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Arctic soils are warming, making vast stores of organic carbon 

available for conversion to CO2. This could create a positive feedback loop 

and accelerate global warming, but the processes that convert this carbon 

into CO2 are not well understood. We investigated how the combined 

activities of sunlight and microbes degrade soil dissolved organic matter 

(DOM), an important component of the carbon processed in arctic 

freshwaters. DOM leached from the organic layer of moist acidic tundra was 

exposed to natural sunlight (24 h) or kept in the dark, inoculated and 

incubated with a soil microbial community, and analyzed for DOM 

composition (FT-ICR MS) and microbial gene expression 

(metatranscriptomics). We found that DOM degraded by sunlight was similar 

in composition to DOM degraded by microbes, and consequently, microbial 



 

 

activity was lower when incubated with sunlight-exposed DOM. We also 

found sunlight-exposed DOM caused global shifts in both microbial gene 

expression and the taxonomic groups conducting this expression. Greater 

expression of transcription and translation genes suggested growth, while 

lower expression of metabolism, motility, and transport genes suggested 

reduced investment in scavenging. Photo-exposure of DOM also caused 

reduced expression of enzymes involved in aromatic degradation, 

oxygenases, and decarboxylases, suggesting sunlight degraded aromatics, 

oxidized DOM, and decarboxylated DOM. Shifts in expression of transporters 

for small, labile compounds and nutrient-containing compounds suggested 

photo-exposure may have altered bioavailability of these compounds in the 

DOM pool. These findings demonstrate that even small amounts of sunlight 

can alter DOM in ways that evoke profound changes in microbial functioning, 

supporting the idea that sunlight plays a key role in determining the microbial 

processing of DOM in arctic freshwaters. 
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1. INTRODUCTION 

Terrestrially derived dissolved organic matter (DOM) is an important 

component of the carbon processed in arctic freshwaters (Kling et al., 1991). 

This component has the potential to grow as the Arctic warms and vast stores 

of soil carbon are thawed and released to surface waters (Rowland et al., 

2010). If converted to greenhouse gases, this carbon could create a positive 

feedback loop and accelerate global warming (Schuur et al., 2009). However, 

the fate of this carbon is unknown, in large part because the factors 

controlling DOM degradation are poorly understood. 

Once soil carbon enters surface water as DOM, it is transformed and 

mineralized by the combined activities of microbes and sunlight (Cole et al., 

2007; Cory et al., 2014); but little is known about the biological and 

photochemical reactions that degrade DOM in surface waters, or how these 

reactions interact. In fact, numerous studies have found that exposing DOM 

to sunlight can either increase or decrease DOM’s lability to bacteria, but to 

our knowledge, no study has revealed the mechanisms behind these 

contrasting effects (e.g., Cory et al., 2013; Obernosterer et al., 1999; Tranvik 

& Bertilsson, 2001; Vallieres et al., 2008). Evidence suggests that DOM 

source and history, and microbial community composition, together determine 

how sunlight exposure affects DOM and how microbial activity will respond to 

these effects (Cory et al., 2013; Cory et al., 2014; Crump et al., 2003; Judd et 

al., 2007; Logue et al., 2015; Obernosterer et al., 1999; Tranvik & Bertilsson, 

2001). However, a mechanistic understanding of DOM degradation is lacking, 
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despite its critical importance to modeling the global carbon cycle and 

accurately predicting climate change. 

To address this lack in understanding, it is necessary to determine 1) 

how sunlight alters the diverse set of compounds in the DOM pool and 2) how 

microbial communities use DOM differently once it has been exposed to 

sunlight. Regarding the former, it is widely recognized that photo-degradation 

mineralizes DOM to CO2 and CO, transforms DOM to new, smaller 

compounds, and alters concentrations of dissolved nutrients such as nitrogen, 

phosphorus and iron (Mopper et al., 2014; Moran & Zepp, 1997). Still we 

cannot predict if and how sunlight will affect different fractions of the DOM 

pool. Regarding the latter, although we have identified many of the proteins 

and metabolic pathways that allow microbial communities to access and 

degrade DOM, we do not have a firm grasp on how the composition of DOM 

relates to its biolability. For example, although the prevailing paradigm of 

biolability considers low molecular weight compounds to be preferable to 

microorganisms (Hopkinson et al., 1998), mounting evidence suggests that 

high molecular weight compounds can be labile as well (Cory & Kaplan, 2012; 

Frazier et al., 2005; Mann et al., 2012; Wetzel, 2003; Sleighter et al., 2014; 

Volk et al., 1997; Ward et al., 2013). Thus, in order to predict the fate of DOM 

in surface waters, it is important to clarify the molecular level controls on both 

photochemical and biological DOM degradation.  

Obtaining a molecular-level understanding of DOM degradation is 

difficult in part because standard analytical techniques cannot identify the 
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thousands of compounds that make up DOM pools. Several methods offer 

bulk assessments of DOM, Mass Spectrometry identifies the molecular 

formulas present, and Nuclear Magnetic Resonance recognizes functional 

components within compounds. However, no technology exists to identify the 

suite of individual compounds (i.e., formula and structural arrangement) 

composing DOM mixtures. Currently, the most accurate and resolved 

analysis of DOM chemical composition is obtained with Fourier transform ion 

cyclotron resonance mass spectrometry (FT-ICR MS). This ultra-high 

resolution technique allows detection of thousands of individual formulas that 

make up the DOM pool. It does not, however, provide any information on the 

structural arrangement of formulas and thus does not provide the identity of 

the compounds themselves.  

Therefore we paired FT-ICR MS with a genomic approach, specifically 

metatranscriptomics, a technique that identifies expressed genes of microbial 

communities through analysis of a sample’s mRNA sequences. 

Metatranscriptomics can be used to infer active metabolic processes within 

microbial communities and the taxa carrying out these processes (Frias-

Lopez et al., 2011). It can also provide information about carbon turnover and 

the DOM compounds associated with this turnover (McCarren et al., 2010; 

Poretsky et al., 2010). Thus metatranscriptomics, like FT-ICR MS, can 

provide sensitive detection of changes to DOM, but unlike FT-ICR MS, can 

allow identification of compounds rather than just their chemical formulas. 

Metatranscriptomics also detects DOM changes only if they are relevant to 
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microbial communities, complimenting FT-ICR MS, which detects all types of 

DOM changes. However, studies have rarely linked community expression 

patterns to the chemical composition of DOM, leaving the relationship 

between DOM composition and microbial metabolism poorly understood. 

Here, we paired FT-ICR MS with metatranscriptomics to gain molecular 

insight into this relationship that could not have been achieved with other 

methods. We used both FT-ICR MS and metatranscriptomics to detect 

sunlight-induced changes to DOM, and used metatranscriptomics to explain 

microbial responses to photo-exposed DOM.  

To investigate the photochemical and biological mechanisms of DOM 

degradation, we conducted an experiment comparing the character and 

microbial metabolism of DOM that was exposed to natural sunlight to DOM 

that was kept in the dark. We characterized DOM before and after sunlight 

exposure, and after subsequent microbial degradation using FT-ICR MS. 

Then we characterized microbial metabolism of light-exposed and dark-

control DOM using metatranscriptomics. By comparing DOM and its 

metabolism in this way, we captured a more mechanistic understanding of 

DOM degradation, one that is critical to estimating arctic carbon budgets and 

forecasting global climate change.  
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2. METHODS 

 
2.1. Sample collection 

Site and sample collection were previously described in detail (Ward & 

Cory, 2015). Soil samples from three adjacent pits were collected at 5-15 cm 

depth on June 15, 2013 in the Imnavait Creek watershed on the North Slope 

of Alaska (68.62° N, 149.28° W; elevation ~ 900 m). Soil was collected in 

ziplock bags, immediately transferred to coolers, and within hours, placed in 

freezers at Toolik Field Station.  

 
2.2. Experimental design 

Microbial communities were incubated in triplicate with both light-

exposed and dark-control soil-derived DOM (Fig. 1). Soil from each pit (3600 

g) was thawed and leached overnight in 14 L of sterile water. Leaching took 

place inside acid- and DI-rinsed HDPE buckets at room temperature. The 

dissolved fraction of the soil leachate, from here on referred to as DOM, was 

isolated with 50, 20 and 10 µm nylon screens (Cole-Parmer, Inc.) and 5 and 

0.45 µm high-capacity cartridge filters (Geotech Environmental Equipment, 

Inc.). Light exposure of DOM took place at Toolik Field Station on June 24 

and 25, 2013, where light-exposed replicates (5L) were placed in UV-

transparent Whirlpak bags and exposed to about 24 h of natural sunlight. 

Dark-control replicates (5L) were placed next to light-exposed replicates, but 

in foil-wrapped Whirlpak bags. After light exposure, subsamples of DOM were 

collected for characterization with FT-ICR MS and other analytical methods. 
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DOM was then inoculated with a mixture of all three GF/C (Whatman) filtered 

leachates (equivalent to 20% of the leachate volume) and incubated in the 

dark at 6-7 °C. After 4 h, subsamples were filtered and preserved for DNA 

and RNA analysis. After 5 d, subsamples were collected for DOM 

characterization with FT-ICR MS. Subsamples were also incubated 

separately over 5 d for respiration measurements (O2 consumption and CO2 

production), taken at 0 and 5 d time-points for cell counts, and taken at 5 d for 

bacterial production.  

 
2.3. Laboratory analysis 

2.3.1. Characterization of DOM 

High-resolution mass spectra were acquired using a 12 T Bruker 

SolariX FT-ICR mass spectrometer. Sample preparation (whole water 

extraction), acquisition parameters, and formula assignment criteria were 

previously described in detail (Ward & Cory, 2015). To compensate for some 

of the limitations of FT-ICR MS, Orbitrap mass spectrometry (MS) was used 

to detect low-mass formulas (detailed in Ward & Cory, 2016) and 13C NMR to 

assess functional group distribution (detailed in Ward & Cory, 2015). Bulk 

characterization of DOM, including quantification of chromophoric and 

fluorescent DOM fractions, used UV−visible absorbance and fluorescence 

spectroscopy with a Horiba Scientific Aqualog (detailed in Ward & Cory, 

2015). Dissolved organic carbon concentration was quantified as CO2 after 

high-temperature catalytic combustion using potassium hydrogen phthalate 

as the calibration standard (Shimadzu Corporation; Kling et al., 2000). 
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2.3.2. Characterization of microbial activity 

Bacterial concentrations, respiration, production, and growth efficiency 

were quantified as described in Ward & Cory (2015). Briefly, bacterial 

concentrations were quantified using epifluorescence microscopy to visualize 

glutaraldehyde-fixed samples (Crump et al., 1998). Respiration was 

measured as CO2 production and O2 consumption relative to killed controls 

(1% HgCl2). Membrane inlet mass spectrometry was used to measure O2, 

and a DIC analyzer (Apollo Sci Tech, LLC) was used to measure CO2. 

Bacterial production was determined by measuring 14C-labeled L-leucine 

incorporation into cells in two subsamples and one TCA-killed control 

incubated for 2-4 h at 6 °C in the dark.  

 
2.3.3. RNA extraction and sequencing 

RNA samples were filtered onto 0.22-µm polyethersulfone (Supor) 

membrane filters (Pall Corp.) and preserved with RNAlaterTM RNA 

Stabilization Reagent (Qiagen). RNA extraction and DNA removal was carried 

out as described by Poretsky et al. (2009). This protocol modifies the RNeasy 

mini kit protocol (Qiagen) and uses the TURBO DNA-free kit (Ambion).  

Ribosomal RNA removal, cDNA synthesis and Illumina HiSeq 

sequencing were performed at the Joint Genome Institute in Walnut Creek, 

CA. They used either their standard or low-input RNASeq protocol, depending 

on the amount of sample available. In both protocols, rRNA was removed 

from 1 µg or 100 ng of total RNA (regular vs. low-input protocol, respectively) 
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using the Ribo-Zero™ rRNA Removal Kit for Bacteria (Epicentre). Stranded 

cDNA libraries were generated using the Illumina Truseq Stranded RNA LT 

kit. The rRNA depleted-RNA was fragmented and reverse transcribed using 

random hexamers and SSII (Invitrogen) followed by second strand synthesis. 

The fragmented cDNA was treated with end-pair, A-tailing, adapter ligation, 

and 8 or 10 cycles of PCR (regular vs. low-input protocol, respectively). The 

quantified libraries were then multiplexed into pools of 4 or 3 libraries (regular 

vs. low-input protocol, respectively), and the pool was then prepared for 

sequencing on the Illumina HiSeq sequencing platform using a TruSeq 

paired-end cluster kit, v4, and Illumina’s cBot instrument to generate a 

clustered flowcell for sequencing. Sequencing of the flowcell was performed 

on the Illumina HiSeq2500 sequencer using HiSeq TruSeq SBS sequencing 

kits, v4, following a 2x150 indexed run recipe. 

 
2.3.4. DNA extraction and 16S amplicon sequencing   

Bacterial community composition was determined with amplification 

and sequencing of the 16S ribosomal RNA gene. DNA samples were 

collected, preserved and extracted as previously described (Crump et al., 

2003) using methods adapted from Zhou et al. (1996). PCR amplicon 

sequencing of extracted DNA followed the Earth Microbiome Project protocol 

(http://www.earthmicrobiome.org/emp-standard-protocols/16s/): Primers 

focused on the V4 region of the 16S rRNA gene (515F, 

GTGCCAGCMGCCGCGGTAA and 806R, GGACTACHVGGGTWTCTAAT), 

and were combined at 250 nM with template DNA, sterile water and 
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HotMasterMix (5Prime) under the following conditions: 94°C for 3 min; 30 

cycles of 94°C for 45 sec, 50°C for 60 sec, 72°C for 90 sec; 72°C for 10 min. 

Triplicate amplifications were pooled, quantified with Picogreen, combined in 

equimolar concentrations, and cleaned using the Ultraclean PCR Clean-Up 

Kit (MoBio). Finally, samples were sequenced at Oregon State University’s 

Center for Genome Research and Biocomputing with Illumina MiSeq 2x150 

bp paired-end reads.  

 
2.4. Bioinformatic and statistical analysis 

2.4.1. Characterization of DOM 

  FT-ICR mass spectra were analyzed according to Ward & Cory (2015). 

Formulas were classified as aromatic, aliphatic, and highly-oxidized tannin-

like compounds on the basis of their chemical composition as in Ward & Cory 

(2016). Formulas were also tested for significant differences in peak intensity 

with Spearman correlations according to Ward & Cory (2016). The percent of 

DOM that was mineralized to CO2 was determined by dividing the amount of 

CO2 produced by the initial amount of dissolved organic carbon. The percent 

of DOM consumed or altered by sunlight was determined by adding 

mineralized DOM and partially oxidized DOM (Ward & Cory, 2016). Changes 

to the chromophoric and fluorescent fraction of DOM were quantified using 

absorption coefficients following Ward & Cory (2016). Changes in molecular 

weight of DOM were quantified using the slope ratio following Helms et al. 

(2008). 13C NMR followed protocols described in Ward & Cory (2016). 
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Orbitrap MS followed Remucal et al. (2012) as described in Ward & Cory 

(2016).  

 
2.4.2. Characterization of microbial activity  

Bacterial production, respiration, and growth efficiency were calculated 

following Ward and Cory (2015). The average number of cells produced per 

day was calculated by subtracting initial cell concentrations from final cell 

concentrations, and then dividing this number by days of incubation. Paired t-

tests were conducted with R (R Core Team, 2013) to determine statistical 

significance between treatments for bacterial respiration, production, growth 

efficiency, and number of new cells produced per day (α = 0.05).  

 
2.4.3. Metatranscriptomics of microbial communities 

RNA sequences were trimmed, quality-controlled, and assembled by 

the Joint Genome Institute’s assembly team. Raw reads were first quality-

trimmed to Q10 and adapter-trimmed using BBDuk (Bushnell, 2015; options: 

ktrim=r, k=25, mink=12, tpe=t, tbo=t, qtrim=r, trimq=10, maq=10, maxns=3, 

minlen=50). Reads were then filtered for process artifacts using BBDuk 

(options: k=16). Ribosomal RNA reads were removed with BBMap (Bushnell, 

2015) by mapping against a trimmed version of the Silva 119 database 

(options: fast=t minid=0.90 local=t). BBMap was also used to remove human 

reads. Metatranscriptomes were assembled with trimmed and quality 

controlled reads using MEGAHIT (Li et al., 2015; version 0.2.0; options: --cpu-

only -m 100e9 --k-max 123 -l 155).  
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Coding sequences (CDS) were then predicted from assemblies with 

Prodigal (Hyatt et al., 2010) and annotated to the Kyoto Encyclopedia of 

Genes and Genomes database (KEGG; Kanehisa & Goto, 2000) and a 

custom phylogenetic database, according to the Joint Genome Institute’s 

Standard Operating Procedure (Huntemann et al., 2015). Bowtie 2 was used 

to map filtered nucleotide sequences to CDS (Langmead et al., 2012), and 

SAMtools was used to extract counts, CDS lengths, and alignment lengths 

from Bowtie 2 output (Li et al., 2009). A CDS received one count if either both 

ends or only one end of a paired-end read mapped to a CDS. All CDS 

annotated to the same KEGG ortholog group (KO) were then summed, and a 

KO abundance table was produced. Counts per annotation were normalized 

to transcripts per million (TPM; Wagner et al., 2012). Briefly, this 

normalization reduces biases associated with library size, CDS length, and 

read alignment length, and expresses all counts as a portion of one million, so 

the sum of counts in each library is one million. 

Pairwise similarities among metatranscriptomes were calculated using 

Bray-Curtis similarity values (Legendre & Legendre, 1998) and visualized in 

non-metric multidimensional scaling space using the R packages vegan 

(Oksanen et al., 2007) and ggplot2 (Wickham, 2009). The difference between 

treatments was assessed with multivariate analysis of variance (MANOVA) 

and 95% confidence intervals measured by standard error using R packages 

vegan (Oksanen et al., 2007) and ellipse (Murdoch & Chow, 1996). Alpha 
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diversity of each metatranscriptome was quantified by the Shannon index. 

Similarity Percentage analysis (SIMPER) was carried out in PRIMER v6 & 

PERMANOVA+ (PRIMER-E Ltd., Plymouth, UK) to determine the percent 

contribution of each gene to differences between treatments. MEtaGenome 

ANalyzer (MEGAN; Huson et al., 2009) and ShotMAP (Nayfach et al., 2015) 

software were used to explore abundances of transcripts within KEGG 

categories, pathways, and individual KOs. Paired t-tests were conducted with 

R (R Core Team, 2013) to determine significant differences between 

categories, pathways and KOs (α = 0.05).  

To test several hypotheses, a number of gene categories were 

manually curated. These categories included aromatic degradation, which 

was simply the KEGG pathway for aromatic degradation, in addition to 

oxygenase and decarboxylase genes defined as KOs named “oxygenase” 

and “decarboxylase,” respectively. Transcript abundances of genes within 

each category were then expressed as percentages of total Metabolism 

expression (KEGG tier II category). A number of ATP Binding Cassette (ABC) 

transporter categories were also created, including categories for the 

transport of phosphorus, amino acids, peptides, sugars, polyols (alcohols with 

multiple hydroxyl groups; not including alcohols containing phosphate), and 

inorganic ions (all but phosphate). Genes within these categories were 

expressed as percentages of total ABC Transporter expression (KEGG tier IV 

pathway). 
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2.4.4. Microbial community composition 

Amplicon sequences were paired using make.contigs (MOTHUR 

v.1.32.1; Schloss et al., 2009), and converted to QIIME format with 

split.groups from MOTHUR and add_qiime_labels.py from QIIME (Caporaso 

et al., 2010). Sequences were quality filtered with an expected error rate of 

0.5, dereplicated (derep_fulllength), and abundance sorted (sortbysize) using 

USEARCH (v.7.0.1001_i86linux64; Edgar, 2013). Singleton sequences were 

removed in the latter step to prevent them from seeding clusters when 

clustering OTUs. Reads were then clustered (cluster_otus) at 97% similarity 

and chimeras were removed via the de novo chimera check inherent in the 

cluster_otus in addition to reference-based chimera filtering (uchime_ref) with 

the Gold Database (www.genomesonline.org) as reference.  Reads (including 

singletons) were subsequently mapped back to OTUs using UPARSE 

(usearch_global) and an OTU table was created. Taxonomy of the 

representative sequences was assigned in QIIME (assign_taxonomy.py) 

using the RDP classifier trained to the SILVA database (v.111 database 

clustered to 97% OTUs). Dominant taxa associated with metatranscriptomes 

were classified to the phylum or class level for analysis. Taxa that did not 

make dominant contributions to the metatranscriptomes were classified as 

“other.” 
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3. RESULTS 

 
3.1. Effect of photochemical and biological degradation on DOM 

Approximately 10% of DOM was consumed or altered during sunlight 

exposure. Sunlight converted 5.2 ± 0.5% of DOM to CO2 and broke down 

higher molecular weight DOM into lower molecular weight DOM, as indicated 

by a decrease in the average mass of DOM chemical formulas detected by 

FT-ICR MS and an increase in slope ratio, an optical proxy for DOM 

molecular weight. The chromophoric and fluorescent fraction of DOM also 

decreased after sunlight exposure, as did the ratio of aromatic to aliphatic 

carbon atoms, according to 13C NMR. Further, 13C NMR reported DOM lost 2-

3% of carboxyl carbon after sunlight exposure and consumed less than 1 mol 

of O2 per mol of CO2 produced. 

FT-ICR MS indicated that the majority of DOM chemical formulas (69-

79%) were common to dark-control and light-exposed treatments, but that 

sunlight exposure caused significant changes in the peak intensities of many 

of these formulas. Of the 1729 common peaks detected by FT-ICR MS, 375 

were photo-degraded, or decreased in intensity during light exposure (by an 

average of 32%), while 784 were photo-produced, or increased in intensity 

during light exposure (by an average of 36%; Fig. 2). Photo-degraded 

formulas had lower H/C ratios and higher O/C ratios than photo-produced 

formulas, and many were classified as highly oxidized, tannin-like compounds 

(73%), aromatic compounds (37%), or both (Fig. 2). Sunlight may have also 

caused complete loss or production of a small number of formulas, but the 
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percent of common peaks across experimental replicates was similar to the 

percent of common peaks across instrumental replicates, making it difficult to 

discern which formulas were truly lost or produced versus which were present 

or absent due to instrumental error. Finally, unlike the humic DOM detected 

by FT-ICR MS, low molecular weight DOM was not significantly changed by 

photo-exposure according to Orbitrap MS.  

Similar to photo-exposure, 5 d incubations of bacteria with dark-control 

DOM also caused changes to the distribution (peak intensity) of many DOM 

formulas, although these changes were not significant. Additionally, there was 

overall strong overlap in the composition of formulas degraded by sunlight 

and formulas degraded by bacteria (Fig. 2). Of the 1871 peaks detected, 383 

peaks were biologically degraded, or decreased in peak intensity during the 

incubation. Like photo-degraded formulas, many bio-degraded formulas were 

classified as highly oxidized, tannin-like compounds (64%), aromatic 

compounds (39%), or both. In fact, 39% of bio-degraded formulas shared 

exact masses with photo-degraded formulas. Furthermore, bio-degraded and 

photo-degraded formulas had similar molecular masses, O/C ratios and H/C 

ratios, and these characteristics were distinct from those of photo-produced 

formulas. Bio- and photo-degraded formulas had average molecular masses 

of 539 Da and 566 Da, average O/C ratios of 0.61 and 0.64, and average H/C 

ratios of 0.90 and 0.88, respectively. In contrast, photo-produced formulas 

had an average molecular mass of 460 Da, an average O/C ratio of 0.52 and 

an average H/C ratio of 1.02. However there was some overlap between bio-
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degraded and photo-produced formulas, including 12% of bio-degraded 

formulas that shared exact masses with photo-produced formulas (Fig. 2).  

 
3.2. Global response of microbial communities to DOM source 

All measures of microbial activity were lower in the light-exposed 

treatment at or after 5 d of incubation, including respiration (O2 consumption 

and CO2 production), biomass production, new cell production, and growth 

efficiency (Fig. 3), although these differences were not statistically significant. 

Gene expression patterns, measured after 4 h of incubation, also 

differed between treatments. Metatranscriptomes annotated to the KEGG 

database clustered separately on a non-metric multidimensional scaling 

diagram created with Bray-Curtis similarity values (MANOVA, p = 0.1), and 

95% confidence intervals for each treatment, did not overlap (Fig. 4a). 

Replicate metatranscriptomes were also more variable in the light treatment, 

with an average Bray-Curtis similarity of 79% compared to 88% in the dark 

(Fig. 4a). The light treatment also had significantly lower Shannon index alpha 

diversity (Fig. 4b; paired t-test, p ≤ 0.05).  

Across metatranscriptomes, relative transcript abundance of KEGG 

ortholog groups (KOs), from here on referred to as genes, ranged several 

orders of magnitude, from 0 to over 24,000 TPM (Fig. 4c). Although many 

transcripts were found in similar abundance in light and dark treatments, 

discrepancies in the levels of certain highly expressed genes contributed to 

differences in metatranscriptome clustering (Fig. 4c). A Similarity Percentages 

analysis (SIMPER) determined that the 43 genes with the highest percent-
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contribution to dissimilarity were cumulatively responsible for 30% of 

dissimilarity between treatments (Fig. 4c). Of these 43 top contributors to 

dissimilarity, 34 were more expressed in the light treatment while 9 were more 

expressed in the dark control. Twenty-nine of the 34 genes more abundant in 

the light treatment were involved in translation, and coded for ribosomal 

proteins, RNA polymerase, and elongation factors. These genes cumulatively 

contributed to 19% of dissimilarity. Of the 9 top contributors to dissimilarity 

that were more expressed in the dark, several were involved in motility and 

transport, such as flagellin, a methyl-accepting chemotaxis protein, two 

porins, and a component of a transporter for siderophore-iron complexes.  

Across the 9,021 genes detected in the experiment, transcript 

abundance of 1,434 was significantly different between treatments (paired t-

test; p ≤ 0.05), as were sums of transcript abundance for genes composing 

certain KEGG categories. KEGG’s tier II categories give a general overview 

of the differences observed between treatments (Fig. 5a). Summed transcript 

abundance for KEGG’s tier II category, Genetic Information Processing, was 

significantly greater in the light-exposed treatment, while abundances for tier 

II categories Metabolism, Environmental Information Processing, and Cellular 

Processes were significantly greater in the dark control (Fig. 5a; paired t-test, 

p ≤ 0.05).  

In the light-exposed treatments, higher expression of genetic 

information processing genes was largely explained by significantly higher 

abundance of transcripts involved in transcription and translation (Fig 5b; 
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paired t-test, p ≤ 0.05). In particular, expression of RNA polymerase and 

ribosomal proteins was significantly higher in the light (paired t-test, p ≤ 0.05). 

Not all categories in Genetic Information Processing were higher in the light, 

however. Replication and Repair was the only category within Genetic 

Information Processing with elevated expression in the dark, though not 

significantly. Aminoacyl tRNA Synthesis, which falls under Translation, was 

also elevated in the dark control, but again not significantly (Fig. 5b).  

In the dark-control treatments, higher expression was detected in a 

wide variety of categories that fell under Metabolism, Environmental 

Information Processing, and Cellular Processes. All types of metabolism, 

except nucleotide metabolism, were more expressed in the dark-control, 

including carbohydrate, amino acid, lipid, and xenobiotic metabolism, which 

were all significantly higher in the dark (Fig 5c; paired t-test, p ≤ 0.05). Higher 

expression in Environmental Information Processing was mostly due to 

significantly higher abundance of signal transduction transcripts (Fig. 5d; 

paired t-test, p ≤ 0.05), particularly transcripts for two-component systems 

(paired t-test, p ≤ 0.05). Highly expressed two-component system genes 

included those encoding a methyl-accepting chemotaxis protein, a pilus 

assembly protein, and flagellin, which were highly expressed in both 

treatments but significantly more expressed in the dark control (paired t-test, 

p ≤ 0.05). Glutamine synthetase and a phosphate transport system substrate 

binding protein were also highly expressed in both treatments, and more 

expressed in the dark-control, though not significantly. The number of 
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transcripts associated with membrane transport, which were mostly for ABC 

transport, did not differ significantly between treatments, although the 

distribution of individual transporter expression did (Fig. 5d). Finally, transcript 

counts in the Cellular Processes category were higher in the dark-control 

largely due to enrichment of cell motility transcripts (paired t-test, p ≤ 0.05), 

such as transcripts for flagellar assembly and chemotaxis (paired t-test, p ≤ 

0.05; Fig. 5e). The number of transcripts involved in cell growth and death 

was also significantly higher in the dark control (paired t-test, p ≤ 0.05), 

including genes for the cell division protein FtsW and for two Clp proteases 

(Fig. 5e).  

 
3.3. Genetic evidence for sunlight’s effect on DOM  

Relative expression of select groups of enzymes and transporters was 

investigated to yield inference about how sunlight affects DOM chemistry. 

These groups of genes were expressed as percentages of appropriate 

categories. Decarboxylases, oxygenases, and genes involved in aromatic 

degradation were expressed as percentages of total metabolism expression, 

and the sums of each group made up larger percentages of metabolism in the 

dark-control. In fact, percent of both oxygenase and aromatic degradation 

transcripts almost doubled from dark to light treatment. Additionally, all 

significantly differentially expressed genes in these three categories were 

more expressed in the dark control, except one (Fig. 6a; paired t-test, p ≤ 

0.05). Many of the genes with significantly higher expression in the dark 

control were involved in the oxidation and cleavage of aromatic rings, such as 
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catechol 1,2-dioxygenase, catechol 2,3-dioxygenase, vanillate 

monooxygenase, phthalate 4,5-dioxygenase, homogentisate 1,2-

dioxygenase, phenol hydroxylase, and salicylate hydroxylase (Fig. 6a).   

Transporters were also investigated to determine how exposure to 

sunlight may have affected DOM, since transporter expression levels can 

suggest the types of organic matter and nutrients available to cells (Poretsky 

et al. 2010, McCarren et al. 2010). Because most transporter expression was 

for ABC transporters, we focused on these, and expressed transcript 

abundance for each ABC transporter gene as a percentage of total ABC 

transporter expression, despite that total ABC transporter expression was 

similar across treatments (paired t-test, p > 0.05). 

There were 355 ABC transporter genes detected across treatments, 

including transporters for phosphorus and nitrogen sources, sugars, polyols 

(alcohols with multiple hydroxyl groups), and inorganic ions. Forty genes in 

these categories, representing subunits for 24 transporters, demonstrated 

significantly different expression across treatments (Fig. 6b). Of these 40 

genes, 9 were more expressed in the light treatment (representing 5 

transporters) while 31 were more expressed in the dark treatment 

(representing 19 transporters).  

Transcripts associated with phosphorus transport were by far the most 

abundant in both treatments, but while the transporter for phosphate was 

more expressed in the dark control, transporters for sn-glycerol 3-phosphate 

and phosphonate were more expressed in the light treatment (Fig. 6b). In 
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total, phosphorus transport in the light treatment averaged 66% of ABC 

transport expression compared to 50% in the dark, but this difference was not 

significant (paired t-test, p = 0.11) 

Expression for nitrogen source transport was also substantial. Amino 

acid transport gene expression comprised 18% of ABC transport in the dark 

and 9% in the light (paired t-test, p ≤ 0.05). Ten of the 66 genes for amino 

acid transporters demonstrated significantly different expression between 

treatments (paired t-test, p ≤ 0.05), five of which had higher expression in the 

light treatment and five of which had higher expression in the dark control 

(Fig. 6b). The five genes with higher light-treatment expression encoded 

components of cystine, methionine, and arginine transporters, while the five 

genes with higher dark-control expression encoded components of general L-

amino acid, branched-chain amino acid, histidine, and 

lysine/arginine/ornithine transporters (Fig. 6b). Similar to amino acid transport, 

total peptide transporter expression was significantly higher in the dark 

control, making up 3% of ABC transport compared to 2% in the light treatment 

(paired t-test, p ≤ 0.05). However, expression patterns of individual 

transporters were highly variable.  

Transporters for sugars and polyols were consistently higher in the 

dark control. Total sugar transport was responsible for 8% of ABC transport in 

the dark control and 5% in the light treatment, while total alcohol transport 

made up 0.93% of ABC transport in the dark control and 0.21% in the light 

treatment (the alcohol transport category did not include genes for transport 



 

 

22 

of the phosphate-containing alcohols, sn-glycerol 3-phosphate and inositol-

phosphate, which were more expressed in the light). Furthermore, all 10 and 

11 differentially expressed sugar and alcohol transport genes, respectively, 

had greater expression in the dark (Fig. 6b; paired t-test, p ≤ 0.05).  

Expression for total inorganic ion transport averaged 5% of ABC 

transport in the light treatment and 3% in the dark, and the five genes in this 

category that showed significantly different expression were all more 

expressed in the dark (Fig. 6b). These five genes encoded two components 

of a molybdenum transporter, and components of sodium, cobalt/nickel and 

siderophore-complexed iron transporters. There were, however, several 

inorganic ion transporters that displayed higher expression in the light 

treatment for each replicate, but due to high variability these differences were 

not statistically significant. For example, in contrast to higher expression of 

the siderophore-complexed iron transporter in the dark control, there was 

higher expression of the free iron(III) transporter in the light treatment, with 

the sum of all components averaging 3.03% of ABC transport in the light and 

0.91% in the dark (paired t-test, p = 0.25). The sulfate transporter also 

demonstrated higher expression in the light for each replicate (paired t-test, p 

= 0.16).  

 
3.4. Taxonomic response to DOM source 

All taxa composing light and dark communities at 4 h were identified 

using 16S ribosomal RNA amplicon sequencing, and though not identical, 

community composition was very similar between treatments (Fig. 7). In both 
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light and dark treatments, Gammproteobacteria dominated, comprising about 

45% of the community. Alphaproteobacteria, Betaproteobacteria, and 

Bacteroidetes also made up substantial portions of the communities in both 

treatments (between 4 and 14%), but both Alphaproteobacteria and 

Betaproteobacteria were more abundant in the light treatment, whereas 

Bacteroidetes were more abundant in the dark. Actinobacteria, Acidobacteria 

and Firmicutes each made up less than 10% of the communities, but 

Acidobacteria and Firmicutes were both slightly more abundant in the dark 

treatment. Bacteria categorized as “other” also made up almost 20% of the 

taxa present, 7% of which was made up of Verrucomicrobia in both 

treatments. 

The composition of taxa associated with metatranscriptomes was 

evaluated by assigning taxonomy to transcripts, and was not only distinct 

from the composition of the entire community (16S-determined), but also 

demonstrated more pronounced differences between treatments (Fig. 7). For 

example, transcripts associated with Gammaproteobacteria were dominant in 

both treatments, but whereas in both treatments this class comprised about 

45% of the community (based on 16S amplicon sequencing), it contributed 

57% of transcripts in the light treatment and 35% in the dark. 

Betaproteobacteria and Bacteroidetes were also well represented in the 

metatranscriptomes, but in contrast to Gammaproteobacteria, contributed 

more transcripts in the dark treatment relative to abundance. 

Alphaproteobacteria, Acidobacteria, Actinobacteria, and Firmicutes were also 
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represented to a lesser extent in the metatranscriptomes, and also 

contributed a higher proportion of transcripts relative to their abundances in 

the dark treatment. Finally, “other” bacteria were poorly represented in the 

metatranscriptome relative to their abundances (less than 5% of 

metatranscriptome-associated taxa compared to almost 20% of 16S-

associated taxa). Verrucomicrobia, which was categorized as “other,” 

contributed to less than 1% of transcripts. 

The taxa responsible for the expression of specific KEGG pathways, 

including Ribosome, DNA Replication, and TCA Cycle pathways, were similar 

in composition to taxa responsible for all expression (Fig. 7). The same taxa 

dominated each pathway, especially Gammaproteobaceria, Bacteroidetes 

and Betaproteobacteria, and the same shifts occurred from dark to light 

treatment. For example, Bacteroidetes supplied a greater number of 

transcripts for these pathways in the dark control while Gammaproteobacteria 

supplied a greater number in the light treatment. Subtle differences between 

expression of pathways were apparent, however. For example, Gamma- and 

Beta-proteobacteria dominated transcription of the light treatment’s ribosomal 

genes to an even larger degree than they dominated other pathways in the 

light or dark treatment, together contributing over 90% of ribosomal 

transcripts.  

The composition of taxa expressing genes for aromatic degradation 

was distinct from that of other pathways in that the relative abundances of 

taxa was strikingly similar between light and dark treatments. 
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Gammaproteobacteria made up roughly 60% of the community in both light 

and dark treatments, and even contributed a slightly greater proportion of 

transcripts in the dark, unlike for any other pathway. Betaproteobacteria, 

Alphaproteobacteria, and Bacteroidetes contributed most of the remaining 

transcripts.  
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4. DISCUSSION 

 
Our results demonstrate that even small amounts of sunlight have the 

capacity to alter DOM in ways that evoke profound changes in its metabolism 

by microbes. Not only are rates of microbial metabolism altered after DOM 

has been exposed to sunlight, but microbial gene expression, and the 

taxonomic groups conducting this expression, are altered too. We also 

provide evidence that this effect is likely caused by sunlight’s removal of labile 

DOM. Finally, by comparing the gene expression of microbial communities 

metabolizing light-exposed and dark-control DOM, we generated both insight 

and new hypotheses about the mechanisms by which sunlight affects DOM 

chemistry and evokes a biological response. 

 
4.1. Effect of photochemical and biological degradation on DOM 

It is clear that even a short-term exposure to sunlight can affect 

substantial change on the chemical composition of DOM (Fig. 2). If 10% of 

DOM formulas were consumed or altered in this short-term experimental 

exposure, then sunlight likely plays a large role in altering DOM in natural 

freshwaters, both in the Arctic (Cory et al., 2014) and globally (Koehler et al., 

2014).  

Photo-exposure altered the chemical composition of DOM in several 

ways. First, sunlight converted larger, more aromatic compounds into smaller, 

less aromatic compounds, as evidenced by decreased molecular weight, 

increased H/C, loss of chromophoric and fluorescent fractions, and decreased 



 

 

27 

aromatic to aliphatic carbon ratio. This is consistent with earlier studies 

showing that sunlight decreases aromatic character of DOM and reduces 

molecular weight (Hudson et al., 2007; Moran et al., 2000; Strome & Miller, 

1978; Wetzel et al., 1995). FT-ICR MS also identified changes in the 

molecular signature of DOM (i.e., increase in H/C, decrease in O/C) that were 

consistent with other studies (D’Andrilli et al., 2015; Gonsior et al., 2013; 

Gonsior et al., 2009; Gonsior et al., 2014; Stubbins et al., 2010). The increase 

in H/C suggests DOM became less condensed (aromatic) after sunlight 

exposure, which was expected and confirmed by several other methodologies 

mentioned above. While a decrease in O/C would ordinarily suggest DOM 

became less oxidized, there are multiple lines of evidence that DOM actually 

became more oxidized, and that instrumental limitations of FT-ICR MS 

explain why highly oxidized compounds were not detected. This explanation 

is given in more detail in Ward & Cory (2016), but briefly, photo-exposure 

likely led to the formation of compounds that do not ionize well and are 

therefore not detected during mass spectrometry. These compounds are 

likely highly oxidized carbohydrate-like compounds (C. Ward, pers. comm.).  

While aromatic degradation and oxidation of DOM are well-established 

results of photo-exposure, less established is the idea that sunlight 

decarboxylates DOM, or removes carboxyl groups. Although photo-

decarboxylation has been proposed as a primary pathway for the degradation 

of DOM for many years (Miles & Brezonik, 1981), few have provided 

evidence. Here however, several pieces of evidence, which are outlined in 
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more detail in Ward & Cory (2016), point to decarboxylation. First, 2-3% of 

carboxyl carbon was lost after photo-exposure, suggesting decarboxylation 

provided a major avenue of DOM mineralization to CO2. O2 and CO2 were 

also consumed and produced, respectively, in the proportions expected if 

decarboxylation were a major pathway for degradation of DOM (less than 1 

mol of O2 produced per mol of CO2 consumed). Finally, the H/C ratio of DOM 

formulas decreased, which is an expected result of decarboxylation.  

Overlap of photo-degraded and bio-degraded formulas identified by the 

FT-ICR MS strongly suggests that light exposure removed compounds labile 

to bacteria. Not only were 39% of photo-degraded formulas identical to bio-

degraded formulas, but photo- and bio-degraded formulas had similar 

average molecular mass, similar H/C and O/C ratios, and the majority of 

formulas in both groups were classified as highly-oxidized tannin-like 

compounds. It is true that identical molecular formulas do not imply identical 

molecular structure, and that isomers can have very different reactivities, but 

the chances for “competition” between sunlight and microbes are surely 

increased when both degrade compounds with similar character.  

FT-ICR MS results also indicated that aromatic compounds made up a 

sizeable fraction of the DOM susceptible to both photochemical and biological 

degradation. Aromatics have been called the most photo-reactive fraction of 

the DOM pool (Stubbins et al., 2010), but have never been regarded as the 

most bioreactive fraction. However, the biological degradation of aromatics 

observed here is consistent with recent indications that labile DOM must 
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consist of more than just low molecular weight, nitrogen-rich compounds 

(Frazier et al., 2005; Mann et al., 2012; Sleighter et al., 2014; Volk et al., 

1997; Ward et al., 2013; Wetzel, 2003). While low molecular weight 

compounds may be the most labile fraction of DOM, mass balance 

demonstrates that humic, aromatic carbon compounds must make up the 

majority of biodegraded DOM (Cory & Kaplan, 2012). Also reflective of the 

importance of aromatic degradation to microbial metabolism in many 

environments are the multiple pathways for aromatic degradation that 

bacteria have evolved (Fuchs et al., 2011) and the extensive diversity of 

aromatic degradation genes (Iwai S, et al. 2010). So if aromatic compounds 

comprise a readily bioavailable fraction of DOM, as recent evidence suggests, 

the degradation of these compounds by both photochemical and biological 

processes again suggests “competition” for these compounds.  

Lastly, it cannot be overlooked that although sunlight degraded 39% of 

bio-degraded formulas, it also produced 12% of bio-degraded formulas. This 

suggests that although sunlight caused a net removal of bio-available 

compounds, it also produced some new labile compounds. 

 
4.2. Global response of microbial communities to DOM source 

All measurements of microbial activity after 5 d of incubation show that 

exposure of DOM to sunlight caused lower activity of microbial communities 

(Fig. 3). Not only were respiration, biomass production, and average new cell 

production lower in the light treatment, but growth efficiency was as well, 
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suggesting DOM in the light treatment was of lower quality than DOM in the 

dark control.  

Numerous studies have found light exposure of DOM can lower 

microbial activity, and many have speculated that the removal of labile 

compounds by sunlight explains these results (Abboudi et al., 2008; Amado et 

al., 2014; Benner & Biddanda, 1998; Cory et al., 2013; Judd et al., 2007; 

Obernosterer et al., 1999; Tranvik & Bertilsson, 2001; Vallieres et al., 2008). 

But none of these studies provided direct evidence for how this happens. 

Here we present the first direct evidence to support this hypothesis. FT-ICR 

MS data indicate that lower activity of microbial communities after DOM 

photo-exposure occurs when sunlight removes a large fraction of the DOM 

compounds that microbes metabolized in the dark. 

Previous studies show that sunlight’s effect on DOM is enigmatic, 

sometimes reducing and sometimes enhancing lability depending on the 

DOM source and the degree of sunlight exposure (Abboudi et al., 2008; 

Amado et al., 2014; Benner & Biddanda, 1998; Cory et al., 2013; Judd et al., 

2007; Obernosterer et al., 1999; Tranvik & Bertilsson, 2001; Vallieres et al., 

2008). Studies examining these contrasting effects cover a variety of DOM 

sources and exposure times, but some of the most comparable to our study 

were consistent with our findings. Judd et al. (2007) found that photo-

exposure of organic mat DOM from birch-willow tundra (the same type of 

DOM that our study used) caused microbial biomass production to decrease. 

DOM from Cory et al. (2013)’s “reference sites” was also comparable to DOM 
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from our study and consistent with our findings. Cory et al. (2013) found that 

DOM draining arctic sites of permafrost thaw became more labile after 24 h 

sunlight exposure, while DOM draining reference sites, i.e., DOM from waters 

absent of permafrost thaw, generally became less labile. Because the 

hydrologic flow through soil draining reference sites did not penetrate much 

below the organic mat, this DOM was likely similar to DOM from our study. 

Taking our FT-ICR MS data into account, it is probable that the effects of 

sunlight on organic mat DOM analyzed in Judd et al. (2007) and Cory et al. 

(2013) were due to the photo-consumption of labile compounds. It is also 

probable that contrasting effects observed in other studies can be attributed 

to the photo-consumption or photo-production of labile compounds, 

depending on the effect. It should be noted, however, that sunlight will both 

produce and consume labile compounds, as it did in this experiment, but the 

net production or consumption of labile compounds will likely be a large factor 

in determining activity of microbial communities.  

In addition to changing rates of microbial activity, exposing DOM to 

sunlight led to dramatic shifts in microbial gene expression after just 4 h, as 

indicated by the clustering of metatranscriptomes by treatment, differences in 

Shannon alpha diversity, and differential expression of many genes and gene 

categories (Figs. 4 & 5). The inoculum microbial community was adapted to 

using dark-control compounds, many of which were likely removed by 

sunlight. Thus, if light treatment communities were to instead use photo-

exposed DOM, they had to initiate the appropriate modifications in gene 
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expression. Transcriptional responses to resource changes have been 

observed in the past (de Menezes et al., 2012; McCarren et al., 2010; 

Poretsky et al., 2010; Shi et al., 2012; Teeling et al., 2012), but transcriptional 

responses in this experiment highlight the large impact that a small amount of 

DOM photo-exposure can have on microbial metabolism. Sunlight altered 

only about 10% of DOM, but the 10% it altered was microbially relevant. 

These results support the idea that sunlight is a key element determining the 

microbial processing of DOM in natural waters (5).  

Global shifts in gene expression, measured after 4 h, clearly indicate 

that sunlight altered a fraction of DOM that was important to microbial 

communities. The most striking difference between treatments was elevated 

transcription and translation gene expression in response to light-treated 

DOM, and elevated metabolism, motility, and transport gene expression in 

response to dark-control DOM. Elevated transcription and translation are 

generally interpreted as signs of microbes entering lag or log growth phases 

(Kraakman et al., 1993; Madar et al., 2013; Nomura et al., 1984; Rolfe et al., 

2011), likely in response to a change in growth conditions like the ones 

experienced by light treatment communities. This is because cells tightly 

regulate ribosome biosynthesis and generally allocate more resources to 

ribosomes and other cellular machinery involved in protein synthesis when 

their growth rates are higher (Scott et al., 2010). However, light treatment 

communities also displayed reduced expression of genes for other growth 

indicators including DNA replication and the TCA cycle (Chang et al., 2002; 
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Clark et al., 2006). For dark control incubations, elevated metabolism, motility, 

transport indicate growth in sub-optimal conditions, which is consistent with 

the relatively low quality of soil-derived DOM for bacterial growth (Pérez & 

Sommaruga, 2006). Cells tend to allocate more energy to moving and 

scavenging when resources are scarce (Soutourina & Bertin, 2003), 

suggesting that resources were scarce in the dark treatment and probably 

prohibitive of rapid growth. These results suggest DOM photo-products 

caused the inoculum microbial community to shift from slow growth to lag or 

log phase. Interestingly, this initial shift in growth phase did not result in 

higher growth rates or greater cell production over the 5 d incubation, 

suggesting that lag phase was ongoing at 5 d, or photo-exposure of DOM 

caused transient log growth that ended before 5 d.  

Several pieces of evidence support the idea that the light treatment 

community was undergoing lag phase at 4 h, explaining lower growth over the 

5 d incubation. The lag phase, or the initial period in the bacterial growth cycle 

when no growth is observed, takes place when cells encounter new 

environmental conditions and must adjust metabolism accordingly (Madar et 

al. 2013; Monod, 1949). Although communities in both treatments 

encountered new conditions by being diluted at the beginning of incubations, 

conditions were newer for light treatment communities because the common 

inoculum had been growing with dark-control DOM. Therefore it is possible 

that the lag phase was short or non-existent in the dark treatment, since cells 

in this treatment were already adjusted to dark-control DOM. Gene 
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expression of the light treatment communities is also consistent with our 

limited knowledge of lag phase expression patterns (Schultz & Kishony, 

2013). In one of the few studies of lag phase gene expression, Rolfe et al. 

(2011), studying cultures of Salmonella enterica, found upregulation of genes 

encoding RNA polymerase and ribosomal proteins. In fact, the core subunits 

of RNA polymerase reached peak expression during lag phase, while 

ribosomal protein expression was high until mid-exponential phase, 

suggesting synthesis of transcription and translation machinery is a 

prerequisite for exponential growth. Interestingly, Madar et al. (2013) found 

that only when cells began to grow in size were ribosomal promoters 

activated, so perhaps the light treatment communities had embarked on this 

part of the lag phase. Also consistent with light treatment gene expression, 

Rolfe et al. (2011) found that during lag phase, phosphorus and iron(III) 

uptake were upregulated, while genes for the transport of molybdenum, 

cobalt and nickel and for the TCA cycle were downregulated. Although 

expression during lag phase is not well understood, the similarity between lag 

phase expression in prior studies and expression in the light treatment 

suggests lag phase may explain the light treatment’s high expression for 

transcription and translation pathways, despite minimal growth after 5 d. In 

addition, it would reconcile the apparent inconsistency of the light treatment’s 

reduced expression for DNA replication and TCA cycle genes.  

Another likely explanation for expression and activity patterns is that a 

brief spurt of logarithmic growth was occurring in the light treatment at 4 h, but 
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that this growth was followed by stationary phase or even cell death that 

explains lower activity over 5 d. This could have happened if photo-exposure 

of DOM produced highly labile compounds or nutrients that initially enhanced 

growth, but became depleted before 5 d. In fact, FT-ICR MS indicated that 

12% of bio-degraded formulas were produced by sunlight, some of which 

could have been responsible for enhanced growth. It is also possible that 

sunlight produced low molecular weight labile compounds, too small to be 

detected by the FT-ICR MS (Moran & Zepp, 1997). However, the low 

molecular weight formulas detected with Orbitrap MS had similar peak 

intensities before and after photo-exposure, suggesting that new low 

molecular weight compounds were not produced. Photochemical release of 

nutrients from DOM could also explain initial logarithmic growth in the light 

treatment, but lower growth at 5 d. Humic acids, which make up the majority 

of soil DOM, form complexes with ions and create humic colloids, altering the 

bioavailability of these ions (Wershaw, 1989). Sunlight exposure has been 

known to release organically complexed metals, nitrogen, and phosphorus 

(Bushaw et al., 1996; Francko & Heath, 1982; Shiller et al., 2006; Vähätalo et 

al., 2003), and could have allowed nutrient uptake and growth by the light 

treatment communities until depletion or re-complexation. In fact, Vähätalo et 

al. (2003) demonstrated that this kind nutrient release and depletion could 

take place on the timescales of this experiment. Investigating photochemical 

transformation of DOM from a humic lake, Vähätalo et al. (2003) found that 

concentrations of phosphate increased after photo-exposure, causing 
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phosphatase levels of microbial incubations with this DOM to decrease 

relative to dark controls. However, after 4 d of incubation, these same 

microbial communities produced more phosphatase than dark-control DOM. 

Something very similar could have occurred in this experiment, in which an 

initial photochemically induced pulse of phosphorus triggered growth in the 

light treatment, but soon light communities were even more phosphorus 

limited than dark-control communities. 

Global shifts in gene expression in this experiment demonstrate that 

even slight photo-alteration of DOM can elicit profound effects on microbial 

community functioning. Interpretation of these shifts is challenging, however, 

because most gene expression studies involve model organisms grown at 

optimal conditions in the laboratory, and because studies that examine 

community gene expression rarely include any direct measurements of 

growth. Regardless, transcriptional responses in this experiment suggest that 

DOM photo-alteration elicits transcriptional responses in natural waters too. 

Thus natural variability in photo-alteration of DOM could lead to frequent 

shifts in growth phases of microbial communities or populations. Perhaps 

DOM photo-alteration could even play a role in the diel cycles of microbial 

expression patterns in sunlit waters (Hewson et al., 2010). It is clear that 

photo-exposure of DOM causes global changes in microbial expression 

patterns, which likely lead to changes in activity and carbon processing. 

When scaled up, these changes likely have profound effects on the elemental 

cycling of ecosystems.  
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4.3. Genetic evidence for sunlight’s effect on DOM 

In addition to investigating global expression patterns across 

treatments, we interrogated the dataset to test specific hypotheses about how 

sunlight affects DOM. Because microorganisms are extremely sensitive to 

changes in their environment, metatranscriptomics can be used as a sensitive 

tool to detect changes in DOM (de Menezes et al., 2012; McCarren et al., 

2010; Poretsky et al., 2010; Shi et al., 2012; Teeling et al., 2012), 

complimenting analytical techniques. Here, not only does metatranscriptomics 

provide new lines of evidence to substantiate data produced by analytical 

techniques, but it also allows for the generation of new hypotheses, which can 

in turn be tested by analytical techniques.  

We first tested if sunlight degraded aromatic compounds or oxidized 

DOM, replacing the function of genes that ordinarily carry out these 

processes. Lower expression of the aromatic degradation pathway and 

oxygenases in the light treatment suggests that sunlight did both. The 

degradation of aromatics by sunlight is consistent with analytical measures 

from this experiment and others (Hudson et al., 2007; Moran et al., 2000; 

Opsahl & Benner, 1998; Scheck & Frimmel, 1995; Strome & Miller, 1978; 

Stubbins et al., 2010). Likewise, the response of microbial communities to this 

degradation is consistent with prior work. To break down aromatics, microbes 

use energetically costly enzymes such as oxygenases, peroxidases and 

laccases to hydroxylate and cleave aromatic rings (Bugg et al., 2011; Fuchs 

et al., 2011; Gulvik & Buchan, 2013). It is thought that sunlight instigates the 
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same processes through the formation of reactive oxygen species (Cory et 

al., 2010). In this way, photo-exposure of DOM could have replaced the 

function of oxygenases and other costly enzymes involved in aromatic 

degradation, reducing the need for expression of these genes. This reduced 

need for oxygenase expression also suggests photo-oxidation of DOM in 

addition to photo-degradation of aromatics. Oxygenases incorporate 

molecular oxygen into DOM and are important to a range of cellular reactions 

besides aromatic degradation. Thus lower oxygenase expression in the light 

treatment suggests sunlight oxidized DOM in place of oxygenases. 

Photochemical oxidation of DOM is also supported by the production of 

radical oxygen species upon DOM’s exposure to sunlight (Page et al., 2014) 

and has been demonstrated using 18O2 (Cory et al., 2010), FT-ICR MS 

(Gonsior et al., 2009; Kujawinski et al., 2004) and NMR spectroscopy 

(Schmitt-Kopplin et al., 1998). Here metatranscriptomics provides another line 

of evidence for such photochemical processes and simultaneously 

demonstrates a microbial response.  

We also tested the hypothesis that photo-decarboxylation, or the 

photochemical removal of carboxyl groups from DOM, was an important 

mechanism by which DOM was photo-degraded. Lower expression of 

decarboxylases in the light-exposed treatment supports this hypothesis, 

suggesting that microbial communities had less of a need to decarboxylate 

DOM because sunlight had already done so. In contrast to aromatic 

degradation and oxidation, decarboxylation of DOM by sunlight is not well 
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documented. Photo-decarboxylation mechanisms have been identified, and it 

has been suggested a major pathway for the photochemical production of 

CO2 (reviewed by Mopper et al., 2014), but evidence has been difficult to 

produce. For example, one study found no correlation between 

photochemical CO2 production and DOM carboxyl content (Anesio et al., 

2005), although this may be explained by the regeneration of carboxyl groups 

during photo-decarboxylation (Xie et al., 2004). Recently some of the 

strongest chemical evidence for decarboxylation emerged (Ward & Cory, 

2016), and here metatranscriptomics provides new biological evidence for 

photo-decarboxylation.  

Differences in expression of transporters were also used to address 

hypotheses about sunlight’s effect on DOM. Taken together, shifts in 

transporter expression are yet another indication that sunlight altered a 

fraction of DOM relevant to microbial functioning. This is not the first time that 

changes in transporter expression have been detected in response to 

changes in DOM (e.g., Poretsky et al., 2010), but here, shifts in transporter 

expression allow insight into potential mechanisms of DOM photo-alteration.  

The most highly expressed transporter was the phosphate transport 

system, which as its name suggests, transports orthophosphate, and alone 

represented 31% of ABC transport expression in the light treatment and 36% 

in the dark-control. High expression of phosphorus transporters in both 

treatments highlights the biological importance and the scarcity of this 

nutrient. However, higher expression in the dark treatment suggests microbial 
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communities in this treatment were more phosphate limited, since expression 

of this transport system increases upon phosphate starvation (Ishige et al., 

2003). Sunlight has been shown to release phosphate from humic DOM in 

some systems (Cotner & Heath, 1990; Francko & Heath, 1982; Vähätalo et 

al., 2003; Zhang et al., 2013), but not in others (Gobler et al., 1997; 

Jorgensen et al., 1998; McCallister et al., 2005; Wiegner & Seitzinger, 2001). 

The mechanisms of this process are poorly understood (Francko, 1990; 

Mopper et al., 2014), but are thought to occur through the photo-reduction of 

iron, which often binds phosphate to iron-humic complexes (Francko & Heath, 

1982). Here, reduced expression of phosphate transporters in the light 

treatment suggests that phosphate was released by sunlight.  

Reduced phosphate transporter expression in the light treatment was 

coupled with increased expression of organophosphate transport. 

Organophosphates serve diverse cellular functions, and uptake may be 

preferable (with respect to inorganic phosphate) for cells carrying out certain 

functions. For example, synthesis of sn-glycerol 3-phosphate is the first step 

in the pathway for biosynthesis of phospholipid membranes (Cronan & Rock, 

2008) and is probably less costly to import than synthesize (Ames, 1986). By 

this logic, if sunlight removed organophosphates by cleaving phosphate 

groups from their organic counterparts, transporters for organophosphates 

would be more highly expressed in the light treatment.  

It is also possible that DOM chemistry was less of a factor in 

determining patterns of phosphorus transport expression than were biological 
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differences between the treatments. Thus findings may suggest 

photochemical release of phosphate from DOM, but they also suggest 

differences in the dominant metabolic processes taking place in each 

treatment. For example, it is possible that light treatment communities were 

building more phospholipids for cell membranes, and this too could explain 

higher expression for organophosphate transporters in the light treatment 

(Cronan & Rock, 2008). In fact, expression of total phosphorus transport 

(inorganic and organic), which was higher in the light, was likely a result of 

biological rather than chemical differences between treatments. Ribosomes 

demand a great deal of phosphorus (Merchant & Helmann, 2012), and light 

treatment expression for ribosome biosynthesis was about twice as high as it 

was in the dark treatment. This greater metabolic demand for phosphorus in 

the light treatment may reconcile higher total phosphorus transport in the light 

treatment despite indications that phosphate limitation was greater in the 

dark.  

Expression of amino acid and peptide transport, if examined with the 

same logic as phosphorus transport, suggests photo-exposure of DOM may 

have increased nitrogen availability as well. Although not every transporter 

followed this pattern, amino acid and peptide transporters were generally 

more expressed in the dark control, suggesting more limitation than in the 

light treatment. Relatively little is known about the photochemical 

transformations of nitrogen species, and photoreactions may act as both 

sources and sinks for nitrogen, depending on several factors (Mopper et al., 
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2014). Nonetheless many studies have reported increases in free amino 

acids after DOM photo-exposure, including several that involved humic DOM 

(Amador et al., 1989; Bushaw-Newton & Moran, 1999; Bushaw et al., 1996; 

Jorgensen et al., 1998). In fact, Amador et al. (1989) not only found that less 

glycine was bound to humic acids after photo-exposure, but subsequent 

biological incubations with photo-exposed and control DOM showed that 40-

60% more glycine was metabolized in incubations with photo-exposed DOM. 

Although photochemical production of peptides is not as well documented as 

photochemical production of amino acids, a similar scenario could have taken 

place in our experiment, in which photo-exposure caused humic-bound 

nitrogen species to become unbound and bioavailable.  

The exceptions to the amino acid transport trend were transporters of 

cystine, methionine, and arginine, which displayed higher expression in the 

light treatment rather than the dark control. Again a biological rather than 

photochemical explanation is possible here, especially considering the two 

amino acids containing sulfur, cystine and methionine, fell into this category. 

Based on high ribosomal expression, the cellular activities of the light 

treatment communities probably involved more protein synthesis than those 

in the dark control. Higher cystine and methionine transport could be 

explained by this process, since many proteins require sulfur-containing 

coenzymes (Sekowska et al., 2000). It is unclear why expression for arginine 

transport was higher in the light, but this particular amino acid could serve an 

important function in certain proteins being synthesized in the light treatment.  
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Transporters for sugars and polyols (alcohols with multiple hydroxyl 

groups) were all expressed more in the dark except for two transporters for 

phosphate-containing polyols, suggesting that sugars and polyols were 

limiting in the dark treatment, but became more available upon DOM photo-

exposure. It is well known that photo-exposure of DOM can give rise to the 

production of labile, low molecular weight compounds, but production of low 

molecular weight acids, not sugars and alcohols, is often reported (Moran & 

Zepp, 1997). Gonsior et al. (2014) found that irradiation of refractory DOM 

produces polyols, so it is possible that sugars and alcohols are produced 

along with acids, but that acids are more easily detected.  

Iron transporters for siderophore-complexed iron(III) were expressed 

more in the dark, while transporters for free iron(III) were expressed more in 

the light, suggesting a change in the source of available iron. Although prior 

interpretations of transporter expression have relied on the assumption that 

higher expression of a transporter suggests the substrate is more limiting, 

expression of these transporters can be interpreted differently, since both 

transporters use the same substrate, iron(III). Here, what likely determines 

higher expression of one transporter over the other is the requirement for 

siderophores, which are iron-scavenging molecules synthesized and secreted 

by microbes in iron limited conditions (Sandy & Butler, 2009). Therefore lower 

expression for siderophore-complexed iron(III) in the light treatment suggests 

that photo-exposure of DOM alleviated the need for iron scavenging. 
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Consistently, sunlight is known to break down iron(III)-DOM complexes and 

release free iron(III) (Voelker et al., 1997). 

These findings highlight the usefulness of metatranscriptomic analysis 

in detecting changes in DOM that cannot be detected with current analytical 

techniques. In addition, using metatranscriptomics to investigate changes in 

DOM yields microbial-centric information about DOM, which is important if 

one is concerned with the photochemical effects on DOM’s bioavailability and 

environmental cycling. Of course, metatranscriptomic data cannot provide 

conclusive evidence for any particular change in DOM, but it can provide new 

lines of evidence to support or contradict prior hypotheses, spark new 

hypotheses, and more broadly draw attention to the biological processes 

important in each community. Most importantly, the dramatic shifts in enzyme 

and transporter expression observed from dark to light treatment further 

indicate that a short-term exposure to sunlight can cause significant changes 

in DOM and its microbial processing. 

 
4.4. Taxonomic response to DOM source 

Community composition was similar between the two treatments, since 

DOM had been inoculated with the same microbial community. The small 

differences between the communities, however, can be explained by either of 

two scenarios. First, it is possible that a change in DOM caused community 

composition to shift over 4 h via rapid growth of certain taxa and death of 

others. Second, it is possible this change took place in DOM before 

inoculation, since production of DOM with a 0.45 µm filter did not entirely 
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sterilize DOM. Community composition of cells remaining in DOM may have 

diverged over the length of the photo-exposure.  

Community composition included well-known soil and planktonic taxa 

(Crump et al., 2012; Janssen, 2006). The distribution of these taxa was not 

necessarily reflective of natural microbial communities, but this can almost 

certainly be attributed to the inevitable phylogenetic shifts that occur during 

confinement, due in part to faster growth of opportunistic populations and 

reduction of grazing pressure (Bouvier & Del Giorgio, 2007; Fuchs et al., 

2000; Massana et al., 2001). This “bottle effect” may explain the dominance 

of Gammaproteobacteria, which often do well in confined experimental 

incubations (e.g., Fuchs et al., 2000) on account of having genomes well 

equipped for dynamic environments (Moran et al., 2007). 

Gammaproteobacteria are also well equipped for aromatic degradation 

(Moran et al., 2007), a seemingly large advantage during incubation with 

humic DOM. Other dominant taxa such as Alpha- and Beta-proteobacteria 

and Bacteroidetes are also commonly detected in incubations with aromatic 

carbon (Widada et al., 2002; Wu et al., 2008; Zocca et al., 2004). Change in 

community composition is a caveat of growing communities under batch 

growth conditions (Massana et al., 2001), and must be taken into account 

during analysis. However, the focus of this experiment was on function rather 

than phylogeny, so this caveat was accepted. 

The composition of the whole community (16S amplicon sequencing) 

and the composition of active taxa (metatranscriptomes) were strikingly 
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different, as has been seen in many studies (e.g., Baldrian et al., 2012). 

Gamma- and Beta-proteobacteria and Bacteroidetes all made up larger 

portions of active taxa than the whole community, suggesting these taxa were 

growing more than other inoculum taxa. The relatively inactive taxa were 

likely not equipped to handle the conditions, and were instead dormant or 

slow-growing (Jones & Lennon, 2010; Kolter et al., 1993). It is also possible 

that database bias partly accounts for the lack of representation of certain 

taxa in metatranscriptomes. Taxonomic classification of metatranscriptomes 

relied on reference databases, in which the majority of sequences come from 

cultured organisms (Huson et al., 2009). This bias could explain why 

Verrucomicrobia, which are difficult to isolate (Sangwan et al., 2005), 

comprised 6% of the community, but less than 1% of the active taxa in both 

treatments.  

The composition of active taxa differed between light and dark 

treatments, suggesting sunlight altered DOM in a way that favored certain 

taxa over others. The largest shift caused by DOM photo-exposure was an 

increase in expression by Gammaproteobacteria and a decrease in 

expression by Bacteroidetes. As mentioned, Gammaproteobacteria have 

genomes that confer advantages for a dynamic environment (Moran et al., 

2007), which could have given them a competitive edge when incubated with 

an altered DOM source. Bacteroidetes are often considered specialists for the 

degradation of highly complex, high molecular weight organic matter (Thomas 

et al., 2011), partly because they possess an elaborate repertoire of hydrolytic 
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extracellular enzymes (Edwards et al., 2010; Gómez-Pereira et al., 2012). 

This may have given them an advantage in the dark treatment that was lost 

once sunlight converted high molecular weight DOM into smaller pieces. It is 

likely that differences in active taxa between treatments were at least partly 

driven by differences in the ability to process organic matter, once more 

underlining that biologically significant photo-alteration of DOM took place. 

Taxonomic affiliations for expression of Ribosome, DNA Replication, 

and TCA Cycle pathways were generally quite similar to taxonomic affiliations 

for the entire metatranscriptome, suggesting that taxa were synthesizing 

ribosomal proteins, replicating, and respiring in roughly the same proportions. 

This was slightly truer of the dark treatment than the light treatment. In the 

light treatment, Gamma- and Beta-proteobacteria together contributed more 

than 90% of transcripts for ribosomal biosynthesis, suggesting these taxa 

were synthesizing relatively more ribosomes compared to other taxa. 

However, overall, taxonomic affiliations for these pathways were similar, as 

were differences between light and dark treatments.  

In contrast, the Aromatic Degradation pathway did not demonstrate the 

same patterns. This pathway, made up primarily of transcripts associated with 

Gammaproteobacteria, followed by Betaproteobacteria, Alphaproteobacteria 

and Bacteroidetes, was expressed in remarkably similar proportions in the 

light and dark treatments. Seeing as the expression of other pathways 

demonstrated considerable taxonomic differences between treatments, one 

might predict that the Aromatic Degradation pathway would follow the same 



 

 

48 

trend. That it did not suggests that only a limited number of taxa are capable 

of aromatic degradation (Bugg et al., 2011), and that despite shifts in the taxa 

responsible for all expression, the aromatic degrading taxa remained fixed 

because no other taxa had the metabolic capability to take their place.  

Further, it is intriguing that the aromatic degrading community looks 

strikingly similar to the light treatment community of other pathways. This is 

the opposite of what we expected, and it suggests that sunlight’s destruction 

of aromatic compounds leads to an active community that is dominated by 

aromatic degrading organisms. However, it is more likely that a confounding 

factor is at play here. For instance, Gammaproteobacteria, which are 

dominant in both the aromatic degrading community and the active 

community, are capable of aromatic degradation, but also of rapid adjustment 

to new environments, and the latter could have been the actual cause of 

dominance in the light treatment’s active community.  
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5. CONCLUSION 

 
The combined activities of sunlight and microbes are responsible for 

the majority of carbon degradation in arctic freshwaters. However, little is 

known about the mechanisms of photochemical and biological DOM 

degradation or how they interact. To gain insight into these mechanisms and 

interactions, we manipulated DOM and microbial communities, and examined 

responses by coupling two state of the art technologies: high resolution mass 

spectrometry and metatranscriptomics.  

Using FT-ICR MS, we determined that sunlight and microbes altered 

similar fractions of the DOM pool, including many identical DOM chemical 

formulas. These results suggested “competition” between photochemical and 

biological processes, and explained lower microbial activity in response to 

light-exposed DOM. FT-ICR MS results also suggested that photo- removal or 

photo-production of bioavailable compounds causes the contrasting effects of 

DOM photo-exposure on microbial activity, effects that have been 

documented many times, but remain unexplained.  

Metatranscriptomics allowed further examination of the microbial 

response to light-exposed DOM, and indicated rapid reprogramming of 

community gene expression profiles. By identifying functional genes involved 

in this reprogramming, we revealed that shifts in microbial activity were 

associated with shifts in resource investment at the molecular level, providing 

another indication that photo-exposed DOM elicits shifts in microbial growth. 

Expression of certain functional genes also reflected changes in DOM 
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chemistry, providing new lines of evidence for sunlight’s effect on DOM. This 

evidence was consistent with prior analytical studies, and suggested that 

sunlight degrades aromatics, oxidizes and decarboxylates DOM, and alters 

nutrient bioavailability.  

Taken together, our findings indicate a complex interplay of 

photochemical and microbial DOM degradation. By paring FT-ICR MS and 

metatranscriptomics, we generated insight and new hypotheses about this 

interplay that could not have been achieved with other methods. 

Understanding the interactions of photochemical and biological DOM 

degradation is critical for predicting the fate of DOM in arctic surface waters, 

and ultimately the Arctic’s role in climate change. As arctic soils thaw and 

DOM inputs to surface waters grow larger, interaction of photochemical and 

biological processes will determine the scales at which DOM is converted to 

CO2. Here, we gained the kind of detailed perspective on these processes 

that is necessary to develop a predictive understanding of DOM degradation. 
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7. FIGURES 

 
Figure 1. Schematic of experimental design. 

Figure 2. Effect of photochemical and biological degradation on DOM.  

Figure 3. Microbial activity across treatments. 

Figure 4. Characterization of gene expression across treatments.  

Figure 5. Expression of KEGG tier II and III categories across treatments.  

Figure 6. Genetic evidence for sunlight’s effect on DOM. 

Figure 7. Taxonomic composition of whole and active communities. 
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Figure 1. Schematic of experimental design.  
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Figure 2. Effect of photochemical and biological degradation on DOM. The 
van Krevelen diagram shows FT-ICR MS formulas that were produced by 
sunlight (gray), degraded by sunlight (blue), and degraded by bacteria (red).   
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Figure 3. Microbial activity in light-exposed (light gray) and dark-control (dark 
gray) treatments, as measured by respiration (O2 consumption and CO2 
production), biomass production, new cell production, and growth efficiency.  
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Figure 4. Characterization of gene expression across treatments.  
(a) Nonmetric multidimensional scaling analysis of metatranscriptomes from 
light-exposed (light gray) and dark-control (dark gray) treatments. Ellipses 
represent 95% confidence intervals, as measured by standard error. (b) 
Shannon alpha diversity each treatment. (c) Scatterplot representing mean 
transcript abundance of all genes (KOs) in the light-exposed versus dark-
control treatments (gray), and of select genes (green) that cumulatively 
contributed to the top 30% of dissimilarity between treatments according to 
SIMPER. The 1:1 line (black) highlights differences in transcript abundance of 
many genes across treatments. Points plotted on the axes are genes with 
zero measured abundance in one treatment but not the other. 
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Figure 6. Genetic evidence for sunlight’s effect on DOM. Heat-maps 
represent transcript abundance of specific categories of enzyme and 
transporter genes for each replicate. Dark red represents the lowest values 
and light yellow represents the highest values. (a) All differentially expressed 
genes (paired t-test, p ≤ 0.05) in aromatic degradation, oxygenase, and 
decarboxylase categories. (b) All differentially expressed genes in 
phosphorus, amino acid, sugar, polyol, and inorganic ion ABC transporter 
categories (paired t-test, p ≤ 0.05). One asterisk (*) indicates aromatic 
degradation genes that are duplicated because they also fall into the 
decarboxylase or oxygenase category, and two asterisks (**) indicates a non-
significant difference between treatments (p = 0.17) for the iron(III) 
transporter.  
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Figure 7. Relative taxonomic composition of the whole community (16S 
amplicons), the active community (metatranscriptomes), and communities 
expressing genes in KEGG pathways for Ribosome, DNA Replication, TCA 
Cycle, and Degradation of Aromatic Compounds. 
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