The implementation of the quasi-static

approach is straightforward and the simulation is efficient. However, the accuracy is

limited by the transition frequency of numerical devices. The modified Volterra

series approach has improved accuracy compared with the quasi-static approach for

high frequency and small amplitude signals. This improvement is achieved at the

expense of longer simulation times.

Finally, a performance comparison of time-domain and QS harmonic balance

methods for coupled simulation is presented. For the periodic forced circuits, the two

methods are comparable. The harmonic balance method is excellent in handling

multi-tone circuits where the time-domain method is usually impractical. For

autonomous circuits, the time-domain shooting method is efficient and reliable while

the harmonic balance method needs more convergence improvements for circuits

with numerical devices.
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Chapter 8

CONCLUSIONS

8.1 Summary of Contributions

This work presents the first implementation of steady-state analysis in the

context of coupled device and circuit simulation. Both time-domain shooting method

and frequency-domain harmonic balance method have been implemented in a

general coupled device and circuit simulator CODECS. In the implementation, the

original architecture of CODECS is exploited allowing reuse of the existing coupling

simulation framework. With critical devices modeled by physical (numerical)

models, this simulator can obtain the steady-state solution accurately and efficiently

for RF IC building blocks.

The time-domain shooting method has been implemented with Newton's

method. Modifications, such as state elimination and damping, and heuristics have

been applied to improve the reliability and convergence of the Newton shooting

algorithm. A new scheme to bias the numerical devices is implemented to improve

the efficiency. A circuit unknown implementation is developed to eliminate the

inconsistency and discontinuity in the standard state-based implementation.

Three different implementation approaches of the harmonic balance method

for coupled device and circuit simulation are investigated and implemented. These

include the quasi-static (QS), non-quasi-static (NQS), and modified-Volterra-series
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(MVS) approaches. Comparisons of simulation and performance results verify that

there is a tradeoff between simulation accuracy and complexity among these

approaches.

Although the steady-state methods were only implemented into CODECS,

the generality of numerical device simulators was kept in mind in the course of

implementation. The time-domain shooting method and the QS and MVS approaches

of the frequency-domain harmonic balance method were implemented at the circuit

level with minor changes to the device simulator. The standard analysis routines

available in device simulators such as DC biasing, small-signal analysis, and

transient analysis were used to connect the numerical device simulator with the

circuit-level steady-state analyses. For the NQS approach, although extensive

modifications to the device simulator are required, the interface of the numerical

devices with the circuit-level equations was not changed. This decoupled

implementation strategy enables incorporation of general purpose device simulators

in the coupled device and circuit simulator CODECS. This implies that steady-state

simulations of technologies such as SiGe and SOl, and also optical devices can be

made available in CODECS. Furthermore, the decoupling between circuit-level

computation and device simulators indicates a decoupling between the numerical

device evaluations. Therefore, numerical device evaluations can be readily

parallelized using a cluster of workstations.
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8.2 Future Work

In this work, the non-quasi-static approach of the harmonic balance method

for coupled device and circuit simulation has been implemented for one-dimensional

diode and two-dimensional MOSFET and is not available for two-dimensional

diodes and one- and two-dimensional BJTs. Extensions of this approach to all types

of numerical devices in CODECS is necessary to simulate circuits with different

numerical models.

The non-quasi-static approach results in a large device-level system matrix.

For the quasi-static and the modified-Volterra-series approaches, a large circuit size

also generates a large harmonic balance Jacobian matrix. Factonzation of such a

large matrix is expensive and the simulation is extremely time and memory

consuming. To solve the large-scale system of harmonic balance equations, efficient

Krylov subspace methods should be considered.

In the modified-Volterra-senes approach, the first-order modified Volterra

series is applied to periodic steady-state problems. It will be interesting to investigate

the second-order or even the third-order modified Volterra series and observe the

accuracy improvement and the tradeoff with simulation time. The challenge here is

to efficiently compute the second- or third-order modified Volterra kernels for the

numerical devices. Also the modified-Volterra-senes approach needs further

investigation for quasiperiodic steady-state problems.

The parallel implementation of numerical device evaluations for speed

improvements is another area that needs further investigation. In addition, the



incorporation of general purpose device simulators for simulation of other

technologies in CODECS is important. As discussed at the end of Section 8.1, the

implementation strategy in this work has paved the road for these two future

activities.

Finally, the harmonic balance method with Newton's method is not very

reliable for autonomous circuits with numerical models. More robust methods, such

as homotopy methods, are recommended to improve the convergence.
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