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microRNAs (miRNAs), ~21-24 nucleotide-long RNAs that post-transcriptionally regulate gene 

expression, have rapidly become one of the most extensively studied mechanisms of the past 

decade. Since their discovery as temporal regulators of post-embryonic development in C. 

elegans, miRNAs have been functionally implicated in almost every cellular process 

investigated to date. miRNAs are integral to the complex biological processes of embryonic 

development and aging. In this research, we sought to determine whether misregulation of 

miRNAs could be responsible for eliciting adverse effects during these two distinct 

developmental stages. First, to uncover the potential role of miRNAs in teratogenicity, we 

investigated whether miRNAs were involved in regulation of retinoic acid (RA) induced 

vertebrate axis defects. Global miRNA expression profiling revealed that RA exposure 

suppressed the expression of miR-19 family members during zebrafish somitogenesis. 

Bioinformatics analyses predict that miR-19 targets cyp26a1, a key RA detoxifying enzyme, 

and a physiological reporter assay confirmed that cyp26a1 is a bona fide target of miR-19. 

Transient knockdown of miR-19 phenocopied RA-induced body axis defects. In gain-of-

function studies, exogenous miR-19 rescued the axis defects caused by RA exposure. Our 

findings indicate that the teratogenic effects of RA exposure result, in part, from repression 

of miR-19 and the subsequent misregulation of cyp26a1. This highlights a previously 

unidentified role of miR-19 in facilitating vertebrate axis development. Next, to explore 

whether age-related changes in miRNAs trigger deficits in regeneration capacity, we 

performed mRNA and small RNA sequencing on regenerating and non-regenerating caudal 

fin tissue from aged, adult and juvenile zebrafish. An unbiased approach identified cbx7 as 



 
 

the most abundant transcript with significantly increased expression in regenerative-

competent adult and juvenile tissue and decreased expression in regenerative-compromised 

aged tissue. While cbx7 is a known regulator of aging, this is the first report of its role in 

tissue regeneration. A computational approach was used to discover mRNAs expressed 

during regeneration, which are potential targets of the significantly expressed miRNAs in 

regenerating tissue. miR-21 was one of the most abundant and significantly increased 

miRNAs in regenerating tissue and exhibited an aberrant age-dependent expression profile. 

Bioinformatics predicts miR-21 to target the 3’ UTR of cbx7 and a reporter assay confirmed 

that miR-21 targets cbx7 in vivo. Transient knockdown of miR-21 inhibited tissue 

regeneration, suggesting a role for miRNA mediated regulation of cbx7 during regeneration. 

These findings reveal a novel, age-dependent regenerative function of cbx7 and emphasize 

the importance of miR-21 as a master regulator of vertebrate regenerative responses. This 

research, when combined, underscores the negative consequences misregulation of miRNAs 

has on embryonic development and aging. 
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Chapter 1 – Introduction 

Since the discovery of microRNAs (miRNAs) in 1993, these small non-coding RNAs have 

rapidly become one of the most extensively studied regulatory mechanisms of the past 

decade (1). miRNAs are integrally involved in complex biological processes such as animal 

development and aging (2-6). While embryonic development is inherently dynamic and aging 

is a more gradual process, miRNAs play a pivotal role in each of these life stages through the 

post-transcriptional regulation of genes that dictate the formation or degradation of cells, 

tissues and organs (5, 6). In this research, we explored how misregulation of miRNAs could 

be responsible for undesirable effects such as teratogenicity in developing animals (Chapter 

2) and a declined ability in aging animals to maintain and restore tissue (Chapter 3). 

 

microRNAs 

MicroRNAs (miRNAs) are ~21-24 nucleotide-long RNAs that post-transcriptionally regulate 

gene expression (7). Since their original discovery as temporal regulators of post-embryonic 

development of C. elegans (8, 9), post-transcriptional regulation by miRNAs have been 

functionally implicated in almost every cellular process investigated to date (10). miRNAs are 

predicted to control ~60% of mammalian protein coding genes (10). Hence, the effects of 

miRNA-mediated gene expression are widespread. This prompted our investigation of the 

role of miRNAs in embryonic development and aging, using zebrafish as a model to 

understand how misregulation of miRNAs contributes to teratogenicity and age-related 

declines in tissue maintenance and repair. 

 

miRNA biogenesis: 

Primary miRNAs (pri-miRNAs) genes are transcribed in the nucleus by RNA polymerases II or 

III (11, 12). Pri-miRNAs range in length from hundreds to thousands of nucleotides (13). 

Approximately half of mammalian miRNAs are located in the intronic regions of coding genes 

or exons of non-coding RNAs (14). Additionally, miRNAs can be clustered relatively close 

within the genome and co-transcribed as polycistronic transcripts (13). The remainder are 

located in intergenic regions, exclusive from protein coding genes (13). Similar to coding 



2 
 
genes, miRNA transcription is tightly regulated by both transcription factors and epigenetic 

mechanisms which control tissue and cell specific expression patterns (1). 

 

In the nucleus, Drosha, a nuclear RNase III, in association with DGCR8, cleaves the ends of the 

pri-miRNA stem-loop leaving behind a ~70 nucleotide stem loop structure, called precursor 

miRNA (pre-miRNA) (15-18). Processing by Drosha results in a 2 nucleotide overhang on the 

3’ end at the cleavage site (19). Following cleavage, the pre-miRNA is translocated into the 

cytoplasm by Exportin 5, a Ran-GTP dependent nucleo/cytoplasmic cargo transporter (20). 

The stem loop of the pre-miRNA is then cleaved by Dicer in complex with TAR RNA binding 

protein (TRBP) yielding a ~21-24 nucleotide mature miRNA duplex with a 2-nucleotide long 3’ 

overhang (13, 21). 

 

One strand of miRNA/miRNA* (guide strand/star strand) duplex is embedded with one of 

four Argonaute proteins (Ago 1-4) and incorporated into the RNA induced silencing complex 

(RISC), while the other strand is selectively degraded (22, 23). In most cases, the guide strand 

is retained by RISC as it generally has the less stably base-paired 5’ end (10). Yet, there are 

numerous documented instances in vertebrates when the miRNA* strand is loaded into RISC 

and participates in post-transcriptional gene regulation (24). The RISC complex guides the 

loaded miRNA to target mRNA to inhibit translation or evoke mRNA degradation (21), as 

described in the following section. 

 

miRNA-mRNA interactions:  

miRNAs exert post-transcriptional control of target mRNA by binding with near perfect 

complementarity to target recognition sequences within the 3’ UTR of mRNA. The binding 

requires Watson-Crick pairing of nucleotides 2-8 on the 5’ end of the miRNA, known as the 

“seed” sequence, with cognate mRNA recognition sequences (7). In animals, imperfect 

pairing of miRNAs to mRNAs inhibits target protein synthesis by translational repression or 

mRNA deadenylation and decay (10). Translational inhibition can occur at the initiation phase  

through repression of cap recognition (25-27) or at the elongation phase causing either 

slowed elongation or ribosome ‘drop off’  (28-30). Additionally, deadenylation of mRNA can 

result in subsequent decapping and degrading of transcripts (31-34).  
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Members of a miRNA family share the same seed sequence, and, in turn, a majority of the 

same targets (7). Additionally, an individual miRNA can interact with hundreds of target 

mRNAs and a single mRNA can be regulated by several miRNAs (35). As a result, miRNA gene 

regulatory networks are highly complex. Fine-tuning of gene expression has been suggested 

as the fundamental role of miRNA through temporal regulation of tissue and cell specific 

protein output (7). Hence, we sought to determine how misregulation of these global 

‘micromanagers’ could negatively impact embryonic development and the ability to maintain 

and repair tissue. 

 

Retinoic acid 

To explore the role of miRNAs in teratogenicity, we used retinoic acid (RA), as a model 

teratogen, since it is well known for its multifarious, deleterious developmental effects. It has 

been over 50 years since the teratogenic influences of aberrant RA signaling during 

development were first documented in rodents (36). Since that time, numerous studies in 

various different models have contributed to a clearer picture of the molecular mechanisms 

that underlie RA signaling during development (36). Yet, given the diverse role of RA in a vast 

number of tissue and cell types, questions still remain about the etiology of RA induced 

teratogenicity. Since developmental RA abundance requires strict spatiotemporal regulation 

(as reviewed in (37, 38)) and miRNAs are known to absolve transcriptional programs from 

previous developmental stages (as reviewed in (39-41)), we sought to determine whether 

dysregulation of miRNA signaling resulted in the hallmark curved body axis phenotype 

triggered by RA exposure (Chapter 2).  

 

RA synthesis and gene regulation: 

During development, maternal Vitamin A is the major source of retinoids to placental 

embryos. Oviparous species derive RA from Vitamin A stored in the egg yolk (37). Most adult 

species cannot synthesize retinoids de novo. Therefore, it must be consumed in the diet (42). 

RA is synthesized intracellularly via a two-step process. First, vitamin A is converted to 
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retinaldehyde in a rate-limiting reaction by microsomal retinol dehydrogenases (RDHs) and 

cytosolic alcohol dehyrogenases (ADHs). Retinaldehyde dehydrogenases (RALDH1, RALDH2 

and RALDH3) then generate RA via an irreversible oxidation step (37). RA is then either 

transported to the nucleus by cellular RA binding proteins (CRBPs) or metabolized by the 

cytochrome P450 26 (CYP26) family of enzymes. In the nucleus, RA interacts with the ligand-

inducible heterodimers of RA nuclear receptors (RARs) and retinoid X receptors (RXRs) to 

initiate the transcription of target genes (43). Members of the RAR family (RAR α, β, γ) are 

activated by all-trans-RA and 9-cis-RA, the most active biological retinoids, and 4-oxo-RA, 3,4-

didehydro-RA and 4-hydroxy-RA. The RXR family (RXR α, β, γ) is only activated by one RA 

metabolite, 9-cis-RA. However, this metabolite is not detected endogenously in embryonic or 

adult tissue due to its rapid conversion to all-trans-RA (37).  

 

RAR-RXR heterodimers bind to DNA responsive elements of target genes known as RA 

response elements (RAREs). The majority of RAREs contain two direct repeats of the 

canonical nucleotide sequence (A/G)G(G/T)TCA separated by 1-5 nucleotides (44, 45). RAR-

RXR dimers can bind RAREs by a ligand-independent mechanism. This leads to transcriptional 

repression upon recruitment of co-repressors, SMRT (silencing mediator for retinoid and 

thyroid receptors) and NCoR (nuclear receptor corepressor), histone deacetylases and 

methyltransferase complexes (37, 42, 46). Upon ligand binding, a conformational change 

occurs in the RAR ligand binding domain; in turn, the co-repressors are released which allows 

the recruitment of co-activators (37, 46). Over the last 30 years, more than 530 genes have 

been identified as putative regulatory targets of RA (44). Yet, only ~30 have been proven to 

contain functional RAREs. The majority are indirect targets, indicating the actions of 

intermediate transcription factors, associations with other proteins or distant signaling 

pathways (44). The expansive nature of the RA regulatory network underscores the criticality 

of maintaining proper RA signaling during development. 

 

RA metabolism: 

Cyp26 enzymes convert all-trans-RA into more polar metabolites, primarily 4-hydroxy-RA, 

which is further oxidized to 4-oxo-RA (38). Other metabolites include 18-hyrdroxy-RA and 

5,8-epoxy-RA  (47). All the metabolites are then subject to further conjugation and 
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elimination (37). Although there is debate about whether the CYP26 metabolites of RA are 

biologically active, evidence suggests that those produced via Cyp26a1 are not (37, 46). The 

Cyp26 family of enzymes includes Cyp26a1, Cyp26b1 and Cyp26c1, each with its own distinct 

expression domains during development (38). These enzymes all play an important role in 

regulating RA levels to prevent inappropriate RA signaling (43, 46). Targeted manipulation of 

Cyp26a1 and Cyp26b1 results in abnormalities that mimic the teratogenic effects of excess 

exogenous RA exposure (48-51) suggesting that the developmental role of RA is strongly 

related to the enzymatic regulation of its synthesis and tissue specific metabolism (as 

reviewed in (37)). Therefore, we chose to explore, specifically, how miRNAs might regulate 

enzymes responsible for RA abundance that, in turn, affect the expression of RA-responsive 

genes. 

 

RA induced teratogenicity: 

Imbalances in RA abundance, either deficiency or excess, are known to cause teratogenicity 

(37, 42). Vitamin A deficiency (VAD) induces congenital malformations in the cardiac, 

respiratory, ocular and urogenital systems (52, 53). Deficient RA signaling during 

development has implications on human spinal column birth defects, such as scoliosis. Excess 

amounts of Vitamin A can cause abnormal morphological development of the central 

nervous system, skeletal system, liver and skin (42, 54). In our research, we focus on the role 

of RA-induced miRNAs in eliciting developmental axis defects through the misregulation of 

RA signaling during somitogenesis. 

 

Role of RA in somitogenesis and axial patterning: 

There are numerous RA-dependent events during development whose disparate outcomes 

rely on the delicate interplay of RA synthesis and metabolism (37). Segmental patterning of 

the vertebrate axis during somitogenesis is one of these events (37, 38, 55, 56). The most 

important tissues for RA production during embryonic development in vertebrates include 

the presomatic mesoderm (PSM) and somites. The PSM is mesenchymal tissue that parallels 

both sides of the neural tube, and somites are epithelial spheres of mesoderm derived from 

the PSM that give rise to the vertebrae and skeletal muscles (45, 56-59). RA signaling 

regulates the directional, periodic, and synchronous segmentation of the PSM into somites 
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by two key modes of action: (1) control of the anterior-posterior (AP) body axis of the 

traveling determination front that defines the positioning of the somite (57, 60-62) and (2) 

symmetric formation of somites along the left-right (LR) body axis (58, 59, 63-66). 

Perturbations of RA signaling during somitogenesis result in the desynchronization of somite 

formation in mouse, chicken and zebrafish (58, 59, 64). The observed phenotypes reflect 

human defects of the vertebral column (67, 68). RA is proposed to have a pivotal role in 

vertebrate segment formation by antagonizing the FGF/WNT signaling gradient that controls 

the somite positioning (69).  

 

RA is also critical in protecting the paraxial mesoderm from molecular signals directing LR 

patterning and, thus, maintaining symmetry in the PSM (55, 58, 59, 64). Asymmetric somite 

formation results from aberrations in RA signaling (64). Interestingly, when researchers 

investigated the mechanism by which RA signaling becomes lateralized in response to the LR 

information cascade, obvious LR asymmetries were not observed in the transcript expression 

of key RA synthesizing and metabolizing enzymes as hypothesized (64). The conclusion was 

that control of RA signaling by the LR information cascade during somitogenesis is likely to be 

post-transcriptional (64).  

 

Role of miRNAs in somitogenesis:  

miRNA-meditated post-transcriptional regulation of gene expression was demonstrated to 

influence vertebrate axis patterning and development (70-77). Defects in somitogenesis, 

gastrulation, and heart and brain development are observed in maternal zygotic dicer 

zebrafish mutants that lack the dicer enzyme necessary to generate mature miRNAs (71). 

Reduced axis extension resulted in a truncated tail phenotype in mutants (71). Similarly in 

mice, loss-of-function of Dicer during mesoderm development caused reduction in somite 

size, a reduced AP axis, and caudalization of somites (77). Other studies have revealed the 

functional role of miRNAs in somite-derived sclerotome and dermomyotome development in 

mice (78-80), chicken (81, 82), zebrafish (70, 83, 84), and xenopus (85). These results suggest 

the necessity for miRNA-mediated regulation of the precisely timed events that control 

somite formation. 
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Several reports describe a mechanistic link between miRNAs, early embryonic patterning and 

somitogenesis (73, 74, 86). Additional studies demonstrated the role of miRNAs in 

modulating the expression of Hox cluster genes that participate in the patterning of the AP 

axis (72, 75, 87-89). RA directly regulates the transcription of several Hox genes (90-92). This 

brings to light the broad network of RA-mediated miRNA regulation during somitogenesis.  

 

Role of miRNAs in RA signaling:  

Beyond axis patterning and formation, numerous other studies have investigated the role of 

miRNAs in RA-dependent biological processes. Post-transcriptional regulation is implicated in 

RA signaling during carcinogenesis (93-98), cardiac development (99), spinal cord 

development (77), appendage development  (72), eye function (100), spermatogenesis (101), 

muscle cell differentiation (102), and stress-induced premature cellular senescence  (103). A 

clear understanding of the post-transcriptional effects of miRNAs on the delicate balance of 

RA synthesis and metabolism, critical to early developmental patterning, has yet to be 

elucidated. 

 

Aging   

One of the hallmarks of aging, across all species, is a decline in the ability to maintain tissue 

function or restore damaged tissue (104-108). Many similarities exist in molecular 

mechanisms that regulate development and regeneration (109). Regeneration requires the 

reactivation of fundamental developmental signaling pathways in order to restore damaged 

or missing structures (109). Both development and regeneration require precise control over 

the spatiotemporal gene expression necessary to initiate and terminate molecular signaling 

cascades that guide cells to either create or recreate new tissue architecture(109). Given the 

known role of miRNAs in fine-tuning gene expression patterns (3), we chose to investigate 

whether age-related changes in miRNAs could be responsible for declines in regenerative 

capacity (Chapter 3). 
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Stem cells and aging: 

Aging is one of the most recognizable phenomena of biology and yet, to date, is one of the 

least understood (105). This is largely due to the fact that the aging process is an 

accumulation of a host of complex changes in an organism over time (106). There are 

characteristics of aging that are common across all species which result in similar phenotypes 

(105). Yet, there is no prescribed group of methodologies or ideal model organism that 

allows us to address all of the factors that contribute to aging. Decreases in maintenance of 

tissue homeostasis and repair of damaged tissue implicate stem cells as a key factor in the 

aging process (105-108). Best summarized by Ho et al., “as the regenerative prowess of a 

living organism is determined by the ability and potential of its stem cells to replace damaged 

tissue or worn out cells, a living organism is therefore as old as its stem cells” (104).  

 

Understanding how adult stem cell populations are involved in regeneration is paramount to 

the advancement of the field. Stem cells are undifferentiated and can replace themselves 

indefinitely, producing daughter cells which have the potential to differentiate into various 

different mature cell types (105, 110). Embryonic stem cells have the ability to become any 

differentiated cell type in an organism. In contrast, adult stem cells are generally lineage 

specific and committed to a specialized cell type from their originating tissue (104, 111-113). 

Numerous reviews detail the many genetic and biochemical processes which contribute to 

stem cell aging (i.e. telomerase attrition, DNA damage, reactive oxygen species, and changes 

in chromatin dynamics and epigenetic regulation) (104-106, 110, 114). Regardless of the 

mechanism, aging of tissue-specific stem cell and progenitor cell populations is thought to be 

a contributor to the reduction of integrity and function in tissues and organs  (104-108). 

 

Role of miRNAs in tissue aging: 

miRNAs are implicated in regulating numerous aspects of cellular senescence and organismal 

lifespans (4). Several reviews detail the role of miRNAs in the regulation of cellular 

senescence induced by stress, reactive oxygen species, DNA damage, modulation of tumor 

suppresser activation, replicative senescence and telomerase length (4, 5, 105, 115, 116). 

Studies have also identified functional miRNA-mRNA interactions that influence lifespan 

through regulation of the age-related insulin/IGF1, steroid and rapamycin (TOR) signaling 
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pathways (as reviewed in (4, 5)). For the purposes of this research, we are keenly interested 

in the role of miRNAs in tissue aging and how age-related changes in miRNAs can affect 

mechanisms that control the ability to maintain and repair tissue. 

 

Only a few studies have been published to date on this subject which have documented 

changes in miRNA expression in older tissue compared to younger tissue (5). Age-related 

changes in miRNA expression were demonstrated, in mice and rats, to control the expression 

of key transcripts necessary for liver maintenance (117-119). miRNA expression profiles were 

also conducted and revealed several distinct mechanisms through which miRNAs mediate 

aging in brains of mice, chimpanzees, humans and macaques (120-123). Additionally, studies 

revealed that miRNAs are associated with aging of skeletal muscle through regulation of 

pathways that control the differentiation of myogenic precursor cells and satellite cell 

turnover (124, 125). Given the relative scarcity of research conducted on the role of miRNAs 

in tissue aging to date, we chose to use zebrafish as a model organism to examine if age-

related changes in miRNAs could be responsible for the decline in tissue maintenance and 

repair capacity associated with age. 

 

Zebrafish model for aging research: 

Zebrafish have recently emerged as a vertebrate model for aging research (126-128). 

Zebrafish research benefits from the organism having a fully characterized genome and 

numerous mutant and transgenic lines available to query the development of age-related 

phenotypes in various tissues and organs (127). Additionally, there are a host of molecular 

techniques that allow the investigation of mechanisms in vivo (127). Zebrafish can live over 3 

years, but generally begin to exhibit signs of gradual senescence similar to humans around 2 

years (129). As zebrafish age they begin to demonstrate age-related changes in β-

galactosidase activity in skin and oxidized protein accumulation in their muscles (128-130). 

Accumulation of lipofuscin and drusen-like lesion in the retinal pigment epithelium, which 

mimic human age-related macular degeneration, was documented with age (130). Aging also 

was shown to cause a decrease in heat shock responses (131, 132) and an increase in 

oxidative stress responses (133). Zebrafish also exhibited age-related changes in circadian 

rhythms (134) and cognitive performance (135). Of particular interest to us is that zebrafish 
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demonstrate age-related deficits in regenerative capacity (128, 136). Taken together, 

zebrafish provide us with the ideal model to investigate miRNA mediated effects on aging 

and the ability to repair tissue.  

 

The latent capacity of key developmental signaling processes must be reawakened to 

regenerate lost structures in adults (137-139). Regeneration of adult tissues requires 

activation of new stem cell populations and reactivation of progenitor cells. Until recently, 

the lineage of the cell types involved in fin regeneration of zebrafish was largely unknown. A 

recent study investigated the lineage specificity of various cell types in a regenerating adult 

caudal fin. The results demonstrated that some cell types are derived from unique lineages, 

such as osteoblasts and dermal fibroblasts; whereas others, the artery and vein, are created 

from the same pool of progenitors (140). Additionally, four neuroectodermal cell types 

examined (melanocyte, irridophore, intraray glia and lateral line) were found to have 

independent organ-founding stem cells in the fin primordium (141). These findings 

supplemented the growing body of knowledge on vertebrate tissue regeneration and 

highlighted its usefulness for elucidating mechanisms involved in the dedifferentiation and 

fate specification of cells necessary to regenerate tissue. 

 

Regeneration 

The phenomenon of regeneration is awe-inspiring. It has captivated biologists and non-

scientists alike. In 1768, Lazzaro Spallanzani reported on how decapitated snails regenerate 

their heads. This intrigued scientists, scholars and laymen, who clamored to witness this 

astonishing biological marvel (111). Still today, this remains one of the most compelling 

questions of evolutionary biology; why can some animals regenerate injured tissue while 

others cannot? (142). To explore this question, the field of regeneration research harnesses 

the innate ability of lower vertebrates, such as salamanders, newts and zebrafish, to better 

understand these evolutionary inconsistencies (142-144). Results from investigations of 

molecular pathways controlling regeneration in non-mammalian models fuel stem cell 

research and further our understanding of de novo post development of tissue in whole 

organisms. 
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Regeneration in zebrafish: 

Zebrafish (Danio rerio) are a preeminent model organism for investigating tissue 

regeneration given the ability of zebrafish to regenerate numerous organs and cells including 

fin (143), heart (145, 146), liver  (147), optic nerve (148), retina (149), spinal cord  (150), 

sensory hair cells  (151), melanocytes  (152), maxillary barbel (153), and olfactory bulb  (154). 

There are many advancements in zebrafish genetics and genomics which contribute to the 

powerfulness of this model (127). In this research we used the caudal fin regeneration model 

to study why vertebrates demonstrate a decline in wound healing and regenerative capacity 

with age. 

 

Zebrafish caudal fin regeneration: 

The adult caudal fin is a complex and organized structure. The fin has 16-18 lepidotrichia (fin 

rays) connected to the skeleton by soft tissue. The individual rays are defined on each side by 

hemirays that are comprised of bony segments encased by a single layer of scleroblasts 

(bone-secreting cells). Between the hemirays are blood vessels, nerves, mesenchymal cells, 

fibroblast and melanocytes. An epidermal cell layer covers the entire lepidotrichia. Upon 

injury or surgical amputation, regrowth occurs by the gradual addition of bone segments to 

the distal end of the fin (as reviewed in (143)). 

 

The restoration of lost or damaged caudal fin structures is mediated by a network of 

signaling cascades that instruct cells to coordinately commence the various stages of 

regeneration which include: wound healing, blastema formation, outgrowth, and 

termination. The regenerative process through which teleosts restore lost caudal fin 

structures is termed epimorphic regeneration. This is characterized by the formation of a 

mass of undifferentiated proliferative mesenchymal cells, called a blastema  (155). After 

surgical amputation of a fin, the lost structure is completely replaced in approximately three 

days in larval fish and two weeks in adult fish (156). In the adult model, following 

amputation, wound healing begins with the lateral migration of non-proliferating epithelial 

cells over the injury plane to form an apical epithelial wound cap (AEC)  within the first 12 

hours post amputation (hpa) (157). Canonical Wnt signaling is required for formation of the 

wound epithelium (158, 159). Fibroblast Growth Factor (FGF) signaling is also critical to the 
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formation of the wound epidermis (160). Once the AEC is formed, mesenchymal cells 

proximal to the amputation site dedifferentiate and proliferate as they migrate to the area 

under the AEC to form a blastema within 48 hpa. Wnt/β-catenin and FGF signaling continues 

to be necessary for blastema formation and were demonstrated to be negatively regulated 

at this stage by miR-203 and miR-133, respectively (159, 161). The Activin-βA ligand, TGF-β, is 

also involved in regulating the molecular events involved with both wound healing and 

blastema formation (162). More recently, IGF-signaling was found to be required between 

the wound epidermis and blastema for a successful regenerative response (163). The later 

regenerative events that control outgrowth also require Wnt/β-catenin and FGF signaling 

(159, 161). Furthermore, Activin-βA also has a continued role in patterning of the outgrowth 

(143). RA signaling is active in the formation of wound epidermis and blastema, along with 

patterning and bone deposition (164-168). Both hedgehog (shh) and several bone 

morphogenic proteins (bmp) control skeletal regeneration and patterning (169, 170). 

Therefore, since miRNAs act to temporally and spatially regulate gene expression, it is 

plausible that miRNAs mediate the expression of key regulatory transcripts that coordinately 

initiate and terminate signaling pathways necessary for regeneration (171). Studies have 

identified individual miRNA-mRNA interactions important for regeneration (172, 173). To 

obtain a complete picture of all the regulatory molecules involved in regeneration, we 

conducted high-throughput RNA sequencing on regenerating and non-regenerating tissue. 

To the best of our knowledge, our research provides the field with the first fully profiled 

expression analysis of transcripts and small RNAs involved in zebrafish tissue regeneration. 

 

miRNA role in caudal fin tissue regeneration: 

There have only been two studies that investigated the role of miRNAs and caudal fin 

regeneration (172, 173). Both discovered that miRNAs target key regeneration-signaling 

molecules, Wnt and FGF, which are necessary for wound healing, blastema formation and 

regenerative outgrowth. One study transiently knocked down dicer in adult caudal fin tissue 

and demonstrated that miRNA biogenesis is necessary for regeneration (172). Additionally, 

this study showed that miR-203 negatively regulates the Wnt signaling molecule, Lef1 (172). 

The second study showed that Mpsk1 kinase, which is a positive regulator of blastemal 
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proliferation, is targeted by miR-133. Both studies demonstrated that miRNAs mediate the 

expression of transcripts necessary for a successful regenerative response.  

 

This research uses the zebrafish model to explore how misregulation of miRNAs could have 

negative consequences during embryonic development and aging. Although these processes 

are distinctly positioned on opposite ends of a lifespan, we were able to use common 

bioinformatics, genomic and molecular tools to uncover the role of miRNAs in eliciting: 

1. RA-induced vertebrate axis defects during development (Chapter 2) 

2. age-related declines in tissue regeneration capacity (Chapter 3) 
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Abstract 

Retinoic acid (RA) is involved in multifarious and complex functions necessary for proper 

vertebrate growth and development. RA signaling is reliant on strict enzymatic regulation of 

RA synthesis and tissue specific metabolism. Improper spatial and temporal expression of RA 

during development can result in vertebrate body axis defects. microRNAs (miRNAs) are also 

pivotal in orchestrating complex developmental processes. While mechanistic links between 

miRNAs in early embryonic patterning and axial development are established, the role of 

miRNAs in regulating metabolic enzymes responsible for RA abundance during axis formation 

has yet to be elucidated. Our experimental results uncovered an undescribed role of miR-19 

family members in controlling RA metabolism through the regulation of CYP26A1 expression 

during vertebrate axis formation. We conducted global miRNA expression profiling and 

report that developmental RA exposure suppressed the expression of several miR-19 family 

members during early stages of zebrafish somitogenesis. A physiological reporter assay was 

used to confirm that cyp26a1 is a bona fide target of miR-19 in vivo. Transient knockdown of 

miR-19 expression phenocopied body axis defects observed following developmental RA 

exposure. Furthermore, cyp26a1 expression during somitogenesis was increased in RA 

exposed embryos and miR-19 morphants. In gain-of-function studies, exogenous miR-19 

rescued the axis defects induced by RA exposure. Taken together, these results indicate that 

the teratogenic effects of RA exposure result, in part, from repression of miR-19 expression 

and the subsequent misregulation of cyp26a1. This highlights a previously unidentified role 

of miR-19 in facilitating normal vertebrate axis development via regulation of the RA 

signaling pathway. 
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Introduction  

Vitamin A (retinol) is an essential nutrient necessary for normal vertebrate growth and 

development. Retinoic acid (RA) is an active byproduct of vitamin A synthesis and a critical 

signaling molecule in morphogenesis. In vertebrates, numerous studies have identified a 

diverse range of functions of RA signaling including early axial development and patterning, 

regional patterning of the central nervous system, regulation of neurogenesis and limb 

development and a variety of roles during organogenesis (as reviewed in (1-3)). Both 

excesses and deficiencies in RA levels during development result in teratogenic effects (1, 4). 

Vitamin A deficiency induces congenital malformations in the cardiac, respiratory, ocular and 

urogenital systems (5, 6) whereas; excessive amounts of vitamin A can cause abnormal 

morphological development of the central nervous system, skeletal system, liver and skin (4, 

7). Even though the etiology of many of these developmental abnormalities has been known 

for over 50 years, the molecular mechanisms underlying RA-induced teratogenicity are not 

fully understood. 

 

The pleiotropic functions of RA signaling require strict control over tissue distribution during 

development (3). Two important tissues for RA production during embryonic development in 

vertebrates include the presomatic mesoderm (PSM)or mesenchymal tissue that lines both 

sides of the neural tube (as reviewed in (8)). In addition, the somites, which are epithelial 

spheres of mesoderm generated in a rhythmic pattern from the PSM give rise to the 

vertebrae and skeletal muscles in an RA-dependent fashion (8-11). RA signaling is required to 

orchestrate the directional, periodic, and synchronous segmentation of the PSM into somites 

through control of somite positioning along the anterior-posterior (A-P) body axis in a “clock 

and wavefront” type model (10, 12-14). RA signaling also controls symmetric somite 

formation along the left-right (LR) body axis through the segmentation clock (9, 11, 15-20). 

Perturbations of RA signaling during somitogenesis desynchronize somite formation in quail, 

zebrafish, mouse, and chicken (11, 18, 19, 21) mimicking RA related defects of the human 

vertebral column (22-24). RA mediates its key role in vertebrate segmentation by 

antagonizing the traveling FGF/WNT signaling gradient that controls the mechanism for 

somite spacing (25). In addition to mesoderm segmentation, evidence suggests that the 
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RA/FGF mutually negative feedback loop regulates neurogenesis and growth and 

differentiation of the elongating embryonic axis (as reviewed in (1)). 

 

Although tight control over RA synthesis is essential during vertebrate segmentation, 

regulation of RA catabolism is equally important. Cyp26 enzymes, members of the RA 

cytochrome P450 family, convert all-trans-RA to polar metabolites (4-hydroxy-RA, 4-oxo-RA, 

18-hyrdroxy-RA and 5,8-epoxy-RA) that are subject to conjugation and elimination (1, 2, 26). 

In most vertebrates, the Cyp26 family of enzymes includes Cyp26a1, Cyp26b1 and Cyp26c1, 

each with its own distinct expression domains during development (as reviewed in (2, 27)). 

Targeted manipulation of Cyp26a1 and Cyp26b1 results in abnormalities that mimic the 

teratogenic effects of exogenous RA exposure (28, 29), suggesting that Cyp26 enzymes 

function as primary players in RA detoxification. This supports the critical role of these 

enzymes in regulating the spatiotemporal distribution of RA and preventing inappropriate RA 

signaling during development (30, 31). 

 

In addition to somite formation, RA has a pivotal function in protecting the paraxial 

mesoderm from molecular signals directing LR patterning and, thus, maintaining metamery 

in the PSM (11, 18-20). Disruptions in RA signaling causes asymmetry in somite formation 

(18). In a seminal paper on the topic, the role of key RA synthesizing (retinal dehydrogenase 

2, raldh2) and metabolizing enzymes (cyp26a1, cyp26b1, and cyp26c1) in the mechanism 

that controls lateralization of RA in response to the LR information cascade was investigated. 

The expression of these enzymes was evaluated after experimental manipulation of the LR 

signaling network and no disparate asymmetries in transcript expression patterns were 

observed (18). Therefore, it was speculated that regulation of RA signaling by the LR 

information cascade is likely to be post-transcriptional (18).  

 

microRNAs (miRNAs) are critical post-transcriptional regulators of developmental timing in 

vertebrates (32-34). Mature miRNAs are ~22 nucleotide long endogenous non-coding RNAs 

that bind the 3’ UTR of target mRNAs resulting in mRNA destabilization and/or translational 

repression (35-38). Somitogenesis requires precise temporal regulation and is governed in 

part by miRNAs (39-46). Maternal zygotic dicer zebrafish mutants that lack the dicer enzyme 
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necessary to generate mature miRNAs have severe defects in somitogenesis, gastrulation, 

and heart and brain development (40). These mutants exhibit truncated tails resultant from 

reduced axis extension (40). Similarly, inactivation of Dicer during mesoderm development in 

mice elicited reduction in somite size, a reduced A-P axis, and caudalization of somites (46). 

Numerous studies have revealed the importance of miRNAs in somite derived sclerotome 

and dermomyotome development in mice (47-49), chicken (50, 51), zebrafish (39, 52, 53), 

xenopus (54) and segment formation in Drosophila (55). Taken together, these findings 

suggest miRNAs importance as post-transcriptional regulators of somitogenesis. 

 

Several reports describe a mechanistic link between miRNAs, early embryonic patterning and 

somitogenesis. For example, in developing zebrafish, misregulation of miR-92 resulted in 

aberrant LR patterning (56). miR-In300 targets a gene involved in Wnt signaling, repressing 

the zebrafish myf5 promoter activity during somite formation (43). Delta-like-1, a ligand of 

the Notch signaling pathway, an important regulator of cyclic gene expression that dictates 

rhythmic somite production, is targeted by numerous miRNAs during somite development 

(42). miRNAs also modulate the expression of Hox cluster genes that participate in the 

patterning of the A-P axis (41, 44, 57-59). RA directly also regulates the transcription of 

several Hox genes (60-62), further suggestive of the importance RA-mediated miRNA 

regulation of somitogenesis. For example, miR-196 influences axial patterning through 

putative regulation of Hox genes expression, and it influences pectoral appendage 

development, specifically through direct regulation of the RA receptor gene, rarb. (41). 

Additionally, high throughput sequencing revealed the presence of novel miRNAs in chicken 

somite tissue (45). Despite the critical involvement of RA signaling in somite formation and 

vertebrate symmetry, the role of RA-controlled miRNAs in these developmental processes 

has yet to be investigated. 

 

In this study we investigated the role of miRNAs in orchestrating teratogenic axis defects 

elicited by developmental exposure to RA. Our unbiased global miRNA expression profiling 

revealed that RA exposure dysregulated miR-19 expression during the early stages of 

zebrafish somitogenesis. Empirical experiments confirmed the role of miR-19 family 

members in cyp26a1 regulation and disruption of the RA signaling gradient. These findings 
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demonstrate the necessity for miR-19 in post-transcriptional regulation of RA metabolism 

and define the role for miR-19 in facilitating somitogenesis and normal vertebrate 

development. 

 

Materials and Methods 

Fish care and husbandry:  All zebrafish (Danio rerio) were reared according to Institutional 

Animal Care and Use Committee protocols at the Sinnhuber Aquatic Research Laboratory, 

Oregon State University. The Tropical 5D strain was used for the described experiments. 

Adults were raised on a recirculating water system (28±1 ⁰C) with a 14 h light/10 h dark 

schedule. Spawning and embryo collection procedures were followed as previously described 

(89). 

 

Retinoic acid exposure:  All-trans retinoic acid (RA) (EMD Chemicals, Cat No. 554720) was 

dissolved in DMSO. A range finding experiment was conducted by batch exposing embryos 

(50-75 embryos) to 1- 1000 nM RA in buffered embryo medium(90) (100 µL/embryo) in 20 

mL glass vials with Teflon-lined lids (VWR International). Each vial was treated as a single 

replicate. Embryos were exposed to RA or embryo medium control at 6 hpf. The vials were 

covered with aluminum foil to prevent photodegradation and incubated at 28 ± 1 ⁰C. At 48 

hpf, the embryos were assessed for mortality and morphological defects. The concentration 

that elicited no mortality and only a single morphological defect of interest, a posterior 

curved body axis, in 100% of the embryos was determined to be 5 nM (data not shown). This 

concentration was used for the remaining experiments. Depending on experiment, fish were 

humanely euthanized using MS-222 overdose (90) at various time points (12, 24, 36, 48 or 

120 hpf). Sub-groups were fixed with 4% paraformaldehyde (JT Baker) for in situ 

hybridization or immunohistochemistry experiments or homogenized in QIAzol Lysis Reagent 

(Qiagen) for gene expression analyses. 

 

miRNA microarray assay:  Total RNA was isolated from pooled tissue that was harvested 

from 75 embryos batch exposed to either 5 nM RA or embryo medium at 12, 24, 36 and 48 

hpf (n=2) using miRNEasy Kits (Qiagen). LC Sciences performed the microarray assay on miR 
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Zebrafish V12 Chips that contained probes for all the sequences present in the miRBase 

Sequence Database (V12) as described previously (91). The data were first background-

subtracted and normalized by LOWESS (locally weighted regression (92)). T-tests were 

conducted for differential expression (P < 0.05). The array dataset is available through the 

U.S. National Center for Biotechnology Information Gene Expression Omnibus (93) series 

accession number GSExxxxx (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc_GSExxxx).  

 

Real-time quantitative PCR:  Total RNA was isolated from whole body homogenate of pooled 

embryos using miRNEasy Kits (Qiagen) and oligo(dT)-primed cDNA was synthesized using 

Superscript III (Invitrogen) (n=3). Quantitative RT-PCR (qRT-PCR) was performed with gene 

specific primers for cyp26a1 and β-actin (Eurofins MGW Operon) listed in Table 2-S1 using 

the DyNAmo SYBR Green qPCR kit (Finnzymes) on the Opticon 2 real-time detection system 

(MJ Research). All samples were normalized to β-actin. To quantify miRNA expression, the 

miRCURY LNA™ microRNA PCR System (Exiqon) was used. Primer sets for miR-19 (PN 

204781) and U6 small nucleolar RNA (snoRNA) (control, PN 203907) were used to assess miR-

19 expression on a Step One Plus Instrument (Applied Biosystems).  

 

Whole mount in situ hybridization:  In situ hybridization was performed as previously 

described (94) using a digoxygenin-labeled antisense RNA probe to cyp26a1. To synthesize 

the probe, the cyp26a1 transcript was cloned using RT-PCR gene specific primers (Table 2-S1, 

Eurofins MGW Operon) and cDNA prepared from RNA isolated as described above from 

whole zebrafish at 24 hpf. Digital images were captured using a Nikon Coolpix E500 digital 

camera mounted on a Nikon SMZ 1500 stereomicroscope. 

 

Immunohistochemistry: Embryos were fixed at 24 hpf in 4% paraformaldehyde overnight at 

4 ⁰C. Rabbit α -zebrafish CYP26A1 (dilution: 1:1000, AnaSpec, Catalog No. 55733) primary 

antibody and Alexafluor® 555 goat α-rabbit (dilution: 1:1000,Molecular Probes) secondary 

antibody were used. Briefly, fixed embryos were washed with PBST followed by Milli-Q water 

(Millipore™) for 1 h. A 10 min collagenase (0.0001 g/mL PBST, Sigma, C9891) treatment was 

performed to permeabilize the embryos, followed by a 30 min rinse with PBST. The embryos 

were blocked with 10% Normal Goat Serum (Sigma, G6767) for 1 h at room temperature 
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prior to adding the primary antibody, in which the samples were incubated overnight at 4 ⁰C. 

The following day all samples were rinsed in PBST for 1.5 h, incubated with secondary 

antibody for 1.5 h, and washed 2X for 15 min followed by 3X for 30 min with PBST. Embryos 

were imaged on an inverted Zeiss Axiovert 200 M epi-flourescence microscope using a Zeiss 

Axiocam HRm camera. 

 

Microinjections: An antisense oligonucleotide morpholino (MO) designed against both the 

guide strand and dicer cleavage site of dre-miR-19 or a control 3’ fluorescein-tagged MO 

(Gene Tools) (Table 2-S2) were injected into single-cell stage embryos. Approximately 2 nl of 

1.5 mM morpholino in ultrapure water with 0.5% phenol red was microinjected into each 

embryo. At 24 hpf, the fish were screened for uniform incorporation of the MO by 

fluorescein visualization under ultraviolet light. A synthetic miR-19 or control Dharmacon 

miRIDIAN mimic was injected at 10 µM (Thermo Scientific, C-300488-03-0005).100 ng of the 

cyp26a1 3’ UTR GFP reporter was co-injected with either the synthetic miR-19 or control 

mimic (10 µM) into single-cell stage embryos. Following microinjection of miR-19 MO or 

mimic, qRT-PCR was performed to examine miR-19 expression at 12 and 24 hpf. 

 

GFP reporter assay: The zebrafish cyp26a1 3’ UTR sequence was amplified by RT-PCR using 

adult zebrafish cDNA and gene-specific primers (Table 2-S1, Eurofins MGW Operon). The 

sequence was subcloned downstream of the GFP open reading frame (ORF) that was 

inserted into pCS2+ vector (95). Reporter injected animals were placed into 384 Well 

Polystyrene Microplates and imaged using an Image Xpress Micro (Molecular Devices). 

Measurements of pixel count/embryo were obtained from whole body images of 8 embryos 

using Metaexpress Software (Molecular Devices)  at 24 hpf after 5 independent injection 

days (n = 40).  

 

Statistical analysis: To analyze differences between treatment and control groups, a 

Student’s t-test or 1-way ANOVA with a Dunnett’s or Tukey’s multiple-comparison post hoc 

tests were conducted. Data shown represents means ± SEM; values of P < 0.05 were 

considered statistically significant. Results were calculated using Prism 5.01 (Graph-Pad). 
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Results 

RA exposure misregulates miRNA expression during zebrafish somitogenesis. Exposure to 5 

nM RA from 6-24 hpf resulted in a single distinct posterior curved body axis defect in 100 % 

of the larvae at 48 hpf (Fig. 2-1B) in comparison to control (Fig. 2-1A). To determine whether 

misexpression of miRNAs may play a role in observed body axis defects, a miRNA microarray 

was performed with whole embryo homogenate collected at four time points spanning early 

zebrafish organogenesis (12, 24, 36 and 48 hpf). Numerous miRNAs were significantly 

differentially expressed in comparison to vehicle exposed controls (Fig. 2-S1). The greatest 

number of misexpressed miRNAs was observed at 12 hpf, which falls within the early stages 

of zebrafish somitogenesis (10-24 hpf). Three members of the zebrafish miR-19 family (miR-

19a, miR-19c and miR-19d) were significantly decreased relative to the control (Table 2-1). In 

addition to the miR-19 family members, the expression of miR-22a was decreased 1.5 fold in 

RA exposed embryos (Table 2-1). Validation of the miRNA microarray results by qRT-PCR 

confirmed repression of miR-19 expression by RA at 12 hpf (Fig. 2-1C). 

 

RA exposure disrupts cyp26a1 expression at the onset of somitogenesis. The posterior body 

axis curvature elicited by RA exposure is consistent with the asymmetrical patterning and 

irregular somite sizes that result during misregulation of somitogenesis (11, 18, 19). 

Bioinformatics analysis was conducted with the miRNA tools incorporated in Bioinformatics 

Resource Manager (http://www.sysbio.org/dataresources/brm.stm) (63) to uncover 

potential targets that are both related to RA signaling and somitogenesis, and targeted by 

misexpressed miRNA at 12 hpf. The 3’ UTR of zebrafish cyp26a1, the primary enzyme 

responsible for converting active RA into its inactive polar metabolites, is predicted by EMBL-

EBI microCosm (www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/) to be targeted 

by miR-19a, c, and d, miRNAs that were significantly repressed by RA exposure at 12 hpf 

(Table 2-1). Of all miRNAs examined following transient developmental RA exposure, these 

miR-19 family members exhibited the largest magnitude decrease in expression at 12 hpf in 

comparison to control (Table 2-1). In contrast, a fourth miR-19 family member, miR-19b, was 

not predicted to target the cyp26a1 3’UTR nor was it significantly downregulated at 12 hpf. 

Consistent with the concept that miR-19 family members post-transcriptionally regulate 

http://www.sysbio.org/dataresources/brm.stm�
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cyp26a1, there was a concomitant increase in cyp26a1 transcript expression relative to 

controls at 12 hpf in embryos exposed to RA (Fig. 2-2A). To investigate the spatial distribution 

of cyp26a1 transcript expression during the later stages of somitogenesis, whole mount in 

situ hybridization analysis was employed at 24 hpf and indicated that there was a significant 

expansion of cyp26a1 transcript expression in the tailbud region of RA exposed embryos 

compared to controls (Fig. 2-2B, C). Immunohistochemical analysis showed that RA induced 

CYP26A1 protein expression at 24 hpf in a pattern similar to that of the transcript (Fig. 2-2D, 

E). 

 

Transient knockdown of miR-19 recapitulates axis defects induced by RA exposure. To 

determine whether decreased miR-19 was sufficient to produce the developmental axis 

defect shown in Fig. 2-1A, a single MO was designed to knock down miR-19a, miR-19-c, and 

miR-19-d during development (Fig. 2-3A, Table 2-S2). Embryos injected with the miR-19 MO 

exhibited the posterior curved body axis defect observed in embryos exposed to RA (Fig. 2-

3B-E). Validation of miR-19 knockdown in miR-19 morpholino injected animals was 

confirmed via qRT-PCR analysis (Fig. 2-3F). Additionally, the expression of cyp26a1 transcript 

(Fig. 2-3G, H) and CYP26A1 protein (Fig. 2-3I, J) was increased in the tailbud region of the 

miR-19 MO injected embryos relative to controls at 24hpf. 

 

miR-19 targets the 3’ UTR of cyp26a1 in vivo. To confirm that cyp26a1 is targeted by miR-19 

in vivo, a reporter was designed that contained the 3’ UTR of cyp26a1 downstream of GFP 

(GFP-cyp26a1-3’UTR , Fig. 2-4A). The reporter was co-injected into the single-cell of embryos 

with either a miR-19 mimic or a control mimic and GFP expression was quantified at 24 hpf. 

Co-injection of the GFP-cyp26a1-3’UTR reporter and miR-19 mimic produced a notable 

decrease in GFP expression in comparison to animals co-injected with the reporter and 

control mimic (Fig. 2-4B). Quantification of the pixel count per embryo demonstrated a 

significant decrease in fluorescence in the GFP-cyp26a1 3’ UTR reporter and miR-19 mimic 

co-injected animals in comparison to GFP-cyp26a1 3’ UTR reporter and control mimic 

injected animals (Fig. 2-4C). 
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Exogenous miR-19 represses cyp26a1 and rescues RA induced axial defects. To determine 

whether rescue of miR-19 repression is sufficient to prevent axial defects induced by RA 

exposure, embryos were injected with an exogenous miR-19 mimic then exposed to RA from 

6-24 hpf. Injection of synthetic miR-19 mimic significantly increased the level of miR-19 

transcript present (Fig. 2-5A) and decreased cyp26a1 transcript expression (Fig. 2-5B) at 12 

hpf. In situ hybridization revealed that miR 19-mimic embryos were nearly devoid of cyp26a1 

transcript expression in the tailbud region during the later stages of somitogenesis (24 hpf) as 

compared to the control mimic injected embryos (Fig. 2-5C, D). Injection of exogenous miR-

19 rescued the RA-induced curved body axis (Fig. 2-5E, F). 

 

Discussion 

Perturbations in developmental RA signaling result in teratogenic effects (as reviewed in (1, 

3)) and miRNAs are known to absolve transcriptional programs from previous developmental 

stages (as reviewed in (64-66)). Therefore, we sought to determine whether dysregulation of 

miRNA signaling resulted in the hallmark curved body axis phenotype triggered by RA 

exposure. Studies suggest that the developmental role of RA is strongly related to the 

enzymatic regulation of its synthesis and tissue specific metabolism (as reviewed in (1)). 

Therefore, understanding how miRNAs might regulate enzymes responsible for RA 

abundance that, in turn, affect the expression of RA-responsive genes is critically important. 

During somitogenesis, CYP26A1 is necessary for maintaining homeostasis of RA activity in the 

PSM (as reviewed in (1, 3)). Studies have demonstrated the importance of CYP26A1 in 

vertebrate axis formation (28, 67). Our experimental results uncovered a role for several 

miR-19 family members in controlling metabolism of RA, specifically through the regulation 

of CYP26A1 expression during the early stages of zebrafish somitogenesis.  

 

Our data indicate that developmental exposure to RA represses the expression of miR-19 

family members (miR-19a, miR-19c, and miR-19d) during early somitogenesis (12 hpf), but 

not at a later stage investigated (24 hpf) (Table 2-1 and Supplemental Fig. 2-1). This is 

consistent with previous findings that RA is only necessary during the early stages of 

somitogenesis (somites 1-6 in mice) to assure proper and synchronous development of the 
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remaining somites (7, 68). While all three of these miR-19 family members are predicted to 

target the 3’ UTR of cyp26a1, this had not been confirmed in vivo prior to our study. We 

showed that the 3’ UTR of cyp26a1 is a bona fide target of miR-19 using in vivo reporter 

analysis (Fig. 2-4A-C). Co-expressed miRNAs are known to act cooperatively to regulate the 3’ 

UTR of a common mRNA (69), supporting the concept that RA induced repression of miR-19 

family members likely acts as a compensatory mechanism to increase the expression of one 

of the molecule’s main detoxifying enzymes. Additionally, repression of miR-19 in vivo 

recapitulated the distinct posterior curved body axis morphology (Fig. 2-3C, E) and 

exogenous miR-19 rescued the classic body axis defects associated with RA exposure (Fig. 2-

5F). These findings demonstrate a direct post-transcriptional miRNA interaction with an 

enzyme indispensable for RA metabolism, and its consequences on somitogenesis and, more 

broadly, the regulation of vertebrate axis formation. 

 

The morphological defects exhibited by zebrafish developmentally exposed to RA are similar 

to those demonstrated by both transient and conditional knockdown of CYP26A1 and retinal 

dehydrogenase 2 (RALDH2) in diverse species (28, 70). CYP26A1-null mutants demonstrate 

morphological defects that are strikingly similar to those exhibited upon exposure to excess 

RA, including spina bifida and posterior truncation of the tail and lumbosacral region (28, 71). 

Similar to the morphological abnormalities we documented in embryonic zebrafish upon 

developmental exposure to RA, CYP26A1-null embryos also presented with abnormally 

curved notochords (28). Lack of CYP26A1 expression in the tailbud prevents the clearance of 

RA from the rostrally adjacent mesoderm (28). Adu-Abed et al. hypothesized that the 

resulting dearth of CYP26A1 creates a state of RA “endogenous” teratogenicity that 

recapitulates the effects of excess exogenous RA exposure (28). RALDH2-/- mutants that are 

deficient in endogenous RA also demonstrate shortened body axes and abnormally small 

somites that can be rescued by maternal administration of RA (70). In this study, exposure to 

RA suppressed miR-19 expression. Transient knockdown of miR-19 mimicked RA induced 

body axis defects and resulted in increased cyp26a1 expression (Fig. 2-3B-J). Although many 

miRNA knockouts fail to confer a gross phenotype (as reviewed in (72)), our knockdown of all 

the miR-19 seed family members predicted to target cyp26a1 resulted in an observable 

morphological defect in the whole animal. Elevated levels of miR-19 also reduced cyp26a1 
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expression (Fig. 2-5A-D). Additionally, in our rescue experiment, the body axis curvature 

caused by exogenous RA was rescued by artificially increased miR-19 levels and subsequent 

suppression of CYP26A1 expression. Hence, we postulate a negative feedback loop in which 

exogenous RA exposure during development downregulates miRNAs that negatively regulate 

CYP26A1, leading to increased CYP26A1 expression and decreases in endogenous RA 

expression. This builds on a recent paper that purposed a paradoxical mechanism for RA 

teratogenicity by demonstrating that adverse effects observed by RA exposure are a result of 

local RA deficiency (73). Thus, our findings place post-transcriptional regulation of cyp26a1 

by a conserved class of miRNAs at the nexus of RA induced teratogenicity. 

 

miRNA regulation of multiple genes in a shared pathway strengthens their impact (as 

reviewed in (72)). During somitogenesis, opposing RA and FGF pathways act antagonistically 

in the elongating body axis (25). Our microRNA array data also indicated that at 12 hpf, early 

developmental exposure caused a significant decrease in miR-22a (Table 2-1), the only 

miRNA predicted by EMBL-EBI microCosm (www.ebi.ac.uk/enright-

srv/microcosm/htdocs/targets/v5/) to target the 3’ UTR of fgf8, suggesting that FGF signaling 

may also be controlled by RA-sensitive miRNAs during early somitogenesis. RA reportedly 

attenuates FGF8 levels by transcriptional repression or mRNA decay (10). Additionally, FGF8 

represses the onset of RALDH2 expression in the PSM and downregulation of FGF8 is 

necessary for normal axis formation (25, 74). Fgf8 transcript expression is non-existent in 

CYP26A1-deficient mice and is shown to have increased expression in response to decreased 

RA signaling molecules (25, 28). Changes in FGF8 expression in RA-deficient embryos result in 

aberrations in the determination wave-front that controls somite size, further demonstrating 

the mutual inhibitory role of RA and FGF signaling in axis development (1, 10, 19, 25, 68). Our 

data raises the possibility that RA-sensitive miRNA that target FGF signaling might also play a 

role in RA toxicity. Much remains to be learned about the post-transcriptional regulation of 

RA and FGF interactions during vertebrate segmentation. 

 

Beyond cyp26a1, our findings have broader implications to altered temporal-spatial 

expression of genes transcriptionally regulated by RA or induced by FGF expression. These 

targets include members of the Hox gene family that regulate axis patterning, specification 
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and left-right symmetry (74). RA acts as a transcriptional activator for several Hox genes and 

Notch signaling (58, 60-62). Additionally, FGF signaling is functionally associated with Hox 

gene expression and axis patterning (as reviewed in (75)). Several studies have explored the 

role of miRNAs conserved within vertebrate Hox clusters in regulating Hox gene expression 

and subsequently impacting axial development and patterning (41, 44, 57, 59). Furthermore, 

specific Hox gene expression changes can be partially modulated by miR-196 regulation of 

the retinoic acid receptor gene, rarb (41). This supports our findings on the role of miRNAs in 

controlling RA abundance during morphogenesis and further confirms the necessity of 

miRNAs in the precise regulation of RA signaling during vertebrate axis development.  

 

In addition to the role of miR-19 in RA metabolism, our finding that miR-19 family members 

regulate vertebrate axis formation provides compelling insight into their evolutionary 

significance. The miR-19 family has no known homologs in invertebrates (76, 77). The 

introduction of miRNA families correlates with drastic increases in morphological complexity 

(77-79). This is attributed to miRNAs role in stabilizing gene expression, and, in turn, 

rendering phenotypic traits influenced by miRNA-targets more likely to evolve (77, 80). It is 

hypothesized that the continuous addition of novel miRNAs to metazoan genomes is 

influential in the canalization, or evolved robustness, of a trait and contributes to the 

production of distinct developmental outcomes (77, 80). This in conjunction with our 

experimental data suggests the evolution and necessity for miR-19 in vertebrate identity. 

Taken together, the findings presented stress the evolutionary significance of miR-19 in 

somitogenesis, a developmental phenomenon common to all vertebrates. 

 

Beyond its importance as miRNA family acquired by vertebrates, miR-19 is a member of the 

evolutionarily conserved miR-17-92 cluster (as reviewed in (81)). In zebrafish, the miR-19 

family members are located in three conserved clusters miR-17-92, miR-106a-363, and miR-

106b-2 (Table 2-S3). The high conservation of these clusters underscores their functional 

relevance, while the unique sequences of the mature miRNAs direct their interactions with 

target mRNAs and ultimately govern their function (82). The miR-17-92 cluster encodes the 

miRNA genes miR-17, miR-18a, miR-19a, miR-20a, miR-19b and miR-92a1 in humans, mice, 

zebrafish, and over 25 other known vertebrate species (miRBase). To date, miR-19c and miR-
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19d miRNAs have only been identified in lamprey and medaka, respectively, in addition to 

zebrafish (miRBase). This is likely due to the genome duplication events leading to teleost 

fish (80, 83, 84). The emergence of miR-19 in the miR-17-92 cluster and its paralogs supports 

the speculation that tandem duplication events play a pivotal evolutionary role in the 

emergence of novel miRNA (76, 80). Additionally, the origin of novel miRNAs in pre-

established clusters eliminates the necessity for the evolution of separate promoters for the 

new miRNAs (80).  

 

An elegant study demonstrated an essential function of miR-17-92 for normal development 

in mice (85). The results also demonstrated a functional cooperation between miR-17-92 and 

miR-106b-25 clusters. Additionally, it was speculated that among cluster members, it was the 

loss of miR-19 family members and miR-18 that were responsible for the observed 

developmental phenotypes in mice (85). The teratogenic effects we observed due to 

developmental RA exposure were notably accompanied by a decrease in the expression of 

three miR-19 family members, miR-19a, miR-19c, miR-19d, each located in one of the three 

miR-17-92 paralog clusters. This also suggests a plausible functional synergy between the 

clusters dictating the observed developmental axis defects. 

 

The only miR-19 family member that was not misregulated upon developmental RA exposure 

in this study was miR-19b, which is located in the miR-17-92 cluster with miR-19a (Table 2-1 

and S2). Previous research highlighted differences in miR-19a and miR-19b expression, 

suggesting their functional divergences even though they evolved from the same cluster (86). 

Structural analysis of the miR-17-92 cluster in humans suggests that efficient enzymatic 

(Drosha) processing of miR-19b is sterically hindered (87). A similar structural limitation in 

the zebrafish miR-17-92 cluster may explain why miR-19b expression was not affected by RA 

exposure in stark contrast to its homolog, miR-19a.  

 

In support of our findings implicating miR-17-92 cluster members in vertebrate axis 

formation, a germline deletion of the miR-17-92 cluster was found to elicit skeletal 

abnormalities in humans (88). This was the first report of a miRNA mutation causing a 

hereditary condition responsible for developmental defects in humans. While the cluster 
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regulates TGF-β and sonic hedgehog signaling, two pathways influential in skeletal 

development, the authors state that other targets of the miR-17-92 cluster that control 

skeletal growth and patterning likely exist (88). Our data expand on these findings to 

describe a mechanism through which specific miR-17-92 cluster members controls the 

proper development of somites, precursors to skeletal formation. 

 

Together, this study highlights a role for miR-19 in facilitating normal vertebrate 

development by serving as a RA-sensitive switch to promote CYP26A1 mediated RA turnover 

during somitogenesis. Our findings suggest a previously undescribed miRNA-driven 

compensatory mechanism initiated to increase the expression of CYP26A1 during a period in 

which spatial maintenance of endogenous RA abundance is critical. Furthermore, these data 

underscore the evolutionary significance and plausible relevance of miR-19 as a vertebrate 

innovation. 
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Figure 2-1 Developmental RA exposure results in axial defects and suppression of miR-19 
expression. 
Embryos were exposed to 5 nM RA from 6 – 24 hpf. Representative images of (A) control and 
(B) RA exposed animals at 48 hpf. (C) miR-19 expression levels were measured by qRT-PCR at 
12 hpf in pools of 25 embryos exposed to 5 nM RA. (Values represent fold-change compared 
to unexposed control embryos, mean ± SEM, n = 3, *P < 0.05, independent samples t test.) 
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Figure 2-2. Transient developmental exposure to RA disrupts cyp26a1 expression during 
somitogenesis. 
 (A) Embryos were exposed to 5 nM RA from 6-12 hpf and RNA was collected at 12 hpf. 
cyp26a1 expression levels at 12 hpf in embryos exposed to 5 nM RA. (The data represent 
fold-change relative to control exposed embryos, mean ± SEM, n = 3, ***P < 0.001, 
independent samples t test.)  Representative images at 24 hpf showing measurements of 
cyp26a1 transcript detected by in situ hybridization  and protein levels detected by IHC in 
(B,D) controls  as compared to (C,E)RA exposed embryos.  
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Figure 2-3. miR-19 disrupts axial patterning and development through post transcriptional 
regulation of cyp26a1. 
(A)  Schematic of the miR-19d MO target site on the pre-miR-19d sequence that was injected 
into single-cell staged embryos. Representative images of the axis defects elicited by miR-19d 
MO (C,E)  in 48 hpf embryos in comparison to (B,D) control (CT) MO injected embryos (F) 
Effective knockdown of miR-19 transcript levels confirmed in miR-19d MO injected embryos 
at 12 hpf and 24 hpf via qRT-PCR. (Values reflect fold-change relative to control MO injected 
embryos, mean ± SEM, n = 3,*P < 0.05, One-way ANOVA with Dunnett's Multiple Comparison 
Test.) Representative images of cyp26a1 transcript and protein expression at 24 hpf in  (G,I) 
controls relative to (H,J) miR-19 morphants  as demonstrated by in situ hybridization and IHC, 
respectively. 
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Figure 2-4. Physiological reporter assay confirms that cyp26a1 is a bona fide target of miR-
19 in vivo. 
(A) Simplified schematic of cyp26a1 3’ UTR reporter assay along with predicted miR-19 a, c 
and d MREs. Single-cell stage embryos were co-injected with the GFP-cyp26a1 3’ UTR 
reporter and either miR-19 mimic or control (CT) mimic. (B) Representative images at 24 hpf 
and (C) the quantification of pixel count per embryo was measured. (Significance represents 
co-injected GFP-cyp26a1 3’ UTR reporter and miR-19 mimic in comparison to reporter and 
control mimic or reporter and mimic coinjected animals in comparison to uninjected 
controls, mean ± SEM, n = 40, ***P < 0.001, One-way ANOVA with Tukey's Multiple 
Comparison Test.) 
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Figure 2-5. Exogenous miR-19 reduces cpy26a1 expression and rescues the body axis 
defects elicited by RA exposure. 
(A) miR-19 transcript expression levels at 12 hpf in pools of embryos injected with miR-19 or 
control mimics. (Values represent fold-change compared to control mimic injected embryos, 
mean ± SEM, n = 3,*P < 0.05, independent samples t test.) (B) cyp26a1 expression levels 
measured by qRT-PCR in 12 hpf embryos injected with exogenous miR-19 mimic. (The data 
represents fold-change relative to control exposed embryos, mean ± SEM, n = 3,*P < 0.05, 
independent samples t test.) Representative images of cyp26a1 expression in the tail bud as 
measured by in situ hybridization in (C) control mimic or (D) miR-19 mimic injected embryos. 
Embryos injected with (E) control mimic or (F) miR-19 mimic were exposed to RA from 6-24 
hpf. Representative images showing that miR-19 mimic rescues RA induced body axis 
defects.  
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Table 2-1. miRNA microarray results at 12hpf. 

 
 
 
 
 
 
 
 
 
 
 

miRNA Microarray Data: 12 hpf 

miRNA p-value Log2 

dre-miR-22a 2.52E-02 -1.98 

dre-miR-19c 2.95E-02 -2.40 

dre-miR-21 3.05E-02 -0.52 

dre-miR-19a 4.64E-02 -1.71 

dre-miR-19d 4.78E-02 -2.74 

dre-miR-145 3.13E-02 -0.55 

dre-miR-143 4.50E-02 0.55 

dre-miR-218a 6.06E-03 0.55 
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Figure 2-S1. Heatmap of miRNA microarray results. 
Results of miRNA microarray analysis performed on samples obtained at 12, 24, 36 or 48 hpf 
from embryos batch exposed to 5 nM RA from 6 – 24 hpf (n=2). Heatmap representing bi-
directional hierarchical clustering of significant miRNA genes (The data represents fold-
change relative to control exposed embryos, n = 2, P < 0.05, 5% FDR, t test.)  miR-739 was 
removed from the miRBase database due to its prediction as a fragment of rRNA.  
 
 
 
 
 
 
 
 
 



54 
 
 
 
 
 
 
 
 
Table 2-S1. Cyp26a1 and β-actin primer sequences used for experiments. 

 
 

Gene Experiment Forward (5'-3') Reverse (5'-3') 

b-actin qRT-PCR AAGCAGGAGTACGATGAGTC TGGAGTCCTCAGATGCATTG 

cyp26a1 qRT-PCR CAGCAGGAGGTGAAGAGCGCC TCCACCAGTTCTTGCTCGTCCG 

cyp26a1 In Situ Hybridization CCGTTTTACTCTTTCTCGCC CTGCACCACTTCTGTGTTCA 

cyp26a1     
(3’ UTR) Reporter Assay TAGCCTAACCGGAGCTTTGTAC CTCACTCAGTCCTACTGAAATTTG 
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Table 2-S2. Morpholino sequences. 
Sequences for the miR-19d (miRNA Accession number) and control morpholino. 

 
 
 

miRNA Accession MO sequence (5'-3') MO type 

dre-miR-19d MIMAT0001785 TCAGTTTTGCATGGGTTTGCACA Guide Dicer 

control MO - CCTCTTACCTCAGTTACAATTTATA - 
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Table 2-S3. Zebrafish miR-19 family members. 
Mature sequences (seed sequence shown in red) and genomic cluster context information 
for members of zebrafish miR-19 family. 

 
 
 
 
 
 
 
 

 Sequence Cluster Additional cluster members 

dre-miR-19a  UGUGCAAAUCUAUGCAAAACUGA miR-17-92  miR-17a-1, miR-18a, miR-20a, 
miR-19b, miR-92a-1 

dre-miR-19b  UGUGCAAAUCCAUGCAAAACUGA miR-17-92  miR-17a-1, miR-18a, miR-19a, 
miR-20a, miR-92a-1 

dre-miR-19c  UGUGCAAAUCCAUGCAAAACUCG miR-106a-363  miR-18c, miR-20b, miR-363 

dre-miR-19d  UGUGCAAACCCAUGCAAAACUGA miR-106b-2  miR-93, miR-25 
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Abstract 

Aging is coupled with a striking decline in the ability to maintain and repair damaged tissue. 

microRNAs (miRNAs), small non-coding RNAs that post-transcriptionally repress gene 

expression, are implicated in the regulation of aging in various tissues. While links between 

miRNAs and aging are established, the mechanistic role of miRNAs in declining regenerative 

capacity with age has yet to be elucidated. To determine whether age-related changes in 

miRNAs trigger deficits in tissue restoration, we performed RNA sequencing on regenerating 

and non-regenerating zebrafish caudal fin tissue from three developmental cohorts 

(juveniles, adults and aged). This is the first unbiased look at small and messenger RNAs in 

tandem, and provides a comprehensive picture of regulatory molecules responsible for age-

related declines in regenerative capacity. We identified 13 transcripts that had significant but 

inverse expression in our aged population, which have a compromised regenerative 

response, as compared to juveniles and adults that regenerate successfully. Cbx7, 

chromobox protein homolog 7, was significantly decreased in aged regenerating tissue and 

increased in younger regenerating tissue. While the role of cbx7 in aging has been defined, 

this is the first report of its role in tissue regeneration. Subsequently, a non-biased 

bioinformatics approach was used to discover mRNAs expressed during regeneration which 

are targets of the significantly expressed miRNAs in regenerating tissue. Members of the 

miR-21 and miR-181a family were the most abundant miRNAs in regenerating and non-

regenerating tissue across age cohorts and both were predicted to target the 3’ UTR of cbx7. 

qRT-PCR confirmed that miR-21 and miR-181a* were significantly increased in regenerating 

tissue compared to non-regenerating tissue and miR-21 expression was attenuated in aged 

tissue upon regeneration. A physiological reporter assay was used to demonstrate that cbx7 

is a bona fide target of miR-21 and miR-181a*, and microinjection of exogenous miR-21 

reduced cbx7 expression in vivo. Transient knockdown of miR-21 inhibited tissue 

regeneration in larval zebrafish, suggesting a role for miRNA mediated regulation of cbx7 in 

tissue regeneration. Taken together, these results identify a novel, age-dependent 

regenerative function of cbx7 and underscore the importance of miR-21 as a master 

regulator of vertebrate regenerative responses. 
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Introduction 

One of the hallmarks of aging is a compromised ability to maintain tissue homeostasis and 

repair damaged tissue. A decline in regenerative capacity is common to most animals and is 

often attributed to a reduced ability to properly reactivate quiescent progenitor populations 

required to restore tissue. Organismal lifespans are defined by accumulated molecular, 

cellular, and tissue damage balanced against the ability to reawaken latent developmental 

signaling cues necessary to facilitate regeneration (1). 

 

Research over the past decade has implicated the role of microRNAs (miRNAs) in 

development and diseases (2, 3). Recent work has begun to uncover the functional role 

miRNAs have in aging and cellular senescence (as reviewed in (1, 4, 5)).  Additionally, 

research demonstrated that miRNAs regulate somatic stem cells required for tissue 

homeostasis and repair (as reviewed in (6)). miRNAs are small, ~21-24 nucleotide, non-

coding RNAs involved in post-transcriptional regulation of gene expression (2). In animals, 

interaction between miRNAs and target mRNAs often occurs through base pairing of 

nucleotides 2 – 8 of miRNAs to complementary target sequences in the 3’ untranslated 

region (UTR) of mRNAs, resulting in mRNA degradation or translational repression  (2). 

miRNAs have important functions in cell fate decisions which dictate differentiation, 

pluripotency, and proliferation (6-8). This underscores their importance in the complex 

processes of aging and regeneration. To date, functional roles for miRNAs were 

demonstrated in regenerating heart (9), hair cells (10), skin (11), pancreas (12), skeletal 

muscle (13), limbs (14), fins (15), oligodendrocytes (16), retina (17) and liver (18). 

 

It is difficult to study regeneration in mammalian models because, like humans, mammals fail 

to respond to most tissue injury with a regenerative response. Aging and regeneration 

research present similar challenges in choosing the most suitable model that will best 

translate to humans. Aging is uniquely challenging in that subtle changes over many months 

or years of a mammal's life preclude study of a discrete mechanism. To tackle this problem, a 

vertebrate model with a short lifespan has proven to be ideal (19). How and why evolution 

led to the loss of regenerative capacity in mammals is still unclear, but we can begin to 
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understand the molecular events that drive regeneration by using model vertebrates, such as 

amphibians and teleosts, which have maintained the remarkable capacity to regenerate 

tissues and organs (20). 

 

We used zebrafish as a model vertebrate organism to investigate mechanisms for the age-

dependent decrease in wound healing capacity, and to better understand why mammals 

cannot regenerate most tissues. Numerous studies have highlighted advantages of zebrafish 

as a model of aging (as reviewed in (19, 21, 22)), and regeneration (as reviewed in (20, 23-

25)). Additionally, zebrafish can regenerate certain tissues, such as the caudal fin, throughout 

their entire lifespan (this research).  However, this regenerative capacity often becomes 

compromised with age, in turn, making zebrafish an ideal model for studying age related 

declines in tissue regeneration. The zebrafish caudal fin regeneration paradigm was used for 

this study, in which zebrafish restore lost caudal fin tissue through a process termed 

epimorphic tissue regeneration. This is characterized by wound healing commencing with the 

lateral migration of epithelial cells to form an apical epithelial wound cap (23-26). Following 

wound healing, a mass of undifferentiated highly proliferative mesenchymal cells, called a 

blastema, is formed (23-26). In the following stages, various signaling cascades are activated 

to mediate outgrowth, patterning and termination (20, 25). We focused this study on the 

events involved in blastema formation. This pivotal step in epimorphic tissue regeneration in 

zebrafish involves dedifferentiation and reactivation of progenitor populations (15), and 

presents a powerful opportunity to further understanding of the intricacies involved in 

reprogramming genes to fuel de novo post development of tissue in whole organisms.  

 

Both 78-base pair (bp) and 40-bp RNA Sequencing (RNA-Seq) analysis were conducted on 

regenerating and non-regenerating caudal fin tissue in juvenile (4 weeks), adult (4 month) 

and aged (2+ years) zebrafish, providing the first fully-defined repertoire of both transcript 

and small RNAs involved in tissue regeneration. We identified transcripts that had significant 

but inverse expression in our aged population, which have a compromised regenerative 

response, as compared to juveniles and adults that regenerate successfully. We identified 

putative mRNA targets of miRNAs with significant differential expression in regenerating 

tissue as compared to non-regenerating tissue. Cbx7, a chromobox protein family member 
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and Polycomb (PC) ortholog, was one of the most significantly differentially expressed 

transcripts we discovered that had an aberrant expression pattern in aged tissue. Cbx7 was 

predicted to be targeted by miR-21 which had significantly attenuated expression in aged 

tissue in comparison to younger tissue. Empirical experiments confirmed the role of miR-21 

in post-transcriptional regulation of cbx7 and transient knockdown of miR-21 impaired 

regeneration. While the role of cbx7 has been reported in aging (27) and in the regulation of 

self-renewal and differentiation in embryonic stem cells (28, 29), this is the first report of its 

role in tissue regeneration in adult animals. Taken together, our data highlight a novel age-

dependent role for cbx7 in regulating vertebrate tissue regeneration via the master regulator 

actions of pro-regenerative miR-21.  

 

Materials and Methods 

Fish care and husbandry: All zebrafish (Danio rerio) were reared according to Institutional 

Animal Care and Use Committee protocols at the Sinnhuber Aquatic Research Laboratory, 

Oregon State University. The wild-type AB strain was used for the described sample 

collection for Illumina®  RNA-Sequencing. The wild-type Tropical 5D strain was used for all 

experiments with embryonic zebrafish. Adults were raised on a recirculating water system 

(28 ± 1 ⁰C) with a 14 h light/10 h dark schedule. Spawning and embryo collection procedures 

were followed as previously described (30). 

 

Sample collection for Illumina® mRNA and small RNA sequencing:  

Animal handling, surgical fin amputations, and sample collection: To fully define the mRNA 

and small RNA expression profiles in regenerating zebrafish caudal fins, three aged cohorts 

were used: juveniles (4 weeks), adults (4 months), and aged zebrafish (2+ years). In 

preparation for the surgical caudal fin amputations, the fish were first anesthetized in a 150 

mg/L MS222 (3-amino benzoic acidethylester) solution. Once anesthetized, fish were placed 

on a either a sterile glass microscope slide (juveniles) or sterile glass petri dish (adults and 

aged) and visualized under an Olympus SV61 stereoscope. The caudal fins of the fish were 

then partially amputated using a sterile razor blade directly anterior to the caudal fin 

bifurcation. Amputated tissue was collected using forceps and placed directly into an RNase, 
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DNase free sterile microtube containing 500 µL of RNAlater® (Invitrogen). This fin tissue 

collected for RNA isolation was considered the control, or non-regenerating fin tissue (0 days 

post-amputation, 0 dpa, (Figure 3-1). Caudal fin tissue collected from 10 animals was 

combined for each biological replicate in the adult and aged cohorts. Since the juvenile fish 

were significantly smaller than the other two cohorts, caudal fin tissue from 100 animals was 

combined for each juvenile biological replicate group to obtain the necessary amount of RNA 

to perform RNA-Sequencing analysis. Three biological replicates were collected for each age 

group. Immediately post-amputation, the fish were placed in a tank of anesthetic-free fish 

water for recovery. Once recovered, all of the fish of an individual biological replicate were 

placed together in a tank and housed as previously described. The next day, the same fish 

were reamputated ~ 0.25 cm below the original amputation plane to harvest the 

regenerating tissue (1 dpa) (Figure 3-1). 

 

Sample preparation and processing: Prior to RNA isolation, the RNAlater® was removed and 

0.5 nM zirconium oxide beads (Next Advance, #ZrOB05) and 700 uL of QiaZol Lysis reagent 

(Qiagen) were added to each sample. Tissue was homogenized in a Bullet Blender (Next 

Advance) and stored at-80 ⁰C until RNA isolation. Total RNA was isolated using miRNEasy Kits 

(Qiagen). A Nanodrop- 1000 Spectrophotometer and Agilent Bioanalyzer were used to 

measure the quantity and quality of RNA yielded. All samples had A260/A280 ≥ 1.8 and 

A260/A230 ≥ 1.8 and RNA Integrity Numbers (RIN) ≥ 9. Six µg of total RNA (100 ng/uL) for 

each of the 18 samples (3 biological replicates per time point and age group) were provided 

to the Genomics Core of Lerner Research Institute (Cleveland, Ohio) for Illumina®  RNA-

Sequencing library preparation and processing. Three µg of total RNA from each sample was 

prepared for 78-bp RNA-Sequencing using the Illumina® TruSeq RNA sample preparation kit. 

The remaining 3 µg was prepared for 40-bp RNA-Sequencing using the Illumina®  TruSeq 

small RNA sample preparation kit. For both the 78-bp and 40-bp RNA sequencing reads, six 

lanes of an 8 lane flow cell were used for the collected samples and one for sequencing 

controls. Three lanes were used for the control (0 dpa) samples and three lanes were used 

for the regenerating (1 dpa) samples. Each lane contained 3 bar-coded samples (juvenile, 

adult and aged) that were sequenced using single-end reads, either 78-bp or 40-bp in length, 

on an Illumina® Genome Analyzer IIx. The libraries were sequenced and the number of 
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sequencing reads obtained per lane are provided in Table 3-S1. Both the 78-bp and 40-bp 

RNA sequencing analysis datasets are available through the U.S. National Center for 

Biotechnology Information Gene Expression Omnibus (31) series accession number GSExxxxx 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc_GSExxxx).  

 

Illumina® 78-bp data analysis: Sequece.txt files for each of the 18 individual samples were 

mapped to the zebrafish Ensembl reference genome (Zv9.64) using Tophat v1.3.3 with 

Bowtie 2 (32, 33). To customize the Tophat pipeline for analysis of zebrafish genome data, 

the following specific parameters were changed: minimum intron distance, 50; maximum 

intron distance, 1000; inner distance between mate set, 165. The remainder of the Tophat 

parameters were run at default settings. To assemble the transcripts to the zebrafish 

reference annotation (Ensembl Zv9.64.gtf), Tophat output Bam hit files were processed using 

Cufflinks v1.3.0 (34-36) with a maximum intron length of 10,000. This provided GTF output 

files containing Fragment per Kilobase Million Fragments Mapped (FPKM) values for the 

aligned transcripts. All the GTF output files from Cufflinks were used as input in Cuffmerge 

(v1.3.0) along with the zebrafish reference annotation (Ensembl Zv9.64) and reference 

genomic DNA sequences (Zv9.64.fa) to merge novel isoforms and known isoforms to 

maximize the assembly quality. This product of Cuffmerge, a merged GTF annotation file, was 

used in Cuffdiff (v1.3.0) to evaluate the significant changes in transcript expression in the 

control (0 dpa) versus regenerating (1 dpa) samples. In Cuffdiff, the minimum alignment 

count parameter was changed to 10 for these analyses. Upper quartile normalization was 

performed. Additionally, bias correction was run in Cuffdiff using the zebrafish reference 

genome (Ensembl Zv9.64.gtf). In Cuffdiff, the biological replicates for each time point (CON, 0 

dpa; REG 1 dpa) and age group (G, A, J) were pooled for statistical comparison with p < 0.05 

and a false discovery rate (FDR) of 5%. The differential expression profiles created were 

further filtered to remove transcripts that were too complex or shallowly sequenced 

(LOWDATA), had few alignments (NOTEST), too many fragments in loci (HIDATA), or an 

exception that prevented testing in Cuffdiff (FAILED) (37). 

 

Illumina® 40-bp Data Analysis: The 18 raw sequence files from the 40-bp Illumina® were 

processed through the CASHX pipeline (38). This pipeline parsed small RNA sequences from 
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the 3′ adapter, reduced the data to a unique read set, counted the number of reads per 

unique set, and aligned sequences to the zebrafish Ensembl reference genome (Zv9.64). The 

parsing process identified all small RNA sequences ranging in size from 18-30 nucleotides. 

Parsed and aligned sequences were inserted into a MySQL database for organization and 

flexibility. This setup provided methods to combine sequence information from multiple runs 

and further reduced the amount of storage needed for data processing. After the data were 

processed into the database, scripts provided with the CASHX pipeline were updated to 

accommodate analysis of genomes, such as Danio rerio, with non-standard naming of 

chromosomes and scaffolds. These tools were used in combination with downloaded files 

from miRBase (v.18) (www.mirBase.org) containing the mature miRNA sequence information 

(mature.fa) and genome coordinate information (dre.gff) (39, 40).  These files were 

combined and used to analyze miRNA loci and miRNA foldbacks for read counts. These 

scripts counted reads for these miRNA features that had perfect hits to the genome and 

were found within a 4 nucleotide flank of the miRNA feature. The database was then 

updated with miRNA annotation information. Biological replicates were generated for each 

sequencing library and replicate counts were pooled to determine differential expression 

profiles for statistical comparisons with p < 0.05 for each annotation feature.  

 

Bioinformatics: Unsupervised, bidirectional, hierarchical clustering was performed on the 

transcript differential FPKM outputs from RNA-Seq by applying a Euclidean distance metric 

and centroid linkage cluster which grouped the age cohorts and transcript expression 

patterns by similarity. To form hypotheses about putative miRNA-mRNA interactions that 

could be further tested functionally in vivo, the Bioinformatics Resource Manager (BRM) v2.3 

(http://www.sysbio.org/dataresources/brm.stm, Pacific Northwest National Laboratory) was 

used (41). To identify miRNA and putative target transcripts, significant transcript and miRNA 

lists were uploaded to BRM. Since zebrafish miRNA target prediction tools are limited, the 

BRM XSpecies Identifier retrieval tool was used to identify orthologous genes in humans 

based on provided Ensembl gene IDs for the significantly expressed zebrafish transcripts and 

miRNAs. The lists containing the significantly expressed zebrafish miRNA and human 

orthologs were uploaded to BRM. The miRNA Target query was used to identify predicted 

target transcripts through three databases: TargetScan (www.targetscan.org), microCosm 

http://www.mirbase.org/�
http://www.sysbio.org/dataresources/brm.stm�
http://www.targetscan.org/�
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(www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5) and miRNA.org 

(www.microrna.org). This output was then merged in BRM with the significantly expressed 

transcripts identified from the 78-bp RNA Sequencing analysis and filtered to contain only 

transcripts predicted to be targets of abundant miRNA, as determined by CASHX, and 

significantly expressed in the caudal fin. 

 

Real-time quantitative PCR: Total RNA isolated from the control and regenerating caudal fin 

tissue for RNA-Sequencing was used to confirm the transcript and miRNA expression changes 

predicted from the Cuffdiff and CASHX data analyses, respectively. Additionally, whole body 

homogenate from embryonic morpholino and mimic injected fish was collected at 24 and 48 

hpf from pooled embryos (25 per biological replicate) harvested using miRNEasy Kits 

(Qiagen), n=3. All samples were oligo(dT)-primed and cDNA was synthesized using 

Superscript III (Invitrogen) (n=3). Quantitative RT-PCR (qRT-PCR) was performed with gene 

specific primers for cbx7 and β-actin (Eurofins MGW Operon) listed in Table 3-S2 using the 

Power SYBR® Green Master Mix (Applied Biosystems) on a Step One Plus Instrument (Applied 

Biosystems). All samples were normalized to β-actin. To quantify miRNA expression, the 

miRCURY LNA™ Universal cDNA Synthesis Kit and SYBR Green Master Mix (Exiqon) were 

used. Exiqon stock primer sets for miR-181a (PN 204566-01), miR-181a* (PN 204110-01), U6 

small nucleolar RNA (snoRNA) (control, PN 203907), and custom primer sets for miR-21, miR-

93, miR-140*, miR-200c and miR-726 (PN 206999) were used to assess miRNA expression as 

previously described (42). 

 

Microinjections: Antisense oligonucleotide morpholinos (MO) were used to knock down cbx7 

and miR-21 levels in developing embryos (Gene Tools) (Table 3-S3). The cbx7 MO (i1e2) was 

a splice blocking morpholino designed against the intron (i) 1, exon (e) 2 boundary involved 

in pre-mRNA splicing (43). The miR-21 MO targeted the guide strand and dicer cleavage site. 

All morpholinos, including a standard control MO, were injected into single-cell stage 

embryos. Approximately 2 nl cbx7 MO (0.75 mM) or miR-21 MO (1.5 mM) MO in ultrapure 

water with 0.5% phenol red were microinjected into each embryo. At 6 hpf, the fish were 

screened for uniform incorporation of the MO by fluorescein visualization under ultraviolet 

light. A synthetic miR-21(Thermo Scientific, C-300495-03-0005), miR-181a*(Thermo 

http://www.microrna.org/�
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Scientific, C-300568-05-0005) or control Dharmacon miRIDIAN mimic was injected at 10 µM 

(Thermo Scientific, CN-001000-01-05). The cbx7 3’ UTR GFP reporter (200 ng/µL) was co-

injected with either the synthetic miR-21, miR-181a* or control mimic (25 µM) into single-

cell stage embryos. Depending on experiment, fish were humanely euthanized using MS-222 

overdose (44) at various time points (24, 48 or 120 hpf). Sub-groups were fixed with 4% 

paraformaldehyde (JT Baker) for immunohistochemistry experiments or homogenized in 

QIAzol Lysis Reagent (Qiagen) for gene expression analyses.  

 

GFP reporter assay: The zebrafish cbx7 3’-UTR sequence was amplified by PCR using 

zebrafish cDNA and gene-specific primers (Table 3-S2, Eurofins MGW Operon). The sequence 

was subcloned downstream of the GFP open reading frame (ORF) that was inserted into 

pCS2+ vector (45) using a Cold Fusion Cloning Kit (System Biosciences). Reporter injected 

animals were placed into 96-Well Half Area Polystyrene Microplates (Greiner Bio-One) and 

imaged using an Image Xpress Micro (Molecular Devices). Measurements of average GFP 

Intensity/well were obtained from each well (n = 4) containing 12 animals/well using 

Metaexpress Software (Molecular Devices) at 24 hpf.  

 

Larval zebrafish regeneration assay: Larval zebrafish caudal fin surgical amputations were 

performed on 2 dpf morpholino-injected fish. The morphants were placed into individual 

wells of a 96-well plate and screened for regenerative outgrowth capability at 3 dpa (46-49). 

Images of the entire plate were obtained using an Image Express High Content Imager 

(Molecular Devices) and images of individual fish were captured using a Nikon Coolpix E500 

digital camera mounted on a Nikon SMZ 1500 stereomicroscope. 

 

Immunohistochemsitry: Regenerating (1 dpa) and control (0 dpa) fin tissue samples collected 

from adult and aged zebrafish  and cbx7, miR-21  and control morpholino injected embryos 

collected at 48 and 120 hpf were fixed in 4% paraformaldehyde overnight at 4 ⁰C. Rabbit α-

human CBX7 (dilution: 1:50, Santa Cruz Biotechnology, sc-70232) primary antibody, mouse 

monoclonal acetylated alpha tubulin primary (1:4000, Sigma, T6793), and Alexafluor® 555 or 

594 goat α-rabbit or goat α- mouse (dilution: 1:500, LifeTechnologies) secondary antibodies 

were used. Briefly, fixed embryos were washed with PBST followed by a 1 h wash in 
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UltraPure water (LifeTechnologies). A 30 or 60 min collagenase (0.0001 g/mL PBST, Sigma, 

C9891) treatment was then performed to permeabilize the embryos or fin tissue, 

respectively, followed by a 30 min rinse with PBST. The embryos were blocked with 10% 

Normal Goat Serum (Sigma, G6767) for minimum of 1 h at room temperature prior to adding 

the primary antibody, in which the samples were incubated for 72 hours at 4 ⁰C. Samples 

were then rinsed in multiple PBST washes for 1.5 h, incubated with secondary antibody for 2 

h, and washed 2X for 15 min followed by 3X for 30 min with PBST. Embryos were imaged on 

an inverted Zeiss Axiovert 200 M epi-flourescence microscope using a Zeiss Axiocam HRM 

camera. 

 

Hair cell staining: To investigate the effects of cbx7 and miR-21 knockdown on hair cell 

expression, Yo-Pro-1 (LifeTechnologies, Y3603) was used to selectively stain the hair cell 

nuclei. Cbx7, miR-21 and control morphants (120 hpf) were batch treated (20 per biological 

replicate) in 20 mL glass vials with 2 µM Yo-Pro-1 in embryo medium for 1 h (n=3). After 

removal from the stain, the larvae were washed 3 successive times with embryo media. The 

larvae were anesthetized with MS-222 prior to imaging on an inverted Zeiss Axiovert 200 M 

epi-flourescence microscope using a Zeiss Axiocam HRM camera. 

 

Statistical analysis: To analyze differences between treatment and control groups or 

regenerating and non-regenerating tissue, a 2-tailed, paired Student’s t-test, 1-way ANOVA 

with a Dunnet’s multiple-comparison post hoc test, or 2-way ANOVA with a Bonferroni 

multiple comparison post hoc test were conducted, depending on the experiment. Data 

shown represent means ± SE; values of P < 0.05 were considered statistically significant. 

Results were calculated using Prism 5.01 (Graph-Pad). 

Results 

Regenerative outgrowths in aged fish are morphologically compromised. Juvenile, adult 

and aged zebrafish were amputated and representative images captured at 0, 1, 7 and 14 

dpa. Aged zebrafish exhibited compromised morphology in regenerative outgrowths by 14 

dpa compared to juveniles and adults (Figure 3-2).  
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Global transcriptome profiling predicts conserved and unique regenerative responses 

across age cohorts. To fully define the transcriptional repertoire of a regenerative response, 

RNA sequencing was performed on regenerating (1 dpa) and non-regenerating tissue 

(control, 0 dpa) in juvenile, adult and aged cohorts (Figure 3-2). Approximately 12 million 

reads per sample were mapped to the Ensembl zebrafish genome assembly (Zv9). Greater 

than 90% (>11 million reads) could be mapped to the genome (Table 3-S1). Statistical 

assessment of mRNA expression in regenerating versus non-regenerating tissue identified 

9,012, 8,904, and 6,069 transcripts significantly differentially expressed relative to their 0 dpa 

(control) in the aged, adult and juvenile tissue, respectively (p < 0.05, 5% FDR). 

Approximately 30% of the differentially expressed transcripts were common to the aged and 

adult zebrafish, and 50% were common to aged and juveniles (Figure 3-3A). Approximately 

18% of the total number of significantly expressed transcripts from all age cohorts, which had 

either increased or decreased changes, were common in aged, adult and juvenile tissue.  

 

Inverse expression profiles in aged versus juvenile and adult regenerating tissue highlight 

transcripts that may be responsible for compromised regenerative response. To investigate 

the decline in regenerative capacity observed with age, additional filtering was conducted on 

the 2,694 transcripts that were significantly expressed in regenerating tissue across all three 

age cohorts. Of these, 2,645 of were commonly increased (1,170) or decreased (1,475) in all 

age groups (Figure 3-3B). Since both juveniles and adults could successfully regenerate 

caudal fins, we focused on the significant transcripts that had inverse expression in both 

juveniles and adults versus aged zebrafish. Thirteen transcripts were inversely expressed in 

juveniles and adults compared to the aged cohort. Seven transcripts had increased 

expression in regenerating fin tissue in both juveniles and adults and decreased expression in 

aged zebrafish. Six transcripts had decreased expression in the regenerating tissue of juvenile 

and adults and increased expression in the aged tissue (Figure 3-3C, Table 3-3-1). Cbx7 (2 of 

2), referred to as cbx7 henceforth, was the most abundant (largest FPKM values) with 

increased expression in regenerating tissue in juveniles and adults and, conversely, 

decreased expression in aged tissue (Table 3-S4). CBX7 is known to play an important role in 

cellular aging and in mediating self-renewal and differentiation (27-29). Therefore, we chose 
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to experimentally evaluate the age-dependent role of cbx7 in caudal fin regeneration and its 

potential regulation by miRNAs. 

 

Regeneration induces significant changes in miR-21 and miR-181a expression. The results 

from 40-bp RNA-Seq analysis showed that at 1 dpa, there was a total of 79 miRNAs 

expressed in either control or regenerating tissue at any lifestage. These results were filtered 

to represent only the 53 miRNAs that greater than 100 counts in at least one of the biological 

replicates. miR-21, a miRNA implicated for its role in aging (50-55) and regeneration (56-64), 

was the only significantly increased miRNA identified in regenerating tissue compared to 

control in all three age groups (Figure 3-4A-C). miR-21 expression in regenerating fin tissue 

was significantly lower in the geriatric cohort relative to the adult and juvenile cohorts (Table 

3-2). miR-181a had a significant decrease in expression in regenerating tissue in all the age 

cohorts (Figure 3-4A-C).  

 

Cbx7 is putatively targeted by miRNAs expressed during regeneration. Bioinformatics 

analysis was performed to identify significant changes in cbx7 transcript expression that may 

be subject to post-transcriptional regulation by miRNAs. miR-21 is predicted to have two 

mRNA recognition elements (MREs) located in the 3’ UTR of cbx7 (Figure 3-5A). The multiple 

recognition elements within a 3’ UTR can have a multiplicative regulatory effect (65). miR-

181a was also significantly increased in regenerating tissue. The expression profiles of 

miRNAs predicted to target the 3’ UTR of cbx7, miR-21, miR-140*, miR-200c, miR-93, miR-

181a* and miR-726, along with miR-181a were examined. miR-21 demonstrated significantly 

increased expression in regenerating tissue in comparison to control in all three age groups 

(Figure 3-5B). There was no significant difference in the homeostatic level of miR-21 

expressed in non-regenerating tissue across the age groups. Yet, miR-21 was significantly 

attenuated in the aged regenerating tissue in comparison to adult and juvenile regenerating 

tissue. miR-726 was only detected in aged tissue and showed a significant decrease in 

expression during regeneration, suggesting a putative age-dependent role for miR-726. miR-

181a* expression in regenerating fin tissue samples indicated that it was significantly 

increased in both the adult and aged regenerating fin tissue.  
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Transient knockdown of miR-21 impairs regeneration. Since miR-21 was one of the most 

abundant and significantly increased miRNA in regenerating tissue across all cohorts and 

attenuated in aged regenerating tissue versus younger regenerating tissue (Figure 3-4A-C, 

5B,C, Table 3-1), we tested whether the miR-21 is required for regeneration. A miR-21 

antisense oligonucleotide morpholino (Figure 3-6A) was injected into single-cell stage 

embryos and knockdown was confirmed at 24 and 48 hpf via qRT-PCR (Figure 3-6B). Loss of 

miR-21 function did not result in developmental defects (Figure 3-6C, E), but caused a failed 

regenerative response in 75% percent of the miR-21 morphants (Figure 3-6D, F), confirming 

its necessity for caudal fin regeneration.  

 

miR-21 and miR-181a* target the 3’ UTR of cbx7a in vivo. To determine whether cbx7 is 

post-transcriptionally regulated by miR-21 and miR-181a*, a reporter was designed in which 

the cbx7 3’ UTR was inserted downstream of GFP (GFP-cbx7a-3’UTR) (Figure 3-7A). The GFP-

cbx7-3’UTR reporter was co-injected into single cell-stage embryos with either a miR-21 

mimic, miR-181a* mimic or control mimic. Co-injection of the GFP-cbx7-3’ UTR reporter and 

miR-21 or miR-181a* mimic significantly decreased the GFP expression as compared to 

embryos co-injected with the reporter and control mimic (Figure 3-7B, C). To further confirm 

whether miR-21 and miR-181a* can functionally regulate cbx7 expression in vivo, cbx7 

transcript expression was quantified in embryos injected with exogenous miR-21 and miR-

181a* mimic. The injection of miR-21 mimic significantly decreased cbx7 transcript 

expression (Figure 3-7D).  

 

Transient knockdown of cbx7 confirms relationship with predicted targets. To further 

investigate the relationship between cbx7 and the miRNAs predicted to target its 3’ UTR, a 

splice-blocking cbx7 morpholino targeting exon 2 was used to transiently knockdown its 

expression. Validation of knockdown was confirmed via RT-PCR amplification of tissue 

collected from whole body homogenate of cbx7 morphants and size-verified by gel 

electrophoresis, demonstrating the deletion of exon 2 (44 bp) (Figure 3-8A). Expression of 

miR-21, miR-140*, miR-200c, miR-93, miR-181a, miR-181a* and miR-726 was examined in 

morphants injected with the cbx7 morpholino. miR-726, present in aged tissue, was not 

detected in the embryos. At 48 hpf, all the miRNAs predicted to target the 3’ UTR of cbx7, 
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including miR-181a, were significantly decreased, except miR-21(Figure 3-8B). Cbx7 

morphants regenerated after caudal fin amputation by 3 dpa (data not shown). 

 

Aged tissue exhibits decreases in CBX7 expression and neuronal integrity. Prior to this 

experiment the expression pattern of CBX7 in zebrafish had yet to be described. Therefore, 

we investigated CBX7 protein expression in caudal fin tissue via immunohistochemistry. CBX7 

was localized to the neuromasts in the non-regenerating (control, 0 dpa) and regenerating 

tissue (1 dpa) in both adult (Figure 3-9A, C) and aged fish (Figure 3-9B, D). Acetylated alpha 

tubulin antibody was used to label all the neuronal cell bodies and axons in non-regenerating 

and regenerating adult (Figure 3-9E, G, I) and aged fin tissue (Figure 3-9F, H, J). Aged tissue 

exhibits a decrement in neuronal processes pre- (0 dpa) and post-amputation (1 dpa). Aged 

tissue has diminished nerve innervation under the apicial epithelial wound cap compared to 

adult tissue at 1 dpa (Figure 3-9I, J). 

 

Aged tissue is devoid of several transcripts important in neuromast hair cell formation, 

neurogenesis, and regeneration. Given the localization of CBX7 to the neuromasts, we 

evaluated the 78-bp sequencing data for the expression of key transcripts involved in 

regeneration, neuromast formation and neurogenesis based on the literature. Expression of 

Sox2, Jagged1b and DeltaD, known regulators of hair cell formation, neurogenesis, and 

regeneration (66-76), were significantly decreased in regenerating adult and juvenile tissue 

as compared to control (Table 3-3). In contrast, expression of these transcripts was not 

detected in aged regenerating or non-regenerating tissue.  

 

Neuromast hair cells and neurons have aberrant patterning in cbx7 and miR-21 morphants. 

We investigated the potential role of cbx7 and miR-21 in neurogenesis and hair cell 

development in cbx7 (Figure 3-10E-H) and miR-21 (Figure 3-10I-L) morphants compared to 

control (Figure 3-10A-D). Hair cell staining showed that both cbx7 and miR-21 morphants had 

reduced number of neuromast hair cells in the along the posterior lateral line in the trunk 

and tail, demonstrating a role for cbx7 and miR-21 in hair cell formation. miR-21 also had less 

hair cells in the anterior lateral line of the head. Transient knockdown of miR-21 considerably 

reduced the number of neuronal processes in the caudal fin of morphants in comparison to 
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cbx7 and control morphants at 48 and 120 hpf. In addition to regeneration, this highlights 

the pleiotropic role of miR-21. 

 

Discussion  

Aging is one of the most discernible phenomena of biology, with many questions remaining 

about its mechanisms (77). One of the hallmarks is a declining capacity to maintain tissue 

homeostasis and repair damaged tissue in response to injury, insult or disease. Zebrafish 

provide an attractive model for investigating the molecular signaling pathways involved in 

both regeneration (25, 26) and aging (19, 22). Here, we have reported the first full repertoire 

of transcripts and small RNAs expressed during caudal fin regeneration from three 

developmentally distinct age cohorts. Our data describe a previously unknown role for cbx7 

in tissue regeneration and corroborate its known function in cellular senescence (27). We 

demonstrate that miR-21 regulates cbx7, and miR-21 loss-of-function inhibits regeneration, 

neurogenesis and neuromast hair cell formation. Hence, our findings build on recent studies 

that demonstrate miRNAs as master regulators of cbx7 and pluripotency related genes (29) 

which, in turn, actuate progenitor and stem cell populations necessary for embryonic tissue 

formation and adult tissue regeneration. 

 

Results from our small RNA-Seq analysis demonstrated that members of the miR-21 and miR-

181 family were the most abundant miRNAs present in zebrafish fin tissue and exhibited 

significant differential expression in regenerating tissue compared to non-regenerating tissue 

in all age cohorts (Figure 3-4A-C, Figure 3-5A, B, Table 3-2). Although miR-21 was significantly 

increased in regenerating tissue in comparison to non-regenerating tissue within each age 

groups, aged regenerates had significantly attenuated miR-21 expression in comparison to 

tissue from younger regeneration-competent fish (Figure 3-5B). Other models have shown 

that miR-21 is affiliated with both aging and regeneration. Circulating miR-21 was recently 

found to be a new biomarker for age-related inflammation (50) and to function in age-

related matrix protein metabolism changes in the kidney (51), nitric oxide induced colon 

tissue senescence (52), aging of colon cancer stem-like cells (53), cardiac aging (54), and 

immortalization of mouse embryonic fibroblasts (55). miR-21 was demonstrated to have a 

role in regeneration of the limb (56), liver (57-62), and nerves (63, 64), along with stem cell-
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dependent tissue repair (78, 79). miR-21 was also found to be involved in wound healing, the 

first event necessary to initiate a regenerative response (80-84). Our results support these 

findings demonstrating a critical role for miR-21 in regeneration and suggest that an 

attenuated expression change in miR-21 levels with age may be responsible, in part, for 

regenerative decline. 

 

miR-21 was predicted to target cbx7, one of the 13 transcripts that had a significant inverse 

expression pattern in aged fish compared to juveniles and adults. The 3’ UTR of cbx7 is 

predicted to have two miR-21 MREs (Figure 3-5A). Multiple conserved sites within an mRNA 

3’ UTR strengthens the regulatory association between a miRNA and its target (65). CBX7 is a 

polycomb protein that controls transcription of the INK4a/Arf locus and repression of tumor 

suppressors, p16INK4a and Arf, which target the Rb and p53 pathways (27). CBX7-mediated 

suppression extends the lifespan of various types of human cells (27). p16INK4a impairs 

regeneration in pancreatic islet cells (85) and reduces neural progenitor function, self-

renewal potential and neurogenesis (86, 87). Increased p16INK4a was also associated with 

stem cell aging, a process intimately linked to decline in tissue maintenance and repair (88). 

 

Beyond its role in senescence, CBX7 was recently implicated as a master switch that acts in 

conjunction with Polycomb repressive complexes (PRCs) and Polycomb group (PcG) proteins 

to control embryonic stem cells (ESCs) decision to differentiate or self renew (28, 29). These 

proteins regulate chromatin status to orchestrate either the expression of pluripotent genes 

and repression of lineage specific genes or visa-versa (89). In accordance with the first 

discovered role of CBX7 in controlling cellular lifespan (27), our deep RNA sequencing results 

from regenerating caudal fin demonstrate that aged zebrafish, with compromised 

regeneration, have aberrant cbx7 expression upon regeneration compared to juveniles and 

adults that can mount a successful regenerative response (Figure 3-2, 3-3C, Table 3-1). 

Epimorphic tissue regeneration involves the formation of dedifferentiated progenitor cells 

which ultimately differentiate into skeletal structure, blood vessels, nerves, melanocytes and 

fibroblasts (25). Given the role of CBX7 in regulating ESC fate decisions (28, 29) along with 

the previously described mechanisms for PcG proteins in influencing lineage commitment (as 
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reviewed in (90)), we postulate that CBX7 has an equally significant, and potentially similar 

function in regulating progenitor cell populations involved in tissue regeneration. 

 

Recently, research demonstrated post-transcriptional regulation of cbx7 by two miRNA 

families, miR-125 and miR-181, in ESCs (29). To investigate predicted miRNA-cbx7 

interactions involved in tissue regeneration, we quantitatively validated the expression 

profile of all miRNAs predicted to bind the 3’ UTR of cbx7 in regenerating tissue from the 

three age groups. Using this approach, we confirmed that both miR-21 and miR-181a*, but 

not miR-181a, were significantly increased in regenerating tissue in all cohorts (Figure 3-5B). 

Given that miR-181a* is transcribed and processed by Dicer in the same pre-miRNA as miR-

181a, we speculated that miR-181a* could also have a functional regulatory role in 

regeneration. Interestingly, miR-21 induction was blunted in aged regenerating tissue 

relative to tissue collected from regeneration-competent juvenile and adult cohorts (Figure 

3-5B). Additionally, we found that miR-726, which also has two predicted binding sites within 

the cbx7 3’ UTR, was only detected in aged fish and significantly decreased in regenerating 

tissue. This suggests that, in addition to miR-21 and miR-181a*, miR-726 may also have an 

age-dependent role in mediating cbx7 expression during tissue regeneration.  

 

To explore whether miRNAs could be regulating cbx7 expression in zebrafish, we used a 

physiological reporter assay and confirmed that cbx7 is a bona fide target of both miR-21 and 

miR-181a* in vivo (Figure 3-8B, C). Injection of an exogenous miR-21 mimic caused a 

significant decrease in expression in cbx7 by 48 hpf (Figure 3-8D). We did not observe a 

significant decrease of cbx7 upon miR-181a* mimic microinjection. This could be attributed 

to miR-181a* having only one predicted MRE in the cbx7 3’ UTR, as opposed to miR-21 which 

has two. The expression pattern of all miRNAs predicted to target cbx7 was quantitatively 

assessed after transient knockdown of cbx7. The majority of miRNAs were significantly 

decreased at 48 hpf (Figure 3-8B), possibly as a result of a regulatory feedback loop. 

Interestingly, cbx7 knockdown did not induce a change in miR-21 expression, nor did it 

impair larval fish from regenerating following injury (data not shown). Transient knockdown 

of miR-21, however, did block regeneration in 75% of larvae (Figure 3-6E, F). It is plausible 

that, in the larval model, cbx7 is not necessary for regeneration, further supporting the 
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concept of age-related changes in regeneration signaling pathways. Or, cbx7 could be acting 

in concert with other miR-21 targets to facilitate regeneration. Further study in both the 

larval and adult fish will need to confirm these hypotheses. 

 

We found that CBX7 expression was localized to the neuromasts in both the adult and aged 

caudal fin tissue (Figure 3-9A-D). In adult zebrafish, new neuromast cells populate 

regenerative outgrowths following surgical amputation (91). In fish, neuromasts are 

individual mechanosensory organs that are arranged in a symmetric pattern along both the 

body and the caudal fin. These innervated structures comprise the lateral line, a primary 

sensing tissue in the fish. Each neuromast contains 15-20 hair cells surrounded by supporting 

and mantle cells (92). Numerous models including axolotl salamanders, frog and various fish 

species can regenerate  sensory hair cells (30, 91, 93-102), which are structurally and 

genetically equivalent to mammalian inner ear hair cells (92). Research in these models seeks 

to identify regenerative therapies for inner ear hair cells (103, 104). Similar to the decline in 

tissue regeneration capacity, hair cell loss is strongly correlated with age in mammals (105, 

106). Molecular mechanisms necessary for regeneration are conserved across many 

biological systems (e.g. heart, retina, skeletal muscle, fin, liver, and hair cells)(25). 

Additionally, regeneration requires the reactivation of fundamental developmental signaling 

pathways in order to restore damaged or missing structures (107). Therefore, we 

investigated whether miR-21 or cbx7 were required for neuromast hair cell development. 

Knockdown of cbx7 and miR-21 caused a reduced number and aberrant patterning of 

neuromast hair cells (Figure 3-10E, F, I, J). These results implicate a functional role for miR-21 

and cbx7 in tissues and cell types most affected by aging. 

 

To explore this relationship further, we evaluated the 78-bp RNA-Seq transcript expression 

profile to determine whether key developmental regulatory genes known to be associated 

with both regeneration and neuromast formation had aberrant expression patterns with age. 

Sox2 and the Notch signaling pathway ligands Jagged1b (Jag1b) and DeltaD, were all 

significantly downregulated in regenerating tissue from adult and juveniles. Aged 

regenerating and non-regenerating tissue were completely devoid of these transcripts (Table 

3-3). Sox2 is a transcription factor and pluripotency gene that belongs to the B1 subfamily of 
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Sox proteins (108). The decrease in sox2 expression observed in regenerating tissue from 

adults and juveniles recapitulated the sox2 expression profile previously shown in 

regenerating zebrafish caudal fins and xenopus limbs (66). Transient knockdown of sox2 

impaired caudal fin regeneration and sox2 expression was restricted to the neural tube (66). 

These results suggest that sox2 is necessary for epimorphic fin regeneration and likely 

associated with nerve innervation (66). This was further supported by studies that 

demonstrated expression in regenerating newt tissues and the importance of Sox2 in 

providing an adequate nerve supply for regenerating tail and spinal cord tissue in xenopus 

(67, 68). Several additional studies demonstrate the dependence of regeneration on an intact 

nerve supply (14, 104, 109, 110)). Additionally, Sox2 deficiency impaired neurogenesis in the 

adult mouse brain (69). Similarly observed a decrement in the neuronal processes in aged 

regenerating tissue (Figure 3-9F, H, J). And, concomitantly, showed that miR-21 knockdown 

impairs neurogenesis (Figure 3-10K, L) and tissue regeneration (Figure 3-6E-F).  

 

Our findings suggest an association between miRNA mediated cbx7 and sox2 expression in 

axon formation and regeneration. This is supported by evidence of a Polycomb 

autoregulatory mechanism that regulates sox2 and cbx7 expression (28). Sox2, oct4 and 

nanog are all predicted to bind the promoter regions of cbx7 in ESCs (29). During 

differentiation, miRNAs repress cbx7, which leads to transcriptional activation of lineage-

specific genes and cbx2, cbx4 and cbx8 which, in turn, associate with PRC1 to form new 

repressor complexes that downregulate the expression of cbx7 and pluripotency related 

genes, such as sox2 (28, 29). Our RNA-Seq data from aged regenerating tissue showed a 

decrease in cbx7, which may result in repressed expression of pluripotency genes (Figure 3-

3C, Table 3-1). Regenerating tissue of younger fish, in contrast, had significantly increased 

cbx7 expression, which would have resulted in activated pluripotency genes (Figure 3-3C, 

Table 3-1). Hence, it is possible that, in addition to miR-21 mediation of cbx7 expression, the 

age-related absence of sox2 is limiting the transcription of cbx7 during regeneration. Further 

study is needed to determine the potential relationship between cbx7 and sox2 during 

regeneration.  
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The Notch ligands Jag1b and DeltaD were absent in aged regenerating tissue. Reactivation of 

Notch signaling is important for regeneration in the inner ear (70), lateral line(101), liver 

(111), heart (71), fin (71), spinal cord (112), and axons (113). Additionally, sox2, jag1, and 

deltaD are known to have important roles in the formation and differentiation of hair cells 

and supporting cells (72-74, 76, 114). Sox2 mutant mice do not express Jag1 (73). Sox2-

depleted zebrafish embryos cannot regenerate lateral line hair cells following laser ablation 

(75). Functional Sox2 and Jag1 deficiency causes loss of hair cells, similar to cbx7 and miR-21 

morphants (Figure 3-10E, F, I, J) (73, 114-117). Jag1 was recently demonstrated to be 

required for maintenance of sox2 expression (118). Furthermore, sox2, jag1b, and deltaD 

were shown to be expressed in the neuromasts of embryonic zebrafish (119, 120). Similar to 

the expression pattern of sox2, our data show that jag1b and deltaD are significantly 

decreased in regenerating fin tissue in adults and juveniles, and absent in regenerating tissue 

from aged fish (Table 3-3). In contrast, aged regenerating tissue did have a significant 

increase in jag1a, which was not present in adults and juveniles in our data. Concomitant 

with our localization of CBX7 to neuromasts (Figure 3-9), aberrant hair cell expression upon 

cbx7 and miR-21 knockdown (Figure 3-10E, F, I, J) and the known expression patterns and 

function of sox2, jag1 and deltaD support miR-21 being an upstream regulator of an age-

related cascade of events that likely mediates the expression of cbx7, sox2 and Notch 

ligands, severely limiting the capacity of progenitor cells involved with regeneration and 

formation of neuromast hair cells. 

 

Congruent with our work, a recent study found miR-21 was overexpressed in regenerating 

limb blastemas in salamanders and demonstrated that Jag1 is a target of miR-21 during 

regeneration (56). To the best of our knowledge, miR-21 is not yet predicted to target Jag1 in 

zebrafish. Yet, our findings support the importance for miR-21 in regeneration and suggest 

that in zebrafish, miR-21 has a functional role in regeneration through regulation of cbx7, 

which acts as a permissive switch to stimulate the activity of developmentally repressed 

genes such as Sox2 and Notch ligands in progenitor cells. 

 

In summation, we demonstrated that transient knockdown of miR-21 impaired regeneration 

in larval zebrafish, and that cbx7 is a bona fide target of miR-21 in vivo. We observed an age 
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related decrease in cbx7 in regenerating tissue that exhibits a compromised ability to 

regenerate. In ESCs, miRNA mediated Cbx7 expression is a critical regulator of pluripotency 

related genes (28, 29). Our data implicates, for the first time, the importance of miRNA 

mediated regulation of Cbx7 in adult somatic cells and outlines how dysregulation of 

pluripotency related genes affects tissue regeneration, neuromast hair cell development and 

neurogenesis. This research underscores the pleiotropic effects that miR-21 has on 

development and tissue repair, and, more broadly, highlights how the use of tandem small 

RNA and mRNA global profiling in tissue regeneration can uncover conserved pathways 

critical to the development and reconstruction of complex body plans. 
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Figure 3-1. Caudal fin amputation and tissue collection experimental design. 
Simplified schematic of zebrafish caudal fin amputation and collection of the non-
regenerating (control) tissue at 0 dpa followed by subsequent amputation and collection of 
the blastema formed at 1 dpa. 
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Figure 3-2. Zebrafish exhibit declines in regenerative capacity with age. 
Representative images of caudal fin outgrowths prior to amputation and immediately post-
amputation (0 dpa), 1 dpa, 7 dpa and 14 dpa in (A) juvenile, (B) adult and (C) aged zebrafish. 
Red arrows indicate areas of compromised regenerative outgrowth. 
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Figure 3-3. Global expression of transcripts in regenerating caudal fin tissue. 
78-bp RNA-Seq analysis was conducted on caudal fin tissue samples of non-regenerating 
(control, 0 dpa) and regenerating tissue (1 dpa) collected from juvenile (4 weeks), adult (4 
months) and aged (> 2 years) fish (n =3). Venn diagrams depicting (A) the overall number of 
statistically significant transcripts and (B) the number of statistically significant transcripts 
that were commonly expressed in regenerating tissue in comparison to control in all three 
age cohorts (p < 0.05, 5% FDR). (C) A heatmap of the expression pattern of the transcripts 
with significant and inverse differential expression profiles in aged tissue in comparisons to 
tissue from juveniles and adults. (The data represent unsupervised bidirectional hierarchical 
clustering performed on fold change (Log2) values obtained from transcript differential FPKM 
values in regenerating tissue in comparison to control in juveniles, adults and aged fish, p < 
0.05, 5% FDR.)    
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Figure 3-4. Regeneration induces significant changes in miR-21 and miR-181a expression. 
Bar charts of CASHX output representing counts of the number of miRNA that aligned to 
mature miRNA loci  in aged (G), adult (A), and juvenile (J) regenerating (REG) and non-
regenerating (CON) tissue. miRNA with less than 100 counts in any of the biological replicates 
were excluded from this chart. (Significance values reflect counts in regenerating tissue 
relative to non-regenerating, mean ± SEM, n = 3,*P < 0.05,***P < 0.001, Two-way ANOVA 
with Bonferroni Multiple Comparison Test.) 
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Figure 3-5. Significantly expressed miRNAs are predicted to target cbx7. 
(A) Simplified schematic of MREs of the miRNAs predicted to target the 3’ UTR of cbx7. (B) 
Expression levels, represented by fold-change, of miRNAs predicted to target cbx7 in 
regenerating and non-regenerating tissue from aged, adult and juvenile zebrafish. (The fold-
change data is relative to non-regenerating tissue, mean ± SEM, n = 3, *P < 0.05, ** P < 
0.01,***P < 0.001, Two-way ANOVA with Bonferroni Multiple Comparison Test.) 
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Figure 3-6. miR-21 is necessary for caudal fin regeneration. 
(A) The miR-21 morpholino, designed to target the guide-dicer site (red) of the pre-miR-21 
sequence, was injected into single-cell stage embryos. (B) Effective knockdown of miR-21 
was confirmed in miR-21 morphants at 24 and 48 hpf via qRT-PCR. (Values reflect fold-
change relative to control MO injected embryos, mean ± SEM, n = 3,*P < 0.05, **P <0.01, 
One-way ANOVA with Dunnett's Multiple Comparison Test.) miR-21 morphants 
demonstrated an aberrant regenerative caudal fin outgrowths in comparison to control 
morpholino injected and amputated larvae at 3 dpa. Representative whole body images and 
caudal fins of (C,D) control  and (E,F) miR-21 morphants at 3 dpa (120 hpf).  
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Figure 3-7. Cbx7a is a bona fide target of miR-21 and miR-181a* in vivo. 
A GFP-cbx7a 3’ UTR reporter (A) was co-injected with miR-21, miR-181a* or control 
morpholinos into single-cell embryos. (B) Representative images of fluorescence expression 
in embryos (n=12/well) and (C) the quantification of fluorescence intensity per well (n = 4) 
was measured. (Significance represents co-injected GFP-cbx7a 3’ UTR reporter and miR-21 or 
miR-181a* mimic in comparison to control mimic, mean ± SEM, n = 4, *P < 0.05, ** P < 0.01, 
One-way ANOVA with Tukey's Multiple Comparison Test.) (D) Injection of miR-21 mimic 
decreased the expression of cbx7. (Values represent fold-change compared to control mimic 
injected embryos, mean ± SEM, n = 3,*P < 0.05, One-way ANOVA with Dunnett's Multiple 
Comparison Test.) 
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Figure 3-8. Cbx7 loss-of-function confirms relationship with target miRNA. 
Cbx7 splice blocking morpholino targeting exon 2 (44bp) or control morpholino were injected 
into single stage animals. (A) Gel electrophoresis was used to confirm knockdown of PCR 
amplified products of pooled tissue from cbx7 and control morphants at 48 hpf. (C) 
Expression levels, represented by fold-change, of miRNAs predicted to target cbx7 in cbx7 
morphants at 48 hpf (The fold-change data is relative to control morphants, mean ± SEM, n = 
3, *P < 0.05,**P < 0.01, Two-way ANOVA with Bonferroni Multiple Comparison Test.) 
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Figure 3-9. CBX7 expression and neuronal integrity of adult and aged fin tissue. 
Representative images of CBX7 protein expression in neuromasts of non-regenerating 
(control) and regenerating tissue from (A,C) adult and (B,D) aged zebrafish (Red line 
represents amputated edge of fin). Acetylated alpha tubulin antibody labeled the neuronal 
cell bodies and axons in non-regenerating and regenerating (E,G,I) adult and (F,H,J) aged fin 
tissue. Magnified images of the regeneration front show neuronal processes extending under 
the apical epithelial wound cap of (I) adult tissue at 1 dpa and lack of innervation in the (J) 
aged tissue.  
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Figure 3-10. Transient knockdown of cbx7 and miR-21 impacts neuromast hair cell 
formation and neurogenesis. 
Staining of the hair cells of the anterior lateral line and posterior lateral line in (A,B) control, 
(E,F) cbx7 and (I,J) miR-21 morphants at 120 hpf. Acetylated alpha tubulin antibody 
expression in the neuronal process of (C,D) control, (G,H) cbx7 and (K,L) miR-21 morphants at 
48 and 120 hpf 
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Table 3-1. Fold change values for significant and inversely expressed transcripts in adults 
and juveniles versus aged tissue from 78-bp RNA-Seq differential expression analysis. 
 Log2 for transcripts with significant and inverse expression profiles in caudal fin tissue from 
juveniles and adults in comparison to aged zebrafish (p < 0.05, 5% FDR). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Age Cohort 

Transcript Aged Adult Juvenile 
agpat3 -1.79769e+308 1.79769e+308 1.79769e+308 

tial1 -1.79769e+308 1.79769e+308 4.22414 

tmco7 -3.90464 2.01474 1.79769e+308 

TRIM60 -0.807662 1.92168 1.02129 

fras1 -1.79769e+308 1.81466 1.57671 

si:dkey-8k3.2 -0.917333 1.03233 1.79769e+308 

CBX7 (2 of 2) -1.55552 1.00438 2.69832 

CABZ01038493.1 2.11188 -0.905684 -0.778159 

crip2 0.896862 -1.20917 -2.1666 

cyp26a1 1.11555 -1.29666 -2.10108 

ankrd44 4.1798 -1.57574 -1.47502 

CLASP1 (1 of 3) 1.13417 -1.92109 -2.43288 

MYOF (1 of 2) 0.847512 -1.79769e+308 -1.318 
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Table 3-2. Fold change values for miRNAs from 40-bp RNA-Seq differential expression 
analysis. 
miRNAs significantly differentially expressed in aged, adult or juvenile regenerating caudal fin 
tissue in comparison to control (Significance values reflect counts in regenerating tissue 
relative to non-regenerating, mean ± SEM, n = 3,*P < 0.05, ***P < 0.001, Two-way ANOVA 
with Bonferroni Multiple Comparison Test) 
 

 
Age Cohort 

miRNA Aged Adult Juvenile 

let-7a -2.42 *** -1.85 *** -1.62 
 

let-7g -2.18 
 

-1.80 *** -1.54 
 

miR-10b -3.60 * -2.24 *** -1.77 
 

miR-181a -2.69 *** -2.55 *** -2.56 *** 

miR-21 3.04 *** 9.51 *** 7.20 *** 
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Table 3-3. Fold change values for Sox2 and Notch ligands from 78-bp RNA-Seq differential 
expression analysis. 
Log2 for deltaD (dld), jagged1a (jag1a), jagged1b (jag1b) and sox2 in regenerating compared 
to non-regenerating tissue (p < 0.05, 5% FDR). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Age Cohort 

miRNA Aged Adult Juvenile 

dld   -2.84578 *** -2.14833 *** 

jag1a 3.57431 ***     
jag1b   -1.35052 *** -0.63411 *** 

sox2   -1.03724 * -1.10368 ** 
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Table 3-S1. Sequence and read alignment data from 78-bp Illumina Sequencing. 
Illumina® flow cell lane location for 78- bp RNA-Seq, total number of processed sequences, 
parsed sequences, sequences passing Q-threshold and number of aligned reads for each of 
the 18 individual samples. The bioinformatics IDs indicate the age cohort (G = aged; A = 
Adult; J = Juvenile), CON for control or non-regenerating tissue (0 dpa) and REG for 
regenerating tissue (1 dpa), and numbers denote the biological replicate. 
 

 
 
 
 
 
 
 

Sample Lane Total_Processed_ 
Seqs 

Total_Parsed_ 
Seqs 

Total_Seqs_ 
passing_Q-
Threshold 

Aligned_Read_  
SAMSTAT 

G-CON-1 1 12,010,526 11,876,890 11,876,890 12,095,368 

G-CON-2 2 11,462,101 11,285,766 11,285,766 10,958,271 

G-CON-3 3 10,279,681 10,194,492 10,194,492 9,482,057 

G-REG-1 5 14,942,673 14,926,147 14,926,147 13,994,913 

G-REG-2 6 15,481,541 15,461,928 15,461,928 14,696,840 

G-REG-3 7 12,505,648 12,492,314 12,492,314 11,780,744 

A-CON-1 3 9,590,565 9,510,890 9,510,890 8,559,533 

A-CON-2 1 11,759,748 11,630,260 11,630,260 10,767,689 

A-CON-3 2 13,767,681 13,554,668 13,554,668 12,602,451 

A-REG-1 7 12,383,753 12,370,522 12,370,522 11,310,669 

A-REG-2 5 12,842,225 12,827,624 12,827,624 12,488,480 

A-REG-3 6 11,423,817 11,409,502 11,409,502 10,425,682 

J-CON-1 2 11,239,639 11,066,457 11,066,457 10,284,081 

J-CON-2 3 8,057,565 7,989,441 7,989,441 7,141,018 

J-CON-3 1 12,848,896 12,706,963 12,706,963 11,606,685 

J-REG-1 6 11,083,992 11,069,884 11,069,884 10,031,527 

J-REG-2 7 11,446,240 11,433,860 11,433,860 10,456,310 

J-REG-3 5 8,739,084 8,729,403 8,729,403 7,967,022 
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Table 3-S2. Cbx7 and β-actin primers used for experiments. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Gene Experiment Forward (5'-3') Reverse (5'-3') 

b-actin PCR AAGCAGGAGTACGATGAGTC TGGAGTCCTCAGATGCATTG 

cbx7 PCR AGTCTACGCGGGACATCTCGAC CGTTTTGGTCCACTTCGGTGCTC 

cbx7 (3’ UTR) Reporter Assay AGTCAGGACCAAGTGAACGA TCACCCACAACTTTATTTTTCCAT 
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Table 3-S3. Morpholino sequences. 
Sequences for the cbx7, miR-21, and control morpholinos. 
 

     

Name 
Ensembl Transcript ID 

or Mature miRNA 
Accession No. 

MO Sequence (5' to 3') MO 
Type 

MO 
Target 

cbx7 
MO ENSDART00000055428 CACATTTCCCTGAAACGAGAGCGAA splice 

blocking i1e2 

miR-21 
MO MI0001908 CAGCCAACACCAGTCTGATAAGCTA miRNA Guide-

Dicer 
Control 

MO - CCTCTTACCTCAGTTACAATTTATA - - 
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Chapter 4 – Conclusion 

In summation, the research presented in this thesis demonstrated the pivotal role of miRNAs 

during two distinct life stages, embryonic development and aging. Misregulation of miRNA 

expression was shown to be responsible for eliciting adverse developmental effects and the 

decline of tissue regenerative capacity with age. This is not surprising since many 

commonalities exist between development and regeneration. In essence, regeneration can 

be thought of as redevelopment (1). Regeneration requires the reactivation of fundamental 

developmental signaling pathways in order to restore damaged or missing structures (1). 

Both development and regeneration require precise control over spatiotemporal gene 

expression necessary to initiate and terminate molecular signaling cascades that guide cells 

to either create or recreate new tissue architecture (1).  Accordingly, miRNAs are perhaps 

best known for their role in fine-tuning the spatiotemporal expression of genes (2). Hence, 

our data corroborated the evidence that misregulation of miRNA expression, whether 

induced by toxicant exposure or organism aging, can result in undesirable, and often 

irreversible, biological consequences. 

 

First, to investigate the regulatory function of miRNAs in complex biological processes, RA 

was used as a model toxicant to explore the role of miRNAs in eliciting teratogenicity in the 

larval zebrafish model (Chapter 2). An initial toxicity assay demonstrated that 5 nM RA 

resulted in a distinct posterior curved body axis in larval zebrafish. Therefore, we sought to 

determine whether miRNAs were responsible for disrupting RA signaling, thereby leading to 

RA-induced body axis defects. Results from an unbiased global miRNA profiling analysis 

revealed that developmental RA exposure suppressed the expression of three miR-19 family 

members during the early stages of zebrafish somitogenesis. This is consistent with previous 

studies that showed RA is only necessary during the early stages of somitogenesis (somites 1-

6 in mice) to assure proper and synchronous development of the remaining somites (3, 4). All 

three of these miR-19 family members are predicted to target the 3’ UTR of cyp26a1, the 

main enzyme responsible for converting RA into its inactive polar metabolites (5). Through 

the use of a physiological reporter assay, we confirmed for the first time that the 3’ UTR of 

cyp26a1 is a bona fide target of miR-19. Co-expressed miRNAs are known to act 
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cooperatively to regulate the 3’ UTR of a common mRNA (6), supporting the concept that RA-

induced repression of miR-19 family members likely acts as a compensatory mechanism to 

increase the expression of one of the molecule’s main metabolizing enzymes, CYP26A1. 

Additionally, antisense repression of miR-19 in vivo recapitulated the distinct posterior 

curved body axis morphology and co-injection of exogenous miR-19 rescued the classic body 

axis defects associated with RA exposure. Together, this study highlights a role for miR-19 in 

facilitating normal vertebrate development by serving as a RA-sensitive switch to promote 

CYP26A1 mediated RA turnover during somitogenesis. 

 

These findings also provide novel insight into the evolutionary significance of the miR-19 

family as a vertebrate innovation. miR-19 has no known homologs in invertebrates (7, 8). The 

introduction of miRNA families correlates with drastic increases in morphological complexity 

(8-10). In addition, the data presented are consistent with the results of a seminal paper 

implicating the miR-17-92 cluster, in which miR-19 is a member, in vertebrate axis formation. 

This was the first report of a miRNA mutation causing a hereditary condition responsible for 

developmental defects in humans (11).This, in conjunction with our empirical results 

demonstrating the critical role of miR-19 family members in vertebrate axis formation, 

suggests the evolution and necessity for miR-19 in conferring proper formation and 

patterning of somites, a developmental phenomenon common to all vertebrates. 

 

Our results suggest a novel miRNA-driven compensatory mechanism initiated to increase the 

expression of RA’s main detoxifying enzyme, CYP26A1, during a period in which spatial 

maintenance of endogenous RA abundance is critical. Thus, this research places miR-19 at 

the nexus of RA induced teratogenicity and contributes to a more robust understanding of 

the regulation of RA metabolizing enzymes by describing the role of miRNAs in refining RA 

signaling during development. These results raise the interesting possibility that regulation of 

CYP26A1 abundance by miRNAs might also mediate hindbrain and forebrain development, 

neurogenesis and heart formation which are all regulated, in part, by RA signaling (5). To our 

knowledge, miRNAs have yet to be incorporated into existing bioinformatics models of the 

segmentation clock (12, 13). Our results deem this necessary to obtain a complete picture of 

the mechanisms that dictate somite formation and beg the question as to whether other 
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major signaling pathways that control axis formation, such as FGF, are similarly post-

transcriptionally regulated by miRNAs.  

 

Next, to investigate the potential role of miRNAs in the declining ability to repair tissue with 

age, we conducted 40-bp and 78-bp RNA sequencing on regenerating and non-regenerating 

caudal fin tissue from aged, adult and juvenile zebrafish (Chapter 3). This data provides the 

field with the first full repertoire of both transcripts and small RNAs involved in caudal fin 

tissue regeneration. Additionally, an unbiased approach was used to explore the differences 

in expression patterns of small RNAs and mRNAs in aged zebrafish, which have a 

compromised regenerative response, in tandem with expression patterns in juveniles and 

adults, which regenerate successfully. Only 13 transcripts exhibited a significant, but 

inversed, expression pattern in aged regenerating tissue compared to younger tissue. Cbx7 

was the most abundant inversely expressed transcript that had decreased expression in 

geriatrics and increased expression in adults and juveniles. While this research supports the 

first identified role for cbx7 as a regulator of aging (14) and its recently discovered role in 

mediating self-renewal and differentiation (15, 16),  our findings present the first 

documented evidence for a role of cbx7 in tissue regeneration in adult animals.   

 

Subsequently, a non-biased bioinformatics approach was used to identify transcripts 

significantly expressed in regenerating tissue based on the 78-bp RNA-Seq data predicted to 

be targeted by significantly expressed miRNAs for the 40-bp RNA-Seq analysis. Members of 

the miR-21 and miR-181a family were the most abundant miRNAs in regenerating and non-

regenerating tissue and were both predicted to target the 3’ UTR of cbx7. qRT-PCR 

experiments demonstrated that miR-21 and miR-181a* were both significantly increased in 

regenerating tissue compared to non-regenerating tissue. A physiological reporter assay was 

used to confirm that cbx7 is a bona fide target of miR-21 and miR-181a*. Microinjection of 

exogenous miR-21 reduced cbx7 in vivo, also supporting the relevance of a functional 

regulatory interaction between miR-21 and cbx7. Furthermore, transient knockdown of miR-

21 inhibited tissue regeneration in larval zebrafish, suggesting a role for miRNA mediated 

regulation of cbx7 in tissue regeneration. Taken together, these results highlight a novel age-
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dependent role for cbx7 in regulating vertebrate tissue regeneration and underscore the 

importance of miR-21 as a master regulator of regenerative responses. 

 

Data from the RNA-Seq analysis and our localization of CBX7 to the neuromasts also suggests 

that the mechanisms dictating regeneration in the caudal fin may be conserved in neuromast 

hair cell formation and neurogenesis, since the same molecular signaling pathways involved 

in tissue and structure formation are often required for the restoration of damaged 

structures (1). Additionally, many pathways (e.g., WNT and FGF signaling) are conserved 

across regeneration platforms as demonstrated in the fin, heart, retina, skeletal muscle, liver 

and hair cells (as reviewed in (17)). Sox2 and two Notch ligands, Jagged1 (jag1b) and DeltaD 

(dld), were all significantly decreased during regeneration in adults and juveniles and 

completely absent in aged tissue. Sox2 was demonstrated to be important for tissue 

regeneration (18, 19), cell fate specification (20-22), nerve innervation (18, 23), and 

neuromast and hair cell formation (20, 24-26). Reactivation of Notch signaling is critical for 

regeneration in the inner ear (27), lateral line (28), liver (29), heart (30), fin (30), spinal cord 

(31), and axons (32). Additionally, both Jag1b and DeltaD ligands were demonstrated to be 

involved with neuromast hair cell formation (33-38). Our data demonstrates that in addition 

to inhibiting regeneration, transient knockdown of miR-21 causes aberrant neuromast hair 

cell formation and impaired neurogenesis. Sox2 is an important pluripotency related gene 

whose expression was demonstrated to be mediated by Cbx7 expression (15, 16). 

Additionally, sox2, jag1, and deltaD interact concurrently to control the formation of 

developing hair cells (as reviewed in (38)). Taken together, our findings suggest the 

importance for miR-21 as a master regulator that acts as a permissive switch to regulate 

expression of cbx7 and likely influence other important developmental regulatory genes such 

as Sox2 and Notch ligands, which are necessary for both regeneration and development. 

Furthermore, this research underscores the critical role miRNAs play in conserved 

regenerative responses and developmental signaling pathways. 

 

Regeneration research has rapidly re-emerged in the context of regenerative medicine (39). 

One main goal of in vivo regeneration research is to understand the molecular signaling 

processes which coordinately act to restore tissue in organisms that can regenerate. The 
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hope, of course, is to use our knowledge of these pathways to understand why other species 

cannot. Seifert et al. suggest that these traditional types of evolutionary comparisons, such 

as the presence or absence of regenerative capacity across species, may not broaden the 

lens enough to allow for a complete picture of regeneration. In many species, regeneration is 

coupled to developmental stage and regenerative capable organisms only have the ability to 

restore damaged tissue in larval and juvenile stages (39). Perhaps the more appropriate 

question for uncovering pathways that facilitate regeneration is: “What are the changes that 

occur throughout a lifetime of an individual to constrain regeneration?” (39). Our research 

provides answers to this question and suggests a putative role for miRNAs in mediating age-

related changes in regenerative capacity. Furthermore, given the evolutionary role of 

miRNAs to confer the robustness of phenotypes (40) and that the decline of regenerative 

capacity with age is a conserved phenotype in most vertebrates (41-44), we posit that 

evolution and devolution of specific miRNAs that reinforce age-dependent transcriptional 

programs necessary for regeneration are responsible for the decline in regenerative capacity 

with age. 

 

In regards to development, this research was the first to identify a role for miRNAs in eliciting 

RA-induced teratogenicity through the regulation of RA metabolizing enzymes. These 

findings are significant because although the etiology of RA-induced developmental defects 

has been known for over fifty years, underlying molecular mechanisms of RA signaling are 

not fully understood (45, 46). Through our aging research, we were the first to demonstrate 

an age related role for cbx7 in tissue regeneration in adult animals. Additionally, our findings 

show the pleiotropic role of miR-21 in the development and re-development or various types 

of cells and tissues. Collectively, this thesis highlights the role of miRNAs in two complex 

processes distinctly positioned on opposite ends of organismal lifespan and, more broadly, 

demonstrates the powerfulness of using tandem miRNA and mRNA global profiling to 

uncover conserved regulatory mechanisms involved in the development and reconstruction 

of complex body plans. 
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