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The widespread use of wireless devices that we have recently been witnessing, such as 

smartphones, tablets, laptops, and wirelessly accessible devices in general, is causing an 

unprecedented growth in the required amount of the wireless radio spectrum. On the 

other hand, the spectrum resource has, for the last several decades, been allocated to 

spectrum users in static manners. These static allocation methods were found to be very 

inefficient. This inefficient use of the spectrum resource, coupled with its limited avail­

ability nature, has led to a shortage in the spectrum supply. Consequently, the concept 

of dynamic spectrum access (DSA) has emerged as an alternative allocation approach 

with great potential for solving this shortage problem. In the DSA context, there are 

two types of users: primary users (PUs) and secondary users (SUs). While PUs have 

exclusive access rights to use their licensed spectrum bands at all time, SUs are allowed 

to use these bands only opportunistically. That is, prior to using any licensed band, 

SUs must first sense the band to make sure that it is vacant. When a PU returns while 



SUs are using its band, SUs must vacate immediately. In the first part of this disserta­

tion, we address the problem of resource management in DSA networks. Specifically, we 

develop resource and service management techniques to support SUs with certain QoS 

(Quality of Service) requirements in large-scale DSA networks. The proposed techniques 

empower SUs to seek and exploit spectrum opportunities dynamically and effectively, 

thereby maximizing the SUs’ long-term received service satisfaction. Our proposed tech­

niques are efficient in terms of optimality, scalability, distributivity, and fairness. In the 

second part of this dissertation, we model, characterize, and analyze the key performance 

metrics of these DSA networks. Specifically, we use a continuous-time Markov process 

to derive and analyze the forced termination and blocking probabilities of SUs under 

two realistic limitations. First, we investigate the impact of the channel handoff agility 

limitation on the performance. Here, due to this agility limitation, which is imposed 

essentially by hardware restrictions, SUs can only switch to their immediate neighboring 

channels whenever they have to due to, for e.g., the return of a PU. We show that such 

a limitation has great impact on the achievable performances of DSA networks. Second, 

we study the impact of the adjacent channel interference on the performance of DSA 

schemes, which often rely on the use of guard bands to handle such an interference. We 

model and analyze the impact of guard band deployment methods on the performance 

of DSA schemes. Our study serves as design guidelines for choosing appropriate guard 

band deployment methods when designing DSA schemes. 
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Chapter 1: Introduction 

1.1 Dynamic Spectrum Access 

The unprecedented growth in the use of wireless devices, applications and services has 

created high demand for the wireless radio spectrum resource. This growth has also led 

to the development of new communication techniques, such as multiple-input multiple-

output (MIMO) [50, 52–54] and cooperative communication [45], and to the emergence of 

new wireless technologies, such as WiFi [46, 49, 51], LTE [30], and femtocell networks [22, 

23] to be able to meet this high demand. The spectrum supply, on the other hand, has 

not been keeping up with this demand, thereby creating an unexpected supply shortage. 

The reason for this shortage is reported to be due not to the scarcity of the spectrum, but 

rather to the inefficiency of current spectrum allocation methods, thus leaving plenty of 

unused spectrum opportunities along both the time and frequency dimensions. In effect, 

recent studies conducted by FCC (US federal communication commission) and other 

regulatory bodies revealed vast temporal and geographical variations in the utilization 

of the licensed spectrum, ranging from 15% to 85% [1, 10, 69]. The results of these studies 

persuaded regulatory bodies to urge for more efficient and adaptive spectrum allocation 

policies. Consequently, FCC has since been revising and improving its regulations to 

allow and promote opportunistic and dynamic access to the spectrum. Cognitive radio, 

proposed by Joseph Mitola III in 1999 [98], emerges as the potential technology that can 

enable such an opportunistic and dynamic access capability. 

This dissertation has two major parts. In the first part, we begin by addressing the 



2 

problem of resource management in Dynamic Spectrum Access (DSA) networks, and in 

the second part, we use a continuous-time Markov process to model, characterize and 

analyze key performance metrics of these DSA networks. 

1.2 Design of Efficient Resource Allocation Schemes 

During this past decade, DSA has attracted significant research attention from academia, 

industry and government agencies, resulting in numerous works ranging from proto­

col design and optimization [3, 21, 27, 35, 37, 42, 57, 62, 71, 85, 91–93, 114, 118, 122, 140] to 

market-oriented resource management strategies and architectural paradigms [13, 17, 25, 

32, 63, 70, 74, 76, 100, 133, 138]. Research attention has also been paid to the develop­

ment of prediction model-based channel selection techniques that can adapt themselves 

to enable effective DSA [8, 26, 84, 88, 90, 127, 130, 131]. One key challenge with relying on 

prediction models, however, is that the unique characteristics of DSA environment make 

it too difficult to construct accurate models that can capture DSA dynamics, unless some 

unrealistic assumptions are made, leading to inaccurate prediction of the environment’s 

behaviors. As a result, there have also been some efforts on developing learning-based 

techniques that do not require such models, yet can still perform well by learning directly 

from interaction with the environment [12, 19, 44, 64, 86, 89, 128, 129]. Instead of using 

models, these techniques rely on learning algorithms [119, 121] to learn from the past 

and present interaction experience to decide what to do best in the future. 

In the first part of this dissertation, we address the problem of resource management 

in DSA networks. Specifically, we develop resource and service management techniques 

to support secondary users (SUs) with certain QoS (Quality of Service) requirements 

in large-scale DSA networks. The proposed techniques empower SUs to seek and ex­
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ploit spectrum opportunities dynamically and effectively, thereby maximizing the SUs’ 

long-term received service satisfaction levels. Our techniques are efficient in terms of 

optimality, scalability, distributivity, and fairness. 

1.3 Performance Analysis of Cognitive Radio Networks 

Research attention has also been given to deriving models and studying behaviors of the 

cognitive radio and dynamic spectrum access performance [37, 55, 58, 91, 135]. Gener­

ally, most of these performance studies model cognitive radio access by means of Markov 

chains, and use these models to derive and analyze network performances. For exam­

ple, in [9, 117, 126, 132, 137], Markov chains are used to model and study the forced 

termination and blocking probabilities of SUs in a cognitive multichannel access system 

consisting of primary and cognitive users. However, one common unrealistic assump­

tion made in these existing works that we address in this dissertation is that SUs, when 

accessing the multichannel system opportunistically, are allowed to switch/jump to any 

available channel in the system, regardless of the frequency gap between the target and 

the current channels [65]. However, due to hardware limitations, SUs can actually jump 

only so far from where the operating frequency of their current channel is, given an 

acceptable switching delay that users are typically constrained by [66]. Therefore, in 

Chapter 4, we study the performance of cognitive radio networks, but while considering 

realistic channel switching (or handoff) agility, where SUs can only switch to channels 

that are immediate neighbors of their current operating channels. 

Additionally, many works have been done in the literature, proposing models for per­

formance evaluation of CRNs (e.g., [16, 72, 114, 136]). In most of these works, adjacent-

channel interference (ACI) is often not considered, requiring thus ideal transmission 
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filters. The lack of ideal filters, as in the case of real systems, causes, however, spec­

trum spill-over. Therefore, in order to protect adjacent PU and CU transmissions, there 

should be a frequency separation. Such a separation is referred to as a guard band. 

However, using guard bands restricts effective spectrum utilization. CUs should account 

for the impact of guard bands when choosing channels for their transmission. The good 

news is that when two contiguous channels belong to the same CU, there is no need for 

a guard band between them. Throughout, a set of contiguous channels assigned to the 

same CU is called a frequency block. 

The ACI impact on CRN performances has previously been studied in [136], where a 

centralized solution for adaptive guard-band setting was proposed. The proposed solu­

tion uses a dynamic guard-band configuration to minimize ACI, thus requiring a central 

server for frequency planning. In [136], the authors did not consider channel aggregation. 

In Chapter 5, we consider CU transmissions to be carried over multiple contiguous (i.e., 

bonded) or noncontiguous (i.e., aggregated) available bands. Experimental studies were 

conducted to show the benefits of channel bonding and aggregation in the context of 

CRNs (e.g., [24, 75, 81]). In [24], the authors show the impact of using channel bonding 

on the performance of an IEEE 802.11 network. They experimentally proved that chan­

nel bonding can significantly improve the network performance in terms of throughput, 

transmission range, and power consumption. However, they did not consider channel 

aggregation in their work. In their work, they simply considered single-hop scenarios. 

The authors in [75] model an ad-hoc opportunistic spectrum access network with channel 

bonding as a Markov process in order to study the throughput performance. Their re­

sults show that channel bonding generally enhances network performance under certain 

circumstances. Network size and the number of available channels determine the level of 

enhancement. In their model, nevertheless, the authors did not consider the guard band 
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constraint. Another study investigates the possibility of opportunistic spectrum access 

under strict limit on PUs’ service rate [81]. The study shows that reliable communica­

tions cannot be guaranteed by traditional spectrum access policies for CUs. Therefore, 

their results proposed channel aggregation as a means to provide reliable communications 

for CUs. The papers mentioned above do not incorporate the guard band constraints 

in their design. Therefore, in Chapter 5, we model a multichannel CRN access as a 

continuous-time Markov process under the realistic assumption of non-ideal filters (i.e., 

guard bands are used). We then use our model to derive system performance metrics 

under various channel assignment schemes. The second part of this dissertation, which 

includes Chapter 4 and Chapter 5, uses a continuous-time Markov process analysis to 

model and characterize the performance of DSA networks while accounting for the two 

aforementioned physical limitations. 

1.4 Contributions and Dissertation Organization 

1.4.1 Research Contributions 

We summarize the contributions of this dissertation in this section. 

•	 In Chapter 2 and 3, we derive and propose efficient objective functions for SUs that 

are aligned with system objective in that when SUs aim to maximize them, their 

collective behaviors also lead to good system-level performance, thereby resulting 

in increasing each SU’s long-term received rewards. More specifically, we propose 

objective functions that are (i) near-optimal, in that they allow SUs to achieve 

rewards close to the maximal achievable rewards, (ii) scalable, in that they perform 

well in systems with a small as well as a large number of users, (iii) learnable, 
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in that they allow SUs to reach up near-optimal rewards very quickly, and (iv) 

distributive, in that they are implementable in a decentralized manner by relying 

on local information only. We want to emphasize that the focus of this Chapter 

is not on learning, but rather on the design of objective functions that promote 

coordination, so we used existing learning techniques to achieve our goals. We also 

emphasize that, in this work, we benefit from the concepts and techniques that 

were previously used in multi-agent coordination but has not been used in this 

context. 

•	 In Chapter 4, we study the performance of cognitive radio networks, but while 

considering realistic channel switching (or handoff) agility, where SUs can only 

switch to channels that are immediate neighbors of their current operating chan­

nels. We modelled the system under the aforementioned constraint as a continuous 

Markov process since it has been popular in the literature [9, 117, 126, 132, 137]. 

This makes the accuracy of the results in our work comparable to the results of 

previous works. Results show that for a fixed primary user load, the forced access 

termination probability of cognitive users decreases significantly as the number of 

target handoff channels increases. The results also show that the gap between the 

forced termination probabilities for different numbers of target handoff channel 

set sizes increases with the primary user arrival rate. Unlike the forced termina­

tion probability, the blocking probability is shown not to depend on the level of 

spectrum agility. Also, we observe that as the primary user arrival rate increases, 

the cognitive spectrum access efficiency reduces, regardless of the level of handoff 

agility. The spectrum efficiency depends, however, on spectrum agility level, and 

the higher the agility, the higher the spectrum efficiency. To summarize, Chapter 4 
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makes the following contributions: 1) performance modelling of cognitive radio 

network access with limited spectrum handoff agility, 2) validation of the derived 

analytic results via computer simulations, and 3) study and analysis of the impact 

of spectrum handoff agility on the performance behaviors of dynamic spectrum 

access networks. 

•	 In Chapter 5, we again model a multichannel CRN access as a continuous-time 

Markov process under the realistic assumption of non-ideal filters (i.e., guard bands 

are needed). We then use our model to derive system performance metrics, such as 

blocking probability, forced termination probability, degradation probability, CU 

utilization, service degradation, spectrum efficiency, under five different channel 

assignment schemes. These channel selection schemes are designed to improve 

some of the system performance metrics, such as spectrum efficiency and service 

degradation. Furthermore, we consider two scenarios of CRNs: FDM and D­

OFDM. While in a FDM-based CRN, two neighboring CU transmissions are not 

allowed to share the same guard band, in the D-OFDM-based CRN, neighboring 

CU transmissions are allowed to do so. 

1.4.2 Dissertation Organization 

This dissertation is composed of six chapters. Chapter 1 provides an introduction to 

DSA networks along with the challenges that emerge in the design of resource alloca­

tion schemes in such networks. It also highlights our major contributions gained in 

this research. In Chapter 2 and Chapter 3, we derive and evaluate private objective 

functions for large-scale, distributed opportunistic spectrum access (OSA) systems. By 
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means of any learning algorithms, the derived objective functions enable OSA users to 

assess, locate, and exploit unused spectrum opportunities effectively by maximizing the 

users’ average received rewards. Chapter 4 studies the performance of cognitive radio 

networks while considering realistic channel handoff agility, where cognitive users can 

only switch to their neighboring channels, whereas in Chapter 5, we use continuous-time 

Markov analysis to model and analyze the adjacent channel interference and its impact 

on CRN performance under different spectrum sharing schemes. Finally, in Chapter 6, 

we conclude by summarizing and highlighting the main contributions and results of the 

work presented in this dissertation. 
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Chapter 2: Efficient Objective Functions for Coordinated Learning 

in Large-Scale Distributed OSA Systems 

In this Chapter, we derive and evaluate private objective functions for large-scale, dis­

tributed opportunistic spectrum access (OSA) systems. By means of any learning algo­

rithms, these derived objective functions enable OSA users to assess, locate, and exploit 

unused spectrum opportunities effectively by maximizing the users’ average received re­

wards. We show that the proposed objective functions are: near-optimal, as they achieve 

high performances in terms of average received rewards; highly scalable, as they perform 

well for small- as well as large-scale systems; highly learnable, as they reach up near-

optimal values very quickly; and distributive, as they require information sharing only 

among OSA users belonging to the same band. 

2.1 Introduction 

Federal Communications Commission (FCC) foresees opportunistic spectrum access (OSA) 

as a potential solution to the spectrum shortage problem [94, 95]. Essentially, OSA im­

proves spectrum efficiency by allowing unlicensed or secondary users (SUs) to exploit 

unused licensed spectrum, but in a manner that limits interference to licensed or pri­

mary users (PUs). That is, prior to using a licensed band, SUs must first sense the band 

to check its vacancy, and if it is vacant, they can then use it for as long as no PUs are 

present. When any PUs return to their band, SUs must vacate immediately. 
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During the past few years, due to its apparent promises, OSA has created significant 

research efforts, resulting in numerous works ranging from protocol design and perfor­

mance optimization [27, 37, 42, 71, 85, 91, 114, 116, 118, 122, 140] to market-oriented man­

agement strategies and architectural paradigms [25, 32, 70, 74, 76, 100, 133, 138]. More 

recently, research efforts have also been given to the development of optimal channel 

selection techniques that rely on spectrum availability prediction models to adapt them­

selves to the environment so as to promote effective OSA [8, 26, 78, 84, 88, 90, 127]. The 

challenge, however, is that the OSA environment has very unique characteristics that 

make it too difficult to construct models that can capture its dynamics without mak­

ing assumptions about the environment itself. Such assumptions are often unrealistic, 

leading to inaccurate prediction of the environment’s behaviors. 

As a result, there have also been some efforts on developing learning-based techniques 

that do not require such models, yet can still perform well by learning directly from in­

teraction with the environment [11, 19, 64, 86, 89, 102, 128, 129]. Instead of using models, 

these techniques rely on learning algorithms (e.g., reinforcement learners [119, 121] and 

evolving neuro-controllers [4, 20]) to learn from past and present interaction experience 

to decide what to do best in the future. In essence, learning algorithms allow SUs to 

learn by interacting with the environment, and use their acquired knowledge to select 

the proper actions that maximize their own (often selfish) objective functions, thereby 

“hopefully” maximizing their long-term cumulative received rewards. 

The key challenge that we address in this work is that when SUs’ objective functions 

are not carefully coordinated, learning algorithms can lead to poor performances in terms 

of SUs’ long-term received rewards. In other words, when SUs aim at maximizing their 

intrinsic (not carefully designed) objective functions, their collective behavior often leads 

to worsening each other’s long-term cumulative rewards, a phenomenon known as the 
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“tragedy of the commons” [68]. It is, therefore, imperative that objective functions be 

designed carefully so that when SUs maximize them, their collective behavior does not 

result in worsening each other’s performance. 

With this in mind, in this work, we derive efficient objective functions for SUs that are 

aligned with system objective in that when SUs aim to maximize them, their collective 

behaviors also lead to good system-level performance, thereby resulting in increasing 

each SU’s long-term received rewards [105, 107]. More specifically, we propose objective 

functions that are (i) near-optimal, in that they allow SUs to achieve rewards close to the 

maximal achievable rewards, (ii) scalable, in that they perform well in systems with a 

small as well as a large number of users, (iii) learnable, in that they allow SUs to reach up 

near-optimal rewards very quickly, and (iv) distributive, in that they are implementable 

in a decentralized manner by relying on local information only. 

We want to emphasize that the focus of this Chapter is not on learning, but rather 

on the design of objective functions that promote coordination, and that can be used by 

any learning algorithms. 

The rest of the Chapter is organized as follows. In Section 2.2, we present the 

spectrum and traffic models. Section 2.3 states the motivation as well objective of this 

work. In Section 2.4, we propose the objective functions. In Section 2.5, we derive upper 

bounds on the maximal achievable Section 2.6, we evaluate the proposed functions. In 

Section 2.7, we discuss the applicability of the proposed techniques to other models. 

conclude the paper in Section 2.8. 
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2.2 System Model 

We assume that spectrum is divided into m non-overlapping bands, and that each band 

is associated with many PUs. We consider a time-slotted system, where PUs are assumed 

to arrive and leave at the beginning and at the end of time slots. An OSA agent, or 

simply an agent, is a group of two or more SUs who want to communicate together. In 

order to communicate with each other, all SUs in the group must be tuned to the same 

band. At the end of each time step, by means of a reinforcement learning algorithm [119], 

each agent selects the “best” available spectrum band, and uses it during the next time 

step. This process repeats at each step. 

At each time step, each agent receives a service that is passed to it from the environ-

ment/system. One possible service metric is the amount of throughput that the visited 

spectrum band offers the agent. Another possible metric is the reliability of the commu­

nication carried on the spectrum band, which can be measured through, for example, 

SNR (signal to noise ratio), PSR (packet success rate), etc. What service metric to use 

and how to quantify it are beyond the scope of this work. Here, we assume that once 

the agent switches to a particular band, the received service level can immediately be 

quantified by monitoring the metric in question. Hereafter, we then assume that each 

band j is characterized by a value Vj that represents the maximum/total service level 

that the band can offer. 

In this Chapter, we consider the elastic traffic model, where the agent’s received 

reward (i.e., satisfaction) increases proportionally to the service it receives from using 

the spectrum band so long as the received quality-of-service (QoS) level is higher than 

a certain (typically low) threshold R. But when the received QoS level is below the 

threshold R, the agent’s reward decreases rapidly (e.g., exponentially) with the received 
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QoS level; i.e., the reward/satisfaction goes almost immediately to zero when the received 

QoS level is below R. This traffic model is suitable for elastic applications, such as file 

transfer and web browsing, where the higher the received service quality level, the better 

the quality/reward perceived by these applications. But when the received QoS level 

is below a certain low threshold (i.e., R), the quality of these applications becomes 

unacceptable. Formally, the reward rj [nj[t]] (also often referred to simply as rj [t] for 

simplicity of notation) contributed by band j at time step t can be written as: 

 

 


 

Vj/nj[t] if nj[t] ≤ Vj/R 
rj [nj[t]] = nj [t]R−Vj (2.1) 

−β 
Re
 Vj otherwise
 

where nj[t] denotes the number of agents that choose band j at time step t, and β is a 

reward decaying factor. Note that here we assume that the total service level Vj offered 

by any band j is split equally among all the nj[t] agents that use band j at time t. In 

Fig. 2.1, we show for the sake of illustration the agent reward rj [nj[t]] as a function of 

the number of agents nj[t] when β = 50 and Vj/R = 4. 

From the system’s perspective, the system or global reward can be regarded as the 

sum of all agents’ received rewards. Formally, at any time step t, the global reward G[t] 

is 
m 

G[t] =
 
L


nj[t]rj [nj[t]] (2.2) 
j=1 

where m is the number of spectrum bands. If each agent i selecting band j receives the 

reward function contribution rj [t] for that band (a “local reward”), then the per-agent 

average reward r̄[t] at time step t is 

 m 
j=1 nj[t]rj [t] G[t]

r̄[t] = = (2.3)  m  m 
j=1 nj[t] j=1 nj[t] 
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Figure 2.1: Elastic reward function: β = 50 and Vj/R = 4. 

2.3 Motivation and Objective 

The goal of this work is to design efficient objective functions for OSA agents, so that 

when agents aim to maximize them, their collective behaviors lead to good system-level 

performance, thereby resulting in increasing each agent’s long-term received rewards. 

Hereafter, let gi denote agent i’s objective function. Although the objective functions 

(gi for agent i) that we derive in this Chapter are designed to be used by any learning 

algorithm, throughout this work, we choose to use the ǫ-greedy Q-learner [119] (with a 

discount rate of 0 and an ǫ value of 0.05) for the purpose of evaluating the effectiveness 

of our developed functions only. At each episode (or time step) t, each agent i aims then 

at maximizing its own private objective function gi[t] using its own Q-learner. 

At the end of every episode, each agent selects and takes the action with the highest 

entry value with probability 1 − ǫ, and selects and takes a random action among all 

possible actions with probability ǫ. After taking an action, the agent then computes 

the reward that it receives as a result of taking such an action (i.e., as a result of using 



15 

the selected band), and uses it to update its Q-table. A table entry Q(a) corresponding 

to action a is updated via Q(a) ← (1 − α)Q(a) + αu, where α (here, the value of α is 

set to 0.5) is the learning rate, and u is the received reward from taking action a. All 

the results presented in this Chapter are based on this Q-learner. Readers are referred 

to [119] for more details on the Q-learner. 

Again, we want to emphasize that the focus of this work is not on learning, but 

rather on designing optimal objective functions that OSA agents can aim to maximize, 

and that can be used by any learners. 

2.3.1 Motivation 

The key question that arises naturally is which objective function gi should each OSA agent 

i aim to maximize so that its received reward is maximized? There are two intuitive 

choices that one can think of. One possible objective function choice is for each agent 

i using band j to selfishly go after the intrinsic reward rj contributed by the band j as 

defined in Eq. (2.1); i.e., gi = rj for each agent i using band j. A second also intuitive 

choice is for each agent to maximize the global (i.e., total) rewards received by all agents; 

i.e., gi = G for each agent i as defined in Eq. (2.2), hoping that maximizing the over­

all received rewards will eventually lead to maximizing every agent’s long-term average 

received rewards. 

For illustration purposes, we plot in Fig. 2.2 the per-agent average received reward 

r̄[t] (measured and calculated via Eq. (2.3)) under each of these two private objective 

function choices. In this experiment, we consider an OSA system with a total number of 

agents equal to 500 and a total number of bands m equal to 10. There are two important 

observations that we want to make regarding the performance behaviors of these two 
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objective functions, and that constitute the main motivation of this work. First, note 

that when agents aim to maximize their own intrinsic rewards (i.e., gi = rj for each agent 

i using band j), the per-agent average received reward presents an oscillating behavior: 

it ramps up quickly at first but then drops down rapidly too, and then starts to ramp 

up quickly and drop down rapidly again, and so on, which explains as follows. With 

the intrinsic objective function, an agent’s reward, by design, is sensitive to its own 

actions, which enables it to quickly determine the proper actions to select by limiting 

the impact of other agents’ actions, thus learning about good spectrum opportunities 

fast enough. However, agents’ intrinsic objectives are likely not to be aligned with one 

another, which explains the sudden drop in their received reward right after learning 

about good opportunities; i.e., right after their received reward becomes high. 

The second observation is regarding the second objective function choice, G. Observe 

that, unlike the intrinsic function, when each agent i sets its objective function gi to 

the global reward function G, this results in a steadier performance behavior where 

the per-agent average received reward increases continuously, but slowly. With this 

function choice, agents’ rewards are aligned with one another by accounting for each 

other’s actions, and thus are less (or not likely to be) sensitive to the actions of any 

particular agents. The alignedness feature of this function is the reason behind the 

observed monotonic increase in the average received reward. However, the increase in 

the received reward is relatively slow due to the function’s insensitivity to one’s actions, 

leading to slow learning rates. 

Therefore, it is imperative that private objective functions be designed with two 

(usually conflicting) requirements in mind: (i) alignedness; when agents maximize their 

own private objectives, they should not end up working against one another; instead, 

their collective behaviors should result in increasing each agent’s long-term received 
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rewards, and (ii) sensitivity; objective functions should be sensitive to agents’ own actions 

so that proper action selections allow agents to learn about good opportunities fast 

enough. 

With this in mind, we now state our objective in this work. 

2.3.2 Objective 

The objective of this work is to design efficient private objective functions for large-scale, 

distributed OSA systems. More specifically, we aim to devise private objective functions 

with the following design requirements and objectives. First, they should be optimal in 

that they should enable agents to achieve high rewards. Second, they should be scalable 

in that they should perform well in OSA systems with a small as well as a large number 

of agents. Third, they should be learnable in that they should enable OSA agents to 

find and locate spectrum opportunities quickly. Fourth, they should be distributive in 

that they should be implementable in a decentralized manner. The objective functions 

that we derive in this work meet all of these design requirements. 

2.4 Objective Function Design 

We first begin by summarizing the concepts of factoredness and learnability, both of 

which are essential for capturing as well as ensuring the two required design properties: 

alignedness and sensitivity. Then, we derive and present efficient objective functions 

that meet the above design requirements by striking a good balance between alignedness 

and sensitivity. 
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2.4.1 Factoredness and Learnability 

Again, let gi denote the function that OSA agent i aims to maximize as its objective, 

and that we want to derive. Let z characterize the joint move of all OSA agents in the 

system. Here, the global (total) reward, G, is a function of z, which specifies the full 

system state (G can then precisely be written as G(z)). Hereafter, we use the notation 

−i to specify all agents other than agent i, and zi and z−i to specify the parts of the 

system state controlled respectively by agent i and agents −i. The system state z can 

then be written as z = zi + z−i. 

For the joint actions of multiple OSA agents to lead to good overall average reward, 

two requirements must be met. First, we must ensure that an OSA agent aiming to 

maximize its own private objective function also leads to maximizing the global (total 

achievable) rewards, so that its long-term average received rewards are indeed maximized. 

This means that the agents’ private objective functions (gi(z) for agent i) need to be 

“aligned” or “factored” with the global reward function (G(z)) for a given system state 

z. Formally, for systems with discrete states, the degree of factoredness of a given private 

objective function gi is defined as [6]: 

h[(gi(z) − gi(z ′ )) (G(z) − G(z ′ ))] z z ′ Fgi = (2.4) 
1 z z ′ 

′ ′ for all z such that z−i = z−i, where h[x] is the unit step function, equal to 1 if x > 0, and 

zero otherwise. Intuitively, the higher the degree of factoredness of an agent’s private 

objective function gi, the more likely it is that a change of state will have the same 

impact on both the agent’s (i.e., local) and the total (i.e., global) received rewards. A 

system is fully factored when Fgi = 1. 
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Second, we must ensure that each OSA agent can discern the impact of its own 

actions on its private objective function, so that a proper action selection allows the 

agent to quickly learn about good spectrum opportunities. This means that the agent’s 

private objective function should be more sensitive to its own actions than the actions 

of other agents. Formally, the level of sensitivity or learnability of a private objective 

function gi, for agent i at z, can be quantified as [6]: 

′ Ez ′ [|gi(z) − gi(z−i + zi)|] 
Li,gi(z) = i (2.5) 

′ Ez ′ [|gi(z) − gi(z−i + zi)|]
−i

′ where E[·] is the expectation operator, zi’s are parts of the system states, controlled 

′ only by agent i, that are resulting from agent i’s alternative actions at z, and z−i’s are 

parts of the system states, controlled by agent −i, that are resulting from agent −i’s 

alternative joint actions. So, at a given state z, the higher the learnability, the more 

gi(z) depends on the move of agent i. Intuitively, higher learnability means that it is 

easier for an agent to achieve higher rewards. 

Unfortunately, these two requirements are often in conflict with one another [6]. 

Therefore, the challenge in designing objective functions for large-scale OSA systems is 

to find the best tradeoff between factoredness and learnability. Doing so will ensure that 

agents can learn to maximize their own objectives while doing so will also lead to good 

overall system performance; i.e., their collective behaviors will not result in worsening 

each other’s received rewards. 
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2.4.2 Efficient Objective Functions 

The selection of an agent’s private objective function that provides the best performance 

hinges on balancing the degree of factoredness and the level of learnability. In general 

and as discussed in the previous section, a highly factored private objective function will 

experience low learnability, and a highly learnable function will have low factoredness [6]. 

To provide some intuition on how we designed our proposed functions, we will again 

revisit to the behaviors of the global reward function, illustrated earlier in Section 2.3.1. 

Recall that when agents set the global reward G as their objective functions (i.e., gi = G 

for each agent i), their collective behaviors did indeed result in increasing the total 

system achievable rewards (i.e., did result in a fully factored system), because agents’ 

private objectives are aligned with system objective. The issue, however, is that because 

G depends on all the components of the system (i.e., all agents), it is too difficult for 

agents (using G as their objective functions) to discern the effects of their own actions 

on their objectives, resulting then in low learnability rates. 

The key observation leading to the design of our functions is that by removing the 

effects of all agents other than agent i from the function G, the resulting agent i’s private 

objective function will have higher learnability than G, yet without compromising its 

alignedness quality. Formally, these functions can be written as 

Di(z) ≡ G(z) − G(z−i) (2.6) 

where z−i again represents the parts of the state on which agent i has no effect. These 

difference functions have also been shown to lead to good system performance in other 

domains, such as multi-robot control [7] and air traffic flow regulation [125]. First, note 
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that these proposed functions (Di for agent i) are fully factored, because the second 

term of Eq. 2.6 does not depend on agent i’s actions. On the other hand, they also 

have higher learnability than G, because subtracting this second term from G removes 

most of other agents’ effects from agent i’s objective function. Intuitively, since the 

second term evaluates the value of the system without agent i, subtracting it from G 

provides an objective function (i.e., Di) that essentially measures agent i’s contribution 

to the total system received rewards, making it more learnable without compromising 

its factoredness quality. 

By substituting Eq. (2.2) into Eq. (2.6), explicitly noting the time dependence t, and 

for clarity, removing the implicit dependence on the full state z, the objective function 

Di for agent i selecting band j at time t can then be written as: 

  
m m L L 

Di[t]= nk[t]rk[nk[t]] −  nk[t]rk[nk[t]] + (nj [t] − 1)rj [nj [t] − 1]  

k=1 k=1,k=� j 

= nj[t]rj [nj [t]] − (nj [t] − 1)rj [nj[t] − 1] (2.7) 

It is important to note that, by taking away agent i from the second term of the 

function Di, the terms corresponding to all spectrum bands k, except the band j that 

agent i is using, cancel out. This explains why Di (as shown in Eq. (2.7)) depends 

on band j only. Therefore, the proposed function Di is simpler to compute than the 

global function G. More specifically and importantly, it is fully decentralized as agents 

implementing/using it as their objectives need to gather and share information only with 

the agents that belong to the same band. This constitutes one important property among 

few others (to be described later) that this proposed function has. Next, we formally 

prove the claims that we made regarding the performances of the proposed function. 
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Proposition 2.4.1 The function Di is fully factored. 

Proof Differentiating both sides of Eq. (2.6) w.r.t. agent i’s state zi yields ∂
∂ 
zi 
Di(z) = 

∂ ∂ ∂ ∂ ∂G(z) − G(z−i), which in turn yields Di(z) = G(z) since G(z−i) = 0. ∂zi ∂zi ∂zi ∂zi ∂zi 

Proposition 2.4.2 The expected value of the learnability of Di is higher than the ex­

pected value of the learnability of G. 

Proof We now sketch this proof. From Eq (2.5), the inner term of the numerator of 

′ Di’s learnability is equal to Di(z) − Di(z−i + zi), which, Eq. (2.6), can also be written 

′ ′ as G(z) − G(z−i) − (G(z−i + zi) − G(z−i)) or equivalently as G(z) − G(z−i + zi). Hence, 

the numerator of the learnability is the same for Di and G. Therefore, any gains in 

learnability must come from the denominator. Now, for a state z where agent i picked 

′ band j and a state z where it did not, the inner term of the denominator of Di’s 

learnability is: 

′ DENL,D = Di(z) − Di(z−i + zi) 

�
′ ′ ′ ′ 

� 
= njgj [nj] − (nj − 1)gj [nj − 1] − (nj + 1)gj [nj + 1] − njgj [nj]

′ where we dropped the t terms for clarity and where nk is the number of agents that 

′ choose band k in the alternate state z . That is the denominator consists of two terms, 

representing two bands that differ by only one user. Now, let us focus on the denominator 

′ for the learnability of G for a state z where agent i picked band j and a state z where 
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it picked band k: 

′ DENL,G = G(z) − G(z−i + zi) 
m 

= 
L 

nlgl[nl] − n ′ lgl[n 
′ 
l] 

l=1,l �=j,l �=k 

′ ′ + nkgk[nk] − (nk − 1)gk[nk − 1] 

′ ′ + njgj [nj] + (nj + 1)gj [nj + 1] 

Now, here, there are also two terms, representing two bands (j and k) that differ by only 

one user. The expected magnitude of these values will be the same as those for the only 

two terms for DENL,D. However, there are m − 2 terms that differ by as many as the 

total number of agents minus 1. As a consequence, we have E[DENL,G] >> E[DENL,D] 

leading to D having much higher learnability on average than does G. 

2.5 Optimal Achievable Rewards 

In this section, we derive a theoretical upper bound on the maximum/optimal achievable 

rewards. This upper bound will serve as a means of assessing how well the developed 

objection functions perform when compared not only with intuitive objective functions; 

i.e., intrinsic (gi = rj for each agent i using band j) and global (gi=G for each agent i), 

but also with the optimal achievable performances. 

Without loss of generality and for simplicity, let us assume that Vj = V for j = 

1, 2, · · · ,m. Let n denote the total number of agents in the system at any time. First, 

note that when n ≤ mV , the maximum global achievable reward is simply equal to mV R

(assume n ≥ m), which corresponds to having each band contain no more than V agents. R 

V VTherefore, in what follows, we assume that n > mR , and let c = R , which denotes the 
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capacity (in terms of number of supported OSA agents) of each spectrum band. 

Now, we start by proving the following lemma, which will later be used for proving 

our main result. 

Lemma 2.5.1 The global received reward of an OSA system reduces less when a new 

OSA agent joins a more crowded spectrum band than when it joins a less crowded band. 

′ −1)Proof Recall that when a band j has n > c agents, its reward is Gj(n 
′ ) = n ′ Re−β( n

c 

′ 

. 

−1)If a new agent joins this band, the new reward becomes Gj(n 
′ +1) = (n ′ +1)Re−β( n ′ 

c 
+1 

. 

′ ′ First, it can easily be shown that when n > c ≥ 1, Gj(n 
′ ) > Gj(n + 1); i.e., the reward 

′ when joining band j decreases by ∆j(n 
′ ) ≡ Gj(n 

′ ) − Gj(n + 1). Now we can easily 

′ ′ see that ∆j(n 
′ ) decreases when n increases. Hence, the greater the number n (i.e., the 

more crowded the band), the smaller the decrease in reward. 

Theorem 2.5.2 When there are n agents in the system, the global reward reaches its 

maximal only when m − 1 bands (out of the total m bands) each has exactly c agents, 

and the m-th band has the remaining n − c(m − 1) agents. 

Proof Let k = n − mc, and let us refer to the agent distribution stated in the theorem 

as C. Note that C corresponds to when m − 1 bands each has exactly c agents and the 

other m-th band has the remaining c+ k agents (since n− c(m− 1) = c+ k). We proceed 

′ with the proof by comparing C with any possible distribution C among all possible 

′ distributions. Let c+ k1 be the number of agents in the most crowded band in C , c+ k2 

be the number of agents in the second most crowded band in C ′ , and so forth. We just 

need to deal with the bands that each contains more than c agents. If there are p bands 

each containing more than c agents, then we know that i
p 
=1 ki ≥ k. 
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For each band having c + k ′ agents, let ǫi be the amount by which the global reward 

is reduced when agent i joins the band for i = 1, 2, · · · , k ′ . From Lemma 2.5.1, it follows 

that ǫi > ǫi+1 > 0, for all i = 1, 2, · · · , k ′ − 1. 

kNote that for the distribution C, the global reward is reduced by t = i=1 ǫi, and 

k1 k2 kpfor C ′ , it is reduced by t ′ = ǫi + ǫi + · · · + ǫi. It remains to show that i=1 i=1 i=1 

′ t ′ − t > 0 for any C � We consider three different scenarios: = C. 

• k1 > k: Here, we have 

k1 k2 kp k 

t
 ′ − t =
 
L
L
L
L
 

ǫi + ǫi + · · · + ǫi − ǫi 
i=1 i=1 i=1 i=1 

k1 L k2 L 
kp L 

= ǫi + ǫi + · · · + ǫi 
i=k i=1 i=1 

which is greater than zero. 

• k1 = k: In this scenario, we have 

k1 k2 kp k 

t
 ′ − t =
 
L
L
L
L
 

ǫi + ǫi + · · · + ǫi − ǫi 
i=1 i=1 i=1 i=1 

k2 L 
kp L 

= ǫi + · · · + ǫi 
i=1 i=1 

which is also greater than zero. 
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• k1 < k: In this scenario, we have 

k1 k2 kp k 

t
 ′ − t 
L
L
L
L
 

=
 ǫi + ǫi + · · · + ǫi − ǫi 
i=1 i=1 i=1 i=1 

k2 L 
kp L k L 

= ǫi + · · · + ǫi− ǫi
i=1 i=1 i=k1 
 
   
  
     

part b part a 

Since k1 + k2 + · · · + kp ≥ k, the number of ǫi terms in part a is greater than the 

number of terms in part b. From Lemma 2.5.1, we know that the largest term in 

part b is ǫk1 , which is smaller than the smallest term ǫk2 in part a. Hence, part a 

is greater than part b, and thus t ′ − t is greater than zero. 

In all scenarios, we showed that t ′ − t > 0. Therefore, the global reward for any dis­

′ tribution C is smaller than that for the distribution C; i.e., C is the distribution that 

corresponds to the maximal global achievable reward. 

Corollary 2.5.3 The per-agent average achievable reward is at most (m−1)V/n+(R− 

−β( nR −m)(m − 1)V/n)e V . 

Proof The proof follows straightforwardly from Theorem 2.5.2 by calculating the global 

achievable reward for the derived optimal agent distribution. 

Note that this upper bound (that we derived and stated in Corollary 2.5.3) is the 

maximum/optimal average reward that an agent can achieve (it is a theoretical upper 

bound). In the next section, we will evaluate the performances of the proposed objective 

functions in terms of their achievable rewards, and compare them against these optimal 

achievable performances. 
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2.6 Performance Evaluation 

In this section, we evaluate and compare the performances of the proposed objective 

functions in terms of the per-agent average achievable rewards with the optimal achiev­

able rewards calculated through Corollary 2.5.3 as well as with those achievable under 

each of the two intuitive functions rj and G. 

2.6.1 Static OSA Systems 

We first consider evaluating the proposed objective functions under the same experiment, 

conducted in Section 2.3.1, where again the total number of agents considered in this 

experiment is equal to 500, and that of bands is equal to m = 10. Here, the simulated 

system is static, in that all agents are assumed to enter and leave the OSA system time. 

In this section, we ignore the PUs’ activities. Dynamic OSA systems as well as PUs’ 

activities will be considered later in Section 2.6.2. 

Fig. 2.3 shows the per-agent average achievable reward normalized w.r.t. the optimal 

achievable reward under each of the three functions: intrinsic (gi = rj), global (gi = G), 

and proposed (gi = Di). The figure clearly shows that the proposed function Di achieves 

substantially much better performances than the other two. In fact, when using Di, an 

agent can achieve up to about 90% of the total possible, achievable reward, whereas it 

only can achieve up to about 20% when using any of the other two functions. Another 

distinguishing feature of the proposed Di function lies in its learnability; that is, not 

only does Di achieve good rewards, but also it does so quite fast, as the received rewards 

ramp up rapidly, quickly reaching near-optimal performance. 

We also study the proposed function with regard to another performance metric: 
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Figure 2.3: Per-agent average achieved reward normalized w.r.t. maximum achievable 
reward under intrinsic function (gi = rj), global function (gi = G), and proposed function 
(gi = Di): R = 2, β = 2, V = 20. 

scalability. For this, we plot in Fig. 2.4 the per-agent average achievable reward under 

each of the three studied objective functions when varying the number of OSA agents, n, 

from 100 to 800 while keeping the number of bands m = 10 the same. Observe that Di 

outperforms the other two functions substantially when it also comes to scalability. Note 

that Di achieves high rewards, even for large numbers of agents, whereas the achievable 

reward under either of the other two functions drops dramatically with the number of 

agents. We therefore conclude that the proposed function Di is very scalable, and works 

well in systems with small as well as large numbers of agents. 

To summarize, the obtained results show that the proposed objective function (i) 

achieves near-optimal performances in terms of per-agent average rewards, (ii) is highly 

scalable as it performs well for small- as well as large-scale systems, (iii) is highly learnable 
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Figure 2.4: Per-agent average achieved reward normalized w.r.t. maximum achievable 
reward under intrinsic (gi = rj), global (gi = G), and proposed (gi = Di) functions for 
various numbers of agents: R = 2, β = 2, V = 20. 

as rewards reach up near-optimal values very quickly, and (iv) is distributive, as it requires 

information sharing only among agents belonging to the same band. 

2.6.2 Dynamic OSA Systems 

In this section, we further assess how well these objective functions perform (i) by con­

sidering dynamic OSA networks (both with and without PUs’ activities), and (ii) by 

investigating another important performance metric, fairness, in addition to the opti­

mality and scalability metrics. 

Recall that in the previous section, we considered an OSA system in which all agents 

enter the system, use the available spectrum bands, and then leave the system all at 
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the same time. That is, the number of agents does not change over time, and remains 

the same during the course of the entire system’s lifetime. In this section, we want to 

investigate how well these obtained results hold when considering dynamic systems, in 

which agents enter and leave at different independent times. OSA agents can then be 

viewed as data sessions/flows that start and finish at different times, and independently 

from one another. We will study these dynamic systems (i) without as well as (ii) with 

the presence of PUs’ activities, and see how well these functions behave under such 

systems. 

2.6.2.1 Without PUs’ Activities 

To mimic the dynamic behaviors of OSA agents, we assume that agents (e.g., data 

sessions) arrive according to a Poisson process with arrival rate λ, and stay in the system 

for an exponentially distributed duration of mean µ. Let κ = λµ represent the average 

number of agents that are using the system at any time. In this section, we first begin by 

studying dynamic OSA systems without considering the presence of PUs. The impact 

of PUs will be investigated in the next section. 

λFig. 2.5 shows the normalized per-agent average received reward for µ = 1 when κ 

equals 500 (Fig. 2.5(a)), 750 (Fig. 2.5(b)), and 1000 (Fig. 2.5(c)). The figure shows that 

the proposed function Di still possesses its distinguishing performance features/trends 

even under dynamic behaviors. These trends are as follows. First, note that the function 

Di receives near-optimal rewards, which are more than 90% of the maximal achievable 

rewards. Second, it is highly learnable as it reaches up near-optimal behaviors quite fast. 

Third, it is highly scalable as the achievable rewards do not drop below ≈ 90% of the 

maximal achievable reward even when the average number of agents in the system is 
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increased from 500 to 1000. Fourth, it outperforms the other two functions significantly, 

and this is regardless of the number of agents. 

For completeness, we also study these same performances under different values of 

λ
µ 

λ
µthe ratio
 Recall that for a given number of agents, the higher the ratio
 , the shorter
 .
 

λ
µ the sessions’ durations. For example, when κ = 500,
 1 implies that the sessions’
 =
 

λ
µaverage duration µ and arrival rate λ are both equal to ≈ 22.3, whereas
 = 5 implies
 

that µ = 10 and λ = 50. Figs. 2.6 and 2.7 show the normalized per-agent average
 

λ
µ 

λ
µ received reward for two more ratios:
 = 5 and
 = 20. Observe that the performances
 

of Di are still close to optimal, and are much higher than those obtained under rj and 

λ
µ

λ
µG regardless of the ratio
 ; i.e., whether
 equals 1, 5, or 20.
 

Fairness is also another important performance metric to evaluate. We want to assess 

how fair Di is when compared with the other two functions. Fig. 2.8 depicts the coefficient 

of variations (CoV)1 of the per-agent average received rewards under the three studied 

functions for various combinations of arrival rates λ and durations µ of OSA agents. 

Observe that Di achieves CoV values similar to those achievable under any of the other 

two functions, and this is regardless of sessions’ durations and arrival rates. In other 

words, these results show that the proposed function, when used in practical, dynamic 

network settings, not only does it achieve good performances in terms of optimality, 

scalability, and learnability, but it does so while reaching a fairness quality as good as 

those reached through the two other functions. Next, we show that this is also true in 

the presence of primary users. 

1CoV is the ratio of the standard deviation to the mean of the agents’ received rewards; we use this 
metric as a means of assessing the fairness, which reflects how close agents’ received rewards are to one 
another. 
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Figure 2.5: Normalized per-agent average received reward under Poisson arrival traffic 
model: λ/µ = 1 
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Figure 2.6: Normalized per-agent average received reward under Poisson arrival traffic 
model: λ/µ = 5 
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Figure 2.7: Normalized per-agent average received reward under Poisson arrival traffic
 
model: λ/µ = 20
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2.6.2.2 With PUs’ Activities 

We now study the impact of the presence of PUs on the performance of the studied 

objective functions. In this experiment, we consider the same dynamic model used in 

Section 2.6.2.1 but while assuming and accounting for PUs’ activities. We assume that 

each band is associated with a set of PUs that enter and leave the band at random times. 

We model PUs’ activities on each band as a renewal process alternating between ON 

and OFF periods, which represent the time during which PUs are respectively present 

(ON) and absent (OFF). For each spectrum band j, we assume that ON and OFF 

durations are exponentially distributed with means νj
ON and νj

OFF , respectively2 . We 

/(νOFF + νON use ηj ≡ νj
ON 

j j ) to denote the PU traffic load on band j. 

Figs. 2.9, 2.10, and 2.11 show the normalized per-agent average reward for PU traffic 

loads η of 10%, 30%, and 50%, respectively (η = ηj ∀j). The subfigures in each figure 

each corresponds to a different average number of agents (i.e., for κ = 500, κ = 750, and 

κ = 1000). There are three observations that we can make out of these results. First, 

observe that the proposed function Di achieves rewards higher than those achieved under 

the other two functions, and for all combinations of number of agents κ and primary user 

loads η. Second, unlike in the case of dynamic OSA without primary users, as expected, 

the achievable rewards reach zero when primary users are present, but quickly reach up 

high values as soon as PUs leave their bands. Third, also as expected, when the PU traffic 

load increases (i.e., η is increased), the total achievable average reward decreases, since 

rewards will also be taken away by PUs themselves. For example, Fig. 2.11 shows that 

when the PU load η = 50%, Di reaches up to only about 50% of the maximal achievable 

reward. This is because 50% of the total reward has already been received by the 

2Recall that learners do not actually need prior knowledge of primary users’ traffic behavior. Here, the 
exponential distributions will be used to generate samples so as to be able to mimic the OSA environment. 
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Figure 2.9: Normalized per-agent average reward under OSA agent traffic with Poisson 
arrival of λ = 1 and with PUs traffic load of η = 10% µ 
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Figure 2.10: Normalized per-agent average reward under OSA agent traffic with Poisson 
arrival of λ = 1 and with PUs traffic load of η = 30% µ 
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Figure 2.11: Normalized per-agent average reward under OSA agent traffic with Poisson 
arrival of λ = 1 and with PUs traffic load of η = 50% µ 
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primary users (i.e., η = 50%). However, this achieved reward under Di is still considered 

as about 90% of the total available/achievable rewards. Thus, we conclude that the 

proposed function yields performances that are close to optimal even in the presence of 

PUs, and this is true regardless of the number of OSA agents and/or the PU traffic load. 

We now show in Fig. 2.12 the coefficient of variations (CoV) of the per-agent average 

received rewards under the three studied functions for various PU traffic loads. Like 

when PUs are absent, when PUs are present, we also observe that the proposed objective 

function achieves CoVs similar to those achievable under any of the other two functions, 

independently of PU traffic loads. We also observe that CoV increases with the number 

of agents. 

To summarize, the proposed objective functions, when used in practical, dynamic 

network settings, are shown to achieve good performances in terms of optimality, scal­

ability, and learnability while also reaching a fairness quality as good as those reached 

through the two other functions. 

2.7 Discussion 

In this work, we assumed that agents (i.e., SUs) all compete for all available spectrum 

bands. In other words, we implicitly assumed that all agents interfere with one another, 

and hence, must share the spectrum resources. However, we want to emphasize that 

the techniques that we derived in this Chapter apply also when considering models in 

which agents may not necessarily interfere with all other agents, and hence, some of 

them may coexist without needing to share the spectrum resources. This could be, for 

example, because agents are located fart apart from one another. When considering this 

non-interfering model, the number of agents that compete for the bands will then vary 
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from one location to another, and hence, different locations may experience different 

numbers of competing agents. We argue that this does not impact the performance 

of our techniques, since as shown in Section 2.6.1, our techniques scalable; i.e., they 

perform well regardless of the number of agents in the system. In addition, the dynamic 

OSA systems simulated in Section 2.6.2 are composed of a number of agents that indeed 

changes from one time step to another, yet the techniques are still shown to perform 

well. Therefore, our techniques perform well in systems whose number of agents changes 

(whether in time as in the case of systems with dynamic behaviors, or in space as in the 

case of systems with non-interfering agents). 

2.8 Conclusion 

In this Chapter, we propose and evaluate efficient private objective functions that OSA users 

can use to locate the best spectrum opportunities. OSA users can rely on any learning al­

gorithms to maximize these proposed objective functions, thereby ensuring near-optimal 

performances in terms of the long-term average received rewards. We showed that these 

proposed functions (i) receives near-optimal rewards, (ii) are highly scalable as they 

perform well for small- as well as large-scale systems, (iii) are highly learnable as re­

wards reach up near-optimal values very quickly, and (iv) are distributive as they require 

information sharing only among users belonging to the same spectrum band. 
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Chapter 3: Maximizing Secondary-User Satisfaction in Large-Scale 

DSA Systems Through Distributed Team Cooperation 

We develop resource and service management techniques to support secondary users 

(SUs) with QoS requirements in large-scale distributed dynamic spectrum access (OSA) 

systems. The proposed techniques empower SUs to seek and exploit spectrum oppor­

tunities dynamically and effectively, thereby maximizing the SUs’ long-term received 

service satisfaction levels. Our techniques are efficient in terms of optimality, scalability, 

distributivity, and fairness. First, they enable SUs to achieve high service satisfaction 

levels by quickly locating and accessing available spectrum opportunities. Second, they 

are scalable by performing well in systems with small as well as large numbers of SUs. 

Third, they can be implemented in a decentralized manner by relying on local informa­

tion only. Finally, they ensure fairness among SUs by allowing them to receive equal 

amounts of service. 

3.1 Introduction 

Dynamic spectrum access (OSA) has been recognized as a key networking solution for 

solving the recently observed shortage problem in spectrum supply [2, 94, 95]. In the 

OSA context, there are two types of users: primary users (PUs) and secondary users 

(SUs). PUs are the users who have exclusive access rights to use the licensed spectrum 

bands. SUs, on the other hand, are allowed to use spectrum bands only opportunistically. 
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Therefore, prior to using any licensed band, SUs must first sense the band to make sure 

that it is vacancy, and when a PU returns while SUs are using its band, SUs must 

vacate immediately. Spectrum sensing and PU detection techniques are beyond the 

scope of this work, and we assume that SUs use existing sensing [39, 79, 80, 112] and 

signal classification [109, 113] techniques for detecting and coping with PU activities. 

OSA has great potentials for improving spectrum efficiency through distributed access 

and management of spectrum resources [18, 33, 40, 42, 71, 114, 118, 122, 140]. As a result, 

it has generated a lots of research interests in developing channel selection techniques 

that SUs can use to adapt themselves to the OSA environment [26, 38, 61, 86, 139]. Zhao 

et al. [139] propose a prediction model that captures the OSA environment’s dynamics 

under periodic channel sensing. The authors use a simple two-state Markovian model to 

mimic PUs’ activities on each channel, and use this model to derive an optimal access 

policy that leads to the maximization of spectrum utilization. Similarly, Liu et al. [86] 

model PUs’ activities as a discrete-time Markov chain, which is then used to develop 

channel decision policies for two SUs in a two-channel OSA system. Chen et al. [26] 

propose OSA access methods that integrate physical-layer’s with MAC-layer’s sensing 

and access policy. They also assume that PUs’ activities follow a discrete-time ON/OFF 

Markov process. 

Most of the proposed models developed for deriving optimal spectrum selection make 

a Markovian process model assumption about PUs’ activities, which may not be accu­

rate. Unlike traditional communication environments, the OSA environment gives rise 

to some unique characteristics, making it too difficult to model its dynamics and be­

haviors. This fact has created research interests to develop new distributed techniques 

that promote effective OSA [19, 34, 64, 86, 89, 110, 128, 129]. For instance, game-theoretic 

approaches have been the focus of many researchers who used game-theory to develop 
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distributed dynamic access methods [89, 110]. The authors in [89] study a OSA system 

with multiple, non-cooperative SUs with restricted information exchange. In this work, 

ON/OFF PUs’ activities are modeled as an i.i.d. Bernoulli process, and OSA is formu­

lated as a multi-armed bandit problem with multiple, non-cooperating agents. In [110], 

the authors investigated distributed OSA networks with non-cooperative, selfish users 

by studying, through game-theoretic approaches, the impact of incomplete information 

on system performance. They show that the lack of information can degrade the per­

formance substantially. Learning-based techniques are also of a particular interest to 

OSA because they can easily be implemented in a decentralized manner without requir­

ing any prior knowledge of the OSA environment’s dynamics. Instead, these learning 

algorithms allow SUs to use their knowledge acquired from past and present interactions 

with the environment to take the proper actions that lead to maximizing the long-term 

amount of service that the SUs receive from accessing the OSA system. In other words, 

SUs first define and choose their objectives, then rely on a learning algorithm as a means 

to maximize these objectives. However, when these objectives are not designed carefully, 

learning algorithms can lead to poor overall system performance. This is because the 

collective behavior of the SUs aiming to maximize poorly designed objective functions 

is likely to yield a low overall received system service, thereby worsening the amount 

of service each SU receives. It is, therefore, essential that SUs’ objective functions be 

carefully designed so that when the SUs go after maximizing them, their behavior as a 

whole leads to the maximization of the amount of service that each SU receives from 

accessing the OSA system. 

In this work, we propose efficient management techniques for OSA networks that 

allow SUs to maximize their received service satisfaction through efficient spectrum re­

source allocation [47, 48, 103, 106]. We consider a distributed OSA system with multiple, 
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non-overlapping spectrum bands. We also assume that each SU implements a learning 

algorithm (e.g., a reinforcement learner [119]) so it can use to maximize its objective 

function, thus enabling it to locate and select the best available spectrum opportunities. 

We want to emphasize that the focus of this work is not on learning algorithms, but 

rather on the design of efficient techniques that can be used by any learning algorithm 

to promote effective resource utilization. 

We show that the proposed techniques enable SUs to achieve high service satisfaction 

levels by allowing them to quickly locate and exploit available spectrum opportunities; 

are very scalable by performing well in systems with a small as well as a large number 

of SUs; can be implemented in a decentralized manner by relying on local information 

sharing only; and ensure fairness among SUs by allowing them to receive approximately 

equal amounts of service. 

The rest of the Chapter is organized as follows. In Section 3.2, we present the model 

and describe the motivation of this work. In Section 3.3, we present our proposed resource 

and service management techniques. In Section 3.4, we derive the optimal performance 

behaviors. We evaluate the performances of the proposed techniques, and compare them 

with those achievable under existing approaches in Section 3.5. Finally, we conclude the 

Chapter in Section 3.6. 

3.2 Problem Statement 

When a group of two or more SUs want to communicate, all members of the group must 

first select and switch to the same band; in the remainder of the Chapter, we will refer 

to these groups as agents. At each time step, each agent using a band receives a service 

that is passed to it from that band. The amount of service that the band offers an 
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agent can be measured in terms of, for example, amount of throughput, reliability of the 

communication, SNR, packet success rate, etc. We assume that once the agent switches 

to a particular band, it can immediately quantify and measure the amount of service that 

it receives from using such a band. The methods that agents use to measure the service 

received as a result of using a band are beyond the scope of this work. Throughout, let 

Vj be the total amount of service that spectrum band j offers. 

Although the proposed resource and service management techniques can be used by 

all learning algorithms, we choose to use in this work the ǫ-greedy Q-learner [119] with 

a discount rate of 0 and an ǫ value of 0.05 for evaluation purposes. More details on the 

Q-learner can be found in [119]. We want to reiterate that this work in not on learning, 

but rather on the development of management techniques for OSA that can be used by 

any learning algorithms. 

3.2.1 Traffic Model 

In this Chapter, we study the inelastic traffic model, in which an agent receives a con­

stant service satisfaction level when the band it uses offers an amount of service that 

is greater than a certain required threshold, Q, and receives an almost zero service sat­

isfaction level when the amount of service offered by the band is below the threshold. 

Under this inelastic traffic model, receiving an amount of service that is less than what 

is required (i.e., Q) is not acceptable (which explains why the service satisfaction level 

drops immediately to zero), while receiving an amount that is higher than what is re­

quired is not beneficial either (which explains why the service satisfaction level remains 

constant). This inelastic model suits well applications with QoS requirements, such as 

video and audio applications, where receiving a QoS level higher than what the appli­
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cation requires does not typically improve the quality, whereas if the received level is 

lower than the required one, the application experiences a significant degradation in its 

quality. Formally, the service satisfaction level, rj[t], any agent using band j receives at 

time step t can be written as: 

 

 


 

1 if nj[t] ≤ Vj/Q 
rj[t] = nj [t]Q−Vj (3.1) 

−β 
e
 Vj otherwise 

where nj[t] is the number of agents using band j at episode t, and β is a decaying factor. 

Note that when nj [t] is greater than cj ≡ Vj/Q, the service satisfaction level decreases 

exponentially. This means that none of the agents will be satisfied with the service they 

receive from band j if the band has more agents than cj (cj here represents band j’s 

capacity; i.e., the maximum number of agents that the band can support while satisfying 

their required service levels). From the system’s perspective, the global or system 

service satisfaction level can be regarded as the sum of all agents’ service satisfaction 

levels. Formally, by letting m denote the number of available spectrum bands, the global 

service satisfaction level, G[t], at time step t can be expressed as 

m L
 

G[t] = nj[t]rj [t] (3.2) 
j=1 

3.2.2 Motivation 

The goal of this work is to develop efficient resource and service management techniques 

for large-scale, distributed OSA systems. Specifically, we aim to derive scalable and 

distributed objective functions for SUs that are aligned with system objective, so that 

when SUs (i.e., agents) aim to maximize them, they indeed lead to the maximization of 



50 

their long-term received service satisfaction levels. By means of any learning algorithm, 

these functions will enable SUs to efficiently find and locate spectrum opportunities, thus 

increasing the long-term service satisfaction level that each SU can receive from accessing 

the OSA system. With this in mind, the question that arises now is which objective 

function gi should each agent i maximize so that its received service satisfaction level is 

maximized? 

Intuitively, one can think of two function choices. One possible objective function 

choice is to have each agent i using band j maximize its inherent service satisfaction 

level rj received from band j as defined in Eq. (3.1); i.e., gi = rj for each agent i using 

band j. A second also intuitive choice is for each agent to maximize the global/total 

service satisfaction levels that all agents receive; i.e., gi = G for each agent i as defined in 

Eq. (3.2), hoping that maximizing the global received service satisfaction levels eventually 

leads to maximizing every agent’s long-term average received service satisfaction level. 

For illustration purposes, we measure and show in Fig. 3.1 the system/global service 

satisfaction levels received by all agents under each of these two private objective function 

choices. We consider a OSA system with n = 1600 agents and m = 10 spectrum bands. 

Now we make the following two key observations. First, note that when agents 

aim to maximize their own inherent received service satisfaction level (i.e., gi = rj for 

each agent i using band j), the global/system service satisfaction level received by all 

agents presents an oscillating behavior: it ramps up quickly at first but then drops down 

rapidly too, and then starts to ramp up quickly and drop down rapidly again, and so 

on, which explains as follows. With the inherent objective function, an agent’s received 

service satisfaction level, by design, is sensitive to its own actions, which enables it to 

quickly determine the proper actions to select by limiting the impact of other agents’ 

actions, thus learning about good spectrum opportunities fast enough. However, agents’ 



 

 

51 

0 

25 

50 

75

S
ys

te
m

 s
at

is
fa

ct
io

n 
le

ve
l

G (global) 
s

j
 (inherent) 

0 100 200 300 400 500 600 
Episode 

Figure 3.1: System service satisfaction level under the two private objective functions: 
inherent choice (gi = rj) and global choice (gi = G) for m = 10, β = 2, and Vj/Q = 50 
for j = 1, 2, . . . , 10. 
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inherent objectives are not aligned with one another, which explains the sudden drop in 

their received service satisfaction level right after learning about good opportunities. 

Second, observe that, unlike the inherent function, the global function results in a 

steadier performance behavior where the system received service satisfaction increases 

continuously, but slowly. With this function choice, agents’ objectives are aligned with 

one another by accounting for each other’s actions, and thus are less sensitive to the 

actions of any particular agents. The alignedness feature of this function is the reason 

behind the observed monotonic increase in the overall system performance. However, 

the increase in the performance is relatively slow due to the function’s insensitivity to 

one’s actions, leading to slow learning rates. 

Therefore, objective functions must be designed with two conflicting requirements in 

mind: (i) alignedness; when agents maximize their own private objectives, their collec­

tive behavior should indeed result in increasing each agent’s long-term received service 

satisfaction level, and not in worsening it, and (ii) sensitivity; objective functions should 

be sensitive to agents’ own actions so that proper action selections allow agents to learn 

about good opportunities fast enough. 

3.2.3 Work Objective 

Our goal is to derive efficient objective functions for large-scale OSA systems that maxi­

mize SUs’ total received service satisfaction levels. Specifically, we aim to derive objective 

functions that i) enable SUs to achieve high service satisfaction levels by allowing them 

to quickly locate and exploit available spectrum opportunities; ii) are scalable by per­

forming well in systems with a small as well as a large number of SUs/agents; iii) are 

implementable in a decentralized manner by relying on local information only; and iv) 
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are fair by allowing agents to receive approximately equal amounts of service. 

3.3 Resource and Service Management 

The challenge in designing objective functions for OSA systems is to find the best bal­

ance between alignedness and sensitivity. Doing so will ensure that agents can learn 

to maximize their own objectives while also achieving good overall system performance; 

i.e., their collective behavior will not worsen each other’s received service satisfaction 

level. Throughout, we use gi to denote the objective function of agent i that we aim to 

derive in this work. 

In this section, we will first present the difference objective function, proposed in [5] 

and shown to perform well in various domains, such as multi-robot coordination [7] 

and air traffic control [125]. This difference function will be used here as the basis for 

comparing the performance of our proposed function. Then, we present our proposed 

objective functions, whose performances, shown in Section 3.5, are compared against 

those achievable under the two intuitive functions (rj and G), against those achievable 

under the existing difference objective function, and against a theoretical upper bound 

that we derive and state in Section 3.4. 

3.3.1 Difference Objective Functions 

Recall that, as illustrated in Section 3.2.2, when agents set the global service satisfaction 

level, G, as their objectives (i.e., gi = G for each agent i), their collective behaviors did 

indeed result in increasing the total (system) service satisfaction levels, because agents’ 

private objectives are aligned in this case with that of the system. However, because G 
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depends on all agents, it is too difficult for agents (using G as their objective functions) 

to discern the effects of their own actions on their objectives, resulting then in low 

learnability rates. The authors in [5] address the above issue by proposing the difference 

objective functions, which provide a good balance between alignedness and sensitivity, 

leading to good system performance. The basic idea is that by removing the effects 

of all agents other than agent i from the function G, the resulting difference objective 

function will have higher learnability (or sensitivity) than G . These difference functions 

can formally be written as 

Di(t) ≡ G(t) − G−i(t) (3.3) 

where G−i(t) is the system service satisfaction level at time step t when agent i is absent 

from the system. (G(t) is given in Eq. 3.2.) Intuitively, since the second term evaluates 

the system satisfaction level without agent i, subtracting it from G provides an objective 

function that essentially measures agent i’s contribution to the total received system 

service satisfaction level, making it more learnable. The difference function Di can be 

thought of as the individual or agent contribution to the system. Now by substituting 

Eq. (3.2) into Eq. (3.3) and after some algebraic manipulation, Di for agent i selecting 

band j at time t can then be written as: 

Di[t] = nj[t]rj [nj [t]]−(nj[t]−1)rj [nj[t]−1] (3.4) 
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3.3.2 Team Contribution Objective Functions 

We now present our proposed functions. Our key idea is that instead of removing the 

impact of all agents other than agent i from the global service satisfaction level G (which 

led to the difference function design), we consider removing the impact of only those 

agents that may not be aligned with the agent itself. That is, in terms of contribution, 

we propose that an agent’s objective function accounts for not only its contribution, but 

also for the contributions of all the agents that are aligned with it; i.e., those agents that 

share the resource with. More specifically, we propose that when the agents sharing a 

particular band/resource make, as a team, a positive contribution to the overall system 

performance, each agent in the team gets rewarded the team contribution; i.e., the sum of 

all agents’ contributions. But when the team contribution is negative (i.e., the resource 

is overcrowded, and hence none of the agents sharing it meet their required service), each 

agent in the team gets rewarded its own (negative) contribution only. The intuition is 

that when a group of agents (sharing a particular resource) succeed, they should celebrate 

their success as a team, but when they fail, each individual is only responsible for its 

own failure. 

The proposed functions can then be thought of as the team or resource contribution 

to the entire system, and hence, they will be termed as team (or resource) contribution 

objective functions. Formally, when agent i chooses band j, its team contribution function 

can be written as
 

Ti(t) = 

 

 


 

nj [t] Dk[t] if nj[t] ≤ Vj/Q k=1 

Di[t] otherwise 
(3.5)
 

where again nj[t] is the number of agents using band j at episode t and Di[t] is the 

individual contribution function of agent i using band j, given in Eq. 3.4. Note that 
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because Di is the same for all agents sharing spectrum band j, Eq. 3.5 can be rewritten 

as
 

Ti(t) = 

 

 


 

nj[t]Di[t] if nj[t] ≤ Vj/Q 

Di[t] otherwise 
(3.6)
 

With the proposed function, SUs are capable of effectively distributing themselves 

across the bands in a way that benefits all of them by increasing the amounts of service 

they receive in the long-term. Thus, the proposed technique can be thought of as a 

resource allocation method that enables SUs to quickly locate best spectrum opportu­

nities, and distribute themselves among the available bands effectively without needing 

any cooperation from one another. 

3.3.3 Distributed Computation of Team Contribution Function Ti 

Before proceeding with the performance evaluation of the proposed objective functions 

in terms of optimality, scalability, learnability, and fairness, we want to shed some light 

on their implementation aspects. Specifically, we want to discuss methods that agents 

can use to compute them in a distributed manner in spite of the large number of inter­

acting agents, the restricted information sharing, and the limited communication and 

coordination capability among agents. Note that the design of computation methods 

for the proposed functions is beyond the scope of this work, and is in itself a different 

challenging problem. But here we only want to give some insights and reiterate on the 

distributed feature of these proposed functions. 

Note that, by taking away agent i from the second term of the function Di (as shown 

in Eq. 3.4), the terms corresponding to all spectrum bands k except the band agent i is 

using cancel out, thus making the proposed functions implementable in a decentralized 
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manner; i.e., each agent can implement them by relying on local information that can 

be observed locally by the agent itself. Let us now elaborate further on this. From the 

expression of Di[t] given in Eq. 3.4, note that Di[t] depends only on nj[t], the number 

of agents that happen to be contending with agent i for band j. Hence, in order to 

compute/estimate Di[t], one needs to estimate nj[t] given the information that agent i 

observes locally. Now an agent i using band j can easily/locally quantify the service, 

ai(t), it receives once it uses the OSA system, which can for e.g. be measured in terms 

of the amount of throughput the agent receives. Thus, assuming that all agents sharing 

a band will roughly receive the same amount of throughput, and that Vj is known to all 

agents, the number of agents, nj[t], using band j can be estimated to Vj/ai(t), which 

can then be used to estimate/compute Di[t]. Hence, the function Di[t] can be computed 

by using information that an agent can observe/measure locally, and so can the function 

Ti(t). 

3.3.4 Performance Comparison: Ti versus Di 

We now want to compare the performance of Ti with that of Di in terms of their ability 

to increase the overall achieved service satisfaction level. For this, we first introduce the 

concept of “factoredness”, which basically captures how aligned the agents’ objectives 

are. Intuitively, the higher the degree of factoredness, the more likely it is that a change 

of state will have the same impact on the value of the objective function and on the 

achieved system satisfaction level. In other words, the more factored the objective func­

tion is, the more likely the system satisfaction level increases as agents maximize their 

objective functions, which eventually results in a higher long-term per-agent achieved 

service satisfaction level. 
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Let z(t) characterize the joint move of all OSA agents in the system at time t. The 

global service satisfaction level, G, is then a function of z(t), which can precisely be writ­

ten as G(z(t)). The system state z(t) basically captures the agent-channel assignment 

information and depends on the actions taken by the agents. For simplicity of notation, 

we often omit throughout the Chapter the dependency of these states on time t. With 

this, for systems with discrete states, the degree of factoredness for a given objective 

function gi can formally be defined as [6]: 

h[(gi(z) − gi(z ′ )) (G(z) − G(z ′ ))] z z ′ Fgi =	 (3.7) 
1 z z ′ 

′	 ′ ′ for all system states z and z such that z−i = z−i, where z−i (or z−i) represents the 

system state that does not depend on the state of agent i (i.e., the parts of the system 

state controlled by all agents other than agent i), and h[x] is the unit step function, equal 

to 1 if x > 0, and zero otherwise. A system is said to be fully factored when Fgi = 1. 

Proposition 3.3.1 The degree of factoredness of the proposed objective function Ti is 

higher than that of the difference objective function Di, i.e., FTi 
≥ FDi

. 

Proof Note that the only term in FDi 
that is different from that in FTi 

is gi(z) − gi(z ′ ); 

everything else is the same. Let us then compute and compare this term for Ti and Di. 

′	 ′ Let nj and n be the number of users in spectrum band j for system state z and z ,j 

respectively. Again, let us denote band j’s capacity by cj and define cj = Vj/Q (here, 

′ we assume cj = c for j = 1, ...,m). We consider the following four cases for nj and nj 

that cover all possible cases: 

′ •	 nj > c > nj: 

In this case, from Eqs. 3.1 and 3.4, we can see that Di[z] − Di[z 
′ ] is positive. 
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Similarly, from Eqs. 3.4 and 3.6, it follows that Ti(z) − Ti(z 
′ ) = njDi[z] − Di[z 

′ ] is 

positive. Thus, the term gi(z) − gi(z ′ ) is positive for both objective functions, and 

hence, there is no difference between FDi 
and FTi 

since each depends on the sign 

of the term, and not on its value. 

′ •	 nj > c > nj: 

Eqs. 3.1 and 3.4 imply that Di[z] − Di[z 
′ ] is negative, and similarly, from Eqs. 3.4 

′ and 3.6, we easily see that the value of Ti(z) − Ti(z 
′ ) = Di[z] − njDi[z 

′ ] is also 

negative. Thus, the term gi(z) − gi(z ′ ) is negative for both objective functions. 

Hence, FDi 
= FTi

. 

′ •	 nj, nj > c: 

Eq. 3.6 implies that Ti(z) − Ti(z 
′ ) = Di[z] − Di[z 

′ ]. Thus, the term gi(z) − gi(z ′ ) 

has the same sign for both objective functions, and hence, there is no difference 

between FDi 
and FTi 

in this case either. 

′ •	 nj, nj < c: 

From Eqs. 3.1 and 3.4, it follows that Di[z] − Di[z 
′ ] is zero, but from Eq. 3.6, it 

′ follows that the value of Ti(z) − Ti(z 
′ ) depends on nj and nj and is not zero unless 

′ nj = nj. This is the only case where the term gi(z) − gi(z ′ ) in FDi 
is different from 

that in FTi
. So for these terms, the numerator in Eq. 3.7 is greater when gi = Ti 

than when gi = Di. This is because Di[z] − Di[z 
′ ] is equal to zero, and hence so 

is the step function value, whereas Ti(z) − Ti(z 
′ ) is not always equal to zero (when 

′	 ′ nj, nj < c) and the step function value is equal to 1 for some values of nj and nj. 

Thus, FTi 
≥ FDi

. This completes the proof. 
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3.4 Optimal Service Satisfaction 

We now derive the optimal achievable service satisfaction level. This derivation will serve 

as a means of assessing how well the developed objective functions perform when com­

pared not only with existing objective functions, but also against the optimal achievable 

performances. 

Without loss of generality and for simplicity, let us assume that Vj = V for j = 

1, 2, · · · ,m. Let n denote the total number of agents in the system at any time. In 

V Vwhat follows, we assume that n > mQ (when n ≤ mQ , the problem is trivial), and let 

V c = Q , which denotes the capacity (in terms of the number of supported agents) of each 

spectrum band. Now, we start by proving the following lemma, which will later be used 

for proving our main result. 

Lemma 3.4.1 The system/global service satisfaction level reduces less when a new agent 

joins a more crowded spectrum band than when it joins a less crowded band. 

′ Proof Recall that when a band j has n > c agents, the total service satisfaction level 
′ 

′ −β( n −1)offered by the band is Gj(n 
′ ) = n e c . If a new agent joins this band, the new total 

′ +1 
′ ′ −β( n −1)service satisfaction level offered by the band becomes Gj(n + 1) = (n + 1)e c . 

′ First, it can easily be shown that when n > c ≥ 1, Gj(n 
′ ) > Gj(n 

′ +1). Hence, the total 

′ service satisfaction level offered by a band j decreases by ∆j(n 
′ ) ≡ Gj(n 

′ ) − Gj(n + 1) 

when a new agent joins the band. Now we can easily see that ∆j(n 
′ ) decreases when 

′ ′ n increases. Hence, the greater the number n (i.e., the more crowded the band), the 

smaller the decrease in the total service satisfaction level when a new agent joins the 

band. 

Theorem 3.4.2 When there are n agents in the system, the global service satisfaction 
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level reaches its maximal only when m − 1 bands (out of the total m bands) each has 

exactly c agents, and the m-th band has the remaining n − c(m − 1) agents. 

Proof Let k = n − mc, and let us refer to the agent distribution stated in the theorem 

as C. Note that C corresponds to when m − 1 bands each has exactly c agents and the 

other m-th band has the remaining c+k agents (since n− c(m− 1) = c+k). We proceed 

′ with the proof by comparing C with any possible distribution C among all possible 

′ distributions. Let c+ k1 be the number of agents in the most crowded band in C , c+ k2 

be the number of agents in the second most crowded band in C ′ , and so forth. We just 

need to deal with the bands that each contains more than c agents. If there are p bands 

each containing more than c agents, then we know that p ki ≥ k.i=1 

For each band having c + k ′ agents, let ǫi be the amount by which the global service 

satisfaction level is reduced when agent i joins the band for i = 1, 2, · · · , k ′ . From Lemma 

3.4.1, it follows that ǫi > ǫi+1 > 0, for all i = 1, 2, · · · , k ′ − 1. 

Note that for the distribution C, the global service satisfaction level is reduced by 

k k1 k2 kpt = ǫi, and for C ′ , it is reduced by t ′ = ǫi+ ǫi+ · · ·+ ǫi. It remains i=1 i=1 i=1 i=1 

′ to show that t ′ − t > 0 for any C �= C. We consider three different scenarios: 

• k1 > k: Here, we have 

k1 k2 kp k 

t
 ′ − t =
 
L
L
L
L
 

ǫi + ǫi + · · · + ǫi − ǫi 
i=1 i=1 i=1 i=1 

k1 L k2 L 
kp L 

= ǫi + ǫi + · · · + ǫi 
i=k i=1 i=1 

which is greater than zero. 
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• k1 = k: In this scenario, we have 

k1 k2 kp k 

t
 ′ − t =
 
L
L
L
L
 

ǫi + ǫi + · · · + ǫi − ǫi 
i=1 i=1 i=1 i=1 

k2 L 
kp L 

= ǫi + · · · + ǫi 
i=1 i=1 

which is also greater than zero. 

• k1 < k: In this scenario, we have 

k1 k2 kp k 

t
 ′ − t =
 
L
L
L
L
 

ǫi + ǫi + · · · + ǫi − ǫi 
i=1 i=1 i=1 i=1 

k2 L 
kp L k L 

= ǫi + · · · + ǫi − ǫi 
i=1 i=1 i=k1 

part a part b 

Since k1 + k2 + · · · + kp ≥ k, the number of ǫi terms in part a is greater than the 

number of terms in part b. From Lemma 3.4.1, we know that the largest term in 

part b is ǫk1 , which is smaller than the smallest term ǫk2 in part a. Hence, part a 

is greater than part b, and thus t ′ − t is greater than zero. 

In all scenarios, we showed that t ′ − t > 0. Therefore, the global service satisfaction 

′ level for any distribution C is smaller than that for the distribution C; i.e., C is the 

distribution that corresponds to the maximal achievable global service satisfaction level. 

Corollary 3.4.3 The system service satisfaction level that a OSA system can achieve 

−β( nQ 
−m)is at most (m − 1)V/Q + (n − (m − 1)V/Q)e V . 

Proof The proof follows from Theorem 3.4.2 by calculating the achievable global service 

satisfaction level for the derived optimal agent distribution. 
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Note that the optimal achievable system satisfaction level (derived and stated in 

Corollary 3.4.3) is a theoretical upper bound on the sum of all agents’ possible achievable 

service satisfaction levels. In the next section, we will evaluate the performances of the 

proposed objective functions as well as those of the existing difference function, and 

compare them against this upper bound. 

3.5 Performance Evaluation and Analysis 

In this section, we evaluate the effectiveness of the proposed resource management tech­

niques in terms of their achievable system service satisfaction levels. To do so, we 

measure and compare the achievable satisfaction levels under each of the four functions: 

inherent (gi = rj), global (gi = G), difference (gi = Di), and proposed (gi = Ti). In 

addition to comparing the performance of the proposed function with those achievable 

under existing ones, we compare it against the optimal achievable performance, derived 

in Corollary 3.4.3. 

3.5.1 Simulation Method and Setting 

We consider a OSA system consisting of m non-overlapping spectrum bands and a large 

number of SUs agents all using the system opportunistically. We assume that each 

agent uses the Q-learning algorithm to implement the proposed objective function. Each 

agent does so independently from all other agents, and as long as it needs to access the 

OSA system. At each episode, each agent receives an amount of service (i.e., throughput) 

that is passed to it from the system. The learning algorithm utilizes this amount of 

service to compute and maximize its objective function so as to help the agent make the 
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best spectrum decision/choice. All simulation scenarios are run (using MATLAB) until 

the measured achievable satisfaction level reaches its maximum peak. Each simulation 

point plotted in each figure is averaged over all runs. 

Unless stated otherwise, throughout this performance evaluation section, the decay­

ing factor β is set to 2, the number of agents is set to 1600, the number of bands is set 

to 10, and the capacity Vj/Q is set to c = 50 for all j. 

3.5.2 Static OSA without Primary Users 

We begin by considering a static OSA system, in which all SUs enter and leave the 

system at the same time. We also ignore PU activities for the moment. Fig. 3.2 shows 

the system service satisfaction level normalized w.r.t. the optimal service satisfaction 

level (derived and stated in Corollary 3.4.3) achieved under each of the four functions: 

inherent, global, difference, and proposed. 

The figure shows that the proposed function, Ti, outperforms substantially the two 

intuitive functions, rj and G, and outperforms the difference function, Di, by about 

25% in terms of the overall system service satisfaction levels. When compared to the 

optimal achievable performances, the proposed function Ti is shown to achieve about 

85 to 90% of the maximal achievable service satisfaction levels. Also, observe that our 

proposed function is very learnable as it enables agents to reach up their achievable 

service satisfaction levels quite quickly. 
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Figure 3.2: Normalized system service satisfaction levels under the four studied functions: 
inherent (gi = rj), global (gi = G), difference (gi = Di), and proposed (gi = Ti) at various 
time steps. 
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3.5.3 Static OSA with Primary Users 

We again consider a static system where SUs enter and leave at the same time, but with 

the presence of PU activities. We model PU activities on each channel as a renewal 

process alternating between ON and OFF periods [73, 83, 134], which represent the time 

during which primary users are respectively present (ON) and absent (OFF). For each 

channel j, we assume that ON and OFF durations are exponentially distributed with 

/(νOFF means νj
ON and νj

OFF , respectively. We use ηj ≡ νj
ON 

j + νj
ON ) to denote the 

PU traffic load on channel j. 

Fig. 3.3 shows the service satisfaction levels under various PU traffic loads. As it 

can be seen, even when considering PU activity, Ti still outperforms the other objective 

functions. However, the performance difference gap decreases as the PU traffic load in­

creases. This is expected because the system satisfaction level, under any of the function, 

decreases as the PU load increases, since PU’s presence makes the resources less avail­

able and hence, the overall system capacity decreases. Also, note that the achievable 

satisfaction levels, under any of the studied function, drop to zero whenever PUs come 

back, as it forces SUs to leave that channel, resulting then in an immediate decrease of 

the system service satisfaction levels. 

3.5.4 Dynamic OSA without Primary Users 

Now, we consider a dynamic OSA system, in which SUs (i.e., the agents) can indepen­

dently enter and leave the system at various different times. To model the dynamic 

behaviors of SUs, we assume that agents arrive according to a Poisson process with ar­

rival rate λ. Each agent is characterized with an exponentially distributed duration of 
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Figure 3.3: Normalized system satisfaction level under the four studied functions: in­
herent (gi = rj), global (gi = G), difference (gi = Di), and proposed (gi = Ti) at various 
time steps with PUs traffic load of η = 10%, 50% 
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mean µ, during which the agent seeks and exploits available spectrum opportunities. We 

use κ = λµ to designate the OSA agent load, which essentially represents the average 

number of agents that are using the system at any time. In this section, PU activities 

are ignored; they will be considered in the next section. 

In Fig. 3.4, we show the achieved performances under each of the four studied func­

λ
µtions when considering dynamic behaviors of SUs: (Fig 3.4(a) for
 = 1; Fig 3.4(b) for
 

λ
µ = 20). Observe that the proposed objective function Ti outperforms all the other func­

λ
µtions even when considering dynamic behaviors. Note that as the ratio
 increases, the
 

system satisfaction levels (under any of the function) decrease. This is because the higher
 

λ
µthe ratio
 , the lesser time (on average) SUs spend in the system (provided that κ is
 

kept constant), and hence, the shorter the exploration time; i.e., SUs do not have enough
 

λ
µtime to explore better spectrum opportunities. This explains why when
 increases, the
 

system satisfaction level decreases. 

3.5.5 Dynamic OSA with Primary Users 

We again consider a dynamic OSA system, but while also accounting for the activi­

ties of PUs. As in the previous scenario, we assume that agents arrive according to a 

Poisson process with arrival rate λ. Each agent is characterized with an exponentially 

distributed duration of mean µ. Figs. 3.5, and 3.6 show the system service satisfaction 

levels normalized w.r.t. the optimal service satisfaction level in a dynamic OSA system 

λ
µwith PU activity for various values of the SU traffic ratio
 and the PU traffic load η. In
 

all cases, the proposed objective function Ti outperforms the other objective functions, 

but the performance gain depends on how loaded the system is. When the PU traffic 

load is relatively low as in Figs. 3.5(a), and 3.6(a) when η = 10%, both the difference 
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Figure 3.4: Normalized system satisfaction level under the four studied functions: in­
herent (gi = rj), global (gi = G), difference (gi = Di), and proposed (gi = Ti) at various 

λtime steps under OSA agent traffic with µ = 1, 20 and without PU activities (total 
number of agents κ = 1600). 



70 

and the team contribution functions outperform the other two functions substantially. 

But as expected, when the PU load η increases, all functions achieve small service sat­

isfaction levels, because the system is already loaded by primary users and hence there 

λis no available spectrum for SUs to exploit. Likewise, as the ratio µ grows (i.e., as the 

time each SU spends in the system decreases), the system satisfaction levels decrease, 

because when SUs spend lesser times in the system, it may not be enough for them to 

find good spectrum opportunities. 

3.5.6 Scalability Performance 

To also study scalability performance, we plot in Fig. 3.7 the normalized system service 

satisfaction level while varying number of agents, n, from 800 to 1600 while keeping m 

equal to 10. Since it takes some time for the technique to converge (to reach its maximum 

performance level), the performance values presented in this and the next subsections 

are measured after 600 episodes, which gave enough time for the performance to reach 

its best. 

Observe that Ti is highly scalable. Note that as the number of agents increases, Ti 

maintains high achievable system service satisfaction level, whereas the satisfaction level 

under rj or G drops dramatically with the number of agents. When compared with the 

difference function Di, our proposed function Ti still achieves satisfaction levels that are 

about 30% higher than those achievable under Di. 
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Figure 3.5: Normalized system satisfaction level under the four studied functions: in­
herent (gi = rj), global (gi = G), difference (gi = Di), and proposed (gi = Ti) at various 
time steps under OSA agent traffic of λ = 1 and with PU activities of η = 10%, 50% µ 
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Figure 3.6: Normalized system satisfaction level under the four studied functions: in­
herent (gi = rj), global (gi = G), difference (gi = Di), and proposed (gi = Ti) at various 
time steps under OSA agent traffic of λ = 20 and with PU activities of η = 10%, 50% µ 
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Figure 3.7: Normalized system service satisfaction levels under inherent (gi = rj), global 
(gi = G), difference (gi = Di), and proposed (gi = Ti) functions for various numbers of 
agents. 

3.5.7 Fairness Performance 

To also see how well the proposed functions do when it comes to fairness, we plot in 

Fig. 3.8 the coefficient of variations (CoV)1 of the received system service satisfaction 

levels for various numbers of agents. 

Observe that the proposed function achieves CoV values approximately similar to 

those achievable under any of the other three studied functions. These results show 

that not only the proposed function achieve good performance in terms of optimality, 

scalability, and learnability, but also does so while ensuring a fairness quality as good as 

those achieved via the other approaches. 

1CoV is the ratio of the standard deviation to the mean of the agents’ received service satisfaction 
levels; we use this metric as a means of assessing the fairness, which reflects how close agents’ received 
satisfaction levels are to one another. 
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Figure 3.8: Coefficient of variation (CoV) of satisfaction levels under inherent (gi = rj), 
global (gi = G), difference (gi = Di), and proposed (gi = Ti) functions for various 
numbers of agents. 



75 

To summarize, we showed that the proposed objective functions achieve high satisfac­

tion levels of agents’ received service, are highly scalable as they perform well regardless 

of the number of agents and/or the capacity of spectrum bands, are highly learnable 

by enabling agents to reach up high values very quickly, are distributive as they require 

information sharing only among agents belonging to the same spectrum band, and are 

fair by allowing agents to receive similar amounts of service. 

3.5.8 Discussion 

There are three points that are worth mentioning and clarifying. Firstly, we want to 

reiterate that the reason for why our proposed objective functions are capable of achiev­

ing high service satisfaction levels is mainly because they lead to a distribution of agents 

across the available bands that is very close to the optimal agent distribution stated 

through Theorem 3.4.2, thus yielding near-optimal achievable performances and very 

scalable results regardless of the number of agents. That is, under the proposed tech­

niques, m− 1 bands will each have about c agents, whereas the rest of the agents will all 

go to the mth band. In other words, unlike the other two functions which tend to jam 

all bands by distributing the agents uniformly across all bands, the proposed functions 

avoid band jamming by distributing the agents across the bands in a way that benefits 

all agents by increasing their long-term average achievable service. Now, one may think 

that this may be unfair to those agents that happen to be in the most crowded band 

(i.e., the mth band), in that they will receive very low satisfaction levels when compared 

with those that happen to be in one of the other m−1 bands. Fortunately, this is not the 

case. Our experiments (not included in this Chapter due to limited number of figures) 

indicate that the most crowded band does not always contain the same set of agents. 
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That is, agents belonging to this crowded band (which offers the least per-agent service) 

change over time, since agents move across bands at different time steps. The fact that 

the same agents do not get stuck in the most crowded channel is what ensures fairness 

among agents by allowing different agents to receive approximately equal amounts of 

service. This is justified via the fairness results shown in Fig. 3.8. 

Secondly, the OSA systems that we are considering in this work are very large-

scale complex systems by nature, where a large number of SUs enter and leave the 

system independently and at various different times. Hence, it is envisioned that different 

components of such systems will be managed and controlled by different network owners. 

This nature makes it too difficult to incorporate admission control. Therefore, it is 

anticipated that SUs in such future systems will themselves decide whether to join the 

system or not based on the application they run and the service they are receiving. The 

techniques that we propose in this work allow SUs to achieve the best possible service 

satisfaction from using the OSA system through distributive and coordinated learning, 

and it is left up to the user to judge whether to stick around or not given the service it 

receives. 

Thirdly, in order for a group of SUs (e.g., a SU transmitter-receiver pair or an agent) 

to communicate on a given data channel, the SUs must first agree on the data channel 

before switching to it. SUs must rely on MAC protocols to do so. Most MAC designs 

for cognitive networks typically designate one channel, referred to as control channel, 

where all control messages needed for selecting data channels take place. Numerous 

MAC protocols have already been proposed in the literature to enable and coordinate 

multiple access in cognitive radio/dynamic spectrum access networks; [29, 31] present 

two surveys on MAC protocols. In this work, we assume that SUs use one the existing 

MAC protocols to negotiate data channels. 
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3.6 Conclusion 

In this Chapter, we proposed efficient resource and service management techniques to 

effectively support SUs in large-scale OSA systems. We showed that the proposed tech­

niques achieve high service satisfaction levels, are very scalable by performing well in 

small- as well as large-scale systems, are highly learnable by reaching up high values 

fast, are distributive by requiring information sharing only among agents belonging to 

the same band, and ensure fairness among SUs by allowing them to receive equal amounts 

of service. 
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Chapter 4: Analyzing Cognitive Network Access Efficiency Under 

Limited Spectrum Handoff Agility 

Most existing studies on cognitive radio networks assume that cognitive users can switch 

to any available channel, regardless of the frequency gap between the target channel and 

the current channel. However, due to hardware limitations, cognitive users can actually 

jump only so far from where the operating frequency of their current channel is. This 

Chapter studies the performance of cognitive radio networks while considering realis­

tic channel handoff agility, where cognitive users can only switch to their neighboring 

channels. We use continuous-time Markov process to derive and analyze the forced ter­

mination and blocking probabilities of cognitive users. Using these derived probabilities, 

we then study and analyze the impact of limited spectrum handoff agility on cognitive 

spectrum access efficiency. We show that accounting for realistic spectrum handoff agility 

reduces performance of cognitive radio networks in terms of spectrum access capability 

and efficiency. 

4.1 Introduction 

Cognitive radio access network paradigm allows cognitive users (SUs) to exploit unused 

licensed spectrum on an instant-by-instant basis, so long as it causes no harmful interfer­

ence to primary users (PUs). For this, SUs must ensure that licensed bands are vacant 

before using them, and they must vacate them immediately upon the return of any PUs 
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to their licensed bands. 

Cognitive radio access, also referred to as dynamic or opportunistic spectrum access, 

has great potential for improving spectrum efficiency and increasing achievable network 

throughput of wireless communication systems. The research issues and topics that have 

been addressed in these recent years are numerous, ranging from fundamental networking 

issues to practical and implementation ones. A few examples of such issues and topics are 

spectrum access management [14, 25, 32, 41, 77, 120], adaptive and learning technique de­

velopment [43, 60, 87, 129] and spectrum prediction models [8, 26, 36, 79, 84, 88]. Research 

efforts have also been given to deriving models and studying behaviors of the cognitive ra­

dio access performance [37, 91, 135]. Generally, most of these performance studies model 

cognitive radio access by means of Markov chains, and use these models to derive and 

analyze network performances. For example, in [9, 117, 126, 132, 137], Markov chains are 

used to model and study the forced termination and blocking probabilities of SUs in a 

cognitive multichannel access system consisting of primary and cognitive users. How­

ever, one common unrealistic assumption made in these existing works that we address 

in this Chapter is that SUs, when accessing the multichannel system opportunistically, 

are allowed to switch/jump to any available channel in the system, regardless of the 

frequency gap between the target and the current channels [65]. But due to hardware 

limitations, SUs can actually jump only so far from where the operating frequency of 

their current channel is, given an acceptable switching delay that users are typically con­

strained by [66]. Therefore, in this Chapter, we study the performance of cognitive radio 

networks, but while considering realistic channel switching (or handoff) agility, where 

SUs can only switch to channels that are immediate neighbors of their current operating 

channels [104]. 

The rest of the Chapter is organized as follows. In Section 4.2, we state the system 
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model. In Section 4.3, we model and derive analytically the forced termination and 

blocking probabilities. Section 4.4 validates the derived results, and analyzes the per­

formance behaviors. Section 4.5 investigates the impact of spectrum handoff agility on 

cognitive spectrum access efficiency. Finally, in Section 4.6, we conclude our work. 

4.2 Multichannel Access System Model 

We consider a cognitive radio multichannel access system with m primary bands, B1,...,Bm, 

where each band is composed of n sub-bands, giving a total of mn sub-bands, termed 

A1,...,Amn. Two types of users are present in the system. Primary users (PUs) who have 

exclusive access rights to B1 to Bm, and cognitive users (SUs) who are allowed to use 

the A1 to Amn sub-bands, but in an opportunistic manner; i.e., so long as they do not 

cause any harmful interference to PUs. Throughout this work, we assume that SUs are 

equipped with single-radio devices. 

While PUs have strict priority to use the spectrum bands, SUs are allowed to use a sub-

band only when the sub-band’s associated primary band is vacant; i.e., not being used 

by any PUs. Here, we ignore the spectrum handoff and spectrum sensing delays, simply 

because both of them are bounded [66, 97] and hence do not impact the blocking and 

the forced termination probabilities; i.e., the performances that we study in this work. 

These delays, however, need to be accounted for when analyzing system throughput and 

spectrum utilization performances. Therefore, we assume throughout that SUs are al­

ways aware (with some bounded delay) of the presence of PUs, and that as soon as any 

PUs reclaim their band, SUs are capable of immediately (or with some bounded delay) 

vacating the band and switch to another idle sub-band, if any exists. In our model, we 

assume that, during spectrum handoff [132], SUs can jump to any channel/band situ­
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ated at no more than k bands away from its current operating band; the set of possible 

channels to which a SU is able to jump to is referred to as the target handoff channel 

set. Specifically, if a SU is currently using a sub-band belonging to primary band Bi, 

the SU can only jump to any sub-band from Bi−k to Bi+k when handoff is initiated. 

4.3 Modelling and Characterization 

We model the channel selection process as a continuous-time Markov process, defined 

by its states and transition rates. In this section, we define the states and calculate the 

state transition rates. As stated previously, mn sub-bands are shared by both PUs and 

SUs. Thus, we define each state as an m-tuple (i1, ..., im) in which ij, for j = 1, 2, . . . ,m, 

indicates the number of SUs in band j if ij > −1, otherwise ij is equal to −1, indicating 

that band j is occupied by a PU. Note that ij takes on values between −1 and n (i.e., 

−1 ≤ ij ≤ n). Thus, the total number of states is (n+ 2)m and all these states are valid. 

We assume that arrivals of SUs and PUs both follow Poisson processes with arrival rates 

λc and λp, respectively, and the service times are exponentially distributed with rates µc 

and µp, respectively. There are four cases/events under which a state changes, and thus 

we only have to consider these four cases to compute the transition rate matrix Q. In 

what follows, let (i1, ..., im) be the current state. 

Case 1: First, consider that a SU arrives to the system and selects spectrum band j. 

The next possible states are then (i1, ..., ij +1, ..., im) for all −1 < ij < n. Assuming that 

the number of these states is α, the transition rate from (i1, ..., im) to (i1, ..., ij +1, ..., im) 

is then λc/α. The states whose ij value is either −1 or n do not change, because the 

SU will be blocked and denied access to the system in this case. Note that α might be 
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m 

different for different states and it can be calculated via α = 1. 
l=1,−1<il<n 

Case 2: Second, consider that a SU leaves spectrum band j. In this case, the next 

possible states are (i1, ..., ij − 1, ..., im) for all ij > 0. Thus, the transition rates from 

(i1, ..., im) to (i1, ..., ij − 1, ..., im) is ijµc. 

Case 3: Third, when a PU leaves band j, the next states are (i1, ..., i 
′ 
j , ..., im) where 

i ′ = 0 and ij = −1. Assuming that the number of occupied bands by PUs is β which j 

means that the number of next states is also β, the transition rate from (i1, ..., im) to 

(i1, ..., i 
′ 
j , ..., im) is then µp/β, where as stated earlier i ′ = 0 and ij = −1. Note that βj 

m 

might be different for different states and it can be calculated via β = 1. 
l=1,il =−1 

Case 4: Fourth, consider that a PU arrives to spectrum band j. Note that PUs do not 

select any band upon their arrivals, since they already have their predefined bands to 

operate on. In this case, the next states are (i1, ..., i ′ j−k, ..., i 
′ 
j , ..., i j

′ 
+k, ..., im) where i ′ = j 

j+k 

−1 and (i ′ − il) = ij if user is not forced to terminate. User access termination l 
l=j−k,l �=j 

occurs when none of the adjacent bands can accommodate the cognitive user that is 

required to vacate band j. Thus, the next states are (i1, ..., i j
′
−k, ..., i 

′ 
j , ..., i j

′ 
+k, ..., im) 

where i ′ = −1 and (i ′ n or i ′ −1) for j − k ≤ l ≤ j + k. When the user is forced j l = l = 

to terminate, the transition rate is λp, and when there is no termination, the transition 

rate is as follows 


 

1
 
j+k 

2k − 1 
l=j−k,i′ =−1

l 

 





 

ij 






 

2k
ij 


γs s ′ = λp (4.1)
 
i ′ j−k+l − ij−k+l

l=0,l �=k 

′ where γs denotes the transition rate from state s to state s , where s = (i1, ..., im)s ′ 

′ and s = (i1
′ , ..., i ′ ). Thus far, we computed the transition rates, and we were able to m
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determine the transition rate matrix Q. One can solve the system of equations
 

(n+2)m 

L 

π.Q = 0 and πi = 1 (4.2) 
i=1 

where πi is the stationary probability of state i and π is the stationary probability 

matrix. 

Note that only transition rates that are calculated in Case 4 depend on the value k 

since spectrum handoff is expected to occur only in this case. In the other three cases, no 

spectrum handoff occurs, and hence, next states do not depend on the value of k. Thus, 

in terms of model complexity, we can say that the construction of the transition matrix 

Q depends on the value k, because as k increases, the number of possible transitions 

increases and hence so is the number of non-zero entries of Q. The size of Q which is 

(n+2)m ×(n+2)m does not, however, depend on k. Therefore, the complexity of solving 

Eq. 4.2 may not depend on k if general algorithms are used. But if customized algorithms 

(those that take advantage of matrix sparsity) are used instead, such a complexity may 

be reduced depending on the value of k. 

Now, the forced termination probability Pf of a cognitive user can be defined as 

γsπs s ′ 
(s,s ′ )∈T 

Pf = (4.3) 
(1 − Pb)λc 

where T is the set that contains all state pairs (s, s ′ ) in which a user is forced to ter­

minate when transitions from s to s ′ , and Pb is the blocking probability to be defined 

later. Formally, T can be defined as T = {(s, s ′ ) = ((i1, ..., im), (i ′ 1, ..., i 
′ ))|Nc(s) >m

Nc(s 
′ ) and Np(s) < Np(s ′ )} where Nc(s) and Nc(s 

′ ) are the numbers of SUs in state 

′ s and s , respectively, and Np(s) and Np(s ′ ) are the numbers of PUs in state s and 
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s ′ , respectively. The number of SUs in state s = (i1, ..., im), Nc(s), can be written as 
m 

Nc(s) = ij. Similarly, the number of PUs in state s = (i1, ..., im), Np(s), can 
j=1,ij �=−1 

m 

be written as Np(s) = 1. When a new SU arrives to the system and cannot find 
j=1,ij =−1 

any empty sub-band, because the bands are occupied by either PUs or any other SUs, 

the user is denied access to the system. In this case, we say that the SU is blocked, and 

the blocking probability Pb can then be written as 

L πsλc
Pb = (4.4) 

γs s ′ s∈B 
=s ′ s∈S,s �

where B is the set of all the states in which blocking occurs when a new SU arrives to 

the system, and is defined as B = {s = (i1, ..., im)|∀j 1 ≤ j ≤ m, −1 < ij < n}. 

It is worth mentioning that although the focus of this work is on analyzing how 

the value k affects the forced termination and blocking probabilities and not so much 

on how one chooses k, one can first set (decide on) acceptable/predefined blocking and 

forced termination probabilities, and then use Eqs. 4.3 and 4.4 to find the value of k that 

meets such probabilities. Basically, setting upper (lower) bounds on blocking and forced 

termination probabilities results in a set of values for k that satisfy these upper (lower) 

bounds. 

4.4 Analytic Result Validation and Analysis 

In this section, we validate our derived analytic results via MATLAB simulations, and 

analyze the performance of cognitive radio spectrum access systems with limited channel 

handoff by studying the impact of the target handoff channel set size on cognitive users’ 

forced termination and blocking probabilities. 
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Figure 4.1: Forced termination probability as a function of the primary arrival rate λp 

for k = 1, 2, 3: m = 7 and n = 2 (µp = 0.06, λc = 0.68, µc = 0.82) 
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4.4.1 Impact of Handoff Agility on Termination Probability 

Fig. 4.1(a) plots the derived forced termination probability of cognitive users as a func­

tion of the primary user arrival rate λp for three different values of the number of target 

handoff channels, k. The termination probability is defined as the probability that a 

cognitive user, already accessing and using a channel whose PU has returned, is forced 

to cease communication as a result of none of the channels in its target handoff channel 

set is vacant. First and as expected, observe from the figure that as the primary user 

arrival rate (i.e., PU load) increases, the probability that cognitive users (already using 

the system) are forced to leave the system due to not finding an available band in their 

target handoff channel set increases. Second, for a given primary user arrival rate λp, the 

greater the number of target handoff channels, the lower the forced termination proba­

bility. Again, this trend of performance behavior is expected, as having more channels 

to switch to, increases the chances of cognitive users finding available bands, which ex­

plains the decrease in the forced termination probability of cognitive users. Third, the 

gap between the forced termination probabilities for different numbers of target handoff 

channel set sizes increases with the primary user arrival rate. To validate the derived 

analytic results, we use MATLAB to simulate a multichannel access system with primary 

and cognitive users arriving to the system according to Poisson process with arrival rates 

λp and λc, respectively. In these simulations, we compute the actual forced termination 

probability of cognitive users, measured as the ratio of the number of terminated users 

to the total number of accepted users. Fig. 4.1(b) shows the values of forced termination 

probabilities of the simulated cognitive radio spectrum access network again for three 

values of k. Observe that the simulated performance behaviors of cognitive systems in 

terms of the forced termination probability match well those obtained via our analytic 
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results. This validates our derived models. 

4.4.2 Impact of Handoff Agility on Blocking Probability 

We now study the impact of channel handoff agility on the blocking probability of cog­

nitive users, defined as the probability that a cognitive user, attempting to access the 

multichannel system, is denied access to the system due to not finding any available 

channels. Fig. 4.2(a) depicts the derived blocking probability of cognitive users as a 

function of the primary user arrival rate λp for three different values of the number of 

target handoff channels, k = 1, 2, 3. 

First, observe that, as expected, the blocking probability of cognitive users increases with 

the primary user arrival rate. That is, as the rate of primary users increases, the network 

becomes more and more loaded, resulting in higher blocking probability. Second, observe 

that unlike the case of forced termination probability, the blocking probability does not 

depend on the level of spectrum agility; i.e., the value of k. This is because any new 

cognitive user wanting to access the system does so by selecting any available channel, 

which leads to the same chances of being able to find an available channel, regardless of 

how agile spectrum handoff is for existing users (users that are already using the system). 

Like the case of termination probability studied in the previous section, we now validate 

our analytic results of blocking probability using MATLAB. We simulate a multichannel 

system with primary and cognitive users arriving to the system according to Poisson 

process with arrival rates λp and λc, respectively. In these simulations, we compute the 

actual blocking probability of cognitive users, measured as the ratio of the number of 

blocked users to the total number of arrived users. We show in Fig. 4.2(b) the blocking 

probabilities of the simulated cognitive network for three values of channel handoff set 
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size, k = 1, 2, 3. Observe that the simulated blocking probability performance behaviors 

of cognitive systems, shown in Fig. 4.2(b), match well those obtained via our analytically 

derived results, shown in Fig. 4.2(a). This validates the analytic blocking probability 

performance that we derived in this work. 

4.5 Spectrum Efficiency Evaluation 

In this section, we study the impact of spectrum handoff agility on cognitive spectrum 

access efficiency. We use the blocking and forced termination probabilities derived in the 

previous sections to evaluate the efficiency of cognitive spectrum access while considering 

different levels of spectrum handoff agility, k. 

We first begin by defining and deriving the cognitive spectrum access efficiency while 

assuming no limited spectrum handoff agility. This will serve as an upper bound on the 

maximal achievable spectrum efficiency when considering limited handoff agility. Let us 

assume that there is no limited spectrum handoff agility, meaning that cognitive users 

are allowed to switch to any available band without any handoff restriction. Using classic 

Markovian analysis [96], one can write the probability pj that j bands (out of m bands) 

ρj are occupied by PUs as pj (here only PUs are considered). where ρ = λp/µ = m 

j! ρi/i! 
i=0 

and µ = µp = µc. It follows that the average number Ep of spectrum bands occupied by 

ρm+1 
PUs can be written as Ep = ρ− .m 

ρj/j!m! 
j=1 

Similarly, the average number Ec of bands occupied by either PUs or SUs can be written 

ρm+1 
cas (now both PUs and SUs are considered) Ec = ρc − m where ρc = (λp + λc)/µ. 

jm! ρ /j!c
j=1 

Note that here both PUs and SUs are treated the same, in that both types are allowed 

to use the spectrum with equal access rights and opportunities. Again, this simplified 
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cognitive spectrum access is introduced so that it can be used as an upper bound on the 

maximum achievable spectrum efficiency when considering realistic cognitive network 

access, where PUs have spectrum access priority over SUs, and when SUs have limited 

spectrum handoff agility. 

We now define the ideal cognitive spectrum access efficiency, η, (or cognitive spectrum 

access efficiency with no limited spectrum handoff agility) as 

Ec − Ep
η = (4.5) 

m − Ep 

In Fig 4.3, we measure the cognitive spectrum access efficiency with limited handoff 

agility, normalize it with respect to the ideal spectrum access efficiency (given in Eq. 4.5), 

and show it for various values of primary user arrival rates when k = 1, k = 2, and k = 3. 

The values of blocking and termination probabilities used in this study are extracted from 

the results shown in the previous section. First, observe that as the primary user arrival 

rate increases, the spectrum efficiency of cognitive radio network access with limited 

channel handoff capability reduces, and this is regardless of the value of the parameter k 

of handoff agility. Second, note that the efficiency of cognitive spectrum access depends 

on how agile spectrum handoff is, and the higher the agility, the higher the spectrum 

efficiency. For example, when λp = 0.8, having a spectrum handoff agility of value k = 3 

yields a cognitive spectrum efficiency of about 60% of the ideal efficiency (obtained when 

channel handoff is not limited to k channels), whereas, when handoff is limited to k = 1, 

the efficiency reaches about 18% of the ideal efficiency only. Third, the figure also shows 

that the difference between achievable spectrum efficiencies under different numbers of 

target handoff channels increases with the primary user arrival rate. That is, the higher 

the arrival rate, the higher the gap between the spectrum efficiency under k = 3 and that 
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under k = 1. Note that k = 3 is the case that there is no limited spectrum handoff agility 

since m = 7. To summarize our findings, in this work, we demonstrate the impact of the 

commonly made assumption of considering that cognitive users can handoff/switch to 

any available band, regardless of how far the target band is from the current band, on the 

performance behaviors of cognitive radio spectrum access systems. Our results show the 

importance of considering realistic spectrum handoff agility (i.e., with restricted/limited 

target handoff channel set) when assessing the achievable network performances and the 

spectrum access efficiency of cognitive radio networks. We found (both analytically and 

numerically) that the achievable cognitive radio performance in terms of system access 

capability and spectrum access efficiency can be significantly lesser than what is usually 

claimed in existing works, due to the limited nature of spectrum handoff agility that 

most works ignore and do not take into account. We therefore conclude that making 

unrealistic spectrum handoff assumption may lead to very inaccurate and misleading 

results, and it is then imperative that performance studies of cognitive radio networks 

do account for the restricted agility of channel switching. 

4.6 Summary of Findings and Concluding Remarks 

This Chapter models and analyzes the performance behaviors of cognitive radio networks 

enabled with dynamic multichannel access capability, but while considering realistic 

channel handoff agility assumptions, where cognitive users can only switch to vacant 

channels that are immediate neighbors of their current channels. Using Markov chain 

analysis, we model cognitive access networks with restricted channel handoff agility as 

a continuous-time Markov process, and analytically derive the forced access termination 

and blocking probabilities of cognitive users, and evaluate the spectrum access efficiency 
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of cognitive networks. Using MATLAB simulations, we also validate our analytically 

derived performance results. 

Our obtained results demonstrate the impact and importance of considering realistic 

channel handoff agility in cognitive radio access on the cognitive radio network perfor­

mances in terms of users’ blocking and termination probabilities, as well as cognitive 

spectrum access efficiency. This work demonstrates the cognitive radio performance 

implications of the commonly made spectrum-handoff agility assumption of allowing 

cognitive users to switch to any available band, regardless of how far the target band is 

from the current band. 

Our findings in this work show that the achievable performance of cognitive radio 

networks in terms of spectrum access capability and efficiency can be significantly lesser 

than what existing works usually claim, due to the limited nature of spectrum handoff 

agility that most works do not account for. We conclude that making unrealistic assump­

tion regarding the spectrum handoff agility may lead to very inaccurate and misleading 

results, and it is then imperative that performance studies of cognitive radio networks 

do account for the restricted agility of channel switching when modeling and assessing 

the performance of such networks. 
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Chapter 5: On the Impact of Guard Bands on Spectrum Bonding 

and Aggregation in Multi-Channel Cognitive Radio Network Access 

Adjacent channel interference (ACI) is often not considered when designing spectrum 

sharing schemes for cognitive radio networks (CRNs). In practice, it is necessary to avoid 

interference by deploying guard bands between two distinct receptions. However, using 

guard bands typically reduces spectrum efficiency. In this work, we use continuous-time 

Markov analysis to study the impact of guard bands on CRN performance under different 

spectrum sharing schemes. We specifically derive and study several CRN performance 

metrics, such as blocking probability, forced termination probability, and spectrum effi­

ciency. Our study shows the importance of taking guard bands into consideration when 

characterizing and analyzing CRN performances. 

5.1 Introduction 

FCC and other regulatory bodies conducted studies on the causes of spectrum scarcity 

at a given time in any location. The results of the studies indicate that less than 10 

percent of the spectrum is utilized [1, 15]. Therefore, FCC was convinced that the use 

of cognitive radio, which provides the capability of opportunistic spectrum access, is 

necessary in order to improve spectrum utilization. Consequently, a pervasive research 

has been done on cognitive radio networks recently. Opportunistic spectrum access 

should guarantee that cognitive radio users do not affect primary radio users. Cognitive 
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radio users (CU) may coexist with primary radio users (PU) without making harmful 

interference with them. CUs have to vacate a channel if it is reclaimed by a PU. An 

important objective in this domain is how to model, characterize and analyze the system 

performance considering practical constraints. 

5.1.1 Motivation 

Many works have been done in the literature, proposing models for performance eval­

uation of CRNs (e.g., [16, 56, 59, 72, 108, 114, 136]). In most of these works, adjacent-

channel interference (ACI) is often not considered, hence they require ideal transmission 

filters while, in practice, signal filtering causes spectrum spill-over due to not having 

ideal filters. In order to protect adjacent PU and CU transmissions, there should be a 

frequency separation. Such separation is referred to as a guard band. However, using 

guard bands restricts effective spectrum utilization. CUs should consider guard band 

issue when they choose channels for their transmission. However, if two contiguous 

channels belong to the same CU, there is no need for a guard band between them. A set 

of contiguous channels assigned to the same CU is called a frequency block. 

We note that ACI impact in CRNs was previously studied in [136]. Specifically, a 

centralized solution for adaptive guard-band setting was proposed. Their solution uses 

a dynamic guard-band configuration to minimize ACI, requiring a central server for 

frequency planning. In [136], the authors did not consider channel aggregation nor did 

they deal with the channel assignment problem. 

In this work, we consider CU transmissions to be carried over multiple contiguous 

(i.e., bonded) or noncontiguous (i.e., aggregated) available bands. Experimental studies 

were conducted on the benefits of channel bonding and aggregation in the context of 
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CRNs (e.g.,[24, 75, 81] ). Experiments done in [24] showed the impact of using channel 

bonding on the performance of an IEEE 802.11 network. They experimentally proved 

that channel bonding can significantly improve the network performance in terms of 

throughput, range, and power consumption. However, they did not consider channel ag­

gregation in their work. In their work, they simply considered single-hop scenarios. Also, 

authors of [75] modeled an adhoc opportunistic spectrum access network with channel 

bonding as a Markov process in order to study the throughput. Their results show that 

channel bonding generally improves network performance under certain circumstances. 

Network size and the number of available channels determine the level of improvement. 

In their model, nevertheless, the authors did not consider the guard band constraint. 

Another study investigated the possibility of opportunistic spectrum access under strict 

limit on PUs service rate [81]. The study showed that reliable communications cannot 

be guaranteed by traditional spectrum access policies for CUs. Therefore, their results 

proposed channel aggregation as a means to provide reliable communications for CUs. 

The papers mentioned above do not incorporate the guard band constraints in their 

design. 

5.1.2 Contributions 

In this work, we model a multichannel CRN access as a continuous-time Markov process 

under the realistic assumption of non-ideal filters (i.e., guard bands are needed). We then 

use our model to derive system performance metrics, such as blocking probability, forced 

termination probability, degradation probability, CU utilization, service degradation, 

spectrum efficiency, under five different channel assignment schemes. These channel 

selection schemes are designed to improve some of the system performance metrics such 
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as spectrum efficiency or service degradation. 

Furthermore, we consider two scenarios of CRNs: FDM and D-OFDM. While in a 

FDM-based CRN, two neighboring CU transmissions are not allowed to share the same 

guard band, in the D-OFDM-based CRN, neighboring CU transmissions are allowed to 

do so. 

5.1.3 Organization 

The rest of the Chapter is organized as follows. In Section 5.2, we describe the system 

model considering constraints imposed by adjacent channel interference. Section 5.3 

introduces five guard-band-aware channel assignment schemes which will be used for 

analysis. In Section 5.4, we describe our continuous time Markov process model and 

derive network performance metrics. Analytic results and analysis are presented in 

Section 5.5. Finally, Section 5.6 includes the summary and concluding remarks. 

5.2 System Model 

We consider a cognitive radio multi-channel network which contains a set of n contigu­

ous non-overlapping spectrum bands/channels. These bands are used by two types of 

geographically coexisting users; Primary Users (PUs) who have exclusive rights to access 

the spectrum bands, and Cognitive Users (CUs) who are allowed to use the bands as 

long as they do not cause interference to PUs. 

CUs are only allowed to use a band only when there is no PU transmission operating 

over that band because PUs have a strict priority to use the spectrum bands. We assume 

that CUs are always aware of the presence of PUs and that, as soon as a PU reclaims 
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its band, CUs immediately vacate the band and switch to another idle band, if any 

exists. However, we know that there is a delay associated with spectrum handoff and 

spectrum sensing but since these delays are bounded [67, 97] and they do not impact the 

performance metrics that we study in this Chapter, we can ignore these delays. 

The multichannel access capability can be implemented using frequency division 

multiplexing (FDM), or discontinuous orthogonal frequency division multiplexing (D­

OFDM) [72, 101, 111]. First, we consider FDM-based and D-OFDM-based CRNs in 

which each CU transmission can be fulfilled over, at most, m bands simultaneously. In 

both models, A CU transmission may be carried over multiple contiguous (i.e., bonded) 

or noncontiguous (i.e., aggregated) available bands, depending on the spectrum oppor­

tunities. 

5.2.1 FDM-based CRNs 

Under FDM, we assume that each CU is equipped with m half-duplex radio transceivers 

and uses tunable raised-cosine pulse filters. The number of bands belonging to a fre­

quency block and roll-off factor of the filter β determines the number of guard bands 

required for that frequency block. β is a measure for the excess bandwidth of the filter 

due to a spill-over. Formally, a CU transmission that uses a frequency block of k adjacent 

βchannels has an excess bandwidth on each side of the frequency block of ∆f = kW 2 . 

In this case, ACI can be alleviated using only one guard band of bandwidth W on each 

side of the frequency block.That is, ∆f ≤ W , implying k ≤ 2 . Considering practical β

values for k, β, and W , the above condition often holds. For example, with β = 0.1 and 

W = 3MHz, k ≤ 20 channels (i.e., a data rate of up to 60 Mbps). Accordingly, it is 

reasonable to assume that a guard band of bandwidth W on each side of a frequency 
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block is sufficient to protect the reception over that block and avoid harmful interference 

to neighboring transmissions. Therefore, two guard bands separate two frequency blocks 

assigned to neighboring distinct CU transmissions. This means that if a guard band is 

reserved for a CU transmission, it cannot be reused (shared) by another CU transmission 

[115]. However, we consider only one guard band between a CU transmission and a PU 

transmission. 

5.2.2 D-OFDM-based CRNs 

In this case, a single half-duplex radio can be used for a CU transmission over multiple 

contiguous or non-contiguous channels. For a given CU transmission and a set of assigned 

channels, sub-carriers assigned to the selected channels are used for the transmission 

and the rest of sub-carriers are assigned zero power [72, 111]. In [123, 124], authors have 

shown that the main source of interference to any demodulated sub-carrier is the nearest 

sub-carriers of an immediate neighbor frequency block that is assigned to a different 

transmissions. As a result, it is sufficient to consider one guard band between two 

frequency blocks that are allocated to two different CU transmissions. Note that the size 

of the frequency blocks is disregarded [123, 124]. 

The difference discussed above regarding guard band reservation makes system anal­

ysis under each model different. Therefore, in this paper, we analyze the system under 

both reservation paradigms. In general, the difference in the transmission powers of 

two adjacent frequency bands determines the required amount of guard band. For con­

ventional multi-channel networks, such difference must be taken considered during the 

channel assignment process. On the other hand, for opportunistic CRNs, transmis­

sion power is already limited strictly to ensure that a CU transmission does not create 
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harmful interference to adjacent-channel PUs. For example, the FCC demands stringent 

power limits on opportunistic communications over specific white spaces (the spectral 

mask used in an idle TV channel must be at least 55 dB less than the highest average 

power used by PUs [28]). Accordingly, in our work, we assume that the power difference 

between two distinct and adjacent CU transmissions is small as required by the FCC. 

5.3 Channel Selection Schemes 

The required number of guard bands depends on how bands are allocated to CUs trans­

missions. Allocation of the bands is determined by the channel assignment scheme used 

by each CU. Therefore, we need to consider various channel selection algorithms in or­

der to study and analyze the impact of guard-bands in CRNs. Below we describe five 

different channel selection schemes used in this work. 

• Greedy Algorithm 

Simplicity and low overhead of this algorithm makes it attractive for use in multi­

channel systems [16, 82, 99]. Upon its arrival, the CU chooses the first n available 

bands as it scans through the bands. Note that the CUs choose the frequency 

blocks considering the required guard bands. This approach is simple and quick as 

it does not require to sense all channels. 

• Minimizing the Number of Frequency Blocks - Min FB 

In [115], the authors propose a Binary Linear Programming algorithm that mini­

mizes the number of frequency blocks when assigning CU channels. Their scheme 

tries to reduce the number of required guard bands for a given transmission by 

exploiting the benefit of considering already existing guard bands with channel 
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bonding and aggregation. Refer to [115] for more details. 

• Maximizing the Number of Guard Bands - Max FB 

This scheme is proposed to maximize the number of frequency blocks as opposed to 

minimizing the number of frequency blocks. Maximizing the number of frequency 

blocks can be useful since when a PU arrives in the system, it is less probable that 

the affected CUs are forced to terminate all of their transmissions. 

• Minimizing the Number of Guard Bands - Min GB (Local) 

We propose an assignment scheme which aims to minimize the number of guard 

bands. Reducing the number of required guard bands results in higher spectrum 

efficiency as more bands can be used for CU transmissions. When a CU arrives, it 

chooses a set of channels that causes the least number of guard bands to be added 

to the existing ones. Min FB algorithm tries to reduce the number of guard bands 

indirectly by reducing the number of frequency blocks, however, Min GB (Local) 

tries to reduce the number of guard bands directly. 

• Minimizing the Number of Guard Bands - Min GB (Global) 

Another approach to channel assignment is to make all the CUs minimize the 

total number of frequency blocks when a new CU arrives. This algorithm is dif­

ferent from the previous one as in this algorithm, all the CUs enter the process 

of choosing a set of channels and some type of coordination is needed to fulfill 

this. In the previous algorithm, Min GB(Local), when a CU arrives, other CUs 

continue their transmission on their current channels. Thus, it is possible that the 

algorithm does not always provide optimal solution while MinGB(Global) always 

chooses an optimal solution. One may argue that why we need other algorithms if 

MinGB(Global) is optimal. The reason is that the problem of finding an optimal 
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solution to minimize the number of guard bands is NP-hard, hence MinGB(Global) 

is not an efficient algorithm. Moreover, MinGB(Global) requires a central coor­

dinator which makes even solving the problem more sophisticated. We want to 

emphasize that we only propose this algorithm for comparison purposes. 

Remark: As noted earlier, the focus of this work is on analysis of guard-band aware 

CRNs rather than designing a channel selection scheme. Also, efficient implementation 

of the channel selection schemes is out of the scope of this work. It is important to 

note that considering fixed guard bands is not possible in this work since CUs access the 

frequency bands opportunistically and enforcing fixed guard bands limits the capability 

of CRNs, which defeats the purpose of CRN access. 

5.4 Modelling and Characterization 

We model the channel selection process as a continuous-time Markov process, which is 

defined by its states and transition rates. Here, we need to define the states and state 

transition rates. Bands are used by both PUs and CUs. Therefore, we define each state 

as an n-tuple, (a1, · · · , an) in which ai, for i = 1, · · · , n, indicates that band i is assigned 

to CU numbered ai, if ai > 0; or, if aj is equal to -1, it indicates that band j is occupied 

by a PU. If aj is equal to 0, it means that the corresponding band is not assigned for any 

transmissions (i.e., the band is either idle or used as guard). Note that if ai = aj > 0, 

bands i and j are assigned to the same CU numbered ai. It is important to keep track 

of the bands used by each CU since we need to know which bands become idle when a 

CU transmission is over or which CUs are affected when a PU reclaims a band. 

We try to reduce the number of states in our model since the complexity of solving 

Markov process balance equations depends directly on the number of states. Hence, in 
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order to reduce the number of states in our model, we add other constraints without loss 

of generality. We require that, in any state (a1, · · · , an), if 

0 < ai < aj 

for some i, j = 1, · · · , n, then 

min{k|ak = ai, k = 1, · · · , n} < min{k|ak = aj , k = 1, · · · , n} 

and 

min{ak|ak > 0, k = 1, · · · , n} = 1 

We know that ai takes only values between −1 and n/3 + 1 (i.e., −1 ≥ ai ≥ n/3 + 1). 

Thus, the number of states is at most (n/3 + 3)n . Note that, some of the states we count 

are invalid state as they do not satisfy the above constraints. 

We model arrivals and departure of CUs and PUs both as Poisson processes with 

arrival rates λc and λp, respectively, and the service times are exponentially distributed 

with rates µc and µp, respectively. Arrival or departure of a PU or a CU create a possible 

state transition. In order to compute transition rates we need to look at four cases/events 

under which a state transition occurs; thus, we only have to consider these four cases to 

compute the transition rate matrix Q. Let s = (a1, · · · , an) denote the current system 

state in all the following cases. 

•	 First, consider that a CU arrives to the system and selects at most n spectrum 

bands. The next state depends on the bands selected for CU transmission and 

is determined by the channel selection algorithm used by the CU. If there are at 

least three contiguous idle bands the transition rate from current state s to the 
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′ new state s is λc. Note that the algorithms we use in this work are deterministic 

and result in one possible new state. Moreover, incoming CU will be blocked and 

denied access to the spectrum bands if the current state s does not contain at least 

three contiguous idle bands. 

•	 Second, consider that a CU leaves spectrum band i. In this case, the bands used 

for that CU transmission become idle and the transition rate from current state s 

′ to the new state s is µc. 

′ ′ •	 Third, when a PU leaves band i, the next state is s = (a1, · · · , a i, · · · , an), where 

′ ai = 0 and ai = −1. Assuming that the number of occupied bands by PUs α, 

which means that the number of succeeding states is also α, the transition rate 

′ from s to s is then µp/α, where α can be different for different states, and it can 

nbe calculated via α = 1. l=1,al =−1 

•	 Fourth, consider that a PU arrives to spectrum band i. Note that PUs operate 

on a predefined band hence they do not select any band upon their arrivals. In 

this case, affected CU transmission has to find new idle bands to proceed. Thus, 

the next state is determined by the channel selection algorithm used and since, 

as mentioned earlier, the algorithms used in this work are deterministic, there is 

′ only one possible next state. Hence, the transition rate to the new state s is λp. 

Note that if the all transmissions belonging to same CU are affected and that CU 

does not find any bands to proceed its transmission then that CU transmission is 

terminated. 

Note, only in case 1, a CU might be totally blocked since CU arrival only takes place 

under that case. Also, a CU might be forced to terminate its transmission under case 4 
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since an ongoing CU transmission can only be affected when a PU reclaims its band. 

Thus far, we computed the transition rates, and we were able to determine the 

transition rate matrix Q. One can solve the following system of equations: 

L 

π.Q = 0 and πs = 1	 (5.1) 
s∈S 

where S is the set of possible states, π is the stationary probability matrix and πs is 

the stationary probability of state s. Now, we can define our performance metrics based 

on our model and the derived stationary probabilities. 

1.	 Blocking Probability (Pb): 

The blocking probability is defined as the probability that a cognitive user, at­

tempting to access the multichannel system, is rejected accessing to the system 

due to not finding any available band. 

The blocking probability Pb of a CU can be formally defined as 

L λcπs
Pb =	 (5.2) 

γs =s ′ s∈S,s � s ′ s∈B 

′ where γs 
′ 

is the transition rate from state s to s and B is the set of states in which s 

blocking occurs when a new CU arrives to the system, and is defined as 

B = {s ∈ S|Na(s) = 0} 

where Na(s) is the number of available bands (i.e., number of available bands 

excluding guard bands) in state s. The number of available bands in state s = 
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(a1, · · · , an) can be written as 

n L
 

Na(s) = Πi+1 
j=i−1I(aj)	 (5.3) 

i=1 

where I(a) is an indicator function defined as 

I(a) =
 

 

 


 

1 if a = 0
 

0 if a = 0 �


2.	 Forced Termination Probability (Pf): 

The probability that a cognitive user, already accessing and using a set of channels, 

is forced to stop its transmission as a result of not finding an available band upon 

a PU arrival is called the forced termination probability. 

The forced termination probability Pf of a CU can be defined as 

γs 
′ 

πs(s,s ′ )∈T s 
Pf =	 (5.4) 

(1 − Pb)λc 

′ where γs 
′ 

is the transition rate from state s to s , Pb is the blocking probability s 

as defined in Eq.5.2 and T is the set of pairs of states in which a CU is forced to 

terminate all of its transmissions when transitioning from s to s ′ , and is defined as 

T = {(s, s ′ )|Na(s ′ ) = 0, NCU (s) = NCU (s ′ ) + 1, NPU (s) = NPU(s ′ ) − 1} 

where Na(s ′ ), as defined in Eq.5.3, denotes the number of available bands to CUs 
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′ in state s , NCU (s) and NPU(s) denote the number of cognitive users and primary 

users in state s, respectively. The number of primary users in state s = (a1, · · · , an) 

can be defined as 
n L 

NPU(s) = 1.	 (5.5) 
i=1,ai =−1 

And the number of cognitive users in state s = (a1, · · · , an) can be defined as 

NCU (s) = max{ai}, for 1 ≤ i ≤ n.	 (5.6) 
i 

3.	 Service Degradation Probability (Pd): 

The degradation probability that at least one CU transmission is forced to stop as 

a result of not finding an available band when a PU reclaims its channel. 

Similarly, the degradation probability Pd of a CU can be defined as 

πs
′ 

γs (s,s ′)∈D s 
Pd =	 (5.7) 

(1 − Pb)λc 

′ where again γs 
′ 

is the transition rate from state s to s , Pb is the blocking probability s 

as defined above and D is the set of pairs of states in which a CU is forced to 

′ terminate some but not all of its transmissions when transitioning from s to s , 

and is defined as 

D = {(s, s ′ )|Na(s ′ ) = 0, NCU (s) = NCU (s ′ ), NPU (s) = NPU(s ′ ) − 1} 

where Na(s ′ ), as defined in Eq.5.3, denotes the number of available bands to CU 
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′ in state s , NCU (s) and NPU(s) denote the number of cognitive users and primary 

users in state s, as defined in Eq.5.6 and Eq.5.5, respectively. 

4.	 Spectrum Efficiency (Ξ): 

In addition to forced termination, blocking and degradation probabilities, we de­

rive spectrum efficiency, average number of guard bands, service degradation and 

cognitive user utilization. Spectrum efficiency, Ξ, is the ratio of number of bands 

used for either a PU or a CU transmission to total number of bands. We formally 

define spectrum efficiency as 

L 

Ξ = πsξs (5.8) 
s∈S 

where ξs is the number of bands used for a PU or CU transmission in state s = 

(a1, · · · , am) and is defined as ξs = =0 1. i=1,ai �

5.	 Average Number of Guard Bands (χ): 

We formally define the average number of guard bands, χ,as 

L 

χ = πsκs (5.9) 
s∈S 

where κs is the number of guard bands in state s = (a1, · · · , an) and is defined as 

n L 

κs = 1 
i=1 

(ai−1 �=0 ai+1 �=0) 
ai=0 

We also define a0 and an+1 to be equal to zero in order to avoid out of range 

indices. 
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6.	 CU Utilization (H): 

The fraction of channels used by cognitive users is defined as CU utilization. 

We define the CU Utilization, H,as 

L 

H = πsηs	 (5.10) 
s∈S 

where ηs is the number of bands used for CU transmission in state s = (a1, · · · , an) 

and is defined as 

ηs = n − NPU(s) − Na(s)	 (5.11) 

where n is total number of channels in the system. Also, NCU (s) and NPU (s) 

denote the number of cognitive users and primary users in state s, as defined in 

Eq.5.6 and Eq.5.5, respectively. 

7.	 Amount of Service Degradation (∆): Service degradation is defined as the 

number of transmission losses by CU when a PU arrival forces the CU to stop some 

or all of its transmissions. 

We define the amount of service degradation, χ,as 

L 

∆ = πsδs	 (5.12) 
s∈S 

where δs is the number of bands needed for CU transmission in addition to the 

allocated bands so that each CU can use all of its capacity. Formally, δs, for state 
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s = (a1, · · · , an), is defined as 

δs = m × NCU − ηs 

where m is the maximum number of channels a CU uses, NCU (s) denotes the 

number of cognitive users in state s, as defined in Eq.5.6 and ηs denotes the number 

if bands used for CU transmission in state s, as defined in Eq.5.11. 

5.5 Analytic Results and Analysis 

In this section, we analyze the performance of multichannel cognitive radio spectrum 

access system. We study the impact of guard bands on the performance of the system 

under five various channel selection schemes. Our performance metrics include (1) block­

ing probability (PB), (2) forced termination probability (Pf ), (3) degradation probability 

(Pd), (4) CU Utilization (H), (5) service degradation (∆), (6) spectrum efficiency (Ξ) 

and (7) the number of guard bands (χ). 

We use MATLAB to generate transition rate matrix Q first, as explained in Sec­

tion 5.4, then solve Eq. 5.1, and finally calculate aforementioned performance metrics 

in a multichannel access system where primary and cognitive users arrive to the system 

according to Poisson process with arrival rates λp and λc and service times µp and µc, 

respectively. 

In all of our analytical results we considered a system with µp = 10, λc = 1, µc = 10, 

n = 10. Also, m = 3 when the performance metric is in terms of PU arrival rate λp and 

λp = 0.1 where the performance metric is in terms of the number of channels accessed 

by each CU. 
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5.5.1 Analytic Results with no Guard Band Reuse 

In this section, we analyze the FDM-based CRN performance where guard band reuse 

is not allowed. 

5.5.1.1 Impact of Guard Bands on Blocking Probability 

Fig.5.1(a) depicts the derived blocking probability of CUs as a function of the primary 

user arrival rate, λp, and Fig.5.1(b) depicts blocking probability as a function of the 

maximum number of channels used by each cognitive user, m, under five different channel 

assignment schemes. 

First, observe that the blocking probability, defined in Eq. 5.2, of cognitive users 

increases with the primary user arrival rate. That is, as the rate of primary users in­

creases, the network becomes more and more loaded, resulting in higher blocking prob­

ability. Second, as the number of channels per CU increases, the number of occupied 

bands by CUs increases, resulting in higher blocking probability as expected. This trend 

of performance behavior is expected, as having less channels to choose from, decreases 

the chances of cognitive users finding available bands, which explains the increase in 

the blocking probability of cognitive users. Third, as expected, the blocking probability 

is smaller when the channel assignment scheme tries to minimize the number of guard 

bands, resulting in leaving more available channels for the newly incoming CUs, thus 

having smaller blocking probabilities. 
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Figure 5.1: Blocking probability as a function of (a) the primary arrival rate λp, for 
m = 3 (b) the maximum number of channels m, under five different channel assignment 
schemes without guard band reuse, for λp = 0.1 
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5.5.1.2 Impact of Guard Bands on Termination Probability 

We study the impact of guard bands on forced termination probability of cognitive 

users. Fig.5.2(a) plots the derived forced termination probability of cognitive users as a 

function of the primary user arrival rate, λp, and Fig.5.2(b) depicts the forced termination 

probability as a function of the number of radios for each cognitive user, m, under five 

different channel assignment schemes. 

First, observe that the termination probability increases slowly as the primary user 

arrival rate increases. That is, as the rate of primary users increases, the chance of a CU 

being affected by a PU activity increases, resulting in slightly higher forced termination 

probability. Second, observe that when the CUs use three radios, the forced termination 

probability is smallest. This is because as the number of radios increases, the probability 

that a CU is affected by a PU activity decreases. However, at some point the CUs 

might not be able to use all their radios due to band unavailability, thus we observe an 

increase in the forced termination probability as the number of radios in use is decreased. 

Unlike the blocking probability, the forced termination probability does not significantly 

depend on the channel assignment schemes we considered in this work since they all try 

to minimize the number of guard bands which results in having fewer frequency blocks, 

hence the same level of influence by PU activity. 

5.5.1.3 Impact of Guard Bands on Degradation Probability 

Now, we study the degradation probability when a PU reclaims its channel and at least 

a CU transmission is forced to stop transmission as a result of not finding an available 

band. Fig.5.3 plots the derived degradation probability of cognitive users as a function 
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Figure 5.2: Forced termination probability as a function of (a) the primary arrival rate 
λp, for m = 3 (b) the maximum number of channels m, under five different channel 
assignment schemes without guard band, for λp = 0.1 
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of the primary user arrival rate, λp, and the number of channels used by each cognitive 

user, m, under five different channel assignment schemes. 

First, observe that, similar to forced termination probability, the degradation prob­

ability increases slowly as the primary user arrival rate increases. That is, as the rate of 

primary users increases, it is more likely that a CU be affected by a PU arrival, resulting 

in higher degradation probability. Second, if each CU has more ongoing transmissions, 

the probability of forced terminating reduces, as shown in Fig.5.2(b), however, the degra­

dation probability increases when the number of channels used by each CU increases, 

as shown in Fig.5.3(b), since the probability of a CU being affected by a PU activity 

increases. Third, we observe that degradation probability is relatively larger than forced 

termination probability, depicted in Fig.5.2. This shows that, upon a PU arrival, CUs 

are less likely to terminate all of their transmissions, rather CUs have to stop some of 

their transmissions due to not finding available channels. 

5.5.1.4 Impact of Guard Bands on CU Utilization 

Now we study the impact of considering guard bands on utilization of cognitive users. 

Fig.5.4(a) plots the normalized CU utilization as function of the primary user arrival rate, 

λp, and Fig.5.4(b) depicts the normalized CU utilization as a function of the number of 

channels used by each cognitive user, m, under five different channel assignment schemes. 

First, we observe that CU utilization increases slowly under Min GB algorithms 

as the primary user arrival rate increases. However, CU utilization decreases slowly 

under other three selection schemes. Although CU utilization is lower under Min GB 

algorithms but it also increases as the PU arrival rate increases. Second, observe that 

as the number of channels used by each CU increases, CU utilization increases under all 
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Figure 5.3: Forced termination probability as a function of (a) the primary arrival rate 
λp, for m = 3 (b) the maximum number of channels m, under five different channel 
assignment schemes without guard band reuse, for λp = 0.1 
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five selection schemes. The reason is that as the number of channels increases, the need 

for guard bands per CU decreases, thus, increasing the number of available channels and 

CU utilization. 

5.5.1.5 Impact of Guard Bands on Service Degradation 

We are interested in the impact of guard bands on the average amount of service degra­

dation when a PU arrival forces a CU to stop some or all of its transmissions. Fig.5.5(a) 

shows the average service degradation of cognitive users as a function of the primary user 

arrival rate, λp, and Fig.5.5(b) depicts the forced termination probability as a function 

of the number of channels used by each cognitive user, m, under five different channel 

assignment schemes. 

We observe that MinGB(Local) scheme incurs slightly more service degradation upon 

a PU arrival. On the other hand, we observe that MinGB(Global) scheme incurs slightly 

less service degradation upon a PU arrival. We also observe that the amount of service 

degradation increases as the primary user arrival rate increases since as the number of 

PUs increases CUs finds fewer channels for their transmission. Finally, as expected, 

the amount of service degradation increases as the number of channels used by each 

CU increases since the probability that a PU arrival affects more channels used by CU 

transmissions increases. 

5.5.1.6 Impact of Guard Bands on Spectrum Efficiency 

We study the impact of considering the guard bands on spectrum efficiency. Fig.5.6 

depicts the spectrum efficiency as a function of the primary user arrival rate, λp, and as 
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Figure 5.4: Normalized CU utilization as a function of (a) the primary arrival rate λp, for 
m = 3 (b) the maximum number of channels m, under five different channel assignment 
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0 

0.2 

0.4 

0.6 

0.8 

1 

N
or

m
al

iz
ed

 C
U

 U
til

iz
at

io
n 

Greedy 
Min FB 
Max FB 
Min GB(Local) 
Min GB(Global) 



 

 

 

 

119 

0 

0.5 

1 

1.5 

2 

2.5 

S
er

vi
ce

 D
eg

ra
da

tio
n 

Greedy 
Min FB 
Max FB 
Min GB(Local) 
Min GB(Global) 

0.02 0.04 0.06 0.08 0.1 
λ 

p 

(a) Δ vs. λp 

1 2 3 4 5 
m 

(b) Δ vs. m 

Figure 5.5: Forced termination probability as a function of (a) the primary arrival rate 
λp, for m = 3 (b) the maximum number of channels m, under five different channel 
assignment schemes without guard band reuse, for λp = 0.1 

0 

0.5 

1 

1.5 

2 

2.5 

S
er

vi
ce

 D
eg

ra
da

tio
n 

Greedy 
Min FB 
Max FB 
Min GB(Local) 
Min GB(Global) 



120 

a function of the number of channels used by each cognitive user, m, under five different 

channel assignment schemes. 

We make three observations. First, in Fig.5.6(a), observe that the spectrum efficiency 

does not depend on primary user arrival rate as expected. That is, when a the primary 

user arrival rate increases, the spectrum is used by the primary users instead of cognitive 

users, hence the number of bands used for transmission does not change rather the type 

of users change. Second, in Fig.5.6(b), observe that the spectrum efficiency increases as 

the number of radios used by each cognitive user increases. The reason is that fewer CUs 

may access the spectrum, hence the number of frequency blocks that are used by CU 

decreases, thus requiring fewer guard bands. Therefore, user may access the spectrum 

bands more efficiently. Third, Fig.5.6(b) also shows that the spectrum efficiency increases 

as the number of channels used by each CU increases, this is simply due to channel 

bonding done by the CUs in order to reduce the number of guard bands and increasing 

efficiency. 

5.5.1.7	 Average Number of Guard Bands under Various Channel 

Assignment Schemes 

We are also interested in the average number of guard bands incurred under each channel 

assignment scheme described in Section 5.3. The average number of guard bands is shown 

in Fig.5.7 as a function of primary user arrival rate, λp, ( shown in Fig. 5.7(a)) and the 

number of channels used by each cognitive user, m,( shown in Fig. 5.7(a)) under five 

different channel assignment schemes. 

First, we observe that, in Fig.5.7(a), as the primary user arrival rate, λp, increases, 
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the average number of guard bands increases due to not finding contiguous bands to 

use as a frequency block; hence CUs need to use more frequency blocks, demanding 

more guard bands. Second, in Fig.5.7(b), we observe that average number of guard 

bands decreases as the number of radios used by each CU increases. That is, increasing 

the number of radios helps the CUs to bond contiguous bands forming larger frequency 

blocks which requires fewer number of guard bands. Third, as expected, the channel 

assignment scheme, which intuitively reduces the number of guard bands, imposes fewer 

guard bands. 

5.5.2 Analytic Results with Guard Band Reuse 

Next, we analyze the D-OFDM-based CRN performance, where guard band reuse is 

allowed, under various channel selection schemes. 

5.5.2.1 Impact of Guard Bands on Blocking Probability 

Fig.5.8(a) and Fig.5.8(b) depict the derived blocking probability of CUs as a function of 

the primary user arrival rate, λp, and the maximum number of channels used by each 

cognitive user m, respectively, under five different channel assignment schemes. 

First, observe that the blocking probability of cognitive users decreases with the 

primary user arrival rate. That is, as the rate of primary users increases, the network 

becomes more and more loaded, thus expecting higher blocking probability. However, 

a PU arrival does not only affect the blocking probability, it also affects degradation 

probability which will be explained later. On the other hand, as the number of PUs 

increases, the probability of a PU leaving the system increases, therefore, there are more 
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Figure 5.7: Average number of guard bands as a function of (a) the primary arrival rate 
λp, for m = 3 (b) the maximum number of channels m, under five different channel 
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idle channels to be used for CUs transmissions. This explains the decrease in blocking 

probability. Second, as the number of channels per CU increases, the number of occupied 

bands by CUs increases which generally results in higher blocking probability. This trend 

of performance behavior is expected, as having less channels to choose from, decreases 

the chances of cognitive users finding available bands, which explains the increase in the 

blocking probability of cognitive users. Third, MinGB(Global) results in significantly 

smaller blocking probabilities when the number of channels per CU increases from 3 

to 4. When CUs access more channels, there will be also more idle channels upon CU 

departure and this is why the blocking probability is reduced. 

5.5.2.2 Impact of Guard Bands on Termination Probability 

We study the impact of guard bands on forced termination probability of cognitive users. 

Fig.5.9(a) and Fig.5.9(b) plots the derived forced termination probability of cognitive 

users as a function of the primary user arrival rate the number of channels accessed by 

each cognitive user m under five different channel assignment schemes. 

We observe that the termination probability increases very slowly as the primary user 

arrival rate. That is, as the rate of primary users increases, the chance of a CU affected 

by a PU activity increases, however, the termination probability does not depend on 

PU arrival rate significantly, rather it depends on total network traffic. Next, observe 

that when the CUs access more channels, the forced termination probability becomes 

generally smaller. As the number of channels used by each CU increases, the probability 

that a CU is affected by PU arrivals decreases. 
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Figure 5.8: Blocking probability as a function of (a) the primary arrival rate λp, for 
m = 3 (b) the maximum number of channels m, under five different channel assignment 
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Figure 5.9: Forced termination probability as a function of (a) the primary arrival rate 
λp, for m = 3 (b) the maximum number of channels m, under five different channel 
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5.5.2.3 Impact of Guard Bands on Degradation Probability 

Now, we study the degradation probability when a PU reclaims its channel and at least 

a CU transmission is forced to stop transmission as a result of not finding an available 

band. Fig.5.10 plots the derived degradation probability of cognitive users as a function 

of the primary user arrival rate, λp, and the number of channels used by each cognitive 

user, m, under five different channel assignment schemes. 

First, observe that, similar to forced termination probability, the degradation prob­

ability increases slowly as the primary user arrival rate increases. That is, as the rate 

of primary users increases, it is more likely that a CU be affected by a PU arrival, re­

sulting in higher degradation probability. Second, if each CU access more channels for 

its transmissions, the probability of forced terminating reduces, as shown in Fig.5.9(b), 

in contrast, the degradation probability increases when the number of channels used by 

each CU increases, as shown in Fig.5.10(b), since the probability of a CU being affected 

by a PU activity increases. Third, we observe that degradation probability is relatively 

larger than forced termination probabilities, depicted in Fig.5.9. This demonstrates that 

CUs are less likely to terminate all of their transmissions upon a PU arrival, rather CUs 

are forced to cease some of their transmissions due to not finding available channels. 

5.5.2.4 Impact of Guard Bands on CU Utilization 

Next, we study the impact of considering guard bands on utilization of cognitive users. 

Fig.5.11 plots the normalized CU utilization as function of the primary user arrival rate, 

λp, and the number of channels used by each cognitive user, m, under five different 

channel assignment schemes. 

http:Fig.5.11
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Figure 5.10: Forced termination probability as a function of (a) the primary arrival rate 
λp, for m = 3 (b) the maximum number of channels m, under five different channel 
assignment schemes with guard band reuse, for λp = 0.1 
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We observe that CU utilization decreases slowly as the primary user arrival rate 

increases. As the number of PUs increases the number of channels assigned to CUs 

decrease, hence the CU utilization decreases. Also, we observe that as the number of 

channels used by each CU increases, CU utilization increases under five selection schemes. 

The reason is that as the number of channels increases, the need for guard bands per CU 

decreases generally, thus, increasing the number of available channels and CU utilization. 

5.5.2.5 Impact of Guard Bands on Service Degradation 

We are also interested in the impact of deploying guard bands on the average amount of 

service degradation when a PU arrival forces a CU to stop some or all of its transmissions. 

Fig.5.12 shows the average service degradation of cognitive users as a function of the 

primary user arrival rate, λp, and the number of channels used by each cognitive user, 

m, under five different channel assignment schemes. 

We observe that MinGB(Local) scheme incurs more service degradation upon a PU 

arrival and it increases as the PU arrival rate increases. On the other hand, we observe 

that MinGB(Global) scheme incurs less service degradation upon a PU arrival and the 

degradation decreases as the PU arrival rate increases. We also observe that the amount 

of service degradation increases generally as the primary user arrival rate increases. As 

PU activity increases CUs finds fewer channels for transmission. Finally, as expected, 

the amount of service degradation increases as the number of channels used by each 

CU increases since the probability that a PU arrival affects more channels used by CU 

transmissions increases. 
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Figure 5.11: Normalized CU utilization as a function of (a) the primary arrival rate 
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5.5.2.6	 Impact of Guard Bands on Spectrum Efficiency 

We study the impact of considering the guard bands on spectrum efficiency. Fig.5.13 

depicts the spectrum efficiency as a function of the primary user arrival rate, λp, and as 

a function of the number of channels used by each cognitive user, m, under five different 

channel assignment schemes. 

We make two key observations. First, in Fig.5.13(a), observe that the spectrum 

efficiency decreases as the PU arrival rate increases since a channel used by a PU needs 

one guards at each side and as the number of PUs increases the number of required guard 

bands increases, thus reducing spectrum efficiency. Second, in Fig.5.13(b), observe that 

the spectrum efficiency increases as the number of radios used by each cognitive user 

increases. The reason is that the length of each CU frequency blocks increases since 

each CU can bond more channels together, thus requiring fewer guard bands. Therefore, 

spectrum efficiency increases. 

5.5.2.7	 Average Number of Guard Bands under Various Channel 

Assignment Schemes 

Last, we are interested in the average number of guard bands incurred by each chan­

nel assignment scheme described in Section 5.3. Average number of guard bands as a 

function of the primary user arrival rate, λp, and the number of channels used by each 

cognitive user, m, are shown in Fig.5.14. 

First, we observe that, in Fig.5.14(a), as the primary user arrival rate, λp, increases, 

the average number of guard bands increases due to not finding contiguous bands to use 

as a frequency block; hence CUs need to use more frequency blocks, demanding more 

http:Fig.5.14
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guard bands. Second, in Fig.5.14(b), we observe that average number of guard bands 

decreases as the number of channels used by each CU increases. That is, increasing the 

number of channels helps the CUs to bond contiguous bands forming wider frequency 

blocks which requires fewer number of guard bands. Third, as expected, the channel 

assignment scheme, MinGB(Global) , which intuitively must reduce the number of guard 

bands, imposes fewer guard bands and MaxFB requires more guard bands as expected. 

5.6 Summary and Concluding Remarks 

In this Chapter, we propose a continuous time Markov model for cognitive radio net­

works. Our model consider using non-ideal filters, thus requiring guard bands to prevent 

adjacent channel interference. In our model, we consider CUs that have the capability 

of bonding and aggregating channels to access multiple channels simultaneously. Two 

types of cognitive radio model are considered in this work (1) FDM-based CRNs and 

(2) D-OFDM-based CRNs. In FDM-based CRNs, each frequency block requires to have 

one guard band at each end. In this case, it is not allowed to reuse a guard band for 

two adjacent frequency blocks, however, in D-OFDM-based CRNs, guard band reuse is 

allowed. 

Exploiting the proposed model, we derive and analyze various network performance 

metrics including (1) blocking probability, (2) forced termination probability, (3) degra­

dation probability, (4) CU Utilization, (5) service degradation, (6) spectrum efficiency 

and (7) the number of guard bands under five various channel selection schemes. Our 

analysis shows that that disregarding ACI results in inaccurate and misleading outcomes. 

Therefore, it is imperative to consider guard bands when spectrum sharing schemes are 

designed for cognitive radio networks. 
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Chapter 6: Conclusions
 

In Chapter 2, we propose and evaluate efficient private objective functions that OSA users 

can use to locate the best spectrum opportunities. OSA users can rely on any learning al­

gorithms to maximize these proposed objective functions, thereby ensuring near-optimal 

performances in terms of the long-term average received rewards. We showed that these 

proposed functions (i) receives near-optimal rewards, (ii) are highly scalable as they 

perform well for small- as well as large-scale systems, (iii) are highly learnable as re­

wards reach up near-optimal values very quickly, and (iv) are distributive as they require 

information sharing only among users belonging to the same spectrum band. 

In Chapter 3, we proposed efficient resource and service management techniques 

to effectively support SUs in large-scale OSA systems. We showed that the proposed 

techniques achieve high service satisfaction levels, are very scalable by performing well 

in small- as well as large-scale systems, are highly learnable by reaching up high values 

fast, are distributive by requiring information sharing only among agents belonging to the 

same band, and ensure fairness among SUs by allowing them to receive equal amounts 

of service. 

Chapter 4 models and analyzes the performance behaviors of cognitive radio net­

works enabled with dynamic multichannel access capability, but while considering realis­

tic channel handoff agility assumptions, where cognitive users can only switch to vacant 

channels that are immediate neighbors of their current channels. Using Markov chain 

analysis, we model cognitive access networks with restricted channel handoff agility as 

a continuous-time Markov process, and analytically derive the forced access termination 
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and blocking probabilities of cognitive users, and evaluate the spectrum access efficiency 

of cognitive networks. Using MATLAB simulations, we also validate our analytically de­

rived performance results. Our obtained results demonstrate the impact and importance 

of considering realistic channel handoff agility in cognitive radio access on the cognitive 

radio network performances in terms of users’ blocking and termination probabilities, 

as well as cognitive spectrum access efficiency. This chapter demonstrates the cognitive 

radio performance implications of the commonly made spectrum-handoff agility assump­

tion of allowing cognitive users to switch to any available band, regardless of how far 

the target band is from the current band. Our findings in Chapter 4 show that the 

achievable performance of cognitive radio networks in terms of spectrum access capa­

bility and efficiency can be significantly lesser than what existing works usually claim, 

due to the limited nature of spectrum handoff agility that most works do not account 

for. We conclude that making unrealistic assumption regarding the spectrum handoff 

agility may lead to very inaccurate and misleading results, and it is then imperative that 

performance studies of cognitive radio networks do account for the restricted agility of 

channel switching when modeling and assessing the performance of such networks. 

In Chapter 5, we propose a continuous time Markov model for cognitive radio net­

works. Our model consider using non-ideal filters, thus requiring guard bands to prevent 

adjacent channel interference. In our model, we consider CUs that have the capability 

of bonding and aggregating channels to access multiple channels simultaneously. Two 

types of cognitive radio model are considered in this chapter (1) FDM-based CRNs and 

(2) D-OFDM-based CRNs. In FDM-based CRNs, each frequency block requires to have 

one guard band at each end. In this case, it is not allowed to reuse a guard band for 

two adjacent frequency blocks, however, in D-OFDM-based CRNs, guard band reuse is 

allowed. Exploiting the proposed model, we derive and analyze various network perfor­
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mance metrics including (1) blocking probability, (2) forced termination probability, (3) 

degradation probability, (4) CU Utilization, (5) service degradation, (6) spectrum effi­

ciency and (7) the number of guard bands under five various channel selection schemes. 

Our analysis shows that that disregarding ACI results in inaccurate and misleading 

outcomes. Therefore, it is imperative to consider guard bands when spectrum sharing 

schemes are designed for cognitive radio networks. 
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