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A The trousers problem revisited
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¢ Abstract. Anderson and DeWitt considered the quantization of a massless scalar field in
a spacetime whose spacelike hypersurfaces change topology and concluded that the topology
change gives rise to infinite particle and energy production. We show here that their

2 calculations are insufficient and that their propagation rule is unphysical. However, our

s‘{‘«‘ results using a more general propagation rule support their conclusion.
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1. Introduction

The trousers topology was introduced by Anderson and DeWitt (1986; see also DeWitt
2] . 1985) to model the effects of topology change in quantum gravity. Instead of the
b gravitational field, they consider a massless scalar field on a background spacetime
whose spatial cross-sections change topology. By comparing the “natural” Fock vacua
i before and after the topology change, they conclude that infinite particle and energy
i ' production occurs, and that the topology change therefore does not take place.

We re-examine their procedure and show that it is incomplete. Fundamcfntal to
the solution of the problem is a choice of propagation rule as well as of t‘m” and v
“out” mode functions. We show that their propagation rule is kunphysxcal and
furthermore that their choice of mode functions is incomplete. -

More specifically, we introduce as a physical constraint on the Bogolubov’
transformations between in and out modes that they be time-independent and show
that this determines the propagation rule completely up to a single frqe parameter.
The shadow rule of Anderson and DeWitt (1986) does not satisfy this constramnt.
Anderson and DeWitt only give a general argument for the presence of an energy
density proportional to the square of a delta function; we calculate the energy dcn§1ty
explicitly and attempt (unsuccessfully) to use the free parameter to set the coefficient -
of this term to zero. : S
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A re-examination of the problem also shows that the set of modes used was
incomplete, and that there are in fact new modes associated with the topology change.
A satisfactory treatment of this problem would require quantizing these modes as
well; we postpone a discussion of this to a future paper.

In §2 we describe the trousers topology and establish the general framework for
the problem. In § 3 we consider the question of which propagation rules are allowed.
A complete tabulation of the explicit forms of the propagated mode functions so
obtained is deferred to the Appendix, and it is seen that the shadow rule of Anderson
and DeWitt (1986) is not acceptable. The inner products (Bogolubov coefficients)
between in and out modes are also given in the Appendix. Section 4 contains the
calculation of the energy density, and in § 5 we discuss our results.

2. The trousers topology

We consider the massless scalar wave equation propagating on a two-dimensional
spacetime whose spatial cross-sections change topology from S! to S + S*. At early
times the spacetime will be a two-dimensional cylinder with circumference 24, while
at late times it has split into two disjoint cylinders, each with circumference 4; see
figure 1. The spacetime looks like an inverted pair of trousers.

At early and late times the cylinders can be chosen to be flat and Lorentzian.
However, if we take the region where the topology change occurs to be smooth, then
there must be a coordinate patch at the crotch of the trousers which is Euclidean;
there is no global Lorentzian metric on the manifold shown in figure 1. But if the
metric changes signature then the determinant of the metric changes sign, and therefore
must either be zero somewhere or be complex-valued. In either case, the interpretation
of the wave equation is unclear. To avoid these problems we will shrink the Euclidean

- Figure L The trousers topology. At early times the cross-section is a circle of circumference
5 iLT;f::l: at late times the Cross-section consists of two, disjoint circles, each of circumference .

o e s necessarily a coordinate patch, indicated by dotted lines, where the manifold is

spacelike, ie. the metric there is positive definite. Ry R L
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patch to a single, extremely singular point and then remove this point from the
spacetime. The resulting manifold is Lorentzian everywhere and may be chosen to
be flat; see figure 2. We choose coordinates x,t with

teR; xe[—A, 4] (1

and where for t < 0 the line x = 1 is identified with x = — 4, while for ¢ > 0 we identify
x = £ A with x = 0%. We will call the region t < 0 the trunk or “in” region, and ¢t >0
the legs or “out” region. Note that in the legs the coordinate line “x = 0 is ill-defined
and one must specify which leg is being referred to. The point where the topology
changes is represented by t =0, x = — 4, 0, 1 and is removed from the manifold.
Since the metric is chosen to be flat everywhere, the massless scalar wave equation
takes the familiar form ~

(=37 +32)¢ =0. @

The Klein-Gordon inner product between any two solutions ¢, $of (2)is
b . .. -
(P, ) =i J (9*¢ — o*¢)dx , €}
-2 :

where the integral is over any surface £ = {t = constant} and where » denotes complex
conjugation and dot denotes derivatives with respect to . We assume that ¢ satisfies
the appropriate periodic boundary conditions, namely

H—=A)=d(+A41) (t<0),
M+ A1) =P(0%,0) (1>0). @

Note that we do not require ¢ to solve (2) at the singularity; we will return to this
fundamental issue in §3.
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- Figure2. Theunrolled trousers topology. For £ < ; s
- —4, while for t>0 the line x = +4 is to be identified with x =0%
; topology changes is removed from the manifold. . .
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The quantization of ¢ on a cylinder of radius 24 proceeds as follows. The modes

k="" 0 #nel) ©)

= \/‘%mexp[i(kx—rkltn ( ;

are orthonormal with respect to (3), i.e.

() =6y = — (b, uf) - ©
(@ ud) =0.

However, the set {u,,u}} is not complete. Unlike the case of unbounded Minkowski
space, on the cylinder the constant mode and the mode proportional to ¢ have finite
Klein-Gordon product with each other and are orthogonal to u, and u} and therefore
must be included in the complete set of modes. Note that these “zero-frequency”
modes have zero norm.** '

The quantum field ¢ can be expanded as

¢= 3 (a+aful)+ Quy + P, ™

k%0

where the operators Q and P are Hermitian. Demanding the usual equal time
commutation relations

[(x, 1), §(x, )] = id(x — x) _ @)
leads to the commutation relations

[all=bu; [QP1=i | | ©
(all others zero). We define the vacuum state 10,,> by

410, =0=P|0,, | | (10)

so tfl,]za; it will be the state of lowest energy. (The Hamiltonian has a term proportional
to P, : N

The apparent contradiction between (9) and (10) (try evaluating ¢0}[Q, P]I0)) is
’ resolved by noticing that Q is not a well defined operator on eigenstates of P and
furthermore the vacuum |0 is not normalizable. Vacuum expectation values of powers
~of Q are divergent; we will return to this point'in § 5.

- The ‘pro.ccdure used by Anderson and DeWitt (1986) is to assume that at early
txm'es (ie. in the trunk) ¢ can be expanded as in (7) in terms of the trunk modes 1
while at late times (i.e. in the legs) ¢ possesses a similar expansion in terms of leg
moc?es. More specifically, we introduce leg modes u,;,a;, B, (ug, %z, Br) for t>0
hgwng support onlyjn the left (right) leg, where they satisfy ‘ '

- choose the modes a5 = NeR and f, = (12N, uouo ?@?% “‘f TR

(1—it). However, wewill
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3. Propagation rules

~ Consider a skmddth'Solutikon ¢ of (2)
- condition S e
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uy, = 1/2|1| A exp [illx — |1]1)] <l=gﬂn—,0 #meZ),

y)
aL=NLGR, (11)
1
ﬁl‘_mtv

in the left leg and zero in the right leg, and

2nm

e = 1/2I11 ) exp [illx — 118)] (z: 7 ,O;émeZ),

ag = NgeR, o (12)
Br= _Nklt

in the right leg and zero in the left leg. ¢ is now assumed to satisfy the expansion (7)
in the trunk, and the expansion

¢= Z (@ uy + alul)+ Qo + P By
1#0

+ Y (agtug + alguie) + Qrr + Prbr (13)
I#0 , ,

in the legs.
The energy density is given by
T,=3¢*+¢")
=¢L+ 0%

where prime denotes differentiation with respect to x and u=t—X,v=t+x
The idea is now to treat T,, as an operator T, by inserting (13) into (14), and to

evaluate the expectation value :

(14)

E=<Oiannomloin> ‘ | | . (15)
<0in‘0m> ' .

of the “out” energy density in the “in” vacuum [0;,> defined by (10). The way to do -
this is to expand the leg operators gy, etc., in terms of the tran operators g, €tc.,
using Bogolubov transformations. However, in order to do this we must be ablq to
compare the two expansions (7) and (13), and to do so we must havez.z propagation .
rule which tells us how to propagate trunk modes into the legs and vice versa.

’iiﬁthe ”tyrunkksat_iksfying the penod:c bou'n‘ﬂary? She
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dx+21,)=¢(x,1) (t<O0). (16)

Just prior to the topology change, at t = 0", we can represent ¢ in terms of its Cauchy

RO

A propagation rule is a mapping

()-()e () &

T Ty Tx

" from Cauchy data in the trunk (¢ = 0~) to Cauchy data in the legs (¢ = 0*). After the

singularity, the Cauchy data (at t = 0*) will again propagate according to (2).
Away from the singularity there is no problem—causality requires that until one

crosses the future light cone emanating from the singularity the propagation is uniquely

determined by (2). Thus, at first it seems natural to assume a propagation rule of the
form

)

t=0

PR =[1-0)]p(x + 1) + 6x)p(x) (0<x<2),

Pux)=[1-x)Je(x) + Ox)p(x — 1) (—1<x<0), (19)
ig(x) =1 - 6(x)In(x + 1) + Ox)n(x) O<x<2),
y(x)=[1-— 6(x)In(x) + xx—2) (-i<x< 0), (20

with @g, fig, ¢, %, periodic with period 4 and where 6(x) denotes the step function.**

‘ Bu't note that, except in the special case &(x + 1) = ¢(x), the data (19) is discontinuous.
This suggests that one must allow for the possibility of delta functions in 7z and 7.
013 the other hand, there is no way to determine the coefficient of these delta functions
uniquely—one has freedom to add “data” at the singularity. We therefore assume a
propagatiqn rule of the form (19) but replace (20) by

nR(x)=7g(x) + ad(x) (0<x<4i), .
Tx) = %) + () (~1<x<0), 2y
with g, 7, periodic with period 4 and a and b arbitrary (¢-dependent) constants.
- Analogously, in the other direction, starting from ¢, ¢, which are smooth in the
legs, we assume a propagation rule of the form** , ‘
¢ o el)=[1- 0(x) 1o, (x) + Hx)pr(x) + 6(x — H[@y(x —21) — ox(x)]
0T ) e+ O D — 2 o]
el -‘—kyc5(x‘)~7d5(kx\~k2)‘\ o ‘
o (=i<x<ny

@

**To avoid having to deal with step functions and delta functions defined at the boundary of the given

milar comment applies to (22) with the range of x replaced by xe[ - /2. 3172].

range of x, one could replace the range of x throughout {19),(20), (21) with xe[ — 4/2, 4/2] using periodicity-
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with ¢, n periodic with period 24 and where ¢,d are arbitrary (¢, ¢ dependent)
constants.

What restrictions can we iinpose on the constants a,b,c,d? Although the inner
product (3) is independent of ¢t both in the trunk and in the legs, it is not necessarily
conserved between the trunk and the legs since ¢ does not need to solve the wave
equation at the singularity. It does, however, seem physically reasonable to impose the
condition that (3) be conserved. We now show that this reduces the countably infinite
number of degrees of freedom inherent in the choice of a,b,c,d for a given basis to
a single degree of freedom!

Consider two solutions ¢, ¢ which are smooth in the trunk and propagate them to
the legs using (19) and (21). Then direct calculation at ¢ =0* yields

(@ Bhegs = (@ Phruni + iLA0HO) — a*Gx0)] + i[bp2(0) — b*6,0)].  (23)
But from (19) we have
@ x(0) = ¢.(0) = :[9(0) + ¢(H)] 24

since smoothness of the trunk solution implies that ¢(—1)= ¢(1). We therefore
conclude that

a+b=0. ~ 5)

A similar calculation assuming that ¢, ¢z, by, Px are smooth in the legs and are
propagated to the trunk using (22) yields

c+d=0. (26)

Finally, assuming that ¢ is smooth in the trunk and &L, b are jn}ooth in the legs
(note that now (24) does not hold), and equating the values of (¢, ¢) in the trunk and
in the legs yields

| 2p*0)+ do*()) = a* §x(0) + b*P1(0). @
Using (25), (26) we get
S O—9* () _ 30~ 50 / oy
a* é ’

which finally yields (since (28) must hold for all ¢, Gz, $1)

a[¢]1= —b[¢]=AL¢(0) — o(4)]
clor, dxl= —d[dyr, ¢zl = A*[0x(0) - o (01,

nt of delta function added in each case
he discontinuity in the (propogated) ¢

9

where A is an arbitrary constant, i.e. the amou
to the (propagated) = data is proportional to t

data. If we now further require that ¢, ¢* should propagate to the complex conjugates

- of each other then A must be real. * ' L T

- One additional requirement on a propa
a propagated solution is propagated bac

 solution. Although the mappings (19), (21), (22) b

k again, it should agree with the original

gatidn rule is thaf'it should be invertible—if G

ave only been defined for 5“‘99*1! S
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functions, they can be extended to discontinuous functions in such a way that this
condition is satisfied. '
4. Energy density

~ We now turn to.thc evaluation of the energy density (15). Consider first (cf. (14)) the
term : : ' : .

_<Ol4 410,
B TT0,0.)

evaluated in the right leg. Using (13) and the fact that each leg mode has support in
one leg only, we obtain** v

(30)

P

out —_ _1 _ At R
% l":-."‘ xzb ( ll,) [ariig — ajpufe] + NI N (31)
From (13) we obtain
ar = Uz, 9),
aIR =- (uab ¢), . (32)

Pr=—i(ag, ¢).

We use (_7) and (32)_ to rewrite the expansion (31) in terms of trunk opérators (whose
exp'ectatxon'valu_es in the trunk vacuum |0,, > are known) and Bogolubov coefficients
which arg given in the Appendix. A messy but straightforward calculation then yields

PO

, e |
5T n%g m.mZ‘— w Zf;;_Tne"P [—@ni/2)(m + m')u]

’ 4m 4m’ k1r
x| {A+1+—— Y a+1- EIFICE L
| [( , ’n-—Zm)( + n+2m’>+(A D ]+2"§om

(33)

It turns out that this expression is valid in both the left and right legs. A similar
; cglculanon for E,, defined as in (30) with u replaced by v, yields

E‘f 5 ,Z:o ,.'..Z_ o AmiTy SXP L= Cri/2)m + m)]

X (A+l)2+(A—I+ : —1- - -
[ SN nm 4 1 n=2m +2‘mz>:om‘ :

e

z "‘Ccm,xpah; fgiotnb;e in‘Appendix A.
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The expressions (33) and (34) are of course divergent; we have not yet implemented
any renormalization procedure. Normal ordering the expression (30) with respect to
leg operators will, among other things, remove the last sum in (33), (34) which has
support everywhere and which is proportional to 6%(0) (i.e. it is of the same order as
is ordinarily removed by normal ordering in Minkowski spacc). However, the leading
order divergence in (33) goes like : ‘

o e
A2+ Y 1 Y, exp(—2mimu/d) Y. exp(—2mimufd). (39
n>0Nm==w m=—ow
nodd
The last two sums are each proportional to &u) and the first sum contributes a
logarithmically divergent factor as well. This term is not altered by normal ordering.
(34) has exactly the same divergence, with u replaced by v. Since (35) has support
only along u =0, the divergences in E, and E, cannot cancel each other. The only
way to remove them is therefore to choose the coefficient in front to be zero. But this
is manifestly impossible as this coefficient is strictly positive. It is worth mentioning
that this would still be true if the calculation were repeated with A ailowed to be
complex.

5. Discussion

The general argument given by Anderson and DeWitt (1986) for the presence of 82
terms (i.e. 6%(u) and 6%(v)) in the energy density, leading to infinite total energy, does
not take into account the possibility of the coefficients of these terms being zero.
Furthermore, as the Minkowski divergence is proportional to 5%(0) one could hope
that renormalization might remove the §2 divergences anyway. Also we have showp
that the shadow rule used by Anderson and DeWitt (1986) is unphysical because 1t
does not lead to well-defined inner products, and that there exists onlya one-parameter
family of physically acceptable propagation rules. o E

However, calculating the energy density explicitly using these propagation rules
shows that the leading divergence is worse then & due to the presence of an additional
logarithmically divergent factor. This term cannot therefore be ‘n':mo.ved by normal
ordering. Furthermore, the coefficient of this term is strictly positive, mdependez?t of
the choice of parameter. Our calculations therefore tend to support the cpnclusxons
of Anderson and DeWitt (1986) that a change in the topology of spacetime would
require an infinite amount of energy. X

It is also of interest to consider the time-reversed problem, i.e. the ex;?ectz_itlon value
of the “in” energy density in the “out” vacuum. Although the calculation is formally

identical, the result turns out to involve terms like

OulGilowd> g
<09ul[00ut> ’ : L ‘ ' e "

which are divergent. That these terms a

- This raises the intriguing possibility that the divergences

re abséﬂt in the calculation considered above -
- can be traced directly to the fact that thé trunk modes %o, B, propagate smoothly to

. the legs, whereas the leg modes ax. Bz, %L, B, do not propagate smoothly to the tr ko

(36) might cancel the
ole physics: one cylinder
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could not split into two, but two could join together to form one. While we are
pursuing this possibility, it seems so far that the Q2 divergence also enters the energy
density in a positive-definite way.

Bosonic string interactions can be thought of as massless scalar fields X* propagating
on the trousers topology. Why, then, doesn’t the conclusion of Anderson and DeWitt
(1986) apply to string theory and prevent strings from interacting? The answer is that
in string theory the scalar fields represent the physical coordinates embedding the
string in a higher dimensional spacetime. This embedding is continuous. Physical
strings only interact when they can, i.e. when they touch in the embedding space; our
“strings” are forced to interact regardless of whether or not they “touch”. In fact, if
the conclusion of Anderson and DeWitt (1986) were shown to be false, it would
probably imply the existence of nonlocal string interactions! :

There is however one more possibility to be considered before accepting th
conclusions of Anderson and DeWitt (1986). Throughout the calculation it has been
assumed that the expansions (7) and (13) are complete (or at least equivalent) so that
the Bogolubov transformations make sense. Furthermore, one can verify by direct
calculation that the Bogolubov coefficients satisfy the appropriate relations, e.g. the
analogue for a non-orthonormal basis of the usual relations (Birrell & Davies, 1982)

ar' — B =1, BaT—apT =0,
dla—BTr =1 alf— fTa* =0, 7))

Contrary to popular belief, the fact that the Bogolubov coefficients satisfy (37) does not
imply that the two sets of modes are complete (Dray and Manogue 1988). One must
then ask if there are additional modes which have been overlooked.

Surprisingly, the answer appears to be yes. Consider the functions Yo, 7 defined by
(A3), (A6), (A15) and assumed to be zero elsewhere. These functions are illustrated in
figure 3. Since they are a linear combination of purely right- and left-moving functions,
they satisfy the wave equation everywhere (except at the singularity). But y, is

J‘orthogonal to all trunk modes, while 7 is orthogonal to all leg modes! It thus appears
that one must include y, in the expansion (7), and 7 in (13), and that they constitute
extra degrees of freedom which must be quantized. The point is that unlike standard
problcms our modes are fundamentally discontinuous objects, and so it is not clear

v 1B 0w mode 70,7 defined by (A3); (A6), (A15). 7, is orthogonal to
trunk modes, while 7 is orthogonal to all leg modes,




= Vk(") R-. for k>0. We will also use the notation U-.== Ug‘, V‘x
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which space of functions the field ¢ belongs to. We are actively pursuing these
questions.
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Appendix

We first give the results of applying the propagation rules discussed in § 3 to the trunk
and leg modes discussed in §2, thus obtaining two sets of mode functions which are
defined on all of spacetime. We then tabulate the inner products between the two
sets of mode functions. Assuming that the two sets are equivalent these inner products
are just the Bogolubov transformations. (This assumption is discussed in §5).
Applying the propagation rule given by (19), (21), (29) to the trunk modes U, V;
for k = (nn/1), n even and to a,, B, shows that these modes are unchanged.** However,
applied to U,, V, for k =(nn/2), n odd yields in the right leg (¢ > 0, x€[0, ])

1
U= (4[k'})§exp( lku)ﬁZ_( 1y [6(u — nA + 4) — 0u — nd)]

(A+1) (Al)
@k |

Vo= G P, Z( 1 (00 — 1) — Bo — .~ )]

(A—-1) (A2)
@k ;

where k

Yo=Y, [0u—ni)+ 6v—ni—A] *)
n=0 ~

and in the left leg (¢t >0, xe[—4,0])

Uy = (4lk”)*exp( zku)FZ-( 1)"[0(u nx) G(u n}—-f)}

A+l ST e e R gy

' "For case of mlculanon we bave mtroduced thc nght-

V” Analogous dcﬁmmns hold i

and lcft—movmg tnmk modts Ux(u)z’lnﬂ L
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=3 k| @ik Pk Z (=17 [0(v — nd + 2) — 6o — n)]
(A —1)
@k (A5)
where here
o= = 3, [ou—ni= 2+ o= ni)] | (A6)

The- first (y, independent) part of each of (A1), (A2), (A4), (AS) corresponds to the
shadow rule of Anderson and DeWitt and takes right (left) moving solutions in the
trunk to right (left) moving solutions in the legs. Note that no value of A4 yields the
shadow rule for both right and left moving modes. This means that the shadow rule
does not have the form required by (29) and therefore does not conserve inner products

and is unphysical. Physically propagated modes are no longer purely right (left)
moving.

Applying the propagation rule given by (22), (29) to the leg modes yields in the
trunk (t <0, xe[—4,4])

1 o '
U,R=Wexp(—-ilu)u;1[O(—uf2nl)—9(—uf.2nl—l)]
) |
e ‘ | (A7
1 o |
- ;U"' =Wexp(——ilu)nzz_l[0(——u——2nl+l)-—0(——u—2nl)]

4-1

“W% (A8)

IR *m‘*"‘"_*"’"&i, [K—v—2ni+2)—6(—v —2nl)]»

(A+1)

:  1’,,. (2um*exp( 1Iu) Z [H( —v— 2n2) H—v—2ni—A)]

(A+1) L e | ‘

[ 9( u>2n2) 9(-—:: )
: +6( —v=2nl+2)—f(—p— 2n;)

] AN,,),,‘ L



The trousers problem revisited : 291

-3 i- 1 [ +z((::: ;:;)tlg(:i(: ;,,; inj))] '—%ANLY: (A12)
Fr= 21:;,,,1 2NR,IZ( [ EZIZ;;Z((I,‘,‘IZQ,’] (A13)
hu= 21:!;/1 ZNRA Z( [ EZ::?)Z((:Z:%] (A14)
where |
yzZo[+$:::§:f)):3((:f_f§:f:f)’]—1 | (A15)

Again the first (y independent) part of (A7)-(A14) corresponds to the shadow rule of
Anderson and DeWitt. No choice of A4 yields the shadow rule for all leg modes.

Now we give the inner products between the trunk and leg modes. By construction,
these do not depend on where they are evaluated. First consider the case k =nn/A
with n even. We have

1
(Uk: Uuz) ="‘2"5u = (Vk’ Vm)

V2 | (k>0) (A16)
(U_,,, U—m) = “7—5511 = (V—b V—m)’

N .
: (“o,ﬂx)—‘ﬁ;‘
(ﬂofak)—-g%fl (A17) -

with all others zero; the same results hold for the left leg modes wnh R replaccd by
L. Now consider the case k nn/A with nodd. We have

i k+1
e U= (2|k1u’)*(“ =)

i k+1 o (A18)
Ve "’)‘(zlkluz)*(A ) | i

(Ub Vuz) A+ 1)

(Zlkl [Az)*(

(V.,Um)
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_ —iNg
—iNg |
(P2 = s~ 1

1

Unbr= W (A19)

~1
ol = Nty

where k, I take on both positive and negative values.** For the corresponding results
in the left leg, replace R by L and multiply by —1.
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L ‘_';:k’FQr m of Calgulaﬁop ‘we héve introd the right- aﬂdkﬁ-moviﬁg Gk modes U=u
tﬁi?:;‘”‘ for k>0. We will also use the notation U_, = U}, V_, = V}. Analogous definitions hold in -
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