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Dissolved organic matter (DOM) in the oceans is one of the largest pools of reduced carbon on Earth,
comparable in size to the atmospheric CO2 reservoir. A vast number of compounds are present in DOM,
and they play important roles in all major element cycles, contribute to the storage of atmospheric CO2 in
the ocean, support marine ecosystems, and facilitate interactions between organisms. At the heart of the
DOM cycle lie molecular-level relationships between the individual compounds in DOM and the members
of the ocean microbiome that produce and consume them. In the past, these connections have eluded
clear definition because of the sheer numerical complexity of both DOM molecules and microorganisms.
Emerging tools in analytical chemistry, microbiology, and informatics are breaking down the barriers to a
fuller appreciation of these connections. Here we highlight questions being addressed using recent meth-
odological and technological developments in those fields and consider how these advances are trans-
forming our understanding of some of the most important reactions of the marine carbon cycle.
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The global cycling of carbon supports life on Earth and
affects the state of the biosphere within which humans
reside. Industrial processes are now altering the
balance of this natural cycle by adding fossil carbon
to the contemporary atmosphere and changing our
climate (1). Marine dissolved organic matter (DOM) is
central to the current and future global cycle, storing
as much carbon as the current atmospheric CO2 res-
ervoir (2) (Fig. 1).

Flux of carbon through the marine DOM pool
is mediated largely by microbial activity. However,
the intertwined relationships between the molecules
making up the DOM pool and the ocean microbes
that process them remain poorly characterized. The
complexity of each has defied easy characterization,

and fundamental interactions have been necessarily
oversimplified to yield a scientifically tractable
framework. The principles of organization and inter-
actions between ocean microbial communities and
DOM have parallels in other complex ecosystems
such as mammalian microbiomes, soils, rhizospheres,
extreme environments, and the built environment.
Thus, progress in mapping microbe−DOM interac-
tions in the oceans will enhance knowledge across
seemingly disparate fields, culminating in a better
understanding of element cycling in Earth’s varied
ecosystems.

Recent advances in chemistry, microbiology, and
data science have directly addressed the complexity
of DOM cycling in marine environments and led to a
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reexamination of basic concepts. A revolution in DNA sequenc-
ing technology (3), advances in mass spectrometry (4–6), new
approaches to identify metabolites from genome sequences
(7), the growth of informatics (8, 9), and the building of knowl-
edge and analysis cyberinfrastructures (10–12) are key tools al-
ready in place or in development. As a result, the DOM pool is
now known to conservatively consist of tens to hundreds of thou-
sands of different organic molecules (13), for which formulas are
rapidly emerging (14). Meanwhile, the ocean microbiome has been
estimated to consist of more than a hundred thousand different
bacterial, archaeal, and eukaryotic taxa (15, 16) with diverse eco-
logical andmetabolic strategies for producing and consuming fixed
carbon (17–19). Until recently, major gains in understanding ocean
carbon cycling have moved largely along independent lines within
the fields of biology and chemistry. Now, it is at the confluence of
these disciplines, enabled through innovative data science, that
transformative advances are being made (Fig. 2).

Here we present six fundamental questions in marine bio-
geochemistry that are benefiting from integrated research strat-
egies. The questions are organized along a general gradient in
apparent DOM reactivity that is based on persistence under
typical ocean conditions (2). “Labile” DOM refers to the mole-
cules that are consumed by microbes within hours or days of pro-
duction (Fig. 1). “Semilabile” DOM is less reactive and persists in
the surface ocean for weeks to years. “Refractory” DOM is the
least biologically reactive and circulates through the major ocean
basins on millennial time scales. Although all three operational
categories occur throughout the ocean, their relative importance
loosely corresponds to a depth gradient. In the surface ocean, the
photosynthesis of organic molecules from CO2 by phytoplankton
(i.e., primary production) is the source of most of the ocean’s labile
and semilabile DOM. Semilabile DOM persists long enough to be
transported to moderate ocean depths (hundreds of meters be-
low the surface) before it is metabolized (20). Refractory DOM has
its strongest signature in the deep ocean (depths greater than
1,000 m) (2, 21). The linkages among individual molecules and
microbes that culminate in the global carbon cycle and give rise to

the DOM reactivity spectrum lie at the foundation of the questions
posed here.

Which Compounds Represent the Largest Conduits of
Carbon Flux Through the Labile Marine DOM Pool?
Each year in the surface ocean, ∼20 Gt of carbon recently fixed
into organic matter by phytoplankton photosynthesis is rapidly
taken up by heterotrophic bacteria (1Gt= one gigaton or 1×1015 g).
For perspective, the current annual increase in the atmospheric
CO2 pool is 4 Gt C (22), and annual processing of refractory ma-
rine DOM is <0.2 Gt C. Many of the labile compounds mediating
this brisk and quantitatively important carbon flux into the mi-
crobial food web are thought to have half-lives on the order of
minutes and concentrations in the picomolar range (23). The very
characteristics that define highly labile compounds make their
study extremely challenging.

Because phytoplankton cells are rich in proteins and carbo-
hydrates, and these polymers are typically degraded extracellularly
into oligomers or monomers before transport into bacterial cells,
early research on biologically labile DOM focused primarily on rates
and kinetics of amino acid and sugar uptake (24–26). Today, a wealth
of new data coming largely but not exclusively from the “’omics”
tools (genomics, transcriptomics, proteomics, and metabolomics)
suggests that a much wider variety of molecules participate in the
rapid heterotrophic DOM flux. For example, gene expression studies
in both the ocean and laboratory indicate that labile DOM can take
the form of monocarboxylic and dicarboxylic acids (27, 28), glycerols
and fatty acids (27, 29), and the nitrogen-containing metabolites
taurine, choline, sarcosine, polyamines, methylamines, and ectoine
(27, 30, 31). One-carbon compounds such as methanol (27, 29, 31),
as well as several sulfonates (32), have recently been added to the list.
Chemical analyses concur: Photosynthate released directly from
phytoplankton is highly complex, consisting of hundreds of different
compounds (33, 34). This “dissolved primary production”—the ma-
terial released from living phytoplankton—supports a major fraction
of labile carbon flux in the surface ocean (35).

Complexity in the composition and concentration of labile DOM
presents an ecological opportunity for microbes but an analytical
challenge for chemists. Substrates used by heterotrophic bacteria
will not accumulate if their demand is higher than their supply;
therefore, the most important biologically labile molecules are in-
herently difficult to recognize against the chemical background of
organic compounds in seawater. For example, monomeric amino
acids and sugars have concentrations below one billionth of a gram
per liter, which is at or below the limits of quantification in marine
waters (36, 37). However, detecting low-concentration high-flux
compounds has recently become more tractable with methodo-
logical advances in chemistry [e.g., better separation methodol-
ogies, sensitivity, accuracy, and resolving power (5, 38, 39)],
biology [e.g., deducing key substrates from transcriptome analysis
(28, 29, 40)], and cyberinfrastructure [e.g., determining patterns of
DOM−bacterial interaction networks (41)]. The complementarity
of these research fields is key to identifying this massive yet all but
invisible flux in the ocean’s active carbon cycle (Fig. 2).

How Are Element Cycles Linked Through Marine DOM?
In addition to driving major fluxes of carbon, microbial production
and consumption of DOM in the surface ocean also plays a central
role in the cycling of nitrogen (N), phosphorus (P), and sulfur (S),
along with micronutrients such as iron, cobalt, nickel, and zinc.
Molecules within the marine DOM pool that contain N, P, or S
include amino acids and proteins (42), nucleotides and nucleic
acids (43), various osmolytes (44), siderophores (45), vitamins (46),
and primary metabolites.

Fig. 1. Oceanic DOM is a complex mixture of molecules that are
produced and consumed by billions of heterotrophic and autotrophic
microbes in each liter of seawater. These heterogeneous molecules
have varied reactivities toward microbial metabolism, including high
reactivity (labile DOM, wide arrows) andminimal reactivity (refractory
DOM, narrow arrows). Microbe−DOM interactions affect the
concentration and fate of atmospheric CO2, the accumulation of
refractory carbon in the deep ocean, and flux of carbon through the
ocean’s food webs.
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Advances in understanding the fate of these diverse compo-
nents of DOM have occurred despite the fact that extraction of
element-specific compound classes quantitatively from seawater
remains a challenge, and that characterization of the myriad bi-
ological systems that support uptake and transformation of N-, P-,
and S-containing organic compounds is daunting. Two main lines
of scientific inquiry have motivated progress. The first is a long-
standing question in oceanography on the role of organic forms of
N, P, and S in alleviating nutrient stress for ocean microbes. This
question is particularly relevant in oligotrophic oceans where in-
organic nutrients (that is, nitrate, nitrite, ammonium, phosphate,
and sulfate) are perennially limiting or energetically expensive to
reduce to biologically active forms. Microbes that use organic
nutrients may have a significant advantage over those that cannot.
With ’omics data as an influential driver, substantial progress is
being made in understanding the microbial production and use of
organic nutrients. Phosphorylated organic compounds, for ex-
ample, provide a source of inorganic phosphate after cleavage by
phosphatases and nucleotidases (47, 48). Phosphonates are syn-
thesized by marine cyanobacteria, archaea, and other microbes
(49–52) and subsequently consumed by both microbial auto-
trophs (53, 54) and heterotrophs (55). Nitrogen stress is lessened
in the oligotrophic ocean by use of urea and cyanate (56, 57). The
fate of these dissolved organic N, P, and S molecules in seawater
represents a confluence of Earth’s element cycles.

The second issue stimulating research into organic N-, P-, and S-
containing compounds is their use as biochemical intermediates
and cofactors by auxotrophic microbes (i.e., those unable to syn-
thesize metabolites critical for their own growth). Auxotrophy in the
ocean is thought to reflect a microorganism’s evolutionary posi-
tioning along the trade-off between the expense of biosynthesis of
complex molecules, on the one hand, and the risk of relying on
neighbors on the other (58). For instance, bacteria in the Pelagi-
bacterales are missing the genetic capability for using extremely
abundant sulfate and instead scavenge organic sulfur from sea-
water (59, 60); this is truly remarkable for what is arguably the most
successful heterotrophic microbial group in the ocean. Many ma-
rine phytoplankton with critical roles in global carbon fixation have

lost biosynthetic pathways for N-, P-, and S-rich vitamins such as B1
and B12 (61) and must scavenge them from the DOM pool. Genomic
data have been ideal for learning whichmarinemicrobes depend on
the DOM pool for energetically expensive biomolecules,
whereas metabolomics advances have detected dilute com-
ponents of DOM that were previously not measurable (39, 46).

How Do Microbe−Microbe Relationships Influence DOM?
Early studies of the marine microbial food web revealed a major
role for trophic interactions in the formation and flux of DOM.
A surprising 20–50% of microbial biomass is turned over each day
in the ocean by viral infection (62), releasing intracellular organic
matter into surrounding seawater (63–65). Similarly, protistan
grazing on bacteria and phytoplankton converts up to 30% of
ingested carbon to dissolved form (66). Protists also directly con-
sume DOM (67) in this intricate network of microbial predation.

Our knowledge of the DOM molecules that arise from or
facilitate interactions between marine microbes is growing.
Metabolomics approaches have revealed that viral infection in-
creases the concentrations of N-rich metabolites in infected
bacteria (38). In this cycle within a cycle, a portion of the organic
matter initially assimilated from the DOM pool into bacterial
biomass is returned to the DOM pool as viral lysate (62) but is
enhanced in N relative to metabolites of noninfected cells (38).
New categories of nonpredatory microbial alliances that release
organic compounds into seawater are also being recognized.
These include molecules in microbial cytosols and exudates (39,
68) that serve as substrates, signaling molecules, and alle-
lochemicals to neighboring microbes (69, 70). Genes able to
mediate microbial interactions have also been uncovered (71, 72),
including a high prevalence of virulence gene homologs in
marine bacteria and archaea that could facilitate direct contact
with eukaryotic plankton (73). The conditions under which genes
mediating microbial interactions in the ocean are expressed are
now better understood because of metatranscriptomic surveys
(30, 32). Examples include the alteration of marine phytoplank-
ton growth rates by bacterial release of phenylacetic acid (74)
and indole acetic acid (72), and the modulation of bacterial quo-
rum-sensing molecules (75) and antibiotic production (76) by phy-
toplankton. Global patterns of marine plankton cooccurrences can
be better explained by factors involving microbial interactions (such
as grazing, viral infection, and parasitic relationships) than by envi-
ronmental conditions (77). Thus, it has become clear that com-
pounds released into the DOM pool by ocean microbes are
considerably more chemically diverse than predicted from the
composition of plankton biomass, at least in part because many are
synthesized for roles occurring beyond the cell wall.

The full consequences of microbe−microbe interactions de-
pend to a large extent on factors such as cell encounter frequencies
in seawater and life history traits of the microbial participants (78).
Thus, their prediction must also rely on modeling approaches that
consider small- and large-scale dynamics and feedbacks in ocean
waters. As examples, a heterotrophic bacterium will experience
higher DOM concentrations when associated with a particle com-
pared with when it is free-living (78, 79), and viral−host interactions
can, at the same time, kill individual cells while stimulating overall
ecosystem productivity (80). New generations of biogeochemical
models are explicitly incorporating ’omics-derived data (81, 82) to
more directly link microbes and the fate of marine DOM.

How Many Metabolic Pathways Are Required for the
Bacterial Transformation of Marine DOM?
Although there is currently no way to know the full biochemical
diversity behind microbial processing of DOM, headway is being

Fig. 2. Significant advances that have occurred independently in
three fields—microbial ecology, geochemistry, and informatics—
have positioned oceanographers for a deeper understanding of
the ocean’s carbon cycle. The integration of these three fields is
yielding insights into the reactions at the foundation of the global
carbon cycle. BLAST, basic local alignment search tool; FT-ICRMS,
Fourier transform ion cyclotron resonance mass spectrometry; GC-
IRMS, gas chromatography isotope ratio mass spectrometry; GC-MS,
gas chromatography mass spectrometry; LC-MS, liquid
chromatography mass spectrometry; NMR, nuclear magnetic
resonance spectroscopy.
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made. Early genomic studies addressing this question typically
focused on transporter systems because they mediate the first
essential step in utilization of DOM by heterotrophic bacteria.
Transporters involved in organic compound uptake have been
reported to account for 13% of expressed genes (28) and 35% of
expressed peptides (83) in marine bacterial communities. Over
100 protein families predicted to function in the uptake of organic
compounds from seawater have been described in metagenomic,
metatranscriptomic, and metaproteomic datasets (28, 84, 85).

However, assigning an exact function to microbial genes
remains a stubborn obstacle to more effective use of genomic
databases to address DOM transformations. In the case of trans-
porter genes, many are poorly annotated with regard to substrate
specificity, and consequently are assigned only to broad cate-
gories (such as “branched chain amino acid” or “carboxylate”
transporter) based on homology to a limited number of experi-
mentally characterized genes. Making matters worse, transporters
classified into the same protein family may mediate uptake of
different substrates (86); a single transporter can have multiple
substrates (87); and higher molecular weight DOM is assimilated
through generic, and therefore uninformative, transporter systems
following hydrolysis at the cell surface (88). In the case of cata-
bolic genes, those encoding conserved central metabolic path-
ways are generally well characterized, but pathways for upstream
reactions that ultimately feed into central metabolism, the
linchpins of many essential biogeochemical transformations, are
poorly known. When we are ultimately successful in identifying a
new biogeochemically relevant gene, it is often the case that it
was initially annotated with a misleading or uninformative func-
tion (89–91).

Substantive improvement in characterization of microbial
genes is widely acknowledged as a central goal in biology. One
approach to annotation of genes relevant to ocean carbon cycling
is to use model microbial systems amenable to experimental
manipulation and genetic modification. For example, the first
marine bacterial gene mediating catabolism of dimethylsulfonio-
propionate (DMSP), a compound known for 50 y to be critical in
the global sulfur cycle, was found in 2006 by generating trans-
poson mutants of a marine bacterium (92), and the first phyto-
plankton gene mediating synthesis of DMSP was found in 2015 by
shotgun proteomics of phytoplankton isolates (93). A full suite of
DMSP gene discoveries is now enabling studies of the dominant
transformation pathways and their regulation in the ocean (94, 95).
Similarly, the genes mediating marine bacterial transport and
metabolism of organic compounds such as sulfonates (90, 96),
ectoine and hydroxyectoine (97), and methylamines and choline
(31, 98, 99) have been recently elucidated through model
organism systems.

This type of characterization work is slow due to both the small
fraction of marine bacteria amenable to culturing and the chal-
lenges of developing genetic systems for them. A culture-in-
dependent twist involves cloning DNA from marine environments
into laboratory strains and performing screens to identify genes
conferring a function of interest. Examples include an early effort
that identified chitin degradation genes in marine microbial
community DNA (100) and a recent study that discovered genes
for use of a novel phosphonate (55).

The expansion of cyberinfrastructure capabilities has opened
up possibilities of using pattern mining of combinatorial datasets
(DOM and metabolite composition, or microbial genes and
transcript inventories) to generate hypotheses regarding gene
function. This approach is already having success in secondary
metabolite research (7, 101). Such efforts will be particularly in-
formative when guided by knowledge of which unknown protein

families are ubiquitous in genomes of ocean microbes, or dem-
onstrate phylogenetic coherence, or show biogeographic pat-
terns. Answering the question of how many metabolic pathways
are required for the bacterial transformation of marine DOM is
perhaps an impossible task, but identification of a subset of
pathways that mediate important fluxes of dissolved compounds
through the oceanic carbon reservoir is steadily pushing
understanding forward.

Why Does Semilabile DOM Accumulate in the Surface
Ocean?
Semilabile DOM is operationally defined as the dissolved organic
compounds that accumulate in surface waters over time frames of
weeks to years but then disappear once exported to depth (20).
Why, exactly, these molecules resist degradation in the surface
ocean where heterotrophic microbes are often limited by sub-
strates and nutrients remains a mystery. As a substantial and
temporally stable component of DOM, the semilabile pool affects
the overall rate of carbon turnover in the oceans (Fig. 1). There-
fore, illuminating its composition and identifying the metabolic
pathways that can degrade it are important for predictive un-
derstanding of carbon sequestration (that is, the transfer of excess
carbon from the atmosphere into long-term storage in the ocean).

New data are beginning to untangle the factors that covary
with semilabile DOM and depth in the ocean, and thereby helping
in understanding its fate. Microbial diversity is lower in surface
than in deep waters, which suggests that a limited genetic rep-
ertoire in surface heterotrophs might restrict degradation of cer-
tain compounds (15). At the species level, oligotrophic bacteria
such as Pelagibacterales dominate open ocean gyres where
semilabile DOM accumulates, and these cells typically have small
genomes with fewer and less varied transporters and catabolic
pathways (102). Recent experiments with the marine bacterium
Alteromonas, harboring a substantially larger genome than the
Pelagibacterales, showed that, although this one strain can de-
grade the labile fraction of marine DOM in a period of days, an
amount of DOM equivalent to the semilabile pool remained un-
touched. Instead, the full microbial community was needed to
degrade the semilabile DOM (103). Earlier studies showed that
the addition of both labile DOM and inorganic nutrients is needed
to degrade semilabile DOM (104), signifying a complex relation-
ship between DOM accumulation, microbial diversity, and the
availability of nutrients and cometabolites.

The chemical and optical signatures of seawater also differ
from the deep ocean background in locations where semilabile
DOM accumulates, indicating that this material is compositionally
distinct from labile or refractory DOM. For instance, fluorescence
signals indicative of dissolved proteins are elevated and signa-
tures of carbohydrates and aliphatic material are enriched in
semilabile DOM relative to the signatures of deep ocean DOM
(105, 106). Nevertheless, extraction protocols are insufficient and
chemical understanding is too limited to physically isolate semi-
labile DOM from seawater at this time. Instead, indirect experi-
ments such as time series studies (107), long-term incubations
(103), and the isolation of representative microbes (108) are being
used to address first-order questions regarding the molecular
composition of this enigmatic DOM pool and the metabolic
pathways by which it is degraded. New data analysis methods are
also helping to parse small but crucial biological signals from
these complex data sets.
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How Refractory Is Deep Ocean DOM and Why Does It
Persist?
The deep ocean represents a challenging ecosystem to study
because of its remoteness, the low concentrations of organic
molecules, and the slow rates of microbial metabolism at high
pressure and low temperature. However, this is the repository for
over 70% of the carbon sequestered in DOM and is a major res-
ervoir in the global carbon cycle (Fig. 1). Bulk radiocarbon dating
indicates that deep ocean DOM has an average age of 6,000 y
(109). More recent radiocarbon techniques showed that the ap-
parent ages of individual molecules are not normally distributed
around this average. Instead, different reactivity pools were iden-
tified representing both semilabile (radiocarbon enriched) and
refractory (radiocarbon deplete) pools within the DOM, with the
most deplete fraction having a radiocarbon age of ∼12,000 y (21).

That these energy-rich molecules exist for millennia in the
deep ocean is a paradox that seems to contradict the laws of
thermodynamics: Why, in a marine environment rich in other ne-
cessities for life, would microbes fail to use such a large reservoir
of organic carbon? One line of reasoning posits that this pool
contains inherently biologically recalcitrant molecules. For ex-
ample, condensed polycyclic aromatics generated by processes
such as wildfire and biomass burning on land accumulate
throughout the deep ocean (110, 111) and have radiocarbon ages
exceeding those of other DOM pools (112). These molecules are
susceptible to photodegradation because of their aromatic func-
tional groups, suggesting that upwelling of deep waters to the
surface during ocean circulation may determine the half-life of
photochemically active yet biologically refractory compounds
(113–115). The majority of deep ocean refractory DOM, however,
likely represents the accumulation of metabolic products of ocean
microbes that are refractory to further biological degradation
(116), a phenomenon termed the “microbial carbon pump” (117).
It is not clear if the microbial carbon pump generates inherently
refractory molecules from labile forms, or if labile DOM is di-
versified by the pump until each molecule is present at vanishingly
low concentrations. In the former case, refractory DOM would
consist of a pool of survivor molecules that are biologically

intractable and enriched at depth. In the latter case, refractory
DOM would represent a highly diverse suite of compounds, each
at its limiting concentration of metabolic utility (118–121).

Conducting the laboratory and field experiments to test cur-
rent theories of the nature of refractory deep ocean DOM is
proving to be both enlightening and challenging. Incubation ex-
periments seeking to measure changes in DOM concentrations
and chemistry under conditions that mimic the deep ocean are
hampered by inherently low rates of net carbon turnover and
analytical techniques that provide limited structural resolution of
resistant molecules (121–123). Further, refractory organic matter is
defined based on its lifetime in the ocean (2) rather than on in-
herent chemical structures, making for an elusive experimental
target. Extraction of DOM from seawater, a prerequisite to most
analytical methods, does not presently yield all of the compounds
dissolved in seawater (124). Thus, our view of the molecular
composition of DOM remains restricted to the fraction that can be
physically isolated and analyzed. On the biological side, the
percentage of microbial genes with no known function increases
with depth in the ocean (15). The metabolic pathways that de-
grade refractory molecules may be hidden within these un-
annotated genes with no analogs in known metabolic pathways.
When the question of why deep ocean DOM persists is finally
resolved, the answer is likely to be a combination of concentra-
tion, chemical structure, bioenergetics, and microbial diversity.

A final notable aspect of the deep ocean ecosystem is that,
although it is home to the largest reservoir of refractory DOM, it
also harbors labile and semilabile molecules. Multiple lines of
evidence have recently revealed labile DOM−microbe interac-
tions far below the photic zone (21, 125–128). For example, car-
bon isotopic analysis of microbial DNA confirms the incorporation
of modern organic matter into microbial biomass in the ocean
depths (129). Release from sinking particles is the primary rec-
ognized source of modern DOM at depth. Indeed, the dissolved
organic compounds liberated by microbes from sinking particles
are now thought to fuel up to 90% of carbon cycling in the deep
ocean (125, 129–133).

Box 1: Cyberinfrastructure
The merging of chemical and microbiological data for resolving microbe−DOM interactions in the ocean is being enabled by ad-
vances in data management capabilities and systems, collectively referred to as cyberinfrastructure. In genomics research, the core
cyberinfrastructure method is well established: Sequence databases are searched for homology using tools such as basic local
alignment search tool (BLAST), and then analyzed for taxonomy and function. Analogous datasets and cyberinfrastructure are now
emerging that can be applied to investigate DOM chemistry, for example MetaboLights (www.ebi.ac.uk/metabolights/) and Global
Natural Products Social Molecular Networking (GNPS; gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp), which emphasize mass
spectrometry knowledge capture and dissemination using social networking. In concert with data accessibility (141), new or existing
infrastructure can be specifically dedicated to the growing needs of the DOM community.
Well-engineered data systems adopted by collaborating scientists are the key to keeping up with the burgeoning capacity to
generate data. For microbe−DOM research, such systems will require coordinated cyberinfrastructure elements that include de-
scriptions of chemical composition; inventories and interpretation of transcripts, genes, and proteins; and data that are curated and
searchable. Publication of open-access datasets must be easy and rewarded. Open source tools for data reduction and in-
tercomparison, such as parallel factor analysis (PARAFAC) for fluorescence data (142), must be developed. By this approach, pro-
cessing tasks once considered difficult can be automated. Validation, provisions for searchable metadata, provenance, repeatability,
and archiving are all considerations that weave into robust cyberinfrastructure development.
Two related elements of cyberinfrastructure design are managing data volume and making data more available. This latter refers
both to researchers not directly involved in acquisition and to questions that are not yet anticipated. For example, a field scientist
could generate synoptic assays of the near-surface microbiome–DOM systems at a rate of one snapshot every few minutes over a
period of weeks, actively tracking the biogeochemical pathways of the ocean. Well-designed cyberinfrastructure would make the
resulting data discoverable, explorable, and queryable by other scientists, in addition to performing data reduction and organiza-
tional tasks at the many-terabyte scale. As we envision scientists being rewarded for proliferating public data and software, so too
should cyberinfrastructure developers be rewarded for building data systems that reduce analysis times from months to minutes and
for coordinating with data discovery mechanisms in the scientific community.
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The Next Step: Prototypical Molecules of the Marine
Carbon Cycle
An opportunity to identify a broader range of molecular curren-
cies of the marine carbon cycle can be found at the intersection of
marine chemistry and ‘omics methodologies, in the context of
developments in informatics. Admittedly, successful identification
of even several hundred new molecules seems a trivial advance
stacked against the enormous chemical diversity of seawater or-
ganic matter. However, microbial ecologists would nearly unani-
mously agree that genome sequences of just 175 marine bacteria
(134) out of the hundred thousand taxa present in seawater fueled
a revolution in our understanding of element cycling in the ocean.
Indeed, many of the recent DOM advances discussed here were
directly enabled by foundational data on the genomes of marine
plankton (28, 29, 31–33, 38, 39, 70). A corresponding suite of
model organic compounds representative of those cycling through
the world’s oceans will provide tools for unraveling pathways of
carbon flux.

Two categories of prototypical molecules are of particular
interest in this endeavor. The first is molecules rapidly produced
and metabolized by marine microbes in the fast loop of labile
DOM, including biogeochemical intermediates and signaling
compounds relevant to organic matter flux. The second is mole-
cules from less labile components of marine DOM that will im-
prove understanding of why molecules are biologically refractory
and what characteristics determine their half-life in the ocean.
Identification of prototypical compounds will then lead to meth-
odologies for their analysis in bulk seawater and microbial
metabolomes, and to synthesis and labeling for flux studies.

Already, modern targeted chemical workflows are enabling
quantification of intermediates of biogeochemical cycling. Cor-
respondingly, nontargeted workflows are helping us to discover
new molecules we didn’t know to look for (33, 39, 70, 105, 135).
Newly developed informatics approaches are supporting data
mining across multiple studies and systems (136, 137) (see Box
1). ‘Omics data are allowing us to use microbes as biosensors for
the compounds being synthesized, assimilated, and metabo-
lized in the ocean microbiome (27, 28, 138–140). Genetic sys-
tems are assigning substrates to uncharacterized genes through
knockouts and heterologous expression (31, 76, 92). All of these
tools, and others on the horizon, will expand our knowledge of
the organic compounds produced and transformed by microbes
of the ocean.

Conclusions
Exciting discoveries have been moving the needle on our un-
derstanding of the marine microbe−DOM network over the past
decade. Successes include improved knowledge of the organic
compounds through which nearly a quarter of net global photo-
synthesis passes within days of fixation, a grasp of the chemical
formulas of compounds that persist for tens of thousands of years
in the ocean, knowledge of how organic forms of limiting nutrients
take part in element cycles, and realization of the crucial roles of
marine microbial interactions in Earth’s biogeochemical cycles.
More discoveries are in the pipeline, helped by innovation in high-
throughput methodologies and effective cyberinfrastructures.
The next decade will continue this period of rapid learning, both
in ways that we glimpse already (through growing accessibility of
metabolomics, the speed and lowered cost of next-generation
sequencing, and the development of efficient screening tools for
gene function) and from directions not yet predictable.

The DOM−microbe complexity challenge has synergies with
other areas of science where the chemical foundations of microbial
community function are crucial. Microbiome studies, for example,
have the same scientific goals of discovering, identifying, and
quantifying molecules that link a genome-encoded potential with a
realized metabolic and ecological function. Annotation of gene
function likewise cuts across many fields and organisms. A com-
pelling example is the recent discovery of the genetic basis of
bacterial degradation of the sulfolipid component of photosyn-
thetic membranes, based on studies conducted with bacteria from
soil (90), coastal seawater (32), and the human gut (89). Another
example is the development of cross-discipline databases for me-
tabolite annotation, including the use of crowdsourcing to solve
common problems in compound identification (gnps.ucsd.edu/
ProteoSAFe/static/gnps-splash.jsp). The new classes of data and
types of methodologies being developed to explore both molecules
and microbes will be necessary to predict carbon cycle response to
challenges ranging from oil spills to climate change (see Box 2).
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Box 2: Microbe−DOM Climate Responses
Climate change effects on ocean systems are being manifested as global shifts in temperature, seawater pH, sea level, circulation
patterns, oxygen content, and nutrient and DOM loading from land. Marine ecosystems are also being affected regionally by coastal
eutrophication, invasive species, and habitat degradation. Today, oligotrophic subtropical gyres are regions of DOM accumulation
(143) and export (144). The predicted growth in the areal extent of gyres in the future, evidenced by a 56% increase of the North
Atlantic gyre wintertime area between 1998 and 2006 (145, 146), may therefore increase net oceanic DOM production. However,
experimental studies suggest that rising temperatures and ocean acidification will increase bacterial DOM consumption (147, 148),
whereas the same drivers may reduce formation of colloids andmicrogels from DOM (149). Thus, whether or not the future ocean will
experience greater accumulation of DOM or alterations in its chemical composition (150) is still unclear.
Climate change is also predicted to alter the distribution and composition of marine phytoplankton communities and create new
physical regimes that shift longstanding chemical distributions, throwing together microbes and carbon forms with limited evolu-
tionary history. The emergence of new high-temperature oceanic biomes, currently rare regions where mean sea surface temper-
atures exceed 31 °C, is projected to establish more than 25 million square kilometers of altered ocean by 2100 (145). Whether
microbes inhabiting these and other new niches will interact with DOM as analogs of current assemblages is unknown. Discovery and
prediction of microbe−DOM linkages as they react to and shape the future ocean will rely heavily on the tools and concepts dis-
cussed in this perspective.
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