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The genetic correlation coefficient (pg) is an important

and widely used parameter in quantitative genetics and plant

and animal breeding. Multivariate analysis of variance

(MANOVA), restricted maximum likelihood (REML), and maximum

likelihood (ML) methods can be used to estimate the variances

and covariances used to estimate pg. The statistical

properties of point and interval estimators of pg have not yet

been investigated.

Our objectives were to investigate the statistical

properties of MANOVA, REML, and ML estimators of pg and

evaluate normal-approximation parametric, jackknife, and

bootstrap and percentile and bias-corrected percentile

bootstrap intervals of MANOVA and ML estimators of pg. This

investigation was done using computer simulation. Simulations

were done using a balanced one-way linear model with two

correlated traits bivariate normally distributed.

MANOVA estimates of pg were approximately normally

distributed. ML and REML estimates of pg were also



approximately normally distributed when pg = 0.1, but were

skewed when pg = 0.5 or 0.9. Biases of ML and REML estimators

were greater than those of the MANOVA estimator when

heritability and sample size were small, but they were similar

when sample size was large. The variance estimators of

Scheinberg (1966) and Falconer (1981) were not valid.

Empirical estimates of the variance of MANOVA estimator of pg

were consistently greater than those of ML and REML estimators.

Jackknifing and bootstrapping did not decrease bias for both

MANOVA and ML estimators. A valid estimate of the variance of

pg may be obtained using bootstrapping. Using of ML or REML

estimator along with bootstrapping is recommended for

estimating genetic correlation.

Estimated coverage probabilities (ECP) for parametric

intervals and normal-approximation nonparametric intervals were

significantly different from stated coverage probabilities

(SCP). Parametric intervals often were wide and had negative

lower bounds. ECPs for the percentile bootstrap interval were

relatively close to SCPs. ECPs of the bias-corrected bootstrap

interval were close to SCPs. Intervals of MANOVA estimators

were consistently wider than those of ML estimators. The bias-

corrected bootstrap percentile interval of the ML estimator

should be used for estimating confidence intervals for genetic

correlation. The number of genotypes used was more important

for reducing interval lengths than the number of replications

used.
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Statistical Properties of Estimators of

Genetic Correlation

CHAPTER 1. INTRODUCTION

Genetic correlation (p8) is an important and widely used

parameter in population and quantitative genetics and plant

and animal breeding. Estimates of p8 are needed, for

example, to estimate indirect and correlated selection

responses (Falconer 1981) and selection indexes (Baker 1986)

and to determine how fitness is affected by selection against

different traits (Lande 1984).

The variances and covariances used to estimate pg can be

estimated using multivariate analysis of variance (MANOVA),

restricted maximum likelihood (REML) (Amemiya 1985), and

maximum likelihood (ML) (Klotz and Putter 1969) methods. It

is well known that MANOVA has the serious limitation of

yielding non-positive definite (NPD) estimates of genetic

variance-covariance matrices (Es) (Hill and Thompson 1978).

The probability of NPD estimates is a function of the

probability of negative estimates of the variances and the

probability of estimates outside the parameter space (-1.0 <

pg < 1.0); thus, MANOVA has the unsatisfactory properties of

yielding meaningless estimates of p8 (pg > 1.0 or pg < -1.0)

or of pg being inestimable because of negative variances.

REML and ML estimation of covariance components is
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straightforward using a one-way linear model (Amemiya 1985;

Klotz and Putter 1969); however, REML and ML algorithms have

not been developed to analyze multivariate linear models of

greater complexity (Rao and Kleffe 1988). Because of this,

MANOVA has been widely and nearly exclusively used to

estimate pg. Is this by default or are the properties of

MANOVA estimators of pg superior to those of REML or ML

estimators of pg? This question has been investigated for

variances (Swallow and Monahan 1984), but not for covariances

or their functions.

Several questions about the properties of estimators of

pg have not been examined. How are MANOVA, REML, and ML

estimates of pg distributed? What is the joint probability

of negative MANOVA estimates of variances used to estimate pg

and the probability of MANOVA pg estimates outside the

parameter space, and how are they affected by heritability,

pg, and sample size? Are MANOVA, REML, and ML estimators of

pg biased? Are jackknifing and bootstrapping effective

methods to estimate and correct for the bias of estimates of

pg? Are parametric, jackknife, and bootstrap estimators of

the variance of pg valid?

Parametric interval estimators have been difficult to

define for many genetic parameters because their

distributions are unknown. This has been shown for expected

selection response (Knapp et al. 1989; Bridges et al. 1990),

and is a problem for genetic correlation (pg) as well.
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Approximate parametric estimators of the variance of genetic

correlation have been described (Falconer 1981; Reeve 1955;

Robertson 1959; Scheinberg 1966; Tallis 1959) but these

estimators have not been widely used, perhaps because they

are complex and their validity is uncertain. It is not

known, for example, how well these estimators approximate the

true sampling variation of estimates of genetic correlation.

Furthermore, they strictly apply to MANOVA estimates of

genetic correlation. Other methods are needed for genetic

correlation estimated using ML or REML estimates of variances

and covariances.

Fast, efficient, and inexpensive computing technology has

made it practical and feasible to apply data resampling

methods, especially bootstrapping, to a wide range of

statistical inference problems arising in population and

quantitative genetics. Bootstrapping has been used, for

example, to estimate cumulative density functions (CDFs) and

bias-corrected percentile (BCP) intervals of mating systems

parameters (Knapp et al. 1991) and genetic correlation

coefficients (Riska et al. 1990). Delete-one jackknifing has

been used to estimate intervals for heritability, expected

selection response, and other genetic parameters (Knapp et

al. 1989; Mitchell-Olds and Bergelson 1990).

Jackknifing and bootstrapping are tremendously versatile

statistical tools because they can be applied to estimation

problems where the distribution of the parameters are unknown
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or the validity of parametric methods are inadequate or

sensitive to distributional or model assumptions (Miller

1974; Efron 1982), e.g., the estimation of intervals for

variances (Miller 1974) and family-mean heritability (Arvesen

and Schmitz 1970; Knapp et al. 1989). Their strength is

magnified by their simplicity -- the bootstrap method is

applied the same regardless of the parameter being estimated.

It is this versatility and power which led us to investigate

the validity of these methods for estimating intervals for

genetic correlation coefficients. Furthermore, there are no

known parametric methods for estimating variances and

intervals of ML and REML estimators of genetic correlation.

This thesis includes two papers. In the first paper, we

report a Monte Carlo simulation study done to investigate the

statistical properties (these are distribution, bias, and

variance) of MANOVA, ML, and REML point estimators of pg. In

the second paper, we report a simulation study done to

investigate the validity of interval estimators of pg; these

estimators are normal-approximation parametric, jackknife,

and bootstrap and percentile and bias-corrected percentile

bootstrap intervals.
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CHAPTER 2

STATISTICAL PROPERTIES OF MANOVA, REML, AND ML ESTIMATORS OF

GENETIC CORRELATION
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Abstract

A suite of traits may determine the fitness or

biological value of an individual or family. An

understanding of the interrelationships among traits is

gained by estimating their genetic correlations (p8).

Multivariate analysis of variance (MANOVA), restricted

maximum likelihood (REML), and maximum likelihood (ML)

methods can be used to estimate the variances and covariances

used to calculate pg. The properties of the estimators are

well known but the properties of different estimators of pg

have not yet been investigated. In this paper we describe a

Monte Carlo simulation study of the statistical properties of

MANOVA, REML, and ML estimators of pg. The probability of

negative MANOVA estimates of genetic variances was

significantly decreased by increasing heritability and sample

size, but was not significantly affected by the magnitude of

true pg and environment correlation (p.). The main effect of

number of replications (n) was significantly greater than the

main effect of number of genotypes (r). The probability of

MANOVA estimates greater than 1.0 or less -1.0 ranged from

0.0 to 0.089, depending on the magnitude of pg, p

heritability, and sample size. MANOVA estimates were

approximately normally distributed regardless of the value of

pg, p heritability, and sample size. ML and REML estimates

were also approximately normally distributed when pg = 0.1,

but were skewed when pg = 0.5 or 0.9. Biases of ML and REML
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estimators were greater than MANOVA estimators when

heritability, n, and r were low, but were similar when sample

size was large. The variance estimators of Scheinberg

(1966) and Falconer (1981) were not valid. Estimated

variances of MANOVA estimators were consistently greater than

those of ML and REML estimators. Bias was not reduced by

jackknifing and bootstrapping. Valid estimates of the

variance of Pg may be obtained by using bootstrapping. ML or

REML estimator of p8 should be used.

Key Words: bootstrap, jackknife, maximum likelihood,

restricted maximum likelihood, genetic correlation.



8

Introduction

The fitness or biological or economic worth of an

individual or family is often determined by several traits.

An understanding of the interrelationships among these traits

is gained by estimating their genetic correlations (p8).

These estimates are needed to make inferences about the way

traits are affected by selection and other biological forces.

Estimates of pg are needed, for example, to estimate indirect

and correlated selection responses (Falconer 1981), selection

indexes (Baker 1986), and to determine how fitness is

affected by selection against different traits (Lande 1984).

The variances and covariances used to estimate p8 can be

estimated using multivariate analysis of variance (MANOVA),

restricted maximum likelihood (REML) (Amemiya 1985), and

maximum likelihood (ML) (Klotz and Putter 1969) methods.

REML and ML estimation of covariance components is

straightforward when a one-way linear model is appropriate

(Amemiya 1985; Klotz and Putter 1969); however, REML and ML

algorithms have not been developed to analyze multivariate

linear models of greater complexity (Rao and Kleffe 1988).

Because of this, MANOVA has been widely and nearly

exclusively used to estimate pg. Is this by default, or are

the properties of MANOVA estimators of pg superior to those

of REML or ML estimators of pg? This question has been

investigated for variances (Swallow and Monahan 1984), but

not for covariances or their functions.
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If analysis of variance (ANOVA) is used to estimate

genetic variances, then the estimates may be negative. This

problem is well known and unavoidable (Searle 1970). REML

and ML estimation methods have the statistically superior

property of yielding solutions within the parameter space

(0.0 < a2 < infinity) (Rao and Kleffe 1988). Using REML or

ML methods, estimates of variances are calculated by solving

systems of nonlinear equations. Different algorithms have

been proposed and developed to do this, but their solutions

are not necessarily consistent (Harville 1977, Rao and Kleffe

1988) and they do not guarantee solutions which are ML

estimates (Harville 1977).

ML estimators are those which maximize the full

likelihood function over the parameter space (Rao and Kleffe

1988). They are biased and may not be consistent (Harville

1977; Rao and Kleffe 1988). The simulation studies of

Swallow and Monahan (1984) illustrate the size and

seriousness of the bias of ML estimates of variances;

however, they applied a straightforward bias correction which

led to nearly unbiased estimates. The correction was the

multiplier (t - 1)/t where t is the number of treatment

classes in a one-way linear model (Swallow and Monahan 1984).

As t becomes large, the effect of the multiplier is

diminished.

The variances of ML estimators of variance are usually

significantly less than those of ANOVA and REML estimators,
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but the variance reduction is caused by bias (Swallow and

Monahan 1984). Correcting for bias increases the variance

and eliminates the superiority of ML estimators (Swallow and

Monahan 1984). Because of this, Swallow and Monahan (1984)

urged the use of ML estimators when a82/cre2 < 0.5 and ANOVA

estimators when a82/vet > 0.5, where a: and Ce2 are the between

and within class variances in a one-way model. The main

shortcoming of the ANOVA method, i.e., negative estimates, is

greatly diminished when a82 /vet > 0.5.

MANOVA has the serious limitation of yielding

non-positive definite (NPD) estimates of genetic

variance-covariance matrices (E8) (Hill and Thompson 1978).

The probability of NPD estimates is a function of the

probability of negative estimates of the variances and the

probability of estimates outside the parameter space (-1.0 <

pg < 1.0); thus, MANOVA has the unsatisfactory properties of

yielding meaningless estimates of pg (pg > 1.0 or ;13 < -1.0)

or of p8 being inestimable because of negative variances.

Hill and Thompson (1978) estimated the probability of NPD

estimates of E8 for p8 = 0.0 using analytical methods and

simulation. This probability ranged from 0.0 to 100.0% (Hill

and Thompson 1978), increasing as the number of dependent

variables increased and heritability decreased. In this

paper, we report estimates of the probabilities which

comprise the probability of NPD estimates of E8- -the

probability of negative estimates of either of the variances
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used to estimate pg and the probability of estimates of pg

outside the parameter space--and estimate the effect of pg

and pe on the probabilities, which has not been done.

Several questions about the properties of estimators of

pg have not been examined. How are MANOVA, REML, and ML

estimators of pg distributed? What is the joint probability

of negative MANOVA estimates of variances used to estimate pg

and the probability of MANOVA pg estimates outside the

parameter space, and how are they affected by heritability,

pg, and sample size? Are MANOVA, REML, and ML estimators of

pg biased? Are jackknifing and bootstrapping effective

methods to estimate and correct for the bias of estimates of

pg? Are parametric, jackknife, and bootstrap estimators of

the variance of pg valid? In this paper, we report on a

Monte Carlo simulation study done to investigate these

questions.
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Materials and Methods

Model: A suitable linear model for a completely

randomized experimental design with two correlated traits A

and B is

Xaii = Ma Gai E aij

Xbij = Mb Gbi Ebij ( 1)

where Xaii and Xmj are observations on the jth replication of

the ith genotype for traits A and B respectively, i = 1, 2,

n, j = 1, 2, ..., r, n is the number of genotypes, r is

the number of replications, Ma and 41, are population means,

Gai and Gbi are random effects of the ith genotype; and Eau

and ebij are residual associated with the jth sample of the

ith genotype. Gai and Gbi are correlated random variables

with zero means and a variance-covariance matrix

Eg =
2

2
ga

agb

where pg = agab / (agaagb) is the genetic correlation

coefficient between traits A and B. eaii and ebij are

correlated random variables with zero means and variance-

covariance matrix

2
ea aeab

Ee =
Cr eb2

where Pe = clew) / (aeacreb) is the environmental correlation

coefficient. Ha = aga2 0,8,12 r-1aea2) and Hb = Crgb2 / ( agb2

r ael ) are family-mean heritabilities of traits A and B,

respectively.



We used Sg and Se to denote the matrices of mean square

for genotypes and error, respectively. Here

S =
MSgb

and Se =
MSeb I

13

where MSg MSgb, and MSg,th are genotype mean squares for

traits A, B, and A by B, respectively; MSea, MSeb, and MSeab

are error mean squares for trait A, B, and A by B,

respectively. The expected mean squares of genotypes and

error are E, + rEg and E respectively.

Estimation methods: Parameters were estimated using

MANOVA, ML, and REML. In addition, they were estimated by

delete-one jackknifing (Miller 1974) and bootstrapping (Efron

1982) MANOVA and ML estimators. Bootstrapping was done using

100 and 500 bootstrap samples.

MANOVA estimators of variances and covariances are

2 r's 2
MSeaf 'deb = MSeb I aeab = MSeabt

aga2 = r -1 (MSea MSea)

2 -1
-

me
"`-'eb) r

1a gab = r (MSgab- MSb) .

" "
pis was estimated using pg = agab / (aga2

agb
2

) . If age2 > 0 and

> 0, then pg is estimable. If aga2 < 0 or ii02 < 0, then pg

is undefined. Undefined estimates were treated as missing

values.

ML and REML estimators of genetic variance and covariance
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components are ordinarily estimated using iterative methods;

however, for the balanced one-way model, Klotz and Putter

(1969) and Amemiya (1985) described linear solutions for ML

and REML estimation, respectively. The ML genetic variance-

covariance matrix was estimated using

E8 = (nr) 1St(StA)+ (2)

where St = (n - 1) 88 + n(r - 1) Se, A = (n - 1) S8 - nS St is

a generalized inverse of St, and (StA)+ is the positive semi-

definite part of the matrix SEA.

We used the method of Amemiya (1985) to develop an

algorithm for REML estimation of variance-covariance for a

balanced one-way model. The matrix L satisfying L'SeL = I

was found using Cholesky decomposition of S, where L = U-1 and

Se = U'U. The eigenvalues of S8 in the metric of Se 1 $g

ASel = 0) are the eigenvalues of LISsIA. The matrix Q of

orthonormal eigenvectors of L'S8L was used to find P =

The non-negative definite partition of Ss - So is equivalent

to the part of LISiE, having eigenvalues greater than 1.0.

The genetic variance-covariance matrix was estimated using

E8 = r-1Pk(Ak - I)Pk' (3)

where Ak is diag(A1i A2, , Ak) and Pk is a matrix of the

first k columns of P, A 1r A 2, , Ak are the first k

eigenvalues of L'88L.

We used delete-one jackknifing MANOVA and ML estimators to

estimate p8 (Miller 1974). Parameters were estimated from

n 1 data sets of n genotypes where the ith genotype had
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been deleted. For each of the n data sets a different

genotype was deleted.

Pseudovalues (Miller 1968) were estimated using

pg(i) = npg (n 1) Pg(i)

where pg is the MANOVA or ML estimate from the original data

and pg(i) is the MANOVA or ML estimate from the data missing

the ith genotype. pa was estimated using the pseudovalue

mean

Pg = EPg(i)/n

and the variance 7)i; was estimated by

aJ2 = E(;g(i) 70g)2/[n (n - 1)], (4)

respectively.

If MANOVA estimates of aga2 or 4,2 were less than 0.0, then

jackknifing was not done (p8 is not defined when aga2 < 0 or

2
agb < 0). Even when MANOVA estimates of the variance from

the original data were greater than 0.0, estimates from

resampled data were not necessarily greater than 0.0.

Pseudovalue means and variances were estimated from the

fraction of defined estimates. These problems do not plague

ML estimators. Pseudovalue means and variances estimated

using MANOVA and ML methods are hereafter referened to

jackknife MANOVA and ML estimators, respectively.

Bootstrapping was also used to estimate pg and the

variance of pa (Efron 1982). A bootstrap sample was drawn by

randomly sampling n genotypes with replacement, where each

genotype had a probability mass of 1/n. The number of



bootstrap samples (b) drawn was set at 100 and 500. pg was

estimated using the bootstrap mean

pg = EPg(i)/b

and the variance pg was estimated by

crB2 = E(ps(i) - pg)2/(b 1),

16

( 5 )

respectively, where pg(i) is a MANOVA or ML estimate from the

ith bootstrap sample.

Bootstrap means and variances were not estimated when

MANOVA estimates of the variances component were negative.

Repeated resampling was done to get b defined estimates from

resampled data where necessary. Bootstrap means and

variances estimated using MANOVA and ML are hereafter

referened to as bootstrap MANOVA and ML estimators,

respectively.

In addition to jackknife and bootstrap estimators of the

variance of pg, we calculated parametric estimates of

variances of MANOVA estimates of pg using the estimators

described by Scheinberg (1966) and Falconer (1981) . The

estimator described by Scheinberg (1966) is

as2
p- g2/rz (msga2/dfg

MSea2 /dfe)/ (4Qga4)

+ (MSgb2 /dfg + MS,b2/df,)/ ( 4 Crsb4 )

+ (MSgaMSgb + MSgab2) / (2dfgargab2)

- (MSgaMSgab /dfg + MSeaMSeab/dfe) / (Crga2agab)

- (MS0MSgab/dfg + MS,bMSb/df,)/(agb2(igab)

+ (MSgab2/dfg + MSeab2/dfe)/ (2aga2C302) ( 6)

where dfg and df, are the MANOVA degrees of freedom for



genotypes and error, respectively. The estimator described

by Falconer is

OF2 = [ (1. 0 P
^ 2 2^

g ) Erb/ ( 2H,Hb)
2
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(7)

where crif,2 = 8H,/(nr) and &1/1,2 = 81111(nr) are the estimates of

the variance of Ha and Hb, respectively.

simulation methods: Data were simulated for model (1)

using factorial combinations of pg, pe, Ha, Hb, n, and r

(Table 1.1). Although we assumed the properties of

estimators of pg were not affected by the sign of pg, both

negative and positive values of pg were tested. We found the

sign had no effect; thus, probabilities, biases, and

variances estimated using the negative range of pis are not

reported. However, the response surfaces we report were

estimated using the entire set of original values (Table

1.1). Two replications of 1000 data sets were simulated.

[Table 1.1 placement]

Data were simulated by setting aea2 = aeb2 = 1.0 and using

the equalities

aeab = Pe (CreaCreb) = Pet

0 2 Ha/ [r (1. 0 - Ha) ,

a2 =gb Hb/[r(1.0 - Hb)],

and agab = p g agaagb)

to define the variance-covariance matrices. These matrices

were used to generate random vectors for Gai, Gm, Eaii, and

eb". Simulations were done using a Floating Point System

supercomputer (FPS-264S). The programs used were written in
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FORTRAN-77. Subroutines from the FPS FORTRAN library were

used. Uniform random numbers were generated using the RAN

function from the FPS-M64 library. Univariate normal

deviates were generated using the algorithm of Kinderman

(1975) and the uniform random numbers generated by the RAN

function. Multivariate normal deviates were generated using

the algorithm described by Johnson (1987).

MANOVA, ML, and REML methods were used to estimate pg

for each simulated data set. In addition, we used

jackknifing and bootstrapping of MANOVA and ML estimators to

estimate pg. The biases and variances of these estimators

were estimated from the simulated data. Biases and empirical

variances (ap2) were estimated using

bias = 7)8 pg

and

ap2 (pg pg) 2/ (S 1), (8)

respectively, where s is number of simulated experiments, ;8

= s Epg is the mean of simulated estimates, and pg is the

parametric or true value.
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Results

Probabilities of non-positive definite variance-

covariance matrices: The joint probabilities of negative

MANOVA estimates of aga2
or a02, Pr[aga2 < 0 or a8b2 < 0],

ranged from 0.0 to 0.40 (Table 1.2). Probabilities of

negative estimates were significantly decreased by increasing

heritability and sample size, but were not affected by pg and

P. (Tables 1.2 and 1.3). The main and interaction effects of

heritability, n, and r were significant (Table 1.3). The

main effect of the number of replications was substantially

greater than the main effect of number of genotypes (Table

1.2).

[Table 1.2 Placement]

[Table 1.3 Placement]

[Table 1.4 Placement]

[Table 1.5 Placement]

The probabilities of MANOVA estimates of pg greater than

1.0 or less than -1.0 ranged from 0.0 to 0.089 (Table 1.4)..

The maximum sum of probabilities of ;8 > 1.0 and ''')/; < -1.0

was 0.099. Unlike the probabilities of negative estimates,

these probabilities were significantly affected by ps and p8,

in addition to being significantly affected by heritability,

n, and r (Table 1.5). The effects of log, Pe, and

heritability were greater than those of n and r. The

probabilities of pg less than -1.0 decreased as pg increased,

whereas the probabilities of pis greater than 1.0 increased as
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pg increased (Table 1.5). We estimated these probabilities

separately because the probabilities were affected by the

sign of pg (Table 1.5). When n = 20, r = 6, Ha = 0.1, Hb =

0.9, and pg = 0.9, for example, Pr[;;Is < -1.0] = 0.0 whereas

Pr[pg > 1.0] = 0.052 (Table 1.4). Increasing heritability,

n, and r decreases these probabilities.

Hill and Thompson (1978) estimated the probabilities of

NPD MANOVA estimates of E8 for pg = 0. We estimated the

component probabilities of this probability for pg 0.0

(Tables 1.2 & 1.4); however, the sum of the probabilities we

estimated are estimates of NPD estimates of E8. Hill and

Thompson (1978) showed the probabilities of non-positive

definite covariance matrices can be great when pg is high

"even when neither of the heritabilities is small"; however,

we found this probability is zero or near zero when Ha and Hb

are greater than or equal to 0.5 regardless of the values of

n, r, pg, and P. (Tables 1.2 & 1.4).

These data show the probabilities of non-positive

definite MANOVA estimates of the variance-covariance matrix

are mainly a function of negative ANOVA estimates of

variances. This problem is completely alleviated by using ML

or REML estimation because negative estimates and estimates

outside the parameter space do not arise using these methods

(Amemiya 1985, Rao and Kleffe 1988, p233 - 256).

Empirical distribution of -Pg: MANOVA estimates of pg

were approximately normally distributed regardless of the
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parameter values used (Figures 1 - 6). ML estimates were

approximately normally distributed when p8 = 0.1 and Ha and Hb

were greater or equal to 0.5 (Figures 4 and 5).

Distributions of REML estimates were equivalent to those for

ML estimates, so they are not shown. ML estimates were

positively or negatively skewed depending on the value of pg,

e.g., the distributions for pg = 0.9 are negatively skewed

(Figures 3 and 6), whereas those for pg = -0.9 were

positively skewed mirror images of the distributions for pg =

0.9 .

[Figure 1, 2, 3, 4, 5, and 6 Placement]

The distributions of MANOVA estimates illustrate the

estimates outside the parameter space, but these

distributions do not show the affect of negative estimates of

variances because pis is not defined when aga2 or (302 is

negative. ML and REML estimates yield estimates within the

parameter space.

Biases of MANOVA, ML, REML, jackknife MANOVA and ML, and

bootstrap MANOVA and ML estimates of pg: MANOVA biases were

significantly affected by pg, p Ha, Hb, n, and r. ML biases

were significantly affected by pg, H Hb, n, and r. REML

biases were significantly affected by pg, pe, Ha, Hb, and r.

(Table 1.6). Biases of MANOVA, ML, and REML estimates were

within ±0.02 and were not statistically significant when Ha

and Hb were greater than or equal 0.5. MANOVA estimates of

pg = 0.9 were significantly over estimated (bias > 0),
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however, most of the ML and REML estimates of pg = 0.9 were

significantly under estimated (Table 1.7). Biases of MANOVA,

ML, and REML estimates decreased and became less different as

values of H Hb, n, and r increased (Table 1.7). ML or REML

estimation solves the problem of NPD estimates of ig;

however, ML and REML estimates are biased.

[Table 1.6 Placement]

[Table 1.7 Placement]

[Table 1.8 Placement]

Biases of jackknife MANOVA estimates were greater than

MANOVA estimates, but biases of jackknife ML estimates were

similar to ML estimates (Tables 1.7 and 1.8). Biases of

bootstrap MANOVA and ML estimates were greater than MANOVA

and ML estimates, respectively (Tables 1.7 and 1.8). Biases

of bootstrap estimates for b = 100 were very close to those

for b = 500 (Table 1.8).

Variances of estimators of pg: Response surface

analysis of empirical variances (&2) (8) of MANOVA and ML

estimates showed these variances were significantly affected

by Ha, Hb, n, and r but not by pg or pa (Table 1.9).

Variances of REML estimates were significantly affected by

Pis, Pe, Ha, Hb, n, and r (Table 1.9).

[Table 1.9 Placement]

[Table 1.10 Placement]

[Table 1.11 Placement]

The parametric variance estimator described by Scheinberg
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(1966) (ds2) was substantially greater than the estimated

variance of log (al!) (Table 1.10). We found this estimator is

not valid. The average estimate of Scheinberg variance was

as great as 6.9 x 1010 when Ha and Hb were equal to 0.1. The

parametric variance estimator decribed by and Falconer (1981)

(&F2) was substantially greater than al! when one of the

heritabilities was less than 0.5, but it is fearly close to

2a when heritabilities were 0.5 or larger and the sample

size is large (Table 1.10).

Jackknife variances of ML estimates were greater than

estimated variances when Ha or Hb was less than 0.5, whereas

bootstrap variances were fairly close to estimated variances

(Table 1.11). Jackknife and bootstrap variances were very

close to estimated variances when Ha and Hb were greater than

or equal to 0.5 (Table 1.11). Variances of bootstrap

estimates for b = 100 were very close to those of b = 500.

Estimated variances of ML estimates were very close to

those of REML estimates (Table 1.11). Variances of MANOVA

estimates were greater than those of ML and REML estimates

(Table 1.10 and 1.11). Variances of MANOVA, ML, and REML

decreased and became less different as H Hb, n, and r

increased (Table 1.10 and 1.11).
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Discussion

The problem of NPD estimates of is using MANOVA methods

can be alleviated by using ML or REML methods; however, the

use of these methods is impractical because software has not

been developed for linear models more complex than (1). As

we stated earlier, the algorithms we implemented (Amemiya

1985; Klotz and Putter 1969) strictly apply to model (1);

however, we expect computing solutions will ultimately be

developed for linear models of arbitrary complexity.

Hill and Thompson (1978) showed, for pg = 0.0, the

probability of NPD estimates of is decreased as n and r

increased, with r having a greater effect than n. We

observed this for pg 0.0. The effect of r was rather

pronounced, so the probability of NPD estimates of is can be

decreased in practice by increasing the number of

replications; however, this must usually be done at the

expense of the number of genotypes (n). The costs of r and n

are equal. Because the variance of pg is more efficiently

decreased by increasing n, as opposed to r, increasing r is

contraindicated by the need for minimizing the variance of

pg.

We have shown MANOVA, ML, and REML estimates of pg are

biased (Table 1.7). The biases of ML and REML estimates are

greater than the biases of MANOVA estimates when n and r are

small, e.g., n = 20 and r = 3. Bias differences between

these methods diminish as n and r increase. The bias of
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MANOVA estimates of pa arise are explained by inequalities

between expectations of ratios and ratios of expectations and

expectations of products and products of expectations

(Ponzoni and James 1978) and undefined estimates of pg caused

by negative estimates of the variances of pg. We broke the

probability of NPD estimates of E8 into its component parts

to have an estimate of the number of undefined estimates of

pg. The absolute value of the bias of MANOVA estimates and

probability of negative estimates are positively correlated

and decrease as heritability, n, and r increase.

Bootstrapping and jackknifing were not effective for

estimating bias and bias-corrected estimates of pg. The

degree of freedom bias correction used by Swallow and Monahan

(1984) for estimating bias-corrected ML estimates of

variances reduces bias for very small n, but has practically

no effect when n is large. Besides, this correction, (n

1)/n, has no effect when applied to the variances and

covariance of ;8 because bias corrections applied to the

numerator and denominator of ;8 cancel, i.e., ;18 = [(n -

^ .."1)/n]agab / ([(n 1)/n]aga
2 [(n -1)/n)agb2

)
3/4

u gab /
^ 2 2 k(agaagb) . The variances of MANOVA, ML, or REML estimates of

pg are significantly greater than the biases of pg, so bias

is a comparatively minor problem.

We found parametric estimators of the variance of pa

(Scheinberg 1966; Falconer 1981) are not valid. These

estimators overestimate the variance of pg and are grossly



26

inadequate when either of the heritabilities is less than

0.5. In addition, the variance of pg was overestimated by

the jackknife estimators. Unlike the other estimators, the

bootstrap estimators, bootstrapping either MANOVA, ML, or

REML estimators, gave valid estimates of the variance of pg,

i.e., estimates which are not significantly different from

the empirically estimated variances of pg. Bootstrap

estimators of the variance of pg fill the need for a valid

estimator of this parameter. We found no significant

difference between using b = 100 or b = 500 bootstrap

samples; however, b = 500 may be needed to get valid interval

estimates using bootstrapping, a subject we address

elsewhere.

The variances of MANOVA estimators of the variance of pg

are greater than variances of ML or REML estimators; thus,

even though these estimators are biased, their use is

justified. The variance of pg is efficiently decreased by

increasing the number of genotypes, but not by increasing the

number of replications of genotypes. The latter does not

affect the degrees of freedom for genotypes. This finding is

consistent with findings for variances. The variances of

variances are minimized by maximizing n.

This study leads us to encourage the use of ML or REML

estimators of pg, bootstrap ML or REML estimators of the

variance of pg, and a maximum number of genotypes at the

expense of replications of genotypes. The unbalanced designs
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developed for optimizing variance estimation should be

equally optimal for estimating pg. Finally, there is a great

need for software for estimating Eg using ML or REML methods

for linear models more complex than (1).
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Figure 1. Frequency distributions of MANOVA and ML estimates of p8

when pa 0.1, Pe 0.1, Ha 0.5, Hb 0.5, n 60, and r 6.
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Figure 2. Frequency distributions of MANOVA and ML estimates of pg when

pg - 0.5, p. - 0.1, Ha- 0.5, lib = 0.5, n - 60, and r - 6.
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Figure 3. Frequency distributions of MANOVA and ML estimates of pg when

pg 0.9, pe = 0.1, Ha = 0.5, Hb ... 0.5, n 60, and r = 6.
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Figure 5. Frequency distributions of MANOVA and ML estimates of pg when

ps - 0.5, P. - 0.1, H. - 0.1, Hb = 0.1, n - 60, and r - 6.
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Figure 6. Frequency distributions of MANOVA and ML estimates of pg when

pg- 0.9, pe = 0.1, Ha- 0.1, HI, - 0.1, n - 60, and r - 6.
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Table 1.1 Parameters and their assigned values used in the simulation.

Parameter Assigned value

Genetic correlation (pg) -0.9, -0.5, -0.1,

0.1, 0.5, 0.9

Environmental correlation (PO 0.1, 0.5, 0.9

Heritabilities of two traits (Ha, Hb) (0.1,0.1), (0.1,0.5),(0.1,0.9)
(0.5,0.5), (0.5,0.9), (0.9,0.9)

Number of genotypes (n) 20, 60, 100

Number of replications (r) 3, 6, 9
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Table 1.2 Probabilities of negative MANOVA estimates of genetic variances

Pr(ag.2 < 0 or Cre)2 < 0) for different values of H., Hb, n, and r. The

probabilities were averages over the values of pg and p. used.

r

H. Hb n 3 6 9

0.1 0.1 20 0.402 0.185 0.077
60 0.195 0.017 0.001

100 0.095 0.002 0.000

0.5 20 0.255 0.103 0.043
60 0.110 0.008 0.000

100 0.055 0.001 0.000

0.9 20 0.252 0.107 0.042
60 0.111 0.010 0.001

100 0.055 0.001 0.000

0.5 0.5 20 0.002 0.000 0.000
60 0.000 0.000 0.000

100 0.000 0.000 0.000

0.9 20 0.001 0.000 0.000
60 0.000 0.000 0.000

100 0.000 0.000 0.000

0.9 0.9 20 0.000 0.000 0.000
60 0.000 0.000 0.000

100 0.000 0.000 0.000
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Table 1.3 Response surface analysis where the probability of negative

Aestimates of aga2 or ogb 2 is the dependent variable, pg, pe, Ha, Hb, n, and r

Aas are independent variables, and a a
2 or Cfg b2 were estimated using MANOVA.

bi is the regression coefficient for the ith main or interaction effect.

Parameter bi P-value

Intercept 709.86 < 0.01
pg -9.86 0.60

Pe -30.08 0.11
Ha -595.22 < 0.01
Hb -347.45 < 0.01
n -5.06 < 0.01

-75.45 < 0.01
pg x p8 1.70 0.90
pg x pe -4.41 0.65

Pe X Pe -6.13 0.65
Ha x pg -0.74 0.95
Ha X pe 0.78 0.95
Ha x Ha 201.40 < 0.01
Hb X pg 8.86 0.47
Hb X pe 25.89 0.03
Hb X Ha -4.32 0.89
Hb X Hb 140.58 < 0.01
n x pg 0.02 0.75
n x pe 0.13 0.17
n x Ha 2.15 < 0.01
n x Hb 0.92 < 0.01
n x n 0.01 < 0.01

x pg 0.33 0.80
x pe 1.55 0.22
x Ha 31.24 < 0.01
x Hb 13.28 < 0.01
x n 0.18 < 0.01
X Y 2.55 < 0.01
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Table 1.4 Probabilities of estimates of Pg out of the parameter space,

A A
Pr(pg > 1.0) and Pr(pg < -1.0), estimated using MANOVA and different values

of Ha, Hb, pg, n, and r. The probabilities were the average over

values of pe used.

Ha lib Pg n

r

3 6 9

< -1.0 > 1.0 < -1.0 > 1.0 < -1.0 > 1.0

0.1 0.1 0.1 20 0.047 0.030 0.037 0.009 0.024 0.004
60 0.038 0.008 0.012 0.001 0.002 0.000

100 0.032 0.005 0.003 0.000 0.000 0.000
0.5 20 0.022 0.059 0.014 0.024 0.008 0.008

60 0.013 0.022 0.002 0.002 0.000 0.000
100 0.008 0.014 0.000 0.000 0.000 0.000

0.9 20 0.010 0.089 0.001 0.055 0.001 0.025
60 0.002 0.068 0.000 0.014 0.000 0.002

100 0.000 0.047 0.000 0.003 0.000 0.000

0.5 0.1 20 0.015 0.008 0.005 0.002 0.003 0.001
60 0.003 0.003 0.000 0.000 0.000 0.000

100 0.002 0.001 0.000 0.000 0.000 0.000
0.5 20 0.005 0.022 0.001 0.009 0.000 0.004

60 0.000 0.010 0.000 0.001 0.000 0.000
100 0.000 0.009 0.000 0.000 0.000 0.000

0.9 20 0.000 0.049 0.000 0.034 0.000 0.014
60 0.000 0.039 0.000 0.010 0.000 0.000

100 0.000 0.027 0.000 0.002 0.000 0.000

0.9 0.1 20 0.007 0.008 0.002 0.003 0.001 0.001
60 0.002 0.003 0.000 0.000 0.000 0.000

100 0.000 0.000 0.000 0.000 0.000 0.000
0.5 20 0.001 0.019 0.000 0.011 0.000 0.005

60 0.000 0.014 0.000 0.002 0.000 0.000
100 0.000 0.010 0.000 0.000 0.000 0.000

0.9 20 0.000 0.052 0.000 0.039 0.000 0.020
60 0.000 0.041 0.000 0.010 0.000 0.001

100 0.000 0.036 0.000 0.002 0.000 0.000
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Table 1.4 continued

H. Hb Pg n

r

3 6 9

< -1.0 > 1.0 < -1.0 > 1.0 < -1.0 > 1.0

0.5

0.9

0.5

0.9

0.9

0.1

0.5

0.9

0.1

0.5

0.9

0.1

0.5

0.9

20

60

100
20

60

100

20

60

100

20

60

100
20

60
100
20
60

100

20

60

100
20

60

100
20

60

100

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.001
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
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Table 1.5 Response surface analysis where the probability of estimates of

A A A
pg outside the parameter space [Pr(pg < -1.0) and Pr(pg > 1.0)] is the

dependent variable, pg, pe, H., Hb, n, and r are the independent variables,

and Apg is estimated using MANOVA. bi is the regression coefficient for the

ith main or interaction effect.

Parameter

Intercept
pg

Pe
H.

Hb

n
r

pg x pg

pg x pe

pe x pe

H. x pg
H. x pe

H. x H.

Hb X pg
Hb X pa

Hb x H.
Hb x Hb
n x pg
n x pe
n x H.
n x Hb
n x n

x pg
x pe

x H.
x Hb

x n
x r

A
Ps < -1.0

A
Ps > 1 . 0

bi P-value bi P-value

54.52 < 0.01 88.46 < 0.01
-13.72 < 0.01 64.37 < 0.01
-70.26 < 0.01 -83.89 < 0.01
-36.62 < 0.01 -57.28 < 0.01
-9.91 < 0.01 -59.99 < 0.01
-0.28 < 0.01 -0.54 < 0.01
-4.08 < 0.01 -9.29 < 0.01
2.01 0.45 32.79 < 0.01
5.25 0.22 -7.37 0.44

25.77 < 0.01 32.08 < 0.01
4.16 0.01 -37.33 < 0.01

23.26 < 0.01 -7.95 0.03
5.68 < 0.01 15.94 < 0.01
-1.61 0.33 7.82 0.03
-7.19 < 0.01 40.19 < 0.01
-5.86 < 0.01 -14.99 < 0.01
0.39 0.83 4.25 0.30
0.04 0.01 0.22 < 0.01
0.15 < 0.01 0.17 < 0.01
0.08 < 0.01 -0.17 < 0.01
-4.0 x 10-5 0.99 0.15 < 0.01
0.01 < 0.01 0.01 < 0.01
0.41 0.06 4.32 < 0.01
2.39 < 0.01 2.69 < 0.01
1.23 < 0.01 -3.77 < 0.01

-0.07 0.66 2.70 < 0.01
0.01 0.06 0.01 < 0.01
0.09 < 0.01 0.32 < 0.01
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Table 1.6 Response surface analysis where biases of MANOVA, ML, and REML

estimators of pg are the dependent variables and pg, Pe, Ha, Hb, n, and r

are the independent variables. bi is the regression coefficient for the

ith main or interaction effect.

Parameter

Intercept

Pg

Pe
H.

Hb

n
r

pg X pg
Pg X Pe

Pe X pe

H. x Pg
H. x Pe

Ha x Ha
Hb X pg

Hb X Pe
Hb X Ha

Hb x Hb
n x pg
n x Pe
n x H.
n x Hb
n x n

x pg

x pe
x H.
X Hb
x n
x r

MANOVA ML REML

bi P-value bi P-value bi P-value

0.0328 0.05 -0.1556 < 0.01 0.0374 0.05
0.3060 < 0.01 -0.2873 < 0.01 -0.3562 < 0.01
-0.2821 < 0.01 0.0138 0.46 0.2170 < 0.01
-0.1089 < 0.01 0.2345 < 0.01 -0.1711 < 0.01
0.1005 < 0.01 0.1092 < 0.01 0.2830 < 0.01
-0.0005 0.01 0.0013 < 0.01 -0.0003 0.15
-0.0095 0.01 0.0226 < 0.01 -0.0086 0.04
0.0278 0.05 -0.0299 0.02 -0.0341 0.03
0.0125 0.21 0.0475 < 0.01 0.0479 < 0.01
0.0060 0.69 -0.0086 0.53 -0.0363 0.04
-0.1639 < 0.01 0.1136 < 0.01 0.1307 < 0.01
0.0327 0.01 0.0012 0.92 -0.0753 < 0.01
0.1044 < 0.01 -0.0798 < 0.01 0.0917 < 0.01

-0.1346 < 0.01 0.0368 < 0.01 0.0686 < 0.01
0.2256 < 0.01 0.0056 0.64 -0.0206 0.19
-0.0744 0.03 -0.0207 0.51 -0.0800 0.05
-0.0758 < 0.01 -0.0713 < 0.01 -0.1081 < 0.01
-0.0006 < 0.01 0.0012 < 0.01 0.0014 < 0.01
0.0004 < 0.01 -0.0002 0.02 -0.0008 < 0.01
0.0004 < 0.01 -0.0009 < 0.01 0.0007 < 0.01
8.1 x 10-6 0.95 4.0 x 10-5 0.74 -0.0006 < 0.01
1.4 x 10-6 0.33 -5.4 x 10-5 < 0.01 1.0 x 10-6 0.56
-0.0121 < 0.01 0.0182 < 0.01 0.0220 < 0.01
0.0061 < 0.01 -0.0032 0.01 -0.0139 < 0.01
0.0081 < 0.01 -0.0147 < 0.01 0.0102 < 0.01
-0.0017 0.35 -0.0014 0.39 -0.0095 < 0.01
3.7 x 10-5 0.01 -5.7 x 10-5 < 0.01 4.6 x 10 -5< 0.01
0.0003 0.16 -0.0010 < 0.01 0.0004 0.16
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Table 1.7 Biases' of MANOVA, ML, and REML estimators of p8. The value

of H. was 0.1 in all cases.

Hb P8 n r

Estimation Method

MANOVA ML REML

0.1

0.5

0.1 20

60

100

0.5 20

60

100

0.9 20

60

100

0.1 20

60

100

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

0.020
-0.153
-0.140*
-0.177*
-0.108*
-0.050*
-0.167*
-0.055*
-0.019*

0.104
-0.004
-0.025

0.004
-0.022
-0.019*
-0.025

-0.017
-0.004

0.171*
0.188*
0.106*
0.209*
0.058*
0.019*
0.139*
0.034*
0.011*

-0.028
-0.036
-0.031
-0.022
-0.021*
-0.007
-0.019
-0.011
-0.006

0.039*
-0.027
-0.062*
-0.047*
-0.060*
-0.041*
-0.067*
-0.045*
-0.019*

-0.197*
-0.123*
-0.071*
-0.130*
-0.036*
-0.020*
-0.092*
-0.020*
-0.005

-0.434*
-0.200*
-0.098*
-0.238*
-0.040*
-0.013*
-0.134*
-0.012*
-0.003

-0.029

-0.034*
-0.025*
-0.030*
-0.018*
-0.007
-0.025*
-0.011
-0.006

0.176*
0.018
-0.044*
0.032
-0.055*
-0.041*
-0.035*
-0.044*
-0.019*

-0.102*
-0.107*
-0.069*
-0.080*
-0.035*
-0.020*
-0.063*
-0.019*
-0.005

-0.420*
-0.203*
-0.096*
-0.229*
-0.040*
-0.013*
-0.132*
-0.012*
-0.003

0.167*
0.048*
0.003
0.069*

-0.011
-0.007
0.024*

-0.008
-0.006
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Table 1.7 continued.

Hb pg n r

Estimation Method

MANOVA ML REML

0.5 20 3 0.046 -0.163* 0.013
6 0.037* -0.048* 0.015
9 0.020 -0.018 0.009

60 3 0.049* -0.046* 0.023
6 0.023* 0.006 0.014*
9 0.006 0.005 0.005

100 3 0.058* -0.007 0.031*
6 0.006 0.005 0.005
9 0.000 0.000 0.000

0.9 20 3 0.119* -0.318* -0.166*
6 0.128* -0.129* -0.074*
9 0.080* -0.052* -0.028*

60 3 0.140* -0.137* -0.080*
6 0.061* -0.006 -0.003
9 0.020* 0.002 0.003

100 3 0.120* -0.069* -0.045*
6 0.028* 0.003 0.004
9 0.008* 0.003 0.003

0.9 0.1 20 3 0.007 -0.031* 0.175*
6 0.002 -0.010 0.086*
9 -0.009 -0.015 0.024

60 3 0.005 -0.010 0.095*
6 0.000 -0.001 0.008
9 -0.001 -0.001 -0.000

100 3 0.005 -0.003 0.048*
6 -0.001 -0.001 -0.000
9 -0.000 -0.000 -0.000

0.5 20 3 0.043 -0.160* 0.050*
6 0.078* -0.035* 0.055*
9 0.036* -0.011 0.026*

60 3 0.079* -0.040* 0.052*
6 0.034* 0.014* 0.025*
9 0.009 0.007 0.009

100 3 0.077* 0.000 0.050*
6 0.011* 0.009* 0.010*
9 0.004 0.004 0.004
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Table 1.7 continued.

Estimation Method

Hb PS n r MANOVA ML REML

0.9 20 3 0.107* -0.321* -0.131*
6 0.146* -0.130* -0.039*
9 0.110* -0.046* -0.011*

60 3 0.156* -0.138* -0.054*
6 0.070* -0.014* -0.004
9 0.026* 0.002 0.002

100 3 0.133* -0.076* -0.031*
6 0.034* 0.002 0.002
9 0.011* 0.004* 0.004*

'Asterisks denote biases significantly different from 0.0 using a Type I

probability of 0.05.
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Table 1.8 Biases' of jackknife and bootstrap estimates of pg estimated using

MANOVA and ML. The bootstrap sample sizes (b) used were 100 and 500. The

value of Ha used was 0.1.

Jackknife
Bootstrap

Hb Pg n r

b - 100 b - 500

MANOVA ML MANOVA ML MANOVA ML

0.1 0.1 20 3 -0.116 -0.023 0.011 -0.061* 0.099 -0.062*
6 -3.503* -0.108* -0.004 -0.047* -0.134 -0.049*
9 -8.176* -0.272* -0.048 -0.021 -0.011 -0.023

60 3 1.250* 0.005 -0.125 -0.042* 0.075 -0.041*
6 -1.547* 0.101* -0.015 -0.016 -0.016 -0.017
9 -6.023* -0.053 -0.006 -0.009 -0.006 -0.010

100 3 0.806* 0.000 -0.023 -0.026 -0.044 -0.026
6 -0.851* 0.071* -0.017 -0.017 -0.018 -0.017
9 -3.646* 0.029 -0.010 -0.010 -0.010 -0.010

0.5 20 3 3.928* -0.399* 0.475* -0.359* 0.449* -0.359*
6 -6.843* -0.281* 0.320* -0.233* 0.369* -0.233*
9 -23.416* -0.210* 0.220* -0.141* 0.207* -0.141*

60 3 0.983* -0.101* 0.346* -0.222* 0.343* -0.223*
6 -0.876* 0.084* 0.175* -0.034* 0.178* -0.033*
9 -7.559* 0.081* 0.082* 0.013 0.079* 0.013

100 3 0.146* -0.016 0.276* -0.140* 0.281* -0.142*
6 -0.149* 0.001 0.092* 0.013 0.092* 0.013
9 -2.795* 0.016 0.033* 0.022* 0.032* 0.021*

0.9 20 3 5.282* -0.130* 0.684* -0.670* 0.778* -0.670*
6 -6.060* -0.128* 0.656* -0.443* 0.735* -0.442*
9 -28.198* 0.077 0.580* -0.275* 0.581* -0.276*

60 3 0.550* 0.001 0.649* -0.452* 0.631* -0.453*
6 -0.228* -0.000 0.341* -0.152* 0.360* -0.153*
9 -6.635* 0.015 0.172* -0.047* 0.174* -0.047*

100 3 0.010 0.004 0.642* -0.322* 0.650* -0.323*
6 -0.053* 0.006 0.208* -0.062* 0.206* -0.061*
9 -2.263* 0.006 0.068* -0.017* 0.068* -0.018*
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Table 1.8 continued.

Jackknife
Bootstrap

lib Pg n r

b - 100 b - 500

MANOVA ML MANOVA ML MANOVA ML

0.5 0.1 20 3 0.202* -0.015 0.015 -0.054* -0.033 -0.055*
6 -1.515* 0.050 0.110* -0.027* 0.024 -0.028*
9 -4.318* -0.172* 0.007 -0.013 -0.001 -0.013

60 3 -0.021 0.004 0.004 -0.023* 0.008 -0.024*
6 -0.867* 0.031 0.012 -0.003 0.008 -0.004
9 -3.269* -0.013 0.006 0.004 0.006 0.003

100 3 0.027 -0.014 0.023 -0.008 0.020 -0.009
6 -0.454* 0.054* 0.000 -0.002 0.001 -0.003
9 -1.976* 0.127* -0.003 -0.004 -0.003 -0.003

0.5 20 3 -0.025 0.060 0.210* -0.237* 0.239* -0.236*
6 -2.764* -0.266* 0.171* -0.114* 0.185* -0.113*
9 -10.757* 0.085* 0.145* -0.057* 0.140* -0.056*

60 3 -0.046 0.016 0.161* -0.101* 0.167* -0.102*
6 -0.622* 0.023 0.096* 0.004 0.099* 0.004
9 -4.565* 0.056* 0.044* 0.021* 0.045* 0.022*

100 3 -0.013 0.042* 0.142* -0.045* 0.141* -0.045*
6 -0.085* -0.005 0.052* 0.023* 0.051* 0.023*
9 -1.374* 0.013* 0.016 0.012* 0.016* 0.012*

0.9 20 3 -0.063 -0.040 0.456* -0.457* 0.500* -0.456*
6 -3.545* 0.139* 0.375* -0.251* 0.358* -0.252*
9 -16.002* -0.032 0.277* -0.155* 0.278* -0.154*

60 3 -0.003 0.027* 0.339* -0.248* 0.326* -0.248*
6 -0.200* -0.017* 0.167* -0.062* 0.169* -0.063*
9 -2.912* 0.006 0.090* -0.011* 0.089* -0.011*

100 3 -0.003 -0.002 0.299* -0.160* 0.295* -0.161*
6 -0.000 -0.000 0.091* -0.018* 0.093* -0.018*
9 -0.775* 0.006* 0.043* 0.004 0.043* 0.004
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Table 1.8 continued.

Jackknife
Bootstrap

Hb P8 n r

b - 100 b - 500

MANOVA ML MANOVA ML MANOVA ML

0.9 0.1 20 3 -0.212* -0.005 0.025 -0.041* 0.032 -0.039*
6 -1.584* -0.053 0.061 -0.007 0.062 -0.006
9 -4.060* -0.135* 0.026 -0.008 0.019 -0.008

60 3 0.058 0.005 0.030 -0.024* 0.031 -0.025*
6 -0.944* 0.039 0.029* 0.013 0.028* 0.013
9 -3.296* 0.081* 0.005 0.002 0.005 0.002

100 3 -0.092* 0.030 0.022 -0.009 0.026 -0.009
6 -0.540* 0.076* 0.008 0.004 0.008 0.003
9 -2.186* 0.047* 0.008 0.008 0.009 0.008

0.5 20 3 -0.207* -0.049 0.159* -0.235* 0.160* -0.236*
6 -3.446* 0.115* 0.185* -0.108* 0.201* -0.109*
9 -11.152* -0.058 0.135* -0.048* 0.143* -0.048*

60 3 -0.087* 0.009 0.197* -0.102* 0.185* -0.103*
6 -0.616* 0.038* 0.092 0.008 0.088* 0.008
9 -4.674* 0.069* 0.039* 0.018* 0.040* 0.018*

100 3 -0.003 0.005 0.158* -0.038* 0.174* -0.037*
6 -0.045* 0.004 0.056* 0.025* 0.054* 0.025*
9 -1.531* 0.013* 0.017* 0.014* 0.017* 0.014*

0.9 20 3 -0.437* 0.228* 0.381* -0.439* 0.405* -0.440*
6 -3.661* 0.084* 0.316* -0.256* 0.351* -0.256*
9 -14.727* -0.055 0.284* -0.151* 0.280* -0.151*

60 3 -0.023* -0.000 0.322* -0.248* 0.347* -0.249*
6 -0.097* 0.002 0.166* -0.054* 0.168* -0.054*
9 -3.464* -0.003 0.087* -0.010* 0.085* -0.010*

100 3 -0.001 -0.000 0.284* -0.153* 0.291* -0.153*
6 -0.006 -0.001 0.100* -0.015* 0.101* -0.015*
9 -0.845* 0.004 0.039* 0.005* 0.039* 0.005*

'Asterisks denote biases significantly different from 0.0 using a Type I

probability of 0.05.



Table 1.9 Response surface analysis where the empirical variances Cop2)

MANOVA, ML, and REML estimates of AN are the dependent variables and pg,

Ha, Hb, n and r are the independent variables. bi is the regression

coefficient for the ith main or interaction effect.
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of

Pep

MANOVA

Parameter bi

Intercept 7.97

Pg -0.60

Pe -1.14
Ha -2.20
Hb -10.92
n -0.04

-0.47
ps x ps 0.14

Pe x pg -1.14

Pe x Pe 1.08
Ha x p8 -0.58

Pe -0.03Ha X
Ha x Ha 0.84
Hb x pg 1.73

Hb X Pe 0.18
Hb X Ha 0.05
Hb x Hb 4.56
n X Pg 3.7 x 10-3
n x pe 1.8 x 10-3
n x Ha 7.2 x 10-3
n X Hb 0.03
n x n 1.0 x 10-4

x pg -0.03
x pa 0.04
x Ha 0.12
X Hb 0.31
x n 6.0x 10-4
x r 0.01

ML REML

P-value bi P-value bi P-value

< 0.01 0.66 < 0.01 0.79 < 0.01
0.28 -0.07 0.10 -0.19 < 0.01
0.07 -0.01 0.22 -0.11 < 0.01

< 0.01 -0.48 < 0.01 -0.76 < 0.01
< 0.01 -0.48 < 0.01 -0.26 < 0.01
< 0.01 -4.2 x 10-3 < 0.01 -5.3 x 10-3 < 0.01
< 0.01 -0.04 < 0.01 -0.06 < 0.01

0.73 -0.03 < 0.01 -0.01 0.35
0.01 -0.01 0.02 -0.07 < 0.01
0.02 6.0 x 10-4 0.93 0.06 < 0.01
0.12 -0.01 0.27 0.10 < 0.01
0.94 3.1 x 10-3 0.63 0.07 < 0.01
0.19 0.15 < 0.01 0.22 < 0.01

< 0.01 0.07 < 0.01 0.03 < 0.01
0.66 0.01 0.13 -0.05 < 0.01
0.95 0.07 < 0.01 0.06 0.03

< 0.01 0.18 < 0.01 0.13 < 0.01
0.21 5.0 x 10-4 < 0.01 1.1 x 10-3 < 0.01
0.58 8.1 x 10-5 0.12 4.4 x 10-4 < 0.01
0.08 1.5 x 10-3 < 0.01 2.2 x 10-3 < 0.01

< 0.01 7.0 x 10-4 < 0.01 2.8 x 10-4 0.01
0.01 1.5 x 10-5 < 0.01 1.7 x 10-5 < 0.01
0.41 -3.0 x 10-3 < 0.01 0.01 < 0.01
0.31 3.0 x 10-4 0.61 0.01 < 0.01
0.02 0.02 < 0.01 0.03 < 0.01

< 0.01 0.02 < 0.01 0.01 < 0.01
0.15 2.3 x 10-5 0.01 7.1 x 10-5 < 0.01
0.39 1.2 x 10-3 0.01 2.0 x 10-3 < 0.01
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Table 1.10 Empirical 60, jackknife (2rj2) , bootstrap 60, Scheinberg

60, and Falconer (2/F2) variances of MANOVA estimators of pg.

H. Hb n r apta
A

j

A 2
aB

A

as

A

ciFb - 100 b - 500

0.1 0.1 20 3 4.198 98.591 38.915 34.731 1.2 x 106 5.4 x 105
6 4.535 37.987 13.023 20.849 2.9 x 109 7.1 x 105
9 1.713 8.228 17.413 8.129 6.7 x 107 1.2 x 106

60 3 3.207 172.287 27.953 65.729 6.4 x 108 3.0 x 105
6 0.687 8.783 1.784 3.099 1.6 x 105 2.7 x 104
9 0.098 1.416 0.533 0.898 2.4 x 10 0.82

100 3 1.553 100.559 7.585 11.579 6.4 x 105 8.3 x 104
6 0.106 1.610 1.008 0.685 3.9 x 10 1.30
9 0.039 0.267 0.071 0.085 0.19 0.06

0.1 0.5 20 3 1.018 13.101 5.612 15.829 2.5 x 105 1.3 x 103
6 0.450 15.891 8.988 2.085 1.1 x 108 9.24
9 0.207 1.864 2.113 1.593 3.5 x 104 6.6 x 10

60 3 0.451 25.083 2.943 8.171 4.2 x 108 3.3 x 10
6 0.101 17.897 0.412 0.572 5.2 x 103 0.41
9 0.033 0.149 0.474 0.176 1.51 0.04

100 3 0.530 883.827 1.948 1.096 4.6 x 107 0.24
6 0.029 0.551 0.142 0.279 1.91 0.04
9 0.019 0.019 0.052 0.033 1.95 0.04

0.1 0.9 20 3 1.043 22.119 2.607 3.264 6.2 x 108 7.0 x 10
6 0.440 7.480 2.838 4.075 1.9 x 105 9.46
9 0.279 6.360 3.016 1.922 1.4 x 105 7.07

60 3 0.400 17.524 1.104 3.403 2.1 x 105 2.41
6 0.109 2.552 1.141 0.500 2.0 x 103 0.05
9 0.036 0.110 0.153 0.165 2.3 x 10 0.03

100 3 0.340 76.397 1.265 3.247 8.6 x 108 8.3 x 102
6 0.030 0.274 0.267 0.207 5.77 0.03
9 0.016 0.018 0.027 0.028 0.07 0.02
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Table 1.10 continued.

H. Hb n r ';'72 A

ajZ

A 2
a13

°AS
2 2b - 100 b 500

0.5

0.9

0.5

0.9

0.9

20

60

100

20

60

100

20

60

100

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

0.097
0.054
0.046
0.023
0.015
0.014
0.013
0.009
0.008

0.060
0.043
0.040
0.016
0.014
0.013
0.009
0.008
0.007

0.038
0.036
0.036
0.012
0.011
0.011
0.007
0.007
0.007

0.319
0.053
0.044
0.021
0.014
0.012
0.012
0.008
0.007

0.105
0.044
0.039
0.015
0.012
0.011
0.008
0.007
0.006

0.036
0.034
0.034
0.010
0.010
0.010
0.006
0.006
0.005

0.626
0.130
0.044
0.020
0.013
0.011
0.011
0.007
0.006

0.176
0.042
0.034
0.014
0.011
0.010
0.008
0.006
0.006

0.030
0.028
0.028
0.009
0.009
0.008
0.005
0.005
0.005

0.415
0.107
0.041
0.020
0.013
0.011
0.011
0.007
0.006

0.160
0.046
0.035
0.014
0.011
0.010
0.008
0.006
0.006

0.030
0.028
0.028
0.009
0.009
0.009
0.005
0.005
0.005

1.0 x 103
0.43
0.16
0.09
0.06
0.05
0.05
0.04
0.03

3.29
0.16
0.15
0.06
0.05
0.05
0.04
0.03
0.03

0.14
0.13
0.13
0.05
0.04
0.04
0.03
0.03
0.03

5.56
0.08
0.06
0.06
0.03
0.02
0.03
0.02
0.01

0.12
0.06
0.04
0.04
0.02
0.01
0.03
0.01
0.01

0.09
0.04
0.03
0.03
0.02
0.01
0.02
0.01
0.01



50

Table 1.11 Empirical (V) variances of ML and REML estimators of pg and

means of jackknife (arj2) and bootstrap 6%2) variances of ML estimators of

Pg.

02

ML

A

aB

Ha Hb n r 2rj2REML ML b - 100 b - 500

0.1 0.1 20 3 0.324 0.315 1.974 0.219 0.219
6 0.242 0.257 1.261 0.232 0.232
9 0.187 0.192 0.719 0.204 0.203

60 3 0.246 0.251 2.655 0.205 0.205
6 0.109 0.109 0.409 0.129 0.129
9 0.059 0.059 0.102 0.072 0.072

100 3 0.188 0.189 2.230 0.176 0.176
6 0.057 0.057 0.137 0.072 0.071
9 0.030 0.030 0.036 0.034 0.034

0.1 0.5 20 3 0.291 0.234 1.299 0.199 0.198
6 0.173 0.159 0.753 0.170 0.171
9 0.111 0.110 0.394 0.137 0.137

60 3 0.155 0.124 1.526 0.125 0.126
6 0.045 0.043 0.220 0.065 0.066
9 0.026 0.026 0.051 0.035 0.035

100 3 0.092 0.075 1.131 0.093 0.093
6 0.022 0.021 0.069 0.032 0.032
9 0.014 0.014 0.016 0.017 0.017

0.1 0.9 20 3 0.243 0.180 0.838 0.150 0.150
6 0.145 0.133 0.515 0.136 0.136
9 0.101 0.096 0.300 0.114 0.114

60 3 0.118 0.099 0.967 0.104 0.104
6 0.039 0.039 0.160 0.054 0.054
9 0.025 0.024 0.035 0.031 0.031

100 3 0.067 0.061 0.849 0.075 0.075
6 0.020 0.020 0.036 0.028 0.028
9 0.014 0.014 0.015 0.015 0.015
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Table 1.11 continued.

ML

A 2 2
'-'B

H. Hb A
oj

2REML ML b - 100 b = 500

0.5

0.9

0.5

0.9

0.9

20

60

100

20

60

100

20

60

100

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

3

6

9

0.071
0.044
0.038
0.018
0.012
0.011
0.010
0.007
0.006

0.047
0.035
0.033
0.013
0.011
0.010
0.007
0.006
0.006

0.031
0.030
0.029
0.009
0.009
0.009
0.005
0.005
0.005

0.069
0.044
0.038
0.018
0.012
0.011
0.010
0.007
0.006

0.046
0.035
0.033
0.013
0.011
0.010
0.007
0.006
0.006

0.031
0.030
0.029
0.010
0.009
0.009
0.006
0.005
0.005

0.112
0.052
0.044
0.020
0.013
0.012
0.011
0.007
0.007

0.065
0.042
0.038
0.014
0.011
0.010
0.008
0.006
0.006

0.036
0.034
0.033
0.010
0.009
0.009
0.006
0.005
0.005

0.081
0.047
0.039
0.019
0.013
0.011
0.011
0.007
0.006

0.054
0.036
0.033
0.013
0.011
0.010
0.007
0.006
0.006

0.030
0.028
0.028
0.009
0.009
0.008
0.005
0.005
0.005

0.081
0.047
0.039
0.019
0.013
0.011
0.011
0.007
0.006

0.054
0.036
0.033
0.013
0.011
0.010
0.007
0.006
0.006

0.030
0.028
0.028
0.009
0.009
0.008
0.005
0.005
0.005



52

References

Amemiya, Y (1985). What should be done when an estimated

between-group covariance matrix is not nonnegative

definite? The American Statistician 39:112-117.

Baker, R. J. (1986). Selection indices in plant breeding.

CRC Press, Inc. Boca Raton, Florida.

Efron, B (1982). The Jackknife, the Bootstrap and other

resampling plans. Philadelphia:SIAM.

Falconer, D. S. (1981). Introduction to quantitative

genetics. Edition 2. Longman, London.

Hill, W. G. and R. Thompson (1978). Probabilities of non-

positive definite between-group or genetic covariance

matrices. Biometrics 34:429-439.

Harville, D. A. (1977). Maximum likelihood approaches to

variance component estimation and to related problems.

Journal of the American Statistical Association. 72:320-

338.

Johnson, M. E. (1987). Multivariate statistical simulation.

John Wiley & Son, New York.

Kinderman, A. L. (1975). Computer generation of random

variables with normal and Studnet's T distributions. In:

Proceedings of the statistical computing section, The

American Statistical Association.



53

Klotz, J. and J. Putter (1969). Maximum likelihood

estimation of multivariate covariance components for the

balanced one-way layout. The Annals of Mathematical

Statistics 40:1100-1105.

Knapp, S. J., W. C. Bridges,Jr. and M. H. Yang (1989).

Nonparametric confidence interval estimators for

heritability and expected selection response. Genetics

121:891-898.

Lande, R. (1984). The genetic correlation between characters

maintained by selection, linkage and inbreeding. Genetic

Research 44:309-320.

Miller, R. G. (1974). The jackknife-a review. Biometrika

61:115.

Rao, C. R. and J. Kleffe (1988). Estimation of variance

components and applications. North-Holland, Amsterdam.

Scheinberg, E (1966). The sampling variance of the

correlation coefficients estimated in genetic experiments.

Biometrics 22:187-191.

Searle, S. R. (1970) Linear Models. John Wiley & Sons, New

York.

Swallow, W. H. and J. F. Monahan (1984). Monte Carlo

comparison of ANOVA, MIVQUE, REML, and ML estimators of

variance components. Technometrics 26:47-57.

VanVleck, L. D. and C. R. Henderson (1961). Empirical

sampling estimates of genetic correlations. Biometrics

17:359-371.



54

CHAPTER 3

CONFIDENCE INTERVAL ESTIMATORS FOR MANOVA AND ML ESTIMATORS

OF GENETIC CORRELATION
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Abstract

Parametric interval estimators have been difficult to

derive for many quantitative genetic parameters because

their distributions are unknown. This has certainly been

true for genetic correlation (p8). Approximate estimators

of the variance of multivariate analysis of variance

(MANOVA) estimator of p8 have been described, but they are

not valid in many situations. In addition, methods for

estimating intervals of MANOVA and maximum likelihood (ML)

estimator of pg have not developped yet. Our objective was

to evaluate the validity of normal-approximation parametric,

jackknife, and bootstrap intervals and percentile and bias-

corrected percentile bootstrap intervals of MANOVA and ML

estimators of pg using computer simulation. Simulations

were done using a balanced one-way linear model with two

correlated traits. Estimated coverage probabilities (ECP)

of parametric intervals were consistently significantly

different from stated coverage probabilities (SCP). The

parametric intervals were often wide and had negative lower

bounds. ECPs for normal-approximation jackknife and

bootstrap intervals were significantly different from SCPs.

ECPs for MANOVA and ML percentile bootstrap intervals were

relatively close to SCPs. ECPs of MANOVA and ML bias-

corrected bootstrap intervals were close to SCPs and the

intervals were comparatively narrow. Intervals of MANOVA

estimators were consistently wider than those of ML
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estimators. The ML bias-corrected bootstrap percentile

interval gave valid coverage and had narrow average interval

length. We found number of genotypes used was more

important for reducing interval lengths than the number of

replications.

Key words: bootstrapping, jackknifing, maximum likelihood,

MANOVA, genetic correlation.
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Introduction

Parametric interval estimators have been difficult to

find for many genetic parameters because their distributions

are unknown. This has been shown for expected selection

response (Knapp et al. 1989; Bridges et al. 1990) and is a

problem for genetic correlation (p8) as well. The

distribution of pg is unknown; however, we empirically

estimated the distribution of multivariate analysis of

variance (MANOVA), maximum likelihood (ML), and restricted

maximum likelihood (REML) estimates of p8 in Chapter 2.

MANOVA estimates were found to be approximately normally

distributed regardless of the value of p8, whereas ML and

REML estimates of p8 were found to be approximately normally

distributed or negatively or positively skewed (Liu and

Knapp 1991). The shape of the distribution of ML or REML

estimates is a function of the sign and magnitude of p8.

The distribution is negatively skewed when p8 is positive

and approaches 1.0, positively skewed when p8 is negative

and approaches -1.0, and approximately normally distribution

when p8 approaches 0.0. To make statistical inferences

about estimates of genetic correlation, methods are needed

to empirically estimate the distribution and variance of

this parameter.

Parametric estimators of the variance of genetic

correlation have been described (Falconer 1981; Reeve 1955;

Robertson 1959; Scheinberg 1966; Tallis 1959) but these
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estimators have not been widely used, perhaps because they

are complex and their validity has been uncertain. We have

shown the estimators described by Scheinberg (1966) and

Falconer (1981) are not valid in many situations.

Furthermore, these estimators strictly apply to MANOVA

estimators of pg. Other methods of estimating sampling

variance are needed for ML and REML estimators of pg.

Fast, efficient, and inexpensive computing technology

has made it practical and feasible to apply data resampling

methods, especially bootstrapping, to a wide range of

statistical inference problems arising in population and

quantitative genetics. Bootstrapping has been used, for

example, to estimate variances of mating system parameters

(Schoen and Clegg 1988), cumulative density functions (CDFs)

and bias-corrected percentile (BCP) intervals of outcrossing

rates (Knapp et al. 1991), and BCP intervals of pg (Riska et

al. 1989). Delete-one jackknifing has been used to estimate

intervals for heritability and other genetic parameters

(Knapp et al. 1989; Mitchell-Olds and Bergelson 1990).

Jackknifing and bootstrapping are tremendously versatile

statistical tools because they can be applied to estimation

problems where the distribution of the parameters are

unknown or the validity of parametric methods are inadequate

or sensitive to distributional or model assumptions (Miller

1974; Efron 1982), e.g., the estimation of intervals for

variances (Miller 1974) and family-mean heritability
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(Arvesen and Schmitz 1970; Knapp et al. 1989). Their

strength is magnified by their simplicity -- these methods

are applied the same regardless of the parameter being

estimated. It is this versatility and power which led us to

investigate the validity of these methods for estimating

confidence intervals of genetic correlation coefficients.

Furthermore, there are no known parametric methods for

estimating variances and intervals of ML and REML estimators

of genetic correlation; however, we have shown bootstrapping

can be used to get valid estimates of the variance of REML

or ML estimators of pg. In this paper, we report a

simulation study carried out to estimate the validity of

estimators of normal-approximation parametric, jackknife,

and bootstrap and percentile and bias-corrected percentile

bootstrap intervals of MANOVA, ML, and REML estimators of

Pis



60

Materials and Methods

The statistical model, simulation methods, and parameter

values we used have been described (Chapter 2). MANOVA, ML,

and REML methods were used to estimate ;8; however, we do

not report REML estimators because the interval coverage

were, for practical purposes, equivalent to those of ML

estimators. In addition, data for n = 20 (number of

genotypes) and n = 60 are not reported for interval

estimation methods other than the bias-corrected percentile

bootstrap method because their coverage were unsatisfactory.

The validity or lack of validity of these intervals is shown

by estimates for n = 100, so there is no need to report

estimates for sample sizes less than 100. This is justified

because the coverage of these intervals deteriorates as n

decreases.

Two-sided confidence intervals were estimated using

confidence coefficients of 0.80 and 0.95. Realized coverage

probabilities were estimated (ECP) by counting the number of

interval estimates which covered the parameter value and

dividing by the total number of estimates. Standard errors

were estimated and used to test whether or not an estimate

was significantly different from the stated coverage

probability (SCP) using a Type I error probability of 0.05.

Normal-approximation (NA) intervals: Normal-

approximation intervals were estimated using Scheinberg

(1966 ) (&s2) (NAS), Falconer (1981) (&F2) (NAF), jackknife
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(672) (NAJ), and bootstrap (Ers2) (NAB) variances of pg. A (1

- a)100% two-sided normal-approximation interval of pg using

the parametric variances is

{Pg Z1 ce(aP2)1/2, 7/g + Z1 - a(C3p2)1/2) (1)

where pg is the MANOVA estimate of pg, Zl_a is the (1 -

a)100% two-sided critical value of the standard normal

distribution, and ap2 is estimated parametric variance of

^ ^pg, either c 2 or cF2 . The square root of &F2 is negative

when pg > 1.0 or < -1.0 and the interval does not cover pg.

A (1 - a)100% two-sided normal-approximation interval

of pg using the nonparametric variance is (Efron 1982)

,." 1

Pg tl ccs 1
f2N 3/4

Pg tcs 1V-1N
2N

/ (2)

where ti a:s -3. is (1 - a) 100% two-sided critical value of

the t-distribution with s - 1 degrees of freedom, s is the

number of samples used for a particular resampling method,

^ 2 ^
a 2 ^ 2and aN = j aor s .

Bootstrap percentile (BP) and bias-corrected percentile

(BCP) intervals: Given the cumulative distribution function

(CDF) of the bootstrap point estimate (Efron 1982)

CDF (x) = Prob (1,13 x),

then (1 - a)100% interval of pg is

(CDF-1(a), CDF -1(1 - a)). (3)

A (1 - a)100% bias-corrected percentile interval for pg

is (Efron 1982)

(05F-1[t(2z0 - za) ], CDF-1( (t (2z0+ za) ]) (4)
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where zo = (1)-1[CDF(Pg)], za = (1)-1(1 a) , and t is the CDF for

a standard normal variate.
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Results

Normal-approximation intervals: The estimated coverage

probabilities (ECP) for the NAS intervals were significantly

greater than the state coverage probabilities (SCP) (Table

2.1). ECPs of the NAF intervals were usually less than the

SCPs when Ha and Hb were less than 0.5 and pg = 0.5 or 0.9

(Table 2.2). The ECPs were usually greater than the SCPs

when Ha and Hb were greater than or equal to 0.5, r = 3 or

6, and pg = 0.1 or 0.5, but were significantly less than the

SCPs when r = 9 (Table 2.2). The intervals of NAS were

consistently very wide when Ha and Hb were less than 0.5

(Table 2.3). The interval lengths of NAF were meaningless

when Ha or Hb was less than 0.5 because a proportion of the

point estimates were < -1.0 or > 1.0 (Chapter 2), which

leads to negative interval lengths. Interval lengths

decreased as n and r increased. The effect of n was greater

than the effect of r (Table 2.3).

[Table 2.1, 2.2, and 2.3 placement]

ECPs for the NAJ intervals of MANOVA and ML estimators

were significantly less than the SCPs (Table 2.4 and 2.5).

The intervals were wide when Ha or Hb was less than or equal

to 0.5 (Table 2.6).

[Table 2.4, 2.5, and 2.6 placement]

ECPs for the NAB intervals of MANOVA and ML estimators

were significantly less than the SCPs (Table 2.7 and 2.8).

Interval lengths were decreased as pg, r, H and Hb
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increased, but the effect of r decreased as Ha and Hb

increased.

[Table 2.7, 2.8, and 2.9 placement]

Percentile (BP) and bias-corrected percentile bootstrap

intervals (BCP): ECPs for BP intervals closely approached

the SCPs as n and r increased (Table 2.10). ECPs for ML

estimates were closer to the SCPs than those of MANOVA

estimates (Table 2.10 and 2.11). Intervals of the MANOVA

estimates were wider than those of the ML estimates when

either Ha or Hb was 0.5 or lower (Table 2.12). Intervals of

MANOVA and ML estimators were more narrow and the difference

between them were small when both Ha and Hb were 0.5 or

higher (Table 2.12). The interval length could be reduced

by increasing n and r, but the effect of increasing r was

diminished when both Ha and Hb was 0.9.

[Table 2.10, 2.11, and 2.12 placement]

ECPs of MANOVA BCP intervals were consistently less than

the SCPs when Ha and Hb were less than 0.5 (Table 2.13).

When Ha and Hb were 0.5 or higher the ECPs were closer to

the SCPs. ECPs of ML BCP intervals were close to the SCPs

(Table 2.14). Interval lengths of MANOVA BCP intervals were

wider than these of ML BCP intervals when Ha and Hb were 0.5

or less (Table 2.15). Interval length could be decreased by

increasing n and r, but the effect of r diminished as

heritabilities increased.

[Table 2.13, 2.14, and 2.15 placement]
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Discussion

The parametric normal-approximation intervals of pg gave

extremely unsatisfactory coverage (Tables 1 & 2). These

estimators fail because the Scheinberg (1966) and Falconer

(1981) variances do not give valid estimates of the variance

of MANOVA estimates of pg (Chapter 2).

Bootstrapping and jackknifing are effective tools for

estimating the variances and biases of many complex

parameter estimates; however, they are more prone to fail as

tools for estimating intervals than as tools for estimating

variances and biases (Efron 1987; Schenker 1985). This is

particularly true of parameters which do not have

symmetric distributions or distributions whose shapes change

as the parameter value changes. ML estimators of pg fit

this definition. We have shown the shape of the distribution

of ML estimates of pg is a function of the sign and

magnitude of pg (Chapter 2). This is problematic because

the tails of bootstrap distributions are used to define

confidence regions (Efron 1987; Schenker 1985).

Nevertheless, we have shown the ML BCP intervals of pg

give valid coverage when the heritabilities are greater than

or equal to 0.5 (Table 2.14). Their coverage breaks down if

the heritability of either trait is equal to 0.1. We know

the variance of pg increases as heritability decreases, but

this alone does not explain why the ML BCP interval of pg

deteriorates as heritability decreases below a certain
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value. After all, we have shown bootstrapping is an

effective way of getting valid estimates of the variance of

MANOVA or ML estimator of pis (Chapter 2). The coverage was

slightly unsatisfactory when pis = 0.9.

The other methods, whether they were applied to MANOVA

or ML estimator of p8, were less satisfactory than the

bias-corrected percentile method applied to ML estimator of

p8, although the BCP intervals of MANOVA estimator of Pis

were a close second. None of the normal-approximation

methods worked and jackknifing failed altogether. There is

no rationale for using the percentile method to estimate

intervals because the bias-corrected percentile method is,

either theoretically or empirically, always superior to the

percentile method. They either give equivalent coverage or

the BCP method gives superior coverage, whether applied to

pg or any other parameter.

The variances and interval lengths of MANOVA or ML

estimator of pg are decreased by increasing n or r; however,

greater efficiency is achieved by increasing n at the

expense of r. This is consistent with experiment designs

which have been found to maximize parameter estimation

efficiency for variances or ratios of variances (Anderson

and Crump 1967; McCutchan, Ou, and Namkoong 1985; Thompson

1975). Designs which use intentional unbalance may be

optimum (Thompson 1975); however, these designs are variants

of the completely randomized experiment design and may
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require unrealistically great numbers of homogeneous

experimental units. These designs strive to maximize n by

using a minimum number of replicated genotypes.

Percentile and bias-corrected percentile intervals have

been widely used because they are simple and often effective

tools for estimating intervals for parameters which have

complex distributions. But theoretical criticisms of these

methods have surfaced which show when and why they sometimes

fail (Efron 1987; Efron and Tibshirani 1986; Schenker 1985).

The main problems have been thoroughly outlined by Efron

(1987), Efron and Tibshirani (1986), and Schenker (1985).

The double bootstrap has been proposed to overcome these

problems (Schenker 1985). The double bootstrap, if applied

without using a sampling scheme designed to reduce the

number of computations, uses b2 bootstrap samples. If b =

1000 bootstrap samples are drawn, then b* = 1000 bootstrap

samples would be drawn from each of these. This gives

1,000,000 bootstrap samples! This solution has obvious

limitations. Stratified sampling schemes have been proposed

to alleviate the computational difficulties imposed by the

double bootstrap. We have not investigated the double

bootstrap interval; however, it should give coverages closer

to stated coverages than the BCP interval. The double

bootstrap should be an effective way to estimate the biases

of estimators of pg. The jackknife and bootstrap failed to

do this. If the double bootstrap succeeds where these
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methods failed, then MANOVA and ML estimators of pg can be

bias corrected.

Our simulations strongly support using ML estimators of

pg and BCP intervals. The greatest practical problem facing

investigators is the lack of algorithms and software for

these purposes. The algorithms we used for REML and ML

estimation of variance-covariance matrix (Amemiya 1985;

Klotz and Putter 1969) are limited to the one-factor linear

model. The practical value of the our findings would be

greatly increased by efficient and widely applicable

computing solutions.
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Table 2.1. Estimated coverage probabilities (ECP) of the

normal-approximation interval of pg estimated using the

parametric variance estimator of Scheinberg (1966) (&S2).

MANOVA was used to estimate pg and n = 100. ECPs marked with

an asterisk are significantly different from stated

probabilities using a Type I error of 0.05.

r

3 6 9

Stated coverage probabilities

Ha Hb pg 0.80 0.95 0.80 0.95 0.80 0.95

0.1 0.1 0.1 0.98* 1.00* 0.99* 1.00* 0.99* 1.00*
0.5 0.99* 1.00* 0.98* 1.00* 0.98* 1.00*
0.9 1.00* 1.00* 1.00* 1.00* 0.99* 1.00*

0.5 0.1 0.99* 1.00* 0.98* 1.00* 0.98* 1.00*
0.5 0.99* 1.00* 0.99* 1.00* 0.98* 1.00*
0.9 0.99* 1.00* 1.00* 1.00* 1.00* 1.00*

0.9 0.1 0.99* 1.00* 0.98* 1.00* 0.98* 1.00*
0.5 1.00* 1.00* 0.99* 1.00* 0.99* 1.00*
0.9 0.99* 1.00* 1.00* 1.00* 0.99* 1.00*

0.5 0.5 0.1 0.98* 1.00* 0.99* 1.00* 0.99* 1.00*
0.5 0.98* 1.00* 0.98* 1.00* 0.98* 1.00*
0.9 0.98* 1.00* 0.98* 1.00* 0.97* 1.00*

0.9 0.1 0.98* 1.00* 0.99* 1.00* 0.99* 1.00*
0.5 0.98* 1.00* 0.98* 1.00* 0.98* 1.00*
0.9 0.99* 1.00* 0.98* 1.00* 0.97* 1.00*

0.9 0.9 0.1 0.98* 1.00* 0.99* 1.00* 0.98* 1.00*
0.5 0.98* 1.00* 0.98* 1.00* 0.99* 1.00*
0.9 0.97* 1.00* 0.97* 1.00* 0.98* 1.00*
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Table 2.2. Estimated coverage probabilities (ECP) of the

normal-approximation interval of pg estimated using the

parametric variance estimator of Falconer (1981) (&F2).

MANOVA was used to estimate pg and n = 100. ECPs marked with

an asterisk are significantly different from stated

probabilities using a Type I error of 0.05.

r

3 6 9

Stated coverage probabilities

Ha Hb pg 0.80 0.95 0.80 0.95 0.80 0.95

0.1 0.1 0.1 0.69* 0.78* 0.84* 0.93 0.90* 0.97*
0.5 0.64* 0.71* 0.80 0.88* 0.85* 0.93*
0.9 0.44* 0.49* 0.49* 0.56* 0.55* 0.64*

0.5 0.1 0.85* 0.93 0.89* 0.96* 0.88* 0.97*
0.5 0.77* 0.85* 0.83* 0.92* 0.85* 0.94
0.9 0.45* 0.56* 0.50* 0.64* 0.50* 0.65*

0.9 0.1 0.87* 0.95 0.86* 0.95 0.85* 0.96*
0.5 0.75* 0.82* 0.80 0.90* 0.81 0.93*
0.9 0.37* 0.57* 0.39* 0.57* 0.43* 0.61*

0.5 0.5 0.1 0.95* 0.99* 0.91* 0.98* 0.86* 0.98*
0.5 0.93* 0.98* 0.90* 0.98* 0.85* 0.96*
0.9 0.71* 0.79* 0.75* 0.87* 0.73* 0.87*

0.9 0.1 0.95* 0.99* 0.89* 0.98* 0.83* 0.96
0.5 0.93* 0.98* 0.87* 0.97* 0.81 0.95
0.9 0.76* 0.86* 0.75* 0.89* 0.72* 0.88*

0.9 0.9 0.1 0.95* 0.99* 0.86* 0.97* 0.77 0.93*
0.5 0.95* 0.99* 0.85* 0.96* 0.76* 0.92*
0.9 0.89* 0.97* 0.83* 0.94 0.73* 0.92*
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Table 2.3. Estimated lengths of normal-approximation

intervals of Pg estimated using the parametric variance

estimators of Scheinberg (1966) (as2) and Falconer (1981)

(&F2) estimated using MANOVA (n = 100, 1 - a = 0.95).

r

^ 2 Q 2
F

Ha Hb Pg 3 6 9 3 6 9

0.1 0.1 0.1 24.55 2.51 1.65 -4.12 1.33 1.13
0.5 229.86 2.00 1.37 -49.51 1.02 0.86
0.9 20.41 66.23 1.00 0.45 -10.30 0.22

0.5 0.1 7.25 1.43 1.18 1.26 0.94 0.76
0.5 4.25 1.92 0.98 0.91 0.69 0.58
0.9 10.57 1.17 0.67 0.27 0.17 0.13

0.9 0.1 5.48 1.32 1.11 1.11 0.81 0.66
0.5 13.35 1.26 0.95 0.76 0.59 0.49
0.9 247.76 2.54 0.67 0.24 0.14 0.11

0.5 0.5 0.1 1.05 0.91 0.86 0.88 0.63 0.51
0.5 0.83 0.70 0.66 0.67 0.47 0.39
0.9 0.43 0.27 0.22 0.16 0.12 0.10

0.9 0.1 0.91 0.84 0.82 0.76 0.54 0.44
0.5 0.73 0.66 0.63 0.58 0.41 0.33
0.9 0.31 0.22 0.19 0.14 0.10 0.08

0.9 0.9 0.1 0.80 0.79 0.78 0.66 0.46 0.38
0.5 0.61 0.60 0.59 0.50 0.35 0.29
0.9 0.18 0.17 0.16 0.13 0.09 0.07



72

Table 2.4. Estimated coverage probabilities (ECP) of the

normal-approximation jackknife interval of pg estimated using

MANOVA and n = 100. ECPs marked with an asterisk are

significantly different from stated probabilities using a

Type I error of 0.05.

r

3 6 9

Stated coverage probabilities

Ha Hb 0.80 0.95 0.80 0.95 0.80 0.95

0.1 0.1 0.1 0.31* 0.52* 0.35* 0.52* 0.41* 0.57*
0.5 0.32* 0.51* 0.44* 0.59* 0.54* 0.70*
0.9 0.33* 0.52* 0.48* 0.63* 0.56* 0.74*

0.5 0.1 0.35* 0.63* 0.41* 0.62* 0.48* 0.67*
0.5 0.30* 0.58* 0.48* 0.67* 0.58* 0.76*
0.9 0.35* 0.59* 0.54* 0.73* 0.61* 0.84*

0.9 0.1 0.31* 0.65* 0.38* 0.62* 0.47* 0.65*
0.5 0.28* 0.56* 0.46* 0.65* 0.56* 0.75*
0.9 0.34* 0.57* 0.54* 0.71* 0.61* 0.83*

0.5 0.5 0.1 0.57* 0.74* 0.64* 0.86* 0.62* 0.86*
0.5 0.63* 0.87* 0.62* 0.89* 0.60* 0.87*
0.9 0.61* 0.89* 0.60* 0.88* 0.60* 0.88*

0.9 0.1 0.61* 0.83* 0.62* 0.85* 0.60* 0.85*
0.5 0.62* 0.90* 0.60* 0.88* 0.60* 0.88*
0.9 0.59* 0.90* 0.61* 0.89* 0.59* 0.88*

0.9 0.9 0.1 0.60* 0.85* 0.61* 0.85* 0.62* 0.86*
0.5 0.61* 0.88* 0.59* 0.87* 0.61* 0.88*
0.9 0.61* 0.89* 0.59* 0.89* 0.60* 0.89*
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Table 2.5. Estimated coverage probabilities (ECP) of the

normal-approximation jackknife interval of p8 estimated using

ML and n = 100. ECPs marked with an asterisk are

significantly different from stated probabilities using a

Type I error of 0.05.

r

3 6 9

Stated coverage probabilities

Ha Hb pg 0.80 0.95 0.80 0.95 0.80 0.95

0.1 0.1 0.1 0.24* 0.46* 0.26* 0.50* 0.31* 0.53*
0.5 0.26* 0.48* 0.35* 0.54* 0.44* 0.63*
0.9 0.29* 0.50* 0.41* 0.57* 0.49* 0.68*

0.5 0.1 0.30* 0.62* 0.33* 0.60* 0.37* 0.61*
0.5 0.27* 0.57* 0.40* 0.62* 0.50* 0.69*
0.9 0.30* 0.56* 0.47* 0.68* 0.56* 0.79*

0.9 0.1 0.26* 0.61* 0.30* 0.60* 0.36* 0.60*
0.5 0.26* 0.56* 0.38* 0.59* 0.48* 0.68*
0.9 0.30* 0.55* 0.46* 0.66* 0.56* 0.78*

0.5 0.5 0.1 0.47* 0.65* 0.59* 0.79* 0.61* 0.83*
0.5 0.60* 0.83* 0.61* 0.88* 0.60* 0.87*
0.9 0.61* 0.87* 0.60* 0.88* 0.60* 0.88*

0.9 0.1 0.54* 0.74* 0.60* 0.82* 0.60* 0.84*
0.5 0.61* 0.89* 0.60* 0.88* 0.60* 0.88*
0.9 0.59* 0.89* 0.61* 0.89* 0.59* 0.88*

0.9 0.9 0.1 0.60* 0.85* 0.61* 0.85* 0.62* 0.86*
0.5 0.61* 0.88* 0.59* 0.87* 0.61* 0.88*
0.9 0.61* 0.89* 0.59* 0.89* 0.60* 0.89*
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Table 2.6. Estimated lengths of the normal-approximation

jackknife

100, and

interval of Pg estimated using MANOVA and ML

1 - a = 0.95).

(n =

r

MANOVA ML

Ha Hb Pg 3 6 9 3 6 9

0.1 0.1 0.1 6.38 1.15 0.74 3.85 2.64 1.71
0.5 5.76 1.06 0.62 3.42 0.87 0.44
0.9 7.93 1.00 0.48 2.43 0.45 0.31

0.5 0.1 1.73 0.63 0.51 3.20 1.94 1.16
0.5 3.36 0.60 0.43 2.43 0.59 0.31
0.9 6.97 0.64 0.29 1.57 0.35 0.23

0.9 0.1 1.75 0.60 0.49 2.67 1.68 1.03
0.5 3.06 0.56 0.42 2.04 0.56 0.29
0.9 4.86 0.63 0.30 1.41 0.31 0.23

0.5 0.5 0.1 0.45 0.38 0.37 0.44 0.29 0.25
0.5 0.36 0.30 0.28 0.22 0.15 0.12
0.9 0.18 0.11 0.09 0.17 0.11 0.09

0.9 0.1 0.39 0.36 0.35 0.34 0.24 0.22
0.5 0.31 0.28 0.27 0.17 0.12 0.11
0.9 0.13 0.09 0.08 0.13 0.09 0.08

0.9 0.9 0.1 0.34 0.33 0.33 0.20 0.18 0.18
0.5 0.26 0.26 0.25 0.10 0.09 0.09
0.9 0.07 0.07 0.06 0.07 0.07 0.06
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Table 2.7. Estimated coverage probabilities (ECP) of the

normal-approximation bootstrap (b = 500) interval of P8

estimated using MANOVA and n = 100. ECPs marked with an

asterisk are significantly different from stated

probabilities using a Type I error of 0.05.

r

3 6 9

Stated coverage probabilities

Ha Hb Pg 0.80 0.95 0.80 0.95 0.80 0.95

0.1 0.1 0.1 0.71* 0.94 0.65* 0.93* 0.72* 0.94
0.5 0.73* 0.96 0.65* 0.92* 0.61* 0.88*
0.9 0.77 0.98* 0.69* 0.96 0.61* 0.90*

0.5 0.1 0.67* 0.94 0.62* 0.90* 0.59* 0.88*
0.5 0.69* 0.94 0.64* 0.91* 0.59* 0.89*
0.9 0.78 0.96 0.71* 0.95 0.61* 0.90*

0.9 0.1 0.67* 0.94 0.62* 0.89* 0.59* 0.88*
0.5 0.72* 0.95 0.65* 0.92* 0.60* 0.89*
0.9 0.78 0.95 0.69* 0.96 0.62* 0.91*

0.5 0.5 0.1 0.58* 0.88* 0.60* 0.88* 0.59* 0.88*
0.5 0.58* 0.87* 0.58* 0.87* 0.60* 0.88*
0.9 0.54* 0.83* 0.56* 0.86* 0.58* 0.87*

0.9 0.1 0.55* 0.87* 0.58* 0.88* 0.60* 0.89*
0.5 0.59* 0.87* 0.58* 0.87* 0.58* 0.88*
0.9 0.58* 0.85* 0.57* 0.86* 0.57* 0.87*

0.9 0.9 0.1 0.57* 0.88* 0.58* 0.88* 0.58* 0.87*
0.5 0.56* 0.87* 0.58* 0.87* 0.56* 0.88*
0.9 0.59* 0.87* 0.61* 0.88* 0.57* 0.88*
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Table 2.8. Estimated coverage probabilities (ECP) of the

normal-approximation bootstrap (b = 500) interval of pg

estimated using ML and n = 100. ECPs marked with an asterisk

are significantly different from stated probabilities using a

Type I error of 0.05.

r

3 6 9

Stated coverage probabilities

Ha Hb P8 0.80 0.95 0.80 0.95 0.80 0.95

0.1 0.1 0.1 0.67* 0.91* 0.60* 0.89* 0.59* 0.89*
0.5 0.64* 0.92* 0.62* 0.89* 0.59* 0.87*
0.9 0.63* 0.91* 0.71* 0.90* 0.60* 0.83*

0.5 0.1 0.67* 0.92* 0.61* 0.90* 0.59* 0.88*
0.5 0.67* 0.93* 0.62* 0.89* 0.58* 0.88*
0.9 0.73* 0.93* 0.69* 0.89* 0.59* 0.81*

0.9 0.1 0.68* 0.93 0.60* 0.88* 0.58* 0.88*
0.5 0.71* 0.93 0.62* 0.91* 0.60* 0.88*
0.9 0.72* 0.91* 0.67* 0.87* 0.58* 0.82*

0.5 0.5 0.1 0.58* 0.88* 0.60* 0.88* 0.59* 0.88*
0.5 0.58* 0.87* 0.58* 0.87* 0.60* 0.88*
0.9 0.53* 0.81* 0.56* 0.86* 0.58* 0.87*

0.9 0.1 0.55* 0.87* 0.58* 0.88* 0.60* 0.89*
0.5 0.59* 0.87* 0.58* 0.87* 0.58* 0.88*
0.9 0.58* 0.85* 0.57* 0.86* 0.57* 0.87*

0.9 0.9 0.1 0.57* 0.88* 0.58* 0.88* 0.58* 0.87*
0.5 0.56* 0.87* 0.58* 0.87* 0.56* 0.88*
0.9 0.59* 0.87* 0.61* 0.88* 0.57* 0.88*
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Table 2.9. Estimated lengths of the normal-approximation

bootstrap (b = 500) intervals of pg estimated using MANOVA

and ML (n = 100 and 1 - a = 0.95).

r

MANOVA ML

Ha Hb 3 6 9 3 6 9

0.1 0.1 0.1 4.30 1.49 0.80 1.39 0.99 0.74
0.5 4.06 1.22 0.66 1.33 0.85 0.61
0.9 4.65 1.46 0.54 1.23 0.57 0.32

0.5 0.1 1.42 0.72 0.52 0.95 0.64 0.51
0.5 1.62 0.72 0.48 0.92 0.57 0.43
0.9 2.53 0.81 0.38 0.89 0.37 0.22

0.9 0.1 1.22 0.67 0.49 0.82 0.60 0.48
0.5 1.69 0.77 0.43 0.86 0.54 0.42
0.9 2.56 0.90 0.37 0.83 0.36 0.22

0.5 0.5 0.1 0.44 0.37 0.35 0.44 0.37 0.35
0.5 0.35 0.29 0.28 0.35 0.29 0.28
0.9 0.16 0.11 0.09 0.15 0.11 0.09

0.9 0.1 0.38 0.35 0.34 0.38 0.35 0.34
0.5 0.30 0.27 0.26 0.30 0.27 0.26
0.9 0.12 0.09 0.08 0.12 0.09 0.08

0.9 0.9 0.1 0.33 0.32 0.32 0.33 0.32 0.32
0.5 0.26 0.25 0.25 0.26 0.25 0.25
0.9 0.07 0.07 0.07 0.07 0.07 0.07
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Table 2.10. Estimated coverage probabilities (ECP) of the

percentile bootstrap (b = 500) interval of Ps estimated using

MANOVA and n = 100. ECPs marked with an asterisk are

significantly different from stated probabilities using a

Type I error of 0.05.

r

3 6 9

Stated coverage probabilities

Ha Hb p8 0.80 0.95 0.80 0.95 0.80 0.95

0.1 0.1 0.1 0.72* 0.88* 0.76* 0.92* 0.78 0.94
0.5 0.71* 0.88* 0.76* 0.92* 0.77* 0.93*
0.9 0.67* 0.85* 0.73* 0.88* 0.74* 0.90*

0.5 0.1 0.75* 0.92* 0.77* 0.93* 0.77 0.93*
0.5 0.72* 0.90* 0.77* 0.92* 0.77 0.93
0.9 0.72* 0.89* 0.77* 0.91* 0.73* 0.90*

0.9 0.1 0.78 0.93* 0.77 0.92* 0.79 0.94
0.5 0.75* 0.91* 0.77 0.92* 0.78 0.94
0.9 0.72* 0.90* 0.73* 0.90* 0.75* 0.90*

0.5 0.5 0.1 0.78 0.93* 0.80 0.94 0.79 0.93
0.5 0.77 0.93* 0.78 0.93 0.78 0.94
0.9 0.72* 0.90* 0.76* 0.93* 0.77* 0.93*

0.9 0.1 0.76* 0.92* 0.78 0.95 0.79 0.94
0.5 0.78 0.92* 0.77 0.93* 0.78 0.94
0.9 0.76* 0.91* 0.76* 0.92* 0.78 0.92*

0.9 0.9 0.1 0.78 0.93 0.79 0.94 0.78 0.93*
0.5 0.77* 0.93* 0.78 0.94 0.77 0.93*
0.9 0.77* 0.92* 0.78 0.93 0.77* 0.94



79

Table 2.11. Estimated coverage probabilities (ECP) of the

percentile bootstrap (b = 500) interval of pg estimated using

and n = 100. ECPs marked with an asterisk are significantly

different from stated probabilities using a Type I error of

0.05.

r

3 6 9

Stated coverage probabilities

Ha Hb Pg 0.80 0.95 0.80 0.95 0.80 0.95

0.1 0.1 0.1 0.79 0.95 0.77* 0.93* 0.78 0.94
0.5 0.83* 0.96* 0.78 0.94 0.77 0.93*
0.9 0.83* 0.96* 0.77 0.93 0.74* 0.91*

0.5 0.1 0.81 0.95 0.78 0.94 0.77 0.93*
0.5 0.82* 0.96 0.78 0.94 0.77 0.93
0.9 0.85* 0.96* 0.79 0.95 0.73* 0.91*

0.9 0.1 0.83* 0.96* 0.78 0.93* 0.79 0.94
0.5 0.85* 0.96* 0.79 0.94 0.78 0.94
0.9 0.87* 0.97* 0.76* 0.94 0.75* 0.90*

0.5 0.5 0.1 0.78 0.93* 0.80 0.94 0.79 0.93
0.5 0.77 0.93* 0.78 0.93 0.78 0.94
0.9 0.72* 0.90* 0.76* 0.93* 0.77* 0.93*

0.9 0.1 0.76* 0.92* 0.78 0.95 0.79 0.94
0.5 0.78 0.92* 0.77 0.93* 0.78 0.94
0.9 0.76* 0.91* 0.76* 0.92* 0.78 0.92*

0.9 0.9 0.1 0.78 0.93 0.79 0.94 0.78 0.93*
0.5 0.77* 0.93* 0.78 0.94 0.77 0.93*
0.9 0.77* 0.92* 0.78 0.93 0.77* 0.94
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Table 2.12. Estimated lengths of the percentile bootstrap (b

= 500) intervals of p8 estimated using MANOVA and ML (n =

100, and 1 - a = 0.95).

r

MANOVA ML

Ha Hb p 3 6 9 3 6 9

0.1 0.1 0.1 14.13 3.54 1.13 1.49 1.20 0.91
0.5 8.19 2.63 0.87 1.52 1.10 0.77
0.9 5.18 2.59 0.90 1.52 0.98 0.51

0.5 0.1 2.67 1.12 0.63 1.16 0.80 0.62
0.5 2.50 1.10 0.59 1.14 0.71 0.53
0.9 2.60 1.53 0.68 1.24 0.65 0.34

0.9 0.1 2.08 0.92 0.59 1.00 0.74 0.59
0.5 2.52 1.20 0.58 1.00 0.67 0.51
0.9 2.23 1.63 0.65 1.06 0.62 0.33

0.5 0.5 0.1 0.52 0.45 0.43 0.52 0.45 0.43
0.5 0.42 0.36 0.34 0.42 0.36 0.34
0.9 0.20 0.14 0.11 0.19 0.14 0.11

0.9 0.1 0.45 0.42 0.41 0.45 0.42 0.41
0.5 0.37 0.33 0.32 0.37 0.33 0.32
0.9 0.15 0.11 0.10 0.15 0.11 0.10

0.9 0.9 0.1 0.40 0.39 0.39 0.40 0.39 0.39
0.5 0.31 0.30 0.30 0.31 0.30 0.30
0.9 0.09 0.08 0.08 0.09 0.08 0.08
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Table 2.13. Estimated coverage probabilities (ECP) of the

bias-corrected percentile bootstrap (b = 500) interval of pg

estimated using MANOVA. ECPs marked with an asterisk are

significantly different from stated probabilities using a

Type I error of 0.05.

Ha Hb

r

3 6 9

Stated coverage probabilities

Pg n 0.80 0.95 0.80 0.95 0.80 0.95

0.1 0.1 0.1 20 0.35* 0.50* 0.48* 0.65* 0.59* 0.76*
60 0.48* 0.66* 0.64* 0.83* 0.72* 0.89*

100 0.53* 0.74* 0.70* 0.87* 0.76* 0.93*
0.5 20 0.33* 0.47* 0.43* 0.59* 0.53* 0.70*

60 0.45* 0.63* 0.62* 0.80* 0.69* 0.87*
100 0.50* 0.70* 0.69* 0.87* 0.75* 0.92*

0.9 20 0.30* 0.43* 0.35* 0.49* 0.37* 0.53*
60 0.40* 0.56* 0.49* 0.68* 0.59* 0.76*

100 0.42* 0.59* 0.57* 0.77* 0.68* 0.85*

0.5 0.1 20 0.52* 0.67* 0.61* 0.77* 0.65* 0.83*
60 0.64* 0.81* 0.71* 0.88* 0.76* 0.91*

100 0.66* 0.84* 0.75* 0.91* 0.77* 0.93*
0.5 20 0.46* 0.60* 0.55* 0.72* 0.61* 0.77*

60 0.57* 0.75* 0.65* 0.83* 0.73* 0.90*
100 0.59* 0.77* 0.72* 0.89* 0.77* 0.93*

0.9 20 0.39* 0.53* 0.40* 0.57* 0.44* 0.60*
60 0.45* 0.62* 0.52* 0.71* 0.59* 0.78*

100 0.47* 0.65* 0.62* 0.81* 0.67* 0.84*
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Table 2.13. continued.

Ha Hb

r

3 6 9

Stated coverage probabilities

Pg n 0.80 0.95 0.80 0.95 0.80 0.95

0.9 0.1 20 0.55* 0.69* 0.62* 0.78* 0.66* 0.81*
60 0.63* 0.81* 0.72* 0.89* 0.77 0.93*

100 0.68* 0.86* 0.74* 0.91* 0.79 0.94
0.5 20 0.50* 0.65* 0.56* 0.71* 0.62* 0.77*

60 0.57* 0.74* 0.66* 0.84* 0.72* 0.88*
100 0.59* 0.77* 0.71* 0.88* 0.77* 0.93*

0.9 20 0.45* 0.57* 0.41* 0.56* 0.43* 0.58*
60 0.45* 0.61* 0.52* 0.71* 0.60* 0.77*

100 0.48* 0.67* 0.57* 0.76* 0.68* 0.84*

0.5 0.5 0.1 20 0.71* 0.88* 0.77* 0.91* 0.79 0.93*
60 0.79 0.94 0.78 0.93 0.79 0.94

100 0.79 0.94 0.80 0.94 0.80 0.94
0.5 20 0.72* 0.87* 0.77 0.93* 0.78 0.93

60 0.77 0.93* 0.77 0.93* 0.79 0.94
100 0.78 0.93 0.79 0.94 0.79 0.94

0.9 20 0.53* 0.69* 0.66* 0.82* 0.71* 0.87*
60 0.71* 0.89* 0.74* 0.91* 0.78 0.92*

100 0.72* 0.90* 0.76* 0.93 0.77 0.93*

0.9 0.1 20 0.77* 0.91* 0.79 0.94 0.79 0.93*
60 0.80 0.94 0.79 0.95 0.78 0.93*

100 0.77 0.93* 0.80 0.95 0.80 0.95
0.5 20 0.73* 0.89* 0.77* 0.92* 0.76* 0.91*

60 0.78 0.93 0.81 0.95 0.79 0.94
100 0.79 0.93* 0.78 0.94 0.79 0.94

0.9 20 0.56* 0.74* 0.68* 0.85* 0.73* 0.89*
60 0.72* 0.88* 0.75* 0.91* 0.77 0.94

100 0.75* 0.92* 0.77* 0.93* 0.78 0.93
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Table 2.13. continued.

r

3 6 9

Stated coverage probabilities

Ha Hb pg n 0.80 0.95 0.80 0.95 0.80 0.95

0.9 0.9 0.1 20 0.80 0.95 0.79 0.93 0.80 0.94
60 0.79 0.95 0.79 0.94 0.79 0.94

100 0.78 0.94 0.80 0.95 0.79 0.94
0.5 20 0.78 0.93 0.79 0.93 0.79 0.94

60 0.79 0.94 0.80 0.94 0.78 0.93
100 0.78 0.93 0.78 0.95 0.78 0.94

0.9 20 0.73* 0.91* 0.73* 0.91* 0.75* 0.91*
60 0.76* 0.92* 0.80 0.94 0.78 0.93

100 0.78 0.93* 0.78 0.94 0.77 0.94
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Table 2.14. Estimated coverage probabilities (ECP) of the

bias-corrected percentile bootstrap (b = 500) interval of Pg

estimated using ML. ECPs marked with an asterisk are

significantly different from stated probabilities using a

Type I error of 0.05.

Ha Hb

r

3 6 9

Stated coverage probabilities

Pg n 0.80 0.95 0.80 0.95 0.80 0.95

0.1 0.1 0.1 20 0.57* 0.71* 0.69* 0.85* 0.79 0.92*
60 0.69* 0.86* 0.78 0.96* 0.78 0.95

100 0.72* 0.90* 0.75* 0.94 0.77* 0.94
0.5 20 0.66* 0.75* 0.77* 0.86* 0.83* 0.92*

60 0.79 0.88* 0.85* 0.95 0.81 0.95
100 0.82* 0.92* 0.82 0.95 0.77 0.94

0.9 20 0.72* 0.79* 0.83* 0.92* 0.84* 0.95
60 0.83* 0.92* 0.86* 0.97* 0.87* 0.96*

100 0.85* 0.96 0.87* 0.97* 0.89* 0.97*

0.5 0.1 20 0.69* 0.84* 0.79 0.94 0.80 0.95
60 0.73* 0.92* 0.78 0.94 0.78 0.93

100 0.74* 0.93 0.77* 0.94 0.77 0.93
0.5 20 0.76* 0.85* 0.84* 0.94 0.86* 0.95

60 0.85* 0.93 0.83* 0.95 0.80 0.94
100 0.84* 0.95 0.79 0.94 0.78 0.94

0.9 20 0.76* 0.87* 0.83* 0.97* 0.82* 0.96*
60 0.83* 0.95 0.89* 0.97* 0.89* 0.97*

100 0.87* 0.96* 0.90* 0.98* 0.90* 0.97*
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Table 2.14. continued.

r

3 6 9

Stated coverage probabilities

Ha Hb pg n 0.80 0.95 0.80 0.95 0.80 0.95

0.9 0.1 20 0.69* 0.83* 0.78 0.93* 0.79 0.94
60 0.74* 0.92* 0.79 0.94 0.79 0.94

100 0.77 0.94 0.77* 0.93* 0.79 0.94
0.5 20 0.77* 0.83* 0.86* 0.93* 0.87* 0.96

60 0.87* 0.94 0.85* 0.96* 0.78 0.93
100 0.88* 0.96* 0.80 0.95 0.78 0.94

0.9 20 0.79 0.90* 0.85* 0.96* 0.85* 0.97*
60 0.87* 0.96* 0.90* 0.97* 0.91* 0.97*

100 0.90* 0.97* 0.91* 0.97* 0.91* 0.97*

0.5 0.5 0.1 20 0.77 0.93 0.78 0.92* 0.79 0.93*
60 0.79 0.94 0.78 0.93 0.79 0.94

100 0.79 0.94 0.80 0.94 0.80 0.94
0.5 20 0.80 0.94 0.78 0.93 0.78 0.94

60 0.77 0.93* 0.77 0.93* 0.79 0.94
100 0.78 0.93 0.79 0.94 0.79 0.94

0.9 20 0.80 0.94 0.81 0.93* 0.78 0.92*
60 0.82* 0.94 0.76* 0.93* 0.78 0.93*

100 0.78 0.94 0.76* 0.94 0.77 0.93*

0.9 0.1 20 0.80 0.94 0.79 0.94 0.79 0.93*
60 0.80 0.94 0.79 0.95 0.78 0.93*

100 0.77 0.93* 0.80 0.95 0.80 0.95
0.5 20 0.79 0.93* 0.77* 0.92* 0.76* 0.91*

60 0.78 0.93 0.81 0.95 0.79 0.94
100 0.79 0.93* 0.78 0.94 0.79 0.94

0.9 20 0.81 0.93 0.77* 0.92* 0.76* 0.92*
60 0.77 0.93* 0.75* 0.91* 0.78 0.94

100 0.77* 0.93 0.77* 0.93* 0.78 0.93
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Table 2.14. continued.

r

3 6 9

Stated coverage probabilities

Ha Hb Pg n 0.80 0.95 0.80 0.95 0.80 0.95

0.9 0.9 0.1 20 0.80 0.95 0.79 0.93 0.80 0.94
60 0.79 0.95 0.79 0.94 0.79 0.94

100 0.78 0.94 0.80 0.95 0.79 0.94
0.5 20 0.78 0.93 0.79 0.93 0.79 0.94

60 0.79 0.94 0.80 0.94 0.78 0.93
100 0.78 0.93 0.78 0.95 0.78 0.94

0.9 20 0.73* 0.91* 0.73* 0.91* 0.75* 0.91*
60 0.76* 0.92* 0.80 0.94 0.78 0.93

100 0.78 0.93* 0.78 0.94 0.77 0.94
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Table 2.15. Estimated lengths of the bias-corrected

percentile bootstrap (b = 500) intervals of P8 estimated

using MANOVA and ML (1 - a = 0.95).

Ha Hb Pg

r

MANOVA ML

n 3 6 9 3 6 9

0.1 0.1 0.1 20 7.85 5.92 4.43 1.69 1.75 1.70
60 5.75 2.46 1.46 1.66 1.44 1.19

100 4.20 1.49 0.91 1.57 1.17 0.88
0.5 20 7.24 5.47 3.69 1.71 1.67 1.59

60 4.81 2.14 1.26 1.59 1.29 1.01
100 3.50 1.27 0.76 1.47 1.00 0.73

0.9 20 6.95 4.98 3.33 1.64 1.52 1.29
60 4.87 2.22 1.09 1.43 0.94 0.56

100 3.81 1.26 0.59 1.25 0.60 0.34

0.5 0.1 20 4.03 2.68 2.00 1.64 1.59 1.47
60 2.01 1.15 0.86 1.36 1.07 0.85

100 1.51 0.80 0.61 1.16 0.78 0.61
0.5 20 3.58 2.49 1.90 1.62 1.50 1.36

60 1.96 1.14 0.76 1.29 0.94 0.71
100 1.45 0.73 0.52 1.08 0.68 0.52

0.9 20 3.61 2.48 1.83 1.54 1.31 1.08
60 2.33 1.22 0.67 1.16 0.64 0.37

100 1.96 0.73 0.39 0.94 0.38 0.24

0.9 0.1 20 2.84 2.29 1.86 1.44 1.42 1.35
60 1.75 1.05 0.82 1.20 0.96 0.80

100 1.22 0.74 0.57 1.00 0.72 0.57
0.5 20 2.85 2.26 1.78 1.40 1.32 1.22

60 1.92 1.08 0.74 1.14 0.87 0.69
100 1.48 0.73 0.50 0.98 0.65 0.50

0.9 20 3.16 2.54 1.91 1.33 1.16 0.97
60 2.46 1.24 0.70 1.07 0.60 0.37

100 2.01 0.78 0.39 0.86 0.38 0.23
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Table 2.15. continued.

r

MANOVA ML

Ha Hb Pg 3 6 9 3 6 9

0.5 0.5 0.1 20 1.55 1.07 0.97 1.28 1.05 0.97
60 0.68 0.58 0.54 0.68 0.58 0.54

100 0.52 0.44 0.42 0.52 0.44 0.42
0.5 20 1.29 0.89 0.79 1.10 0.88 0.79

60 0.55 0.46 0.42 0.55 0.46 0.42
100 0.41 0.35 0.33 0.41 0.35 0.33

0.9 20 0.91 0.40 0.30 0.56 0.31 0.27
60 0.27 0.17 0.15 0.23 0.17 0.14

100 0.20 0.13 0.11 0.18 0.13 0.11

0.9 0.1 20 1.13 0.94 0.90 1.08 0.94 0.90
60 0.58 0.53 0.51 0.58 0.53 0.51

100 0.45 0.41 0.40 0.45 0.41 0.40
0.5 20 0.96 0.76 0.73 0.90 0.76 0.73

60 0.47 0.42 0.41 0.47 0.42 0.41
100 0.36 0.32 0.31 0.36 0.32 0.31

0.9 20 0.58 0.32 0.26 0.40 0.27 0.25
60 0.20 0.14 0.13 0.18 0.14 0.13

100 0.15 0.11 0.09 0.14 0.11 0.09

0.9 0.9 0.1 20 0.87 0.84 0.84 0.87 0.84 0.84
60 0.50 0.49 0.49 0.50 0.49 0.49

100 0.39 0.38 0.38 0.39 0.38 0.38
0.5 20 0.69 0.68 0.67 0.69 0.68 0.67

60 0.39 0.38 0.38 0.39 0.38 0.38
100 0.31 0.30 0.29 0.31 0.30 0.29

0.9 20 0.23 0.21 0.20 0.23 0.21 0.20
60 0.12 0.11 0.10 0.12 0.11 0.10

100 0.09 0.08 0.08 0.09 0.08 0.08
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