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Various methods have been used to estimate the amount of above ground 

forest biomass across landscapes and to create biomass maps for specific stands or 

pixels across ownership or project areas. Without an accurate estimation method, land 

managers might end up with incorrect biomass estimate maps, which could lead them 

to make poorer decisions in their future management plans. 

Previous research has shown that nearest-neighbor imputation methods can 

accurately estimate forest volume across a landscape by relating variables of interest 

to ground data, satellite imagery, and light detection and ranging (LiDAR) data. 

Alternatively, parametric models, such as linear and non-linear regression and 

geographic weighted regression (GWR), have been used to estimate net primary 

production and tree diameter. 



 

 

The goal of this study was to compare various imputation methods to predict 

forest biomass, at a project planning scale (<20,000 acres) on the Malheur National 

Forest, located in eastern Oregon, USA.  In this study I compared the predictive 

performance of, 1) linear regression, GWR, gradient nearest neighbor (GNN), most 

similar neighbor (MSN), random forest imputation, and k-nearest neighbor (k-nn) to 

estimate biomass (tons/acre) and basal area (sq. feet per acre) across 19,000 acres on 

the Malheur National Forest and 2) MSN and k-nn when imputing forest biomass at 

spatial scales ranging from 5,000 to 50,000 acres. 

To test the imputation methods a combination of ground inventory plots, 

LiDAR data, satellite imagery, and climate data were analyzed, and their root mean 

square error (RMSE) and bias were calculated.   Results indicate that for biomass 

prediction, the k-nn (k=5) had the lowest RMSE and least amount of bias. The second 

most accurate method consisted of the k-nn (k=3), followed by the GWR model, and 

the random forest imputation. The GNN method was the least accurate. For basal area 

prediction, the GWR model had the lowest RMSE and least amount of bias. The 

second most accurate method was k-nn (k=5), followed by k-nn (k=3), and the random 

forest method. The GNN method, again, was the least accurate. 

The accuracy of MSN, the current imputation method used by the Malheur 

Nation Forest, and k-nn (k=5), the most accurate imputation method from the second 

chapter, were then compared over 6 spatial scales: 5,000, 10,000, 20,000, 30,000, 

40,000, and 50,000 acres. The root mean square difference (RMSD) and bias were 



 

 

calculated for each of the spatial scale samples to determine which was more accurate. 

MSN was found to be more accurate at the 5,000, 10,000, 20,000, 30,000, and 40,000 

acre scales. K-nn (k=5) was determined to be more accurate at the 50,000 acre scale. 
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CHAPTER 1 – GENERAL INTRODUCTION 

Forest managers need accurate forest inventory data to develop a forest 

management plan that will allow them to prepare for future forest activities. Often 

times these data must cover large areas of land, up to thousands of acres. However, 

finding the balance of the amount of data to cover these thousands of acres and the 

cost to collect them can be very difficult. In recent years, the need for cost-effective, 

accurate forest inventory data has led to new ways of estimating and imputing plot 

data collected by the United States Department of Agriculture (USDA) Forest 

Inventory and Analysis Program (FIA). This process has resulted in regional maps of 

forest cover and vegetation types created from the Gradient Nearest Neighbor (GNN) 

method (Ohmann and Gregory, 2002), which has been recently used by the Oregon 

Department of Forestry (ODF), United States Department of Interior (USDI) Bureau 

of Land Management (BLM), and the USDA Forest Service (USFS).  The GNN 

imputation method has been used in the past few years for analysis and planning 

efforts across the Pacific Northwest (PNW), and is being used to estimate many 

aspects of a regular forest inventory, including woody biomass. Woody biomass is 

becoming a desired forest product due to proposed energy facilities that use it as a 

renewable resource and an alternative to coal.  Other imputation methods, such as the 

Most Similar Neighbor (MSN) (Moeur and Stage, 1995) and Random Forest (RF) 

(Crookston and Finley, 2008), were also developed by the USFS and are used in the 

PNW and throughout the Rocky Mountain region (Hudak et. al., 2008). Despite the 
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availability of these potential cost-effective imputation methods, they have generally 

all been used to create vegetation maps at a region scale (>100,000 acres). However, 

forest managers write forest plans at project level scales (<50,000 acres) and the 

accuracy of these imputation methods have not been tested at these scales due mostly 

to a lack of independent data. This can make it very difficult for forest managers to 

know which imputation methods should be used and when or how to report their 

accuracy when creating forest plans at the project level. 

 

Growing public concern over the condition of our federal forests has brought 

proposals for forest silvicultural treatments to thin our forests in areas where insect 

and disease outbreaks have occurred. Land managers, decision makers, and scientists 

have asked about cost-effective ways to predict the amount of biomass across our 

federal forests to increase the amount of small trees that can be removed from the 

forests through thinning prescriptions and are looking to determine the local prediction 

accuracy (<20,000 acres) of these imputation methods that have generated maps at 

regional scales. Determining the spatial accuracy of these imputation methods at the 

project level will add confidence to the results of their investments in using these 

methods to impute forest vegetation maps. 

 

This study will assess the predictive accuracy of imputed forest vegetation 

maps at spatial scales that are suitable for writing forest plans at the project level. It 
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seeks to quantify the accuracy of selected imputation methods at varying geographic 

scales. 

 

 

  



4 

 

 

CHAPTER 2 – A COMPARISON OF THE THEMATIC ACCURACY OF 

PARAMETRIC AND NON-PARAMETRIC METHODS 

 

Introduction 

A map can have many different uses in forestry. Uses of forest maps include a: 

harvest map with estimated timber volume and ownership boundaries, stand map for 

inventory data collection,  road map for travel across an ownership, and  hydrology 

map for various stream runoff and landslide issues.   No matter the purpose of a 

specific map the question should be asked, how accurate is this map?  Whether the 

map displays property lines, harvest boundaries, forest stand locations, or timber 

types, different aspects should be addressed to ensure that the map is actually 

representing what is truly on the ground.   

 

Stehman and Czaplewski (1998) describe a fundamental structure for assessing 

the accuracy of thematic maps. Their structure has three basic steps in the process to 

determine the accuracy of a map: a response design, a sample design, and an 

estimation and analysis protocol. A response design is defined as the process in 

determining the reference classification for each sampling unit, generally a pixel or a 

polygon. The reference classification is defined as the “true” classification of that 

sampling unit, and can be determined by some combination of aerial imagery or 

visiting the sampling unit on the ground. The sampling design is the process by which 

the reference samples are selected for analyses. The sampling design consists of 
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defining a sampling frame, which includes a list or map of the entire target population, 

and defining the sampling units, which includes a list of individual points or areas 

from the sampling frame to be analyzed for an accuracy assessment. In order to 

determine the overall accuracy of the final map, an estimation or analysis protocol 

should be implemented by creating an error matrix to compare the actual and 

estimated values of each sampling unit or pixel. 

 

Two main types of map error can occur, attribute error and locational error 

(Stehman and Czaplewski, 1998).  Attribute error occurs when a thematic attribute, 

such as timber type, is inaccurate.  Locational error occurs when a boundary is 

inaccurate.  Locational error can be assessed by using a line intersect sample design to 

estimate the length of the boundary.  Attribute error can be assessed by selecting a 

random sample of points to determine if the specified attribute was mapped correctly 

or incorrectly (Skidmore and Turner, 1992).  Both of these types are critical in 

creating an accurate map; however, this project will only look at the attribute error of a 

map. 

 

Non-Parametric versus Parametric Models 

To derive forest cover types for a thematic map one can combine satellite 

imagery with data from field plots and impute a raster dataset showing a continuous 

map of the different cover types across the landscape. Previous studies have used both 
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non-parametric and parametric methods to predict forest attributes, including: 

Gradient Nearest Neighbor (GNN), Most Similar Neighbor (MSN), k-MSN, and the 

random forest nearest neighbor methods, and linear regression and geographic 

weighted regression. 

 

Gradient nearest neighbor maps are created using a multivariate model that 

integrates field plot data with ancillary data, such as satellite imagery, and 

environmental data.  This method uses the nearest neighbor, or shortest distance in 

feature space, from a point to the nearest plot to generate volume and basal area 

estimates that are then related to a specific timber type. The distance is measured by 

creating a weight matrix derived by canonical correspondence analysis. Most similar 

neighbor maps are created using a model that also integrates field plot data with 

satellite imagery, as well as topographic features such as slope and aspect.  This 

method uses a canonical correlation analysis to derive a similarity function, with user 

specified relationships, to impute data where there are no ground plots. The k-MSN 

method uses the same methods as MSN, but takes an average of the k nearest plots. 

The random forest imputation method creates a classification matrix and regression 

tree in order to find similarities between the explanatory and response variables.  

 

Nearest neighbor imputations have been used to perform multivariate analyses 

of forested landscapes by associating variables of interest to ground data, satellite 
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imagery, and light detection and ranging (LiDAR) data. Hudak et al. (2008) found that 

the random forest nearest neighbor method performed best at predicting various plot 

level estimates such as basal area and tree density in north-central Idaho. In Finland, 

Maltamo et al. (2006) compared k-MSN imputations for plot and stand level volume 

estimates and found that using aerial-laser scanner data resulted in better estimates 

than using aerial imagery estimates and when used together the resulting root mean 

square error improved again. Eskelson et al. (2009a) used nearest neighbor models to 

impute plot-level forest attributes, such as basal area, stems per hectare, volume and 

total gross oven dry weight biomass, and found that the random forest method 

performed best when compared to MSN and GNN imputation methods.  

 

An alternative to the nearest neighbor imputation methods to estimate selected 

variables of interest is the use of parametric models. Linear and non-linear regression 

models have been used for this purpose in previous studies (Wang et al. 2005, Salas et 

al. 2010, Crow and Schlaegel 1988). Another option is the use of a geographic 

weighted regression (GWR) model. Fotheringham et al. (2002) developed the use a 

GWR model, which takes a global regression model and localizes it to a specific area 

and allows for relationships between the explanatory and response variables to account 

for spatial variations, by including a weighting function in the regression model.  
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Wang et al. (2005) developed an ordinary least squares (OLS) model, a spatial 

lag model and a GWR model to analyze the amount of net primary production (NPP) 

in forest ecosystems across China using predictor variables that included forest stand 

locations, forest inventory data, and remote sensing data. The authors found that the 

GWR model was superior to both the OLS model and the spatial lag model (SLM) in 

predicting the NPP, measured by the Akaike Information Criteria (AIC) and r-squared 

(R
2
). The GWR model had an AIC of 4891 and a R

2
 of 0.66. The OLS model had an 

AIC of 5036 and a R
2 

of 0.58. Lastly, SLM returned an AIC of 5001 and a R
2
 of 0.60. 

 

Salas et al. (2010) modeled tree diameter using forest inventory and ancillary 

data. The models that the authors compared were OLS, generalized least squares 

(GLS), GWR, and linear mixed effects (LME). The authors used aerial LiDAR data 

and forest inventory plots to estimate diameter at breast height on individual trees in 

Norway. They found that the best performing model was LME; however, the GWR 

model also performed better than both the OLS and GLS model.  

 

Aerial LiDAR 

When current field inventory data are insufficient to assess if maps are 

accurate on a local-scale, a common practice is to revisit the forest and measure 

additional ground. This can be both costly and time consuming. A newer practice, 

becoming more available to forest land managers, is to use LiDAR data to acquire 
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detailed data over a larger landscape. LiDAR is a tool that forestry researchers and 

professionals are increasingly using to improve estimates of forest inventory attributes 

across larger landscapes, at a comparable cost to a traditional ground inventory data 

collection for some attributes (Hummel et al 2011). 

 

LiDAR data have become a useful tool in obtaining large amounts of forest 

inventory data due to its precision and relative ease of ground truthing. Ground 

truthing the LiDAR data consists of installing plots randomly throughout the 

landscape, measuring trees on the plot, and georeferencing the trees so that one can 

locate specific trees in the LiDAR data set (Wulder et. al. 2008). LiDAR datasets can 

also be used to assess much larger areas of forested landscape at one time, rather than 

installing thousands of field plots. 

 

Nelson et al. (2004) used LiDAR to estimate the amount of biomass and 

carbon in the state of Delaware. They used parallel flight lines 4 kilometers apart to 

measure the merchantable forest volume, biomass and above ground carbon. Using 

four explicitly linear models the authors predicted merchantable forest volume and 

above ground biomass across the state. The authors found that merchantable volume 

estimates were within 22% of USFS estimates county wide and 15% statewide. 

Additionally, the authors found that their biomass estimates were within 22% of USFS 

estimates county wide and 20% statewide. The USFS estimates were based on FIA 
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volume and biomass estimates at the county and state level. They concluded that forest 

volume and biomass can be estimated using a laser based transect sampling method. 

 

Naesset (2004) reported on the first Nordic stand-based forest inventory using 

LiDAR. The author predicted six stand variables from LiDAR data: mean tree height, 

dominant height, mean diameter, basal area, stem volume and stem number. Plot and 

tree level data were collected, including tree diameter at breast height (dbh), tree 

height, and the spatial location of the tree. With the plot data the author calculated: 

mean height, dominant height, mean diameter by basal area, plot basal area, number of 

trees per hectare, and total plot volume. From the LiDAR data, a digital elevation 

model and canopy height model was determined. The author found that 85-95% of the 

variability was explained by the regression models for mean height and dominant 

height. Additionally, 72-85% of the variability was explained by the regression models 

for basal area and stand volume and 49-63% of the variability was explained by the 

regression models for mean diameter and stem number. Validation of the models 

revealed the mean differences between the ground truth data and the predicted values 

were statistically significant in 5 of 24 cases and no bias was detected. 

 

Using LiDAR derived metrics and other remote sensing data as predictor 

variables, the current study assesses the accuracy of parametric and non-parametric 

methods for estimating the amount of standing tree biomass across the Malheur 
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National Forest, in Eastern Oregon, USA. The models were assessed for their accuracy 

by comparing measured ground plot values to the model estimates.  
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Materials and Methods 

Project Site 

The project site consists of two non-adjacent blocks of land on the Malheur 

National Forest, located in the Blue Mountains of eastern Oregon (Figure 1). The 

northern site contains 106,600 acres of the Camp Creek LiDAR data set. The southern 

site consists of 112,240 acres, consisting of the Damon and a portion of the LLP 

LiDAR data sets.  

 

 

Figure 1: LiDAR datasets on the Malheur National Forest 
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Aerial LiDAR Data 

The LiDAR data was collected from late 2007 through late 2008 by Watershed 

Sciences, Inc. Each of the three separate acquisition areas were obtained separately, 

during “leaf-off” conditions: the Damon site was collected on September 15 and 16, 

2007, the Camp Creek site was collected from August 19
th

 through August 27, 2008, 

and the LLP site was collected from November 19
th

 through December 11, 2008.  

 

The LiDAR acquisition used a Leica ALS50 Phase II laser mounted on a 

Cessna Caravan 208B. The scan angle was ±14° from nadir with a pulse rate designed 

to obtain an average number of pulses emitted by the laser of ≥4 points per square 

meter. The Leica ALS50 Phase II laser system is designed for up to four range 

measurements per pulse, and all laser returns were processed for the dataset. The 

Damon dataset had an average pulse density of 6 points per square meter, the Camp 

Creek dataset had an average pulse density of 8 points per square meter, and the LLP 

dataset had an average pulse density of 8 points per square meter. 

 

Aircraft position was recorded by an onboard differential GPS unit, which 

measured the x, y, and z location of the aircraft twice per second (2 Hz). Aircraft 

altitude was measured 200 times per second (200 Hz) as pitch, roll and heading from 

an onboard inertial measurement unit.  
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Multiple GPS units were used for the ground real-time kinematic portion of the 

data collection process. The GPS base stations were set up on the monuments in order 

to broadcast a kinematic correction to a roving GPS unit.  This allowed the ground 

surveyors to collect precise location measurements (σ ≤ 1.5 cm). A total of 1,007 real-

time kinematic ground points were recorded throughout the Damon site and were then 

compared to the LiDAR data for accuracy assessment. 

 

Ground Data 

Previously collected ground data consists of USFS Stand Exams from 2008 

and current vegetation survey (CVS) plots measured between 1998 and 2007.  The 

previously collected stand exams and CVS plots were grown forward to 2009 in the 

Forest Vegetation Software (FVS), Blue Mountain variant (Keyser and Dixon, 2008). 

Ten additional plots were measured during the summer of 2009 (Table 1).   

 

Table 1: Number of Plots in Damon Site 

Source Number of Plots

USFS Current 

Vegetation System 10

USFS Stand Exams 98

Summer 2009 8  

 

Recent research has shown that stratifying the landscape using LiDAR data is 

an efficient and effective way to group the landscape into similar forest type and 

structure for further analysis (Sullivan 2008, Koch et al. 2009, Leppanen et al. 2008).  
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Forested stands were delineated using differences in height and canopy closure 

characteristics. Percent canopy closure, 25th and 75
th

 height percentiles were used for 

this process. Following the process outlined by Sullivan (2008), stand delineations 

were created using two software packages, FUSION (McGaughey 2009) and Spring 

(Câmara et al. 1996). Spring is a user-based classification software package; for this 

study, the stand density index (SDI) of USFS stand exam plots measured in 2006 was 

used for the training data of the user-based classification process. 

 

Comparing different inventory designs is an important part of laying out a plan 

to collect inventory data. Various sample designs can be used and all different types 

should be considered and evaluated for a specific project.  Stehamn (2009) discusses, 

in detail, the necessary pieces to have a proper sample design for assessing map 

accuracy. Although primarily describing a sample design for determining the accuracy 

of land cover classification, the theory behind what a statistically sound sample design 

should consist of remains the same for any type of map accuracy assessment. 

Additionally, the author weighs the advantages and disadvantages of different types of 

sample designs. Based on how a specific project is to be completed, the author lists 

three questions to answer in order to assist in determining what kind of sample design 

is ideal for that specific project: (1) Are pixels individual sample units or are they 

grouped in clusters and the clusters the sample units? (2) Are the sample units 

stratified? (3) Is the process to select a sample unit a simple random design or a 

systematic design? Of the ten sample designs identified, and seven design criteria, a 
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stratified random sample design was rated as having the most strengths and least 

weaknesses and cluster sample designs having the least strengths. However, the one 

area where cluster sample designs ranked higher than all other designs was in the cost 

effective criteria. This suggests that if a project is restricted by time and/or budget, a 

cluster sample design may be the best sample design to implement due to being the 

most cost effective, while still being a statistically sound design. 

 

The 10 plots measured during the summer of 2009 followed the cluster sample 

design. Each linear cluster (CLUS) of plots consisted of four rectangular fixed radius 

subplots. Moisen et al. (1992) showed that linear clusters of plots was a cost efficient 

way of distributing forest inventory plots for assessing map accuracy, while 

accounting for spatial autocorrelation. The advantage of using a CLUS design is less 

cost in traveling to each plot, while the disadvantage for CLUS is that there is more 

potential for spatial autocorrelation. The main reason for using this plot design 

consisted of the limited amount of time to collect field plots. Additionally, the primary 

goal of collecting additional ground data was to assess the accuracy of the LiDAR 

dataset. By using a CLUS design, it was possible to sample more ground area in a 

limited amount of time, while not sacrificing the amount of plot estimates due to the 

availability of previously collected inventory data. 

 

The linear clusters consisted of four 1/10-acre rectangular fixed area plots. In 

order to assure a random sample a grid of 1/10-acre plots was placed over the project 
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area and a random location was selected based on the plot allocation information 

previously computed. The other three plots were located by obtaining a random 

azimuth in one of the four cardinal directions, from the first plot center, and installing 

the three additional plots in a linear fashion. 

 

In a plot each tree that was greater than or equal to 4.5 feet tall was measured 

for diameter-at-breast height (DBH), species, and crown dominance (dominant, co-

dominant, intermediate, or over-topped). The first, third and fifth tree per species per 

plot were measured for height, crown diameter, and crown ratio. Additionally, two to 

three of the tallest trees per plot were geo-referenced for LiDAR ground truthing 

purposes. Crown diameter was measured by taking a random azimuth and measuring 

the diameter of the crown at that azimuth, then taking the diameter of the crown 

perpendicular to the first measurement and averaging the two. Dead trees and snags, 

greater than five inches DBH, were measured for DBH and height. All trees with 

broken tops were measured for height. 

 

These ground data were collected on a TDS Ranger handheld computer, with 

the USFS Stand Exam software and the output was analyzed using the SAS Software 

(SAS Institute Inc., v9.2). Missing heights were estimated by re-fitting the FVS 

height-diameter equations for the Blue Mountains. The USFS published coefficients 

were used as a starting point to determine height-diameter equations specific to the 
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project site. The localized height-diameter equations were found using the PROC 

NLIN function in SAS Software (Appendix A). 

 

The USFS Stand Exam plots consist of 98 plots that were measured in the 

summer of 2008. Stand Exam plots are a nested plot design that consists of a variable 

radius plot for large trees and fixed radius plots for small trees and seedlings. Ninety-

eight stands were measured with this process in the Damon project site, then 1 plot in 

each stand was chosen at random and a professional forester from the USFS re-

measured the plot so that a 1/10
th

 acre fixed plot was used for the large trees, instead 

of the previously measured variable radius plot design. These data were analyzed 

internally by the Forest Service within their plot compiler.  

 

CVS plot data were also supplied by the USFS. The CVS data system is a 

database of permanent forest inventory plots in Region 6 (Pacific Northwest) of the 

USFS. Each plot is re-measured once every ten years.  Within this study site, CVS 

plots are on a 1.7 mile systematic grid. The plots consist of a 2.47- acre circular plot 

with 5 sub-plots. Each sub-plot is a set of 3 plots: (1) 1/5.3- acre plot, (2) 1/24- acre 

plot, and (3) 1/100- acre plot. Each plot has set criteria for which data should be 

collected and recorded, including live and dead tree measurements, down woody 

debris, shrub and understory components, and general geographical and slope position 

information of the plot (US Forest Service, 2001).  
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Data Compilation 

The total standing tree woody biomass (tons per acre) was estimated for each 

ground inventory plot. In this study, standing tree woody biomass is defined as the 

biomass of the bole, bark, and branches of all standing dead and live trees that are 

greater than or equal to 4.5 feet tall. Volume and biomass estimates were calculated 

using the USFS Forest Inventory Analysis (FIA) cubic volume, including top and 

stump, and biomass equations for the Blue Mountains (Appendix B). All results found 

in this study assume that the USFS FIA equations are correct and that all assumptions 

of the volume and biomass models will therefore pertain to this research as well. 

 

LiDAR data analysis was performed with FUSION (McGaughey 2009). Using 

the batch processing tools within FUSION, the raw LiDAR data files were clipped to 

each individual ground inventory plot and attributes such as a digital elevation model 

(DEM), height percentiles, and their variances were obtained. Additionally, using the 

GridMetrics batch processing tool these same estimates were obtained for all other 

areas within the project level that did not have ground inventory data. The percent 

cover, percent slope, aspect, and elevation of each plot were found using the LiDAR 

derived DEM and analyzed with the Spatial Analyst Extension within ArcGIS (ESRI 

ArcGIS, 2010). 

 

Landsat Thematic Mapper (TM) data was downloaded from the United States 

Geological Survey Global Visualization (GloVis) website for the entire project data. 
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All of the seven bands were brought into ArcGIS and the normalized difference 

vegetation index (ndvi) was determined using bands three and four. 

 

Climate data from the DAYMET website (Thornton 2003) was downloaded 

for the entire project data. Variables of interest consisted of: average daily maximum 

temperature, average daily minimum temperature, average temperature, number of 

growing degree days, number of frost days, and total precipitation. All variables were 

merged into one large table on a 20x20 meter pixel grid using Hawth’s Tools (Beyer 

2004) and the SurfaceSpot command line function in ArcGIS. Additionally, each of 

the ground inventory plots was added as a separate row to the table. 

 

Statistical Analysis 

There are multiple methods in determining which explanatory variables should 

be used in running the nearest neighbor models (Latifi et al. 2010 and Goerndt et al. 

2010). For this study, explanatory variables were determined for the nearest neighbor 

imputations and geographic weighted regression, by implementing a stepwise 

regression technique, as outlined by Goerndt et al. (2010), using the regsubsets() tool 

within the leaps() R-package (R Development Core Team, 2011). This tool returns the 

best fitting linear model, based on the independent variables that are determined using 

the Bayesian information criteria (BIC).  
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Using the eight independent variables found by the best fitting linear model, a 

geographic weighted regression (GWR) model was fit using the gwr() tool within the 

spgwr() R-package.  Before a back transformation of the natural log biomass estimate 

was performed, a bias-correction factor of 0.5 times the mean square error was added 

to the estimates (Baskerville 1972, Goerndt et al. 2010). Most similar neighbor 

(MSN), gradient nearest neighbor (GNN), k-nearest neighbor (k-MSN), and random 

forest (RF) were performed using the yai() and impute() functions within the yaImpute 

R-package. 

 

The accuracy of each model was assessed using the 116 plots located within 

the Damon project site and measured by calculating the root mean square error 

(RMSE) and bias using a leave one out cross-validation, with the following equations: 

                
         

  
   

 
,            (1) 

 

      
         

 
   

 
,        (2) 

where Yi is the observed value,   I is the imputed estimate, and n is the sample 

size (number of plots). 

 

Results and Discussion 

The best linear model, for estimating biomass (tons per acre) on a plot included 

the following explanatory variables: the minimum value from the LiDAR height 
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percentile profile (Min_Elev), 80
th

 percentile value of the height profile from the 

LiDAR data (P80), the longitudinal location of the plot (UTM_Y), the reflective 

property value of Landsat TM band 2 (LandsatB2), normalized difference vegetation 

index (ndvi), 18-year average daily minimum temperature (MinTemp), 18-year 

average of the number of growing degree days (DegDay), and the 18-year average of 

the annual precipitation (TotPrecip). The results of this linear model are summarized 

in Table 2.  

 

Table 2: Coefficients and standard errors for linear regression model for ln(biomass) 

in tons per acre. 

Variable Coefficient SE

Intercept 1115 154Minimum value from the 

LiDAR height percentile 

profile -0.6847 0.2353

80th percentile value from 

the LiDAR height profile 0.0525 0.0165

UTM northing -0.0003 0.0000

Reflective property of 

Landsat TM band 2 -0.1705 0.0411

Normalized Difference 

Vegetation Index -6.382 1.359

18 year average of the daily 

minimum temperature 5.052 0.2276

18 year average of the 

number of growing degree 

days 0.0329 0.0049

18 year average of the 

annual precipitation 1.231 0.1741  

Basal area per acre was used as a second response variable due to the GNN and 

random forest methods needing two y-variables to work properly. The best fitting 
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linear model, for estimating basal area per acre included the following variables: the 

standard deviation of all LiDAR returns on the plot (StdDev), the 95
th

 percentile value 

of the height profile from the LiDAR data (P95), and the reflective property value 

from Landsat TM band 5 (LandsatB5). The results from this linear model are 

summarized in Table 3. 

 

Table 3: Coefficient and standard errors for linear regression model for basal area (ft
2
 

per acre) 

Variable Coefficient SE

Intercept 50.12 22.32

Standard deviation of 

all LiDAR returns on 

the plot

-27.79 5.212

95th percentile value 

from the LiDAR 

height profile

11.88 1.634

Reflective property 

of Landsat TM band 5
-0.7082 0.1908

 

 

The inventory plots varied in cover type, from non-forest meadows, to highly 

dense pine forests. Biomass measured on the inventory plots ranged from zero tons per 

acre to 103.7 tons per acre, with a standard deviation of 15.9 tons per acre. The basal 

area of the inventory plots ranged from zero square feet per acre to 248.7 square feet 

per acre, with a standard deviation of 55.6 square feet per acre (Table 4).
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Table 4: Basic statistics of explanatory and response variables
1 

Minimum 1.00 0.00 4,882,625.7 23.0 0.2 -4.2 1,895.7 46.2

Maximum 4.42 33.9 4,901,661.6 39.0 0.7 -2.2 2,541.2 64.5

Mean 1.14 14.5 4,890,903.5 27.8 0.4 -2.9 2,298.9 54.0

Median 1.02 14.8 4,888,069.0 27.0 0.4 -2.8 2,312.5 53.9

Standard 

Deviation 0.38 6.34 6,759.8 3.5 0.1 0.5 168.0 4.2

Minimum 0.0 0.0 0.0 0.0 47.0

Maximum 103.7 248.7 13.6 42.6 134.0

Mean 8.9 79.3 4.7 18.2 80.0

Median 2.9 77.1 4.4 18.2 75.0

Standard 

Deviation 15.9 55.6 2.3 7.7 19.8

LandsatB5  

µm

StdDev 

meters

P95 

meters

Biomass 

tons per 

acre

units

Basal Area 

square 

feet per 

acre

Biomass (tons per acre) Explanatory variables

Basal Area Explanatory Variables

units
Min_Elev 

meters

P80 

meters
UTM_Y

LandsatB2 

µm
ndvi

MinTemp 

celsius

DegDay 

degree 

days

TotPrecip 

cm

 

1
Min_Elev = Minimum value of the LiDAR percentile height profile. P80 = 80

th
 percentile of the LiDAR height profile. UTM_Y = UTM 

northing coordinate. LandsatB2 = reflective property of Landsat TM band 2. Ndvi = normalized difference vegetation index. MinTemp = 18 

year average of the minimum temperature. DegDay = 18 year average of the number of degree days. TotPrecip = 18 year average of the annual 

precipitation. StdDev = standard deviation of all LiDAR values on the plot. P95 = 95
th

 percentile of the LiDAR height profile. LandsatB5 = 

reflective property of Landsat TM band 5.
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Nearest neighbor imputations rely on explanatory variables being correlated 

with the response variables. Thus, the higher the correlation coefficient the better the 

imputation model should perform. The highest correlation between the predictor 

variables and biomass per acre comes from the LiDAR derived P80 variable, a 

correlation coefficient of 0.44 (Table 5). 
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Table 5: Correlation coefficients of biomass vs. selected predictor variables
2 

ln_Biomass ln_BA Min_Elev P80 UTM_Y LandsatB2 ndvi MinTemp DegDay

ln_BA 0.4339

Min_Elev -0.2310 -0.0870

P80 0.4368 0.5303 -0.0827

UTM_Y -0.3135 -0.1858 0.1243 -0.2442

LandsatB2 -0.3320 -0.4832 0.1873 -0.5834 0.4484

ndvi -0.0516 0.1673 -0.0568 0.3494 -0.0614 -0.5555

MinTemp 0.0321 -0.0374 0.2089 -0.0473 0.4424 0.2309 -0.2012

DegDay -0.1544 -0.0488 0.1485 -0.1336 0.4563 0.1331 -0.1158 0.5835

TotPrecip 0.1158 -0.0064 -0.1164 0.0742 -0.1848 0.0158 0.1085 -0.4904 -0.9529  

 

 

 

 

 

 

 

 

 

 

 

2
Min_Elev = Minimum value of the LiDAR percentile height profile. P80 = 80

th
 percentile of the LiDAR height 

profile. UTM_Y = UTM northing coordinate. LandsatB2 = reflective property of Landsat TM band 2. Ndvi = 

normalized difference vegetation index. MinTemp = 18 year average of the minimum temperature. DegDay = 18 year 

average of the number of degree days. TotPrecip = 18 year average of the annual precipitation.
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The highest coefficient in the basal area prediction methods was the P95 

variable, correlation coefficient of 0.69 (Table 6).  

Table 6: Correlation Coefficients of basal area vs. selected predictor variables 

Biomass 

per acre

Basal area 

per acre

Standard 

Deviation of 

LiDAR returns

95th percentile 

value of LiDAR 

height profile

Basal area per acre 0.4372

Standard Deviation 

of LiDAR returns 0.1691 0.5749

95th percentile 

value of LiDAR 

height profile 0.1883 0.6870 0.9651

Reflective 

property of 

Landsat TM band 5 -0.2282 -0.6225 -0.4757 -0.5477  

 

The RMSE and bias for the nearest neighbor imputations and regression for 

biomass (tons per acre) and basal area (in square feet per acre) models are reported in 

Tables 6 and 7, respectively.  
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Table 7: RMSE and bias for estimating biomass (tons/acre) by selected method 

Model RMSE Bias

0.24

-0.004

-2.41

-0.67

-0.008

-0.08

-1.87

k-MSN (k=5)

12.7

11.6

16.31

13.96

12.22

11.53

11.24

Linear regression

Geographic 

Weighted 

Regression

Gradient Nearest 

Neighbor

Most Similar 

Neighbor

Random Forest

k-MSN (k=3)

 

Table 8: RMSE and bias for estimating basal area (ft
2
/acre) by selected method 

Model RMSE Bias

0.71

0.0029

0.0082

-4.79

0.13

2.82

0.67

Linear regression 33.15

Geographic Weighted 

Regression
33.08

Gradient Nearest 

Neighbor
58.65

k-MSN (k=5) 38.62

Most Similar 

Neighbor
50.99

Random Forest 39.03

k-MSN (k=3) 39.02

 

For the biomass prediction, the k-MSN, k=5, has the lowest RMSE and least 

amount of bias. The second most accurate method consisted of the k-MSN, k=3, 
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followed by the GWR model and the RF imputation. The GNN method has the least 

amount of accuracy (Table 7).  For the basal area prediction, the GWR model has the 

lowest RMSE and the least amount of bias. The second most accurate method 

consisted of the k-MSN, k=5, followed by the k-MSN, k=3 and the random forest 

model. The GNN method, again, has the least amount of accuracy (Table 8).  

 

Possible reasons for GNN performing poorly, compared to the other models, 

consists of a very small sample size, the entire area of the project site is fairly small 

compared to previous uses of the GNN method, or the explanatory variables not being 

highly correlated with the response variables. The GWR method may be performing 

better than the non-parametric approaches due to only predicting one response 

variable, biomass. In contrast, the nearest neighbor methods are predicting both 

biomass and basal area simultaneously.  Therefore, GWR may be sufficient for 

estimating biomass per acre if that is the only variable of interest; while, the nearest 

neighbor imputations are preferred when multiple response variables of interest are 

present in the analysis. When predicting a single variable, Eskelson et. al. (2009b) also 

reported that the parametric method resulted in more accurate estimates than the non-

parametric nearest neighbor imputation methods. 

 

 

The results of this study suggest that the current method being used to 

implement forest management activities on the Malheur National Forest, MSN, may 

not be the best method to predict total standing tree biomass. A better nearest neighbor 
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model may be k-MSN or RF. Whereas, if forest managers are only interested in a 

single response variable, total standing tree biomass, GWR may be a more suitable 

model.  
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Conclusion 

If forest managers only need to predict standing tree biomass at a pixel-level, a 

GWR model may perform better than any of the non-parametric imputation methods 

(RMSE = 11.6, bias = -0.67) with predictor variables coming from LiDAR, Landsat 

TM imagery, climate data and ground forest inventory plots. If the desire is to predict 

more than one variable at a time, biomass and basal area, the k-MSN (k=5) model 

performed best (RMSE = 11.24, bias = -0.0004) of all nearest neighbor methods tested 

(GNN, MSN, k-MSN (k=3), and Random Forest). K-MSN and MSN will be further 

examined for their predictive abilities at varying geographic scales within the project 

site. Although MSN was not found to be the best performing method, it will be 

examined because it is the current model used by the USFS for forest planning 

purposes on the Malheur National Forest. 
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CHAPTER 3 – A COMPARISON OF THE SPATIAL ACCURACY OF 

SELECTED IMPUTATION METHODS 

 

Introduction 

Foresters are constantly writing forest plans to describe the activities to 

perform on a specific forest over time. When creating forest plans, foresters generally 

wish to use data that is specific to the location of their forest. Determining an estimate 

of volume or biomass can be an expensive and time-intensive task. Estimation 

methods such as the imputation methods previously discussed in Chapter 1 can assist 

foresters in determining estimates of forest attributes across their forests.  

 

The accuracy of imputed maps is important to determine the best estimate of 

woody biomass in the most cost-efficient manner. An inaccurate estimate will result in 

poor planning and can lead to anything from loss in revenue on timber sales, treating 

areas that are a lower risk of large insect and disease outbreaks than other areas, and a 

loss in public trust. An accurate imputed woody biomass estimate at a project-level 

scale can lead to better forest plans. Forestland managers can be more confident in 

using these plans and the public can be ensured that forest managers have the proper 

tools to manage our federal forests. Additionally, accurate biomass estimates can 

result in a forest vegetation map that forest managers can use to pinpoint smaller areas, 

compared to large regional maps, for future treatments to reduce the amount of 

potential forestland that is susceptible to insect and disease outbreaks. 
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Using LiDAR derived metrics and other remote sensing data as predictor 

variables, in this study I compare the accuracy of the best performing imputation 

method from Chapter 2 (k-MSN, k=5) and the imputation method that the Malheur 

National Forest is currently using (MSN), for estimating the amount of standing tree 

biomass across a project area on the Malheur National Forest, in Eastern Oregon, 

USA. Forest managers need to know if these methods generate accurate results of 

imputing forest biomass at the project level (<50,000 acres), in order to write forest 

plans for their management areas and even a specific district on a forest. The selected 

methods were assessed over six different scale samples (5,000, 10,000, 20,000, 

30,000, 40,000, and 50,000 acres) to determine if one method performed better than 

the other based on the size of the sample area.  
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Materials and Methods 

Project Site 

The project site for this study consists of the Camp Creek LiDAR project site 

on the Malheur National Forest, located in the Blue Mountains of eastern Oregon 

(Figure 1). The Camp Creek project site comprises of 106,600 acres.  

 

 

Aerial LiDAR Data 

The LiDAR data were collected in August 2008 and provided by Watershed 

Sciences, Inc., during “leaf-off” conditions.  

 

The LiDAR acquisition used a Leica ALS50 Phase II laser mounted on a 

Cessna Caravan 208B. The scan angle was ±14° from nadir with a pulse rate designed 

to obtain an average number of pulses emitted by the laser of ≥4 points per square 

meter. The Leica ALS50 Phase II laser system is designed for up to four range 

measurements per pulse, and all laser returns were processed for the dataset. The 

Camp Creek dataset had an average pulse density of 8 points per square meter. 

 

Ground Data 

Ground data for this study were collected within the Camp Creek site 

following the same protocols as those described in Chapter two within the Damon site. 

Previously measured USFS CVS plots were grown forward in FVS to 2009 and 

additional CLUS plots were measured during the summer of 2009 (Table 9). 
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Table 9: Number of Plots in Camp Creek Site 

Source Number of Plots

USFS Current 

Vegetation System 53

Summer 2009 20  

 

Data Compilation 

The total standing tree biomass (tons per acre) was estimated for each ground 

inventory plot using the same methods as described in chapter two. Volume and 

biomass estimates were calculated using the USFS Forest Inventory Analysis (FIA) 

cubic volume, including top and stump, and biomass equations for the Blue Mountains 

(Appendix B). All results found in this study assume that the USFS FIA equations are 

correct and all assumptions of the volume and biomass models will therefore pertain to 

this research as well. 

 

LiDAR data analysis was performed with FUSION (McGaughey 2009), as 

described in chapter two. Landsat Thematic Mapper (TM) was downloaded from 

GloVis and climate data was downloaded from the DAYMET website.  

 

Creation of Scale Samples 

Within ArcGIS a random sample of 50 pixels was taken six times, once for 

each of the six scale samples. For each of the six samples, each pixel was buffered 

according to a predetermined scale size (e.g. a specific pixel that was selected in the 

5,000 acre scale sample was buffered in ArcGIS so that it had a 5,000 acre circle 
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around that specific pixel. Additionally, a 10,000 acre buffer was created for the 

10,000 acre samples, 20,000 acre buffers for the 20,000 acre samples, 30,000 acre 

buffers for the 30,000 acre samples, 40,000 acre buffers for the 40,000 acre samples, 

and 50,000 acre buffers for the 50,000 acre samples). For each buffered area that fell 

across the edge of the project area, the buffered area was split along the project area 

boundary and moved back into the project area directly across from the originally 

randomly selected pixel. Each pixel within a buffered area was then selected and all 

the LiDAR metrics, satellite metrics, and climate metrics were exported for each pixel 

in the buffered area. This created a list of pixels with each of the explanatory variables 

that were chosen in the models from Chapter one. Each ground plot was then selected 

within each of the previously formed buffered areas and merged together with the 

pixels with all the explanatory variables. This resulted in 300 tables, 50 samples of 

each of the six scale samples, which would serve as the input values for the imputation 

runs.  

 

Statistical Analysis 

The nearest neighbor imputation methods were run using the same methods 

and variables as described in chapter two. The MSN imputation method was used 

because it is the current imputation used by the Malheur National Forest for imputing 

stand variables to write forest plans. The k-MSN (k=5) imputation method was used 

because it was the best performing method found in chapter two.  
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Each of the 300 scale sample tables were brought into Microsoft Access® and 

each scale sample was merged into one large table, keeping track of the original 

randomly selected pixel as the sample number, with one row in the table representing 

a single imputed pixel. 

 

The accuracy of each method was assessed using the base run as the observed 

values and the imputed runs as the predicted values. The base run is defined as using 

all plots to impute all pixels within the project site. The root mean square difference 

(RMSD) and bias were calculated to compare the accuracy of the two imputation 

methods at the scale sample. The RMSD and bias were calculated on each of the 

individual buffered areas and then the average RMSD and bias were determined for 

each scale size, on each of the two imputation methods.  The RMSD (Equation 3) and 

bias (Equation 4) were calculated using the following: 

               
         

  
   

 
,            (3) 

 

      
         

 
   

 
,        (4) 

where Yi is the base run value,   I is the imputed estimate from the scale 

sample, and n is the sample size (number of pixels within the specific scale size). 
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Results and Discussion 

The best linear model from Chapter 2, for estimating biomass (tons per acre) 

on a plot included the following explanatory variables: the minimum value from the 

LiDAR height percentile profile (Min_Elev), 80
th

 percentile value of the height profile 

from the LiDAR data (P80), the longitudinal location of the plot (UTM_Y), the 

reflective property value of Landsat TM band 2 (LandsatB2), Normalized Difference 

Vegetation Index (ndvi), 18-year average daily minimum temperature (MinTemp), 18-

year average of the number of growing degree days (DegDay), and the 18-year 

average of the annual precipitation (TotPrecip). However, for this analysis, the 

Min_Elev and UTM_Y variables were removed due to the range of values not 

covering a large enough gradient in values to be substantially different from one 

another.  

 

The inventory plots varied in cover type, from non-forest meadows, to highly 

dense pine forests and mixed conifer forests. Biomass measured on the inventory plots 

ranged from zero tons per acre to 150.2 tons per acre, with a standard deviation of 28.1 

tons per acre. The basal area of the inventory plots ranged from zero square feet per 

acre to 295.6 square feet per acre, with a standard deviation of 49.6 square feet per 

acre (Table 10). 
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Table 10: Summary Statistics of Explanatory and Response Variables
3 

LandsatB2 

(µm) ndvi

Min Temp 

(Celsius) DegDay

TotPrecip 

(cm)

P80 

(meters)

Tons Biomass 

per acre

Basal Area square 

feet per acre

Minimum 20.0 0.2 -5.2 1518.3 52.5 8.2 0.0 0.0

Maximum 34.0 0.6 -1.3 2702.3 98.9 4836.3 150.2 295.6

Mean 25.5 0.4 -2.5 2329.9 65.8 92.4 47.9 104.1

Median 25.0 0.5 -2.4 2387.6 63.3 56.1 44.1 101.9

Standard 

Deviation 2.9 0.1 0.8 247.7 9.7 414.9 28.1 49.6

 

 

 

 

 

 

 

 

3
LandsatB2 = reflective property of Landsat TM band 2. Ndvi = normalized difference vegetation index. MinTemp = 

18 year average of the minimum temperature. DegDay = 18 year average of the number of degree days. TotPrecip = 18 

year average of the annual precipitation. P80 = 80
th

 percentile of the LiDAR height profile. 
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The results for the nearest neighbor imputations for biomass (tons per acre) for 

each of the six scale samples, while imputing biomass and basal area per acre, are 

reported in table 11.  
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Table 11: RMSD and bias for estimating biomass (tons/acre) by selected scale size 

Scale Size MSN RMSD k-MSN RMSD MSN Bias k-MSN Bias

-4.2-2.6

0.1 -2.3

3.22.8

-14.0 -0.5

-0.9-8.9

-3.3 -3.0

5,000 36.1 36.7

10,000 36.1 36.9

20,000 34.3 34.7

30,000 33.0 33.3

40,000 32.0 33.0

50,000 40.0 38.7
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Based on the RMSD, the MSN imputation method resulted in more accurate 

estimates of tons of biomass per acre than k-MSN (k=5) for all but the 50,000 acre 

scale sample (smaller RMSD). The smaller scale samples have slightly less bias for k-

MSN, with MSN having less bias than k-MSN for the 30,000 and larger scale 

samples. These results suggest that MSN, the current imputation method being used 

by the Malheur National Forest, is slightly more accurate than k-MSN for smaller 

planning level scales (<50,000 acres). The k-MSN imputation method may be more 

accurate when creating biomass estimates for larger scales (50,000 acres). 

 

A possible reason for k-MSN predicting more accurate results of biomass per 

acre at the largest scale sample is due to a larger sample size of plots being available 

for selection. Because the k-MSN method is averaging the 5 most similar plots to a 

given pixel, we would expect a lower average as we include more plots, which occurs 

as we increase the scale size. 

 

Although the results suggest that MSN predicts the amount of standing tree 

biomass per acre slightly more accurately than the k-MSN method at smaller scales, 

we cannot say for sure that these results are conclusive and actually result in different 

estimates. This is due to the potential for multiple sources of error within the methods: 

different plot sizes, different plot shapes, and the error in the regression models used 

to measure biomass on a specific plot can all lead to various amounts of error in both 

estimating the amount of biomass on a specific plot and mapping the amount of 
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biomass across the project site. For example, the USFS CVS plots are circular forest 

inventory plots; however, the pixels imputed across the project site are square. This 

can result in a mapping registration error that is difficult to measure. 
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Conclusion 

The results of this study suggest that MSN is a slightly more accurate 

imputation method than k-MSN (k=5) for smaller scales (<50,000 acres); however, 

both MSN and k-MSN (k-5) imputation methods result in unbiased estimates and 

therefore we cannot say conclusively that one method is better than the other. This 

suggests that the method the Malheur National Forest is currently using is just as 

accurate as the k-MSN (k=5) method when imputing the amount of biomass per acre 

across the Camp Creek project site for each tenth-acre pixel across various sampled 

scale sizes (<50,000 acres).  
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CHAPTER 4 – GENERAL CONCLUSION 

This study suggests that depending on what forest managers want to know 

about their forest, various imputation methods can be used. If a forest manager would 

like to know just one piece of information, a non-parametric method, such as GWR, 

could be used in a cost-effective way to determine the amount of woody biomass over 

an approximately 20,000 acre area. However, if multiple forest inventory variables are 

desired, a forest manager may use the k-MSN or MSN imputation method to predict 

woody biomass and basal area at a project level scale (<50,000 acres), on the Malheur 

National Forest. These results could be beneficial to the Malheur National Forest in 

future forest plans due to the recently opened biomass facility that the Malheur 

Lumber Company opened in December of 2010. Using maps generated from these 

imputation methods could help to locate areas with high amounts of smaller timber 

that is more susceptible to insect or disease outbreaks and allow forest managers to 

complete thinning treatments to increase the health of these forests. This study also 

suggests that the use of LiDAR data as an explanatory variable in a regression model 

or nearest neighbor imputation method can increase the accuracy of estimated biomass 

per acre. 

 

In the second chapter, I saw that k-MSN (k=5) and GWR imputed the most 

accurate, and unbiased, estimates of woody biomass in a pine dominated landscape 

that was less than 20,000 acres. This suggests that, for this study, if a forest manager 

has a relatively small area of land, a cost efficient way to predict multiple forest 
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inventory variables would be the k-MSN (k=5) imputation method and a cost efficient 

way to predict just the amount of woody biomass would be the use of GWR. The 

results for all tested methods resulted in unbiased estimates of woody biomass and 

basal area and relatively minor differences in the amount of accuracy between the 

various methods.  

 

In the third chapter we examined a specific example of the best performing 

imputation method from chapter two and the currently used imputation method to 

predict multiple forest inventory variables on the Malheur National Forest.  The results 

of this portion of the study suggest that MSN results in slightly more accurate results 

for smaller scales (<50,000 acres) when imputing biomass per acre and basal area per 

acre. However, at the 50,000 acre scale the k-MSN imputation method yielded more 

accurate estimates of biomass per acre. Once again, as in the first part of the analysis, 

all imputed results were determined to be unbiased and therefore we cannot say for 

sure that one method will guarantee a more accurate prediction of biomass per acre. 

 

This suggests that, although the results in the second chapter within mostly 

pine dominated stands were unbiased and accurate; a blanket imputation method may 

not be suitable for areas of various forest types. The second chapter and third chapter 

results contradict each other somewhat. In chapter two I saw that k-MSN (k=5) had 

predicted biomass per acre more accurately than MSN. However, in chapter three I 

saw that for the smaller scales, MSN resulted in slightly more accurate results than k-
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MSN. The forest type in the Damon site, used in chapter two, is dominated by pine 

stands, whereas the forest type in the Camp Creek site, used in chapter three, ranges 

from pine stands to mixed conifer, true fir stands.  

Future studies could examine how imputation methods perform in different 

forest types. Whether one imputation method results in more accurate results in a 

mixed conifer, pine, or Westside Douglas-fir forest type could help land managers 

determine the best imputation method for their specific forest. This could also help to 

determine if large scale, regional analyses using a single imputation method are the 

best alternative for land managers. Additional studies could also inspect how the 

sample size of reference plots affects the results of selected imputation methods. I 

would predict that a larger sample size of reference plots could result in more accurate 

estimates of biomass per acre. However, as the number of ground plots measured 

increases, so does cost. Determining the most cost efficient number of ground plots to 

serve as reference plots in these imputation methods could help to reduce the amount 

of cost a land manager needs to spend while utilizing LiDAR data. Other future 

studies could examine how selected imputation methods perform based on imputing 

pixels versus imputing stand level forest variables. These future studies could assist 

land managers of the Malheur National Forest in determining areas of high amounts of 

small woody biomass that could be more susceptible to various insect and disease 

outbreaks and help to provide a regular supply of biomass to the Malheur Logging 

Company biomass facility in John Day, Oregon.   
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Appendix A 

 

Predicted height of a tree, in feet (dbh = diameter at breast height in inches): 

Grand fir 

                                                    

 

True fir 

                                                     

 

Western juniper 

                                     ) 

 

Western larch 

                                                    

 

Lodgepole pine 

                                                    

 

Engelmann Spruce 

                                                   

 

Ponderosa pine 

                                                    

 

Douglas-fir 
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Appendix B 

 

FIA Volume and Biomass Equations – updated January 13, 2010 

 

Volume calculated is the cubic foot volume, including the top and stump 

(CVTS). DBH is measured in centimeters and HT is measured as total height of the 

tree in meters. CVTSL is the log transformed estimate of the cubic foot volume, 

including top and stump. 

 

Biomass calculations estimate the total live tree biomass of the bole, branches 

and bark. All Bark and Branch biomass equations result in Kilograms; to convert to 

tons, multiply by 0.0011023. 

 

 

 

All true fir species 

              

                                                  

                                                                

                                           

                                                 

                                                                          

  

Subalpine fir 

                                       

                                              

 

Grand fir 
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Western juniper 

                                            

                                                                            
         

             
  

                                             
   

    
              

         

             
 
 

  

                                           

                                                 

                                                                          

                                          

                                                 

 

Western larch 

 For DBH>2 inches 

               

                                                  

                                                                

                                           

                                                 

                                                                          

                                       

                                               

 

Lodgepole pine 
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Engelmann spruce 

               

                                                  

                                                                

                                           

                                                 

                                                                          

                                      

                                               

 

Ponderosa pine 

 For DBH≥5 inches 

              

                                                 

                                                                 
        

 
  

      
  

             
  

      
  

                                           

                                                 

                                                                          

                                                       

                     

                                                                                                         

 

            For DBH<5 inches 
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Douglas-fir 

             

                                               

                                                             

                                           

                                                 

                                                                          

                                       

                                               

 

Western white pine 
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Quaking aspen 

              

                                                 

                                                               

                                           

                                                 

                                                                          

                                       

                                              

 

 

 


