

TOWARD OPTIMAL USE OF BANGLADESH HILSA RESOURCE: BIO-ECONOMIC MODELLING

Mohammod Kamruzzaman Hossain Department of Fisheries Dhaka, Bangladesh

Professor Ragnar Arnason Dept. of Economics, University of Iceland

July 13, IIFET-2016 Scotland Conference

Presentation Outline

- Introduction
- Background
- •Method: Theory of Modelling
- Model: Static and Dynamic Bioeconomic model
- Summary out put from the model
 Recommendations

INTRODUCTION

- As a single species Hilsa (*Tenualosa ilisha*) production is about
 11% of total fish
- 60% of world's hilsa production
 In 2012-
- Catch 347 thousand mt :
- Worth 1.384 Billion
- Export 6 Thousand MT
- Earning about 36 Million USD
- Livelihoods:
- About 464 thousand fishermen (184 thousand families) are involved and 2% (3 million people) of total population

BACKGROUND

Hilsa (Tenualosa ilisha) fishery is primarily exploited through open access-

Recruitment over-fishing (indiscriminate catching of *jatka*)

- Growth over-fishing (indiscriminate killing of gravid hilsa)
- The increasing fishing mortality due to excessive fishing effort
 Up-to-date studies are not available
 A very few studies of the economics of the fishery.

Current management

- To maintain the hilsa stock mainly biological management controls: area and time closure, gear restriction
- These measures have not been entirely successful in preventing decline in the stock
- More importantly, these measures are not capable to maintain the flow of net economic benefits from utilising the stock
- Or socially and economically optimal level of fishing effort

OBJECTIVES:

The overall objective of the study was to develop static and dynamic bio-economic models for the hilsa fishery

More specifically :

- 1) Assessment of the current hilsa fishery
- 2) A bio-economic model was developed to make sensible policy for hilsa resource in Bangladesh
- 3) A theoretical solution for effort controls trajectories in stock rebuilding of hilsa fish.
- 4) Progressive policy recommendations were developed for the implementation of the constructed model.

MODELLING:

Theory (Modified Schafer Model) (Net Biomass Growth function) $\dot{x} = \alpha \cdot x - \beta \cdot x^2 - y_t$ (Harvest function) $y = q \cdot e. x^{\delta}$ (Profit function) $\pi = p \cdot y - C(e)$

Biological part of the model (Biomass growth, OSY, MSY,

Parameters $\alpha, \beta, \delta, q \ etc. \ estimations$)

Economic Part of model (Cost, Revenue, profit, MEY estimations)

Compare with present situation and Optimal policy Recommendations Sustainable Hilsa fishery model Optimal equilibrium effort Dynamic Model: Optimal and moderate path

Link between Biological and Economic Model

DATA SOURCES:

- 1) Data types: Aggregate catch, effort, Cost and Price data.
- 2) Primary Data (Interviewing) eg: cost and price data
- 3) Aggregate Catch and effort data: from DoF-FRSS
- 4) Biological, Socio economic : published article, report, books

DEVELOPED SUSTAINABLE YIELD MODEL

Sustainable hilsa fishery model

MSY, MEY, BE and current (2012) harvest, cost and profit for a Sustainable Bangladesh hilsa fishery Model

	Biomass (1000 mt.)	Effort (Std.Mech .Boat- SMB)	Total Harvest (1000 mt)	Revenue (million US\$)	Cost (million US\$)	Profit (million US\$)
2012	510	34,101	347	1386	928	458
MEY	670	22,146	257	1032	601	430
MSY	520	27,111	278	1113	736	377
BE	228	27,736	188	753	753	0

Dynamics Adjustment Path for the hilsa fishery

Optimization of effort-Discount rate-20 year plan 1) Optimal Dynamic Adjustment path (Bang-bang) Most Rapid Approach 2) Moderate Adjustment path ➢Socio economically more acceptable 3) Competitive Dynamics: For unmanaged fishery

Dynamics of The Fishery: Fishing effort

Optimal dynamics of the fishery

Moderate path of adjustment

Competitive Dynamics

Comparative summary of the adopted optimal dynamic (bang-bang) and moderate adjustment paths on present value, effort, harvest and biomass.

Path.	Present value of Effort (SMB) profit (PV) (million US\$)			Harvest (1000mt)		Biomass (1000 mt)		Total PV (Million US\$)	
	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	
Optimal Path	366	0	23,000	0	262	0	647	386	7,545
Moderate path	254	152	3,150	22,783	278	233	647	363	7,030

Recommendations

- Static sustainable model indicates instability of the fishery
- Most rapid approach is 'Bang-bang'
- Considering socio economic reality It is recommended the most reasonable path is Moderate path of adjustment
- □Further study is necessary on the basis of more reliable data
- Bangladesh could also look to solicit funds from GEF, World Bank to implement it
- Comprehensive plan for the best use of decommissioned vessels and fishermen rehabilitation

Thank you all

UNITED NATIONS UNIVERSITY ining Programme - Special Thanks to-UFET 2016

20/07/2016