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Abstract 

Economists have long recognized the importance of information veracity in valuing risky 

securities. Market participants concerned about the credibility of information measures may 

require additional compensation to entice them to hold stocks with less transparent information. 

These same securities are expected to display greater sensitivities to measures of market 

sentiment. We find that investor sentiment sensitivities increase directly with multiple measures 

of opacity in the cross-section. Next we examine the extent to which sentiment sensitivities are 

priced in an asset pricing context. Using the Jha, Korkie and Turtle (2009) model of conditional 

performance evaluation, we find an inverse relation between ex ante known investor sentiment 

and the marginal performance of opaque stocks. In contrast, translucent stocks exhibit relatively 

little variability in performance across levels of sentiment. 
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1. Introduction 

 If the available information regarding particular stocks is difficult to interpret, economic 

agents may have difficulty valuing these securities. Further, arbitrageurs and speculators will 

find it challenging to measure and capitalize on mispricings in these securities, as the veracity of 

available information may be particularly difficult to resolve. If these securities are prevalent in 

the economy, and if these risks are difficult to diversify, we might expect these securities to be 
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more sensitive to overall measures of market sentiment. In contrast, if these risks are largely 

diversifiable, observed premiums on opaque securities should be comparable to those offered by 

firms with similar risk profiles. We find strong evidence that stock opacity and sentiment 

sensitivities are closely related, and that both simple and multi-factor risk models do not capture 

the variability in these stocks’ returns over time. 

 The ability to diversify sentiment risk remains an open and important issue. For instance, 

if sentiment is important only insofar as it affects other systematic risk sensitivities, economic 

agents may be largely unconcerned with this area of inquiry. In contrast, if sentiment is an 

undiversifiable risk source that impacts risk premiums after controlling for systematic risks, this 

area will be of lasting interest. Initial research by Lee, Shleifer and Thaler (1991) found that 

small stock returns are positively (and significantly) related to sentiment, relative to portfolios of 

large stocks, although the relation has weakened over time. In contrast, Elton, Gruber and Busse 

(1998) provide evidence that sentiment sensitivity is subsumed by other systematic risks. In a 

simple two-factor model including an equity index and a sentiment factor, Elton, Gruber and 

Busse find smaller stocks display a positive sensitivity to investor sentiment, exhibiting the 

strongest returns concurrent with periods in which closed end fund discounts narrow. 

Conversely, larger stocks are slightly negatively related to this sentiment measure. When they 

extend their model to consider multiple risk factors they find their results reverse, and sentiment 

is then negatively related to small stock returns. In sum, Elton, Gruber and Busse (1998) 

conclude that sentiment is subsumed by other risk factors in a well specified model of asset 
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return behavior.
1
 Therefore, from the previous evidence, it appears that sentiment risk may be 

idiosyncratic. Specifically, returns to a diversified portfolio would reflect the underlying risk 

factor loadings, but would be otherwise unaffected by investor sentiment. Consequently, from an 

asset-pricing perspective, investor sentiment would be of little further interest, except to the 

extent that a researcher was concerned with the relation between investor sentiment and 

underlying risk sources.   

We begin our empirical analysis with an examination of the characteristics of stocks that 

display the greatest sensitivity to contemporaneous measures of market sentiment. This initial 

step in our research design examines the extent to which various risk factors may dampen the 

characteristics of sentiment prone portfolios. For example, if multiple risk factors capture cross-

sectional variability in sentiment-prone stocks from a simpler model, there may be little 

remaining interest in the characteristics of sentiment prone stocks. Our approach is similar in 

spirit to Lee, Shleifer and Thaler (1991) but we consider a wide number of risk factor 

specifications. Baker and Wurgler (2006) also study the cross-sectional impact of investor 

sentiment. Our results allow us to build on their contribution and resolve many of the conflicting 

results within their study. Focusing on two important firm characteristics relating to opacity, size 

and research and development, they ultimately find no relation between these characteristics and 

investor sentiment. Specifically, within the narrow two factor model, they document a negative 

and marginally significant relation between the orthogonalized sentiment index and subsequent 

small minus big portfolio returns. However, in their study, and similar to Elton, Gruber and 

                                                             
1 The evidence in Elton, Gruber, and Busse (1998) is in fact stronger than discussed above in that none of their 

reported sentiment sensitivities (Table 3) for size decile portfolios are significant at conventional levels. In fact the 

largest absolute t-statistic is only 1.31 across 20 reported tests. 
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Busse (1998), this relation disappears within the context of their expanded factor model, 

suggesting that controlling for additional risk factors eliminates the relation between size and 

sentiment. Similarly, although their analysis of raw returns with no risk corrections suggests a 

positive relation between research and development and investor sentiment, their later regression 

analysis provides no evidence of a relation between sentiment and subsequent returns to their 

long-short research and development portfolio. 

Brown and Cliff (2005) also consider the impact of sentiment on cross-sectional size and 

book to market portfolios with incongruent findings. They regress long-horizon returns on 

economic explanatory variables as well as lagged sentiment, and provide evidence that large 

stocks exhibit greater exposure to investor sentiment, relative to small stocks. As one example, 

they estimate the long-run response to a one standard deviation shock to sentiment, and find that 

the small-growth, and small-value portfolios respond positively at the 36 month horizon, with 

estimates equal to 5.8 and 1.6 percent, respectively, suggesting a negative relation between 

contemporaneous sentiment and small stock mispricing. In contrast, the comparable estimates of 

-11.5 and -9.7 percent for the large-growth and large-value portfolios, respectively, suggest these 

large portfolios exhibit negative subsequent responses to current sentiment levels, providing 

indirect evidence of a positive relation between contemporaneous sentiment and over-valuation 

within these stocks. These general findings are contrary to both Elton Gruber and Busse (1998) 

in that sentiment matters, and especially to Baker and Wurgler (2006) with respect to the role of 

size and sentiment. 

Contrasting with this existing research, we find a strong relation between opaque firms 

and investor sentiment that is robust across narrow and expanded risk factor models. Our 

procedure finds that even in the midst of a multiple risk source model, sentiment prone stocks 
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retain their sensitivity to firm based characteristics that are closely aligned with opacity. In 

particular, sentiment-prone stocks tend to be small, young, volatile, composed of relatively 

intangible assets, and in general display opaque characteristics. As examples of our sentiment 

sensitivity results with respect to size and research and development, under the simplest single 

risk factor model, we find that the average low sentiment sensitivity firm has a market 

capitalization of 1.1 billion dollars and exhibits research and development spending as a 

percentage of assets equal to 1.3 percent; the corresponding values for the average high 

sentiment sensitivity firm are 363 million, and 12.4 percent. Further, these results are robust to 

the expanded four-factor model, where we find that the average low sentiment sensitivity firm is 

over 2.5 times larger in terms of market capitalization when compared to the average high 

sentiment sensitivity firm, and exhibits research and development spending as a percentage of 

assets that is only 30 percent of the level of spending for the average high sentiment sensitivity 

firm. These results indicate that, rather than being idiosyncratic, sentiment sensitivities are 

systematically related within broad cross-sections of equities. Specifically, as opaque companies 

in which valuations are less certain will exhibit common exposures to investor sentiment, 

portfolios formed across these equities will be highly exposed to changes in investor sentiment. 

Consequently, investor sentiment may be non-diversifiable, warranting additional risk premia. 

We examine the risk premiums associated with sentiment in the conditional performance 

framework of Jha, Korkie and Turtle (2009) using ex ante sentiment as our known information 

measure. One benefit of this approach is that the framework admits changes in the conditional 

mean returns for all assets that evolve with the underlying information variable. The resultant 

conditional alpha is then a time varying measure of the mispricing in any portfolio. The 

framework allows for a direct test of the marginal value of sentiment as an information 



6 
 

instrument in a model with potentially multiple risk factors including the CAPM, or other 

extended beta models including both Fama and French (1992, 1993), and Carhart (1997).  

Our results differ from Baker and Wurgler (2006) in a number of important dimensions, 

although many of the general conclusions of their work are preserved. They find that portfolios 

of firms with opaque characteristics tend to earn large returns. Unfortunately, as there are known 

correlations between opaque characteristics and systematic risk sources (cf., Elton, Gruber, and 

Busse (1998), and Schmeling (2009)), these results may be solely due to required risk premiums 

for these portfolios. In their subsequent analysis (Table V), Baker and Wurgler (2006) examine 

the sensitivity of long-short portfolios to ex ante sentiment after controlling for multiple risk 

factors. In their four-factor model, they find seven of 16 models have orthogonal sentiment 

parameters with p-values in excess of 0.35. In contrast, the orthogonalized sentiment factor in a 

model with only a single risk factor results in eleven of 16 significant cases (with no p-value 

exceeding 0.30). In sum, these results suggest that correcting for risk has a potentially dramatic 

effect on the role of sentiment as an information instrument impacting portfolio performance (cf., 

Elton, Gruber, and Busse (1998)). Jha, Korkie and Turtle (2009) develop a conditional alpha 

performance measure given by the sum of a simple regression intercept and the product of an 

information variable coefficient and the ex ante level of the information variable. The exclusive 

focus on the sentiment coefficient has the potential to misspecify economic differences in the 

marginal performance in these settings. We explicitly measure the intercept, the sensitivity to 

sentiment, and the ex ante known level of sentiment when estimating marginal performance. Our 

analysis reverses the inferential results in Baker and Wurgler (2006) regarding a lack of 

significance for all growth opportunity and distress proxies (in all models). In short, sentiment 

affects asset mispricing. 
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Our results indicate that measured conditional marginal performance gains may be 

substantial. Using sentiment as a conditioning information instrument, we find that portfolios of 

opaque firms exhibit contrarian conditional performance. Portfolios of opaque firms formed after 

periods of high (low) sentiment offer poor (strong positive) marginal performance. Portfolios of 

translucent firms exhibit little variation in conditional alpha across all levels of sentiment. Our 

measure of conditional marginal performance is a natural extension of the unconditional alpha of 

Jensen (1968) to include both sentiment sensitivities, and evolving sentiment measures. We find 

consistent results across multiple risk factor specifications. Differences with the extant literature 

may be due to the importance of sentiment in affecting both unconditional alphas, as well as 

conditional alphas through variation in both sentiment sensitivities in the cross-section, and 

realized aggregate sentiment levels in the time series. Using firm age as an example of the 

results, our sentiment sensitivity analysis indicates that the average low sentiment sensitivity 

stock is approximately 22 years old. Concomitantly, stocks in the high sentiment sensitivity 

portfolio are less than 15 years old on average. Extending the example to consider our measure 

of marginal performance and how sentiment impacts the cross-section of portfolio returns, we 

find that as sentiment varies from the fifth percentile to the 95
th
 percentile, the portfolio of ‘old’ 

stocks has a range of conditional alphas that is less than ten basis points, and equals 

approximately 0.3 percent per month across all states. For the ‘young’ portfolio, the conditional 

alpha exhibits much greater variation, ranging from 0.9 percent to -1.0 percent across the same 

range of sentiment realizations. Our conditional alpha estimates provide meaningful differences 

in conditional performance over time and across portfolios with different characteristics, 

including risk adjustments and inference procedures. The conflicting results of our conditional 

alpha estimates, relative to the existing research concerning investor sentiment, has important 
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implications for researchers. Specifically, from  Jha, Korkie and Turtle (2009), the sole focus on 

coefficient estimates within the extant sentiment literature does not identify the economic states 

in which superior or poor performance is obtained. The conditional performance measure 

employed within the current study is consistent with a model of time varying conditional mean 

asset returns that evolve linearly with underlying information variables. As evident by the 

significant findings within our study, and the insignificant multi-factor model results in the 

earlier literature, our approach offers important advantages when performance varies by 

economic states, and when averaging over states may obscure important economic relations. In 

general, for future research, our results show the benefits in using more recent measures of 

conditional performance. 

Our study is also related to the return predictability literature. In the context of return 

predictability, Welch and Goyal (2008) provide a comprehensive study detailing poor out of 

sample forecasting performance for frequently studied information variables. They suggest that 

unconditional historical average returns provide superior forecasting performance, relative to 

common information variables. In contrast, Campbell and Thompson (2008) show that imposing 

economically meaningful constraints on estimated coefficients improves forecasting 

performance. Within the cross-section, our conditional alpha results show that high levels of 

current sentiment predict below-average risk adjusted returns within opaque firms. In a 

regression context, our conditional performance measure is intuitively similar to the restricted 

forecasts in Campbell and Thompson (2008). The orthogonalized sentiment measure is nested 

within a more structured setting that seems to facilitate test power. 

In an asset-pricing context, our sentiment sensitivity analysis reveals a systemic exposure 

to investor sentiment within opaque equities. Further, we show that this exposure is not 
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subsumed by additional risk factors, and is also non-diversifiable. Therefore, our results are 

consistent with the notion that equity portfolios with sentiment exposure should offer returns that 

reflect the average sentiment exposure of the stocks within the portfolio. Further, portfolios of 

firms with a large proportion of opaque stocks may be especially susceptible to sentiment risk. 

Finally, within the asset-pricing context, we provide an application of Jha, Korkie and Turtle 

(2009) conditional performance measure, which may also be of interest using alternative 

conditioning variables. 

2. Investor sentiment and firm-characteristic data 

 Consistent with existing literature, we consider sentiment broadly as general optimism or 

pessimism towards future stock returns. Sentiment can be measured either directly through 

surveys, or indirectly through economic variables. The direct approach typically uses survey 

measures to identify levels of sentiment, with periods of high sentiment corresponding to periods 

in which a majority of economic agents forecast strong future performance.
2
 Contrasting the 

direct approach, a number of studies use observable economic variables to measure levels of 

sentiment. Lee, Shleifer and Thaler (1991) use the closed-end fund discount. Neal and Wheatley 

(1998) consider the closed-end fund discount, as well as odd-lot sales and mutual fund 

redemptions to measure individual investor sentiment. They study the general proposition that 

                                                             
2 Examples of research using direct measures of sentiment include: Ho and Hung (2009) who use the Investors’ 

Intelligence survey and consumer confidence indices to measure sentiment; Schmeling (2009) who uses consumer 

confidence indices to measure sentiment across countries; and Verma and Soydemir (2009) who measure 

individual investor sentiment with the American Association of Individual Investor survey and institutional 

investor sentiment with the Investors’ Intelligence survey. 
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the best time to buy (sell) is when individual investor sentiment is at its lowest (highest).
3
 We 

adopt the monthly sentiment index of Baker and Wurgler (2006, 2007) who create an aggregate 

sentiment index based on six sentiment proxies, including the closed-end fund discount, share 

turnover, the number of IPOs, the first day IPO return, the share of equity issues relative to debt 

issues, and the dividend premium.
4
 

Another strand of recent research expands the direct measures of investor sentiment to 

consider aggregate market views regarding sentiment across investor type, including both 

institutional and individual investors. As examples, Brown and Cliff (2004) and Verma and 

Soydemir (2009) use the Investors Intelligence survey as a measure of institutional sentiment. 

Brown and Cliff find the relation between institutional sentiment and future market returns is 

stronger than any relation across individual investor sentiment. The existing research suggests 

investor sentiment is a contrarian indicator. For example, Brown and Cliff (2005) find evidence 

of a positive contemporaneous relation across sentiment and pricing errors. In particular, they 

                                                             
3 Other related studies using individual investors to gauge market sentiment include Frazzini and Lamont (2008) and 

Green and Hwang (2009). Frazzini and Lamont (2008) classify stocks according to a mutual fund flow related 

sentiment variable and document that individual investor sentiment has a negative impact on individual investor 

wealth. Green and Hwang (2009) study price-based comovement and find that the relation across similarly priced 

stocks is strongest during periods of high sentiment. Their results indicate the impact of sentiment may vary based 

on the price of a given stock 

4 Brown and Cliff (2004) document a strong relation between many of the proposed indirect sentiment measures and 

their direct counter-parts in identifying high and low sentiment periods. The Baker and Wurgler sentiment index is 

also used in Ali and Gurun (2009), and Kurov (2010). 
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find optimism leads to overvalued stocks and that high levels of sentiment also produce long run 

future underperformance.
5
 

We consider the cross-sectional impact of investor sentiment on equity returns. Our 

sample covers January 1968 through December 2005, and is based on the universe of 

CRSP/Compustat stocks with at least 60 months of return data during the sample. We begin with 

a measurement of size, age, risk, profitability, dividends, tangibility, growth opportunities, and 

distress, for the stocks within our sample. We winsorize accounting variables at the one, and 99 

percent levels to mitigate the impact of outliers. Accounting data from a fiscal year end in month 

t are matched to equity returns during months t+6 through t+17, to ensure that accounting 

information is available to investors.  We report summary statistics in Table 1. 

*** Insert Table 1 about here*** 

 From Table 1, we note that our sample covers a broad cross-section of equities pooled 

across firms and over time. We note that many firm characteristic variables exhibit significant 

variability and skewness. For example, average property, plant and equipment is 56 percent of 

assets with a standard deviation of 39 percent. The median value for property, plant and 

equipment in the sample is less than 50 percent. 

                                                             
5 Some additional representative studies examining the impact of sentiment on the aggregate market level include 

Lee, Jiang and Indro (2002), who find sentiment risk is priced in aggregate; Tetlock (2007), who analyzes the 

relationship between market returns and media pessimism; and Schmeling (2009) who finds sentiment is priced in 

18 national markets. 
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3. Measuring attributes of sentiment-prone stocks 

The impact of investor sentiment may vary in the cross-section. Lee, Shleifer and Thaler 

(1991) argue individual investor sentiment has the largest impact on small capitalization stocks. 

In contrast, Brown and Cliff (2005) find evidence that large stocks exhibit the largest exposure to 

investor sentiment. Baker and Wurgler (2006) hypothesize that small firms will be more opaque, 

harder to value, and thus will be most sentiment-prone. The results regarding which firms will be 

most sentiment prone are also dependent on the underlying risk factors considered. In particular, 

Elton, Gruber and Busse (1998) find that although small stock returns vary positively with 

contemporaneous sentiment in the context of a simple model, the sign of the sentiment factor 

reverses in a broader multi-factor risk model. 

We examine the role of sentiment in a variety of risk factor models to determine the 

cross-sectional impact of investor sentiment on firms with different levels of opacity. Our initial 

empirical analysis provides an alternative approach to examine the relationship between firm 

characteristics and sentiment. We first estimate sentiment sensitivities within our pooled time-

series cross-section of stocks, and then we report average firm characteristics across portfolios 

formed according to sentiment sensitivities. This approach differs from the raw return analysis in 

Baker and Wurgler (2006) which uses known information instruments including ex ante 

sentiment measures -- our sentiment sensitivities are contemporaneous, and net of the other risk 

factors considered. Our interest is in the characteristics of firms with various sentiment 

sensitivities after controlling for other systematic risk sources. This approach mitigates the 

spurious impact of correlations between sentiment measures and risk sources that may be 

prevalent in the extant literature. If the average firm characteristics of our high-sentiment (low-

sentiment) sensitivity portfolios correspond to opaque (translucent) characteristics, we have 
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confirmatory evidence that these portfolios capture sentiment effects. A typical firm in the high 

sentiment sensitivity grouping is expected to display volatile returns, a small equity base, low-

earnings, low-dividends, high distress risk, and have relatively intangible assets. 

We estimate sentiment sensitivities at the firm level. Lee, Shleifer and Thaler (1991) use 

a two-factor model, with the market portfolio and the change in the closed-end fund discount, to 

estimate sentiment sensitivities across size deciles in their study.
6
 We adopt a similar approach, 

initially utilizing a two-factor model that includes the market portfolio and changes in the 

measure of investor sentiment. Our regression model may be written as: 

                                  
      , (1) 

for          ;          ; and where   is the number of cross-sectional observations 

available and   is the number of time series observations available for each firm;      represents 

the excess return to asset j during period t;      represents the excess market return during period 

t; and       
  represents the change in the orthogonalized sentiment index of Baker and Wurgler 

(2006), during period t.
7
 Excess market return data is extracted from Ken French’s data library. 

Based on parameter estimates of        , we assign stocks to ten sentiment sensitivity portfolios. 

In the initial analysis, we estimate equation (1) for each unique firm, and assign stocks based on 

                                                             
6 By estimating sentiment sensitivities at the firm level, our approach may have significant estimation risk. However, 

this additional noise potentially biases our approach against finding the hypothesized differences across portfolios. 

Further, parameter estimates are used to sort firms, and statistical tests are conducted across measured firm 

characteristics. This approach mitigates econometric concerns with tests of betas in cross-sectional regressions (cf. 

Reinganum (1981)).  

7 We identify firms based on unique PERMNOs. Consequently, N is defined for over 12,000 unique firms, and T 

takes a maximum value of 456. 
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the full-sample         parameter estimate. For some stocks, investor sentiment will have a 

negligible impact on their return. Further, throughout our sample, some stocks may exhibit 

returns that vary inversely with investor sentiment. Because most stocks are positively related to 

investor sentiment and our interest is identification of sentiment prone stocks, we assign any 

stock j for which the parameter estimate of        , is less than zero to the first portfolio,      . 

We then equally split the remaining firms into the nine remaining sentiment sensitivity 

portfolios, such that all stocks with a positive         estimate are classified into portfolios two, 

     , through ten,       , where each portfolio has an equal number of stocks, and sentiment 

betas are increasing across portfolios, respectively.
8
 For each firm, we calculate the time series 

average for each firm characteristic variable, and then pool these averages across sentiment 

sensitivity portfolios to report the resultant averages in Table 2. 

***Insert Table 2 about here*** 

 Results in Table 2 provide strong support for the hypothesis that firms with high 

sensitivity to investor sentiment tend to be relatively opaque. Differences across all portfolios, 

and between the first and 10
th
 portfolio are highly significant and in the expected direction for 

every specified firm characteristic. For example, the lowest three sentiment sensitivity portfolios 

show a mean standard deviation of stock returns that ranges between 11 and 12 percent. The 

average portfolio standard deviation of returns then increases monotonically from 13 to 26 

percent for the remaining sentiment sensitivity portfolios. Average firm size differs dramatically 

across sentiment sensitivity portfolios. The average firm size of stocks assigned to       and 

                                                             
8 In unreported results, we compare firm characteristics across       and       . Results from the unreported 

comparisons are consistent with the results that compare       to        presented in Tables 2 through 5. 
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      is $1.14 and $0.75 billion. Average firm size for the highest sensitivity portfolio,       , 

is $0.36 billion. Sample averages relating to earnings, dividends, and tangibility all further 

suggest that stocks with a high sensitivity to investor sentiment tend to be opaque. 

Approximately half of our observations indicate positive earnings and positive dividends for the 

low sentiment sensitivity portfolios. In particular, the proportion of positive earnings 

observations for       and      , are 48 and 53 percent, respectively. The comparable values 

for positive dividend observations are 52 and 57 percent. These figures compare to 26 and three 

percent for positive earnings and dividend observations, respectively, for the highest sentiment 

sensitivity portfolio. Finally, as a percentage of assets, the first three sentiment sensitivity 

portfolios have property, plant and equipment ranging from 54 to 57 percent, and spend one to 

two percent on research and development. Firms assigned to the highest sentiment sensitivity 

portfolio exhibit average property, plant and equipment as 37 percent of assets, and research and 

development spending of over 12 percent of assets. Overall, the results in Table 2 document a 

strong relation between the firms that we estimate to have the highest sensitivity to investor 

sentiment, and the opaque firm characteristics that Baker and Wurgler (2006) hypothesize, after 

controlling for market risk. 

 Our initial results from Table 2 are consistent with both Lee, Shleifer and Thaler (1991) 

and the raw return analysis of Baker and Wurgler (2006), are counter to Brown and Cliff (2005), 

and do not yet address the concern of Elton, Gruber and Busse (1998) that sentiment results may 

not be robust to multiple sources of risk. Lee, Shleifer and Thaler (1991) find that small stocks 

returns exhibit the expected negative relation with changes in closed-end fund discounts in the 

context of a two-factor model. In contrast Elton, Gruber and Busse (1998) find that the pattern 

reverses in the context of a five-factor model, including the size and value factors. In particular, 
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the 8
th

 and 10
th

 size decile portfolios exhibit negative loadings on the closed-end fund discount 

factor. A negative loading on the change in the closed-end fund discount indicates a positive 

relation between the given portfolio and investor sentiment, as arguably discounts narrow as 

sentiment increases. Further, the smallest size portfolio exhibits a large and positive loading on 

the change in the closed-end fund discount under their expanded model. Elton, Gruber and Busse 

(1998) further compare the relation between market capitalization and sentiment sensitivity 

across the two separate models. From the two-factor model, the rank correlation across size 

deciles and loadings on the change in the closed-end fund discount is 0.71, indicating sentiment 

sensitivity decreases with size. However, in their five factor model, the rank correlation of -0.71 

indicates that sentiment sensitivity increases with size. The latter finding is consistent with 

Brown and Cliff (2005) who find a positive relation between size and sentiment. Baker and 

Wurgler (2006) also document inconsistencies in sentiment sensitivities across model 

specifications. For example, they find that both the small minus big portfolio and the long-short 

property, plant and equipment portfolio exhibit marginally significant loadings on lagged 

sentiment in the two-factor setting, but that the loading on lagged sentiment is insignificant in the 

expanded model. Therefore, given their expanded risk factor model, Baker and Wurgler (2006) 

provide no evidence of a relation between investor sentiment and subsequent returns to portfolios 

formed based on firm size, tangibility, and growth opportunities and distress. 

Given the conflicting results across model specifications within the existing research, we 

expand our model to control for multiple risk sources in our estimation of sentiment sensitivities. 

This analysis provides robustness results regarding the relationship between firm characteristics 

and sentiment sensitivities documented in Table 2. We employ a five-factor model that augments 

the earlier model with the small-minus-big portfolio, high-minus-low portfolio, and the 
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momentum portfolio (cf. Fama and French (1992, 1993), and Carhart (1997)). All risk factor data 

are from Ken French’s data library. Our augmented regression model is given by: 

                                               

                               
      , (2) 

where       ,       , and       , represent the small minus big, high minus low, and 

momentum risk factors, respectively, and all other terms are as defined in equation (1). We then 

repeat the analysis in Table 2, by sorting firms based on         parameter estimates from the 

augmented model. We report results in Table 3. 

***Insert Table 3 about here*** 

 After controlling for additional factors in the return generating process, we again find 

results that strongly support the hypothesis that sentiment prone stocks display opaque firm-

characteristics. Similar to Table 2, the differences across all portfolios, and between the first and 

tenth portfolios, are all highly significant, and with the hypothesized sign. However, the 

differences in sample averages of firm characteristics across portfolios are dampened when 

additional risk factors are considered. For example, in Table 2, research and development 

spending, as a percentage of assets, is approximately ten times greater for the high sentiment 

sensitivity portfolio, relative to the low sentiment sensitivity portfolio. From Table 3, this 

difference across sensitivity portfolios is only three to four times in magnitude. Firm 

characteristics such as size, property, plant and equipment, volatility, dividends, and earnings 

also exhibit a similar pattern in which the statistics presented in Table 3 are not as large as in 

Table 2, but still overwhelmingly document the expected patterns. For example, we find the 

average size of the high sentiment sensitivity firms (333 million) is approximately 40 percent of 
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the comparable average for high sentiment sensitivity firms (846 million). The analysis of firm 

size is especially interesting given the contradicting results present in the existing literature with 

respect to this specific firm-characteristic and investor sentiment discussed above. Our direct 

approach of estimating sentiment sensitivities and then comparing firm characteristics across 

levels of sentiment sensitivities reveals that small stocks exhibit the greatest exposure to investor 

sentiment, and that this exposure is robust across the expanded factor model. In sum, the 

evidence from Tables 2 and 3 indicates that, for both the two and five risk factor models, highly 

sentiment-prone stock portfolios exhibit the hypothesized characteristics of being small, 

intangible, and volatile.
9
 

 Our unconditional models in Table 2 and Table 3 rely on data throughout the sample 

period for estimation. To verify that sentiment-sensitivities exhibit similar patterns across firm 

characteristics with ex ante available information, we also estimate sentiment sensitivities 

utilizing 60-month rolling windows. Specifically, we estimate equation (1) across months t-60 

                                                             
9 Stocks with a negative         parameter estimates are assigned to the first sentiment sensitivity portfolio. 

Therefore, our analysis allows us to focus on stocks that vary positively with investor sentiment to identify 

characteristics of sentiment prone stocks. In unreported analyses, stocks are equally assigned into sentiment 

sensitivity deciles without the adjustment for negative parameter estimates. These results suggest that in the 

context of the five factor model, some opaque firms vary inversely with investor sentiment. However, the main 

result that highly sentiment prone stocks exhibit opaque characteristics is robust in these unreported analyses. The 

finding that sentiment prone stocks tend to be opaque, but some opaque firms also vary inversely with sentiment 

suggests an explanation for the inconsistent findings when sentiment loadings are estimated across firm 

characteristic portfolios. 
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through t-1, to assign stocks to the ten sentiment sensitivity portfolios at time t.
10

 For each firm 

in a given sentiment sensitivity portfolio at a given time t, we calculate average firm 

characteristics across the previous five years. The five year average matches the estimation 

period for the rolling regression window, so firm characteristics match sentiment sensitivity 

estimation. We then pool firm characteristics across each sentiment sensitivity portfolio to create 

a time-series of average firm-characteristics for each sentiment sensitivity portfolio.  In addition 

to the firm characteristics considered earlier, we also include the root mean square error from the 

rolling five-year regression, and firm age, defined as the difference in years between a given 

point in time and the firm’s initial appearance in CRSP.
11

 We expect younger firms, and firms 

with a larger root mean square error, to be more opaque and more sensitive to sentiment. Results 

from the two-factor model are reported in Table 4. 

***Insert Table 4 about here*** 

 Table 4 shows that firm characteristics from our rolling regression estimations exhibit 

similar patterns to the earlier regression models. For the new variables considered, we find that 

the root mean square error for firms with the highest sentiment sensitivity is over twice the size 

of the comparable measure for the lowest sentiment sensitivity firms. In addition, firms in the 

low sentiment sensitivity portfolio are approximately 1.5 times older than firms in the high 

sentiment sensitivity portfolio. For the variables considered in prior analysis, we again find that 

                                                             
10 The sentiment index data is available beginning January 1966. Consequently, rolling window results begin 

January 1971 to allow five years for estimation. Further, we restrict the analysis at each point in time t, to only 

include firms with complete return observations from month t-60 through t-1. 

11 A significant percentage of firms list either July 31, 1962 or December 29, 1972 as their initial appearance in 

CRSP. Omitting the age variable for these firms does not qualitatively change the firm characteristic results. 
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observed differences across all portfolios, and between the high and low sensitivity portfolios, 

are highly significant and consistent with the sentiment hypothesis. 

 To examine the suggestion that sentiment sensitivity is due to missing risk factors, we 

expand the two-factor conditional model, to include the additional risk factors       ,       , and 

      . Table 5 reports the firm-characteristic results from our sixty-month, five-factor rolling 

regressions. 

***Insert Table 5 about here*** 

 Consistent with the earlier analyses, firms assigned to the sentiment prone portfolio in 

Table 5 tend to exhibit the hypothesized firm characteristics. Further, with the exception of the 

book-to-market analyses, all remaining differences remain strongly significant across portfolios. 

However, the magnitude of the differences across our portfolios appears to be dampened. For 

example, earnings, as a percentage of book equity, are 9.0 percent and 7.4 percent across the low 

and high sentiment sensitivity portfolios, respectively. Further, on average, 67 percent of 

observations for firms in the low sentiment sensitivity portfolio exhibit positive earnings, 

compared to 57 percent in the high sentiment sensitivity portfolio. Although significant, this 

difference is not as large as the earlier documented differences. Differences across the high and 

low sentiment sensitivity portfolios of approximately 1.7 percent, 6.9 percent, and 2 percent, for 

research and development, property, plant and equipment, and dividends, respectively, are also 

smaller, relative to the earlier values. Despite the relative dampening of the magnitude of results 

in Table 5, overall, we continue to find that sentiment prone stocks exhibit similar firm 

characteristics. In general, stocks with the highest sensitivity to investor sentiment tend to be 
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opaque or hard to arbitrage. Further, these results are robust to both multiple risk factor models, 

and conditional rolling-window regressions. 

4. Marginal performance conditional on investor sentiment 

 We investigate the role of investor sentiment as a conditioning information variable. Our 

analysis to this point documents a robust relation between opacity and sentiment, in models with 

simple, as well as multiple risk factor specifications. We now shift our analysis to the question as 

to whether ex ante known sentiment measures result in positive portfolio performance. This 

subsequent analysis considers expected marginal performance during period t, given only 

information available during period t-1. We report conditional alphas using sentiment as a 

conditioning information variable, following the conditional performance evaluation literature 

including Ferson and Schadt (1996), Christopherson, Ferson, and Glassman (1998), and Jha, 

Korkie and Turtle (2009). Our resultant conditional alphas provide the marginal performance of 

a given sentiment portfolio for a given level of systematic risk. Our approach explicitly addresses 

the concern that sentiment prone portfolios may simply be high risk portfolios warranting 

additional risk premia. 

Berk (1995) and Fama and French (2006) provide an excellent discussion of how firm 

characteristics may be related to potential risk factors. This general concern applies to much of 

the sentiment literature as the analysis tends to center on unconditional measures of performance 

without risk corrections, except potentially under an unconditional model. Our conditional 

marginal performance measure addresses this concern and examines the marginal performance 

gain related to ex ante known sentiment measures for given risk sources.  A potential benefit of 

the approach is that it can be readily implemented in a simple unconditional regression context. 
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The model assumes that all underlying conditional asset returns are linearly related to the 

underlying conditioning variable (cf., Campbell (1987), or Shanken (1990)). 

Following Jha, Korkie and Turtle (2009), we estimate the conditional alpha directly from 

the following simple unconditional regression: 

                            
               , (3) 

where the conditioning information instrument,        
 , is known at the beginning of each 

investment interval and both the portfolio excess return,     , and the market excess return,     , 

are contemporaneously measured over the subsequent period. Our earlier analysis indicates a 

strong relation between sentiment sensitivities and the firm characteristics considered. Therefore, 

we use these firm characteristics to form portfolios of sentiment prone stocks. Specifically, for 

each firm characteristic variable, we form ten portfolios based on a firm’s ranking of the specific 

characteristic at that point in time. The portfolio allocations are independent for each firm 

characteristic such that a firm’s portfolio assignment for a given firm characteristic does not 

influence its ranking for any other firm characteristic.
12

 To form portfolios for each month t, 

firms are sorted based on the contemporaneous age variable, the standard deviation of monthly 

returns from month t-12 through month t-1, and sorted based on all remaining accounting 

                                                             
12 Firms with missing data for a given firm characteristic are excluded from the specific analysis at that point in 

time. However, those firms are not excluded from analyses of other firm characteristics, or during alternative time 

periods in which the data is not missing. Further, values of size, property, plant and equipment, research and 

development, earnings and dividends that are non-positive are excluded from those specific analyses. Separate 

analyses based on dividends and earnings are performed across firms with both positive and non-positive entries.  
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variables that are lagged to match the fiscal year end that falls within months t-6 through t-17 to 

ensure that the accounting information is available to investors.
13, 14

 

 Given a known investor sentiment realization, the conditional alpha may be written as  

                           
 , (4) 

for a given portfolio j in period t. The resultant conditional alpha measures marginal performance 

from the conditional regression of the portfolio return against the risk factors where excess 

returns for all portfolios and factors are linearly related to the underlying information 

instruments. When no information instruments exist, the intercept is given by a constant, and the 

regression intercept is then the unconditional Jensen’s (1968) alpha. 

Inferences for the resultant conditional alpha from equation (3) based on the 

unconditional regression may be determined by viewing the conditional alpha as a specific 

forecast of the portfolio excess return when all risk factor coefficients are a priori equal to zero. 

In this special case, the only remaining instrument is the known economic information 

instrument,        
 , and the standard forecast error confidence interval applies. In general, for 

non-zero risk factors and nonzero coefficient estimates, there are other potential sources of error. 

In the case of zero risk coefficients and only economic information instruments having nonzero 

coefficients, the nonstochastic regressor result obtains (cf., Feldstein (1971) for a clear and 

concise discussion of the issues). Our approach produces conditional alphas that vary over time, 

                                                             
13 A significant percentage of firms list either July 31, 1962 or December 29, 1972 as their initial appearance in 

CRSP. We omit these firms from the formation of age based portfolios, as these dates likely correspond to an 

expansion of the database. These firms are not excluded from other characteristic portfolios. 

14 Due to data availability for some accounting variables, the entire conditional alpha analysis is conducted across a 

monthly sample that spans July 1968 through December 2005. 
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and with sentiment levels. The conditional alpha estimation procedure also has the ability to 

provide inference procedures in specific economic states. Comparable measures of average 

returns or unconditional alphas from the extant literature may provide comparable point 

estimates in specific cases; although, inference procedures may be impacted by research design 

procedures. From the unconditional regression equation (3), it is apparent that our measure of 

marginal performance is dependent upon the regression intercept,     , the coefficient on lagged 

sentiment,        , and the previous sentiment realization. Therefore, our approach identifies 

states of the world in which significant marginal performance exists, rather than relying solely on 

static coefficient estimates of investor sentiment. The conditional specification has the potential 

to capture important cross-sectional and intertemporal variation in conditional performance that 

may be obfuscated by averaging across firm characteristics, and over time.
15

 

Table 6 reports the resultant conditional alpha coefficient estimates,      and        ,  

from equation (3), and tests of differences in         across decile portfolios formed on firm 

characteristics. 

***Insert Table 6 about here*** 

 Parameter estimates in Table 6 suggest the expected contrarian nature of sentiment as a 

conditioning variable for opaque firms. Parameter estimates of         tend to be negative and 

significant for these portfolios, with comparable estimates for translucent portfolios that tend to 

be insignificant, or positive. For example, for portfolios formed on volatility, the estimates of 

        are insignificant for the five low-volatility portfolios. In contrast, estimates of         for 

                                                             
15 Perhaps more importantly, unconditional results need not be consistent with conditional approaches that make use 

of ex ante known information instruments. 
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the five high-volatility portfolios are negative, significant, and monotonically increasing in 

magnitude. The specific estimate for the lowest   portfolio is insignificant and given by 0.07, 

and the comparable estimate for the tenth decile   portfolio is -0.75 and significant at the five 

percent level. Further, the difference across the first and tenth portfolio is significant at the five 

percent level. Portfolios formed on market capitalization and age, also show clear patterns across 

        parameter estimates. With size, the parameter estimate for the smallest size portfolio is -

0.66, and is significant at the five percent level. In contrast, the estimate for the largest size 

portfolio is positive, although insignificant. Considering age-based portfolios, the         

parameter estimates are negative, and significant, for the five portfolios of the youngest firms, 

however the remaining estimates for the oldest firm portfolios are insignificant, and much 

smaller in magnitude. The analysis of portfolios formed from earnings, dividend amounts, and 

positive or negative dividends, exhibit negative and significant         parameter estimates for 

the most opaque portfolio, and significant differences across the first and tenth portfolio in the 

expected direction.  

For each set of coefficient estimates from equation (3), we calculate the conditional alpha 

according to equation (4) for a given instrument realization,        
 . To facilitate reporting, we 

report the conditional alpha and associated p-value for each firm characteristic based portfolio 

for investor sentiment at the fifth, 20
th
, 80

th
, and 95

th
 percentiles.  We report results in Table 7. 

***Insert Table 7 about here*** 

 Conditional measures of marginal performance indicate that opaque portfolios tend to 

vary inversely with investor sentiment, at the same time as translucent firms exhibit little 

variation in marginal performance across levels of sentiment. For example, the conditional alpha 
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for the high volatility portfolio is 1.3 and -1.2 percent, when sentiment is at the fifth, and 95
th
 

percentiles, respectively. Thus, the difference in conditional alpha for the high volatility portfolio 

across these extreme sentiment percentiles is approximately 2.5 percent. The comparable values 

of conditional alpha are 0.3 and 0.5 percent for the low volatility portfolio, resulting in a range of 

less than 0.3 percent across the same extreme sentiment percentiles. Further, the conditional 

alpha for the high volatility portfolio decreases monotonically with investor sentiment. In 

contrast, the low volatility portfolio exhibits the opposite pattern. Many of the other firm 

characteristic analyses exhibit similar patterns within the opaque and translucent portfolios. For 

example, variation in conditional alpha across the fifth and 95
th

 percentiles of investor sentiment 

is 2.2 and 1.8 percent for the small and young portfolios, respectively. The comparable variation 

is approximately 0.3 and 0.1 percent for the large and old portfolios, respectively. Thus, we 

observe large variation in marginal performance for opaque firms across levels of investor 

sentiment, with little variation in marginal performance for translucent firms across the same 

levels of investor sentiment. The analysis in Baker and Wurgler (2006) can be interpreted as a 

comparison of the         coefficients between portfolios that sort high versus low on a given 

characteristic.  Our analysis of                    
  captures these differences in the measured 

coefficient        , as well as differences related to      and to how observed sentiment impacts 

performance through        . Many of the insignificant findings in Baker and Wurgler’s (2006) 

long-short analysis may be due to the inability of their research design to capture important 

cross-sectional variation in     , and temporal variability in        
 . Our approach also provides 

an ex ante point estimate of marginal performance that will be more economically informative 

than a t-test of differences in         across portfolios. Our results demonstrate that many of the 

findings in these long-short portfolios are due to the opaque constituents of these portfolios. 
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Interestingly, all book-to-market portfolios show a strong sentiment impact for all decile 

portfolios. In high sentiment periods, book-to-market portfolios tend to generate a full percent 

less in marginal performance relative to low sentiment periods. As examples, the low book-to-

market portfolio exhibits a performance differential of 1.7 percent (-1.28 - 0.38) across the fifth 

and 95
th

 percentiles of sentiment, and the performance differential is a comparable 1.6 percent 

for the high book-to-market portfolio across the same range of sentiment. In addition, the book-

to-market effect is readily apparent when comparing marginal performance across decile 

portfolios for a given sentiment percentile.  For example, when sentiment is at the 80
th
 percentile 

we find a performance difference in excess of 1.5 percent (-0.75 - 0.79) between the lowest and 

highest deciles of book-to-market firms. Similarly, when sentiment is at the 20
th
 percentile we 

again find a performance difference of 1.5 percent (-0.03 – 1.48) across these portfolios, 

indicating the book-to-market effect persists across all sentiment percentiles, which suggests a 

lesser impact for opacity in this instance. 

To further illustrate the cross-sectional variation in marginal performance conditional on 

investor sentiment, we plot conditional alpha across portfolios and levels of sentiment in Panels 

1a through 1i of Figure 1. Specifically, we illustrate the point estimates of conditional alpha 

detailed in Table 7. 

*** Insert Figure 1 about here *** 

 Within Figure 1, reading left to right across a given plot, reveals the variation in the 

conditional alpha, across portfolios, for a given level of sentiment. Comparing various plot lines 

vertically the plots reveal variation in conditional alpha, across levels of sentiment, for a given 

portfolio. As opacity increases we expect to observe greater variability in marginal performance 
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measures across portfolios. The plots for volatility, age, size, dividend, and research and 

development portfolios all detail a large and inverse relation between marginal performance and 

investor sentiment for the opaque portfolios, and little, or positive, variation in marginal 

performance across sentiment for translucent firms. For example, in Panel 1e we report 

conditional alphas for the lowest dividend paying firms on the left and for the highest dividend 

paying firms in the right most results. A greater relative dividend stream should facilitate 

valuation certainty and increase firm transparency. This is consistent with the observed sentiment 

sensitivity in the panel.  As we move from left to right in the plot, transparency increases and we 

observe a general convergence towards a smaller range of conditional alpha measures. The sales 

growth deciles in Panel 1i provide interesting evidence of much greater variability in conditional 

alphas for both the smallest and largest sales growth firms. This is consistent with an increase in 

transparency for moderate growth firms.
16

 

 A potential explanation for the variation in conditional alpha across firm characteristics 

documented above could be varying sensitivities to additional risk factors. To control for this 

possibility, we expand equation (3) and specify 

                         
                        

                                   , (5) 

with all variables as previously defined. With the expanded specification, the conditional alpha 

for a given portfolio is still given by equation (4). Table 8 reports the resultant conditional alpha 

                                                             
16 This finding is likely related to the impact of correlations across firm characteristics. For example, dynamic high 

growth firms in portfolio 10 are likely to be opaque with difficult to value future cash flow streams. Similarly, very 

low sales growth firms may include firms in decline with poor future prospects and large real risks associated with 

required strategic decisions.  
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across firm characteristic decile portfolios and levels of investment sentiment from the expanded 

model that includes additional risk factors. 

***Insert Table 8 about here*** 

Reported conditional alpha estimates in Table 8 confirm that the earlier results are robust 

to a model with additional risk factors. Conditional alpha varies inversely with investor 

sentiment within opaque firms, and conversely translucent firms vary positively with investor 

sentiment, or exhibit little variation. For example, considering portfolios formed from volatility 

deciles, conditional on investor sentiment at the fifth percentile, conditional alpha increases 

monotonically from 0.3 to 0.8 for the fourth through tenth decile. Corresponding estimates for 

the three low volatility portfolios are smaller in magnitude and insignificant. Conversely, with 

sentiment at the 95
th
 percentile, the three low volatility portfolios exhibit significant conditional 

alphas approximately equal to 0.3, while point estimates are negative, but insignificant, for the 

three high volatility portfolios. Further, for the small, young, and zero-dividend portfolios, 

differences in conditional alpha are approximately 1.0 or greater as sentiment ranges from the 

fifth to 95
th
 percentile. The comparable range for the large portfolio is 0.2, and the variation in 

conditional alpha is less than 0.1 for the old, and positive-dividend portfolios. Therefore, 

conditional alpha results from the expanded model confirm that sentiment is a contrarian 

indicator for opaque firms. 

5. Conclusion 

 We study the impact of investor sentiment on the cross-section of equity returns in a 

model with multiple risk factors with conditional measures of marginal performance. We find 

that the most sentiment-prone stocks tend to exhibit opaque characteristics – they tend to be 

volatile, small, young, and intangible. Further, and in contrast to the mixed evidence in the extant 
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literature, portfolios with opaque firm characteristics offer the greatest marginal performance 

when previous sentiment levels are lowest. In general, opaque portfolios exhibit much greater 

variation in conditional alpha estimates across levels of investor sentiment relative to translucent 

portfolios. Our results are both economically and statistically significant, and suggest that 

variability in marginal performance is due to cross-sectional differences in unconditional alphas, 

cross-sectional differences in sentiment sensitivities, and to time series variability in sentiment 

measures.  

 Our results have important implications for further research. Because portfolios formed 

from firms with opaque (translucent) characteristics exhibit high (low) exposure to investor 

sentiment, and because this risk appears non-diversifiable, future research may seek to 

incorporate investor sentiment as a priced risk factor. In addition, because sentiment may display 

interesting patterns of persistence with potentially sudden changes, we are currently examining 

the feedback and decay mechanisms describing how sentiment patterns impact stock returns. In 

particular, our empirical results are consistent with periods of positive sentiment persistence 

producing poor stock returns, especially for opaque firms. Our current line of inquiry 

investigates the pattern of returns following long periods of sentiment persistence that often 

characterize business cycles. Finally, many of the firm characteristics that we consider relate to 

existing asset-pricing anomalies. Our results, which detail systematic relations between 

sentiment and firm characteristics may lead to additional research within asset mispricing. 
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Table 1 

Summary Statistics. 

Variable Mean Median St Dev N 

     871.453 81.098 2788.140 171047 

  8.010 5.063 9.942 174036 

   58.841 100.000 49.212 174630 

  2.326 0.000 3.747 152143 

   51.759 100.000 49.969 174630 

    56.080 49.166 38.984 149538 

   2.778 0.000 7.197 164037 

      87.395 69.266 86.754 149950 

   18.845 9.842 62.077 159777 

  1.026 -0.310 16.590 1935739 

  13.118 10.764 10.068 1715044 

We present summary statistics for our monthly dataset from January 1968 through December 

2005. We include the universe of CRSP/Compustat stocks with at least 60 months of return data. 

We define      as the market value of equity ($ million), given by shares outstanding multiplied 

by share price. Earnings and dividends are defined by   and  , where both are scaled by book 

equity. We also define dummy variables defining positive realizations of earnings and dividends 

as    and   , respectively. Property, plant and equipment, and research and development, are 

given by     and   , respectively, where both are scaled by total assets. We define       as 

the ratio of book equity to market equity and sales growth,   , is defined as the percentage 

change over the previous years’ sales. Excess returns are denoted by  , with associated sample 

standard deviation of the previous twelve months’ raw return given by  . With the exception of 

    , all variables are reported as percentages. For month t, accounting variables represent values 

from the fiscal year end falling in month t-17 through month t-6. Reported statistics are based on 

annual accounting variables, and monthly return related variables. 
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Table 2 

Unconditional Sentiment Sensitivity and Firm Characteristics. 

                                                                      

  11.656 10.967 11.670 13.055 13.825 14.848 16.225 17.416 19.797 26.550 542.93 

(0.000) 

-36.05 

(0.000) 

     1135.625 747.331 764.979 470.176 430.806 436.127 407.499 436.354 468.092 363.318 30.29 

(0.000) 

13.67 

(0.000) 

  6.934 7.500 8.169 7.739 7.597 7.785 7.405 6.641 5.643 3.954 37.41 

(0.000) 

15.73 

(0.000) 

   47.582 53.133 57.539 56.568 56.902 56.358 52.304 47.129 40.107 26.203 77.51 

(0.000) 

21.70 

(0.000) 

  2.700 2.754 2.598 2.073 1.582 1.451 1.133 0.754 0.328 0.203 123.91 

(0.000) 

34.59 

(0.000) 

   51.995 56.758 54.015 45.228 39.394 32.698 24.712 18.453 8.155 3.001 328.670 

(0.000) 

70.35 

(0.000) 

    56.891 56.125 53.880 52.333 53.398 50.539 50.922 45.181 40.788 37.308 37.29 

(0.000) 

16.30 

(0.000) 

   1.295 1.228 1.515 1.956 2.235 2.504 3.140 4.721 6.825 12.396 322.72 

(0.000) 

-25.73 

(0.000) 

      77.694 88.598 89.747 92.343 91.057 91.258 87.700 76.692 64.467 47.946 45.71 

(0.000) 

13.63 

(0.000) 

   21.672 17.627 19.795 19.936 20.138 20.891 23.411 27.984 31.088 46.890 69.25 

(0.000) 

-12.50 

(0.000) 

We estimate the following model: 

                              
      , 

for          ;          ; and where      represents the excess return to asset j during period t;      represents the excess 

market return during period t; and       
  represents the change in the orthogonalized sentiment index of Baker and Wurgler, during 

period t. Based on parameter estimates of        , we assign stocks to 10 sentiment portfolios, defined as      , for           . 

Stocks for which the         parameter estimate is negative, are assigned to the first portfolio,      . The remaining stocks are 

assigned equally to the remaining nine sentiment portfolios, such that       and        contain stocks with the smallest and largest 

magnitude positive parameter estimates, respectively. We calculate average firm characteristics for each stock within our sample. We 

then pool these averages and report statistics across the sentiment sensitivity portfolios. We report F-statistics and t-statistics in the 

final two columns testing that the given average firm characteristic is equal across all sentiment portfolios, and between the 1
st
 and 

10
th
 sentiment portfolios, respectively. Variables are as defined in Table 1.  
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Table 3 

Unconditional Sentiment Sensitivity and Firm Characteristics.  

                                                                      

  13.429 10.633 11.211 12.262 13.103 14.102 15.939 16.398 19.029 24.216 238.60 

(0.000) 

-26.40 

(0.000) 

     845.910 939.884 792.688 728.515 676.072 709.147 512.118 607.272 609.660 333.068 6.10 

(0.000) 

8.89 

(0.000) 

  7.232 6.484 6.712 7.214 7.232 7.652 6.732 6.869 6.380 4.424 17.42 

(0.000) 

13.55 

(0.000) 

   50.628 46.420 49.188 53.114 52.173 53.768 48.645 47.821 42.166 28.946 36.71 

(0.000) 

20.56 

(0.000) 

  2.122 2.713 2.792 2.375 1.989 1.763 1.184 0.905 0.703 0.232 60.71 

(0.000) 

30.58 

(0.000) 

   43.959 59.380 56.222 49.262 42.920 39.333 26.593 22.617 13.751 4.585 180.33 

(0.000) 

52.58 

(0.000) 

    52.816 54.468 52.882 54.270 54.001 52.173 49.699 49.948 44.289 42.229 10.10 

(0.000) 

7.25 

(0.000) 

   2.573 1.452 1.800 2.004 2.048 2.734 3.018 3.578 5.171 8.545 74.72 

(0.000) 

-13.63 

(0.000) 

      78.765 91.340 92.411 89.622 85.692 85.109 82.967 78.419 68.900 56.386 20.01 

(0.000) 

8.43 

(0.000) 

   22.668 18.459 17.158 17.147 23.228 22.291 26.754 25.308 32.158 43.493 45.34 

(0.000) 

-9.30 

(0.000) 

We estimate the following model: 

                                                                     
      , 

where       ,       , and       , represents the small minus big, high minus low, and momentum risk factors, respectively, and all 

other terms are as defined in Table 2. Based on parameter estimates of        , we assign stocks to 10 sentiment portfolios as in Table 

2, with the portfolios defined as      , for i=1,2,…10. We calculate average firm characteristics for each stock within our sample. We 

then pool these averages and report statistics across the sentiment sensitivity portfolios. We report F-statistics and t-statistics in the 

final two columns testing that the given average firm characteristic is equal across all sentiment portfolios, and between the 1
st
 and 

10
th
 sentiment portfolios, respectively. Variables are as defined in Table 1.  
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Table 4 

Rolling Regression Sentiment Sensitivities and Firm Characteristics. 

                                                                      

     9.750 8.752 9.213 9.849 10.535 11.377 12.495 13.647 15.389 20.789 565.99 

(0.000) 

-32.34 

(0.000) 

     1269.261 866.304 822.752 778.611 699.821 626.413 513.659 457.220 302.620 147.062 221.14 

(0.000) 

32.18 

(0.000) 

    22.254 21.880 21.581 21.362 20.773 19.808 18.457 17.312 15.859 14.063 671.04 

(0.000) 

72.24 

(0.000) 

  9.228 8.911 9.152 9.408 9.507 9.547 9.308 9.059 8.360 6.583 105.24 

(0.000) 

19.24 

(0.000) 

   66.529 65.534 67.731 70.163 72.197 73.290 71.630 69.664 64.805 52.946 91.63 

(0.000) 

13.79 

(0.000) 

  3.713 3.821 3.603 3.365 2.980 2.602 2.157 1.802 1.335 0.712 938.46 

(0.000) 

80.57 

(0.000) 

   73.580 77.336 75.221 71.366 66.829 61.987 53.875 46.998 36.671 21.760 561.87 

(0.000) 

63.82 

(0.000) 

    66.369 63.228 61.958 60.534 59.241 57.431 55.073 53.774 50.886 49.177 303.99 

(0.000) 

39.87 

(0.000) 

   1.431 1.309 1.447 1.685 1.888 2.143 2.606 3.232 4.214 5.971 155.58 

(0.000) 

-15.60 

(0.000) 

      89.822 92.453 93.560 94.174 95.835 97.874 98.482 98.100 98.969 95.715 3.75 

(0.000) 

-2.39 

(0.017) 

   14.489 13.521 13.691 13.777 14.116 15.079 15.916 16.892 18.355 19.478 110.77 

(0.000) 

-12.99 

(0.000) 

We estimate the following model: 

                              
      , 

across rolling 60 month windows. Based on parameter estimates of         from months t-60 through t-1, we assign stocks to 10 

sentiment portfolios as in Table 2, for each month t. We calculate average five year firm characteristics for each stock within our 

sample at each point in time. We then calculate sentiment portfolio averages at each point in time and report statistics across the 

sentiment sensitivity portfolios through time. We report F-statistics and t-statistics in the final two columns testing that the given 

average firm characteristic is equal across all sentiment portfolios, and between the 1
st
 and 10

th
 sentiment portfolios, respectively. 

Variables are as earlier defined, with the addition of     , the root mean square error from the rolling five year regression, and    , 

defined as the difference in years between period t, and the firm’s first appearance in CRSP. Given the 60-month rolling window, we 

report results from January 1971, through December 2005.  
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Table 5 

Rolling Regression Sentiment Sensitivity and Firm Characteristics. 

                                                                      
     10.450 8.535 8.644 8.973 9.408 9.953 10.672 11.695 13.265 18.404 775.51 

(0.000) 

-30.81 

(0.000) 

     965.749 1048.358 1014.585 974.582 967.644 910.582 785.878 627.995 464.456 211.071 119.02 

(0.000) 

21.93 

(0.000) 

    20.558 21.952 22.154 22.055 21.901 21.348 20.393 19.329 17.468 15.003 585.70 

(0.000) 

56.56 

(0.000) 

  9.011 8.985 9.084 9.256 9.459 9.572 9.531 9.283 8.892 7.433 55.36 

(0.000) 

13.46 

(0.000) 

   67.298 66.799 67.528 69.169 70.267 71.211 70.959 70.023 67.178 57.170 49.19 

(0.000) 

11.43 

(0.000) 

  3.068 3.743 3.710 3.578 3.363 3.097 2.755 2.359 1.893 1.060 976.84 

(0.000) 

53.38 

(0.000) 

   65.605 76.372 76.207 74.196 71.537 67.738 63.267 57.095 46.818 28.418 660.31 

(0.000) 

41.09 

(0.000) 

    61.718 62.810 61.903 60.802 60.741 59.273 58.509 57.462 55.381 54.850 95.97 

(0.000) 

17.10 

(0.000) 

   1.998 1.469 1.471 1.531 1.695 1.836 2.078 2.355 2.904 3.712 141.42 

(0.000) 

-12.36 

(0.000) 

  
    

94.316 93.358 92.955 93.912 94.058 94.216 95.370 96.821 96.636 97.797 1.46 

(0.158) 

-1.61 

(0.108) 

   15.049 13.714 13.505 13.803 14.166 12.209 14.967 15.410 17.176 18.377 95.64 

(0.000) 

-12.33 

(0.000) 

We estimate the following model: 

                                                                     
      , 

across rolling 60 month windows. Based on parameter estimates of         from months t-60 through t-1, we assign stocks to 10 

sentiment portfolios as in Table 2, for each month t. We calculate average five year firm characteristics for each stock within our 

sample at each point in time. We then calculate sentiment portfolio averages at each point in time and report statistics across the 

sentiment sensitivity portfolios through time. We report F-statistics and t-statistics in the final two columns testing that the given 

average firm characteristic is equal across all sentiment portfolios, and between the 1
st
 and 10

th
 sentiment portfolios, respectively. 

Variables are as earlier defined, with the addition of     , the root mean square error from the rolling five year regression, and    , 

defined as the difference in years between period t, and the firm’s first appearance in CRSP. Given the 60-month rolling window, we 

report results from January 1971, through December 2005.  
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Table 6 

Parameter Estimates Across Firm Characteristic Portfolios with Sentiment as an Information Variable. 

                                                                          

       0.381 

(0.000) 

0.445 

(0.000) 

0.415 

(0.000) 

0.406 

(0.000) 

0.420 

(0.001) 

0.332 

(0.029) 

0.393 

(0.024) 

0.270 

(0.209) 

0.231 

(0.367) 

0.155 

(0.636) 

  

         0.074 

(0.423) 

0.014 

(0.881) 

-0.012 

(0.906) 

-0.134 

(0.229) 

-0.167 

(0.181) 

-0.326 

(0.031) 

-0.386 

(0.026) 

-0.526 

(0.014) 

-0.624 

(0.015) 

-0.753 

(0.022) 

6.36 

(0.012) 

1.59 

(0.117) 

          1.515 

(0.000) 

0.622 

(0.010) 

0.361 

(0.091) 

0.247 

(0.201) 

0.122 

(0.480) 

0.105 

(0.485) 

0.088 

(0.482) 

0.122 

(0.261) 

0.116 

(0.148) 

0.088 

(0.091) 

  

         -0.655 

(0.028) 

-0.570 

(0.018) 

-0.504 

(0.018) 

-0.456 

(0.018) 

-0.384 

(0.026) 

-0.234 

(0.119) 

-0.207 

(0.098) 

-0.134 

(0.216) 

-0.016 

(0.840) 

0.082 

(0.116) 

5.70 

(0.017) 

1.22 

(0.282) 

         0.040 

(0.849) 

0.223 

(0.294) 

0.126 

(0.509) 

0.264 

(0.148) 

0.322 

(0.062) 

0.495 

(0.002) 

0.439 

(0.001) 

0.380 

(0.002) 

0.319 

(0.007) 

0.291 

(0.001) 

  

         -0.539 

(0.010) 

-0.581 

(0.006) 

-0.508 

(0.008) 

-0.506 

(0.005) 

-0.340 

(0.047) 

-0.219 

(0.168) 

-0.205 

(0.130) 

-0.123 

(0.317) 

-0.027 

(0.815) 

-0.016 

(0.849) 

7.43 

(0.007) 

2.52 

(0.008) 

       0.401 

(0.041) 

0.470 

(0.003) 

0.438 

(0.002) 

0.379 

(0.003) 

0.351 

(0.005) 

0.357 

(0.003) 

0.312 

(0.007) 

0.259 

(0.026) 

0.226 

(0.068) 

0.244 

(0.069) 

  

         -0.503 

(0.010) 

-0.346 

(0.029) 

-0.231 

(0.090) 

-0.253 

(0.044) 

-0.239 

(0.054) 

-0.207 

(0.081) 

-0.125 

(0.274) 

-0.171 

(0.138) 

-0.163 

(0.187) 

-0.248 

(0.064) 

4.33 

(0.038) 

1.36 

(0.203) 

        0.311 

(0.094) 

        0.343 

(0.007) 

  

         -0.403 

(0.029) 

        -0.253 

(0.045) 

1.84 

(0.176) 

 

       0.361 

(0.014) 

0.281 

(0.036) 

0.456 

(0.000) 

0.375 

(0.002) 

0.393 

(0.001) 

0.369 

(0.001) 

0.386 

(0.000) 

0.372 

(0.000) 

0.339 

(0.000) 

0.190 

(0.090) 

  

         -0.282 

(0.053) 

-0.224 

(0.093) 

-0.192 

(0.126) 

-0.145 

(0.226) 

-0.115 

(0.321) 

-0.139 

(0.190) 

-0.025 

(0.800) 

-0.051 

(0.581) 

0.030 

(0.744) 

0.098 

(0.377) 

13.39 

(0.000) 

1.98 

(0.040) 

        0.310 

(0.175) 

        0.360 

(0.001) 

  

         -0.627 

(0.006) 

        -0.082 

(0.433) 

9.00 

(0.003) 

 

         0.087 

(0.662) 

0.168 

(0.438) 

0.226 

(0.261) 

0.278 

(0.147) 

0.372 

(0.032) 

0.417 

(0.011) 

0.471 

(0.002) 

0.385 

(0.009) 

0.415 

(0.001) 

0.591 

(0.000) 

  

         -0.402 

(0.042) 

-0.523 

(0.015) 

-0.468 

(0.020) 

-0.412 

(0.031) 

-0.379 

(0.028) 

-0.315 

(0.051) 

-0.355 

(0.020) 

-0.290 

(0.047) 

-0.212 

(0.084) 

-0.225 

(0.074) 

1.11 

(0.294) 

0.81 

(0.607) 
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        0.186 

(0.217) 

0.198 

(0.172) 

0.327 

(0.021) 

0.357 

(0.029) 

0.408 

(0.018) 

0.422 

(0.044) 

0.504 

(0.023) 

0.608 

(0.017) 

0.521 

(0.075) 

0.678 

(0.067) 

  

         -0.303 

(0.044) 

-0.297 

(0.039) 

-0.293 

(0.037) 

-0.304 

(0.062) 

-0.243 

(0.158) 

-0.386 

(0.063) 

-0.277 

(0.206) 

-0.338 

(0.179) 

-0.486 

(0.095) 

-0.603 

(0.101) 

0.86 

(0.355) 

0.55 

(0.840) 

           -0.375 

(0.104) 

-0.167 

(0.331) 

0.003 

(0.984) 

0.118 

(0.420) 

0.305 

(0.029) 

0.388 

(0.006) 

0.531 

(0.000) 

0.584 

(0.000) 

0.778 

(0.000) 

1.146 

(0.000) 

  

         -0.484 

(0.035) 

-0.415 

(0.016) 

-0.338 

(0.029) 

-0.308 

(0.034) 

-0.272 

(0.049) 

-0.193 

(0.167) 

-0.278 

(0.057) 

-0.353 

(0.024) 

-0.272 

(0.123) 

-0.465 

(0.035) 

0.01 

(0.918) 

2.11 

(0.027) 

        0.634 

(0.020) 

0.557 

(0.003) 

0.589 

(0.000) 

0.497 

(0.000) 

0.504 

(0.000) 

0.486 

(0.000) 

0.434 

(0.001) 

0.294 

(0.029) 

0.066 

(0.672) 

-0.486 

(0.020) 

  

         -0.570 

(0.036) 

-0.398 

(0.030) 

-0.216 

(0.152) 

-0.190 

(0.123) 

-0.113 

(0.349) 

-0.145 

(0.214) 

-0.214 

(0.083) 

-0.222 

(0.098) 

-0.417 

(0.008) 

-0.704 

(0.001) 

0.84 

(0.360) 

2.53 

(0.008) 

We estimate the following model 

                        
               , 

across firm characteristic deciles. For each firm characteristic, we assign stocks to a decile for month t based on accounting data from 

the fiscal year end that falls in month t-17 through month t-6. We then estimate the above equation for equal weighted excess returns 

across each firm characteristic decile, and report parameter estimates of      and        , along with the associated p-values. We report 

F-statistics in the final two columns testing that the reported parameter is equal between the 1
st
 and 10

th
 sentiment portfolios, 

     ,and across all 10 sentiment portfolios,     . The sample is monthly from July 1968 through December 2005. 
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Table 7 

Conditional Alphas with Sentiment as an Information Variable. 

        
                                                               

  5% 0.266 0.423 0.433 0.614 0.681 0.838 0.993 1.088 1.200 1.326 

  (0.128) (0.027) (0.029) (0.006) (0.007) (0.006) (0.004) (0.011) (0.019) (0.041) 

 20% 0.328 0.435 0.423 0.501 0.540 0.564 0.668 0.646 0.675 0.692 

  (0.008) (0.001) (0.001) (0.001) (0.001) (0.005) (0.004) (0.023) (0.045) (0.099) 

 80% 0.439 0.456 0.406 0.303 0.291 0.080 0.094 -0.136 -0.251 -0.426 

  (0.000) (0.000) (0.002) (0.034) (0.066) (0.363) (0.361) (0.348) (0.289) (0.227) 

 95% 0.520 0.472 0.393 0.157 0.109 -0.274 -0.325 -0.709 -0.929 -1.244 

  (0.010) (0.023) (0.063) (0.314) (0.364) (0.270) (0.262) (0.109) (0.083) (0.072) 

     5% 2.534 1.507 1.144 0.956 0.719 0.468 0.410 0.331 0.140 -0.039 

  (0.000) (0.002) (0.007) (0.013) (0.036) (0.103) (0.090) (0.109) (0.258) (0.369) 

 20% 1.983 1.028 0.721 0.572 0.396 0.272 0.236 0.218 0.127 0.030 

  (0.000) (0.001) (0.011) (0.025) (0.076) (0.143) (0.131) (0.113) (0.179) (0.359) 

 80% 1.009 0.181 -0.027 -0.105 -0.174 -0.075 -0.072 0.019 0.103 0.151 

  (0.009) (0.330) (0.397) (0.361) (0.284) (0.367) (0.358) (0.395) (0.228) (0.024) 

 95% 0.297 -0.438 -0.575 -0.600 -0.592 -0.329 -0.296 -0.127 0.086 0.240 

  (0.354) (0.269) (0.167) (0.126) (0.099) (0.225) (0.205) (0.339) (0.347) (0.032) 

    5% 0.879 1.126 0.916 1.051 0.850 0.835 0.757 0.571 0.361 0.316 

  (0.035) (0.008) (0.016) (0.004) (0.013) (0.009) (0.005) (0.020) (0.105) (0.062) 

 20% 0.425 0.637 0.489 0.625 0.564 0.651 0.585 0.467 0.338 0.302 

  (0.111) (0.024) (0.051) (0.010) (0.014) (0.002) (0.001) (0.005) (0.029) (0.009) 

 80% -0.376 -0.226 -0.266 -0.127 0.059 0.326 0.281 0.285 0.298 0.278 

  (0.137) (0.273) (0.208) (0.338) (0.383) (0.099) (0.095) (0.068) (0.045) (0.013) 

 95% -0.962 -0.858 -0.819 -0.678 -0.311 0.088 0.059 0.151 0.268 0.260 

  (0.033) (0.057) (0.045) (0.076) (0.270) (0.385) (0.390) (0.333) (0.212) (0.135) 

  5% 1.183 1.008 0.797 0.772 0.722 0.679 0.507 0.525 0.479 0.629 

  (0.002) (0.002) (0.004) (0.002) (0.004) (0.004) (0.026) (0.023) (0.049) (0.019) 

 20% 0.760 0.717 0.603 0.559 0.521 0.505 0.402 0.381 0.342 0.421 

  (0.004) (0.001) (0.001) (0.001) (0.002) (0.001) (0.009) (0.014) (0.036) (0.018) 

 80% 0.013 0.203 0.259 0.183 0.166 0.197 0.216 0.127 0.101 0.053 

  (0.398) (0.231) (0.121) (0.197) (0.219) (0.160) (0.122) (0.267) (0.319) (0.379) 

 95% -0.534 -0.173 0.008 -0.093 -0.093 -0.029 0.080 -0.059 -0.076 -0.217 

  (0.164) (0.346) (0.399) (0.374) (0.373) (0.396) (0.376) (0.386) (0.381) (0.292) 
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   5% 0.937         0.736 

  (0.011)         (0.004) 

 20% 0.598         0.523 

  (0.015)         (0.002) 

 80% 0.000         0.147 

  (0.399)         (0.254) 

 95% -0.438         -0.128 

  (0.205)         (0.353) 

  5% 0.800 0.629 0.754 0.600 0.571 0.584 0.425 0.451 0.293 0.037 

  (0.006) (0.018) (0.003) (0.012) (0.014) (0.006) (0.033) (0.015) (0.094) (0.393) 

 20% 0.563 0.441 0.592 0.478 0.475 0.468 0.404 0.408 0.318 0.120 

  (0.004) (0.013) (0.000) (0.003) (0.002) (0.001) (0.003) (0.001) (0.009) (0.278) 

 80% 0.144 0.108 0.308 0.263 0.304 0.262 0.366 0.332 0.362 0.266 

  (0.289) (0.320) (0.054) (0.080) (0.041) (0.053) (0.005) (0.006) (0.002) (0.061) 

 95% -0.163 -0.135 0.099 0.106 0.179 0.111 0.339 0.277 0.394 0.373 

  (0.344) (0.353) (0.370) (0.364) (0.300) (0.350) (0.104) (0.137) (0.043) (0.106) 

   5% 1.284         0.488 

  (0.005)         (0.020) 

 20% 0.757         0.419 

  (0.013)         (0.003) 

 80% -0.174         0.296 

  (0.328)         (0.029) 

 95% -0.855         0.207 

  (0.075)         (0.252) 

    5% 0.712 0.981 0.954 0.918 0.961 0.906 1.022 0.836 0.744 0.941 

  (0.066) (0.023) (0.018) (0.016) (0.005) (0.005) (0.001) (0.004) (0.002) (0.000) 

 20% 0.374 0.541 0.560 0.572 0.642 0.641 0.723 0.592 0.566 0.751 

  (0.130) (0.056) (0.035) (0.024) (0.005) (0.003) (0.000) (0.002) (0.001) (0.000) 

 80% -0.224 -0.237 -0.135 -0.040 0.080 0.173 0.197 0.161 0.252 0.417 

  (0.260) (0.267) (0.343) (0.393) (0.371) (0.272) (0.229) (0.266) (0.097) (0.011) 

 95% -0.662 -0.805 -0.643 -0.488 -0.332 -0.169 -0.189 -0.154 0.022 0.172 

  (0.106) (0.076) (0.118) (0.183) (0.256) (0.350) (0.333) (0.349) (0.397) (0.319) 
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   5% 0.657 0.660 0.783 0.829 0.785 1.021 0.935 1.134 1.275 1.615 

  (0.028) (0.022) (0.006) (0.011) (0.022) (0.014) (0.033) (0.024) (0.028) (0.028) 

 20% 0.402 0.410 0.537 0.573 0.581 0.697 0.702 0.849 0.867 1.108 

  (0.042) (0.032) (0.004) (0.008) (0.011) (0.012) (0.017) (0.012) (0.025) (0.024) 

 80% -0.048 -0.032 0.101 0.122 0.221 0.124 0.289 0.347 0.146 0.213 

  (0.385) (0.392) (0.336) (0.330) (0.230) (0.354) (0.224) (0.213) (0.367) (0.357) 

 95% -0.377 -0.355 -0.218 -0.207 -0.043 -0.295 -0.012 -0.021 -0.382 -0.442 

  (0.189) (0.194) (0.300) (0.329) (0.396) (0.314) (0.399) (0.398) (0.325) (0.336) 

      5% 0.377 0.477 0.528 0.597 0.728 0.688 0.964 1.133 1.200 1.869 

  (0.274) (0.136) (0.078) (0.038) (0.009) (0.014) (0.001) (0.000) (0.001) (0.000) 

 20% -0.030 0.128 0.244 0.338 0.499 0.525 0.730 0.836 0.972 1.478 

  (0.397) (0.334) (0.182) (0.074) (0.007) (0.005) (0.000) (0.000) (0.000) (0.000) 

 80% -0.749 -0.488 -0.258 -0.120 0.095 0.238 0.316 0.312 0.568 0.787 

  (0.012) (0.027) (0.158) (0.317) (0.341) (0.152) (0.085) (0.105) (0.013) (0.006) 

 95% -1.275 -0.938 -0.625 -0.456 -0.201 0.028 0.013 -0.072 0.273 0.282 

  (0.010) (0.012) (0.057) (0.124) (0.310) (0.397) (0.398) (0.389) (0.300) (0.328) 

   5% 1.520 1.175 0.926 0.792 0.681 0.712 0.768 0.639 0.715 0.609 

  (0.005) (0.001) (0.002) (0.001) (0.005) (0.002) (0.002) (0.017) (0.022) (0.122) 

 20% 1.041 0.841 0.744 0.633 0.585 0.590 0.587 0.453 0.364 0.016 

  (0.004) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.012) (0.073) (0.398) 

 80% 0.193 0.250 0.422 0.350 0.417 0.374 0.269 0.123 -0.256 -1.029 

  (0.337) (0.215) (0.030) (0.028) (0.008) (0.014) (0.084) (0.301) (0.163) (0.000) 

 95% -0.426 -0.182 0.187 0.143 0.293 0.216 0.036 -0.118 -0.710 -1.794 

  (0.297) (0.354) (0.332) (0.340) (0.199) (0.266) (0.395) (0.364) (0.034) (0.000) 

We report parameter estimates for the conditional alpha with associated p-values, for deciles of firm characteristic portfolios, for 

various percentiles of lagged sentiment. All estimates are based on the following model 

                        
               , 

across firm characteristic deciles. The conditional alpha from this model is defined as 

                       
 . 
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Table 8 

Conditional Alphas with Sentiment as an Information Variable. 

        
                                                               

  5% -0.025 0.135 0.108 0.251 0.306 0.446 0.588 0.666 0.745 0.780 

  (0.392) (0.212) (0.261) (0.045) (0.020) (0.003) (0.000) (0.003) (0.012) (0.068) 

 20% 0.057 0.183 0.154 0.217 0.274 0.323 0.455 0.464 0.506 0.496 

  (0.323) (0.030) (0.058) (0.010) (0.002) (0.001) (0.000) (0.002) (0.011) (0.080) 

 80% 0.202 0.268 0.234 0.157 0.218 0.106 0.220 0.107 0.084 -0.006 

  (0.025) (0.001) (0.004) (0.052) (0.010) (0.205) (0.038) (0.296) (0.358) (0.399) 

 95% 0.308 0.329 0.293 0.112 0.177 -0.053 0.048 -0.155 -0.224 -0.373 

  (0.040) (0.016) (0.028) (0.274) (0.168) (0.376) (0.383) (0.319) (0.304) (0.282) 

     5% 1.822 0.851 0.545 0.423 0.240 0.049 0.081 0.095 0.037 0.081 

  (0.000) (0.006) (0.026) (0.038) (0.114) (0.366) (0.291) (0.252) (0.371) (0.218) 

 20% 1.545 0.604 0.341 0.245 0.105 0.019 0.042 0.089 0.074 0.132 

  (0.000) (0.003) (0.036) (0.068) (0.232) (0.388) (0.328) (0.159) (0.206) (0.011) 

 80% 1.057 0.168 -0.019 -0.070 -0.133 -0.035 -0.026 0.080 0.139 0.222 

  (0.000) (0.268) (0.395) (0.342) (0.160) (0.360) (0.369) (0.183) (0.033) (0.000) 

 95% 0.700 -0.151 -0.283 -0.300 -0.307 -0.074 -0.076 0.073 0.187 0.288 

  (0.107) (0.355) (0.212) (0.145) (0.070) (0.338) (0.315) (0.316) (0.079) (0.001) 

    5% 0.604 0.698 0.451 0.642 0.335 0.373 0.399 0.289 0.036 0.091 

  (0.020) (0.007) (0.032) (0.001) (0.060) (0.034) (0.013) (0.053) (0.382) (0.262) 

 20% 0.368 0.435 0.233 0.402 0.220 0.350 0.356 0.299 0.117 0.097 

  (0.033) (0.012) (0.087) (0.002) (0.063) (0.003) (0.001) (0.003) (0.144) (0.135) 

 80% -0.049 -0.030 -0.151 -0.022 0.018 0.310 0.279 0.318 0.261 0.109 

  (0.380) (0.392) (0.201) (0.392) (0.394) (0.007) (0.008) (0.001) (0.002) (0.095) 

 95% -0.355 -0.369 -0.433 -0.333 -0.130 0.280 0.222 0.331 0.366 0.117 

  (0.165) (0.152) (0.055) (0.103) (0.313) (0.121) (0.161) (0.042) (0.009) (0.220) 

  5% 0.614 0.511 0.342 0.350 0.340 0.322 0.175 0.219 0.205 0.327 

  (0.004) (0.001) (0.010) (0.004) (0.008) (0.008) (0.150) (0.090) (0.146) (0.058) 

 20% 0.383 0.378 0.278 0.252 0.254 0.263 0.178 0.186 0.192 0.249 

  (0.007) (0.000) (0.002) (0.002) (0.003) (0.001) (0.041) (0.036) (0.055) (0.032) 

 80% -0.027 0.144 0.164 0.079 0.104 0.159 0.183 0.128 0.169 0.112 

  (0.390) (0.129) (0.051) (0.227) (0.166) (0.039) (0.031) (0.118) (0.077) (0.231) 

 95% -0.326 -0.027 0.081 -0.047 -0.006 0.083 0.187 0.085 0.153 0.012 

  (0.128) (0.393) (0.333) (0.372) (0.398) (0.318) (0.153) (0.329) (0.247) (0.398) 
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   5% 0.504         0.345 

  (0.020)         (0.003) 

 20% 0.349         0.262 

  (0.016)         (0.001) 

 80% 0.075         0.116 

  (0.340)         (0.102) 

 95% -0.126         0.010 

  (0.339)         (0.397) 

  5% 0.351 0.199 0.319 0.224 0.222 0.256 0.112 0.173 0.039 -0.264 

  (0.031) (0.167) (0.026) (0.107) (0.106) (0.052) (0.276) (0.146) (0.379) (0.080) 

 20% 0.233 0.112 0.254 0.180 0.193 0.201 0.120 0.156 0.084 -0.133 

  (0.031) (0.216) (0.008) (0.058) (0.042) (0.024) (0.153) (0.063) (0.234) (0.158) 

 80% 0.026 -0.044 0.138 0.104 0.141 0.103 0.135 0.126 0.164 0.097 

  (0.386) (0.361) (0.118) (0.202) (0.110) (0.181) (0.111) (0.110) (0.046) (0.237) 

 95% -0.126 -0.157 0.053 0.048 0.104 0.032 0.145 0.105 0.223 0.265 

  (0.300) (0.251) (0.374) (0.379) (0.311) (0.388) (0.235) (0.291) (0.097) (0.099) 

   5% 0.778         0.120 

  (0.002)         (0.228) 

 20% 0.506         0.111 

  (0.002)         (0.136) 

 80% 0.026         0.095 

  (0.393)         (0.172) 

 95% -0.326         0.084 

  (0.172)         (0.316) 

    5% 0.384 0.648 0.630 0.591 0.609 0.519 0.624 0.428 0.359 0.535 

  (0.062) (0.005) (0.002) (0.003) (0.001) (0.002) (0.000) (0.005) (0.019) (0.004) 

 20% 0.264 0.462 0.473 0.471 0.489 0.433 0.485 0.326 0.272 0.408 

  (0.055) (0.002) (0.001) (0.000) (0.000) (0.000) (0.000) (0.001) (0.008) (0.001) 

 80% 0.052 0.133 0.195 0.259 0.277 0.282 0.241 0.147 0.118 0.185 

  (0.367) (0.254) (0.123) (0.042) (0.014) (0.008) (0.019) (0.116) (0.180) (0.102) 

 95% -0.102 -0.108 -0.009 0.103 0.122 0.172 0.062 0.015 0.005 0.022 

  (0.356) (0.359) (0.398) (0.350) (0.317) (0.238) (0.371) (0.397) (0.398) (0.396) 
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   5% 0.302 0.260 0.422 0.528 0.544 0.750 0.729 0.953 1.075 1.182 

  (0.107) (0.116) (0.010) (0.005) (0.012) (0.002) (0.007) (0.003) (0.003) (0.018) 

 20% 0.165 0.130 0.304 0.440 0.525 0.668 0.751 0.957 1.003 1.081 

  (0.164) (0.198) (0.005) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) 

 80% -0.077 -0.099 0.097 0.283 0.490 0.525 0.788 0.963 0.877 0.902 

  (0.325) (0.259) (0.251) (0.019) (0.000) (0.001) (0.000) (0.000) (0.000) (0.006) 

 95% -0.253 -0.267 -0.055 0.168 0.465 0.420 0.816 0.968 0.785 0.771 

  (0.181) (0.131) (0.378) (0.272) (0.044) (0.098) (0.005) (0.005) (0.044) (0.130) 

      5% 0.250 0.367 0.311 0.291 0.388 0.273 0.520 0.624 0.601 1.167 

  (0.280) (0.044) (0.040) (0.039) (0.006) (0.032) (0.000) (0.000) (0.000) (0.000) 

 20% 0.088 0.228 0.213 0.199 0.303 0.248 0.422 0.468 0.533 0.960 

  (0.361) (0.059) (0.035) (0.034) (0.001) (0.004) (0.000) (0.000) (0.000) (0.000) 

 80% -0.196 -0.018 0.041 0.036 0.153 0.206 0.248 0.192 0.412 0.594 

  (0.237) (0.394) (0.363) (0.365) (0.081) (0.013) (0.006) (0.030) (0.000) (0.000) 

 95% -0.404 -0.198 -0.085 -0.082 0.044 0.174 0.121 -0.009 0.324 0.326 

  (0.182) (0.230) (0.344) (0.340) (0.381) (0.164) (0.276) (0.398) (0.073) (0.184) 

   5% 0.957 0.657 0.466 0.359 0.290 0.336 0.410 0.313 0.442 0.430 

  (0.007) (0.002) (0.003) (0.002) (0.017) (0.004) (0.001) (0.013) (0.003) (0.067) 

 20% 0.749 0.498 0.420 0.301 0.304 0.327 0.355 0.281 0.274 0.076 

  (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.007) (0.352) 

 80% 0.381 0.218 0.340 0.198 0.328 0.312 0.259 0.224 -0.023 -0.551 

  (0.084) (0.095) (0.001) (0.008) (0.000) (0.000) (0.001) (0.006) (0.387) (0.000) 

 95% 0.111 0.012 0.281 0.123 0.346 0.300 0.189 0.183 -0.240 -1.009 

  (0.380) (0.398) (0.086) (0.233) (0.009) (0.016) (0.135) (0.146) (0.119) (0.000) 

We report parameter estimates for the conditional alpha with associated p-values, for deciles of firm characteristic portfolios, for 

various percentiles of lagged sentiment. All estimates are based on the following model 

                        
                                                      , 

across firm characteristic deciles. The conditional alpha from this model is defined as 

                       
 . 
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Fig. 1a. Conditional alpha across volatility portfolios.  

 

Fig. 1b. Conditional alpha across size portfolios.  
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Fig. 1c. Conditional alpha across age portfolios.  

 

 

Fig. 1d. Conditional alpha across earnings portfolios.  
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Fig. 1e. Conditional alpha across dividend portfolios.  

 

 

Fig. 1f. Conditional alpha across property, plant and equipment portfolios.  
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Fig. 1g. Conditional alpha across research and development portfolios.  

 

 

 

 

Fig. 1h. Conditional alpha across BE/ME portfolios.  
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Fig. 1i. Conditional alpha across sales growth portfolios.  

 


