
AN ABSTRACT OF THE THESIS OF

I-Ming Shih for the degree of Doctor of Philosophy in Civil Engineering presented on June

10 1998. Title: Stochastic Analysis of Complex Nonlinear System Response under

Narrowb_and Excitations.

Abstract approved:
Solomon C. S. Yim

Response behavior of a nonlinear structural system subject to environmental loadings

is investigated in this study. The system contains a nonlinear restoring force due to large

geometric displacement. The external excitation is modeled as a narrowband stochastic

process possessing dynamic characteristics of typical environmental loadings.

A semi-analytical method is developed to predict the stochastic nonlinear response

behavior under narrowband excitations in both the primary and the subharmonic resonance

regions. Preservation of deterministic response characteristics under the narrowband random

field is assumed. The stochastic system response induced by variations in the narrowband

excitations is considered as a sequence of successive transient states.

Due to the system nonlinearity, under a combination of excitation conditions, several

response attraction domains may co-exist. Presence of co-existence of attraction domains and

variations in the excitation amplitude often induce complex response inter-domain transitions.

The response characteristics are found to be attraction domain dependent. Among different

response attraction domains, their corresponding response amplitude domains overlap. In

addition, within an individual attraction domain, response amplitude domains corresponding
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to different excitation amplitudes also overlap. Overlapping of response amplitude domains 

and the time-dependent variations in the excitation parameters induce response intra-domain 

transitions. 

Stationary Markovian assumption is employed to characterize the stochastic behavior 

of the response amplitude process and the excitation parameter processes. Based on the 

stochastic excitation properties and the deterministic response characteristics, governing 

equations of the response amplitude probability inter- and intra-domain transitions are 

formulated. Numerical techniques and an iteration procedure are employed to evaluate the 

stationary response amplitude probability distribution. 

The proposed semi-analytical method is validated by extensive numerical simulations. 

The capability of the method is demonstrated by good agreements among the predicted 

response amplitude distributions and the simulation results in both the primary and the 

subharmonic resonance regions. Variations in the stochastic response behavior under varying 

excitation bandwidth and variance are also predicted accurately. Repeated occurrences of 

various subhannonic responses observed in the numerical simulations are taken into account 

in the proposed analysis. Comparisons of prediction results with those obtained by existing 

analytical methods and simulation histograms show that a significant improvement in the 

prediction accuracy is achieved. 
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STOCHASTIC ANALYSIS OF COMPLEX NONLINEAR SYSTEM RESPONSE
 
UNDER NARROWBAND EXCITATIONS 

1. INTRODUCTION 

1.1 Background 

In the analysis of response of engineering systems to environmental loads, the 

excitation forces can often be classified as narrowband stochastic processes. For mechanical, 

ocean and structural engineering systems, the environmental loads include wind, wave, 

current and earth excitations (Rice, 1954; Stratonovich, 1963; Lin, 1967; Nigam, 1983; 

Dean and Dalrymple, 1984; Roberts and Spanos, 1990; Ochi, 1990; Newland, 1993; Soong 

and Grigoriu, 1993; Lutes and Sarkani, 1997). Dynamic system responses behavior under 

narrowband stochastic excitations have been studied for decades (Rice, 1954; Lyon, et al, 

1961; Dimentberg, 1971; Richard and Anand, 1983; Davies and Liu, 1990; Koliopulos and 

Bishop, 1993). To date, the stochastic behavior of linear systems is well understood by using 

the frequency domain (spectral analysis) techniques (Crandall and Mark, 1963; Lin, 1967; 

Nigam, 1983; Roberts and Spanos, 1990; Newland, 1993; Soong and Grigoriu, 1993; 

Lutes and Sarkani, 1997). However, relatively little understanding on the stochastic behavior 

of nonlinear systems subject to narrowband excitations has been achieved because of the 

complexity of the system response characteristics. 

The complex response behavior of a nonlinear mechanical or structural system under 

deterministic excitations includes the response amplitude jump phenomenon, subharmonic 

response, superharmonic response and even chaotic response (Nayfeh and Mook, 1979; 
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Burton and Rahman, 1986; Guckenheimer and Holmes, 1986; Thompson and Stewart, 

1986; Jordan and Smith, 1987; Wiggins, 1990). To investigate these complex responses, 

semi-analytical methods and numerical techniques (Gottlieb and Yim, 1992; Yim and Lin, 

1991) are required in general. For a practical physical system, its dynamic behavior is often 

significantly affected by the randomness in the environmental excitations (which is not taken 

into account under deterministic analysis). As a result, to fully characterize the response 

behavior of a practical engineering system, stochastic analysis techniques are needed (Lin and 

Yim, 1995 and 1997). 

In recent years, Richard and Arland (1983), Davies and Nandlall (1986) and Roberts 

and Spanos (1990) used the equivalent linearization method to study the response of 

nonlinear systems subject to Gaussian narrowband excitations. In their studies, the jump 

phenomenon in the system response, similar to that under deterministic excitations, was 

observed in both the analytical solution and the simulations when the dominant excitation 

frequency is close to one of the (linear) resonance frequencies of the system. 

An application of multiple time scale perturbation method in the study of nonlinear 

oscillators subject to narrowband random excitation was presented by Rajan and Davies 

(1988) and Francescutto (1990). In their work, an analytical expression of the response 

statistics evolution was obtained. In addition, the existence of nonlinear superharmonic and 

subharmonic responses under narrowband excitations was studied. They concluded that the 

existence of subharmonic response is a short term system behavior at the beginning of the 

response process. Once the system exits from the subharmonic response domain due to 

variations in the excitation, subharmonic response would not be observed in the rest of the 

process. 
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Roberts and Spanos (1986) and Davies and Liu (1990) approximated the excitation 

and the response as Markov processes and pointed out a general rule of applying the 

stochastic averaging method in analyzing the stochastic system response under narrowband 

excitations. By solving the associated Fokker-Planck equation relating the excitation 

envelope and the response envelope, an approximate probability density function of the 

response envelope process was obtained. 

Alternatively, a quasi-harmonic method was introduced by Koliopulos and Bishop 

(1993). Under the assumption that both the excitation and response processes are 

narrowband, the quasi-harmonic analysis leads to the formulation of a probability density 

function of the response envelope. However, the excitation bandwidth effect on the response 

behavior is not taken into account by this method. Thus, the applicability of this method is 

limited to the cases with an extremely small excitation bandwidth, although the validity of this 

method can be determined by an extra parameter which indicates the occurrence and 

persistence of the response amplitude jump phenomenon. Again, the jump phenomenon of 

the nonlinear system response under a narrowband random excitation was confirmed in their 

study through an approximate analytical solution and numerical simulations. 

Note that, in these previous studies, the analytical methods developed were based on 

deterministic techniques. In order to obtain analytical expressions of the solutions, the system 

responses are assumed implicitly to be close to certain deterministic steady states. However, 

in actuality, due to the random nature of stochastic processes, the excitation amplitude and 

phase angle vary with time. As a result, the system response may not stay close to the steady 

state in general, unless the randomness in the excitation is small. In other words, the system 

response should be considered as in a transient state, and nearly steady-state behavior should 
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be a special case under small randomness of the excitation. Moreover, current technology in 

predicting nonlinear stochastic response behavior is still limited to the case when the system 

is in a primary resonance region. For complex nonlinear response behavior including 

subharmonic and superharmonic responses under narrowband excitations, analytical 

predictions are not yet available. 

1.2 Objectives and Scope 

The main goal of this study is to develop a semi-analytical method capable of more 

accurately characterizing and predicting detailed stochastic nonlinear response behavior under 

narrowband excitations. The method will be extended to analyze the nonlinear response 

behavior of the system in the subharmonic resonance regions as well as the primary resonance 

region. Predictions of the response amplitude probability distribution will be presented as part 

of the results of the analysis of the stochastic response behavior. 

To achieve these objectives, firstly, structural system modeling and descriptions of 

general properties of narrowband random processes will be presented in Chapter 2. 

Secondly, to gain further understanding of the system response behavior than that obtained 

and employed by previous studies (i.e., steady-state response behavior in the primary 

resonance region), the deterministic transient-state and inter-domain-transition-state response 

behavior characteristics will be investigated in depth in Chapter 3. Especially, the studies will 

be focused on both the primary and the subharmonic resonance response behavior. Then, in 

Chapter 4, a semi-analytical procedure to analyze the stochastic response behavior under 

narrowband excitations will be developed based on the stochastic properties of the excitation 

processes described in Chapter 2 and the deterministic system response characteristics gained 
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in Chapter 3. In addition, the analysis of the stochastic response behavior will be extended 

to the subharmonic resonance region. The detailed incorporation of the knowledge gained 

in Chapter 2 and Chapter 3 into the development of the semi-analytical procedure is presented 

through a flow chart in Appendix A. 

In Chapter 5, to verify the methodology proposed, extensive long duration 

narrowband simulations will be conducted and employed to thoroughly investigate the 

complex nonlinear response behavior, especially in the existence of the subharmonic 

responses, and the influence of varying excitation bandwidth and variance on the response 

behavior. In addition, to demonstrate the capability and to assess the accuracy of the method 

proposed, predictions of the response amplitude probability distribution in both the primary 

and the subharmonic resonance regions will be compared against results from two existing 

analytical (stochastic averaging and quasi-harmonic) methods and simulations. Finally, 

several issues for future research will be addressed in Chapter 6. 
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2. SYSTEM AND EXCITATION MODELS 

2.1 Structural System Description 

In this study, a class of single degree-of-freedom structural systems with a nonlinear 

restoring force is examined. Damping force is assumed to be linear or can be linearized using 

standard equivalent linearization techniques (Roberts and Spanos, 1990; Lin and Yim, 1995). 

This class of nonlinear structural systems include moored floating platforms (Gottlieb and 

Yim, 1992) articulated offshore loading towers (Choi and Lou, 1991; Gottlieb, Yim and 

Hudspeth, 1992) and roll motion of vessels (Hsieh, Shaw and Troesch, 1993; Lin and Yim, 

1995). For simplicity of modeling and to facilitate the interpretation of the complex nonlinear 

stochastic response results, a simple nonlinear oscillator of the Duffing type is selected to 

represent the structural system. The selection of the Duffing system enables us to take 

advantage of its well understood nonlinear behavior (Nayfeh and Mook, 1979; Jordan and 

Smith, 1987) and its wide variety of applications in mechanical, ocean and structural 

engineering (Gottlieb and Yim, 1992). Dynamic response behavior ofa multi-point mooring 

system subject to ocean wave (shown in Fig.2.1), for example, is governed by the following 

equation, 

X + FD(k) + FR(x) = F(x,k,X,t) (2.1) 

where, x is the surge motion of the moored buoy; FD(k) and FR(x) are the structural damping 

force and restoring force, respectively; F(x, k, X, t) is a time dependent external force. The 

structural restoring force, FR(x), is modeled as (Gottlieb and Yim, 1992) 
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Figure 2.1 Multi-point mooring system subject to ocean wave. 
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Figure 2.2 Nonlinear restoring force of the mooring system shown in Fig.2.1. 
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L -L, L 
1FR(x)=I+x +Le[(2b -L) -2x (2.2)

Li L2 Li L2 

where 

1/2 

Li2 Id 2 +(= +(b±X)2 -L(b±x)
2 

and k is the elastic force coefficient and Le is the initial pre-tensioned length of the mooring 

line; L, b and d are shown in Fig.2.2. Note that the upper sign refers to L1 and the lower sign 

to L2. Although the mooring lines are linear elastic, Eq.(2.2) reveals the geometric 

nonlinearity of the mooring system as shown in Fig.2.2. Gottlieb and Yim (1992) show that 

this nonlinearity in the structural system can be approximated by an odd order polynomial 

representation. If only the first and the third order terms are retained, the equation of motion 

expressed in Eq.(2.1) becomes a Duffing type nonlinear system. 

The governing equation of motion of a general Duffing oscillator is expressed as 

+csk + aix +a3x3=f(t) (2.3) 

where, the constant cs is the damping coefficient, and al and a3 are the linear and nonlinear 

stiffness coefficients of system, respectively. The system is subjected toan external excitation 

f(t). The elastic restoring force represented by the cubic polynomial is the only source of 

nonlinearity in the system. Due to the nonlinear system stiffness, various interesting 

phenomena can be observed in the response behavior. 
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2.2 Deterministic Excitation Model 

When the external excitation, f(t), is deterministic, the response of the representative 

system described in Eq.(2.3) will also be deterministic. For periodic forcing such as those 

generated by monochromatic waves, the excitation parameters are all time independent and 

f(t) can be expressed as 

f(t) = A cos( cot + 4)) (2.4) 

Where, A, co and 4) are referred to as the forcing amplitude, frequency and phase angle, 

respectively. Behavior of the system considered in Eq.(2.3) subject to harmonic excitation 

defined in Eq.(2.4) has been studied extensively (Nayfeh and Mook, 1979; Jordan and Smith, 

1987). Results in the literature show interesting phenomena, such as response jumping 

between distinct amplitude levels, complex transient behavior from initial conditions to steady 

state responses including resonance, subharmonic, superharmonic and even chaotic responses 

(Thompson and Stewart, 1987; Gottlieb and Yim, 1992). It should be noted that the 

sinusoidal wave form of the excitation expressed in Eq.(2.4) remains unchanged in various 

system behavior and the occurrence of these interesting phenomena depends on the system 

parameters and the initial physical states of the system (i.e., displacement and velocity at time 

t = 0). 
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2.3 Stochastic Excitation Model 

2.3.1 Excitation Process Description 

If the external excitation, f(t), is a stochastic process, the parameters (A, o), 4)) then 

become time dependent random variables instead of constants and their behavior may vary 

significantly depending on the spectral bandwidth of the process. For a stochastic process 

with spectral energy concentrated locally around certain frequency, the stochastic process is 

called narrowband. The frequency domain and time domain descriptions of narrowband 

processes are presented in this section. 

Frequency Domain Definition: The term "narrowband" originated from the fact that the 

spectral density function of the process is sharply concentrated in a neighborhood containing 

the peak frequency cof (Ochi, 1990). The spectral intensity is negligibly small everywhere 

except within a narrow frequency band, (Of - Lio)/2 < (A) < (of + AG)/2, where 66) << oaf 

(Stratonovich, 1963). 

A process with its spectral density function described above can be obtained by 

passing a white noise process through a specially designed linear filter. In fact, a narrowband 

process can be modeled as the output process of a lightly damped linear (oscillator) system 

with a white noise process as the excitation (Stratonovich, 1963). This linear system can be 

expressed in the form of a stochastic differential equation as 

(of2f 1 /2wfwo 
(2.5) 
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where the damping coefficient y serves as a bandwidth parameter (Ochi, 1990). The natural 

frequency of the linear system (of is the peak frequency of the output process f(t) and W0 is 

a stationary Gaussian white noise process with zero mean and spectral intensity S0. The 

spectral density function of the system output takes the form 

y(of2S0 
Sir(w) oo (A) < co (2.6)

2 2 2 
( (Of Y )2 

For y being small, the spectral intensity Sff((o) is small everywhere except in the neighborhood 

of the peak frequency (of. Conversion from the two sided spectrum expressed in Eq.(2.6) to 

a one sided spectrum, which is more convenient for the purpose of practical use, can be 

achieved by doubling the spectral intensity everywhere except at (o = 0. Eq.(2.6) can be 

employed in the time domain simulation of a stochastic process (Shinozuka, 1971). In 

addition, the variance, of2 , of the stochastic process, f(t), can be obtained as the area under 

the spectral density function expressed in Eq.(2.6) and is equal to 760. 

Time Domain Definition: In the time domain, realizations ofa stationary narrowband random 

process are close to sinusoidal oscillations of a fixed frequency (of for time interval equal to 

a large number of oscillation cycles (Stratonovich, 1963). In addition, the amplitude and 

phase of the process vary slowly and randomly while the frequency retains a constant value 

(Ochi, 1990). The phase plane of a narrowband process has a spiral line moving slowly 

inward and outward in a random fashion. A more quantitative time-domain description of the 

narrowband process will be presented in the next section. 
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2.3.2 Envelope and Phase Representation 

The envelope and phase processes associated with a given random process is a useful 

concept in the theory of random vibration (Langley, 1986). Behavior of a narrowband 

stochastic process can be characterized by a suitably defined slowly varying envelope and 

phase processes. 

Physically, for a narrowband stochastic process f(t), the envelope process is a smooth 

curve joining the peaks of 40. Associated with the envelope process is a phase process such 

that f(t) can be represented as a cosine function having time varying amplitude governed by 

the envelope process, and time varying frequency governed by the phase process (Langley, 

1986). That is, 

f(t) = A(t) cos[ cost + 4)(0 ] (2.7) 

where, A(t) and 4)(0 are the envelope and the phase processes, respectively (see detail 

definitions in Appendix B). 

By assuming the narrowband random process f(t) to be Gaussian with zero-mean and 

variance al, the joint probability density function of the envelope A(t) and the phase (Kt) 

processes reads (Ochi, 1990; see also Appendix B) 

A exp[- A 2p(A,4)) 0 <A <.,0, 0<44 27r (2.8)
21caf2 2af2 

where, the time parameter, t, is neglected for simplicity without loss of generality. The 

marginal probability density function of A(t) can be obtained as 
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P(A)=f"p(A,4) 0.= Aexp o < A <co (2.9)
0 a2 2o2 

which is a Rayleigh distribution with parameter 201-2. The uniformly distributed marginal 

probability density function of the phase process is obtained as 

p(4)) = f p(A,4)) dA = 1 0 27c (2.10)
27C 

The joint probability density function p(A, 4)) being the product of the individual marginal 

density functions, p(A) and p(4)), shows that the envelope and the phase processes are 

statistically independent. Note that the probability density functions of the envelope and the 

phase processes are independent of the bandwidth of the narrowband process. 

2.3.3 Narrowband Process Simulation 

A stationary narrowband stochastic process can be represented as (Shinozuka, 1970), 

1/2 
N 

f'(t) E cosoont + 40n ) (2.11) 
N n = 1 

where, f'(t) is the approximate narrowband process; of is the variance of the target process 

f(t); the con's are independent random variables identically distributed with the density 

function g((.0) equal to the normalized spectral density function of f(t) (i.e., g(u)) 
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S8(60)/(1ESQ), and Sfl(ca) is obtained from Eq.(2.6)); the 40 are independent random variables 

identically and uniformly distributed with density 1/(2,t) between 0 and 27c. Note that the can's 

and &'s are statistically independent. In addition, when dealing with temporal averages, the 

ca's and k's are not considered as random variables but as sample values of these random 

variables. 

The value of N employed in Eq.(2.11) plays an important role in the accuracy and the 

efficiency of the simulation. Extensive studies have shown that the value of N equal to 400 

will provide computational efficiency with reasonable accuracy (Shinozuka and Deodatis, 

1991). 

2.4 Typical Nonlinear Responses 

For the nonlinear system considered, interesting response behavior, including 

harmonic response oscillating at different amplitudes under identical excitation, subharmonic 

response and a large variation in the response amplitude under a small variation in the 

excitation amplitude, is demonstrated in this section. 

2.4.1 Harmonic responses 

Harmonic responses with a large and a small amplitude are shown in Figs.2.3b and 

2.3c, respectively. These two responses are of the same structural system with different initial 

states (displacement and velocity at time t = 0) under an identical excitation shown in 

Fig.2.3a. For time greater than 160 sec., each of the system responses is practically in a stable 

state, (i.e., maximum response displacement over one cycle is close to constant). The 

http:Fig.2.3a
http:Figs.2.3b
http:Eq.(2.11
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maximum response displacement is called the response amplitude. When the system response 

is in a steady state, the response amplitude will be constant. Transition of the system response 

from the initial states to steady state is called a transient state. During the transient state, the 

response amplitude varies with time as show in Figs.2.3b and 2.3c after the time t = 0 and 

before the system reaches steady state. 

2.4.2 Subharmonic Responses 

Figs.2.4b and 2.4c show two subharmonic responses of the same structural system 

with different initial conditions under an identical excitation shown in Fig.2.4a. In the time 

series shown in Fig.2.4b, the oscillation period of the system response is equal to twice the 

excitation period. This type of system response is called a 1/2 subharmonic response. 

However, in Fig.2.4c, the system response is observed to oscillate at period equal to three 

times of the excitation period and is called a 1/3 subharmonic response. Thus, under an 

identical excitation, the system response may exhibit entirely different behavior depending on 

the initial condition specified. 

2.4.3 Response amplitude jump phenomena 

For a nonlinear system, a small amount of variation in the excitation amplitude may 

induce changes in the response characteristics, e.g., from a large amplitude harmonic response 

to a small amplitude harmonic response, from a subharmonic response to a harmonic response 

and even, for the subharmonic responses, from a particular order (1/2) to another order (1/3). 

Variations in the steady-state response amplitudes associated with these changes in the 

response characteristics are commonly obvious and often referred to as the response 

http:Fig.2.4c
http:Fig.2.4b
http:Fig.2.4a
http:Figs.2.4b
http:Figs.2.3b
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amplitude jump phenomena. Several typical examples are shown in Figs.2.5-10. Fig.2.5 

shows a small excitation amplitude increase induces a rapidly increasing transient response 

amplitude and the system response is eventually changed from a small amplitude harmonic 

response to a large amplitude harmonic response. The amplitude jump phenomenon from a 

large amplitude harmonic response to a small amplitude harmonic response is shown in 

Fig.2.6. The changes of the response characteristics, due to small excitation amplitude 

changes, from a 1/2 subharmonic response to a small amplitude harmonic response, and from 

a 1/2 subharmonic response to a 1/3 subharmonic response are shown in Fig.2.7 and Fig.2.8, 

respectively. In addition, the 1/3 subharmonic responses in Figs.2.9 and 2.10 are observed 

to evolve to small amplitude harmonic responses when the magnitude of the excitation 

amplitude increases and decreases slightly, respectively. 
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3. DETERMINISTIC NONLINEAR SYSTEM RESPONSE BEHAVIOR 

Qualitative response characteristics of the Duffing type nonlinear system considered 

(Eq .(2.3)) under deterministic harmonic excitation (Eq.(2.4)) are investigated. The 

investigation is performed through an examination of the amplitude response curves, the 

response attraction domains and the first-return maps associated with the system responses 

(Nayfeh and Mook, 1979; Thompson and Stewart, 1986; Jordan and Smith, 1987; Drazin, 

1992). The relationship between the system response and the associated first-return map is 

interpreted from a system total energy evolution point of view. The derived system response 

characteristics will be employed to facilitate numerical evaluations of the response behavior 

under narrowband excitations in Chapters 4 and 5. Note that in this chapter, the excitation 

parameters considered are the excitation amplitude A and the excitation phase angle 4) only. 

The excitation frequency 6.) is considered as a constant, unless noted otherwise. 

3.1 Attraction Domains Co-existence and Initial Condition Dependency 

A major difference in the response characteristics between a linear system and a 

nonlinear system is the dependence of the steady-state response on the system initial 

(displacement x(0), and velocity dx/dt(0)) conditions. For a linear damped system, the 

steady-state response behavior is independent of initial conditions and is uniquely determined 

by the excitation parameters only (Clough and Penzien, 1993). However, for a nonlinear 

system, under identical excitation parameters, the steady-state response, as demonstrated in 

Section 2.4 (Figs.2.3-4), may exhibit totally different behavior depending on the initial 

conditions specified. 
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In a phase plane (x, dx/dt), the set of phase points corresponding to all initial 

conditions leading the system to the same steady-state response forms a domain of attraction. 

The corresponding steady-state response is called the "attractor" of that domain. For a linear 

system, for all given initial conditions, the dynamic responses will converge the unique steady-

state response. Hence, only a single attractor exists, and the corresponding domain covers 

the entire phase plane. For a nonlinear system, different initial conditions may yield different 

steady-state responses. Hence, a number of "co-existing" attractors may result with the union 

of their corresponding (non-overlapping) attraction domains covering the phase plane. Note 

that the presence of co-existing domains implies the dependence of response behavior on 

initial conditions. However, it does not necessarily imply the existence of different types of 

response behavior (to be defined in the following). 

3.1.1 Co-Existing Attraction Domains in Primary Resonance Region 

A system is said to be in primary (or harmonic) resonance when the response 

frequency is equal to the excitation frequency, which is close to the linear natural frequency 

(i.e. Val) of the system (Nayfeh and Mook, 1979). Approximate steady-state solutions of the 

(harmonic) response obtained by the harmonic balance method (Jordan and Smith, 1987) are 

shown as (see Appendix B.1) 

2 

[ ( a -0 + 3 a3R 2) +cs2(.2 R2 = A 2 (3.1) 

where, A, w and 4 are the excitation amplitude, frequency and phase angle, respectively; al, 

a3 and cs are defined in Eq.(2.1); and R is the steady-state response amplitude. It has been 
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shown that, in certain excitation parameter region(s), there exist two response amplitudes 

corresponding to the solutions of Eq.(3.1), but only one response amplitude exists for other 

regions (Nayfeh and Mook, 1979; Jordan and Smith, 1987). 

Solution curves of the steady-state response amplitude as a function of the excitation 

amplitude with a fixed excitation frequency are called the amplitude response curves (Nayfeh 

and Mook, 1979). The amplitude response curves obtained by solving Eq.(3.1) is shown in 

Fig.3.1. Small amplitude responses exist only when the excitation amplitude is less than A2 

(right vertical line in the figure) and, thus, A2u serves as the upper boundary of the small 

amplitude domain. Similarly, the left vertical line in the figure, AIL, serves as the lower 

boundary of the large amplitude domain of the amplitude response curves. Between AIL and 

A2u, overlapping of the two domains indicates the co-existence of two primary resonance 

response attractors. Convergence of the system response to the large or the small amplitude 

attractor depends on initial conditions (Jordan and Smith, 1987). To clearly demonstrate the 

system response initial condition dependency and thus, the co-existing attraction domain 

phenomenon, the two attraction domains (shaded area) corresponding to an excitation 

amplitude (A = 0.8) in the overlapping area are shown in Fig.3.2. For convenience of 

notations, the large amplitude and small amplitude attraction domains are denoted as DL and 

Ds, respectively, for physical reasons. These domain will also be called D1 and D2, 

respectively, for convenience of probability computations in later sections. The intervals of 

the excitation amplitudes in which DL (or D1) and Ds (or D2) exist are denoted as DIA and 

D2A, respectively. That is, D1A = [AIL, °°) and D2A = (0, AA, as shown in Fig.3.1. 

Overlapping of D1A and D2A is observed. Note that, in attraction domains DI and D2, their 

corresponding steady-state response amplitudes form domains of response amplitude D1R and 
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D2R, respectively, as shown in Fig.3.1. In addition, within Dd (d =1, 2), DP and DdA is related 

by a one-to-one mapping characterized by the amplitude response curve associated with Dd 

considered. No overlapping of response amplitude domains is observed when the system 

responses are in their respective steady states. 

3.1.2 Co-Existing Attraction Domains in Subharmonic Resonance Region 

When the excitation frequency is close to an integer multiple of the system linear 

natural frequency, the system is said to be in subharmonic resonance (Jordan and Smith, 

1987). Typical subharmonic responses of orders 1/2 and 1/3 are shown in Figs.2.4(b) and 

2.4(c), respectively. Previous investigations show that, when the excitation frequency 6) is 

close to three times the system linear natural frequency Jai, five attraction domains co-exist 

(Thompson and Stewart, 1986). These attraction domains include two harmonic (large and 

small amplitude), two 1/2 subharmonic, and one 1/3 subharmonic responses. It is found that 

the two co-existing 1/2 subharmonic response attractors are of the same steady-state 

amplitude but with different biases in the time series. Thus, they are considered as being parts 

of the same attraction domain (i.e., they belong to the same =actor) henceforth in this study. 

For convenience of notations, the 1/2 and 1/3 subharmonic attraction domains are denoted 

as D112 and D113, respectively. Also, these domain will be called D3 and D4, respectively, for 

convenience of probability computations in later sections. 

Amplitude response curves of the system in the subharmonic resonance region are 

shown in Fig.(3.3). Due to the complexity of solving approximate steady-state response 

amplitudes in these attraction domains (see Appendix B.2), these curves are obtained by 

direct integration of Eq.(2.1) for simplicity. In the figure, the vertical dashed lines indicate 
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intervals of excitation amplitudes where different types of system response, or attraction 

domain Dd, exist. That is, DIA = [AIL, D2A = (0, A21], D3A = [A3L, A3u] and D4A = r&Am., 

A4ul, as shown in Fig.3.3. Overlapping of these domains are observed. In the region where 

the DdA (d = 1,2,3,4) overlap, such as [A3L, Aaj], different response attraction domains co­

exist and the occurrence of a particular system response depends on initial conditions (Jordan 

and Smith, 1987). To demonstrate the system response initial condition dependency (in this 

case, the co-existing domain phenomenon in the subharmonic resonance region), the four 

attraction domains, Dd (d =1,2,3,4), corresponding to an excitation amplitude (A = 9) in the 

region of [A3L, A4u] are shown in Fig.3.4. Note that, in each domain Dd (d =1,2,3,4), the 

steady-state response amplitudes also form a response amplitude domain DdR, as shown in 

Fig.3.3. However, only the amplitude response curves associated with DI and D2 characterize 

a one-to-one relationship between the steady-state response amplitude domain Do.: and the 

excitation amplitude domain Da, 2)A. In addition, unlike the case in the primary resonance 

region, response amplitude domains overlapping is observed among DdR (d =2,3,4). That is, 

a single response amplitude may belong to more than one attraction domains and thus, may 

correspond to different excitation amplitudes. 

3.2 Response Behavior within Attraction Domains 

3.2.1 System Total Energy and First-Return Map 

In each attraction domain, Dd, the system response behavior can be characterized by 

the system total energy evolution which can also be described in the first-return map 

associated with the response. The system total energy, TE, is defined as the sum of the 

potential energy, PE (a function of the response displacement), and the kinetic energy, KE 
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(a function of the response velocity). Thus, the system total energy can be expressed as 

1 1 1X2TE = PE + KE = a,x 2 + a3x 4
+ (3.2)

2 4 2 

Variation of the system total energy over a time interval At, denoted by ATE(At), depends 

on the interaction between the system response and the excitation, and can be expressed as 

ATE(At) = f At f(t) dx LAt cs *(t) dx (3.3) 

The first-return map (Drazin, 1992) is also referred to as the Poincare map 

(Thompson and Stewart, 1986; Jordan and Smith, 1987; Hagedorn, 1988). The map is 

obtained by sampling points along the response phase trajectory at a constant time interval 

equal to the excitation period T and plotting these points on a phase plane (x, dx/dt). The 

sample points are called the first-return points which represent the system phase status (x(nT), 

dx(nT)/dt) when the excitation completes one cycle. Variations of the first-return points are 

described by a first-return path. 

A fixed point on the first return map is one that the sample points repeatedly visit 

infinitely often. Finite fixed points in the first-return map indicate that periodic (subharmonic) 

solution of the system response is obtained (Jordan and Smith, 1987). In other words, the 

system is in a steady state because the response phase status over one response cycle remains 

constant. On the other hand, when the system is transient, the response phase status varies 

over every cycle and the system is said to be in a transient state. Thus, during a transient 
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state, the sampled first-return points also vary. Variations in the first-return points are 

described by a first-return path which converges to the fixed point(s). 

Note that, from Eqs.(3.2 and 3), variations in the system total energy associated with 

two consecutive first-return points represent the variations in the system total energy over one 

excitation cycle, or equivalently, ATE(T=27tho). As a result, variations in ATE(T) is also 

indicated by the first-return path. 

3.2.2 Response Characteristics 

In what follows, response characteristics of the system in each attraction domain is 

revealed by a domain dependent repeated pattern of the first-return pont variations. In 

addition, the characteristics can also be discerned by the relationship between the system 

response and the system total energy evolution. The system response corresponding to the 

first-return points in a complete pattern is said to be in a group and the number of first-return 

points in a pattern is referred to the group size. 

(1) Large amplitude harmonic domain: The phase trajectory of a large amplitude 

harmonic response is shown in Fig.3.5a. A first-return map corresponding to the rectangular 

region is shown in Fig3.5b. As the first-return points varying along the spiraling first-return 

path, a repeated pattern corresponding to a size-5 response group is observed (see point 0, 

5, 10 ..., or points 1, 6, 11, ..., in Fig.3.5b). In the system total energy evolution (Fig.3.5c), 

it is also observed that ATE(T) has a variation cycle of group size 5 which coincides with the 

variation cycle of the first-return point (Fig.3.5b). Thus, the behavior of the system response 

within a group determines the system total energy variation cycle and vice versa. In addition, 

a comparison of the response time series (Fig.3.5d) with the system total energy evolution 

http:Fig.3.5d
http:Fig.3.5b
http:Fig.3.5c
http:Fig.3.5b
http:Fig.3.5a
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show that the response local extrema always coincide with the system total energy local 

maxima. 

(2) Small amplitude harmonic domain: The phase trajectory of a small amplitude 

harmonic response is shown in Fig.3.6a. A first-return map corresponding to the rectangular 

region is shown in Fig3.6b. A repeated pattern of the first-return point variations 

corresponding to a response group size 3 is observed. By examining the system total energy 

evolution (Fig.3.6c), a system total energy variation cycle of period 3 is also observed within 

the response group. A comparison of the response time series (Fig.3.6d) with the system 

total energy evolution shows that the response local extrema are associated with the system 

total energy local minima. 

(3) 1/2 subharmonic domain: The phase trajectory of a 1/2 subharmonic response 

is shown in Fig.3.7a. A first-return map corresponding to the two rectangular regions is 

shown in Fig3.7b. Due to the tangling of the first-return path, only a small portion of the path 

is shown (dashed line). The first-return points are observed to jump consistently and 

consecutively between two branches (solid lines). Thus, a complete pattern of the first-return 

point variations consists of only two points, corresponding to a response group size 2. Within 

the response group, the system total energy variation completes a cycle as shown in the 

system total energy evolution (Fig.3 .7c). In the response time series shown in Fig.3 .7d, the 

response local extrema are observed to coincide with the system total energy local minima. 

(4) 1/3 subharmonic domain: The phase trajectory of a 1/3 subharmonic response is 

shown in Fig.3.8a. A first-return map corresponding to the three rectangular regions is shown 

in Fig3.8b. For clear demonstration of the trend in the variations of the first-return points, 

only part of the first-return path is shown in Fig.3.8b (dashed line). The first-return points 

http:Fig.3.8b
http:Fig.3.8a
http:Fig.3.7a
http:Fig.3.6d
http:Fig.3.6c
http:Fig.3.6a
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jump consistently and consecutively among three branches (solid lines) to form a complete 

pattern which corresponds to the response group size 3. The system total energy variation 

completes a cycle within a response group (period 3T) as shown in the system total energy 

evolution (Fig.3.8c). The response local extrema is also observed to coincide with the system 

total energy local minima as shown in the response time series (Fig.3.8d). Note that the 

system total energy variation cycle is the same for both the small amplitude harmonic domain 

and the 1/3 subharmonic domain. However, the first-return path in the small amplitude 

harmonic domain converges to one fixed points, whereas that of the 1/3 subharmonic domain 

converges to 3 fixed point. This information enables us to discern the two types of responses. 

3.2.3 Response Amplitude Domain Overlapping 

When the system is in a transient state, the response amplitudes vary continuously 

even under constant excitation parameters. In other words, the response amplitude domain 

(DA corresponding to an excitation amplitude Ai in DdA consists no long a single value (the 

steady-state amplitude). Thus, the one-to-one relationships described in Section 3.1 between 

D(1, 2)R and D(1, 2)A does not hold in this case. As a result, when the system is in a transient 

state, overlapping of response amplitude domains occurs not only among different attraction 

domains (i.e., DdR (d =1,2,3,4)), but also, within an attraction domain, among different 

excitation amplitudes (i.e., (DdR); (d = 1,2,3,4; AA e DdA)), as shown in Fig.3.9. 

3.3 Response Inter-Domain Transitions 

When the excitation amplitude varies out of the attraction domain boundaries defined 

in the amplitude response curves (Section 3.1), the system response may be attracted to a 

http:Fig.3.8d
http:Fig.3.8c
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competing attraction domain and a response inter-domain transition occurs. The attraction 

domain which the system settles to during the transition is referred to as the destination 

domain. In addition, the transition generally induces a large and obvious amplitude variation 

and is often referred to as the jump phenomenon. Note that, during the inter-domain 

transition, the system response is in a transient state which is often much more complex than 

that within an individual attraction domain due to the large number of possible destination 

domains. 

In the pdmaujeNnancearidon, two attraction domains are possible and thus, an exit 

of the system response from one of them leads the system into another one (see Fig.3 . 1). In 

the sultharmoicagsonangticgion, when the excitation amplitude exits from the small 

amplitude domain by crossing A2u (see Fig.3 .3), the system response goes to the large 

amplitude harmonic domain because it is the only existing domain for A > A2u. Similarly, an 

exit of the system response from the large amplitude harmonic domain by varying the 

excitation amplitude across AlL will induce the response amplitude to jump to the small 

amplitude harmonic domain. This is because the small amplitude harmonic domain is the only 

existing one for A < AIL. 

When the response inter-domain transition occurs at a domain boundary where 

multiple possible destination domains exist (A3u, A3L, A4u, and A4L) the energy level of the 

system in the transient state can be employed to determine the destination domain the system 

response will settle to. The system energy level can be represented by the system mean 

energy which is defined as the averaged system total energy over one excitation cycle. 

Fig.3.10 shows the relationship between the system total energy and the system mean energy. 

When the system response has a higher (lower) total energy local maxima, the system mean 

http:Fig.3.10
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energy is also higher (lower). In addition, when the system response has a higher mean 

energy, the response also has a larger amplitude as shown in Fig.3.10. 

(1) 1/2 subharmonic domain upper bound A3u At the 1/2 subharmonic domain upper 

bound A3u, the possible destination domains are the large and the small amplitude harmonic 

domains (see Figs.3.3 and 11). When the excitation amplitude increases from A < A3u (A = 

23, in this case, see Figs.3.11a) to A > A3u (A = 24, see Figs.3.11b), the 1/2 subharmonic 

domain evolves into either the small or the large amplitude harmonic domains. To determine 

the destination domain, the relationship among the system mean energy of a typical responses 

in the 1/2 subharmonic, the large and the small harmonic domains at A = A3u shown in 

Figs.3.12a and 3.12b is examined. Note that for time t greater than 100 sec., the 1/2 

subharmonic response is close to steady state. The system mean energy of a typical response 

in the small amplitude harmonic domain is observed to be less than that in the typical (almost) 

steady-state 1/2 subharmonic response as shown in Fig.3.12a. On the other hand, Fig.3.12b 

shows that the system mean energy (of a typical response) in the large amplitude harmonic 

domain is greater than that of the steady-state 1/2 subhannonic response. Thus, when the 

transient-state system mean energy is greater than the steady-state 1/2 subharmonic response 

mean energy at A = A3L, the large amplitude harmonic domain may likely be the destination 

of the inter-domain transition. Conversely, if the transient-state system mean energy is lower 

than the steady-state 1/2 subharmonic response mean energy at A = A3u, the system response 

will likely go to the small amplitude harmonic domain. 

(2) 1/2 subharmonic domain lower bound A3L At the 1/2 subharmonic domain lower 

bound A3L, the possible destination domains are the large and the small amplitude harmonic 

domains, and the 1/3 subharmonic domain (see Figs.3.3 and 13). However, a jump from a 

http:Fig.3.10
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1/2 subharmonic response domain to the large amplitude resonance response domain is highly 

unlikely due to the decreasing excitation amplitude (hence input energy). Thus, during the 

inter-domain transition, the system response may transition to either the small amplitude 

harmonic or the 1/3 subharmonic domain (see Figs.3.3) when the excitation amplitude varies 

from A > A3L (A = 7 in this case) to A < A3L (A = 6). Fig.3.14 shows that the system mean 

energy of a typical response in the 1/2 subharmonic domain is higher than those 

corresponding to the 1/3 subharmonic domain, which in turn is higher than those in the small 

amplitude harmonic domain. Therefore, it is assumed that, after the response exits from the 

1/2 subharmonic domain, it will first visit the 1/3 subharmonic domain before it can visit the 

small amplitude harmonic domain. 

(3) 1/3 subharmonic domain upper bound A4u At 1/3 subharmonic domain upper 

bound A3u, the possible destination domains are the large and the small amplitude harmonic 

domains and the 1/2 subharmonic domain (see Figs.3.3 and 15). Although the excitation 

amplitude is increasing (hence higher energy input), a jump from a 1/3 subharmonic response 

to a large amplitude resonance response is highly unlikely due to the large gap between the 

two energy levels and the presence of the 1/2 subharmonic domain in between. Thus, during 

the inter-domain transition, the system response may transition to either the small amplitude 

harmonic or the 1/2 subharmonic domain (see Figs.3.3) when the excitation amplitude varies 

from A < Aau (A = 12 in this case) to A > A4u (A = 13). It is noted in Fig.3.16 that the 

system mean energy of the 1/2 subharmonic response is higher than but close to that of the 

(almost) steady-state 1/3 subharmonic response for time t greater 100 sec. In the meantime, 

the system mean energy of the small amplitude harmonic response is observed to be in 

between those of (almost) steady-state 1/3 subharmonic response. Thus, the system response 

http:Fig.3.16
http:Fig.3.14
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will more likely go to the 1/2 subharmonic domain during the inter-domain transition at A = 

Aar if the transient-state system mean energy is greater than the steady-state 1/3 subharmonic 

response mean energy at A = A. Otherwise, the small amplitude harmonic domain will 

become the destination of the inter-domain transition. 

(4) 1/3 subharmonic domain lower bound AlL At the 1/3 subharmonic domain lower 

bound A4L, the possible destination domains are the large and the small amplitude harmonic 

domains (see Figs.3.3 and 17). However, as explained in (2), a jump from a 1/3 subharmonic 

response domain to the large amplitude resonance response domain is highly unlikely due to 

the decreasing excitation amplitude (hence input energy). Thus, during the inter-domain 

transition, the system response will likely transition to the small amplitude harmonic domain 

(see Figs.3.3) when the excitation amplitude varies from A > AlL (A = 3 in this case) to A < 

A4L (A = 3). 
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Figure 3.17 System response attraction domains (shaded areas) of (a) excitation 
amplitude A = 3, and (b) A = 2. (cs = 0.05, ai = 1, a3 = 0.3, o.) = 3.6, 4) = 0). 
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4. STOCHASTIC SYSTEM ANALYSIS METHODOLOGY
 

The dynamic response behavior of the nonlinear system (Eq.2.3) under narrowband 

stochastic excitations, f(t) (Eq .2.7), is investigated in this chapter. Here the focus is on 

deriving a probability distribution of the response amplitude (or maximum excursion) over a 

single excitation cycle. Due to successive variations in the excitation parameters (amplitude 

and phase angle) as described in Section 2.3, the system response undergoes successive 

transitions (or transient states) accordingly. To predict the system behavior under such 

excitations, a semi-analytical procedure is proposed in this study. The procedure is developed 

based on the stochastic properties of the narrowband process (Chapter 2) and the response 

characteristics of the nonlinear system discussed in detail in Chapter 3. 

4.1 Assumptions 

For the narrowband excitation process, f(t), described in Eq .(2.7), the oscillating 

frequency is assumed to be constant and equal to the peak frequency (of of the spectrum 

shown in Eq.(2.6). The effect of excitation frequency variations on the response behavior is 

taken into account through the consideration of the excitation phase angle variations (Rice, 

1954; Stratonovich, 1963; Langley, 1986). 

For the response process, it is assumed that the prominent deterministic system 

response behavior described in Chapter 3, including co-existing attraction domains, inter-

domain transitions and the domain-dependent characteristics, are preserved in the narrowband 

random excitation environment. Specifically, response inter-domain transitions occur only 
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when the excitation amplitude crosses domain boundaries prescribed in the amplitude 

response curves (Figs.3.1 and 3). Also, in the successive transient states, initial conditions 

of each transient response are assumed to be uniformly distributed over the phase trajectory 

of the previous response cycle. 

From a stochastic point of view, the probability transitions of the excitation amplitude 

and phase angle processes and the response amplitude process are assumed to be ergodic 

Markov processes. 

4.2 Excitation and Response Amplitude Probability Descriptions 

4.2.1 Bandwidth Parameter and Its Influence on Response Behavior 

The degree of randomness in a narrowband stochastic excitation is characterized by 

the bandwidth. For a finite bandwidth excitation, the randomness is characterized by the 

bandwidth parameter which controls the gradual variations in the excitation parameters, i.e., 

amplitude and phase angle. In the limit the excitation bandwidth approaches zero, 

randomness vanishes and the excitation becomes purely deterministic sinusoidal oscillations. 

In this case, the excitation parameters are constant and the corresponding steady-state 

response can be fully predicted as described in Chapter 3. 

Suppose that the parameters of a deterministic excitation are constant over a long 

duration, and then change values abruptly (only once) and remain constant afterwards for a 

long duration. The corresponding system response will first be in a stead-state with amplitude 

and phase angle corresponding to the first steady-state excitation, and then undergoes a 

transient state (after the abrupt excitation parameter change) in the following few response 
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cycles. Finally, the system response will converge to a steady state corresponding to the final 

constant excitation parameters. 

If the excitation parameters vary gradually but continuously as in the finite-bandwidth 

narrowband case, as a first approximation, the system response may be assumed to undergo 

successive transient states, with constant excitation parameters within each response cycle. 

In a transient state, the system response behavior depends on the instantaneous values 

of the excitation and response parameters as well as the variations in the excitation 

parameters. Thus, the response behavior will also depend on the excitation bandwidth within 

an attraction domain, which controls the instantaneous values and variations in the excitation 

parameters. In addition, the response inter-domain transition (Section 3.3) depends on the 

excitation amplitude variations and thus, the excitation bandwidth. Therefore, to investigate 

the response behavior under narrowband excitations, the stochastic behavior of the variations 

in the excitation parameters needs to be characterized first. Then, by the Markovian 

assumption of both the excitation amplitude and the response amplitude processes, a 

governing equation of the response amplitude probability transition can be formulated. 

4.2.2 Stochastic Behavior of Excitation Parameters 

Recall that a narrowband excitation f(t) is close to sinusoidal oscillations at the peak 

frequency (Ochi, 1990). In addition, an associated envelope process is a smooth curve joining 

the peaks or the local maxima of f(t), which are the amplitudes of the sinusoidal oscillations 

(Langley, 1986). Thus, the amplitude process can be approximated by the envelope process. 

To investigate the stochastic behavior of the amplitude and the phase processes, a four 

dimensional joint probability density function of the random variables representing the 
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excitation amplitudes and phase angles corresponding to consecutive excitation cycles, i.e., 

A.(1), A(2), 4(1) and 4)(2), can be obtained as (Ochi, 1990) 

p(A. ),(/)(1),A (2)4(2)) 

A (I)A (2) l -1 {
Of

2[(A ())2 +(A(2))2}A (1) (2)A [pcos(4(2)-4()A(2)-4(1)exp)sn(4 )1} 

47c2021 2M 

0< A"), A(2) < Co Os 4)(1), 4)(2) < 21L (4.1) 

where, 

p = f Sii(o))cos[(6)--6.9T] d(A) 

r VG)) sin[(6)-(A9T] du) (4.2) 
J1) 

OP= P2- A2 

and, superscripts (1) and (2) indicate that the quantities are in the current and the next 

excitation cycles, respectively; S0(w) is the one-sided spectral density function of gt), and 

can be obtained from Eq.(2.4); cof and of are the excitation peak frequency and variance, 

respectively, and T is the excitation period equal to 27t/o)f. Note that the excitation bandwidth 

dependency of Eq.(4.1) is embedded in Eq.(4.2). Ifa random variable (1) is introduced to 

represent the phase angle difference 4)(2) - 4)(1), the joint probability density function of A(1), 

A(2) and 1 can be obtained from Eq.(4.2) by the transformation of the random variables (Ochi, 

1990) 

http:Sii(o))cos[(6)--6.9T
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p(A (0, A (2),(1)) 

A (1)A (2) 1 Icrf2 to. ( 1)2 +0.(2))21-2Ai(1)Ai(2)[pcos(0)+Xsin()1}exp
2nAl 2gT 

-21.c s s 27t 

In addition, the joint probability density function of the amplitude AP) and A(2) can be obtained 

by integrating Eq.(4.1) with respect to 4)(1) and 4)(2) and expressed as 

AMA(2) 1 2r ( AWA(2)p(A (1),A (2)) exp of [(A (1))2 + (A (2)21} 4 21 
A (4.4)

621 2r4 

where, 4 is the modified Bessel function of order zero. The excitation bandwidth dependency 

of Eq.(4.1) is transferred to Eqs.(4.3-4). 

Under the Markovian assumption, the stochastic behavior of the excitation amplitude 

process is characterized by a probability transition (or propagation) density function 

represented by the Markov state density function (Gillespie, 1992) as 

P(A (2) I A(0)- P(A (1), A (2)) 
(4.5)

p(A (1)) 

where, p(A(1)) is a Rayleigh-distributed marginal density function of p(A(11, A(2)). It can also 

be realized that Eq.(4.5) is a conditional probability density function. Thus, if the probability 

density function of V') is known, the probability density function of A(2) can be obtained as 
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P(A (2)) = f dA(A(2)IA(l))P(A('))dA(') (4.6) 

4.2.3 Response Amplitude Probability Description 

For the response amplitude process, the Markovian assumption also enables a 

probability transition density function to characterize the stochastic behavior. The response 

amplitude probability transition is governed by 

p(R (2)) = f -p(R (2) I R (0)p(R (I))dR (1) (4.7) 

where, p(R(21 Rw) is the response amplitude probability transition (or conditional) density 

function; RU) and IV) are random variables representing the response amplitudes 

corresponding to the excitation cycles associated with A(') and A(2), respectively, and p(le") 

and p(R(2)) are their corresponding probability distributions. Note that, for a stationary 

response process, the amplitude probability distribution p(R) is time invariant. In other 

words, the response amplitude probability distributions p(R"')) and p(R(2)) in Eq.(4.6) are 

identical. 

As pointed out previously, the system response undergoes successive transient states 

when the excitation is a narrowband stochastic process. When the system response is in a 

transient state, the response amplitude domains DdR corresponding to different co-existing 

response attraction domains Dd may overlap, as depicted in Section 3.2.3. In addition, within 

an individual attraction domain, Dd, response amplitude domains (DdR)A corresponding to 

different excitation amplitudes A belonging to the same excitation amplitude domain DdA 
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associated with the attraction domain may overlap also. However, from probabilistic and 

physical points of view, occurrence of a response amplitude R being in the domains, DdR, 

corresponding to different attraction domains, Dd, are mutually exclusive events. Moreover, 

within an individual attraction domain Dd, occurrences of R being in the response amplitude 

domains, (DP), corresponding to different excitation amplitudes are also mutually exclusive 

events. Note that there exist finite number of co-existing attraction domains, Dd and thus, DdR 

and DdA. Therefore, according to the Bayes formula, the response amplitude probability 

distribution can be expressed as (Ochi, 1990) 

P(R (z)) = P(R (z) I DdR)P(DdR), z =1, 2 (4.8) 
d I 

where, p(DdR) is the probability that the system response amplitude is in the domain DdR, 

which is equivalent to the probability that the system response is in the attraction domain Dd, 

and {p(11(z) I DP), z = 1, 2) are the conditional probability distributions of the response 

amplitudes given that the system responses are in the attraction domain, Dd. In addition, 

within an attraction domain, the response amplitude probability distribution can also be 

expressed as 

POI (z) I DdR) = f R (z) I (DdR)A) P((DdR)A )d (DdR)A, z = 1,2 (4.9) 

where, {P(It(z) I (DdR)A), z = 1, 2) are the probability distributions of the response amplitudes, 

Itz), in the response amplitude domain, (DdR)A; and p((DdR)A) is the occurrence probability 
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of (DdR)A. Note that inffD 1.1d(D 1 )A} is equivalent to {p(A DdA)dA} which stands for thedR,", dR,A. 

probability of the excitation amplitude being equal to A given that A belongs to DdA. The 

integration of Eq.(4.9) is carried out over the entire domain DdA. Thus, Eq.(4.9) can be 

rewritten as 

z= 1,2p(R (z)IDdR) = f I)( R (z) I (DdR)A) P(A I DdA ) dA, (4.10) 
DA 

The system characteristics obtained in Chapter 3 show that the system response may 

exhibit inter-domain transitions among co-existing attraction domains, Dd, due to variations 

in the excitation amplitude. In addition, within a response attraction domain, the system 

behavior exhibits domain dependent characteristics. As a result, the response amplitude 

probability transitions may occur among co-existing attraction domains. Moreover, within 

an attraction domain, the response amplitude probability transition is governed by a domain 

dependent probability transition density function. 

4.3 Inter-Domain Transition of Response Amplitude Probability 

4.3.1 Governing Equation of Inter-Domain Probability Transition 

For a stationary Markov response process, the response inter-domain transition (or 

the amplitude jump phenomenon) among finite number of domains, DdR, can be modeled as 

a stationary Markov process with discrete states (Gillespie, 1992) or a stationary Markov 

chain (Ochi, 1990; Bouleau and Lepingle, 1994). To evaluate the probability, p(Dd), of the 

system response being in an attraction domain Dd, or equivalently, p(DdR) in Eq.(4.8), the 
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characteristics of the response inter-domain transition behavior obtained in Section 3.3 are 

employed. 

The stochastic behavior of the response inter-domain transition (or amplitude jump) 

is characterized by an inter-domain transition probability matrix K. Thus, the governing 

equation of the probability inter-domain transition can be expressed as 

p(D (2)) = K P(D (1)) (4.11) 

where, 13(D(1)) and j3(D(2)) are probability vectors of the system response being in each 

individual attraction domain in the current and the next excitation cycles, respectively. The 

dimensions of p and K are (n x 1) and (n x n), respectively, where n is the number of co­

existing attraction domains. Thus, Eq.(4.11) can also be written as 

{P;(13n} = [ iii )1{ Pi(D;(1)}, i, j = 1,...,n (4.12) 

where, p(ilj), an element of the inter-domain transition probability matrix K, is a conditional 

probability that the system response is going to the attraction domain given that it is 

currently in the jth attraction domain; pi(D;(2)) and OD?), which are the and jth elements 

of the probability vectors 15(3(2)) and 13(D"), respectively, stand for the probabilities of the 

system response being in the ith and jth attraction domains in the next and the current excitation 

cycles, respectively. When the system is in the primary resonance region, n = 2 and the co­

existing attraction domains are the large amplitude (D1 or DL) and the small amplitude (D2 or 

Ds) harmonic domains. When the system is in the subharmonic resonance region, n = 4 and 

http:Eq.(4.11
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large amplitude harmonic, small amplitude harmonic, 1/2 subharmonic (D3 or D12) and 1/3 

subharmonic (D4 or D113) attraction domains co-exist. 

Note that under stationary condition, 13(Dw) is equal to 13(13(2)). Thus, to obtain a 

stationary probability vector 13(D) = {pi (131)} from Eq.(4.11 or 4.12) is equivalent to obtain 

the eigenvector of the transition matrix K corresponding to the unit eigenvalue. In fact, the 

probability, p(Dd), of the system response being in an attraction domain Dd is equal to the 

corresponding element of the normalized eigenvector 0(D). In other words, 

Pd(Dd)
p(Dd) 

(4.13) 

4.3.2 Evaluation of Transition Matrix K 

The conditional probabilities, NOLO, can be evaluated by considering the mechanism 

of the system response inter-domain transition behavior depicted in Section 3.3 and the 

stochastic behavior of the excitation amplitude characterized by Eqs. (4.4 -6) in Section 4.2.2. 

For the system response to stay in the same attraction domain, Dd, in the next excitation cycle, 

the excitation amplitude must remain within the same domain, DdA, in the next cycle. The 

probability, p(AIDdA), of the excitation amplitude being in the domain DdA can be expressed 

as 

p(A I DdA) P(A) , A e DdA 
f p(A) dA (4.14) 

DdA 

http:Eq.(4.11
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where, p(A) is a Rayleigh distribution. From Eqs.(4.4-6), the probability distribution, p(A(2) 

I Au) E DdA), of the excitation amplitude in the next cycle given that the excitation amplitude 

belongs to DdA in the current cycle can be obtained by 

p(A(2)1A(1)eDdA)= f p(A(2)IA(I)) p(A(1)1DdA)dA(1) 
(4.15)

Alld 

Thus, the probability that the system response remains in the same attraction domain, Dd, in 

the next excitation cycle reads 

p(R(2)EDdRIR(1)EDdR)= p(A(2)1A(1)EDdA)dA(2) 
(4.16) 

DdA 

Note that p(R(2) e Dd IR") E Dd) is equal to the diagonal elements of K, Mill), in Eqs.(4.11­

12). The probability, p(Edu), that the system response exits from the attraction domain Dd at 

the domain upper limit Adu is equivalent to the probability that the excitation amplitude A(2) 

is greater than Adu. Thus, from Eq.(4.15), p(EdU) can be obtained by 

P(Edu) =1 f AdU p(A (2)1 A(1) e DdA) dA (2) (4.17) 

Accordingly, the probability, p(Ea), that the system response exits from the attraction domain 

Dd at the domain lower limit kL can be obtained by 

P(Edd = f p(A (2) 1 A 0) E DdA) dA (2) (4.18) 

http:Eq.(4.15
http:Eqs.(4.11
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Note that, after the system response exits from an attraction domain, there may exist 

multiple possible destination domains of the inter-domain transition. In this case, the 

transient-state system mean energy, or equivalently, the transient-state system response 

amplitude is employed to determine the attraction domain which the system will settle to 

during the inter-domain transition, as depicted in Section 3.3. The conditional probabilities 

pu(iij) in Eq.(4.12) depend on the domain exit probabilities, p(EdL) and p(Edu), and the 

probability that an attraction domain becomes the destination domain. Detailed procedure 

of the evaluation of Mb) is discussed in Appendix D. 

4.4 Intra-Domain Transition of Response Amplitude Probability 

In this section, the behavior of the response amplitude probability transition taking 

place within an attraction domain, Dd, i.e., intra-domain transition, is investigated. Recall 

from Section 4.2.2 that the response amplitude probability intra-domain transition is governed 

by a domain dependent transition density function. 

4.4.1 Governing Equation of Probability Intra-Domain Transition 

Recall from Eq.(4.10) that the conditional probability, {p(R(z) I DdR), z=1, 2), of the 

response amplitude, Rm, being in the domain DdR is an integral of the probability that lez) is 

in the response amplitude domain (DdR)A Corresponding to all the excitation amplitudes in the 

domain Dt. Thus, due to variations in the excitation amplitude, transitions of the response 

amplitude probability will occur among response amplitude domains, (DdR)A, corresponding 

to different excitation amplitudes within DdA. From Eq.(4.7), the governing equation of the 

intra-domain probability transition from (DdR)A(1) at the current excitation cycle to (DdR),e) at 

http:Eq.(4.10
http:Eq.(4.12
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the next excitation cycle reads 

P(R(2)1A(1),A(2),Da5= f P(R(2)1R(1),A(1),A(2),DdR)P(R(1)1(DdR)(r)dR(1) 
(4.19) 

(13,1)(,) 

where, p(It(2) I It(1), A(1), A (2), DdR ) is a domain dependent response amplitude probability 

transition density function. 

Note that the probability distribution of the response amplitude p(I1(2) I (DdR)A(2)) may 

be transited from all P(Rw I (DdR)A(1), Aw DdA) and is the union of all the possible transition. 

The events of these transitions are mutually exclusive and thus, according to the Bayes 

formula (Ochi, 1990), p(11(2) I (DP)A(2) ) can be expressed as 

p(R (2) I (DdR)(A2)) pot (2) IA (0, A (2), DdR) p(A (1) / DdA)dA (1) 

A
(4.20) 

Dd 

By substituting Eqs.(4.19 and 4.20) into Eq.(4.10), the governing equation of the response 

amplitude probability inside-domain transition yields 

pot (2)1Dda)=pf if p(R(2)1R(1),A(04(2),Dda)ptit (i) I aDdROdR(1)] 
(4.21) 

p(A 0 )1DdA) dA (11 p(A (2) I DdA) dA (2) 

4.4.2 Evaluation of Intra-Domain Probability Transition 

The procedure of evaluating Eq.(4.21) is discussed in this section. From a 

deterministic point of view, the variation in the response amplitude is a function of (1) the 

http:Eq.(4.21
http:Eq.(4.10
http:Eqs.(4.19
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excitation amplitude and the response amplitude in the current excitation cycle, (2) variation 

in the response parameters (amplitude and phase angle), and (3) the system phase status (x, 

x) at the time when the excitation parameter variation takes place, which is also considered 

as the initial condition of the following transient-state response. That is, 

10)=g(R(1),A(1),A(2),(1)=4)(2)-4)(1),X °) (4.22) 

where, R") and R(2) are response amplitudes in the domains (3dR)A(') and (DdR)A(2), 

respectively; (I) is the variation in the excitation phase angle; and X° stands for the system 

initial condition. Note that the function g is domain dependent. If the response amplitude 

R(1), the excitation amplitudes A") and A(2) are fixed, then R(2) can be considered as a function 

of 4) and X° only, i.e., R(2) = g((, X°) where g is a domain dependent function. As a result, 

the probability distribution of R(2) can be derived from the joint probability distribution of (1) 

and X° through the functional relationship R(2) = g(4), X'), given that 11"), A jo) and A;(2) 

fixed. However, up to today, an explicit expression of the function g (or g) is not available, 

and thus, a direct derivation of p(R(2) I R(1), A"), A(2), DdR) from p(4), X° I R"), A"), A(2), DdR) 

is not feasible. To obtain p(R(2) R "', A"), A(2), DdR), numerical techniques are required. 

To facilitate numerical evaluation of p(R(2) 11"), A"), A(2), DdR), the response 

amplitude domains t(DP)A4), z----1,2), the system initial condition X° domain, the excitation 

phase angle difference (I) domain, and the excitation amplitude domain DdA are discretized. 

The value of gotsp, x,10°) = Rur2(2), given R(1), A;(1) and A;(2), can be obtained by direct 

numerical integration of Eq.(2.3), where the subscripts indicate sample points of their 

corresponding discretized random variables, (1), X°, R(2), R(1), and DdA, respectively. Thus, 

x,.. Runci), 
A;''', A1(2), DdR) = Rurio), A Jo), A;(2), DdR).p( `2'1 
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The probability distribution of the phase difference 01) is characterized by Eq.(4.3) and 

depends on A;(1) and A.,(21 only. The initial condition, X°, is assumed to be uniformly 

distributed over the domain which is the phase trajectory of the current response cycle. In 

addition, (I) and X° can be assumed as statistically independent because the excitation 

properties do is not affected by the system response and the uniformly distributed system initial 

condition is affected by neither the variation in the excitation parameters nor the system 

response. Thus, 

P i,ur2 "-url 

t +A(D/2 
(4.23)A.(1) A (2) 01 

11-A j
Rt1 1), A A (2) Ddj(I)=14 (kr Xu: r i d (1) 

(1.) (2)mx p(Pijs , Ai ) 
ow, AtD/2 

where, mx is the total number of intervals in discretized X° domain; p(A;111, AP), 0) and 

j(1), Ai(2)-,) be obtained by Eqs.(4.3-4). By varying Coup and Xuo° over their entire 

respective domains and lumping all computed p(Rur2(2)I 12('), Ai(1), Ai(2), DdRN) a probability 

vector of the response amplitude 13( R(2) 1 Rur1('), Ai(1), A;(2), DdR) can be obtained. 

Note that, after 15( le') I Ici"), A?), AP), DdR) is obtained, the discrete form of 

Eq. (4.19) can be expressed as 

MR 

fl(R (2)1 A JO), Ai(2), DdR) E (2)1 krli.), Ai(1), Ai(2), DdR) p(Rirli) (0dil s (1 1') (4.24) 
url = 

where, mR is the number of intervals in the discretized (DdR)A") domain. Accordingly, the 

discrete forms of Eqs.(4.20-21) can be expressed as 
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m A 

fi(R (2)1 (DdR)n = E 13(R (2) I Ar, A;(2), DdR) p(Aj(1) I DdA) (4.25) 
=1 

MA 

1)(R (2) 1DdR) = E 13(R (2) 1 (DNA2)) P(A1 2) I DdA) (4.26) 
i = 1 

where, mA is the number of intervals in the discretized excitation amplitude domain, DdA and, 

from Eq.(4.14), 

p(AiT DdA) = f p(A I DdA)dA, z = 1,2 (4.27) 

4.5 Stationary Response Amplitude Probability Distribution 

To obtain the probability vector P(It(2)iDdR) or IXR(2)1(DdR)A(2)) in Eq.(4.26), the 

probability p(R..1(1)1(DdR)A(1)) in Eq.(4.24), or equivalently, the probability vector 

13(R(11(DdR)A(1)) and thus, ii(R(1)1DdR), needs to be known in advance. Note that, as 

01.(2)1(DdR) .(2),
) in Eq.(4.25), 0111(1)1(DdR)A(1)) is also a desired solution of the transition from 

its previous excitation cycle and thus, is unknown. However, due to stationarity of the 

response process, the fi(R(2)1(DP)A(2)) can be obtained by an iteration procedure. 

Since the response process is stationary, fi(lt(2)1DdR) is equal to ii(R(1)IDdR) because the 

response amplitude probability distribution is time invariant, as described in Section 4.2.2. 

By examining Eqs.(4.10 and 4.26), in order to have a time invariant {f3(R9DdR), z=1,2), 

http:Eqs.(4.10
http:Eq.(4.25
http:Eq.(4.24
http:Eq.(4.26
http:Eq.(4.14
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13(R(z)1(DdR)(z)) must be also time invariant because the excitation process is stationary and 

thus p(AIDdA) is time invariant. As a result, f3(1Z(2)1(DdR)A(2)) is equal to 13(11(1)1(DdR)A(1)) when 

the response amplitudes R(1) and le) correspond to the same excitation amplitude A. 

An iteration procedure may start with estimations of0(Ita)1(DP)A(1)) corresponding 

to all excitation amplitude in DdA. For convenience and efficiency, the first estimation of 

p(IVII(DdR)A(1)) can be obtained by Eqs.(4.24-25) with the system responses being currently 

in their steady-states. That is, 

9(R (2) I Ai( ), A;(2), DdR) = I3(R (2)1(R (S))(1), Ai(1), Ai(2), DdR) (4.28) 

and 

MA 

(DdR)(:)) sot (2) (DdR)A(2)) E srot (2), Al(2), DdR) p(Ai( 1 )
P(R (1 ) I ~ A) (4.29) 

j = 1 

where, (It(s))(1) in Eq.(4.28) is the steady-state response amplitude corresponding to the 

excitation amplitude A?) and its occurrence probability is equal to 1; 13(Rwl(DdR)Aw) is an 

estimation off(11(11(DdR)A(1)) x. Numerical results of Eq.(4.29) for the system in four different 

attraction domains are shown in Figs.4.1a-4.4a. 

Letl3u..1(ke(11(DdR)A(1)) be an element offi(R(1)1(DdR)A(1)), then the first iteration result 

obtained by Eq.(4.24) becomes 

MR 
(2) 1Ai(1), Ai(2), DdR) E A2), DdR) (R1(1111) (DdR)(1).

) (4.30) 
url = 1 

http:Eq.(4.24
http:Figs.4.1a-4.4a
http:Eq.(4.29
http:Eq.(4.28
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Numerical results of Eqs.(4.28 and 4.30) corresponding to the cases shown in Figs.4.1a-4.4a 

are presented in Figs.4.1b-4.4b. It can be observed that the results obtained by Eq.(4.28) 

agrees well with that by Eq.(4.30). The good agreements indicate that 13(Rwl(DdR)A(1)) is a 

reasonable approximation to ii(R(11(DdR)A(1)). This is because a substitution of Eq.(4.30) into 

Eq.(4.25) will produce probability distribution close to the results obtained by Eq.(4.29) when 

WI) and R(2) correspond to the same excitation amplitude. Thus, the condition of stationary 

is satisfied. 

By recognizing thatf(11°)1(DP)e) is a reasonable approximation to 13(Rwl(DdR)A(1)), 

the approximate stationary response amplitude probability distribution within an attraction 

domain can be obtained from Eqs. (4.26 and 4.29) and expressed as 

mA 

f)(1 (1)1 DdR) = f(R (2)1 DdR) = E I3(R (1)1 (DdR)A P(Ai(1) DdA) (4.31) 
j = 1 

In addition, from Eqs.(4.8, 4.13 and 4.31), the overall stationary response amplitude 

probability distribution can be approximated as 

13(R (") = (2)) = ii(R (1) I DdR) p(Dd) (4.32) 
d = 1 

http:Eq.(4.29
http:Eq.(4.25
http:Eq.(4.30
http:Eq.(4.30
http:Eq.(4.28
http:Figs.4.1b-4.4b
http:Figs.4.1a-4.4a
http:Eqs.(4.28
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Figure 4.1 Response amplitude probability distribution in the large amplitude harmonic
attraction domain. (a) f)(R9(1)111)A")), and (b) 5r(R(2)1Ai(1), A;(2), D1R) from Eq.(4.28) and 
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http:Eq.(4.30
http:Eq.(4.28
http:Eq.(4.28
http:Eq.(4.30
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5. STOCHASTIC RESPONSE BEHAVIOR AND PREDICTIONS
 

Response behaviors of the nonlinear structural system subject to narrowband 

stochastic excitations is investigated via simulations to verify the stochastic system 

characteristics assumed in the development of the semi-analytical procedure. In addition, to 

demonstrate the accuracy of the procedure, predicted response amplitude probability 

distributions are presented and compared to simulation results. Numerical simulations are 

conducted by directly integrating Eq.(2.3) with the narrowband excitation fit) modeled by the 

Shinozuka (1970) formulation (Section 2.3.3, Eq.(2.11)). 

5.1 Stochastic Response Behavior 

5.1.1 Jump Phenomena and Subharmonic Responses 

Jump Phenomena -- The system response under a narrowband excitation (shown in Fig.5.1a) 

exhibits amplitude jumps between two distinct levels. To depict the mechanism of the jump 

phenomenon, an amplitude response map is employed. The map is obtained by plotting the 

excitation amplitudes versus the corresponding measured response amplitudes, as shown in 

Fig.5.1b. In addition, the corresponding amplitude response curves of the system (Section 

3.1) are presented as the solid lines in the figure (see Fig.3.1 for a clear demonstration). From 

the figure, it is revealed that the characteristics of the response inter-domain transition (jump 

phenomenon) behavior depicted in Section 3.3 is preserved in a narrowband excitation 

environment. Namely, the system response goes from the large amplitude domain to the small 

amplitude domain when the excitation amplitude A varies from greater than to less than the 

http:Fig.5.1b
http:Fig.5.1a
http:Eq.(2.11
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Figure 5.1 (a) Time series of a narrowband excitation (top) and corresponding response 
(bottom). (b) Amplitude response map corresponding to (a). {cs = 0.05, a1 = 1, a3 = 0.3, 
(of = 1.6, af2= 1.57, y = 0.001). 
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large amplitude domain lower bound Au. Similarly, the system response goes from the small 

amplitude domain to the large amplitude domain when the excitation amplitude, A, varies 

from less than to greater than the small domain upper bound A2u. 

Subhannonic Responses Repeated occurrence of the 1/2 and 1/3 subharmonic responses 

under narrowband excitations can be observed in Figs.5.2a and 5.2b. The system responses 

oscillate at two distinct amplitude levels (i.e., a similar jump phenomenon to that in the 

primary resonance region shown in Fig.5.1a). Existence of the subharmonic responses is 

obscured in the time series due to the response amplitude domains DdR (d =2,3,4) overlapping 

among the small amplitude harmonic, 1/2 and 1/3 subharmonic domains (Section 3.2.3). 

However, the existence of these responses can be detected through their corresponding 

amplitude response maps (Figs.5.3a and 5.3b) by observing that some of the points stay 

closely to the subharmonic amplitude response curves (shown as the solid lines, see also 

Fig.3.3 for clear demonstration). Note that, for an excitation amplitude A, the corresponding 

points in the neighborhood of a response amplitude curve form the response amplitude 

domain (DdR)A in the attraction domain Dd. 

From the amplitude response maps, it is observed that the system response may enter 

the 1/2 or the 1/3 subharmonic domain when an exit from the large amplitude harmonic 

domain occurs. As a result, the subharmonic responses (1/2 or 1/3) may occur repeatedly, 

although the duration of stay in each visit of the system response in these domains may be 

short. In addition, a response inter- domain transition from the 1/2 subharmonic domain to 

the large amplitude harmonic domain is also observed in Fig.5.3b when an exit from the 1/2 

subharmonic domain occurs at the domain upper boundary. Thus, the response inter-domain 

http:Fig.5.3b
http:Figs.5.3a
http:Fig.5.1a
http:Figs.5.2a
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transition behavior depicted in Section 3.3 is also preserved in the narrowband excitation 

environment when the system is in the subharmonic resonance region. 

Note that the existence of the 1/3 subharmonic response under a narrowband 

excitation was also observed in simulations conducted in previous studies (Davies and Rajan, 

1988; Francescutto, 1991) when an extremely small excitation bandwidth and special system 

initial conditions are employed. However, it was concluded that the 1/3 subharmonic 

response only exists in the beginning of a response realization and, once it disappears, it will 

not be observed. The contradiction in the conclusion of repeated occurrence of the 

subharmonic response is mainly due to different simulation durations employed. In this study, 

the simulation duration is equal to 12,000 excitation cycles which is significantly longer than 

those employed in previous studies (600 excitation cycles). 

5.1.2 Attraction Domain Dependency 

Dependency of the system response characteristics on the attraction domains Dd can 

be observed in the amplitude response maps ( Figs.5.1b, and 5.3a-b). Degrees ofthe response 

amplitude concentration in (Dd' )A are found to depend on the attraction domains Dd. Note 

that the randomness in the excitation is independent of the response attraction domains. 

Therefore, dependency of the degree of response amplitude concentration in (Dd' )A on the 

response attraction domain Dd indicates the dependency of the system characteristics and 

thus, the intra-domain probability transition behavior on Dd. 

http:Figs.5.1b
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5.1.3 Effect of Varying Excitation Bandwidth 

The effect of varying excitation bandwidth on the response behavior is demonstrated 

in Figs.5.4-5. It is observed that randomness in the excitation increases when the excitation 

bandwidth increases. Due to the increasing excitation randomness, the response time series 

exhibits more frequent amplitude jumps between two distinct levels. In addition, the total 

time of the response in higher amplitude level is also observed to increase as the excitation 

bandwidth increases. As a result, the probability of the system response in the higher (lower) 

amplitude level increases (decreases) as the excitation bandwidth increases. Therefore, the 

response inter-domain transition probability and thus, the response amplitude probability 

distribution is related to the excitation bandwidth. Note that, for the system in the primary 

resonance region (Fig.5.4), the higher and lower amplitude levels correspond to the large 

amplitude domain, DI', and small amplitude domain, D2R, respectively. When the system is 

in the subharmonic resonance region, the lower amplitude level shown in Fig.5.5 includes the 

small amplitude harmonic domain, D2R, the 1/2 subharmonic domain, D3R, and 1/3 

subharmonic attraction domain, D4R, as depicted in Section 5.1.1. Whereas, the higher 

amplitude level corresponds to the large amplitude harmonic domain, DIR. 

In the amplitude response maps shown in Figs.5.6-7, an effect of increasing excitation 

bandwidth on the system response behavior is demonstrated by the decrease in the degrees 

of the response amplitude concentration in the domains (DdR)A. As a result, the variance of 

the response amplitude in DdR increases with increasing excitation bandwidth. Therefore, the 

response intra-domain probability transition and thus, the response amplitude probability 

distribution is also affected by variations in the excitation bandwidth. 
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Figure 5.5 (a), (b), (c) and (d): system response under varying excitation bandwidth in the 
subharmonic resonance region. Time series of narrowband excitation amplitude (top) and 
corresponding response amplitude (bottom). {cs = 0.05, al = 1, a3 = 0.3, o.)f- = 3.6, 6f2 = 
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Note that a less obvious effect of varying the excitation bandwidth on the response 

behavior is the shifting of the domain boundaries, AdL and Adu, which are employed to 

characterize the response inter-domain transition behavior. In Figs.5.6-7, the domain 

boundaries correspond to the excitation peak (or central) frequency, cot, which is assumed to 

be constant. As a result, Ate, and Ad, are also assumed to be time invariant. However, when 

the excitation bandwidth increases, variations in the excitation frequency may induce shifts 

of these boundaries and thus affect the response inter-domain transition probability. 

5.1.4 Effect of Varying Excitation Variance 

By reducing the variance of the excitation process (or the input energy level), the total 

time of the system response in the lower amplitude level increases as shown in Figs.5.8-9. 

The excitation bandwidth employed is fixed in these cases, and thus, the randomness in the 

excitations shows no significant change. Consequently, the frequency of the response 

amplitude jumps is approximately unchanged. However, the system response stays longer in 

the lower amplitude level in every visit with decreasing excitation variance. That is, the 

probability of the system response in the lower (higher) amplitude level increases (decreases) 

as the excitation variance decreases. Therefore, the response inter-domain transition 

probability is affected by the excitation variance. Note that, in the amplitude response maps 

shown in Figs.5.10-11, the density of the points in the lower part increases as the excitation 

variance decreases. Variations in the density of the amplitude response maps also 

demonstrate the influence of varying excitation variance on the system response. 
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5.2 Predictions of Stochastic Nonlinear Response Behavior 

The capability of the proposed semi-analytical method in characterizing the stochastic 

nonlinear response behavior depicted above will be investigated in this section through several 

case studies. In addition, to demonstrate the accuracy of the semi-analytical procedure in 

predicting the response amplitude probability distribution, prediction results in each case will 

be presented and compared to simulation results. 

5.2.1 Primary Resonance Region 

Response Characteristics - To validate the proposed method in characterizing the stochastic 

response behavior in the primary resonance region, prediction results of the system responses 

in six cases with various excitation parameter sets (see Table 5.1 below) are examined. Note 

that the system damping, linear and nonlinear restoring force parameters ;, a1 and a3, 

I ICase (i) (ii) (iii) (iv) (v) (vi) 

System Parameters ; =0.05, a1=1, a3=0.3 Eq.(2.3) 

Excitation Parameters, Eq.(2 5) 

I 

wf 1.6 1.6 1.6 1.6 1.6 1.6 

Y 0.001 0.005 0.01 0.05 0.01 0.01 
aft..,f 1.57 1.57 1.57 1.57 0.94 0.63 

Domain Boundaries, Fig.3.1 

AIL 0.25 0.25 0.25 0.25 0.25 0.25 

ku 1.6 1.6 1.6 1.6 1.6 1.6 

Table 5.1 Parameters of the systems considered in the primary resonance 
region. 
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respectively, are fixed. To investigate the influence of varying the degree of excitation 

randomness on the response behavior, the excitation bandwidthy is increased from cases (i) 

to (iv), with fixed excitation intensity (i.e., fixed variance cr1-2). On the other hand, to 

investigate the response behavior under varying excitation intensity, the excitation variance 

of is varied in cases (iii), (v) and (vi), with the excitation bandwidth y held fixed. 

In the primary resonance region, two attraction domains (large amplitude harmonic 

domain, DI, and small amplitude harmonic domain, D2) co-exist as depicted in Section 3.1. 

The probabilities p(DI) and p(D2) of the system response being in the domains DI and D2, 

respectively, are calculated according to Eq.(4.13) in Section 4.3 and theprocedure discussed 

in Appendix D.1. In addition, the approximate stationary response amplitude probability 

distributions in attraction domains 13(R IDP) (d=1,2) can be obtained by Eq.(4.31), and thus, 

the overall distribution is obtained by Eq.(4.32). 

(1) Effects of Varying Excitation Randomness on Response Inter-Domain Transition: The 

system response behavior under increasing degree of excitation randomness (i.e. increasing 

excitation bandwidth parameter y) with a constant excitation intensity (i.e., variance af2) is 

investigated in cases (i) through (iv). For these cases, the normalized parameters p'=iplicrf2 

and A'=1A1/al (see Eq.(4.2)), the response probability inter-domain transition matrices K, and 

the normalized eigenvectors corresponding to the unit eigenvalues are listed in Table 5.2. 

Note that p' and A' are the normalized auto-correlation and cross-correlation, respectively, 

of the cosine and sine components of the excitation envelop process with time lag equal to 

the central excitation period (Ochi, 1990). A decrease in p' and an increase in A' indicate a 

decrease in the correlation between the respective cosine and sine components of two 

http:Eq.(4.32
http:Eq.(4.31
http:Eq.(4.13
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NormalizedCase y P' A' Transition Matrix, K 
Eigenvector 

[0.9942 0.02841 Pi(D1) 10.8311
(i) 0.001 0.999 0.00029 

0.0058 0.9716 p2(D2) 0.169 

[0.9889 0.05631 ril 10.8361
(ii) 0.005 0.990 0.00126 

0.0111 0.9437 p2(D2) 0.164 

[0.986 0.0803 10.8511
(Iii ) 0.010 0.981 0.00251 

1 

0.014 0.9197 0.149P2 (D2) 

[0.9815 0.17581 Pi (Di) 10.905 1
(iv) 0.050 0.907 0.01210 

0.0185 0.8242 p2(1)2) 0.095 

Table 5.2 Effects of varying excitation bandwidth on response inter-domain 
transition probability in the primary resonance region. 

consecutive excitation amplitudes. Observed in Table 5.2 that as the excitation bandwidth 

parameter y increases, p' decreases and A' increases. Thus, the randomness in the processes 

of excitation amplitude cosine and sine components is increased as expected. As a result, 

from Eqs.(B.5-6), the randomness in the excitation amplitude and the excitation phase angle 

is increased as the excitation bandwidth increases. Therefore, dependency of the stochastic 

behavior of the excitation parameters on the excitation bandwidth is confirmed. For the 

transition matrices K, both pn(111) and p22(212) decrease with increasing excitation 

bandwidth. However, the rate of decreasing (0.53% from case (i) to case (ii)) in pn(111) is 

lower than that in p22(212) (2.87% from case (i) to case (ii)). As a result, the calculated 

probability of the system response in the large (small) amplitude attraction domain increases 
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(decreases) with increasing excitation bandwidth as demonstrated in the last column of Table 

5.2. Therefore, the stochastic response behavior observed in Section 5.1.3 under varying 

excitation bandwidth is captured by the semi-analytical procedure. 

(2) Effects of Varying Excitation Randomness on Response Intra-Domain Transition: To 

investigate the effects of varying excitation randomness on the response amplitude probability 

transition within a given domain (i.e., intra-domain transition probability), the variances ad2 

(d=1,2) of the response amplitude within attraction domains DdR (d=1, 2) are evaluated 

numerically from the analytical conditional probability distributions 13(RIDdR) (d=1,2), 

Eq.(4.31). The results for cases (i) though (iv) are tabulated in Table 5.3. In both the large 

amplitude domain, D1R, and the small amplitude domain, D2R, the predicted variances of the 

response amplitude probability distribution increase with increasing excitation bandwidth. 

This observation is in accordance with the response behavior observed in Section 5.1.3. In 

addition, in each case, the variance of the response amplitude in both the large and the small 

amplitude attraction domains (computed from the analytical probability distribution obtained 

Variance ad2 of Response Amplitude within Attraction Domain 

case (i) (ii) (iii) (iv) 

Y 0.001 0.005 0.010 0.050 

012 0.0347 0.0928 0.1449 0.4130 

02
2 0.1147 0.2013 0.2805 0.5251 

Table 5.3 Effects of varying excitation bandwidth on the variance of the 
response amplitude within the large amplitude and small amplitude attraction 
domains, D1 and D2, respectively, in the primary resonance region. 

http:Eq.(4.31
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using the proposed method) are significantly different, reflecting the domain dependency of 

the system response characteristics. Thus, the validity of the proposed method in the analysis 

of stochastic response behavior under varying excitation bandwidth is confirmed. 

(3) Effects of Varying Excitation Intensity on Response Inter-Domain Transition: The 

effects of varying excitation intensity (i.e., variance of) on the system response behavior 

under constant excitation bandwidth y are investigated in this section. For cases (iii), (v) and 

(vi)), the values of the normalized parameters P'=IPI/Gf2 and A'="-PLI/of2, the response 

probability inter-domain transition matrices K, and the normalized eigenvectors corresponding 

to the unit eigenvalues are tabulated in Table 5.4. 

Observed that, when the excitation variance of decreases (with fixed excitation 

bandwidth y = 0.01), the parameters p' and A' remain approximately constant. Recall from 

, 2 A' 
Transition NormalizedCase ... f. P Matrix, K Eigenvector 

[0.986 0.08031 {PA)} =10.8510.1491(iii) 1.57 0.981 0.00251 
0.014 0.9197 p2(D2) 

10.9797 0.0451 1131(Dil {0.3110.6891(v) 0.94 0.983 0.00252 
0.0203 0.955 p2(D2)[10.9739 0.0233 Pi 031 1 10.4721(vi) 0.63 0.978 0.00251 

0.0261 0.9767 {pp) 0.528 

Table 5.4 Effects of varying excitation variance on response inter-domain 
transition probability in the primary resonance region. 
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discussion in (1) above that variations in the p' and A' indicate variations in the randomness 

of the excitation parameter (amplitude and phase angle) processes. Therefore, the 

randomness in the excitation parameter processes is generally unaffected by the variation in 

the excitation variance. This result is in accordance with that observed in Section 5.1.4. 

However, when the excitation intensity (i.e., variance) decreases, the excitation amplitudes 

become small and the excitation amplitude probability (Rayleigh) distribution is shifted to left 

(small amplitude level). Thus, the stochastic behavior of the excitation amplitude is affected 

accordingly. 

In the transition matrices K, variations in the values of elements pii(i5) (i,j=1,2) also 

reflect the influence of varying excitation variance on the excitation amplitude behavior. 

When the excitation amplitude decreases (from case (iii) to (v) to (vi)), the probability that 

the system response exits from the large amplitude domain increases and the probability of 

the system response staying in the small amplitude domain also increases. Thus, the value of 

N(1 1) in the transition matrix K decreases while pn(212) increases, when the excitation 

variance decreases. As a result, the probability of the system response in the large (small) 

amplitude attraction domain decreases (increases) with decreasing excitation variance as 

shown in the last column of Table 5.4. Therefore, the stochastic response behavior observed 

in Section 5.1.4 under varying excitation variance is predicted by the semi-analytical 

procedure and the validity of the proposed method is confirmed. 

Response Amplitude Probability Distribution -- To demonstrate the capability and accuracy 

of the semi-analytical procedure in predicting the response behavior, the response amplitude 

probability distributions predicted by the method (i.e., the results obtained by Eq.(4.32)) and 

http:Eq.(4.32
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simulation results are presented in Fig.5.12 for the six cases examined. In each case, a total 

of 15 simulations are conducted. Each of the simulations consists of 12,000 excitation cycles 

and thus, each of the response amplitude histograms is obtained from a total of 180,000 data 

cycles. Good agreements are observed in all six cases. Specifically, locations of the mode 

in the probability distributions and the probability masses associated with the modes are 

predicted accurately. 

(1) Effects of Varying Excitation Randomness on Response Amplitude Probability 

Distribution: As the excitation randomness (i.e., bandwidth parameter y) increases from 

cases (i) to (iv), Fig.5.13a shows that the response amplitude probability mass in the higher 

(lower) amplitude level increases (decreases) in accordance with the response behavior 

observed in Section 5.1.3. The same trend of variations in the response amplitude probability 

distribution due to varying excitation bandwidth is also accurately predicted by the method 

as shown in Fig.5.13b. In addition, variations in the probability distribution from bi-modal 

to uni-modal due to varying excitation bandwidth are also accurately captured. The 

convergence of two modes into a single mode in the probability distribution reflects the 

combined effects of increasing probability in the higher amplitude level (i.e., probability mass 

shifting to the right) and increasing response amplitude probability variance in each of the 

individual attraction domains with increasing excitation bandwidth. 

(2) Effects of Varying Excitation Variance on Response Amplitude Probability Distribution: 

As the excitation variance decreases from cases (iii) to (v) to (vi), Fig.5.14a show that the 

response amplitude probability mass in the higher (lower) amplitude level decreases 

http:Fig.5.12
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Figure 5.12 (a)-(f): Response amplitude probability distributions of case (i)-(vi), 
respectively. {parameters used are listed in Table 5.1). 
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Figure 5.13 Variations in the response amplitude probability distribution under varying 
excitation bandwidth in the primary resonance region. (a) simulation results, (b) prediction 
results. 
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Figure 5.14 Variations in the response amplitude probability distribution under varying 
excitation variance in the primary resonance region. (a) simulation results, (b) prediction 
results. 
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(increases) in accordance with the response behavior observed in Section 5.1.4. This 

variation in the response amplitude probability distribution is also accurately captured by the 

proposed semi-analytical procedure as demonstrated in Fig.5.14b. 

5.2.2 Subharmonic Resonance Region 

Response Characteristics -- To verify the proposed method in characterizing the stochastic 

response behavior in the subharmonic resonance region, analytical prediction of the system 

response in five cases, (vii)-(xi), with various excitation parameter sets (see Table 5.5 below) 

are examined and compared to simulation results. The system parameters damping, linear and 

Case
 

System Parameters
 

wf 

Y 

of 

AIL
 

A2u
 

A3U 

A3L 

A4u 

A4L 

(vii) I (viii) I (ix) I 

cs =0.05, al=1, a3=0.3 

Excitation Parameters, Eq.(2.5) 

3.6 3.6 3.6 

0.001 0.005 0.01 

157 157 157 

Domain Boundaries, Fig.3.3 

1.4 1.4 1.4 

33.3 33.3 33.3 

23 23 23 

6.4 6.4 6.4 

12 12 12 

2.2 2.2 2.2 

(x) I (xi) 

Eq.(2.3) 

3.6 3.6 

0.05 0.01 

157 125 

1.4 1.4 

33.3 33.3 

23 23 

6.4 6.4 

12 12 

2.2 2.2 

Table 5.5 Parameters of the systems considered in the subharmonic 
resonance region. 
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nonlinear restoring force parameters cs, al and a3, respectively, are held constant for these 

cases. To isolate the effects of varying the degree of excitation randomness on the response 

behavior, the excitation bandwidth y is increased from cases (vii) to (ix), while the excitation 

intensity (i.e., variance aft) is fixed. Also, to examine the effect of varying excitation intensity 

on the response behavior, the excitation variance of is decreased from cases (ix) to (xi) as the 

excitation randomness (i.e., bandwidth y) remains constant. 

In the subhannonic resonance region, the co-existing attraction domains are the large 

amplitude harmonic (DI), the small amplitude harmonic (132), the 1/2 subharmonic (D3) and 

the 1/3 subharmonic (D,) domains (Section 3.1). The probability p(Dd) of the response being 

in each of the four co-existing attraction domains Dd, d=1,2,3,4, respectively, are evaluated 

according to Eq.(4.13) and the procedure discussed in Appendix D.2. The approximate 

stationary response amplitude probability distribution 13(RID1) in each attraction domains Dd, 

d=1,2,3,4, are obtained by Eq.(4.31), and thus, the overall probability distribution is obtained 

by Eq.(4.32). 

(1) Effects of Varying Excitation Randomness on Response Inter-Domain Transition: The 

system response behavior under increasing degree of excitation randomness (i.e., increasing 

y) with constant excitation intensity (i.e., constant IV) is investigated in cases (vii) through 

(x). For these four cases, the normalized parameters p'=Ipl/of2 and A'=IAI/of2, the response 

probability inter-domain transition matrices K, and the normalized eigenvectors corresponding 

to the unit eigenvalues are listed in Table 5.6. 

Observed that, in the subharmonic resonance region, trends of variations in the values 

of p' and A' are similar to those in the primary resonance region. That is, when the excitation 

http:Eq.(4.32
http:Eq.(4.31
http:Eq.(4.13
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Normalized
Case y p' X' Transition Matrix, K 

Eigenvector 

0.9979 0.0014 0.0014 0 13 1031) 

(vii) 0.001 0.999 0.00011 
0.0005 

0.0001 

0.9986 

0 

0.0116 

0.9802 

0.0385 

0.0008 

03P22) 
p3(D3) 

0.586 

0.001 

- 0.0015 0 0.0068 0.9607 . p4(D4) 0.014 

0.9959 0.0031 0.0039 0 PI (DI) 0.426 

(viii) 0.005 0.996 0.00056 
0.0006 

0.0004 

0.9969 

0 

0.0143 

0.9566 

0.0742 

0.0098 

P2(D2) 

p3(D3) 

0.547 

0.009 

0.0031 0 0.0252 0.916 p4(34) 0.018 

0.9949 0.0044 0.0063 0 P 1(13 ) 0.462 

(ix) 0.010 0.992 0.00112 
0.0008 

0.0017 

0.9956 

0 

0.0195 

0.939 

0.0949 

0.0216 

P2(D2) 

p3(D3) 

0.504 

0.018 

0.0026 0 0.0352 0.8835 P4034) 0.016 

0.9935 0.0097 0.0183 0 Pi (Di ) 0.608 

(x) 0.050 0.958 0.00549 
0.001 

0.0047 

0.9903 

0 

0.0389 

0.8679 

0.1532 

0.0846 

P2032) 

p3(D3) 

0.352 

0.029 

0.0008 0 0.0749 0.7622 
P4(D4) 

0.011 

Table 5.6 Effects of varying excitation bandwidth on response inter-domain 
transition probability in the subharmonic resonance region. 

bandwidth parameter y increases, p' decreases but A' increase. Thus, according to the 

previous discussion in the primary resonance region (1), dependency of the stochastic 

behavior of the excitation parameters (amplitude and phase angle) on the excitation bandwidth 

is confirmed also in the subharmonic resonance region. 
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In the transition matrix K, as the excitation randomness (i.e., bandwidth parameter y) 

increases, the decreasing values of diagonal elements indicate increasing probability of the 

response exit from the current attraction domain. The off-diagonal elements, except the zero 

entries and p41(4)1), are increasing in different rates (e.g., 121% in 1)12(1)2), 178% in p13(1)3)) 

with increasing degree of excitation randomness. That is, the probability that an attraction 

domain becomes the destination domain of the transition from another domain is increasing 

as the degree of excitation randomness increases. The probability p41(411) increases from 

cases (vii) to (viii) but decreases from cases (viii) through (x). These various rates in the 

variations in p(iij) (i,j = 1,2,3,4) reflect the complexity of the response inter-domain transition 

behavior in the subhannonic resonance region. However, even under such complex response 

interactive behavior among competitive attraction domains, the trends of variation in the 

probability pd(Dd) (d=1,2,3,4), that the system response is in an attraction domain, are still 

captured by the proposed method. In the last column of Table 5.6, the probability of the 

response being in the large amplitude harmonic domain, p1(D1), increases with increasing 

excitation bandwidth. Whereas, the probability that the responses are in either the small 

amplitude harmonic, the 1/2 subharmonic or the 1/3 subharmonic domains (which in this case 

is equal to the disjoint sum of the probabilities pd(Dd), d=2,3,4) decreases as the excitation 

bandwidth increases. Recall from Section 5.1.3 that the response higher amplitude level 

consists of the large amplitude response, whereas, the lower amplitude level consists of the 

small amplitude response and the (1/2 and 1/3) subharmonic responses. Thus, the trends of 

variation in the pd(Dd) observed in Table 5.6 agree with the stochastic response behavior 

described in Section 5.1.3. Hence, the validity of the proposed method in analyzing the 
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response behavior under varying excitation bandwidth is also confirmed in the subharmonic 

resonance region. 

(2) Effects of Varying Excitation Randomness on Response Intra-Domain Transition: To 

investigate the influence of varying excitation randomness on the response intra-domain 

transition behavior, the variances ad2 (d=1,2,3,4) of the response amplitude probability 

distribution within attraction domains DdR (d=1,2,3,4) are calculated from f)(RIDdR) 

(d=1,2,3,4) (Eq.(4.31)). The results obtained for cases (vii) to (x) are tabulated in Table 5.7. 

In all the four co-existing attraction domains, DdR (d=1,2,3,4), the predicted variance 02 

(d=1,2,3,4) increases with increasing excitation bandwidth, which is in accordance with the 

response behavior observed in Section 5.1.3. In addition, in each case, the variance ad2 

(d=1,2,3,4) varies with attraction domains, reflecting the domain dependency of the system 

Variance ad2 of Response Amplitude within Attraction Domain 

Cases (vii) (viii) (ix) (x) 

Y 0.001 0.0100.005 0.050 

o12 0.0883 0.23700.1623 1.8192 

022 0.4738 0.5364 0.9796 2.1156 

032 0.4489 0.6716 0.8203 1.6155 

042 0.0397 0.1100 0.1885 0.8431 

Table 5.7 Effects of varying excitation bandwidth on the variance of the 
response amplitude within the co-existing attraction domains DdR (d=1,2,3,4), 
respectively, in the subharmonic resonance region. 

http:Eq.(4.31
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response characteristics. Thus, in the subharmonic resonance region, the proposed method 

in the analysis of stochastic response behavior under varying excitation bandwidth is also 

validated. 

(3) Effects of Varying Excitation Intensity on Response Inter-Domain Transition: In the 

subharmonic resonance region, the effects of varying excitation intensity (i.e., variance af2) 

on the system response behavior are investigated in cases (ix) and (xi). For these two cases, 

the values of normalized parameters p'=Ipl/af2 and A:=IAI/of2, the response probability inter-

domain transition matrices K, and the normalized eigenvectors corresponding to the unit 

eigenvalues are listed in Table 5.8. 

Normalizedcase of p' A' Transition Matrix, K 
Eigenvector 

0.9949 0.0044 0.0063 0 PI(DI) 0.462 

(ix) 157 0.992 0.00112 
0.0008 

0.0017 

0.9956 

0 

0.0195 

0.939 

0.0949 

0.0216 

P2(32) 

p3(D3) 

0.504 

0.018 

0.0026 0 0.0352 0.8835 34)
P4` 0.016 

0.9936 0.0021 0.0040 0 ) 0.243 

0.0010 0.9979 0.0138 0.0894 P2(D2) 0.733P(D2)(xi) 125 0.997 0.00113 
0.0015 0 0.946 0.0155 p3 (D3) 0.0 1 1 

0,0039 0 0.0362 0.8951 p4(D4) 0.013 

Table 5.8 Effects of varying excitation variance on response inter-domain 
transition probability in the subharmonic resonance region. 
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Again, trends of variation in the values of p' and A' are similar to those in the primary 

resonance region. That is, little changes in the values of p' and A' (less than 0.6%) are 

observed when the excitation variance of decreases (20%) from cases (ix) to (xi). According 

to the previous discussion in the primary resonance region (3), the randomness in the 

excitation is not affected by the variations in the excitation intensity but the behavior of the 

excitation amplitude still depends on the excitation variance. 

In the transition matrices K, as the excitation variance decreases, the probability 

pn(111) decreases, whereas, MO) (i = 2,3,4) increase. The complexity of the transition 

behavior is reflected by the variations in the other elements of K. For example, P21(211), 

p41(411), p43(4(3) and p34(314) increase with decreasing excitation variance, but p31(3(1), 

1312( 1(2), 1313(1(3), p23(2(3) and p24(2(4) decrease. Under such complex response inter-domain 

transitions, the trends of variation in the probabilities that the response is in the higher and 

lower amplitude levels, respectively, is still accurately predicted as shown in the last column 

of Table 5.8. That is, pl(D1) decreases but Epi(D) (i=2,3,4) increases with decreasing 

excitation variance af2. This result agrees with the response characteristics observed in 

Section 5.1.4. Therefore, in this aspect, the proposed semi-analytical method is also validated 

in the subharmonic resonance region. 

Response Amplitude Probability Distribution -- To demonstrate the prediction capability of 

the semi-analytical procedure, the response amplitude probability distributions predicted by 

the method (i.e., the results obtained by Eq.(4.32)) and simulation results are presented in 

Fig.5.15 for the five cases examined in the subharmonic resonance region. In each case, a 

total of 15 simulations are conducted. In each simulation, a duration equal to 15,000 

http:Fig.5.15
http:Eq.(4.32
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Figure 5.15 (a)-(e): Response amplitude probability distributions of case (vii)-(xi), 
respectively. {parameters used are listed in Table 5.5} . 
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excitation cycles is employed and thus, for each case, the response amplitude histogram is 

obtained from a total of 225,000 data cycles. Again, good agreements are observed in all five 

cases. Specifically, the locations of the modes in the probability distributions and the 

probability masses associated with each mode are predicted accurately. 

(1) Effects of Varying Excitation Randomness on Response Amplitude Probability 

Distribution: As the degree of excitation randomness (i.e., bandwidth parameter y) increases 

from cases (vii) to (x), Figs.5.16a shows that the response amplitude probability mass in the 

higher (lower) level increases (decreases) in accordance with the response behavior observed 

in Section 5.1.3. Note that, in case (x), although the simulation result appear to show only 

a single mode located in the higher amplitude level in the probability distribution, the long tail 

of the distribution in the lower amplitude level actually indicates the existence of a less 

obvious mode in that region. This trend of variations in the response amplitude probability 

distribution is predicted by the proposed method as shown in Fig.5.16b. The less consistent 

match in the results of case (x) in the lower amplitude level is probably due to insufficient 

samples in that region. 

(2) Effects of Varying Excitation Intensity on Response Amplitude Probability Distribution: 

As the excitation variance decreases from cases (ix) to (xi), Figs.5.17a shows that the 

response amplitude probability mass in the higher (lower) level decreases (increases) in 

accordance with the response behavior observed in Section 5.1.4. By the proposed semi-

analytical procedure, the same trend of variations in the response amplitude probability 

distribution due to changes in excitation variance is captured as shown in Fig.5.17b. 
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Figure 5.16 Variations in the response amplitude probability distribution under varying
excitation bandwidth in the subharmonic resonance region. (a) simulation results, (b) 
prediction results. 
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Figure 5.17 Variations in the response amplitude probability distribution under varying 
excitation variance in the subharmonic resonance region. (a) simulation results, (b) 
prediction results. 



117 

Therefore, from the results shown above and in Section 5.2.1, the validity of the proposed 

method is confirmed and the resulting semi-analytical procedure has demonstrated the 

capability of accurately characterizing the nonlinear system response behavior under 

narrowband excitations. 

5.3 Comparisons with Existing Analytical Prediction Results 

In this section, to demonstrate an improvement in the prediction accuracy, the 

response amplitude probability distributions predicted by the proposed semi-analytical method 

are compared with those obtained by two existing analytical methods and simulation 

histograms. The two analytical methods are stochastic averaging method (Davis and Liu, 

1990) and quasi-harmonic method (Koliopulos and Bishop, 1993). 

5.3.1 Existing Analytical Prediction of Response Amplitude Probability Distribution 

For the Duffing type nonlinear system represented in Eq.(2.3) subject to a narrowband 

excitation modeled as in Eq.(2.7), the predictive results of the response amplitude probability 

distribution obtained by the stochastic averaging method and the quasi-harmonic method are 

respectively shown as following: 

(1). stochastic averaging method: The suggested form of the response amplitude probability 

distribution can be expressed as (Davis and Liu, 1990; Koliopulos and Bishop, 1993): 

t-2v28 1)2 3(v2 1)y 93,2 
13(Y) = C exp{ [( + 8)2 + (v2 (5.1)

4v2 16v2 192v2 I 
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and, 

2 sc aog (Ofa3 2 8 3 f v=Y=R , = (5.2)al al a 3 
al2 2 a1 

1 

where, R is the response amplitude; sc, al, and a3 are structural damping, linear stiffness and 

nonlinear stiffness coefficients, respectively; y, toe, and of are excitation bandwidth 

parameter, central frequency and variance, respectively. 

(2). quasi-harmonic method: A relationship between the randomly varying narrowband 

excitation amplitude A and its corresponding response amplitude R is obtained as (Koliopulos 

and Bishop, 1993): 

y3+10 _v2)y2+-16[(1 82v1y= 39 2 0- A2a3 
(5.3)3 9 2a1 

where, scaled parameters y, 8 and v are defined in Eq.(5.2). The response amplitude 

probability distribution can be obtained by a probability transformation rule between the 

random variables 8 and y through the functional relationship defined in Eq.(5.3) (Ochi, 1990). 

The probability density function of 6 is obtained as (Koliopulos and Bishop, 1993): 

0 2 
a3Cifp(0) = e (5.4) 

T1 a13 
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Note that Eq.(5.3) is a third-degree polynomial equation. Thus, for a given 0, there may exist 

three real solutions. As discussed in Section 3.1.1, the real solutions with the smallest and 

the largest magnitudes correspond to the co-existing stable (physically observable) small and 

large amplitude steady-state responses. The real intermediate magnitude solution, associated 

with the unstable steady-state response, is physically unobservable. In this case, the 

probability mass associated with 0 will be transferred and distributed to the smallest and the 

largest values of y, respectively, by a ratio x determined by the following equation 

(Dimentberg, 1988; Koliopulos and Bishop, 1993): 

Ei(emax) -Ei( emir 

K- -1, Ei(x)= x -e: dv (5.5)0 v 
ln ( 

0 mm 

where 0,, and Oni are the respective upper and lower bounds of a which corresponds to 

multiple solutions of Eq. (5.1). 

5.3.2 Comparisons of Analytical Predictions and Simulation Results 

In this section, the prediction capabilities of the proposed semi-analytical method 

developed in Chapter 4 and the stochastic averaging method presented by Davies and Liu 

(1990) and the quasi-harmonic method presented by Koliopulos and Bishop (1993) are 

examined. In particular, the response amplitude probability distributions predicted by these 

methods for two specific excitation bandwidths selected by Koliopulos and Bishop (1993) are 

compared. In both cases, (a) and (b), the system and the excitation parameters are: {cs = 
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0.16, al = 1, a3 = 0.3, 04 = 2, of = 3.05), whereas, the excitation bandwidth parameter are 

y = 0.02, and y = 0.08, respectively. Note that corresponding to these system and excitation 

parameters, the scaled parameters employed in the stochastic averaging and the quasi-

harmonic methods are {v = 2, 8 = 0.08, E = y/(2,1al) = 0.01, rl = 0.91} and {v = 2, S = 0.08, 

c = 0.04, = 0.91), respectively. 

Prediction results of the semi-analytical, stochastic averaging and quasi-harmonic 

methods are shown in Fig.(5.18a) for case (a) and Fig.(5.18b) for case (b), respectively. 

Comparisons are also made with the response amplitude histograms obtained from simulations 

conducted through the procedure described in Section 5.2.1. It can be observed that, in both 

cases, probability distribution predictions obtained by the semi-analytical method show better 

agreements with the simulation histograms than those obtained by the stochastic averaging 

and quasi-harmonic methods. In addition, when the excitation bandwidth increases from case 

(a) to case (b), variations in the response amplitude histograms are accurately captured by the 

semi-analytical method. However, the trend of variation in theresponse amplitude probability 

distribution due to varying excitation bandwidth is not predicted by either the stochastic 

averaging method and the quasi-harmonic method. Therefore, by modeling the response 

inter-domain and intra-domain transitions, the proposed semi-analytical method demonstrates 

that better accuracy in the prediction of the response amplitude probability distribution is 

obtained. 



121 

(a) 

0.2 

r---1 simulation St SE-AN method Q-H method --f-- ST-AV method 

0.15 ­

0.05 ­

YI 

0.2 1.2 

i 
I I II m 

2.2 3.2 
R 

Pi 

4111. 11100111 
4.2 5.2 

(b) 

0.2 1.2 2.2 3.2 4.2 5.2 
R
 

Figure 5.18 Response amplitude histogram and probability distributions predicted by the 
semi-analytical (SE-AN), quasi-harmonic (Q-H) and stochastic averaging (ST-AV) 
methods, respectively. cs = 0.16, al = 1, a3 = 0.3, cof = 2, of2= 3.05). (a) y = 0.02, and 
(b) y = 0.08. 
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6. SUMMARY, CONCLUDING REMARKS AND FUTURE RESEARCH
 

6.1 Summary 

Response behavior of a nonlinear system subject to narrowband excitations in the 

primary and subharmonic resonance regions is investigated in this study. The structural 

system is modeled as a single-degree-of-freedom Duffing type nonlinear oscillator. Typical 

deterministic response behavior including primary resonance, 1/2 and 1/3 subharmonic 

responses and the jump phenomena is demonstrated in detail in Chapter 2. In addition, the 

characteristics of narrowband processes are described. 

To investigate the system behavior under successive variations in the excitation 

parameters, qualitative characterizations of the nonlinear system transient-state response 

behavior under deterministic excitation are performed through and interpreted from an energy 

evolution point of view in Chapter 3. Distinct response behavior patterns are observed 

depending on the response attraction domains which co-exist under certain excitation 

parameters (amplitude and phase angle). Response amplitude domains associated with some 

of the co-existing attraction domains are found to overlap. In addition, the response 

amplitude domains corresponding to different excitation amplitudes within an individual 

attraction domain also overlap. Due to the co-existence of distinct response attraction 

domains, complex response inter-domain transition behavior is induced when the excitation 

amplitude crosses domain boundaries defined in the amplitude response curves. To determine 

the destination domain of the inter-domain transition, the system transient-state mean energy 

is employed. 
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A semi-analytical procedure in analyzing the stochastic response behavior of the 

nonlinear system under narrowband excitations is proposed in Chapter 4. The methodology 

is developed based on the understanding of the nonlinear system response characteristics 

gained in Chapter 3 and the assumptions of the narrowband stochastic excitation described 

in Chapter 2. The system transient-state response characteristics under deterministic 

excitation (discussed in Chapter 3) are assumed to be preserved under narrowband random 

excitations. In addition, both the excitation amplitude and the response amplitude processes 

are approximated as stationary Markov processes. The response amplitude probability inter-

domain transition is modeled as a stationary Markov chain. The developed formulation of the 

governing probability transition matrix is directly related to the excitation bandwidth and 

variance (energy level), as well as the amplitude jump phenomena of a nonlinear system. The 

probability of the system response being in an attraction domain can be obtained by solving 

the eigenvector of the probability transition matrix corresponding to the unit eigenvalue. 

The governing equation for the response amplitude probability intra-domain transition 

between response amplitude domains corresponding to two excitation amplitudes is also 

formulated based on the Markovian approximation. The probability transition density 

function depends on the system transient-state response characteristics as well as the 

excitation bandwidth and variance. Numerical integration of the system response governing 

equation (Eq.(2.3)) is employed to obtain the transient-state response amplitude at this stage. 

This is because an explicit quantitative expression for the evaluation of the transient-state 

response amplitude is still lacking at present. Evaluation of the response amplitude intra­

domain transition is then performed through statistical techniques. To facilitate numerical 

evaluation of the response amplitude intra-domain probability transition, the governing 
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equation is discretized. To obtain the stationary response amplitude probability distribution 

in each attraction domain, an iteration procedure is developed. It is demonstrated that a close 

approximation of the solution to the iterative procedure can be obtained by the one-step 

probability transition of the steady-state response process. That is, the steady-state solution 

is used as the initial estimation for the iteration process. 

To gain an in-depth understanding of the stochastic response behavior under 

narrowband excitation and to verify the methodology proposed, numerical simulations are 

conducted in Chapter 5. Under narrowband random excitation, the response behavior 

including the response amplitude jump phenomena and the dependence of the response 

characteristics on attraction domains is observed to follow closely those under deterministic 

excitation. Repeated occurrence of the (1/2 and 1/3) subharmonic responses is observed in 

long duration simulations. In addition, influences of varying excitation bandwidth and 

variance on the response behavior are examined. Good agreements in both qualitative and 

quantitative aspects between the prediction and simulation results demonstrate the capability 

and validity of the method proposed. Moreover, comparisons of the accuracy of prediction 

results by the proposed semi-analytical method and two existing analytical (stochastic 

averaging and quasi-harmonic) method are conducted against simulation histograms. The 

results obtained by the semi-analytical method show better agreements than those predicted 

by the other methods. 

6.2 Concluding Remarks 

The main goal of this study is to develop a method to predict the response behavior 

of a nonlinear system subject to narrowband excitations in both the primary and the 
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subharmonic resonance regions. Based on the results of this study, the following are 

concluded: 

1. Nonlinear system response characteristics under deterministic excitations are 

generally preserved under narrowband excitation environment. However, due to the random 

nature of the narrowband process, excitation parameters (amplitude and phase angle) vary 

slowly. These slow variations can be approximated by a succession of finite discrete changes 

in the system excitation parameters. Thus, transient-state response characteristics are 

employed to interpret the system response behavior under narrowband excitations. 

2. The probability of the system response being in different attraction domains is 

related to the response inter-domain transition (or amplitude jump) phenomena. This 

probability transition behavior can be characterized by the excitation amplitude domain 

boundaries as well as the excitation bandwidth and variance. Note that the locations of the 

domain boundaries are determined by the excitation frequency which is assumed to be equal 

to the central frequency of the narrowband process and is a constant, in this study. Thus, the 

locations of the domain boundaries are time invariant. However, when the excitation 

bandwidth increases, variations in the excitation frequency may shift the domain boundaries 

significantly thus affecting the response inter-domain transition behavior. 

3. The system response characteristics, and thus, the response amplitude probability 

intra-domain transition depends on the response attraction domains considered. In addition, 

the intra-domain probability transition also depends on the excitation amplitude and the 

excitation bandwidth. 

4. Subharmonic (1/2 and 1/3) responses can occur repeatedly in the response process. 

Long duration simulations show that, when the system response exits from the large 
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amplitude harmonic domain, the randomly varying excitation amplitude may lead the system 

to the 1/2 or 1/3 subharmonic domains. In addition, an exit of the system response from a 

subharmonic domain may also lead the system to the small amplitude harmonic domain or 

another subharmonic domain. 

5. The proposed semi-analytical method is capable of accurately characterizing the 

stochastic response behavior of the nonlinear system subject to narrowband excitations by 

predicting the response amplitude probability distribution and capturing the trends of 

variations in the response amplitude statistical properties. In both the primary and the 

subharmonic resonance regions, good agreements between the response amplitude probability 

distributions predicted by the semi-analytical method and obtained from simulation results are 

observed both qualitatively and quantitatively. In addition, trends of the variations in the 

probability masses associated with the modes with variations in excitation parameters 

(bandwidth, variance) are captured. 

6. The analysis of the response behavior under narrowband excitations has been 

successfully extended to the subharmonic resonance region. In previous studies, analytical 

methods can only predict the response behavior in the primary resonance region where only 

two attraction domains co-exist. In this study, the developed method has demonstrated its 

capability of accurately predicting more complex response behavior in the subharmonic 

resonance region where four attraction domains co-exist. 

7. A significant improvement in the accuracy of predicting response amplitude 

probability distributions is achieved by the proposed semi- analytical method. This is because 

the stochastic nonlinear response behavior under narrowband excitation is accurately 
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characterized by the semi-analytical method through modeling the response inter-domain and 

intra-domain transitions. 

6.3 Recommended Future Research 

The methodology proposed in this study has successful demonstrated the feasibility 

of characterizing the stochastic response behavior of a nonlinear system under narrowband 

excitations. More general, time efficient and accurate methods along the same line may be 

developed in the future. Following are suggestions for potential extensions of this study: 

(1) Analytical and Quantitative System Response Characteristics Description -- Up 

to now, the transient-state response behavior can only be characterized qualitatively, in 

general. Numerical integrations of the system equation of motion (Eq.(2.3)) need to be 

employed to determine the transient-state response amplitudes and thus, the response 

amplitude intra-domain probability transition in this study. This procedure of numerical 

evaluations can be quite time consuming. For example, by using a Pentium 166 PC (personal 

computer), run time of the FORTRAN program to obtain the approximation of fi(RwIDdR) 

by Eq.(4.31) with tn, = 15 for all the co-existing attraction domains, DdR, may take up to 48 

hours to complete a single case. Thus, an analytical expression of function g in Eq.(4.22) (or g 

in Section 4.4.2) will significantly improve the efficiency of the semi-analytical procedure in 

analyzing the stochastic response behavior. 

(2) Inclusion of Influence of Excitation Frequency Variations -- Finite variations in 

the excitation frequency may induce significant shifts of the excitation amplitude domain 

boundaries, which in turn affects the response inter-domain transition behavior. The 

http:Eq.(4.22
http:Eq.(4.31
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excitation amplitude domain boundaries defined in this study correspond to the constant 

excitation peak frequency. Thus, the excitation amplitude domain boundaries are also 

constant. However, the oscillating excitation frequency is actually varying from cycle to cycle 

and its variation is governed by the excitation phase process. When the excitation bandwidth 

is small, the variations in the excitation frequency may be negligible and the excitation 

amplitude boundaries may be reasonably considered as constant. However, when the 

excitation bandwidth increases, the variations in the excitation frequency may be significant 

enough to shift the excitation amplitude domain boundaries obviously and affect the response 

inter-domain transition behavior. Therefore, to improve the accuracy of the method, the 

behavior of the excitation amplitude domain boundary shifts due to variations in the excitation 

frequency should be investigated. In addition, the influence of domain boundary shifts on the 

response inter-domain transition behavior should be incorporated in the semi-analytical 

procedure. 

(3). Extension to Superharmonic Resonance Region -- In this study, the analysis of 

the stochastic response behavior under narrowband excitations has been successfully extended 

from the primary resonance region to the subharmonic resonance region. However, for the 

analysis of the stochastic response behavior in general cases, the developed method should 

be extended to the superharmonic resonance region. To achieve this extension, the 

deterministic system response characteristics in the superharmonic resonance region should 

be studied in depth. 
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APPENDIX A 
FLOWCHART OF THE SEMI-ANALYTICAL PROCEDURE 

ANALYSIS OF NONLINEAR SYSTEM
 
BEHAVIORS UNDER NARROWBAND
 

STOCHASTIC EXCITATIONS
 

System Modeling Narrowband Excitation 
Sec. 2.1 Sec. 2.3 

(El) slowly varying amplitude 
(E2) slowly varying phase angle 
(E3) spectral density function sharply concentrated 

in neighborhood of central frequency 
(E4) Gaussian process with amplitude of Rayleigh 

distribution and phase angle of uniform 
distribution 

ASSUMPTIONS 
Sec. 4.1 

System: Excitation: General: 
preservation of (E5) oscillation frequency both (E6) excitation 
deterministic nonlinear in each cycle being close to amplitude process and 
response behavior constant central frequency, (R1) response 
characteristics (Of; local variations in amplitude process are 
(Chapter 3) in excitation frequency being stationary Markov 
narrowband stochastic taking into account by processes 
excitation environment considering phase angle 

variations 

System response behavior characteristics: 
(S1) co-existing attraction domains (Sec. 3.1) 
(S2) overlapping response amplitude domains 
(Secs. 3.1-2) Continued A 
(S3) domain dependent response characteristics 
(Sec. 3.2) 
(S4) response inter-domain transition (Sec. 3.3) 
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IContinued A l 

(E 1), (E2) 
(R2) successive 
transient-state 
system response 

(Sec. 4.2.1) 

(El), (S1), (S4) => 
(R3) system response 
inter-domain 
transition 

(Sec.4.2.1) 

(R2), (R3), (El), (E2), (E3), (E4) 

(E7) polo, A(2), dio(2) 0(1) ) 

Eq.(4.3) 
(E8) p(A(1), A(2)) Eq.(4.4) 
(E9) p(A(2) A(I)) Eq.(4.5) 

(Sec.4.2.2) 

(R1), (R3), (R5), (S1), (S2), (S4), (El), 
(E5), (E6), (E9)

=> 
Response Amplitude Probability
 

Inter-domain Transition
 
(Sec. 4.3)
 

stationary Markov chain => response 
amplitude probability inter-domain 
transition: 
(R7) 13(1)(2)) = Ki3(D(1)) Eq.(4.11) 
Or 

(R8) {p1(Di(2))) = (iij) } {P; (3.i('))) 

Eq.(4.12) 

(Sec.4.3.1) 

IContinued B 

(R1) =>
 
(R4) 

CO 

VR (2) n(t(2)1R(1))p(R(1) AR(I) 

0 

Eq.(4.7) 
(Sec. 4.2.3) 

(S1), (S2), (S3), (S4), (R2), (R3) 

(R5) P(0)) = IP(11(k)iDdR)P(DdR ) 
d 

Eq. (4.8) 

(R6) P(Rn)IDaR) = 

P(Rti) I (''d)A )P((3dR)A )d(DdR)A 

Eq.(4.9) 
(Sec. 4.2.3) 

(R1), (R2), (R4), (R6), (S1), (S2), (S3), 
(El), (E2), (E5), (E6), (E7), (E8), (E9) 

==>
 

Response Amplitude Probability
 
Intra-domain Transition
 

(Sec.4.4)
 

stationary Markov process => response 
amplitude probability intra-domain 
transition: (R9) 

p(R(2)1A(1),A(2),DdR) = 

P(R(2)IR"),A ")5A(2),DdR) 
DdR 

P(O (DaR )A") )dR(1) 
Eq. (4.19) 

(Sec. 4.4.1) 

IContinued C 

http:Eq.(4.12
http:Eq.(4.11
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1IContinued B 

(R7), (R8), (R18), (S1), (S4), (E5),
 
(E9) =>
 
(R10) evaluation of transition matrix
 
K or pi(i[j)
 

(Sec. 4.3.2) 

(R10) ==> 
(R20) p(130d) = P(DdR) = P(DdA) = 

normalized eigenvector of K 
corresponding to unit eigenvalue. 

(Sec. 4.3.1) 

(R5), (R6), (R19), (R20) ---=> 
approximate overall stationary 
response amplitude probability 
distribution 
(R21) 

= EI5(RIDdR)P(DdR) 

Eq. (4.32) 
(Sec. 4.5) 

Continued C 

1 
(R9) 
(R11) 
p(k(2)1(DdR )A(2)) (R9)p(A(1) ID dA 

)dA(1) 
DA 

Eq.(4.20) 

(R6), (R9), (R11) =-­
(R12) p(R(2) I DdR) Eq.(4.21)
 

(Sec. 4.4.1) 

(R13) Evaluation of (R9): 
* (R2), (S3) ==>
 
domain dependent response characteristics:
 
(R14) le) = g(R(1), A(1), A(2), cD, X°)
 
or Eq.(4.22)
 
(R15) R(2) = -g (es, ) given R(1), A(I), A(2)
 

* discretization of (DdR)A, DaA, 0, X° domains 

* (R16) numerical evaluation of (R15) by
 
direct integration of Eq.(2.3).
 

* (E7), (E8)
 
(R17) calculate occurrence probability of R(2)
 
obtained in (R16) by Eq.(4.23) and then lump
 
calculated probability mass into corresponding
 
interval in discretized (DdR)A. 

(Sec.4.4.2) 

(R1), (R11), (R12), (R13) =--->
 
iteration procedure to obtain approximate
 
stationary response amplitude probability
 
distribution within attraction domain:
 
(R18) 15(RI(DdR)A ) Eq.(4.29) 
(R19) fi(RIDdR) Eq.(4.30) 

(Sec. 4.5) 

http:Eq.(4.30
http:Eq.(4.29
http:Eq.(4.23
http:Eq.(4.22
http:Eq.(4.21
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APPENDIX B
 
ENVELOPE AND PHASE PROCESSES OF
 

A NARROWBAND PROCESS
 

The classical definition of the envelope of narrowband processes was presented by 

Rice (1954) and applied to derive the statistical properties of ocean wave. The Rice definition 

of an envelope process is based on the Fourier series expansion of a stationary Gaussian zero-

mean narrowband random process about some fixed carrier frequency (or chosen near the 

peak frequency cof. Then, f(t) can be expressed as (Langley, 1986) 

f(t) = fc(t)cos(wrt) fs(t)sin(cort) (B.1) 

fe(t) =E {ancosf (can car) t + bnsin[(wn t ] ) (B.2) 

fs(t) = E {ansinfoon ti -bncos[(wn -Got]) 
(B.3) 

where, an and bn are the Fourier coefficients and 6.) is the corresponding frequency. Eq.(B.1) 

can be rewritten as 

f(t) = A(t)cos[cort +(Kt)] (B.4) 

with 

fs (t)
A(t) = iiff(t) + fs2(t), 4(t) = tan i (B.5, B.6)

fe(t) 

such that At) is represented by a cosine function with time dependent amplitude and phase. 



138 

The rate of change of the phase angle will afftect the absolute frequency, hence the result 

frequency is also time dependent. The functions A(t) and 4(t) defined in Eqs.(B.5-6) are 

Rice's definitions of envelope and phase processes. Note that the narrowband process, 

f(t),defined in Eq.(B.4) is oscillating at the frequency wr, instead of Of, with slowly varying 

amplitude and phase. The yet unknown frequency Wr has been shown by Langley (1986) to 

be equal to the mean frequency, col ---- mi/mo, of f(t), where 

mn = f-wn Sff(w)dw (B.7) 

and SR(c)) is the one-sided spectral density function of f(t). However, numerical evaluation 

of col shows that cal . cof for a general narrowband process. 

Alternate definitions of the envelope and phase processes were derived based on the 

Hilber transform of f(t) (Dugundji, 1958; Stratonovich, 1963). The narrowband process, f(t), 

is represented by a carrier frequency cof and two slowly varying processes, fe(t) and fs(t), 

which can be obtained as (Stratonovich, 1963) 

fe(t) = f(t) cos(o)ft) + At) sin(wft) (B.8) 

fs(t) = f(t) sin(caft) +i(t)cos(coft) (B.9) 

where, 1(t) is the Hilber transform of f(t). Thus, the Stratonovich's definitions of the 

envelope and the phase processes can be expressed as Eqs. (B.5 -6) with W) and Qt) defined 

as Eqs.(B.8-9). Note that Langley (1986) has shown that the two definitions based on the 

Fourier expansion and the Hilber transform are equivalent. 
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By assuming f(t) to be a zero-mean Gaussian random process with variance af2, the 

f,(t) and f,(t) are found to be statistically independent zero-mean Gaussian processes with 

variance of (Langley, 1986; Ochi, 1990). The joint probability density function of fc(t) and 

Qt) thus reads 

f: f2 
p(fc, fs) 

1 
exp -00<fefs<00 (B.10)

2lraf 2af2 

When fc(t) and fs(t) are transformed to A(t) and 4)(0 by Eqs.(B.5-6), the joint probability 

density function of A(t) and 4(t) can be obtained from Eq.(B.10) and expressed as (Ochi, 

1990) 

A A2
p(A, 4) exp 0sA<0., 0s(1).2.7.c 

,, 2 (B.11)
,c,TrOf 2Of

http:Eq.(B.10
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APPENDIX C
 
APPROXIMATE SOLUTION OF
 

A DUFFING SYSTEM
 

C.1 Harmonic Solution 

By the harmonic balance method, the first order approximate solution of the harmonic 

response is expressed as 

x(t) = Re(t)cos(cot) +Rs(t)sin(cot) (C.1) 

where Rs(t) and Rs(t) are the amplitudes of the cosine and sine components of the response 

process x(t), respectively, and are time dependent in general. Substitution of Eq.(C.1) and 

Eq.(2.2) into Eq.(2.1) yields 

{[ai co2 + 43 a3(Re2 +Rs2)111e + CscoRs Acos(4) + csk-f-adislcos(wo 

+ [al co2 + 2a3 +IQ)I CscoRc + Asin(4)
4 

+ Csks}sin(cot) = 0 (C.2) 

where the higher order derivatives of k(t) and Rs(t) are discarded because these amplitudes 

are assumed to vary slowly (Jordan and Smith, 1987). In Eq.(C.2), the coefficient of each 

harmonic component is equal to zero, and thus, IVO and Rs(t) can be solved from the 

following coupled first order differential equations, 



141 

1ft {(r + ao2)CsRs +(C: -2r)coRs -[Cscos(4) +2cosin(4))1A}
C: + 46)2 

RS- 1 (c: -2r)collc (20 +r)CsRs +[2(ocos(4)) -Cssin(4)]A} 
(C.4)C: +4w 

where, 

r=a1-0+-3a3(Itc 2 +Rs2 ) (C.5)4 

Eq.(C.1) can be rewritten as 

x(t) = R(t) cos[w t +cp(t)] (C.6) 

with the response amplitude R(t) and phase c(t) expressed as 

R (t)
R(t) =11R:(t) +Rs2(t), c(t) =tan-' s (C.7, C.8)R(t) 

Note that, when the system response reaches steady state, R,(t) and 11,(0, and thus R(t) and 

p(t), become constant. In addition, time derivatives of R,(t) and R,(t) are equal to zero and 

Eqs.(C.3- 4) become two coupled simultaneous algebraic equations. Solving the algebraic 

equations for 11,(t) and R,(t) to obtain the constant response amplitude and phase yields 

2 

[ ( al -w2+-43a3R2) +Cs2co21 R2 --7"- A2 (C.9) 
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r sin(4) + Cs co cos() 
-1co =tan (C.10)

Cs w sin(4) + r cos(4) 

C.2 Subharmonic Solutions 

C.2.1 1/2 subharmonic response 

To solve Eq.(2.1) for the 1/2 subharmonic response under deterministic excitation fit) 

(Eq.(2.2)) by the harmonic balance method, the first order approximate solution of the 

response is expressed as 

x(t)=Row +Rcpcos(ot)+Rsi(Osin(cot) + Rc2(t)cos(-21wt) +Rs2(osin(-16n) (c.11) 

where, Ro, Re2 and Rs2 are the amplitude of their associated harmonic and 

subharmonic components, respectively, and are time dependent quantities in general. For 

simplicity, the time parameter t is neglected henceforth. By substituting Eq.(C.11) into 

Eq.(2.1) and following the same procedure as in the primary resonance region (i.e., similar 

to Eq.(C.2)), the amplitudes Ro, R,, Ka, Re2 and Rs2 can be solved from the following five 

coupled simultaneous first order differential equations, 

-Cszi +2coz2 Z2-2(4Z 1-C S 
, (C.12, C.13) 

http:Eq.(C.11
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Zo . Cs Z3 +(s); COZ3 CsZ4
Ro = 

cs Re2 2 ' l'ts2 (02 +c: (C.14, C.15, C.16)
+Cs 

where, 

zo =Mk° +a3( Ro +1Ropi +71311cip2+1Rop3+-2 -3 Re2RoRs2) 

/ 21 3 3
Z1 = + a3 ( Ro p2 + Rci p4 + Re, p, +3R02 

+Cs coRsi A cos(4))
2 4 

z2 = (ai (A)2)Rs2 + a3{-1Rsi p4+ p5 + 3R0(Ro Rs, +Re2R.2)1- Cs wItei + A sin(4) 

3 1z3=( a,. w2 R, + a3[Rp4 + 3R, p5 + 3R0(Rolk2 +Re1 + Rs, Rsd cs wRs2__ . _ 

2 

1z4 = ( a 
co2 R + a3 3 R p + 3

Rs p1 a s2 4 2 5 3R0(RoRs2 Re2 Rs1 Rei Rs2 Cs wRc22 

=Rc2i +Rc22, =Re22 Rs22, .R.21 Rs22, Rc21 +Rs21, Rc22 Rs22 

C.2.2 1/3 subharmonic response 

An approximate solution for the 1/3 subharmonic response can also be obtained by 

the harmonic balance method following the same procedure as in the 1/2 subharmonic 
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response. The first order approximation of the response x(t) can be expressed as 

x(t) = Ro(t)cos(co 0 + Ro(t)sin(w) +Re3(t)cos(3 cat) +Rs3(t)sin(3 cot) (C.17) 

where, R,,, Itsi, Ro and Rs, are the amplitude of their associated harmonic and subharmonic 

components, respectively, and are time dependent in general. Again, for simplicity, the time 

parameter t is neglected in the following derivation. Substituting Eq.(C.17) into Eq.(2.1) and 

following the same procedure as in the 1/2 subharmonic response case, the amplitudes Ra, 

Rsi, Rs, and Rs, can be obtained by solving the following four coupled simultaneous first order 

differential equations, 

C z + 2 co z2 . 2wz1 -Csz2. 1R Its,cl 2 
, (C.18, C.19)

Cs + 46)2 C: +4(02 

R 
-9C

S
z3+6coz4 . 6(A)z.3 9CS Z4 

Rs2 (C.20, C.21)
e3 9;2+46)2 9C: +4(.o2 

where, 

1 3
Z1 =TeRci + Cs coR 1 + a3(11,3 3 Rc3 Rs32 )-Acos(())

4 

z2 = Cs caRci + reRsi + I a3(3k32Rs3 Rs3) + sin(4))
4 

http:Eq.(C.17
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= 6)2 1 [R,2i +2(R +I)J4 

I 2 3 [2 (Rczi Rs2i ) R,23 ] 

9 4 
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APPENDIX D
 
EVALUATION OF INTER-DOMAIN PROBABILITY
 

TRANSITION MATRIX
 

D.1 Primary Resonance Region 

In the primary resonance region, two attraction (large amplitude, DL or D,, and small 

amplitude harmonic, Ds or D2) domains co-exist. The conditional probabilities p11(1 11) and 

P22(212) in Eq.(4.1 2) are obtained by Eq.(4.16). Note that, in this region, an exit from one 

domain will lead the system response to another domain (Section 3.3). Thus, P21(211) and 

P12(112) in Eq.(4. 12) are the complements of 1)11(111) and p22(212), respectively. In other 

words, 

p21(21 1) = 1 -p11(1 11), P12(1 12)= 1 -P22(212) (D 1) 

D.2 Subharmonic Resonance Region 

In the subharmonic resonance region, the system response inter-domain transition 

behavior is more complicated than that in the primary resonance region due to an increase in 

the number of co-existing attraction domains as depicted in Section 3.3. In addition, under 

narrowband excitation, an exit from the large amplitude domain may lead the system response 

not only to the small amplitude domain but also to the 1/2 and 1/3 subharmonic domains. 

http:Eq.(4.16
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There are four attraction (large amplitude harmonic, DL or D1, small amplitude 

harmonic, Ds or D2, 1/2 subharmonic, D112 or D3, and 1/3 subharmonic, D113 or D4) domains 

co-existing (Section 3.3). The four diagonal elements of matrix K, p(LIL) = p(111), p(SIS) 

= p22(212), p(1/211/2) = p33(313), and p(1/311/3) = p44(414), can also be obtained by Eq.(4.16). 

Evaluation of the rest elements of K is discussed in the following: 

1. p(L11/3). p(1/21S). p(1/31S), According to the response inter-domain transition behavior 

depicted in Section 3.3, these three conditional probabilities are equal to zeros. That is, 

P 4( 114) = P32(312) = p42(412) = 0 (D.2) 

2. p(PS) This probability is equal to the complement of p(S1S) as in the primary resonance 

region. Thus, 

p12(112) = 1 p22(212) (D.3) 

3. p(1/311/2) When the system is in the 1/2 subharmonic domain, D3, an exit from the domain 

at the lower boundary Am, leads the system to the 1/3 subharmonic domain, D4. Therefore, 

from Eq.(4.1 8), p(1/311/2) = P43(413) can be calculated as 

P43(413) = r p(A (2) 1 A (1)ED3A) dA (2) (D.4)
IX3L 

4. palalanclpal/2) An exit of the system response from the 1/2 subharmonic domain, 

D3, at the upper boundary A3u may lead the system to the large (D1) or the small (D2) 

http:Eq.(4.16
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amplitude harmonic domain. The probability of the exit p(E3u) can be calculated from 

Eq.(4. 1 7). The probability that the system response goes to the large amplitude harmonic 

domain after the exit, p(L1E3u), can be approximated by the probability that the system 

transient-state mean energy corresponding to A3u is greater than the 1/2 subharmonic steady-

state system mean energy at A3u (Section 3.3). In addition, because the system meanenergy 

is directly related to the response amplitude, p(1,1E3u) may also be approximated by the 

probability that the transient-state response amplitude R corresponding to A3u is greater than 

the steady-state 1/2 subharmonic response amplitude R3u(s) at A3u. The response amplitude 

probability distribution fi(R1(D3R)3u) at the domain upper boundary A3u can be obtained from 

Eq.(4.29). Therefore, 

P13( 113) = p(E3u) p(R >Rgi I Any) = p(E3u) E 13(RI(D3R)30 (D.5)R> R: 

and, 

P23(213) = P(E3u) P(R R1U) I Nu) = p(E3u) E 13(R I (D3R)30 
(s) (D.6)

R R3u 

5. p(1/211/3) and p(St 1/3) Based on the response inter-domain transition behavior described 

in Section 3.3 and the arguments presented above (in 4. p(L11/2) and p(S11/2)), the probability 

of the system response going to the 1/2 subharmonic (D3) and the small amplitude harmonic 

(D2) domains after an exit from the 1/3 subharmonic domain (D4) can be calculated as, 

p34(314) = P(E4u)P(R >It: I = P(E4u) E 13(R I (D4 IRT) 
(D 7)R > R: 

http:Eq.(4.29
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and 

p24(214) =1 -p44(414) p34(314) (D.8) 

respectively, where, R4u(s) is the steady-state 1/3 subharmonic response amplitude at A4u. The 

probabilities P(E4u) and 13(RI(D4R)40 are obtained from Eqs.(4.17 and 4.29), respectively. 

6. p(1/211.)_ p(1/31L) and p(S1L) During the inter-domain transition following the exit of the 

system response from the large amplitude harmonic domain, DI, the response amplitude keeps 

decreasing while the excitation amplitude varies randomly. Depending on the excitation 

amplitude variation, the possible destination domains of the transition include the 1/2 

subharmonic, 133, the 1/3 subharmonic, D4, and the small amplitude harmonic, D2, attraction 

domains. 

For the system response transition to the 1/2 subharmonic domain, 133, it is assumed 

that the excitation amplitude A must be within the domain D3A when the response amplitude 

R decreases to the mean steady-state 1/2 subharmonic response amplitude, R3(s). Similarly, 

for the system transition to the 1/3 subharmonic domain, D4, the excitation amplitude must 

be within the domain D4A when the response amplitude decreases to the mean steady-state 1/3 

subharmonic response amplitude, R4(s). 

To estimate the number of excitation cycles required for the harmonic response 

amplitude decreasing from attraction domain DI to D3 and D4, the response amplitude decay 

rate of an unforced linear system is employed (Clough and Penzien, 1993). The damping and 

stiffness coefficients of the linear system are identical to those of the nonlinear system 

considered. Thus, the required excitation cycles may be estimated by 

http:Eqs.(4.17
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Ri(S) R (S)
m(i,j) J 

(D.9) 
C 'JEWS)

S

where, m(i, j) is the excitation cycles of the transition from the attraction domain Di to the 

attraction domain Di. Note that 111(s) is the steady-state response amplitude corresponding 

to the excitation amplitude A = AI, in the attraction domain DI. Let ml = m(1, 3)+1 and m2 

= m(3, 4). Thus, when the response amplitude decreases from R1(s) to R3(s), the probability 

distribution of the excitation amplitude is obtained as 

p3(A(m1)IA (1)ED1A)= p(A (m1)IA (m1-1)) ... 

A(1111 -I) 

(D.10) 
fp(A (3) I A (2)) f p(A (2) I A (1)) p(A (1) I DIA)dA (1)dA (2)...dA (m1-1) 
A 

AWED IA 

)dA(m1)p(A(n11)ED3A)= p3(A(m1)1A(1)EDI
A

(D.11) 
1)3A 

where 61A is the complement domain of DIA. A part of the excitation amplitudes A(m1) not 

within D3A will propagate toward D4A and the rest are going to D2A. Thus, 

p(A. (ml +m2) IA (nl+tn2-1)).. p(A (ml +2)1A (mi +0)P4(A (ml +m2)1 A (1)DIA)= f 
A(ml +m2-1) 

A(Thi +1) 

(D.12) 
p(A(mi-,DIA(mo/F)r, (A( 0)1A(i)e

3k D1 ) dA (m1)dA (ml dA (m1+"12-1) 
A

D3 
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A (m 1 11112 )1A (1) D IA) dA (ml +fn2) 

(D.13) 
D4A 

where, D3A is the complement domain of D3A. From Eqs.(D.11 and D.13) and p11(111), the 

probabilities P31(311), p41(411) and P21(211) can be obtained as 

13.31(311)11-P11(111)]P(A(nI1)ED3A) 

p41(411) = [1 1(111)1[ 1 p(A ("IDE D3A)1p(A(m1+1112)e D4A) (D.14) 

p21(211) -pii(111)1E1 -p(A(m1)ED3 )1[1 -p(A(n1 +m2)ED4A)1 

http:Eqs.(D.11



