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The Oregon Department of Fish and Wildlife's (ODFW) Ecological Analysis

Center (EAC) is in the process of creating, from Landsat Thematic Mapper (TM)

imagery, a vegetation map of Oregon that will meet the latest standards set by the

National Gap Analysis Program. Since field verification is often expensive and by nature

intensive, ODFW wanted to determine the feasibility of using airborne videography to

help classify and validate their Oregon vegetation map. In 1993, ODFW sampled

approximately 4% of Oregon with airborne videography by flying north-south transects at

30-km intervals to be used for these purposes.

This research was designed to examine how and to what extent airborne

videography can be used for assessing the accuracy of classified satellite imagery in

vegetation mapping. An accuracy assessment strategy incorporating the ODFW airborne

videography was developed and tested on a pilot study area consisting of the Luckiamute

and Rickreall watersheds in western Oregon.

Airborne videography was found to have more potential as a classification aid

than as an accuracy assessment tool. Its limited usefulness in accuracy assessment results

primarily from the necessity to field verify any interpretation made of the videography



before it can be successfully incorporated into an accuracy. assessment methodology.

Additionally, the difficulty of obtaining a sufficient sample for all vegetation classes and

the relatively poor spatial and spectral resolution of current airborne video systems

impede its use in accuracy assessment. A field verification process combining global

positioning system (GPS) and geographic information system (GIS) technologies with a

laptop computer is outlined as a more efficient and accurate alternative to using the

ODFW airborne videography for accuracy assessment of the Oregon vegetation map.
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AIRBORNE VIDEOGRAPHY AS A CLASSIFICATION AND VALIDATION
TECHNIQUE FOR LANDSAT TM-BASED VEGETATION MAPPING

1. INTRODUCTION

1.1 Problem Definition

The Oregon Department of Fish and Wildlife's (ODFW) Ecological Analysis

Center (EAC) is in the process of creating, from Landsat Thematic Mapper (TM) satellite

imagery, a vegetation map of Oregon that will meet the latest standards set by the U. S.

Geological Survey, Biological Resources Division (GAP). At least 32 other states are

producing, or have produced, similar maps with Landsat TM data (Scott et al. 1993; M.

Jennings, University of Idaho, personal comm.). Typically, identification and labeling of

vegetation polygons has involved on-screen interpretation along with supervised and

unsupervised classification aided by ancillary vegetation data. However, limited field

verification of these Landsat TM-based maps has been conducted since field verification

is often expensive and by nature intensive. Some states such as Arizona, Texas, and the

New England Regional Program have attempted using low-altitude aerial videography to

supplement ground observations for labeling and accuracy assessment of satellite

imagery (Graham 1993; J. Finn, University of Massachusetts, personal comm.; T.

McKinney, Texas Tech University, personal comm.). In a similar manner, ODFW

desires to use airborne videography acquired in 1993 for developing and assessing the

accuracy of its vegetation map of Oregon.

As mentioned above, investigation into the use of airborne videography for the

classification and validation of satellite imagery is already underway. The Vermont

Cooperative Fish and Wildlife Unit has gone so far as to develop an air-video

interpretation station that integrates video, satellite imagery, and GIS data for land-cover

mapping in Vermont as part of the GAP (Schiagel, 1995). Schiagel's work with this air-
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video interpretation station has focused on using airborne videography in training site

selection. Besides these few examples, however, little has been written on the use of

airborne videography for classification and accuracy assessment of satellite imagery.

This research was designed to further examine how airborne videography can be

used for the classification of satellite imagery and for assessing the accuracy of classified

satellite imagery in vegetation mapping. More specifically, an accuracy assessment

strategy incorporating airborne videography was developed and tested on a pilot study

area consisting of the Luckiamute River and Rickreall Creek watersheds in the

Willamette Valley of western Oregon. The results of this research will be used by

ODFW when developing an accuracy assessment strategy for the remainder of its Landsat

TM-based vegetation map of Oregon and for determining how it might efficiently collect

and implement airborne videography in future mapping projects.

1.2 Statement of Purpose

The goal of this research is to determine how and to what extent airborne

videography can replace field checking in the classification and/or accuracy assessment

of satellite-based vegetation maps. Four objectives address this goal. The two primary

objectives are:

To use videography to determine the classification accuracy of the vegetation

map created for the pilot study area;

To assess the utility of airborne videography as a classification and validation

technique for the Landsat TM-based vegetation map of Oregon.

Additional objectives included:

To estimate the best scale of aerial videography acquisition for use in Landsat

TM vegetation mapping accuracy assessments;

To develop a suitable methodology for using airborne videography in accuracy

assessments of future Landsat TM-based vegetation maps.
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Objective 1 was accomplished by georectifying sample transects of airborne

videography, visually interpreting these images, field-verifying them, and statistically

comparing the resulting classification to the ODFW Landsat TM-based vegetation map

produced for the study area. The visually-interpreted video was also statistically

compared to the field-interpreted video. A critical evaluation of these results achieved

Objective 2. Comparing videography acquired at three different scales addressed

Objective 3. Objective 4 was completed based on the successes and problems

encountered in the accuracy assessment methodology tested in the pilot study area and on

infonnation resulting from an extensive literature review.

The following chapters will: 1) review the existing literature pertaining to

accuracy assessment techniques for maps produced from remotely sensed data, and

advancements in airborne videography technology; 2) describe the study area, and

discuss the methodology developed for assessing the use of airborne videography as an

accuracy assessment tool; 3) discuss the results of the pilot study area accuracy

assessment; and 4) make recommendations for using airborne videography in the

accuracy assessment of the ODFW Landsat TM vegetation map of Oregon and in future

mapping projects based on the findings of this research.



2. LITERATURE REViEW

An understanding of accuracy assessment techniques for vegetation mapping and

of airborne videography was needed before methodologies could be determined in this

study. A literature search was conducted in two major areas: 1) accuracy assessment

techniques for maps produced from remotely sensed data; and 2) advancements in

airborne videography technology.

2.1 Accuracy Assessment Techniques for Remotely Sensed Maps

The development of accuracy assessment techniques for land cover mapping from

remotely sensed data has been recently presented in detail by Russell G. Congalton

(1996). Therefore, the contents of this section are based on Congalton's findings except

where otherwise noted.

Congalton suggests that the history of accuracy assessment of digital remotely

sensed data can be divided into four epochs beginning around 1975. Prior to 1975, "field

checking was performed as part of the interpretation process, but no overall map

accuracy or other quantitative measure of quality was routinely produced (Congalton,

1996)." An "it looks good" mentality prevailed during the first epoch which was

characterized by no rigorous accuracy assessment being performed. The second epoch is

termed the "epoch of non-site specific assessment" because overall area totals for each

class were compared between ground estimates and the map without regard for location.

The "epoch of site specific assessment" followed this short-lived stage. A site specific

assessment compares actual ground locations to the corresponding area on the map to

produce a measure of overall accuracy. The fourth and current epoch can be termed the

"age of the error matrix." This epoch includes an evolving number of analysis

techniques based on the development of an error matrix. "An error matrix is a square

4
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array of numbers set out in rows and columns which expresses the number of sample

units (i.e., pixels, clusters of pixels, or polygons) assigned to a particular category relative

to the actual category as verified by some reference data (Congalton and Green, 1993)."

An assumption underlying the error matrix technique is that all differences

between the remotely sensed classification and the reference data are due to

classification and/or delineation error. There are, however, other potential sources of

confusion between the remotely sensed classification and the reference data that must be

considered. Possible sources of error include:

Registration differences between the reference data and the
remotely sensed map classification;
Delineation error encountered when the sites chosen for
accuracy assessment are digitized;
Data entry error when the reference data are entered into the
accuracy assessment database;
Error in interpretation and delineation of the reference data
(e.g., photointerpretation error);
Changes in land cover between the date of the remotely sensed
data and the date of the reference data (temporal error), for
example, changes due to fires, urban development or
harvesting;
Variations in classification and delineation of the reference data
due to inconsistencies in human interpretation of heterogeneous
vegetation;
Errors in the remotely sensed map classification; and
Errors in the remotely sensed map delineation (Congalton and
Green, 1993).

The first six factors are non-error classification differences that can significantly lower

the accuracy in an error matrix and make the classification (i.e., factors 7 and 8) look

worse than it actually is. Methods must be designed and incorporated to control for the

first six factors when using an error matrix approach to accuracy assessment (Congalton

and Green, 1993).

An error matrix is an effective way to represent accuracy because it allows overall

accuracy and the accuracy of each class to be determined, as well as errors of inclusion

(commission errors) and exclusion (omission errors) present in the classification. Overall
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accuracy is calculated by dividing the total correctly classified sample units by the total

number of sample units in the matrix. The accuracy of each class can be calculated

similarly; however, the total number of correctly classified sample units in a class may be

divided by either the total number of sample units for that class in the classified map or

the total number of sample units for that class in the reference data. The former is a

measure of commission error termed "users accuracy" and represents the probability that

a sample unit classified on the map actually represents that class on the ground. The

latter, termed "producers accuracy," measures omission error or the probability of a

reference sample unit being correctly classified (Story and Congalton, 1986).

Congalton states that the error matrix is also an appropriate basis for many

analytical statistical techniques, especially discrete multivariate techniques. Beginning in

1983, discrete multivariate techniques have been used for accuracy assessment of

remotely sensed data classifications by many researchers (e.g., Congalton et al., 1983;

Rosenfield and Fitzpatrick-Lins, 1986; Hudson and Ramm, 1987; Campbell, 1987;

Lillesand and Kiefer, 1994). "Discrete multivanate techniques are appropriate because

remotely sensed data are discrete rather than continuous. The data are also binomially or

multinomially distributed rather than normally distributed. Therefore, many common

normal theory statistical techniques do not apply (Congalton, 1996)."

Two popular . discrete mutivanate analytical techniques used in accuracy

assessment, after an error matrix is developed, are "MARGFIT" (Congalton Ct al., 1983)

and "KAPPA" (Cohen, 1960). MIARGFIT normalizes the matrix using an "iterative

proportional fitting procedure which forces each row and column in the matrix to sum to

one. ... In this way, differences in sample sizes used to generate the matrices are

eliminated and therefore, individual cell values within the matrix are directly

comparable. Also, because the iterative process totals the rows and columns, the

resulting normalized matrix is more indicative of the off-diagonal cell values (i.e., the

errors of omission and commission) than the original matrix (Congalton et al., 1983)."
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KAPPA analysis yields a KHAT statistic (an estimate of KAPPA) which is

another measure of agreement. The formula for computing the KHAT statistic can be

found in Bishop et al. (1975) and Congalton (1996). The benefit of KAPPA analysis is

that it provides two statistical tests of significance. First, the map classified from

remotely sensed data can be tested to see if it is significantly better than a map generated

by randomly assigning labels to areas. Second, any two matrices can be compared to

determine if they are significantly different statistically.

Despite the popularity of KAPPA analysis for accuracy assessment of image

classification, Ma and Redmond (1995) argue that the Tau coefficient is a better tool.

Like KAPPA, the Tau coefficient also measures the improvement of a classification over

a random assignment of pixels to groups. However, the Tau coefficient better adjusts

percentage agreement than Kappa, and it is easier to calculate and interpret.

None of these techniques address the recently developing concern that many

classification systems promote subjectivity when distinguishing supposed mutually

exclusive classes. Complex classification schemes, for example, may yield increased

variation in human interpretation which can have a significant impact on what is

considered correct and incorrect. In other words, the line between mutually exclusive

classes becomes fuzzier as the number of classes increases, and the chances of a sample

unit being classified the same by different researchers decreases. Using an error matrix

in these cases would help identify sources of confusion but would likely result in an

incorrect assessment of error.

New analytical techniques, some of which build on the error matrix, are being

developed to address these complexities. For example, the substitution of fuzzy set

theory for classical set theory has been suggested (Woodcock, 1996; Milliken and

Woodcock, 1996). Congalton cites Gopal and Woodcock's (1994) proposal to use fuzzy

sets to "allow for explicit recognition of the possibility that ambiguity might exist

regarding the appropriate map label for some locations on the map." A fuzzy sets
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approach would recognize "that instead of a simple system of correct (agreement) and

incorrect (disagreement) there can be a variety of responses such as: absolutely right,

good answer, acceptable, understandable but wrong, and absolutely wrong (Congalton,

1996 from Gopal and Woodcock, 1994)." A fuzzy sets approach provides significantly

more information and a better understanding of the classification error to the analyst than

does the traditional error matrix. However, it is much more complex to implement than

the traditional error matrix, and it does not result in a simple number (i.e., percentage of

accuracy) that many map users desire.

Choosing the appropriate sample size for assessing the accuracy of remotely

sensed data has been another major concern of researchers (Van Genderen and Lock,

1977; Tortura, 1978; Hay, 1979; Hord and Brooner, 1976; Rosenfield et al., 1982;

Congalton, 1988b). Most researchers, however, have used an equation based on the

binomial distribution or the normal approximation to the binomial distribution.

Congalton explains that these techniques are not appropriate for determining the sample

size when using an error matrix. Instead, an equation based on the multinomial

distribution, as suggested by Tortura (1978), should be used.

Additionally, traditional thinking about sampling usually does not apply to

remotely sensed data because of the large number of pixels in an image. "A balance

between what is statistically sound and what is practically attainable must be found

(Congalton, 1996)." Congalton has found that "a good rule of thumb seems to be

collecting a minimum of 50 samples for each vegetation or land use category in the error

matrix. This rule also tends to agree with the results of computing sample size using the

multinomial distribution (Tortura, 1978)." If the area being sampled is larger than a

million acres or the classification has more than 12 categories, the minimum number of

samples should be increased to 75 to 100 samples per category. Also, it may be desirable

to take more samples in categories of greater interest and reduce the number of samples

in categories of less interest within the objectives of the mapping project. More samples
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could also be taken in categories that show greater variability, such as uneven-aged

forests, with less samples taken in categories, such as water, that have low variability.

Sampling scheme is also a critical component of accuracy assessment in that the

samples contained in an error matrix must be representative of the study area. Many

researchers have addressed the topic of sampling schemes for accuracy assessment of

remotely sensed data (Rosenfield et al., 1982; Congalton, 1988b; Congalton, 1991;

Stehman, 1992; Stehman, 1996), but opinions about proper sampling scheme vary greatly

and "include everything from simple random sampling to stratified systematic unaligned

sampling (e.g., Hord and Brooner, 1976; Rhode, 1978; Ginevan, 1979; Fitzpatnck-Lins,

1981)." Little research, however, has been done to specifically evaluate sampling

schemes for accuracy assessment of remotely sensed data, and no clear consensus as to

the best scheme has been established.

"Congalton (1988b) performed sampling simulations on three spatially diverse

areas (forest, agriculture, and rangeland) and concluded that in all cases simple random

without replacement and stratified random sampling provided satisfactory results."

However, simple random sampling tends to under sample small but potentially important

areas unless very large sample sizes are obtained. Therefore "stratified random sampling

is recommended where a minimum number of samples are selected from each strata (i.e.,

category) (Congalton, 1996)."

Implementing any type of random sampling scheme may, however, be

"somewhat impractical because of having to collect ground information for the accuracy

assessment at random locations on the ground" which may be very difficult or impossible

to access. Some type of systematic approach would make the collection of ground

information easier. However, "results of Congalton (1988a) showed that periodicity in

the errors as measured by autocorrelation analysis could make the use of systematic

sampling risky for accuracy assessment." Therefore, Congalton suggests that some

combination of random and systematic sampling may yield the best balance between
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statistical validity and practical application. "Such a system may employ systematic

sampling to collect some assessment data early in a project while random sampling

within strata would be used after the classification is completed to assure enough samples

were collected for each category and to minimize any periodicity in the data (Congalton,

1996)."

Two factors that may potentially affect the results of an accuracy assessment and

which, therefore, must be elaborated are spatial autocorrelation, and edge and boundary

effects. Spatial autocorrelation occurs "when the presence, absence or degree of a

certain characteristic affects the presence, absence or degree of the same characteristic in

neighboring units (Congalton, 1996 from Cliff and Ord, 1973)." If an error at a given

location influences errors at nearby locations in a classification, this spatial

autocorrelation becomes significant to the accuracy assessment (Campbell, 1981).

Congalton (1988a) showed such a positive correlation, as much as 30 pixels (over 1 mile)

away, when assessing classified Landsat MSS data of an agriculture, a range, and a forest

site. Spatial autocorrelation, therefore, must be considered when selecting the sample

scheme and sample size for accuracy assessment. Most importantly, autocorrelation may

affect the assumption of sample independence in that it could cause periodicity in the

data that could affect the results of any type of systematic sample.

Edge and boundary effects result from trying "to divide a rather continuous

environment called Earth into a number of discrete categories (Congalton, 1996)." The

problem is deciding where the boundary lines should be drawn between different cover

types on the ground. As mentioned previously, this delineation becomes more difficult as

the classification scheme increases in complexity. Traditional accuracy assessment

techniques have tried to avoid the influence of boundary effects by taking samples near

the centers of polygons or at least away from the edges. However, "with the use of global

positioning systems (GPS) and the improvement in positional accuracy of individual
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pixels, methods to assess boundary issues can be developed, and incorporated into the

assessment routines (Congalton, 1996 from Chrisman, 1989; Goodchild, 1989)."

2.2 Airborne Videography as a Remote Sensing Tool

Mausel et al. (1992) established that serious interest in airborne videography as a

remote sensing tool has existed for approximately fifteen years (e.g., Manzer and Cooper,

1982; Edwards, 1982; Escobar et al., 1983; Vicek, 1983; Everitt et al., 1991). During

this time, airborne videography has been used by researchers for a variety of purposes as

demonstrated by the following examples:

Range management (Everitt and Nixon, 1985);

Wetland classification (Jennings et al., 1992);

Agricultural assessment (Everitt et al., 1991);

Vegetation mapping (Graham, 1993; Thomasson et al., 1994);

Environmental impact evaluation (Snider et al., 1994);

Natural disaster impact assessment (Doyle et al., 1994); and

Land cover / land use mapping (Limaye et al., 1994).

Recently, there has been an increasing interest in using airborne videography for

collecting ground-truth data for satellite image interpretation and post-classification

accuracy assessment (Graham, 1993; Schlagel, 1995; Slaymaker et al., 1996).

The features of airborne videography that have made it an attractive sensor for

this variety of applications are its:

low cost;
real-time or near-real-time availability of imagery for visual
assessment or computer image processing analysis;
immediate potential for digital processing on the signal;
ability to collect spectral data in very narrow bands (5 to 12 nm)
in the visible to near infrared (NW);
ability to collect spectral data in the mid-infrared (1.35 to 2.50
pm) water absorption regions; and



6) data redundancy in which images are acquired every 1/30
second producing multiple views of a target or scene (Mausel et
al., 1992).

Additionally, "because CCD [charge coupled device] sensors have higher light

sensitivity than most film, airborne videography can often be flown under low light or

hazy conditions that would be considered adverse for photography (King, 1992)."

Another advantage of videography is that location data from a global positioning

system (GPS) receiver can be recorded and matched to each video frame. Systems

incorporating this technology record the GPS time on the audio track of the video in

place of the SMPTE (Society for Motion Picture and Television Engineers) time code

signals (Graham, 1993). Often, the GPS time is placed directly on the video images as

well. A GPS data file, containing time and location, is recorded simultaneously so that

the location of the center point of each frame can be determined later.

These airborne GPS-video acquisition systems, however, are not perfect. First,

GPS typically updates on a one-second interval which results in the same location being

recorded for 30 frames (Graham, 1993). Second, aircraft shifts due to turbulence or a

low accuracy GPS can result in the recorded location being substantially different than

the actual location of the video frame's center, especially for higher altitude flights

(Bobbe et al., 1993). Assessments of these airborne GPS-video acquisition systems have

found positional errors for non-differentially corrected GPS locations as high as 148

meters (Graham, 1993) and up to 70 meters for differentially corrected GPS data

(Slaymaker et al., 1996). Wanless (1992) has developed an advanced system that

incorporates a two-axis vertical gyroscope and a servo-control motor on the camera

mount for real-time adjustment of aircraft roll and pitch. This Digital Video Geographic

(DVG) survey system has yielded 2-3 meter positional accuracy. Additionally, Thorpe

(1993) claims that 10 cm airborne GPS accuracy is possible using specialized procedures

for elimination of systematic errors.

12
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The major disadvantage of video is its relatively low resolution when compared to

film (Mausel et al., 1992; Everitt et al., 1991). Standard color video recorders have an

image resolution of 240 lines across the format field and Super-VHS (S-VHS) recorders

have 400 line resolution whereas color 35-mm slide film has potentially more than 1500

line resolution (Mausel et al., 1992; Lusch, 1988). Additionally, further image resolution

degradation may result from the interlace-effect. Standard 1/30thsecond video frames

are comprised of two interlaced 1/60thsecond fields. Because each field is acquired over

a slightly different ground area (due to the forward motion of the airplane), their lines

may overlap or there may be gaps in the terrain coverage (King, 1992; Russ, 1995).

Analysis may, therefore, have to be performed on a single field (at lower resolution)

rather than on a full frame (Meisner, 1986).

Other disadvantages of video are that the automatic gain control on most video

cameras hinders radiometric calibration (Everitt et al., 1991), and brightness values tend

to increase towards the side of the image opposite to the sun illumination direction (King,

1991). These features make temporal studies and automated classification techniques

difficult. Airborne videography, therefore, commonly has been analyzed to compare

relative spectral differences between features without attention to the absolute radiance

or reflected differences being imaged (Mausel et al., 1992). However, increasing

research efforts addressing radiometric correction and other technical questions (e.g.,

sensor noise and optical effects) in videography have shown promise (Palmer et al.,

1987; King, 1991, 1992; Ehlers et al., 1989; Edwards and Schumacher, 1989;

Gerbermann et al., 1989; Richardson et al., 1992).

A wide variety of airborne video acquisition systems, consisting of either a single

camera or multiple cameras, have been successfully implemented. Mausel et al. (1992)

and Everitt et al. (1991) describe in great detail this variety of systems and their

applications. Single color video camera systems typically have been used for basic visual

interpretation of general land-cover features. Applications using multiple recording
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systems have often implemented "digital image processing to analyze, quantify, and

classify narrow-band multispectral images, in both original and transformed data formats

(e.g., ratioing, principal components, and texture) (Mausel et al., 1992 from Everitt et al.,

1988; King and Vicek, 1990; Mausel et al., 1990; Yuan et al., 1991)."

The future of airborne videography, along with digital frame cameras, is very

promising. "The poor resolving power of videography is gradually being improved with

the development of sensors having more photosites per unit dimension, Super VHS (and

other advanced recording), higher sampling frequency digitizers, and high-resolution

digital frame cameras that are not subject to NTSC scanning constraints (King, 1992)."

Airola (1996), for example, summarizes the Grand Alliance High Definition Television

(HDTV) standards that have been proposed in the United States. While current video

frames consist of the equivalent of 268,800 pixels, systems based on the HDTV standard

will be capable of capturing frames with a resolution equivalent to 2,073,600 pixels

(1920 x 1080 pixels). High-resolution digital frame cameras will likely become a

desirable alternative to video in the near future. Such cameras capable of resolutions in

excess of 4 million pixels per frame already exist, and their images can be captured

directly into an attached computer (Airola, 1996). Mausel et al. (1992) showed that such

a system can provide imagery with resolution similar to that of 70-mm photography.



3. STUDY AREA AND METHODS

3.1 Study Area Description

The pilot study area for this research was selected by the participating researchers

and sponsors of the Oregon Biodiversity Conservation Plan for use in a variety of studies

aimed at improving livability issues in the Willamette Valley. The Luckiamute and

Rickreall watersheds (Figure 1) comprise the chosen study area. These adjacent

watersheds are located in the Willamette Valley in western Oregon. The Willamette

River forms the eastern boundaiy of the study area, and the western boundary extends

into the Coast Range. The Rickreall watershed (39,713 hectares) is entirely within Polk

county while the Luckiamute (81,482 hectares) extends south into Benton county. The

eastern portion of the study area, the valley bottom, is predominantly agriculture (mostly

grass seed fields and Christmas tree plantations) with smaller areas of white oak

woodlands and cottonwood riparian gallery. Young Douglas fir forests dominate the

western uplands land cover.

3.2 Data Collection

3.2.1 Landsat TM

The ODFW vegetation map is being created from 23 scenes of Landsat TM data

acquired from July 1991 to September 1993 which provide coverage of the entire state at

30 meter resolution. This imagery has already been rectified to the Universal Transverse

Mercator (UTM) coordinate system. From these Landsat data, ODFW created a

vegetation map of the pilot study area for this study. Additionally, they provided their

original, rectified Landsat TM bands covering the study area.
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STUDY AREA LOCATION IN OREGON

Projection: UTM
Zone: 10
Datum NAD83
Units meters

I

4931 OCON
439 5OO

4931 93N
499 SCOE

LUCKIAMUTE AND RICKREALL WATERSHEDS

LUCKIAMUTE WATERSHED

RICKREALL WATERSHED

Figure 1: Map of Luckiamute/Rickreall Study Area
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1993 ODFW VIDEO FLIGHT-LINES
IN OREGON

ODFW VIDEO FLIGHT-LINES

Figure 2: Map of ODFW Video Sampling in Oregon

Scale 1:4,480,000

Projection Lambert Conformal Conic



3.2.2 Airborne Videography

ODFW had airborne videography recorded between August 25 and September 3,

1993. Approximately 4% of Oregon was sampled by flying north-south transects at

approximately 30-km intervals (Figure 2). In areas of high vegetation diversity and

variability, transects were flown at 15 kin intervals. The video was acquired from an

airplane flying approximately 600m above the ground with a zoom camera activated

every nine seconds for five seconds. Hence, the video has coverage at two scales:

approximately 1:1,800 and 1:150 when displayed on a 25 inch diagonal television.

The video acquisition system integrated a digital color video camera, a laptop

computer, a Super VHS (S-VHS) VCR a Trimble Pathfinder GPS (Global Positioning

System), and a Horita time code generator/recorder/encoder to record real-time location

data as well as the video imagery. The Horita time code generator/recorder/encoder

recorded the GPS time onto the audio track of the video cassette and dubbed the time in a

window directly on the imagery as well. Simultaneously, GPS time and the

corresponding location were recorded once per second in a digital file on the laptop

computer. At the 1:150 scale, there are more than 18,000 reference points that are GPS

geolinked to ground coordinates. These GPS points are not differentially corrected.

Therefore, the GPS acquired geodetic measurement could be 0 to 140 meters from the

true location of each reference point (Graham 1993).

The Luckiamute and Rickreafl watersheds were chosen as the common study area

for several related studies comprising the Oregon Biodiversity Conservation Plan. This

selected study area, however, was not ideal for this study because ODFW had recorded

limited video in these watersheds. In fact, only one of the ODFW video flight-lines

intersected the Luckiamute/Rickreall watersheds study area. This flight-line runs north-

south along the eastern extents of the Coast Range within the study area. Containing

mostly Douglas fir dominated forests and recently harvested forests, this video transect
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has limited vegetation variety compared to the study area as a whole. Additionally, much

of the area captured in the video was inaccessible for ground verification due to lack of

access to private property.

For these reasons, supplemental airborne video was obtained in the study area on

August 23, 1996. Three east-west transects were flown at approximately 2,200m above

ground level using a single, fixed-lens digital video camera. The Cessna mounted color

video acquisition system differed from the ODFW system in that it did not have timed

zoom capabilities, the imagely was recorded on Hi8 media instead of S-VHS, and the

GPS locations were dubbed on the video instead of the GPS time. The resulting video is

slightly smaller-scale (approximately 1:2,400 on a 25 inch diagonal television) than the

ODFW pan video, and it contains a more representative sample of the vegetation in the

study area. Figure 3 shows the locations of the ODFW and supplemental video transects

recorded in the LuckiamutelRickreall study area.

3.3 Video Processing

Perhaps the greatest challenge of this research was the development of an

efficient methodology that permitted the video to be converted to a digital, georeferenced

format. This conversion would allow computer analysis of the imageiy within a

geographic information system (GIS).

The original proposal stated that digitally captured video frames would be

matched to the Landsat imagery using the GPS data recorded on the video and a

subsequent visual adjustment for each frame. This proposed methodology was to yield a

registration accuracy of three Landsat pixels (0 to 90 meters) for the center of each video

frame to the Landsat imagery. After capturing test video frames in digital format, it

became apparent that there were not enough identifiable features in most of the video

frames to successfully match them to the Landsat imagery. Additionally, the small areas
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captured in the individual video frames would make it difficult to identify the

corresponding ground locations for many of the frames during the ground truth portion of

the study.

The underlying problem for both of these obstacles was the small area contained

in each video frame. Therefore, it was decided to digitally capture overlapping video

frames and mosaic them together using a computer software program. The resulting

video frame mosaics provided images containing larger areas that could be georegistered

to greater accuracy than the originally proposed method and that could be more easily

field-checked. The following section details the procedures used to digitally capture and

enhance the video, mosaic the captured video images, and georeference the resulting

mosaics.

3.3.1 Video Frame Capture and Enhancement

Video imagery extending slightly beyond the study area boundary was digitally

captured using the stock frame-grabber on a UNIX-based Silicon Graphics Indigo (SGI)

workstation and IRIS Capture 1.3 software. Several available PC-based frame-grabbers

were tested, but none of these yielded near the image quality provided by the SGI system.

A S-VHS VCR was attached to the SGI system when capturing the ODFW video, and a

Hi-8 camera in playback mode was attached to frame-grab the supplemental

videography. From the ODFW video, 120 Overlapping frames were captured at the pan

scale and 60 (one every zoom cycle) non-overlapping frames at full zoom. One-hundred

twenty-four overlapping frames were captured from the supplemental video. The

resulting images were each 640 x 480 pixels with 24-bit color resolution.

In general, the digitally captured video images appeared washed-out. To help

compensate for this effect, the Brightness filter in SGI Image Works 2.1 software was

applied to each image at the 0.8 setting (Figure 4). These enhanced images were saved in

Tagged Image File Format (TIfF) and then ported to a PC for subsequent processing.
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BEFORE BRIGHTNESS FILTER

AFTER BRIGHTNESS FILTER

Figure 4: Sample Video Image Before and After Brightness Filter
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SAMPLE ODFW PAN-SCALE VIDEO

Figure 5: Comparison of ODFW and Supplemental Video
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SAMPLE AREA AFTER DE-INTERLACE FILTER

Figure 6: Sample Video Frame Before and After De-Interlace Filter
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At this point, it is important to note that the ODFW video had significantly better

radiometric resolution than did the supplemental video (Figure 5). This difference was

most likely caused by the variation in flight altitude used by each acquisition system

more than any other factor. The supplemental video acquisition system was flown at

approximately 2200m compared to the 600m altitude used by ODFW. This substantial

increase in atmospheric depth between the sensor and earth during the supplemental

flight resulted in increased atmospheric scattering, as evidenced by the decreased

radiometric resolution of the resulting video.

One other factor that degraded image quality in both the ODFW and the

supplemental video was the interlace effect. King (1992), Russ (1995), and Meisner

(1986) discussed this potential problem and posed as a solution using a single field in

place of a whole frame for analysis. Instead of using single fields for this research, whole

frames were captured, and the De-interlace filter in Adobe Photoshop 3.0 software was

applied to smooth-out one of the fields. This filter replaces the unwanted field with an

interpolated field based on the pixel values of the remaining original field. Figure 6

shows a sample video frame before and after the De-interlace filter application. Most of

the images showed a similar, significant increase in sharpness.

3.3.2 Mosaic Video Frames

The ODFW pan-scale and the supplemental video frames were joined to create

mosaics (Figure 7) using Adobe Photoshop 3.0. This software allowed sequentially

captured digital video frames to be imported as 24-bit TIFF files onto separate layers

within one image and then moved, individually or together, as desired. Overlapping

edges were then trimmed as much as possible to help eliminate the distortion caused by

the video camera optics, which increased toward the edges. This trimming was quickly

achieved by simply boxing the undesired areas and deleting them. Next, a common
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point in the center of two video frames' adjacent edges would be found, and the two

images would be aligned to that point.

Usually, distortion in the images, from optics and/or aircraft shifts, prohibits the

outward extents of the adjacent edges from matching. Therefore, these extents were

selected and stretched on both images, splitting the difference of the misalignment

between the two images, until the edges matched. Adobe Photoshop contains several

distortion filters which allowed this controlled edge alignment. These filters use a

resampling algorithm which permit one to distort the selected area more toward the edge

and less toward the center of the image. This approach is very reasonable since it

basically removes some of the distortion caused by the video acquisition system by

resampling the most distorted areas. Limaye et al. (1994) used AutoGCP, a pattern-

recognition software program for locating common points in adjacent images, to perform

a similar but more automated mosaic process on video of urban areas. However, this

software does not work well in forested or agricultural areas (Limaye, personal comm),

so it was not tried in this study.

Between six and eight contiguous video frames were combined to form each

mosaic, and three to fifteen of these mosaics comprise a flight-line. The choice of six to

eight video frames per mosaic permitted the length of each mosaic to be printed within

the constraints of a 36-inch wide plotter at the default 72 pixels per inch (ppi) of the

digitally captured video. These 36-inch strips were easily taken into the field, and the

larger area contained in these mosaics made it easier to find the corresponding features in

the video when field verifying the classification. Additionally, these large areas allowed

the mosaics to be efficiently georectified as described in the next section.

3.3.3 Georeference Video Mosaics

Thirty-three mosaics were created from the video captured in and slightly beyond

the Luckiamute/Rickreall study area. A preliminary field reconnaissance was conducted
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of the areas represented in these mosaics. Only eighteen of these mosaics, six from the

ODFW and twelve from the supplemental video, fell within the study area and also

contained a majority of area that was ground accessible for subsequent field verification.

Therefore, only these eighteen mosaics were selected for rectification to the Landsat

imagery which had already been georeferenced to the TJTM coordinate system. Portions

of the other fifteen mosaics, within and just beyond the study area, were used to develop

an interpretation key. This will be discussed in a subsequent section.

Because each mosaic contains a much larger area than the individual video

frames, corresponding ground control points (GCPs) from the Landsat imagery could be

more easily identified in these images. In fact, there were enough identifiable features to

successfully georegister each mosaic to the Landsat imagery using an affine

transformation. This procedure involves fitting polynomial equations to control point

data using least-squares criteria to model the image distortion corrections (see Jensen,

1986; Richards, 1993). In addition to being a more practical approach to registering the

video to the Landsat imagery, this technique helped remove distortions, caused by the

camera lens and variations in aircraft attitude and altitude, that were present in the video.

It also permitted an estimation of accuracy for each transformation by means of the

calculation of a root mean square (RMS) error. A detailed description of the

georectification process follows.

Idrisi for Windows software was used to georectify the eighteen mosaics. Since

Idrisi only supports up to 8-bit images, each 24-bit mosaic was first split into three 8-bit

images, a red, green, and blue band, using Adobe Photoshop. These bands were saved in

RAW binary format and then imported into Idrisi where they were rectified individually

using the Resample module.

Corresponding GCPs were found in a UTIvI-georeferenced false-color composite

image of the study area, created from Landsat TM bands 2, 3, and 4 (Figure 8), and in a

simultaneously displayed green band of each video mosaic. The green band was selected
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Figure 8: Landsat TM False-Color Composite Map of Study Area



30

because features (e.g., houses, road intersections, and corners of fields) were easier to

visually identify in this band than in the red or blue bands. Between 14 and 22 GCPs,

scattered throughout and as far towards the edges as possible, were located in each

mosaic, and between 11 and 18 GCPs were retained to develop the polynomial equation

used in each transformation. This omission of control points, those that display

excessively high residuals when tested in the derived polynomial equation, is a common

practice as long as enough control points are preserved to successfully model the

transformation (see Jensen, 1986; Richards, 1993). The acceptable minimum number of

control points is two to three times the mathematical minimum for the type of equation

used, assuming that these control points are well scattered throughout the image. An

acceptable minimum number of control points for linear (first order) and quadratic

(second order) equations, therefore, is 6 and 12, respectively (Eastman, 1992).

Since it is best to use the lowest order of equation that provides a reasonable fit of

the GCPs, a quadratic equation was used only when a linear equation, even after

removing several high-residual GCPs, resulted in a very high RMS error. The need for

the use of a quadratic equation in all of the ODFW video mosaics resulted from excessive

lens distortion (due to a wider angle lens) and the highly varied elevations in the Coast

Range mountains recorded in the ODFW video transect. In three of the supplemental

video mosaics, the quadratic equation was applied to remove distortions caused when the

aircraft was beginning or ending slightly banked turns. Cell values in all transformed

images were interpolated using a nearest neighbor interpolation whereby the value of the

closest input cell was transferred to the position of the output cell.

The final georectified video mosaic bands were resampled to two resolutions.

The transformed cell size was kept as close as possible to the average cell size in the

input images to preserve image quality and to still be able to print the length of each

mosaic within the 36 inch width of the available plotter. Additionally, an odd-sized cell

was not desired. The solution was to resample the ODFW video to 1.5 meter per side
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Projection: UTM
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Units: meters

Figure 9: Sample Georectified Mosaic of ODFW Video Frames
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(2.25m2) cells and the supplemental video to 2 meter per. side (4m2) cells. When

subsequently printed on the plotter at 72ppi, the resulting images were slightly smaller

than the non-rectified mosaics at scales of 1:4,250 and 1:5,670, respectively. Prior to

printing, however, all three georectified bands of each mosaic had to be exported back to

Adobe Photoshop as RAW images and recombined into 24-bit true color images.

Additionally, at least four tic marks were determined in each mosaic using Idrisi for

Windows and then located on the final mosaics for use in subsequent processing. Figure

9 shows the same mosaic from Figure 7 after the georectification process.

Table 1: Summary of Polynomial Transformations for Georectified Mosaics

Table 1 summarizes the transformations used to rectify the three bands of each

mosaic. The resulting RMS errors suggest that any point on a georegistered, mosaiced

image using this methodology will match the Landsat imagery to within two Landsat

pixels (0 to 60 meters) and in many cases one pixel (0 to 30 meters). Subsequent

observations when joining adjacent mosaics (described later), however, suggest that the

error near the edges of some mosaics may approach 90 meters. This is not surprising

given that it was impossible to identify control points along many of the mosaics' edges.

MOSAIC NAME
POLYNOMIAL

EQUATION
TYPE

NUMBER OF
CONTROL POINTS

IDENTIFIED

- NUMBER OF
CONTROL POINTS

RETAINED

ESTIMATED
RMS (pixels)

ESTIMATED
RMS (meters)

FINAL IMAGE
RESOLUTION

(meters)
ODFW-i quadratic 18 16 11.698 16.38 1.5

ODFW-2 quadratic 19 14 13.848 19.39 1.5

ODFW-3 quadratic 19 18 14.863 20.81 1.5

ODFW-4 quadratic 18 15 10.633 14.89 1.5

ODFW-5 quadratic 17 14 15.942 22.32 1.5

ODFW-6 quadratic 19 16 11.596 1623 1.5

SUPPLEMENTAL-i linear 17 14 12.327 21.57 2

SUPPLEMENTAL-2 linear 16 14 12.147 21.26 2

SUPPLEMEftJTAL-3 linear 18 14 9.65 16.89 2

SUPPLEMENTAL-4 linear 18 16 8.157 14.28 2

SUPPLEMENTAL-5 linear 20 16 7.107 12.44 2

SUPPLEMENTAL-6 linear 20 16 8.556 14.97 2

SUPPLEMENTAL-7 linear 20 17 8.6 15.05 2

SUPPLEMENTAL-B quadratic 22 20 10.843 18.98 2

SUPPLEMENTAL-9 quadratic 19 18 8.58 15.02 2

SUPPLEMENTAL-b quadratic 19 17 10.37 18.15 2

SUPPLEMENTAL-li linear 15 12 10.017 17.53 2
SUPPLEMEP.JTAL-12 linear 15 11 14.909 26.09 2
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The originally proposed methodology aimed for a match of within three Landsat pixels (0

to 90 meters) for the center point only of each video frame and would not have removed

any distortion in the video. Location inaccuracies toward the edges of each frame using

that method would likely be much greater than 90 meters. Therefore, the resulting level

of accuracy was considered acceptable and a substantial improvement over the originally

proposed visual-adjustment method.

3.4 Classification Systems

Two vegetation classification systems were used in this study. The first system

was developed by the ODFW researchers who created the Landsat-based vegetation map

of the study area. Their scheme followed the approach suggested by O'Neil et al. (1995)

and crosswalks to the current Gap analysis vegetative groupings that list 133 types

(Kagan and Caico, 1992). Figure 10 shows the ODFW vegetation classification system

being used for the Landsat-based vegetation map of Oregon. The classes in bold are

those potentially occurring in the Luckiamute/Rickreall watersheds. The second

classification system (Figure 11) was developed during this study to compare the

manually interpreted video to the field verified video at a ihectare minimum mapping

unit (MMLJ). To better test the limitations of manual interpretation from airborne

videography, this classification system was adopted instead of using the ODFW

vegetation classes. It was derived from a combination of observed vegetation types

during a preliminary field reconnaissance, the classification used by ODFW's Willamette

Valley Habitat Mapping Project, and the ODFW classification scheme already

mentioned. This video classification system was subsequently nested into the ODFW

scheme (Figure 12) to complete the accuracy assessment of their Landsat-based

vegetation map.



Figure 10: ODFW Classification for Vegetation Map of Oregon
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ODFW's Vegetation Classes for Oregon
Sitka Spruce/Willow Palustrine Forest 36. Canyon Shrubland

Maritime Mixed Conifer 37. Hawthorn-Willow
Mountain Hemlock 38. Alpine Shrubland

True Fir/Hemlock Forest 39. Manzanita Shrubland

Montane Mixed Conifer 40. Mountain Mahogany Shrubland

Siskiyou Montane Conifer Forest 41. Sage/Grass Mosaic

Whitebark - Lodgepole Pine Forest 42. Mixed Sage

East Cascade-Sierran Mixed Conifer Forest 43. Low Sage

Northeastern Oregon Mixed Conifer Forest 44. Coastal Shrublands

Jeffery Pine Forest and Woodland 45. Salt Desert Scrub

Serpentine Woodland 46. Big Sage

Lodgepole Pine Forest 47. BitterbrushfBig Sage

Subalpine Fir - Lodgepole Montane Forest 48. Willow Riparian

Coastal Lodgepole 49. Eastside Riparian (Alder Dominant)

Douglas Fir Forest 50. Palustrine Shrub

Douglas Fir/Western Hemlock/Western 51. Northeast Oregon Canyon Grasslands

Red Cedar Forest 52. Montane Grassland

Douglas Fir/Mixed Deciduous 53. Forest-Grass Mosaic

Douglas Fir/TanoaklMadrone 54. Great Basin Grassland

Douglas Fir/White Oak 55. Coastal Headland Grassland

Ponderosa Pine Forest and Woodland 56. Alpine Parkiand

Ponderosa Pine/Douglas Fir/Incense Cedar 57. Alkali Wetlands and Grasslands

Forest 58. Modified Grassland

Ponderosa Pine/Oregon White Oak Forest 59. Coastal Strand

Ponderosa Pine/Western Juniper Woodland 60. Wet Meadow

Ponderosa Pine/Lodgepole Pine Woodlands 61. Shrub Dominant
on Pumice 62. Alkali Playa

Western Juniper Woodland 63. Urban
Red Alder !orest 64. Agriculture
Red Alder/Bigleaf Maple Forest 65. Bare Ground
Red Alden Cottonwood Riparian Gallery 66. Lava Flow

Forest 67. Dunes
Aspen Groves 68. Rock/Snow/Ice

Red Alder/Conifer 69. Open Water
Cottonwood Riparian Gallery 70. Palustrine Forest
Siskiyou Mixed Deciduous 71. Palustrine Shrub
Oregon White Oak Forest 72. Estuarine Emergent

Alpine Mixed Conifer 73. Palnstrine Emergent
South Coast Mixed Deciduous

* Classes in bold indicate those possible in study area.

/



Video Classification System at I ha MMU

Douglas Fir
> 65% Douglas fir

Douglas Fir / Western Hemlock - Western Red Cedar
approximately 50 70% Douglas fir and approximately 30% western hemlock and or red cedar

Douglas Fir / Red Alder I Bigleaf Maple
<65% Douglas fir with bigleaf maple and/or red alder> 33% (Usually Douglas fir dominant)

Douglas Fir / Oregon White Oak
<65% Douglas fir and >33% Oregon white oak

Red Alder
> 65% red alder

Red Alder / Bigleaf Maple
<65% red alder and >33% bigleaf maple

Oregon Ash I Black Cottonwood I Bigleaf Maple
approximately 33% of each specie; may only contain two of the three species, but the dominant
specie will be <65%; may occasionally contain <33% willow

Oak Forest
> 65% Oregon white oak (Balance usually Douglas fir or bigleaf maple); >30% canopy cover

Oak Woodland
> 65% Oregon white oak; 1030% canopy cover

Oregon White Oak / Douglas fir - Bigleaf Maple
<65% Oregon white oak>50%; approx. 30% Douglas fir and/or bigleaf maple; >30% canopy

Shrub I Seed / Sapling
includes recent clear cuts through pole-sized forests

Black Hawthorn
includes most hedgerows; may also be abandoned pasture where Black Hawthorne, along with
apple and cherry trees and/or berries, have intruded to cover >65% of a field.

Scotchbroom
> 65% Scotchbroom

Willow
> 65% willow of various species

Herbaceous Riparian
wetlands or seasonally wet areas characterized by tufted hairgrass, reed canarygrass, carex spp.,
and/or douglas spiraea

Cropland and Pasture
Orchards, Groves, Vineyards, Nurseries and Ornamental Horticultural Areas
Christmas Tree Plantations
Cottonwood Plantations
Residential
Open Water
Unclassified (inaccessible)

/
Figure 11: Video Classification System at 1 Hectare MMU
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Figure 12: Nesting Method for Video Classification into ODFW's Classification
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Nesting of Video Classification into
ODFW's Classification System

Douglas Fir Forest
1-Douglas Fir

Douglas Fir/Western Hemlock/Western Red Cedar Forest
2-Douglas Fir/Western Hemlock-Western Red Cedar

Douglas Fir/White Oak
4-Douglas Fir/Oregon White Oak
10-Oregon White Oak/Douglas Fir - Bigleaf Maple

Red Alder Forest
5-Red Alder

Red AlderfBigleaf Maple Forest
6-Red Alder/Bigleaf Maple

Red Alder/Conifer
3-Douglas Fir/Red Alder/Bigleaf Maple

Cottonwood Riparian Gallery
7-Oregon Ash/Black Cottonwood/Bigleaf Maple

Oregon White Oak Forest
8-Oak Forest
9-Oak Woodland

Willow-Hawthorn
14-Willow
12-Black Hawthorn

Palustrine Emergent
1 5-Herbaceous Riparian

Shrub-Dominant
11-Shrub/Seed/Sapling
13-Scotchbroom

Agriculture
16-Cropland and Pasture
17-Orchards, Groves, Vineyards, Nurseries and Ornamental Horticultural Areas
18-Christmas Tree Plantations
19-Cottonwood Plantations

Open Water
21-Open Water

*ODFWS classes are in bold.



3.5 Videograhy Manual Interpretation TechniQues

The airborne videography for the pilot study area was visually interpreted using

manual techniques and guides such as those discussed by Avery and Berlin (1992) and

Sayn-Wittgenstein (1978). Knowledge of ground appearance gained through a

preliminary field reconnaissance in the pilot study area and of areas adjacent to the study

area (i.e., areas contained in the fifteen non-georeferenced video mosaics) supplemented

these techniques. Portions of the non-study area video mosaics containing areas that

could be ground accessed were field-interpreted and used as an interpretation key. This

selective key was used to help manually interpret the georeferenced video mosaics.

A multiple step process was used to interpret the video mosaics. As stated

previously, the scale of the printed mosaics was 1:4,250 for the ODFW and 1:5,670 for

the supplemental video. To aid the interpretation of these mosaics, the video was

simultaneously displayed on a 25-inch color television at the scales of 1:1,800 and

1:2,400, respectively. For the ODFW video, the availability of the 1:150 zoomed video

aided the interpretation immensely (see Figure 13). The video was classified to iha

minimum polygons which were drawn onto mylar overlays aligned over each printed

mosaic using established control points. A iha MMU was chosen because that appeared

to be the smallest area that could be universally identified in the video given any location

and its corresponding classification. For example, a less than iha cluster of Douglas fir

could be easily identified when surrounded by agricultural pasture, but this same polygon

would probably not be distinguished if surrounded by 1 Oha of Douglas fir / Maple - Alder

forest.

After the interpretation, these polygons were digitized into a vector format using

the Arc Edit module of ARC/INFO. Adjacent mosaics were joined also with ARC/INFO.

This process revealed that the location difference between the same point near the edges

of two adjacent mosaics could be as much as 90 meters as a result of the image

37
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rectification process described previously. Finally, the digitized polygons were attributed

using ArcView 3.0. The UTM coordinate system was preserved in this raster-to-vector

conversion process.

Avery and Berlin (1992) described eight commonly used recognition elements in

airphoto interpretation which include shape, size, pattern, shadow, tone or color, texture,

association, and site. Color, texture, shape, and site were found to be the most helpful of

these elements in the manual interpretation of the video. However, interpretation was not

easy due to color and texture differences within vegetation classes in the video,

especially in the supplemental video. An a priori knowledge of the study area's

vegetation combined with analysis of the questioned feature's site was perhaps the most

useful factor for interpreting the supplemental video. Shadow and shape became

significant recognition elements when using the much larger-scale zoomed video to help

interpret the ODFW video because conifer and deciduous trees could be more confidently

distinguished by their shadows.

3.6 Videography Field Verification

The printed video mosaics were taken to the field for classification verification.

The initial field-interpretation occurred in October 1996, and a subsequent verification of

questionable areas was performed the last week in March 1997. All the accessible areas

contained in each mosaic were classified using a ihectare MIvIU to correspond to the

MMU used in the manual video interpretation. Areas that could not be verified were

labeled "not accessible" and subsequently omitted from the analysis.

These field-gathered data were subsequently entered into ARC/iNFO. To help

eliminate polygon delineation and digitizing error from being introduced into the

subsequent analysis, the polygon coverage from the manually interpreted video was used

as the starting point instead of digitizing all of the field-classified mosaics. Polygons

identified in both interpretations were preserved. Polygons in the manual interpretation
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but not identified in the field were eliminated, and those from the field and not in the

manual interpretation were added. The polygons in the resulting coverage were then

attributed with the appropriate field-interpreted classes using Arc View software.

It should be noted that the use of a pen computer with Field Notes software was

originally proposed to help automate the field data collection in this research. After

careful evaluation, however, it was determined that this approach would be less efficient

than the adopted method. Four major problems existed. First, the image resolution on

the pen computer would not be acceptable for distinguishing vegetation transition zones

on the video imagery. The 24-bit mosaics would have to be decreased to inferior 256-

color 8-bit images as required by the Field Notes software. Additionally, the only pen

computer available for this research had a gray-scale display, not color. Second, the

large size of each mosaic, approximately 3 megabytes at 8-bit resolution, would lead to

slow and tedious display refreshes when changing views on the available 486SX-33mhz

pen computer. Third, the process of drawing and labeling polygons in the field with

Field Notes software was determined to be inefficient. Field-collected data using this

software would have required substantial post-processing to close polygons and to get the

data into a useable format. Finally, the location accuracy of polygons resulting from on-

screen digitizing, over a poor resolution image and digitized while in the field, would

have been less accurate than those digitized using the adopted method.

3.7 Sampling Strategies

The ODFW video was acquired using a systematic random transect sampling

scheme covering the entire state of Oregon. Approximately 4% of Oregon was sampled

with north-south transects recorded at 30km intervals. If the vegetation map being

produced for the entire state of Oregon were being assessed for accuracy, point samples

would have been taken along these transects every time the video zoomed. Since there

are in excess of 18,000 zooms, a sufficient number of sample points could be obtained in
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this manner to statistically assess the accuracy of the Oregon vegetation map for many

but not all of the vegetation classes. Additionally, the zoomed imagery provides much

higher spatial resolution than the panned video (Figure 13), and therefore, zoomed

samples would be more easily and accurately interpreted.

With the selection of the Luckiamute and Rickreall watersheds as the pilot study

area, two significant problems arose in this research. First, the single ODFW video

transect recorded in this study area recorded only upland vegetation which does not

adequately represent the vegetation found in the study area. Second, this single transect

did not have enough zooms to use the zoom-point sampling method. Therefore, the

supplemental video, consisting of three random east-to-west transects without zooms,

was acquired, and a new strategy had to be developed to sample and assess the vegetation

map of the pilot study area. The supplemental transects were flown east-to-west

capturing the landscape transition from valley bottom to Coast Range foothills and,

therefore, the highest possible variety of vegetation types.

The new sampling strategy included using both the ODFW video and the

supplemental video. As previously described, both sources of video were digitally

captured and mosaiced. Only the mosaics that could be field verified were selected to be

georeferenced and used for the subsequent analysis (Figure 14). These mosaics sampled

5.28 percent (6,404 hectares) of the study area.

According to traditional statistical methods assuming normally distributed data,

approximately 256 pixels per classification type would have to be sampled to achieve the

desired map classification accuracy rate of 80% with a standard error of 2.5% (Hay 1979;

F. Ramsey, Oregon State University, personal comm.). Congalton (1996) emphasized,

however, that traditional methods are not appropriate for determining the sample size

when using an error matrix, and furthermore, traditional thinking about sampling usually

does not apply to remotely sensed data because of the large number of pixels in an image.

Additionally, he argued that remotely sensed data are usually not normally distributed



ODFW PAN-SCALE VIDEO

ODFW ZOOM-SCALE VIDEO (area in rectangle above)

Figure 13: Comparison of ODFW Pan-Scale Video to Zoom-Scale Video
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(see Chapter 1). His experience suggests that if the area being sampled is larger than a

million acres or the classification has more than 12 categories, the minimum number of

samples should be 75 to 100 samples per category. For smaller areas with less than 12

categories, a minimum of 50 samples per category would suffice.

Given the small amount of videography sample data available for the study area,

the violation of the assumption of sample independence and the related negative effects

of spatial autocorrelation were problems with any analysis method considered. The

spatial autocorrelation effect described in Chapter 1 suggests that the value of a pixel is

affected by other pixels within close proximity of it. Generating enough random points

to have even 50 samples per class resulted in multiple samples in almost every polygon.

Therefore, any statistical inferences made from the data acknowledge this sample

independence shortcoming. The ideal solution would have been to have many systematic

random transects of the study area flown with a zoomed camera to generate a point

sampling of sufficient size for analysis. However, funding was not available to acquire

such data.

Acknowledging the existence of the spatial autocorrelation effect and the lack of

sample independence, two comparisons were performed. First the manually interpreted

ODFW and supplemental video were compared to the field classifications of the

corresponding areas. This analysis would help determine the extent to which airborne

videography might replace field work. Due to the limited amount of georeferenced data

available for the study area and the large number of classes (21), it was decided to use all

of the georeferenced mosaics, with every pixel as a sample unit, in this analysis. This

yielded a more descriptive class-by-class analysis than generating random points.

However, the inequality in class sizes using the "every pixel" method resulted in very

suspect overall accuracy statistics. To improve the accuracy of this statistic, 75 random

points for each class occupying more than 50 acres and/or 2 polygons were subsequently

generated with Erdas Imagine and analyzed for both the ODFW and supplemental video.
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This equalized random sample would give each class equal weight in the overall

accuracy statistic regardless of class size. The smaller classes were dropped in this part

of the analysis to help reduce error caused by the lack of sample independence.

The second analysis performed in this research evaluated the classification

accuracy of the Landsat-based vegetation map produced by ODFW using the field

classified video mosaics. Since there were fewer classes represented in the ODFW

classification, an equalized random sample of 50 points per class was created and

evaluated. However, it should be noted that there were still multiple sample points in

many classified polygons.

3.8 Error Matrices Development

3.8.1 Manually Interpreted Compared to Field-Verified Video

Two error matrices, one for the ODFW and one for the supplemental video

mosaics, were developed, using Idrisi software, to assess the classification accuracy of

the manually interpreted video on a pixel-by-pixel basis. These matrices compare the

iha MMIJ manually interpreted video mosaics to the iha MtvfU field-interpreted video

mosaics. Before the error matrices could be generated, however, the vector-format

classifications were converted back to a raster format with the original grid-cell sizes of

1.5m2 and 2m2 for the ODFW and supplemental video, respectively. Error matrices

containing column and row marginal totals, errors of omission and commission, and

overall error measures were then calculated for both data sets.

Two additional error matrices, one for the ODFW and one for the supplemental

video mosaics, were developed in a similar manner to derive a more robust estimate of

overall accuracy. These matrices, however, compare 75 randomly generated points for

each class greater than 50 acres and/or with more than 2 polygons in the manual video
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interpretations to their corresponding points in the field classified mosaics. These

equalized random points were generated in Erdas Imagine prior to being imported into

Idrisi.

3.8.2 Field-Verified Video Compared to Landsat-Based Map

To assess the accuracy of the Landsat TM-based vegetation map developed by

ODFW,. two error matrices were generated. First, the field-verified video mosaics were

reclassified into the ODFW classification so that they could be compared to the

vegetation map. The resulting data were then converted in ARC/INFO from a ihectare

MMU to a 4 hectare MMU to match the ODFW vegetation map MMU. The resulting

data were then converted to a raster format with a 30m2 grid cell to correspond to the

Landsat-based vegetation map of the study area. An equalized random sample of 50

points per class was then generated for the ODFW Landsat-based vegetation map. The

first error matrix was then generated to compare the random sample points from the

Landsat-based vegetation map to the 4 hectare MMU field verified video classification.

A second error matrix was developed that compensated for georectification errors that

occurred between the two data sets. Again, each error matrix included column and row

marginal totals, errors of omission and commission, and overall error measures.



4. RESULTS

4.1 Evaluation of Manually Interpreted Video

Four error matrices were developed to evaluate the accuracy of the manually

interpreted airborne video. Tables 2 and 3 contain error matrices depicting pixel-to-pixel

comparisons of the manually interpreted ODFW and supplemental video to the field

classified video. The error matrices in Tables 4 and 5 evaluate an equalized random

point sample of the video classifications. This section details and explains these error

matrices.

4.1.1 ODFW Video

The overall accuracy recorded in Tables 2 and 3 is very similar. The manually

interpreted ODFW video yielded an overall accuracy of 89.5% while the supplemental

video had an overall accuracy of 87.43%. This small difference in overall accuracy is

quite surprising given the better clarity of the ODFW video than the supplemental video

as well as the availability of the larger-scale zoomed video for the ODFW video

interpretation. A closer look at each matrix explains this similarity in overall accuracy

and highlights the need to look further than overall accuracy when evaluating these video

classifications.

Table 2 shows that only 12 classes were represented in the ODFW video samples

of the Luckiamute and Rickreall watersheds. Of these twelve classes, three, Douglas Fir,

Shrub / Seed / Sapling, and Douglas Fir / Red Alder / Bigleaf Maple, comprised almost

83% of the total area sampled in the video. Within these major classes, the greatest

source of confusion was between Douglas Fir and Douglas Fir / Red Alder / Bigleaf

Maple. Approximately 33% of the vegetation labeled Douglas Fir / Red Alder / Bigleaf

Maple in the video interpretation was actually Douglas Fir. Looking at this
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misclassification from the perspective of omission error, about 25% of the actual

Douglas Fir was mistaken for Douglas Fir / Red Alder / Bigleaf Maple. In most

instances, the primaiy cause of these misclassifications was the inability of the video

interpreter to accurately estimate the percentage of red alder and bigleaf maple mixed

with Douglas fir. Often, the amount of alder and maple was over-estimated in these

cases. Another factor causing this confusion was fuzzy classification error or "fuzziness"

between classes. That is, when doing the field mapping, there were many times when

deciding whether an area was greater than or less than 65% Douglas fir was subjective.

In younger stands, this distinction was easier because the maples and alders were

generally as tall or taller than the Douglas fir. However, in more mature stands, the

Douglas fir were taller than the maples and alders in the canopy gaps. The video allowed

the interpreter to see more of the alders and maples that in the field were being concealed

from sight by the taller Douglas fir. Therefore, the presence of alder and maple was

over-emphasized in the video interpretation and possibly under-emphasized in the field

interpretation.

Table 2 also highlights that three classes were totally missed in the ODFW video

interpretation. The one stand of Douglas Fir / Western Hemlock / Western Red Cedar

occurring in the video sample was inappropriately classified as Douglas Fir. This stand

was observed during the video interpretation as having a slightly darker color and coarser

texture than the surrounding Douglas fir. However, it occurred near the edge of a

mosaic, and no zoomed video was available of it to help with the interpretation. The

assumption was incorrectly made that it was an older stand of Douglas fir. Had zoomed

video been available for this area or if there had been more occurrences of this class in

the video, a correct video interpretation would have likely resulted. The other two

classes that were missed in the video were Residential and Scotchbroom. The residential

occurrences were mislabeled twice as Shrub / Seed / Sapling and once as Cropland and

Pasture. All three of these instances were cases where the field interpretation could have
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gone either way. That is, how much development is required for an area to be called

Residential as opposed to Agricultural or Shrub / Seed / Sapling? Likewise, the instances

where Scotchbroom was identified in the field could have arguably been correctly

labeled Shrub / Seed I Sapling or Cropland and Pasture as it was labeled in the video

interpretation. Interpreter subjectivity and the decision during the field interpretation

(after the video interpretation was complete) to make scotchbroom its own class caused

these disagreements in classifications.

4.1.2 Supplemental Video

Table 3 contains the error matrix of the supplemental video interpretation

compared to the field interpretation. As mentioned earlier, the area covered by this video

sample was predominantly in the valley areas whereas the area covered by the ODFW

video was in the Coast Range. Therefore, the greater number and variety of classes

observed in this error matrix was anticipated. The high overall accuracy of 87.43% is

surprising, however, given that no zoomed video was available in the supplemental

video.

When one looks closer at Table 3, though, it becomes apparent that this high rate

of overall accuracy is very misleading. Almost 60 percent (6,893,753 pixels) of the total

area sampled by the supplemental video was actually Cropland and Pasture. This class

was among the easiest to classify as noted by its less than five percent omission errors

and two percent commission errors. The misleadingly high overall accuracy resulted

from this one severely over-sampled class.

Obviously, one must look at the accuracy of individual classes to get a correct

sense of accuracy for the supplemental video classification. Of the seventeen observed

classes in the supplemental video, only three classes, Cropland and Pasture, Black

Hawthorn, and Open Water, had less than ten percent errors of commission and

omission. Each of the remaining fourteen classes had at least ten percent errors of



Field

Supple
mental 4

U
ji,

=

I JJ Ii J

Do 'las FIr 631 690 0 8912 0 8,893 0 24,234 1 0 0 0 0 0 11,345 1,433 0 0 688,508 0.0789

Douglas Fir I Red Alder!
B'IeafMa'e 43017 86468 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 129485 0.3322

Do .iasFirIWhlteOak 153,546 4,102 382842 9,882 4765 0 47203 0 0 0 0 792 6 2,548 0 0 0 605,986 0.3682

Oregon Ash! Black
CottonwoodlBi.leafMe. 0 0 2,379 454154 10,217 0 9,272 0 0IPJJ I 3 0 0 0 0 0 487,922 0.0880

Oak Forest 53506 0 43249 6 133 211 205 0 27517 0 0 0 0 2 0 0 0 0 0 347 612 0.3752

Oak Woodland 6,293 0 0 10466 0 48057 30,891 12739 2154 23,856 0 464 0 0 0 1771 0 136,691 0.6484

Oregon While Oak! Douglas
Fir-Bl.leafMa.Ie 9267 0 42565 15354 18950 2890 43506 0 7608 0 0 2 0 0 0 0 0 140161 0.6896

Shrub/Seed/Sail 0 0 1 0 0 3501 2 877115 1835 0 0 29,766 7,646 125645 0 0 0 1 045572 0.1611

BlackHawthom 0 0 0 6511 0 0 0 0 326,614 0 2136 0 0 0 0 0 0 335261 00258

Willow 0 0 0 1276 0 0 0 0 7283 16432 0 0 0 0 0 0 0 24,991 0.3425

IlerbaceousRi.rian 0 0 0 2376 0 0 0 0 5354 034958 0 0 0 0 0 0 426880.1811

Cr. .landand Pasture 5 0 4620 633 3072 0 23024 11103 1 1 0 6551694 14471 61861 0 0 0 6670385 0.0178
Orchards, Groves, Vineyards,
Nurseries and Omament
HorticufturalAreas 0 0 0 0 0 0 0 0 0 0 0 0 67472 0 0 0 0 674720.9895

ChristmasTreePIantallons 2,376 0 0 0 867 4474 7433 0 8305 0 0 311 129 128,147 254760 15151 0 0 732,642 0.6523

Cottonwood PlantatIons 0 0 0 0 0 0 0 0 0 0 0 0 0 0 53601 0 0 53,607 0.0009

ResidentIal 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 10602 0 10,603 0.0001

O.-nWter 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 94155 94155 0.0000

TOTAL

ERRORSOFOMISSION
(proportion)

900000

0.2981

90570

0.0463

484588

0.2100

507385

0.1037

263969

0.1772

58922

0.1844

213081

0.7958

901019

0.0906

359154

0.0906

51585

0.6816 0.0576

370956893753

0.0496

217742

0.6901

456159

0.4415

70191

0.2363

12373

0.1431

94155

0.0000

11611741

a1251

OVERALL ACCURACY: 87A3% Ut0



51

omission and/or commission, and ten of these classes had more than 20 percent. Errors

of omission were greatest for the following classes: 1) Oregon White Oak / Douglas Fir -

Bigleaf Maple (80%); 2) Orchards, Groves, Vineyards, Nurseries and Ornamental

Horticultural Areas (69%); 3) Willow (68%); 4) Christmas Tree Plantations (44%); 5)

Douglas Fir (30%); 6) Cottonwood Plantations (24%); and 7) Douglas Fir / Oregon White

Oak (2 1%). Errors of commission. were highest in the following classes: 1) Oregon

White Oak I Douglas Fir - Bigleaf Maple (69%); 2) Christmas Tree Plantations (65%); 3)

Oak Woodland (65%); 4) Oak Forest (38%); 5) Douglas Fir / Oregon White Oak (37%);

6) Willow (34%); and 7) Douglas Fir / Red Alder / Bigleaf Maple (33%).

While some of the error encountered in the manual interpretation of the

supplemental video can be attributed to "fuzziness" among classes as in the ODFW video

interpretation, the majority of the error is due to low video quality. As stated previously,

the supplemental video has a very hazy appearance (Figure 5) resulting from being

recorded at a high altitude and the affects of atmospheric scattering. Color, tone and

texture were, therefore, much less useful in the video interpretation, and much of the

interpretation relied on shape, association and site. The reliance on these particular

visual cues explains most of the successes and failures of the supplemental video

interpretation. Classes with higher accuracy, such as Open Water, Cropland and Pasture,

Black Hawthorn, and. Oregon Ash / Black Cottonwood / Bigleaf Maple, are relatively

easy to detect in the video by their shape and site. For example, cropland usually occurs

in large areas with straight edges, and Oregon Ash / Black Cottonwood / Bigleaf Maple

typically follows stream networks. In contrast, to successfully distinguish Douglas Fir

from Douglas Fir I Oregon White Oak, the visual cues of color and texture become much

more important. An additional factor contributing to the higher error of the supplemental

video interpretation was the lack of large-scale zoomed video. The entire supplemental

video interpretation was performed using only 1:2,400 scale video as compared to the

1:1,800 and 1:150 zoomed ODFW video.
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4.1.3 Additional Evaluation of Manual Video Interpretation

The error matrices in Tables 4 and 5 were developed in an attempt to obtain more

meaningful overall accuracy statistics for the video interpretations by equalizing the

number of samples for each class. Seventy-five random sample points (see Chapters 1

and 3) were generated for each class in the manually interpreted ODFW and

supplemental video. Classes with less than 50 acres and/or less than 3 polygons were

omitted, from the matrices to help reduce the negative effects of the small sample area. It

should be re-emphasized that the resulting accuracy statistics will still be contaminated

by the negative effects of spatial autocorrelation as discussed in Chapters 1 and 3. Also,

note that any class from the manually interpreted video having less than 75 samples in

the error matrices resulted from the inaccessibility of sample points in the field. These

points were omitted from the analysis.

Table 4 shows an overall accuracy of 94.85% for the six classes meeting the

above criteria in the ODFW manual video interpretation. In comparison, the

supplemental video matrix in Table 5 shows an overall accuracy of 76.42% for the 14

classes sampled. These statistics appear more realistic than those derived in the pixel-to-

pixel matrices. The ODFW video interpretation, given the video's higher spectral quality

and its addition of zoom-scale samples, was expected to be more accurate than the

supplemental video.

4.1.4 Summary of Manual Video Interpretation

The evaluation of the manually interpreted video error matrices suggests that

manual interpretations of airborne videography can be highly accurate if the video is

acquired at a large scale, from a relatively low altitude, and if the classification scheme is

not too complex. The overall accuracy of the ODFW video interpretation approached

95%. The main source of error in this video was between the Douglas Fir and Douglas

54
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Fir / Red Alder / Bigleaf Maple classes. This error resulted primarily from "fuzziness" in

the classification system and from the inexperience of the interpreter. The supplemental

video interpretation proved to be significantly less accurate overall and when viewed

class by class. Low spectral resolution, resulting from a high flying altitude combined

with atmospheric scattering, and a lack of zoom-scale video caused most of this observed

error. Additionally, there were more vegetation types to distinguish between in the area

sampled by the supplemental videography than in the area sampled by the ODFW

videography. The lack of sample independence was also responsible for some of the

error in both video interpretations. Chapter 5 will address how these and other problems

can be addressed in future studies.

4.2 Accuracy Assessment of ODFW Vegetation Map

The field verified video transects were used to determine the accuracy of the

ODFW Landsat-based vegetation map for the Luckiamute / Rickreall study area. Tables

6 and 7 contain error matrices that evaluate the ODFW vegetation classification using an

equalized random point sub-sample of the areas sampled by the video transects. The

following sections explain and summarize these error matrices.

4.2.1 Evaluation of Error Matrices

The error matrix in Table 6 is based on 50 random sample points for each

vegetation type classified by ODFW in their study area map. The Red Alder / Maple

Forest and Red Alder / Conifer classes were evaluated separately since they were not

present in the ODFW map but were found in the field. Table 6 shows an overall

accuracy of the ODFW vegetation classification of slightly less than 62 percent. Since

this accuracy level was significantly lower than anticipated, all recorded errors in Table 6

were checked to see if they were the result of georegistration mistakes.
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0.5505

49

0.0204

450

0.3844
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Douglas Fir Forest 40 1 0 1 3 0 1 0 4 0 0 50 0.2000

Douglas Fir! White Oak 8 7 0 0 0 6 15 0 0 14 0 50 0.8600

Red Alder Forest 1 0 2 0 35 0 0 0 12 0 0 50 0.9600

Red Alder/Maple Forest 0 0 0 0 0 0 0 0 0 0 0 0 0.0000

Red Alder I Conifer 0 0 0 0 0 0 0 0 0 0 0 0 0.0000
Cottonwood Riparian
Gallery 0 0 0 0 0 44 4 0 1 1 0 50 0.1200

Oak Forest 0 1 0 0 0 3 31 0 0 15 0 50 0.3800

Willow-Hawthorn 0 0 0 0 0 1 0 49 0 0 0 50 0.0200

Shrub Dominant 0 0 0 0 0 0 0 0 42 8 0 50 0.1 600

Agriculture 0 0 0 0 0 0 0 0 0 50 0 50 0.0000

Open Water 0 0 0 0 0 0 0 0 0 0 50 50 0.0000

TOTAL

ERRORS OF OMISSION
(proportion)

49

02041

9

02222

2

0 0000

1

1 0000

38

1 0000

54

0 1852

51

03922

49

00000

59

02881

88

04318

50

0 0000
0.3000

OVERALL ACCURACY: 70.00%
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Twenty-two percent (38 out of 173) of the errors in Table 6 were found to be

registration errors. These errors corresponded to the error found when georectifying the

video transects to the Landsat imagery. All of the registration errors found near the

centers of the video mosaics were less than 30 meters and most were less than 10 meters.

Registration errors near the edges of the video mosaics were up to 90 meters. The error

matrix in Table 7 incorporates these registration corrections into the accuracy assessment

of the ODFW vegetation map.

The corrected error matrix in Table 7 shows an overall accuracy of 70 percent.

While this accuracy level is still less than desired, most of the error is easily explainable

when the vegetation classes are looked at individually.

Errors of omission and commission for the Douglas Fir Forest class were both

approximately 80 percent. Errors of commission occurred mostly in the Red Alder I

Conifer and Shrub Dominant classes. These few errors are likely the result of fuzzy

classification error and time-delay, respectively. Determining the exact percentage of

each tree species in an area is difficult both in the field and in satellite imagery

interpretation. If the amount of conifer was near the 65% cutoff (greater than 65%

Douglas fir is classified as Douglas Fir Forest and less than 65% Douglas fir with at least

33% red alder is Red Alder I Conifer), an error could have been made by either the field

interpreter or the image classifier. It will be seen that much of the error revealed in this

analysis falls into this fuzzy classification type. This type error could be reduced in

future studies if a fuzzy sets approach can be successfully adopted. The Shrub Dominant

class points that were incorrectly classified as Douglas Fir Forest are probably due to the

approximate three year delay between the satellite image acquisition and the field

verification. Active timber harvesting was observed in much of the western portion of

the study area during the field verification portion of this study, and these forests were

likely harvested between satellite acquisition and field classification. Therefore, the

Douglas Fir Forest classification should not be considered incorrect. Douglas Fir Forest
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omissions were most often mislabeled as Douglas Fir / White Oak. Again, these are

probably most often fuzzy classification errors.

In addition to Douglas Fir Forest being mislabeled as Douglas Fir I White Oak,

Oak Forest, Agriculture, and Cottonwood Riparian Gallery were often incorrectly

classified as Douglas Fir I White Oak as well. These classification errors yielded an

estimated 86 percent commission error for the Douglas Fir / White Oak class while

omission errors were calculated at a reasonable 22 percent. Again, it is obvious that Oak

Forest and Douglas Fir / White Oak disagreements probably resulted from fuzzy

classification error. The surprisingly high amount of agriculture that was mislabeled as

Douglas Fir I White Oak became less of a surprise when these points were looked at

individually. All of these points were either Christmas tree plantations or orchards. Both

of these classes typically have spectral signatures similar to the Douglas Fir I White Oak

and the Oak Forest vegetation types. The confusion of Cottonwood Riparian Gallery and

Douglas Fir I White Oak is also an error caused by similar spectral signatures.

Additionally, Douglas Fir / White Oak often occurs in pockets next to riparian corridors

which increases the difficulty of distinguishing these classes.

Cottonwood Riparian Gallery had an estimated 12 percent commission error and

18.5 percent omission error. The mislabeling of this class as Douglas Fir I White Oak

was already discussed. As with that misclassification, the confusion of Oak Forest for

Cottonwood Riparian and Cottonwood Riparian for Oak Forest was caused by the

problem of differentiating similar spectral signatures.

In addition to the confusion with Cottonwood Ripanan Gallery, Oak Forest was

more significantly confused with Douglas Fir I White Oak and Agriculture. The

relatively high estimated omission error rate of 39 percent was caused mostly by

mislabeling Oak Forest as Douglas Fir / White Oak. As previously mentioned, this is

primarily the result of fuzzy classification error. The high commission error rate of 38

percent for Oak Forest resulted from mislabeling the Agriculture class. As with the
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Agriculture points mislabeled as Douglas Fir / White Oak, these fifteen points were all

either Christmas tree plantations or orchards. Likewise, incorrect classification of these

points was caused by problems differentiating the similar spectral signatures emitted by

these vegetation types.

All of the red alder classes had very high, yet misleading, classification errors.

The error matrix in Table 7 shows that Red Alder Forest had a 96 percent commission

error. The confusion of Red Alder / Conifer as Red Alder Forest could be reasonably

explained as fuzzy classification error and/or as resulting from the two vegetation types

having similar spectral signatures. Additionally the misclassification of Shrub Dominant

as Red Alder Forest could be satisfactorily explained as a time difference error. While

these explanations are probably true, the extent of the misclassification is likely

overstated due to an insufficient sample size and sampling scheme. For example, 31 of

the 35 Red Alder Forest - Red Alder / Conifer mislabeled random points were in only

three polygons. Likewise, eight out of the twelve Shrub Dominant points mislabeled as

Red Alder Forest were in one polygon. Insufficient sample size can also explain some of

the high error found in the Douglas Fir I White Oak - Oak Forest (13 out of 15 points in

three polygons) and Oak Forest - Agriculture confusion (12/15 points in three polygons).

Less error would be expected in these classes if more airborne videography had been

available for the studyarea and if the video had been acquired to specifically sample the

Luckiamute/Rjckreall watersheds.

The Red Alder / Maple Forest and Red Alder / Conifer classes were not present in

the ODFW map where the video transects sampled the study area but were in the field

verified video classification. Therefore, these classes were analyzed by comparing their

occurrences in the videography to the map. There were four polygons in the video

classified as Red Alder / Maple Forest. Two of these were classified as Cottonwood

Riparian Gallery and two as Douglas Fir Forest in the ODFW vegetation map. The

confusion with Cottonwood Riparian Gallery is understandable since they can have
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similar spectral signatures and the occurrences were in the transition zone of the valley

floor to the Coast Range mountains. The occurrences of Red Alder I Maple Forest

confused with Douglas Fir Forest are a result of the 30 meter spatial resolution of the

Landsat TM imagely and the four hectare minimum mapping unit. Continuous four

hectare areas of this vegetation could not be sensed by the satellite since Red Alder I

Maple Forest typically occurs in long narrow corridors following stream networks. The

field verified video contained eleven Red Alder / Conifer polygons. The ODFW map

classified eight of these as Douglas Fir Forest and three as Red Alder / Douglas Fir

Forest. Again, most of these errors are fuzzy classification errors.

The remaining classes in the Table 7 error matrix had relatively high estimated

levels of accuracy. Willow-Hawthorn had a surprisingly low commission error of two

percent and omission error of zero percent. Shrub Dominant had an estimated sixteen

percent commission error and 29 percent omission error. The omission errors have

already been explained as time difference errors as opposed to misclassification errors.

The confusion of Agriculture with Shrub Dominant results from a combination of fbzzy

classification error and similar spectral signatures. Abandoned pastures caused the

confusion. The distinction between these classes was often difficult to make during the

field verification. Agriculture had an estimated commission error of zero percent. The

high omission error of 76 percent has previously been explained as either fuzzy

classification error or as orchards and Christmas tree plantations having similar spectral

signatures as several natural vegetation types. Open Water, as anticipated, had zero

percent commission and omission errors.

4.2.2 Summary of ODFW Map Accuracy Assessment

The overall accuracy of the ODFW Luckiamute / Rickreall vegetation map was

estimated at 70 percent after compensating for georegistration errors. The classes that

met or exceeded the 80 percent accuracy goal were Douglas Fir Forest, Cottonwood
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Riparian Gallery, Willow-Hawthorn, and Shrub Dominant. There were no commission

errors for the Agriculture class, but omission errors were estimated at 76 percent. This

confusion resulted from mistaking orchards and Christmas tree plantations for Douglas

Fir / White Oak or Oak Forests and abandoned pasture for Shrub Dominant. The

remaining vegetation classes were estimated at less than 80 percent accuracy. In addition

to the confusion of different vegetation types having similar spectral signatures,

misclassifications were caused by fuzzy classification error, time delay of accuracy

assessment, limitations in spatial resolution of Landsat TM data, and/or by an inadequate

sampling scheme and size.

The small sample size and less-than-desirable sampling scheme limit the

confidence of these error estimates. However, it is obvious that Christmas tree

plantations and orchards are being confused with Douglas Fir / White Oak and Oak

Forest too often as are Red Alder Forest with Red Alder / Conifer and Douglas Fir /

White Oak with Oak Forest. Additional effort and interpretation techniques will be

necessary for ODFW to better distinguish these vegetation types of similar spectral

signatures. Additionally, successfully adopting a fuzzy-sets approach in any future

accuracy assessment will result in a more accurate estimation of error for these classes.



5. CONCLUSIONS

The major goal of this research was to determine how and to what extent airborne

videography can replace field verification in the assessment of classification-accuracy for

satellite-based vegetation maps. To fulfill this goal, an accuracy assessment strategy,

incorporating airborne videography and a Landsat TM-based vegetation map created by

ODFW, was developed and tested on a pilot study area consisting of the Luckiamute and

Rickreall watersheds. The following section summarizes the findings of these efforts.

These results are then applied to outline how ODFW might assess the remainder of their

Oregon GAP vegetation map. Finally, recommendations are presented for using airborne

videography in future Landsat TM-based vegetation map classification and validation

efforts.

5.1 Evaluation of Airborne Videography

The results of this research indicate that airborne videography has limited

usefulness as a tool for Landsat TM-based vegetation map validation. Despite the facts

that collecting it can be substantially faster than field work and that it allows remote,

inaccessible-by-ground areas to be sampled, using airborne videography is not an

efficient method for assessing the accuracy of most satellite derived vegetation maps.

First, the cost of acquiring airborne videography, while cheaper than traditional aerial

photography, is still quite expensive. For example, the ODFW video acquired in this

study cost $30,000 in 1993. As will be discussed in the next section, a more costly,

increased-density of flight-lines in a more complex sampling scheme would be necessary

to sufficiently assess the accuracy of the ODFW state vegetation map. Second, the

accuracy of the video interpretation must be assessed before it can be used to assess the

accuracy of the satellite based map. Therefore, a certain amount of field work must still
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be performed when using airborne videography. The collection, of enough field points to

perform this assessment will likely be difficult as it depends on having a sufficient

number of video sample points for each vegetation class within observation distance of

an accessible road. Additionally, this substitution of interpreted videography for

"ground-truth" data will yield a more complex, if not questionable, statistical analysis in

the final assessment. Finally, the inferior spectral resolution of airborne video makes

successful interpretation of vegetation classes difficult. In this study, a misleading

overall interpretation accuracy of nearly 95 percent was obtained for the higher

resolution ODFW video. However, this video was recorded in a relatively small area of

low vegetation diversity, and interpretation accuracy was substantially lower for mixed

species classes in this video as well as in the supplemental video. These findings indicate

that airborne videography will be less suitable for accuracy assessment as the vegetation

classification and landscapes increase in complexity (southwestern Oregon for example).

Despite its limited value as an accuracy assessment tool, airborne videography

would be a valuable classification aid in the development of a satellite based vegetation

map. GPS georeferenced airborne video could be used to quickly generate training areas

for supervised classifications or to help label classes resulting from unsupervised

classifications of satellite imagery. Proper planning of video acquisition is the key to its

successful use for these purposes. The final section of this chapter will address this

topic.

5.2 ODFW Accuracy Assessment of Oregon Vegetation Map

Based on the results of this research, it is recommended that the airborne

videography acquired by ODFW not be used for the accuracy assessment of the ODFW
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Oregon vegetation map. There are several reasons for this recommendation. First, many

of the vegetation classes included in the state map will be under-sampled. For example,

there are three video flight lines that partially intersect the Willamette Valley. None of

these lines capture the transition zone between the valley floor and the Coast Range

mountains. Therefore, classes, such as Red Alder I Cottonwood Riparian Gallery, that

occur mostly in this zone will be under-sampled. A stratified systematic random sample,

dividing the state into physiographic regions (Figure 15) with transects planned to capture

the greatest vegetation diversity within these regions, would have produced a more

inclusive sample, however, at a significantly higher cost. For example, if the transects in

the Willamette Valley were flown east-to-west, the transition zones within the valley

would have been better captured. Second, if videography is used, field work throughout

the state will still be required to assess the video interpretation before it can be used in

the accuracy assessment. Additionally, the calculated error within the interpreted video

samples will have to be statistically incorporated into the final accuracy assessment of

the vegetation map. The resulting method would likely be statistically less valid or

would at least reduce the confidence of the accuracy assessment for some classes.

Moreover, the accuracy assessment of the vegetation map could never be higher than the

per-class assessment accuracy from the video samples. Third, there would be some

inaccuracy from using the videography to assess a 100 hectare minimum mapping unit

map. A frame of the ODFW pan-scale video is approximately 1000 meters wide and

contains only 70 hectares in area. While the video zooms may allow an accurate

interpretation at a point, the pan-scale video are not at a small enough scale to

consistently extract how a point will fit into the 100 hectare MMU classification. If a

sample point falls within a 100 hectare MMU vegetation polygon that is shaped long and

narrow with the length parallel to the flight line, there will be more chance of accurately

classifying that point. Finally, it is suspected that the interpretation of video in areas

where several grasses or shrubs could potentially occur would be substantially less
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accurate than the accuracy recorded in this pilot study. The spatial and spectral resolution

of the video is probably too poor to differtiate these types of classes. There were no

such similar classes in the sample study area to test this theory, but viewing video

samples from other portions of the state indicate that interpretation of these areas would

be difficult.

Should ODFW decide to use the existing airborne videography despite these

shortcomings, the following general methodology should be adopted. A point sample

should be generated from the ODFW videography by interpreting the video, displayed on

a television, every time the video zooms. When interpreting the video, not only should

the zoomed point be considered, but the surrounding area in the pan-scale video should be

also. In other words, it should be remembered that the map to be assessed has merged all

vegetation polygons smaller than 100 hectares. The interpretations should be recorded in

a digital database along with the GPS time indicated on the zoomed point video frame.

Once a video ifight line has been interpreted, the resulting database can be geocoded by

linicing it, via the UPS time, to the corresponding GPS ARC/INFO point coverage. Since

the UPS coverages only have ground locations recorded once every second and the video

is recorded at 30 frames per second, it may be desirable to interpolate the ground location.

This is easily accomplished using the interpreted video frame number (0-30) and the

locations of the two recorded GPS seconds that the frame falls between. This entire

geocoding process can be easily automated by converting the interpreted database to an

ARC/INFO table and writing an ARC/INFO AML (Arc Macro Language). The AML

should output a new point coverage containing the interpreted video sample points.

Once all the video flight lines are interpreted, the resulting sample point coverages

may be appended together into one coverage for the final analysis. Alternatively, since

the state map was developed by physiographic regions, the point coverage may be split up

and assessed by these regions if desired. Either way, the point coverage will then need to

be exported to image processing software to produce an accuracy assessment of the state
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coverage will then need to be exported to image processing software to produce an

accuracy assessment of the state vegetation coverage using these video sample points (or

an equal interval sub-sample of these points) as the ground control points.

As previously stated, an estimate of the accuracy of the video interpretation

would have to be incorporated into the final vegetation map accuracy analysis. The

assessment of the video interpretation accuracy can be facilitated by using ARC/INFO to

determine which of the video sample points fall within a potentially viewable distance of

a road (e.g., 500 meters or less). These points may then be field verified and

subsequently assessed in a similar manner as described above.

5.2.2 Recommended Accuracy Assessment Methodology

Again, because of the shortcomings and problems described already, the results of

this research do not endorse using this airborne videography methodology to assess the

state vegetation map. Instead of using videography supplemented with field verification,

a method using field verification only will yield a more accurate classification

assessment without greatly increasing the cost of field verification. Additionally, this

field verification method will result in more classes being more completely sampled than

would the videography method.

The field verification accuracy assessment process endorsed for the ODFW state

vegetation map makes extensive use of GIS and GPS technologies. This methodology is

currently being developed and tested on a large-scale vegetation mapping project of the

Willamette Valley by members, including this researcher, of the ODFW Ecological

Analysis Center. This process involves three major steps: l)Generating field accessible

random points; 2)Field verification; and 3)Analysis. The following paragraphs detail the

procedures.

The first step of the process is to generate random points that have a high

likelihood of being field accessible for each class in the vegetation map. First, buffers
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are generated with ARC/INFO software around all of the roads in Oregon using an

appended roads coverage of the 1:100,000 digital Census TIGER (Topologically

Integrated Geographic Encoding and Referencing) files (available from the Oregon State

GIS Service Center). These buffers would represent the reasonable average distance that

one could expect to view sample points from the road when in the field. The Willamette

Valley study has successfully used a distance of 500 meters on each side of a road. The

optimal buffer, however, is yet to be determined and will probably vary depending on

terrain and land cover. Second, the classified vegetation map is clipped, using

ARC/INFO or Imagine software, by the road buffers so that only the classified areas

within the road buffers remain. Third, random points are generated with Imagine for

each vegetation class contained within the road buffers. Imagine provides an equal

interval option when generating random points which ensures that all classes within the

buffers are sufficiently sampled. If some classes have a very low proportion of the total

area and/or relatively few polygons, the individual polygons for these classes can be field

verified separately. As discussed in Chapter 2, between 50 and 100 random points

should be generated for each class depending on the size of the area being assessed and

the number of classes (Congalton, 1996). For the statewide map, 100 random points

should be generated for each class with the expectation of having at least 75 points that

are field accessible for each class. That is because some of the points will be

inaccessible due to closed or private roads, or visual obstructions such as trees. The

Willamette Valley study, however, has found such impediments to be minimal.

The second major step of the process is field verification of the random points

generated in the first step. This step integrates a laptop computer, Pen Metrics' Field

Notes software, and a GPS receiver to digitally collect the field classification of each

random point. First, the random points, roads coverage, and classified image need to be

converted to a dBase DBF, AutoCAD DXF, and Geo-TIFF formats, respectively. All

conversions can be performed with a combination of ARC/INFO, Imagine and Field
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Notes software. Increased performance of Field Notes software usually results from

partitioning the classified image into several smaller images for individual display. To

enhance field location reference, one may also desire to create corresponding Geo-TthF

files of the raw satellite composites used to create the vegetation classification. Next, all

of these data are transferred to a vehicle-mounted laptop computer with Field Notes

software and an attached GPS unit with externally mounted antennae. Then, with the

TIFF images, roads file, random points, and real-time GPS location being displayed

simultaneously, at any desired magnification on the Field Notes computer screen, one can

easily locate and verify the random points.

The final major step of this accuracy assessment process is the analysis. The field

collected data may be converted back into Imagine for the analysis. However, unless one

wants to assess the spatial distribution of the inaccuracies in detail, it is probably easier

to use a statistical analysis software package or spreadsheet software such as Microsoft

Excel. Standard error matrices as well as advanced statistics can be developed with these

programs. Additionally, as the results in Chapter 4 explained, the use of fuzzy-sets would

make the assessment even more meaningful. Using the Field Notes as just described

would allow additional data such as classification confidence to be collected digitally,

real-time in the field for such an analysis.

While the field-based assessment procedure described here is not ideal, it appears

to have more advantages than airborne videography-based methods. Although all of the

roads delineated in the 1:100,000 TIGER files may not be accessible due to access and

private land issues, using these as a sample base should still provide good coverage of

Oregon. The two main drawbacks of the field-based technique are that it is slow and

rather expensive. Based on the ODFW Willamette Valley study, it would probably take

one person approximately 12 months to sample the entire state. However, the cost of this

would probably be similar to or cheaper than recording airborne videography for the state

if the sampling scheme were stratified by physiographic region as suggested previously.
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Furthermore, there would be the additional cost to the videography-based method for

field verifying the video interpretation. Overall, the field-based method will produce

significantly better results at a cost similar to or less than the airborne videography

method with the disadvantage of taking more person-hours to complete.

5.3 Future Map Classification and Validation with Airborne Videographv

This research has shown that airborne videography is better suited for satellite-

based vegetation map classification than for validation. For either use, the videography

sampling should be stratified by physiographic region to promote a more representative

sample of the vegetation classes. Within these strata, a systematic random grid of

flightlines, such as the scheme used by Slaymaker et al. (1996), would be preferable to

systematic transects in only one orientation. While costlier to acquire, this sampling

scheme will promote a more representative sampling of the landscape's actual vegetation.

The usefulness of airborne videography as a validation technique is primarily

limited by the persisting need to perform field verification. This research revealed that

the visual interpretation of airborne videography will not be perfect. The greater the

landscape complexity being mapped and the more diverse the vegetation classification,

the less accurate will be the interpretation. Statistical validation of such a video

interpretation and any accuracy assessment based on it will mandate a field verification

throughout the mapped area. Therefore, a "field verification only" accuracy assessment

method will usually be more efficient than incorporating airborne videography. Other

problems limiting the usefulness of airborne videography in accuracy assessment include

ensuring a representative sample of all vegetation classes, and recording the videography

at scales that accommodate successful interpretation with respect to the satellite-based

map's minimum mapping unit.

Airborne videography may have more promise as a satellite-based vegetation map

classification aid. Using a stratified systematic random sampling technique as previously
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outlined, a large amount of point sample data, can be generated relatively quickly for use

in developing training areas or labeling polygons resulting from unsupervised

classifications. Since acquiring airborne videography is still somewhat expensive and its

interpretation will not usually be totally accurate, using it to help classify areas for which

there is no preexisting ground-collected data may be its most beneficial use.

Technological advancements may increase the usefulness of airborne videography

as classification and validation aids in the near future. Digital video cameras complying

to high definition television (HDTV) standards are already being developed (Airola,

1996). These cameras will greatly increase the potential spatial resolution of airborne

videography which should yield increased visual interpretation accuracy. An attractive

alternative to videography will likely be digital aerial photography. High-resolution

digital cameras capable of capturing images in excess of 4 million pixels already exist

(Airola, 1996). Airborne imagery captured by these cameras should also yield more

accurate interpretations. Additionally, linking high-resolution digital cameras to a GPS

and computer will allow point sample interpretations to be generated more quickly and

spatially accurately than when using video cameras. The cameras could be activated at

the exact time the GPS locations are received from the satellites, and subsequent visual

interpretations could be added to the same digital database containing the GPS data.

Despite these technological advancements, until the accuracy of visual interpretations

resulting from imagery yielded by these cameras meets or exceeds field verification

accuracy, the usefulness of these remote sensing technologies will be limited as

validation aids for satellite-based maps.
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