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The objective of this thesis is to develop and

computationally test a new algorithm for the class of

network models with generalized upper bound (GUB) side

constraints. Various algorithms have been developed to

solve the network with arbitrary side constraints problem;

however, no algorithm that exploits the special structure

of the GUB side constraints previously existed. The

proposed algorithm solves the network with GUB side

constraints problem using two sequences of problems. One

sequence yields a lower bound on the optimal value for the

problem by using a Lagrangean relaxation based on relaxing

copies of some subset of the original variables. This is

achieved by first solving a pure network subproblem and

then solving a set of single constraint bounded variable



linear programs. Because only the cost coefficients

change from one pure network subproblem to another, the

optimal solution for one subproblem is at least feasible,

if not optimal, for the next pure network subproblem. The

second sequence yields an upper bound on the optimal value

by using a decomposition of the problem based on changes

in the capacity vector. Solving for the decomposed

problem corresponds to solving for pure network

subproblems that have undergone changes in lower and/or

upper bounds. Recently developed reoptimization

techniques are incorporated in the algorithm to find an

initial (artificial) feasible solution to the pure network

subproblem.

A program is developed for solving the network with

GUB side constraints problem by using the relaxation and

decomposition techniques. The algorithm has been tested

on problems with up to 200 nodes, 2000 arcs and 100 GUB

constraints. Computational experience indicates that the

upper bound procedure seems to perform well; however, the

lower bound procedure has a fairly slow convergence rate.

It also indicates that the lower bound step size, the

initial lower bound value, and the lower and upper bound

iteration strategies have a significant effect on the

convergence rate of the lower bound algorithm.
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Network Models with Generalized Upper Bound

Side Constraints

CHAPTER 1

INTRODUCTION

Network flow models arise in a wide variety of

applications such as productiondistribution systems,

communications systems, and pipe network systems. All the

activities, other than slacks and surpluses, can be

presented as arcs connecting pairs of nodes in a network.

The values of the variables associated with these

activities can be interpreted as flows in the network and

the constraints as flow balance equations. The arcs may

represent pipes in a water distribution network, telephone

lines in a communication network, etc.; and the nodes may

be interpreted as locations or terminals connected by the

arcs.

Unfortunately, many real world models do not possess

pure network structure. Often additional linear

constraints are essential to model crucial policy

restrictions. These additional constraints are generally

referred to as side constraints. There are numerous

applications of the network with side constraints model

arising in practical settings. Applications utilizing
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several types of side constraints models are briefly

described below.

1. Glover, Glover, Lorenzo and McMillan (1982)

developed a model for Frontier Airlines whose

goal was setting prices more adaptively and

changing them more rapidly, i.e., to determine the

number of passengers at each fare class on each

flight segment that will optimize revenue for any

given set of prices, flight segment capacities and

passenger carrying demand. The system is designed

to accommodate a network of 600 flights and 30000

passenger itineraries (P1) with up to 5 fare

classes per PI. The number of side constraints

ranges from 1800 to 2400.

2. Klingman, Mote and Phillips (1988) developed an

optimizationbased logistics model for W. R.

Grace. W. R. Grace company is one of the nation's

largest suppliers of phosphatebased chemical

products such as fertilizer. The mathematical

model contains 12 monthly time periods and is used

primarily for annual planning purposes. The

system is designed to provide management with

important variable cost and material balance

information so as to minimize the sum over all

periods of shipping costs, production costs, and
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inventory costs. It typically has 3408 nodes,

21504 arcs and 288 side constraints.

3. Ali, Helgason and Klingman (1987) developed an

integrated man-machine decision support system

for the U.S. Air Force whose goal is to select the

least cost set of cargo-routes which satisfy the

point-to-point demands for cargo movement among

the 60 Air Force bases. The system is designed to

aid the Air Force Logistics Command in making

annual design changes in route structure for a

large routing and distribution system. It is also

designed to accomodate a network of 60 bases with

up to 313 flights. The number of side constraints

ranges from 234 to 310.

In a network without additional constraints there are

of course still the conservation equations; in other words

total flow into a node must equal the sum of total flow

out of that node and the node requirement. The

conservation equations are handled graphically by network

solution procedures. Bounds specified for individual arcs

or variables are handled implicitly in a manner analogous

to the bounded-variable simplex method for linear

programs.
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1.1 Formal Definition

The general problem to be considered may be defined

as a mathematical program with the following form:

Minimize cx + dy

Subject to Ax = r

Ex + Py = b

1(x) < x < u(x)

l(y) < y < u(y)

In this formulation, A is an (mXn) matrix, E is a (pXn)

matrix and P is a (pXq) matrix. The r is a (mX1) vector;

x, i(x) and u(x) are (nXl) vectors; b is a (pXl) vector;

y, 1(y) and u(y) are (qXl) vectors; c and d are

respectively (1Xn) and (1Xq) vectors.

A major portion of the LP literature has been devoted

to the following problems:

(a) Standard LP Problems (m=n=0 and P is an arbitrary

matrix), that is,

Minimize dy

Subject to Py = b

t(y) < y < u(y)

Problems having inequality constraints may be placed

in this form via the addition of slack or surplus

variables. The rules for accomplishing this
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transformation can be found in any text on linear

programming. ( Lasdon (1970) and Murty (1976) ]

(b) LP/GUB Problems (q=0, A is an arbitrary matrix and E

contains at most one nonzero entry per column), that

is,

Minimize cx

Subject to Ax = r

Ex = b

1(x) < x < u(x)

This problem arises from an LP in standard form in

which the constraints fall into two sets. The first

set of m constraints (i.e. Ax = r) is of an arbitrary

nature. The last set of p constraints (i.e. Ex =

is termed the generalized upper bound (GUB)

constraints, i.e., they satisfy the property that

every variable in the model appears in at most one

constraint in this set of constraints. [ Murty (1983,

pp. 359-368) ]

(c) Pure Network Problems (p=q=0 and A is a node-arc

incidence matrix), that is,

Minimize cx

Subject to Ax = r

1(x) < x < u(x)

The matrix A is defined to be a node-arc incidence

matrix, that is, a matrix where each column has
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exactly two nonzero entries, one being a +1 and the

other a -1. The rows of the nodearc incidence matrix

correspond to the nodes of the network and the columns

to the arcs. The convention used here is that if arc

k is directed from node i to node j then row i will

contain a -1 and row j a +1 in column k of A. In such

cases nodes i and j are referred to respectively as

the fromnode and the tonode for arc k. For example,

Figure 1.1 presents a simple network and its

associated nodearc incidence matrix. The vector r

defines the requirements at the various nodes. For

our convention, supply nodes have a negative value in

r, demand nodes a positive value in r and

transshipment nodes a zero r value. In addition, r is

such that the sum of its components is zero, that is,

total supply equals total demand. The vector x of

decision variables corresponds to the flows across the

arcs. The I and u vectors represent the lower and

upper bounds respectively that are placed on x with

-m < d < u < w. Many special cases of pure network

problems have been studied. Some of these and their

specialization are:

1. Uncapacitated Transshipment Problem. This problem

is a specialization of the pure network in which

the arcs have infinite capacity (u = m for all
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1

2
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4
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-1 -1
1 -1 1 -1

1 1 -1 -1
1 1

7

Figure 1.1 : A Network and its Associated NodeArc
Incidence Matrix
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j).

2. Capacitated Transportation Problem. This is a

special case of the pure network problem in which

the nodes can be partitioned into two sets, one

consisting solely of supply points and the other

only of demand points, such that all arcs

originate from supply nodes and terminate in

demand nodes. Figure 1.2 illustrates a typical

structure for a capacitated transportation

problem.

3. Transportation Problem. This problem is a special

case of the capacitated transportation problem in

which the arcs have infinite capacity.

4. Assignment Problem. This is a special case of the

transportation problem in which the number of

supply nodes is equal to the number of demand

nodes and all demands and supplies are unity

(i.e., Iril = 1 for all i).

5. Shortest Path Problem. Given a network whose arc

cost is given the physical interpretation of arc

length, the shortest path problem is to find that

sequence of arcs connecting node s to node t such

that the sum of the arc costs on the path is

minimized, where s and t may be any given node

pair. This problem can be viewed as a special
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Supply Nodes

{ -14}

(-10)

Demand Nodes

{node requirement'

Figure 1.2 : Transportation Problem
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case of the uncapacitated transshipment problem in

which rs = -1, rt = 1, and all other requirements

are zero. Suppose we wish to find the shortest

path from node 1 to node 4 in the network of

Figure 1.1. The network corresponding to this

problem is given in Figure 1.3. The optimal flow

pattern in Figure 1.3 implies that the shortest

path consists of arcs (1,2), (2,3) and (3,4).

6. Maximal Flow Problem. For this problem arc

capacities ( ij < xj < uj for all j) are the only

relevant parameters. For any given node pair s

and t, the problem is to find the maximal

continuous flow from node s to node t. Suppose we

wish to determine the maximal continuous flow from

node 1 to node 4 in the network of Figure 1.1.

The revised network is illustrated in Figure 1.4.

Note that the value of the maximum flow is equal

to 5.

(d) Multicommodity Network Problem ( q=0, A is a

block-diagonal matrix with each block a node-arc

incidence matrix from one commodity and E is a special

structured matrix), i.e.,
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[cost,flow]
(node requirement}

101

101

111

Figure 1.3 : Shortest Path Problem
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[flow,upper bound,lower bound]

Figure 1.4 : Maximal Flow Problem
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Minimize cx

Subject to Ax = r

Ex = b

1(x) < x < u(x)

Problems of this type arise when a network of nodes

and arcs is shared by several different items

(commodities). When k commodities are present, E is

of the special structure [ D
1

1 D
2

1 ...I D
k

] where D
i

for i=1,...,k are diagonal matrices. In many cases

D1 = I for i=1,...,k. [ Kennington and Helgason

(1980, pp. 124-165) ]

(e) Generalized Network Problems (p=q=0 and A contains at

most two nonzero entries per column), i.e.,

Minimize cx

Subject to Ax = r

1(x) < x < u(x)

This is a special case of LP in which each column of

the constraint matrix has at most two nonzero entries.

In many practical applications the two nonzero entries

in each column are of opposite sign. One may

associate a graph with any generalized network

problem. This graph consists of undirected arcs, in

contrast to network graphs (see Figure 1.1).

[ Kennington and Helgason (1980, pp. 91-123) ]
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(f) Network with Side Constraints Problem (A is a nodearc

incidence matrix, and E and P are arbitrary matrices),

i.e.

Minimize cx + dy

Subject to Ax r

Ex + Py = b

1(x) < x < u(x)

1(y) < y < u(Y)

This problem arises when in addition to the

constraints on the flow in a network other linear

constraints are present. [ Kennington and Helgason

(1980, pp. 166-182) ]

(g) Network with GUB Constraints Problem (q=0, A is a

nodearc incidence matrix and E contains at most one

nonzero entry per column, i.e.

Minimize cx + dy

Subject to Ax = r

Ex < b

1(x) < x < u(x)

(Note that by adding the vector of slacks y and the

matrix P=I, this is of the form of the general

category of problems considered here.) This is a

special case of the network with side constraints

problem in which the side constraints are generalized

upper bounding (GUB) constraints. This is the problem
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of interest and an algorithm for solving this problem

will be presented in Chapter 3.

1.2 Outline of the Remaining Chapters

The organization of the dissertation will be to first

present a summary of the major results for relevant topics

in optimization theory; this will be done in Chapter 2

along with a review of the literature. The basic

methodology used to solve the network model with

generalized upper bound constraints is explained in detail

in Chapter 3. Chapter 4 presents an overview of software

considerations. Chapter 5 presents our computational

results along with a discussion of relevant findings.

Finally, Chapter 6 provides a summary of the findings and

some suggestions for further study.
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CHAPTER 2

FOUNDATIONS

2.1 Backaround Results

The results in this section will draw from the work

of Ali, Allen, Barr and Kennington (1986), Fisher (1981),

Held, Wolfe and Crowder (1974), Kennington and Helgason

(1980), Shapiro (1979), Wagner (1975) and Bolouri and

Arthur (1989). The purpose of this section is to present

a summary of the relevant results for (i) solving pure

network flow problems via the simplex method on a graph,

(ii) projecting an infeasible point onto a feasible

region, (iii) the subgradient method for nondifferentiable

optimization, (iv) the Lagrangean dual problem and (v) the

single constraint, bounded variable linear programming

(SCBVLP) problem. All of these ideas will be utilized in

describing the solution of network models with generalized

upper bound side constraints.

2.1.1 Pure Network Problems

The minimum cost network flow or pure network problem

is a special structured linear program of the form:



(NP) minimize cx

subject to
Ax =

T < x <

17

where A is a nodearc incidence matrix with m nodes and n

arcs. Arc (i,j) is directed from node i to node j, and

its flow, unit cost, lower bound, and upper bound are

given, respectively, as i.., c,., T
1

and 71. . The
11 1

constant F represents the requirement at node k. The
k

objective is to determine a set of flows which meet the

node requirements and bound restrictions at a minimum

total cost.

In practice, (NP) is transformed to yield a slightly

simplified form with zero lower bounds. By defining

= x + T, the problem becomes:

minimize cx +

subject to
Ax = r

0 < x < u

where a = cT, r = r AT, and u = 5.- T. It is this form

of the problem that is typically implemented in computer

codes, with the lower bounds maintained separately for

reconstruction of problem (NP) upon solution of the
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transformed problem.

Since the system Ax = r has rank m-1 (see Kennington

and Helgason (1980, p. 56)), an additional arc a, called

the root arc, is added to problem (NP) to get :

(NP) minimize cx (1)

subject to
Ax + ae

t = r (2)

0 < x < u (3)

0 < a < 0 (4)

where e
t is a vector with 1 in the tth position and zeros

elsewhere, 1 < e < m. e is usually referred to as the

root node. Then the constraint matrix [ A 1 et ] has full

row rank. It has been shown (Kennington and Helgason

(1980, p. 57)) that the only bases for [ A 1 et ] are et

along with a set of linear independent columns from A.

2.1.1.1 Operations with the Network Basis

This section will introduce some notions from graph

theory that will be used in the characterization of a

basis for the problem (1VP). A network is a (directed)

graph T = N,A) where N is a finite set of nodes and A is

a set of directed arcs joining pairs of nodes of N. A

path in 9" is an alternating sequence of distinct nodes and

arcs such that each arc is incident to the two nodes
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immediately preceding it and following it. A path links

its first element to its last element. A cycle in T is a

path in r whose two endpoints are not distinct. A cycle

links its first element to itself. If every pair of nodes

in Y is joined by a path then r is said to be connected.

A graph which has no cycles is said to be acyclic. A

subgraph of a graph r is a graph composed of a subset of

the nodes and arcs of Y. A spanning subgraph of 7 is one

which contains all the nodes in Y.

An important type of a graph is a tree. A tree is a

connected acyclic graph. The following proposition gives

other characterizations of a tree and will be stated

without proof. ( A proof can be found in Kennington and

Helgason (1980, pp. 203-206).)

Proposition: The following statements are equivalent:

1. T is a tree.

2. Every distinct pair of points of 7 are joined by a

unique path.

3. r is connected and the number of nodes is one more

than the number of arcs.

4. T is acyclic and the number of nodes is one more

than the number of arcs.

A tree that is a spanning subgraph of a graph T is called
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a spanning tree for Y.

Recall that a network basis has one additional column

e
t which is represented on a graph by a link leaving the

root node t and having no to-node. Furthermore, the

corresponding graph is called a rooted graph, and a

spanning subgraph of a rooted graph that is a tree is

termed a rooted spanning tree for the rooted graph. It is

well known that the set of all arcs that form a basis for

a network, together with the set of all nodes in the

network, form a rooted spanning tree ( Kennington and

Helgason (1980, pp. 58-59)). Figure 2.1(a) shows a

network and Figure 2.1(b) a corresponding rooted spanning

tree (basis tree). The representation of the network

bases as rooted trees is one of the key reasons network

optimization codes are so efficient. The remainder of

this section will be devoted to a few illustrations that

serve to point out how the computational savings occur.

Consider the rooted tree illustrated in Figure 2.1(b)

with the corresponding basis (for clarification, node

numbers are supplied next to the basis matrix):
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a.) Example Network

b.) Rooted Spanning Tree Corresponding
to a Basis for the Network

Figure 2.1 : Example Network and its Basis Tree
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(5)

Note that B has been triangularized by row and column

interchanges. (An algorithm for triangularizing a network

basis can be found in Kennington and Helgason (1980, P.

60) ).

A representation of B is required for two types of

calculations; premultiplication of B by a row vector and

postmultiplication of B by a column vector. These

calculations can be represented symbolically as

rB = c (6)

which is solved for r, and

By = d (7)

which is solved for y, where r, c, y and d are

appropriately dimensioned row and column vectors. The

special structure of the matrix B greatly reduces the

computational effort.

Consider solving (6) for r with the matrix B from (5)

when

c = [5,0,2,0,1,1,0] (8)

This gives the following set of equations:



7
7 5

5

= 5

- 7r = 0
2

- if
6 4

- 7 4- 7 = 1
3 4

- 7 = 1
4

7 - 7r = 1
2

- 7 = 0
1
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(9)

To solve for 7, the value of the last component is

obtained first and the values of the remaining components

are iteratively obtained by backward substitution. The

solution of (9) is

= (6,1,3,1,1,1,0] (10)

The above procedure may be used for solving any triangular

system of equations but the calculation could be

simplified by using a basis tree representation of B.

Recall that for the revised simplex method any

equation for the reduced costs can be expressed as :

cN cB B
-1 AN

where B is a basis, c
B is the cost associated with the

basic columns, c
N is the cost associated with the nonbasic

columns AN and B
-1 is the basis inverse. Again, one may

make use of the triangularity of B and solve for
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7 = c
B
B
-1

, called the dual solution, or node potentials.

The system of equations to be solved is

w = cBB
-1

or rB = cB

(12)

(13)

where a. is the row vector representing the duals or node

potentials. Without loss of generality, assume that the

rth column of B, B , corresponds to the arc (i,j). Then
r

B has a value of -1 in the row corresponding to node i
r

and a value of 1 in the row corresponding to node j, and

zeros elsewhere. Then the rth equation of (13) is

rB = c..
r 1J

or equivalently,

- 7 + 7 = C (14)
1 1j

where c is the cost associated with the arc (i,j). In
11

general, for any basis B, and basis tree 7B with root node

e, (13) can be reduced to

7 = 0 (15)

r + 7 = c for (i,j) e TB
1 j 1

where the r values are associated with the nodes of the

basis tree and the c
ij

values are associated with the

arcs. Figure 2.2(a) shows a basis tree with the set of

cost coefficients from (8) on the arcs. Because the set

of constraints for the network has rank one less than the
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0

5

a.) Basis Tree with the Arc Costs Assigned

b.) Basis Tree with Node Potentials Determined

Figure 2.2 : Example Basis Tree
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number of nodes, we can arbitrarily assign a value to any

of the nodes. The convention is to assign a value of zero

to the potential of the root node.

Consider node 4 first. In order to determine the

potential for node 4, r , the following equation has to be

solved

4

A = C + 7
4 14 1

(16)

The value of c is equal to 1. The IT is equal to c or
14 4 14

1 since the value of r is zero. To calculate the
1

remaining node potentials the same operations are

performed; each making use of potentials calculated in the

previous step. In order to make sure the calculations are

performed in the right order, a labelling scheme referred

to as the thread function is used. The thread, written as

t(x) where x is a node number, may be thought of as a

thread which passes through each node exactly once in a

top to bottom, left to right order starting from the root

node. The thread function is shown in Figure 2.2(b) as a

dashed line and specifies the order in which the nodes in

the basis tree are visited, e.g. t(6)=2 and t(7)=1. It is

now a simple matter to solve (13). Figure 2.2(b) shows

the complete solution. An algorithm for solving (13) can

be found in Kennington and Helgason (1980, p. 63).
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Now consider solving (7) for y with a d vector of

7
5

6

3

4

2
1

0
2

4

3

0

6
0

(17)

where again the corresponding node numbers are included.

The equations to be solved are:

Y = 0
1

Y + Y = -2
1 2

Y
3

= 4

Y
4

= -3

-I/ "fy +y = 0
3 4 5

Y
2

+ y
6

= 6

Y
5

Y
6

Y
7

= 0

To solve this system of equations we use forward

(18)

substitution starting with y =O. The solution to (18) is
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yt

Y
2

Y
3

Y
4

y5

Y
6

7

0

-2
4

3
1

4

-5

(19)

In order to use the basis tree to solve (18) we assign the

di values to each node i in the basis tree and use them to

determine values associated with the arcs. The chain

specified by the dashed line in Figure 2.3 indicates the

order in which the nodes are visited in determining the

arc values. Since the order is opposite that of the

thread function, this chain will be referred to as the

reverse thread function, written as r(x) when x is a node

number; for example, r(1)=7 and r(4)=1 in Figure 2.3. In

order to implement the procedure it is also necessary to

maintain a function that specifies for any given node its

immediate predecessor. This function will be referred to

as the predecessor function and written as p(x) when x is

a node number where p(x)=0 if node x is the root node;

e.g. p(3)=4.

To determine the arc values using the tree we begin

at the node r(1), or node 7. If an arc is directed into a

particular node it will receive the value on the node, if

it is directed out of a node it will receive the negative

of the value on the node. Then the value on the node
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0

Figure 2.3 : Example Basis Tree
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p(7), or node 5, is revised to be the old value on the

node p(7) plus the value on the node 7. The same

procedure is followed for r(7), the reverse thread of 7,

until the predecessor of the current node is zero. For

example, at node 6 the arc value, y , is equal to 4. Then
3

the revised value on the predecessor of node 6, p(6)=4,

would be 4 + 0 = 4. Then at node r(6)=3 the arc value,

y4, is equal to 3. The revised value on node p(3)=4 would

be the old revised value on node 4 plus the value on node

3, that is, the value of the sum 4 (-3) = 1. This value

is used instead of 0 in determining the value to be

assigned to the arc (1,4). Figure 2.3 shows the finished

tree. Note that the operations performed are extremely

simple, resulting in a very efficient method for solving

systems of the form of (7). A general algorithm necessary

to solve (7) is presented in Kennington and Helgason

(1980, p. 171).

For completeness, the steps of the specialized primal

simplex method on a graph are summarized as follows:

Step 0 : Determine Node Potentials.

Assume that an initial feasible basis (possibly

containing artificial arcs) has been determined and

stored as a rooted tree. Flows on the arcs have been

determined as discussed above. The node potentials Wk

for each node k are determined (on a graph) using the
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technique explained previously.

Step 1 : Identify the Outgoing and Incoming Arcs.

The basis exchange step of the simplex method selects

an incoming arc and outgoing arc from the nonbasic and

basic arcs respectively. The incoming arc is that

particular nonbasic arc which is profitable to enter

the basis. That is, it is a nonbasic arc that has zero

flow and a negative reduced cost or has saturating

(upper bound) flow and a positive reduced cost. If no

such arc exists, the problem is solved. The outgoing

arc, the arc to leave the basis, is an arc in the basis

equivalent path (i.e. the unique path in the basis tree

which connects the two nodes of the incoming arc) whose

flow goes to zero or its upper bound sooner than any

others as a result of a flow change in the incoming

arc. The basis equivalent path can be determined by

tracing the predecessors of the two nodes to their

initial point of intersection.

Step 2 : Execute the Basis Exchange.

The outgoing and incoming arcs swap their basic and

nonbasic statuses to become nonbasic and basic,

respectively; the basis tree functions, basis flows and

node potentials are then updated and the method returns

to step 1 with a new feasible basis.
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Consider Figure 2.4 and assume that link [4,12] has

been selected to enter the basis. The basis equivalent

path for link [4,12] is the set of links in the

predecessor path of the basis tree from node 4 to node 2

(i.e. links [4,3] and [3,2]) and from node 12 to node 2

(i.e. links [12,11], [11,8], [8,6] and [6,2]). Node 2 is

referred to as the intersection node.

Various data structures have been developed to

facilitate implementation of the algorithm. All the data

structures use the predecessor and thread functions plus

various combinations of other functions. Each label or

function used in the data structures requires a

nodelength array. Let T be the basis tree and T(x) be

the subtree of T that is rooted at node x (hence the

subtree that includes x and all its successors under the

predecessor ordering). The following functions are widely

used in the data structures.

p(x) = the predecessor of node x where p(x)=0 if x is

a root node.

t(x) = the thread of x.

r(x) = the reverse thread of x.

c(x) = the number of nodes in T(x) (called the

cardinality of x).

f(x) = the "last node" of the nodes in T(x) (hence the

last node in the thread in T(x)).
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Figure 2.4 : Sample Rooted Spanning Tree
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d(x) = the length (i.e. number of arcs) of the path

linking any node x to the root node, where

d(x)=0 if x is a root node (called the distance

of x).

Table 2.1 illustrates the node functions for the spanning

tree of Figure 2.4.

Table 2.1 : Node Functions for the Rooted Spanning Tree

f(k) d(k)kEN p(k) t(k) r(k) c(k)

1 0 2 9 13 9 0

2 1 3 1 12 9 1

3 2 4 2 3 5 2

4 3 5 3 1 4 3

5 3 6 4 1 5 3

6 2 7 5 8 9 2

7 6 8 6 1 7 3

8 6 10 7 5 13 3

9 6 1 13 1 9 3

10 8 11 8 1 10 4

11 8 12 10 3 13 4

12 11 13 11 1 12 5

13 11 9 12 1 13 5



35

2.1.1.2 Reoptimization Procedures for Pure Network

Algorithms

This section will introduce procedures that use the

spanning tree properties of network simplex bases and the

elegant data structures to quickly reoptimize networks

which have undergone costs and/or bounds changes. In each

instance, the methods keep as much of the existing

solution as possible. (Ali, Allen , Barr and Kennington

(1986)).

Consider problem (NP) again:

minimize cx

subject to
Ax + ae = r

0 < x < u

0 < a < 0

The set of arcs, A, can be partitioned into three

subsets:

B = (i,j) : arc (i,j) is basic

= j (i,j) : arc (i,j) is nonbasic with zero flow }

Nu = (i,j) : arc (i,j) is nonbasic with flow equal

to its upper bound }

With this partitioning, problem (PI) can be restated as
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follows:

min E c

(i,j) E.A. 1j
ij

s.t.

x + aej = rr j E N

(20)

(21)

(i,j) EB (j,k) EB jk

0 < x < u for
ij ij

(i,j) E B (22)

X.. = 0 for
I)

(i,j) E N° (23)

x.. = u for
1)

(i,j) E Nu (24)

0 < a < 0 (25)

A = B U N0 U Nu (26)

where rr.

and

rr.

is

= r

called the reduced requirement at node j,

- ( E x x ) (27)

EN" 1)
(j,k) EN"

It is clear that once the nonbasic sets N° and N" are

assigned, equations (21) uniquely determine the basic arc

flows. In addition, the flows give a basic feasible

solution if constraints (22) are satisfied.

The node labels that are useful in the reoptimization

procedures are p(k), r , rr(k), t(k), r(k) and FLOW(k) for

a node number k where rr(k) is the reduced requirement at

node k and FLOW(k) is the flow on either (k,p(k)) E B or
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(p(k),k) E B, whichever exists, with FLOW(e) = 0. The

reduced requirements rr(i), i E N, need not be maintained

explicitly, since they can be reconstructed from a given

set of nonbasic and basic flows. The following procedure

reconstructs the reduced requirements. Upon completion,

each rr(i), i E x, corresponds to demand if positive and

supply if negative.

PROCEDURE X2D

Step 1 : Set i 4- 1 and set rr(i) FLOW(i).

Step 2 : Increment. Set i i + 1.

If i > m, go to step 3; otherwise, go to step 1.

Step 3 : Let j = t(e) and rr(e) = 0.

Step 4 : Set i F 1.

Step 5 : If (j,p(j)) E B, then let

rr(p(j)) = rr(p(j)) + rr(j) and rr(j) = -rr(j);

otherwise, let rr(p(j)) = rr(p(j)) rr(j).

Step 6 : Increment. Set i 4- i + 1.

If i > m 1, terminate; otherwise, let j = t(j)

and go to step 5.

For a given basis B, changes in node requirements are

incorporated via changes in the flow on basic arcs.

Notice that changes to any bounds for nonbasic arcs can

also be made on this set of reduced requirements, since
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each nonbasic arc in Nu (N0) with an altered upper (lower)

bound remains nonbasic at its new upper (lower) bound,

thus forcing a change in the basic flows in order to

preserve the conservation of flow. The following

procedure redistributes this modified set of values for

each rr(i), i E N, to the basic variables.

PROCEDURE D2X

Step 1 : Set i 1. Let FLOW(i) = rr(i).

Step 2 : Increment. Set i 4- i + 1.

If i > m, go to step 3; otherwise, go to step 1.

Step 3 : Let j = r(e). Set k 1.

Step 4 : Let FLOW(p(j)) = FLOW(p(j)) + FLOW(j).

If (j,p(j)) E B, let FLOW(j) = -FLOW(j).

Let j = r(j).

Step 5 : Increment. Set k 4- k + 1.

If k > m - 1, terminate; otherwise, go to step 4.

Upon completion, the basis will have a set of flows

satisfying (21) but not necessarily (22). Any basic

variable whose flow violates one of its bounds must be

handled using the appropriate cases given below.

Assume we have an optimal extreme point solution to

problem (N/9), and we are interested in making one or more

of the following changes to the original problem (NP) and
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finding the optimal solution to the revised problem.

CHANGING A UNIT COST

Changes in unit costs require relatively simple

treatment for reoptimization since the primal feasibility

of the basis is unaffected. Suppose that the unit cost on

arc (i,j) is changed from c
ij

to C for a net change of
ij

Ac = c.j
j

c.. Let r. be the new dual variables,
1 1

determined as follows.

Case 1 : Arc (i,j) is basic.

a. If i = p(j), set Ac = -Ac.

b. Set a = r dc for k E T(i)
k k

T = i - Ac for k E T T(i)
k k

Case 2 : Arc (i,j) is nonbasic.

No changes to the dual variables are required.

Notice that if several arcs' costs are modified, it would

be advantageous to replace c with c.. and solve for the
ij ii

dual variables using the procedure discussed in the

previous section with the optimal extreme point solution

as a starting basic feasible solution for the modified

problem.
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CHANGING AN UPPER BOUND

Suppose that the upper bound on arc (i,j), in problem

*
(NP), is changed from u to u > T for a net change of

ij ij ij
_A _

*

.. _*
Au = u u = u (13. + T ). Let u = u - T ,

ij ij ij ij ij ij ij ij

then Au = u
ij

u That is, we have an optimal solution
ij

_

x for problem

minimize cx

subject to
Ax + ae

e
= r

0 < x < u

0 < a < 0

and we would like to find an initial basic feasible

solution for the problem

minimize cx

subject to
Ax + ae

e = r

0 < x < ;

0 < a < 0

Case 1 : Arc (i,j) is basic.

a. x <u .

ij ij

No change is required and the current solution is

both feasible and optimal.

b. x
ij

> u
ij

.
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Make arc (i,j) nonbasic at the new upper bound u
ij

and replace it in the basis tree with the

artificial arc (i,j) having a flow of x U.
ij 1

Case 2 : Arc (i,j) is nonbasic.

a. x = 0.
ij

No changes are required and the current solution is

both feasible and optimal.

b. x..
i

= u .

j

Set xij to its new upper bound u...

Apply procedure X2D to construct a vector of

reduced requirements, rr(i), from basic flows,

FLOW(i). Set rr(i) = rr(i) + Au and

rr(j) = rr(j) Au. Apply procedure D2X to

construct a set of basic flows, FLOW(i), from a set

of reduced requirements, rr(i). Adjust any (basic)

flows exceeding their bounds as follows:

For all arcs (p,q) E B, if x
Pq

> u go to

case lb; if x
Pq

< 0, set x
pq

= x
Pq

, make arc

(p,q) nonbasic at its lower bound (zero), and

replace it in the basis tree with an artificial

reverse arc (q,p), having a flow of - x .

Pq

Note that if several arcs' bounds are modified, it would

be advantageous to check nonbasic arcs first, and
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therefore procedures X2D and D2X need only be applied

once. In this case the basic arcs are only checked once

for feasibility.

CHANGING A LOWER BOUND

Suppose that the lower bound on arc (i,j), in problem

(NP), is changed from T to l forfor a net change of
ij

A/ = /..
j

T.. That is, the new problem to solve is
11 1

minimize cx

subject to
Ax =

I < x <

which is equivalent to

minimize cx

subject to
Ax + ae

e
= r

0 < x <

0 < a < 0

where x = x + 1 , r = F AI and u = u 1.

But an optimal extreme solution is available for the

problem



minimize cx

subject to
Ax + ae

e
= r

0 < x < u

0 < a < 0
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denoted(xiwhere x = x T, r = F AT and u = 171 T.
ij

Furthermore,

x = T Al = x Al,

= F AT - AA/ = r AAi,

and u = a - T A/ = u A/.

Case 1 : Arc (i,j) is basic.

a. Al < x. < u...

1.3*

Setting
j

x..
3.j

= x3.. - Al yields a solution that is

both feasible and optimal.

b. x.. < A/.
1J

Make arc (i,j) nonbasic at its lower bound (zero),

and replace it in the basis tree with an artificial

reverse arc (j,i), having a flow of Al - x.13 -

Case 2 : Arc (i,j) is nonbasic.

a. x.. = u...

No basic flow change is required, the current

solution is both feasible and optimal, and

uij = ul . Al.
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b. x. . = 0.

Set :x. to be 0.
ij

Apply procedure X2D to construct a vector of

reduced requirements, rr(i), from basic flows,

FLOW(i). Set rr(i) = rr(i) + Au and

rr(j) = rr(j) Au. Apply procedure D2X to

construct a set of basic flows, FLOW(i), from a set

of reduced requirements, rr(i). Adjust any (basic)

flows exceeding their bounds as follows:

For all arcs (p,q) E B, if x
Pq

> u
Pq

, adjust the

flows according to case lb of CHANGING AN UPPER

BOUND ; if x
Pq

< 0, set x
Pq

= x
Pqi

make arc

(p,q) nonbasic at its lower bound (zero), and

replace it in the basis tree with an artificial

reverse arc (q,p), having a flow of - x .

Pq

Notice that if several lower and/or upper bounds on

arcs are modified case 1 and case 2 of the upper and lower

bound change need only be applied once.

To illustrate the above procedures consider the

following example:
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min 10x +11x +12x +12x +10x + + 6x +14x
1

subject to

2 5 6 7 9 10

-X X X = -10
1 2 3

-x-x- x = -14
4 5 6

X + X X + X = 8

1 4 7 8

x + x +x-x-x+x = 8

2 5 7 8 9 10

X + X + X X = 8

3 6 9 10

0 < X
I

<
--

4 , 0 < x < 10 , 0
2

< x < 4 , 0 < x
3 4

< 4 ,

0 < x
5

< 14 , 0 < x < 4 , 0
6

< x < 10 , 0 < x
7 8

< 14 ,

0 < x
9

< 14 , 0 < x < 10.
10

An optimal solution to the problem is

x =(x ,x ,x ,x ,x ,x ,x ,x ,x ,x )=(4,2,4,4,6,4,0,0,0,0).
1 2 3 4 5 6 7 8 9 10

Figure 2.5 shows the network and its corresponding optimal

basis tree. Note that arcs x , x and x are nonbasic
1 3 4

arcs at their upper bounds. Now suppose that the upper

bounds on arcs x , x , x and x are changed to u = 7,
2 3 4 6 2

...

u = 3, u = 6 and u = 3. In order to find a feasible
3 4 6

starting point, let x = 3 (its new upper bound) and
3

x = 6 (its new upper bound) and find the new basic flows.
4

Applying procedure X2D gives

i 1 2 3 4 5

rr(i) -2 -10 0 8 4
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Figure 2.5 : A Network and its Optimal
Rooted Spanning Tree
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Arc (1,5) has a net change of -1, so rr(1)=-3 and rr(5)=5.

Arc (2,3) has a net change of 2, thus rr(2)=-8 and

rr(3)=-2. These result in a new vector of reduced

requirements

i 1 2 3 4 5

rr(i) -3 -2 8 5

Applying procedure D2X yields a new basis vector

i 1 2 3 4 5

x(i) 3 0 -2 3 5

That is,

x=(x ,x ,x ,x ,x ,x ,x ,x ,x ,x )=(4,3,3,6,3,5,0,-2,0,0).
1 2 3 4 5 6 7 8 9 10

Now all the nonbasic arcs are within their bounds. But x

and x violate their upper bound and lower bound,

respectively. Therefore, x is set to 3 and made
6

nonbasic, and it is replaced by the artificial x =2 in
I

6

the basis (x is the artificial arc (2,5)). x is set to
11

0 and made nonbasic and it is replaced by the artificial

arc x =2 in the basis (x is the artificial arc (3,4)).
12 12

Hence the starting solution for the modified problem is
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x = (x ,x ,x ,x ,x ,x ,x ,x ,x ,x ,x ,x )

1 2 3 4 5 6 7 8 9 10 11 12

= (4,3,3,6,3,3,0,0,0,0,2,2),

where arcs x , x , x and x are basic, and arcs x x
2 5 11 12 1 3

x and x are nonbasic at their upper bounds.
4 6

2.1.2 Projection Operators

Some algorithms (e.g. the subgradient algorithm) make

use of a procedure called a projection operator. Let r be

any compact, convex and nonempty set. The projection of a

point x 0 r onto r, denoted by PEil, is defined to be any

point x e I' that is nearest i with respect to the

Euclidean norm. Held, Wolfe and Crowder (1974) have

suggested an extremely simple means for obtaining

projection operators P that project an infeasible point R

onto a feasible region y = (y ) : E e.y. = b,

0 < y. < u., e. > 0, j=1,...,n 1. Mathematically we wish-3 1 3

to solve the following problem:

minfE(x -i)2 :Eex = b, 0 < x. <11, e. > 0,
J

1 <j<nl (28)

Kennington and Helgason (1980, p. 228) present a simple

efficient algorithm for solving (28). They show that t

solve (28) one need only find the appropriate A such that



f(A) = b where

f ( A ) = E e x ( A ) = E max min ( e
j j j

Note that x (A) may be expressed as:

x.(A) =

U

0

R
< '

u.
< A <

ee

A >
e
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e. u.) , 01.

(29)

Clearly each x_(A) is piecewise linear and monotonically

nonincreasing. Hence f(A) is also piecewise linear and

monotonically nonincreasing since the positive sum of such

functions preserves this property.

To illustrate a typical f suppose that x = (R
1

,R
2

) =

(5,6) and we wish to find a point x = (x
1

,x
2

) such that

min xII2 : 5x + 7x
2
= 30, 0 < x

1

< 4, 0 < x
2

< 5 1.

Then



and

x (A)

{

x (I) = 6 7A
2

5

4 A

- 5A
1

< A
5

0 A

0

1
<

7

55

62 49A

f(1) = 5x (A) + 7x (A) = 67 74A
1 2

25 25A

0

We solve for A such that f(A) = 30.

Figure 2.6 that A = 0.5. Thus

<

<

>

A

A

A

1

<

<

<

50

<

A 5

A <

A <

A >

17.

<

<

>

1

1

1

7

6

7

6

7

1

1 6

5

6
1

1

7

It is clear from

P{
(73) 0-1).

Kennington and Helgason (1980, pp. 231-232) also present

an algorithm for obtaining A such that f(1) = b. The

procedure consists of a binary search to bracket A between

two breakpoints, followed by a linear interpolation. The

algorithm is summarized below:



(ac)

.k.))'= 5 X (X) XAX)
%K.

40

(Z)

2.5

445

51

a )\

Figure 2.6 : Illustration of fM, x M and x
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ALG 2.1 ALGORITHM FOR A

Step 0 : Initialization.

Let a < a < < a denote the ordered 2n
1 2 2n

U.
breakpoints 1 and e for j= ,...,n.

Ifb>Eeu or b < 0 terminate with no feasible

solution; otherwise set 1=1, r=2n, L=E eu and R=0.
J J

Step 1 : Test for Bracketing.

r+
If r-1=1, go to step 4; otherwise set m-j

12 ], the

Jr +greatest integer < .

Step 2 : Compute New Value.

B = E max j min ( e.J i.

J

e
j

2a
m J J

, e.u.) , 0 1.

Step 3 : Update.

If B = b, terminate with A = a . If B > b, set l=m,

L=B, and go to step 1. If B < b, set r=m, R=B, and go

to step 1.

Step 4 : Interpolate.

Terminate with
(a a

1
) (b L)

A = al +
R L
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To demonstrate the above algorithm consider the previous

example again.

2Step 0 : The breakpoints are
x1 11 i

1 - 1 9
U

- 1

5 ' e 7
1 2

x
--I 1,

x

e
2 6

. Thus the ordered breakpoints
1 2

are:
1 6

a
1

= < a
2

1
= < a

3
< a

4
= 1.

5 7

Set 1 = 1, r = 4, L = 55 and R = 0.

5
Step 1 : Since r -

2
> 1, set m = [ ] = 2. Then

Step 2 : B = max{ min(25 - 5 , 20 ), 0

161
5max{ min(42 -
49

35 ), 0 = 20 +
5

Step

Step

Step

3

1

2

:

:

:

261

>

2

25

42

b = 30, set

> 1, set m =

150
20),

7 '

42 , 35),

[

0

0

5

Since B = 251

Since r 1 =

B = max min

max min

25
7'

= 2 and L

6
] = 3.

2

}
+

= - + V
7

25 .

261
5



Step 3 :

Step 1 :

Step 4 :

25 25
Since B = < b = 30, set r=3, R = .

7

Now r - 1 = 1, thus

1
I =

2
; hence x

1
= 2.5 and x

2
= 2.5.

54

Figure 2.7 illustrates the problem. It is clear that

the closest point to x = (5,6)1 that is in the feasible

region is x = (2.5,2.5). The algorithm attempts to find

this point by way of the line MI shown in the

figure. At the first breakpoint, a , f(a ) is equal to 55

which is greater than 30. The algorithm then moves to the

6
second breakpoint, a . At a , f(a ) is equal to 251 which

2 2 2
25

is still greater than 30. At a , f(a ) is equal to 7
3 3

which is less than 30. Hence f(A) = 30 for some A such

that a < A < a . Since we know that f(A) is linear
2 3

between the breakpoints, a line interpolation would give

us a value of A for which f(A) = 30.

2.1.3 Subqradient Optimization

Consider the nonlinear program given by

min g(y)

s.t. y e G
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Figure 2.7 : Illustration of the Problem and ALG 2.1
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where g is a convex, realvalued function defined over the

compact, convex, and nonempty set G. A vector q is called

a subgradient of g(y) at y if

g (1) g (Y) > 17 (Y i) for all y e G.

If g(y) is differentiable at i7, the only subgradient at

is the gradient. For points at which g(y) is not

differentiable, the subgradient is any linear support of g

at y. For any y e G, denote the set of all subgradients

of g at i by og(i).

The subgradient optimization algorithm may be viewed

as a generalization of the steepest descent (ascent)

method for convex (concave) problems in which any

subgradient is substituted for the gradient at a point

where the gradient does not exist. Although subgradients

do not necessarily provide improving directions, the

convergence of the subgradient algorithm is assured under

fairly minor conditions on the step sizes (see Held, Wolfe

and Crowder (1974) and Allen, Helgason, Kennington and

Shetty (1987)).

Using the projection operator, the subgradient

algorithm in its most general form follows:
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ALG 2.2 THE SUBGRADIENT ALGORITHM

Step 0 : Initialization.

Let yo e G, select a set of step sizes s0, si, s2, .

and set i 0.

Step 1 : Find Subgradient.

Obtain some yi E dg(yi). If yi = 0, terminate with yi

optimal.

Step 2 : Move to New Point.

Set yi+1 F P[yi siyi], set i i + 1, and return to

step 1.

The termination criteria in step 1 may not hold at any

member of G and is thus computationally inefficient.

Hence, some other stopping rule must be devised. In

practice this is often a limit on the number of

iterations.

Various proposals have been offered for the selection

of the step sizes. Four general schemes which have been

suggested are:

(i)

A .

1



A.

(iii) s.
1

1 pie

( iv ) S. .

A. [g( ) g ]Yi
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where g is an estimate of g , the optimal objective value.

Convergence of the subgradient algorithm is

established by means of conditions on the constants Ai.

If the conditions

A. > 0 for all i, lim
i -4m

=0, and E = co
i=0

are satisfied then convergence of a subsequence of

iterates is guaranteed when the step sizes defined by

schemes (i) - (iii) are used (Kennington and Helgason

(1980, pp. 222-227) ). For step sizes defined by scheme

(iv), under the assumption that

0 < fl < 2, E A. = m and g< g
*

,

i=0

for any given > 0, there exists an iterate M ( see

Allen, Helgason, Kennington and Shetty (1987)) such that

g(y
m

) < g* + (

2 fi

)(g*- g) + .
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In this case, one eventually obtains an objective value

whose error (at worst) is arbitrarily close to 2
, times
p

the error present in the estimate g of g .

2.1.4 Laarancrean Dual Problem

Consider the arbitrary optimization problem (called

the primal problem)

z = min f(x)

s.t. g(x) < 0

xeXCRII

(30)

where f, g(x) = [gi(x),...,gm(x)] are realvalued

functions and X is a nonempty set. If (30) does not have

a feasible solution, we take z = +m. The constraints

g(x) < 0 are the socalled "complicating" constraints,

i.e., the problem would be much simpler to solve without

them.

One way to try to avoid the complicating constraints

g(x) < 0 is to price them out by placing the term ug(x) in

the objective function where u (called the Lagrangean

multipliers) is a nonnegative mvector of associated dual

variables. We define the Lagrangean function
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L(u) = min tf(x) + ug(x) (31)

x c X

It is also convenient to define:

L(x,u) = f(x) + ug(x) (32)

Let x denote a specific primal solution computed from (31)

for a specific IT > 0; that is, L(1-1) = L(R,ii). There is no

guarantee that x is optimal or even feasible for (30), but

the rationale for selecting if is embodied in the following

conditions.

Definition : A pair (3T,T) with i e X, ii > 0 satisfies the

Global Optimality Condition (GOC) for the primal

problem (30) if

1. f(i) ug(x) = min f(x) + ug(x)
x e X

2. ug(x) = 0

3. g(ii) < 0

The Lagrangean dual problem to the primal problem (30) is

obtained by finding the greatest lower bound to z; namely

d = sup L(u) (33)
u > 0
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Clearly d < z and without further assumptions on the

primal problem (30), it is possible that d < z (called a

duality gap).

The following theorem gives sufficient conditions for

x to be optimal in the primal problem (30). (A proof can

be found in Shapiro (1979, p. 144)).

Theorem : If (17,5) satisfies the GOC, then x is optimal in

the primal problem (30).

The Lagrangean function L defined in (31) has all the

nice properties, such as continuity and concavity, except

oncedifferentiability. The function is nondifferentiable

at any Ti where L(u) has multiple optima. Although it is

differentiable almost everywhere, it generally is

nondifferentiable at an optimal point. It is apparent

that L(u) is subdifferentiable everywhere, i.e., the

Lagrangean function L(u) has subgradients [For a proof see

Bazaraa and Shetty (1979, p. 190)]. It can easily be

shown that the vector g(ii) is a subgradient of the

Lagrangean function L at any u for which x solves (31).

Any other subgradient is a convex combination of these

subgradients. Because the subgradient method is easy to

program and has worked well on many practical problems, it

has become the most popular method for solving the
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Lagrangean dual problem (33). For a complete discussion

of various methods for solving the Lagrangean dual problem

(33) see Bazaraa and Shetty (1979), Fisher (1981),

Geoffrion (1974), Lasdon (1970) and their references.

2.1.5 A SinalvConstrained Bounded Variable Linear

Proaram

The problem considered here is of the following form:

(SCBVLP)

minimize z(y) =.t
J=1 j

subject to

r± e.y, < b
J =1 J J

0 < y. < u.

(34)

(35)

(36)

wherewiancle.(j = 1, , n) and b are arbitrary real

numbers, and 0 < u, < m for all j. Specific instances of

related problems have appeared in the literature, to wit:

Example (a). If it is assumed that b > 0, and for each

j, w. < 0, e > 0, and u = a, then an optimal
J J

solution to the resulting problem is given in

Shapiro (1979, pp. 116-117). By ordering the

variables so that



w w w
1 < 2 '--- ,

n
1 ..e e e

1 2 n

then the (greedy) optimal solution is y =
1

y. = 0 for j = 2, ..., n.
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/e
1

and

Example (b). As in (a), except that u. < m for all j.

Then the problem is equivalent to a continuous

relaxation of an integer knapsack problem. In this

case (see Wagner (1975, p. 494)) an optimal solution

is found by ordering the variables as in example (a)

and then setting:

for j = 1,2,...,k-1

k-1
b -.E a u

1=1 i i

for j = k
k

0 for j=k+1,...,n,

where (k - 1) is the largest integer such that

k-1
(b -.

i

E au ) > O. For more details see Chvatal
1=1 1

(1980), Ingargiola and Korsh (1977), Murty (1976, p.

446), Wagner (1975, p. 494) and their references.

Our purpose is to extend the algorithm in (b) to the

more general problem SCBVLP. To this end, some basic

properties of the problem and its optimal solution must

first be developed.
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Assume the index set J = (1, 2, ..., n} has been

partitioned into three subsets

J+ =1jEJ:e > 0 1

J- = f j E J : e < 0 1

J0 =1jEJ:e = 0 1

and b* eu.
jEJ- j j

Proposition 1. Problem SCBVLP is feasible if and only if

*
b 0.

Proof: (4) If SCBVLP is feasible, then there exists y.,

j E J such that 0 < y < u. and E e.y. < b.
je

i.e. E e.y. + E e y. < b
jEJ* J J jEJ- j J

or E e.y. < b E e.y..
jEJ+ J J jEJ- l

J

At.

But j E J- e.y. > e.u, and j E J* e.y. > 0,
J J J

therefore

0 < E e.y. < b- E e.y. < b E eu. = b*.
jEJ* 1 1 jEJ- J J jEJ- J J
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() If b* = b - E e
J

u > 0, then define ; by
j EJ- J

0 if j E J° U J+
y

if j E J-

Obviously y satisfies (3), and

Eey, =E ey. =E eu< b.
jEJ j J jEJ- j J jEJ- j j

Thus y is feasible to SCBVLP. 0

We now assume SCBVLP is feasible. Then an optimum

exists, since the problem is bounded by (36). The

following results characterize optimal solutions to

SCBVLP.

Proposition 2. In any optimal solution y to SCBVLP, if

j E J° then

u if w < 0

y 0
*

=
j i

if w
j

> 0

any value in (0,u.] if w = 0
J j

Proof: Obvious. 0

*

Proposition 3. In any optimal solution y to SCBVLP, if

j E J- and w < 0, then y. = u..
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Proof: Let y be an optimal solution, and suppose there

exists k E J- such that w
k

< 0 but y < u
k

.

Let y be defined by

Then 0 < y. and

, AS.

if j = k

otherwise

*Eey. +ey=Eey +eu
i
EJ j J -EJ j J

k k Ej j j k k
1 i

j Tk j Tk

But y uk andkEJ- imply ekuk <ek yk . Thus

Eey. <Eey. y* Eey* < b.
jEJ j jEJ j J

k k jEJ j

j*k

Therefore y is feasible to SCBVLP. Furthermore,

. . . , *

z(y) = Ewy. = Ewy. +wy.
JEw.y

+ w u
jEJ J J jEJ j J

k k jEJ
J J

k k

j* j k

and since w
k

< 0 and y
*
< uk, this yields

z(y) < E w y. + w y *
= z(Y )

jEJ j )
k k

j*k

which contradicts the optimality of y .
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Corollary 1. If j E J- and w = 0, then y. = u in an

optimal solution y to SCBVLP.

Proof: Follows that of Proposition 3, except that

z(y) = z(y ) in the last line.

*
Proposition 4. In any optimal solution y to SCBVLP, if

j E J+ and w > 0, then y. = 0.
*

Proof: Let y be an optimal solution, and suppose there

exists k E J+ such that wk > 0 but y > O.

Let y be defined by

Y! otherwise

0 if j = k

Then 0 < y < u and

E ey. = E ey* + e y < E e.y* + e y* < b
jEJ >> jEJ j

k k .EJ I I
k k

j*k j*k

where the strict inequality follows from e > 0, y > 0 and

y = 0. So y is feasible to SCBVLP. In addition,

since w > 0 we get

z(y) y* 0
)EJ >> k k

J
EJ )

j*k jfk

E w.Y. w Y * = z(Y )

jEJ ) )
k k

j*k
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contradicting the optimality of y .

A

Corollary 2. If j E J+ and w = 0, then IT. = 0 in an

optimal solution y to SCBVLP.

Proof: Follows the construction of y in the proof of
*

Proposition 4, except we conclude z(y) = z(y ).

With these results, problem SCBVLP can be reduced to

a problem involving only two sets of variables, namely

those in the restricted sets

J; =fjEJ- : wj > 0 1

J4i =ljEJ' : wj < 0 1

This reduced problem takes on the form:

minimize z(y) = E w.y. + E w.y. + k (37)

JEJ; I J jEJ; I
J

subject to

E e.y. + E e.y. < b (38)
JEJT I I jEJ; I

0< y < u j E J; U Jr*. (39)

where k= E w.

)

u + E w u is a constant
)jEJ° jEJ- j J

w.<0 w <0
I J
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and b = b E eu.
jEJ- > )

w.<0

Denote IJ;1 = lc, and 1,1;1 = k2. Obviously, if

k = k = 0, then the solution to SCBVLP is completely
1 2

determined by the above results, and no problem (37)-(39)

exists. Furthermore, if k = 0, then problem (37)-(39) is

in the form of example (b), and the optimal solution to

(37)-(39) is determined via the algorithm stated therein,

thus completing the solution to problem SCBVLP.

Finally, suppose k > 0. Consider the transformation

on (37)-(39) defined by

Y. for j E J;

U. - y, for j E J;

Direct substitution and algebraic manipulation results in

the following problem equivalent to (37)-(39):

minimize i(y) = E w,y, + E w y. + k (40)

jEJ; > > jEJ I )

subject to

where

E e.y. + E e y < F (41)

jEJ; 3
) jEJ;. ) )

0 < y < u

w for j E J;
= )

-wi for j E J;

j E J; U J; (42)



and

e for j E J4;
e =

-ei for j E Jr

= k+ E w.u.
jEJT

b= b- E eu = b- E eu.
jEJ; ) > jEJ- )

w.>0

E E eu.
jEJ- > I jEJ- I

w.<0 w.>0

= b E eu = b
jEJ-

Problem (40)(42) is now in the form of example (b).
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Thus, its solution and the completion of the solution to

problem SCBVLP can be determined.

The greedy algorithm given by Wagner (1975, p. 494)

has been modified to solve SCBVLP directly, using the

results obtained previously. The algorithm is summarized

below:

ALG 2.3 ALGORITHM FOR SCBVLP PROBLEM

Step 0 : Input n, b and for each j = 1, . , n, e w
j

and u .



Step 1 : Determine J-, J0, J*.

Compute

=b-E eu.
jEJ- i

j
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If b* < 0, terminate; the problem is infeasible.

Otherwise, proceed to step 2.

Step 2 : For those j E J0, set

Y .

0 if w > 0

=

u if w < 0

For those j E J* with w 0, set y. = 0.

For those j E J- with w < 0, set y = u .

Step 3 : Determine J; and J. If Jr = J; U =

terminate; an optimal solution has been determined in

steps 1 and 2. Otherwise, let 'Jr! = k, and order the

elements of Jr so that

w w
LLL < (2) <

w
(k)

e e e
(1) ( 2 ) ( k )

Let j = 1.

Step 4 : Set

< 0
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*

minimum f

b
, u 1 if e > 0

e
. (j) (1)

* (i)

y = .l
(i) *

u minimum f

b
, u 1 if e < 0

()) -e
(i)

(j) (j)

Adjust b according to

b e y if e > 0

b = (i) (j) (i)

b* + e ( u y ) if e < 0

(J) (I)

Step 5 : Let j = j + 1. If j < k, go to step 4.

Otherwise, terminate with an optimal solution.

The algorithm has been implemented in a FORTRAN code

called SCBVLP and a complete listing is found in Bolouri

and Arthur (1989).

To illustrate algorithm ALG 2.3 consider the

following example.

minimize 6y - 3y - y + y 6y + 7y
1 2 3 4 5 6

subject to

- y + y + 5y - 100y ily < 18
1 2 3 4 7

0 < yl < 10 , 0 < y2 < 16 , 0 < y3 < 14 ,

0 <y
4
<12, 0 <y

5
<5 , 0 <y

6
<10,

0 < y < 2.
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Step 1 : J+ = f 2, 3 1, J- = f 1, 4, 7 } and

J° = f 5, 6 1.

b * = 18 ( -1) (10) ( -100) (12) ( -11) (2)

= 1250.

b* > 0, thus the problem is feasible.

Step 2 : Since w =-6 < 0 and w =7 > 0, then
5 6

* *
y =5 and y =0.

5 6

7 E J- and w =0 implies that y =2.
7 7

Step 3 : Jr = 1 1, 4 , J; = 1 2, 3 1 and

Jr = 11, 2, 3, 4 . Then k=4 and

w w w w
1 4 1

1
-6 < 2 3 < - -I- <

e e e 5- e ITU
1 2 3

j=1.
4

Step 4 : e =-1 < 0, thus y * = 10 min(10,1250-) = 0, and
1 1

1

b * = 1250 + (-1)(10) = 1240.

Step 5 : j=2 < k=4.

Step 4 : e =1 > 0, thus y *
= min(16,1240----) = 16,

2 2 1

and b
*
= 1240 (1)(16) = 1224.

Step 5 : Since j=3 < k=4, then
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Step 4 : e =5 > 0, thus y =14 and b = 1154.
3 3

Step 5 : Since j=4=k, then

*
Step 4 : e =-100 < 0, thus y = .46 and

4 4
*

b = 0.

Step 5 : Since j=5 > k=4, terminate with
* * * * * * *

Y = (Y
1

Y2 Y3 Y4 , Y5 Y6 Y7) =

= (0, 16, 14, 0.46, 5, 0, 2 ) an optimal solution

to the SCBVLP problem.

2.2 Literature Review

Just where the study of networks may be said to have

originated is a debatable question. Hitchcock (1941) was

the first to formulate and solve for a certain minimum

cost transportation problem. Koopmans' (1947) work on the

same category of problems was the first to interpret

properties of optimal and nonoptimal solutions with

respect to the linear graph associated with a network of

routes. Because of this and the work done by Hitchcock,

the classical case is often referred to as the

HitchcockKoopmans Transportation Problem.

A few years later Dantzig (1951) showed how his

general algorithm for solving linear programs, the simplex
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method, could be simplified and made more effective for

the special case of the transportation models. Dantzig

(1963) further examined the results and showed that a

basis can be represented as a rooted spanning tree.

The first data structure suggested for implementation

is presented in Johnson (1966). He proposed a labelling

procedure that only requires three labels at each node.

This procedure could be used to carry out the steps of the

simplex algorithm completely in terms of the graph.

Glover, Karney and Klingman (1972) elaborated on Johnson's

procedure by providing a method for characterizing

successive basis trees with minimal relabelling. This

procedure, which is called the augmented predecessor index

(API) method, also provided the most efficient way of

finding the representation of the arc coming into the

basis, pricing out the basic arcs and updating basis

labels. Glover et al. have shown that the major updating

calculations of a basis exchange step can be restricted to

just one of the two subtrees created by dropping the

outgoing arc. Srinivasan and Thompson (1972) have

proposed an alternate procedure for doing this. Their

procedure requires sorting the nodes of the subtree by

their distances from the root and then a full subtree

update of both the distance and the cardinality function

at each basis exchange step is performed. Glover, Karney,
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Klingman and Napier's (1974) use of the API method

resulted in an efficient special purpose primal simplex

transportation code. Srinivasan and Thompson (1973)

succeeded in reducing the solution times of their

accelerated primal transportation code by half by

incorporating the API into their algorithm. Glover,

Klingman and Stutz (1974) developed a new list structure,

called the augmented threaded index (ATI) method, for

recording and updating the basis tree for adjacent extreme

point ("simplex type") network algorithms. The ATI method

is computationally more efficient and requires less

computer memory to implement than all alternate list

structures. This method uses only two pointers per node

to search a spanning tree both upward and downward, while

previously proposed structures required at least three

pointers per node. Glover, Karney and Klingman (1974)

have shown that the ATI method improves the efficiency of

their transshipment code by 10% while requiring less

computer memory. More recently, Barr, Glover and Klingman

(1979) have developed a new type of relabelling scheme,

called the extended threaded index (XTI) method, that can

be used to implement the previous list structures (and

particularly the ATI method) with greater efficiency.

Computational results show that the XTI procedure is

approximately twice as fast as the ATI procedure (the
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previously fastest procedure in the literature) for

implementing the basis exchange operations. However,

memory requirements were quite close for all of the

procedures.

The pricing strategy, the selection of that

particular nonbasic arc for which flow change will be

allowed, is an important tactic within network programs.

For most pricing strategies the arc file is managed in

what is called a candidate list. The candidate list

serves as a depository for a whole set or a defined subset

of nonbasic arcs. Arcs are exchanged (pivoted) between

basic status and this candidate list. The searching

procedure for an arc in the candidate list is managed as a

wrap-around stack. That is, if in a previous search the

last element scanned resides in position j, the next

search would start in position j+1. Whenever the end of

the array is reached, scanning continues at position j=1.

The simplex algorithm terminates whenever a candidate list

cannot be formed because all arcs are ineligible for

pivoting. Pricing strategies range from selection of the

first candidate arc found (usually referred to as the

"first encountered improvement rule"), to selection of a

nonbasic arc in the candidate array having the most

improved reduced cost (usually referred to as the "most

improvement rule"). Glover, Barney, Klingman and Napier
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(1974) and Srinivasan and Thompson (1973) have advocated

the "most improvement rule". Other pivoting rules are

extensively analyzed by Srinivasan and Thompson (1973) for

dense transportation problems and by Glover, Karney,

Klingman and Napier (1974) for relatively small sparse

transportation problems. Also see Bradley, Brown and

Graves (1977), and Mulvey (1978).

An alternative method, known as the outofkilter

algorithm, was first developed by Fulkerson (1961).

Unlike the primal simplex on a graph algorithm, the

outofkilter algorithm is not a specialization of a more

general method. This algorithm defines certain "kilter"

conditions which, taken together, constitute primal and

dual feasibility criteria for arcs in a network. The

method brings each nonconforming ("outofkilter") arc

"into kilter" by adjusting its flow (the primal variable)

or changing its node potentials (the dual variables). A

different point of view of this algorithm is given by

Barr, Glover and Klingman (1974). They have reformulated

the algorithm so that it employs a new labelling scheme,

and a special classification scheme for determining the

"kilter status" of each arc. Barr, Glover and Klingman

(1974) and Glover, Karney and Klingman (1974) have shown

with computational tests that basic primal approaches are

considerably more efficient than the outofkilter
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algorithms.

The results for generalized networks may be traced to

Dantzig's (1963) linear programming book. A basis for a

generalized network problem has a graphtheoretic

structure. Each component of the graph associated with a

basis is either a rooted tree or a onetree (a tree with

an additional arc forming one cycle). As in the pure

network problems, the simplex operations can be carried

out on the graph, thereby eliminating the need for matrix

operations. For a complete description of the algorithm

and discussion of data structures for implementation see

Brown and McBride (1984), Brown, McBride and Wood (1985),

Glover and Klingman (1973), Glover, Klingman and Stutz

(1974) and Kennington and Helgason (1980).

In what follows it is assumed that "side constraints"

are necessary to model key policy restrictions. While the

addition of nonnetwork constraints greatly improves the

realism and effectiveness of the models, it also increases

significantly the difficulty of their solution. Various

algorithms have been developed to solve the network with

side constraints problem. The most popular of these is

the primal partitioning modification of the simplex

method. The advantage of this technique is that many of

the simplex operations involving the basis inverse can be

designed to exploit the embedded network structure. Since
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a portion of the basis may be stored as a rooted spanning

tree as in pure network codes, the operations needed to

perform the computation of the dual variables used in

pricing and the computation of the updated column used in

the ratio test may be done much more efficiently than in

standard linear programming packages. The development of

this algorithm can be traced to Bennett (1966), Charnes

and Cooper (1961), Chen and Saigal (1977), Hartman and

Lasdon (1972), and Kaul (1965). A complete description of

the algorithm and an effective implementation are

presented in Barr, Farhangian and Kennington (1986).

Glover and Klingman (1981) describe a highly efficient

algorithm that modifies and implements the steps of the

primal simplex algorithm for the completely general case

of embedded pure network problems. The efficiency is the

direct result of exploiting the pure network portion of

the coefficient matrix and the network LP interface by

special labelling and updating procedures.

Further specializations of this method have been

developed for restricted classes of networks, such as

multicommodity network flow problems (see Ali, Barnett,

Farhangian and Kennington (1984)) or transportation

problems (see Klingman and Russell (1975)). The papers of

Hartman and Lasdon (1972), Graves and McBride (1976) and

Kennington (1977) deal with primal partitioning techniques



81

for multicommodity network flow problems. Kennington

(1977) also discusses implementation techniques for

solving multicommodity transportation problems that make

use of the primal partitioning simplex technique. See

also Kennington and Helgason (1980).

Another common method that has been successfully used

to solve various classes of network with side constraints

models has been the Lagrangean relaxation or subgradient

optimization method. In this method, the side constraints

are placed into the objective function where a penalty is

assessed if they are not satisfied. Thus, the linear

programming subproblems which must be solved are pure

network problems with different objective function

coefficients for each subproblem due to modifications of

the Lagrange multipliers. Because only the cost

coefficients change from subproblem to subproblem, the

optimal solution for one subproblem is at least feasible,

if not optimal, for the next subproblem. Shepardson and

Marsten (1980) have used this approach to solve the two

duty period scheduling problem which they reformulated as

a one duty period problem with side constraints. Ford and

Fulkerson (1958), Held, Wolfe and Crowder (1974),

Kennington and Helgason (1980), Kennington and Shalaby

(1977), Tomlin (1966) and Weigel and Cremeans (1972) have

proposed variations of this method for solving
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multicommodity network flow problems. Aggarwal (1985) and

Price and Gravel (1984) have successfully adapted this

approach for solving the constrained assignment problem.

For more complete details of this technique, see

Kennington and Shalaby (1977) and Kennington and Helgason

(1980).

Often the side constraints, which by definition are

not of a network form, may have some other special

structure. For example, in the multicommodity network

flow problem, where there are limits on the total amounts

of commodities that can flow through shared arcs, the side

constraints that are formed on each such arc are

generalized upper bounding (GUB) constraints. Ali,

Barnett, Farhangian, Kennington, McCarl, Patty, Shetty and

Wong (1984) solved this problem by using a primal

partitioning algorithm. The basis inverse is maintained

as a set of rooted spanning trees (one for each commodity)

and a working basis inverse in product form. This working

basis inverse has dimension equal to the number of binding

GUB constraints. The initial basis is obtained using a

multicommodity variation of the routine used in NETFLO

(see Kennington and Helgason (1980, page 244)).

Another network with side constraints problem which

falls into this category of problems is the equal flow

problem. In this problem, the side constraints correspond
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to pairs of arcs which are restricted to have the same

amount of flow. Ali, Kennington and Shetty (1985)

addressed this problem by solving two sequences of pure

network problems to generate an upper and lower bound.

When the gap between the bounds becomes acceptably small,

this method terminates with a feasible solution which can

be guaranteed to be within a pre-determined percentage of

the optimal.

The network with GUB constraints problem may be

solved as a linear program with GUB constraints using any

of the existing standard methods. Dantzig and Van Slyke

(1967) were the first to propose a well-known Generalized

Upper Bounding Technique (GUBT) which is a specialization

of the revised simplex method. GUBT solves such an LP by

subdividing the coefficient matrix into non-GUB and GUB

components. By reference to this subdivision, the

technique maintains the inverse of a working basis whose

order equals the number of non-GUB constraints, instead of

maintaining the inverse of the basis of order equal to the

total number of constraints as required by the usual

revised simplex method. All the quantities needed for

carrying out the simplex method on this LP are derived

using the inverse of the working basis and the original

data in the problem, and after each pivot step only the

inverse of the working basis is updated. When the number
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of GUB constraints is large, GUBT results in substantial

savings in the memory space requirements and the total

computational effort over the implementation of the

conventional revised simplex method applied to the same

LP. For more complete details of this technique see

Lasdon (1970) and Murty (1976). Other methods for solving

LPs with GUB constraints were proposed by various

researchers independently but are quite similar in nature;

these include Bennett (1966), Graves and McBride (1976),

Hartman and Lasdon (1970), Raul (1965), and Sakarovitch

and Saigal (1967).

However, in order to reduce both solution time as

well as computer storage requirements, it is often

advantageous to use any existing network structure when

solving these problems. A new algorithm for solving

networks with GUB side constraints using Lagrangean

relaxation and decomposition approaches, along with a

discussion of software considerations, is presented in the

following chapters.
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CHAPTER 3

SOLUTION METHODOLOGY

In this chapter a new algorithm for solving the

network with generalized upper bound side constraints

problem will be discussed. The solution technique

exploits the special structure of the side constraints and

maintains as much of the characteristics of the pure

network problem as possible. The solution technique

consists of solving two sequences of problems. One

sequence yields tighter lower bounds on the optimal value

by using a Lagrangean relaxation based on relaxing

"copies" of some subset of the original variables. The

second sequence yields a tighter upper bound on the

optimal value for the problem by using a decomposition of

the problem based on changes in the capacity vector and

maintains a feasible solution at all times. Both the

lower and upper bounding algorithms have been developed in

the context of the general subgradient algorithm presented

in Section 2.1.3.

Mathematically, the network flow problem with

generalized upper bound (GUB) constraints is expressed as:



(NP C)

z(x) = minimize

subject to
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c °x° clxl c2x2 cpxp

A °x° Aixt A2x2 Apxp = r

E2x2

< bi

< b2

EPxP < b
p

0 < xi < ui for i = 0,- -,P

where Ai is an (mxn ) matrix for j=0,...,p, Ek is a (lxn )

vector for k=1,...,p, xi and ui < m, for i=0,...,p, are

the decision variables and capacity vectors, respectively.

The matrix A =[A°1A11A21-1AP] is a nodearc incidence

matrix. For each k, 1 < k < p, the vector Ek is of the

,ek,...,ekform [ek ] where ek * 0 for j=1 All the
1 2 nk

variables in the vector xk belong to the kth GUB

constraint, for 1 < k < p. Thus, the variables in the

vector x0 do not appear in any GUB constraint. Problem

(NPO) can also be expressed as :
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z(x) = minimize cixi
1=o

subject to

A'x' = r
i=0

nkE ek xk < b
j=1 j j k

0 < < for i=0,...,P

for k=1,...,p

where ek (j= 1,...,nk and k=1,...,p) is any nonzero real

number.

3.1 The Lower Bound for Problem NPG

A lower bound on the objective function of the

problem (NPC) can be obtained by using the Lagrangean dual

of the problem. The natural Lagrangean relaxation for the

problem (W) is obtained by dualizing the GUB

constraints, resulting in :

(LI) Lr(v) = min t cixi + v (Ekxk b )

i=0 k=1 k

s.t.
A'x'

i=0

0 < x 1 < for i=0,...,p

where v > 0 is the Lagrange multiplier associated with
k

the kth GUB constraint and v = (v ,v ). The
1 2

Lagrangean dual of the problem (LI) is
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(.0) max Lr(v)
v > 0

The Lagrangean relaxation used in the lower bound

technique is obtained by copying certain variables in

(YPC), using ideas presented in Glover and Klingman

(1988). This scheme is interesting in that the Lagrangean

subproblems keep all the original constraints. This

technique is referred to as the Lagrangean decomposition

and its dual is called the decomposed Lagrangean dual.

The enlarged equivalent representation of problem (.NFO)

is:

(YPCO) min t cixi
i

s.t.
Aix'

1.0

0 < xi < ui for i=0,...,p

Ekyk < b
k

for k=1,...,p

yk = xk for k=1 ..... p

0 < yk < uk for k =1,

The Lagrangean decomposition for (YPCO) is obtained by

dualizing the "copy" constraints yk =xk for k=1,...,p,

which will yield a decomposable problem.



(LD) L(w) = min cix K wk(yk _ xi()

i=0 k=1

s.t.

i=0

0

0
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Aixi

< xi

k kEy
< yk

< ui

/ Nb
k

< uk

for

for

for

i=0,...,p

k=1,...,p

k=1,...,p

where wk is the (n xl) vector of Lagrange multipliers

associated with the kth "copy" constraint, wk=(wk,...,wk )

1

and w=(wl ..... wP). Note that since x and y are bounded

vectors, the feasible region to (LB) is finite. Thus L(w)

is finite for all finite w. For convenience, we assume

that problem (NP C) is feasible. The decomposed Lagrangean

dual of the problem (iD) is

(DD) max L(w)
w

The following proposition provides justification for

considering problem (DD).

Proposition 1 : max L(w) = z(x).
w
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Proof :

tmaxL(w) = max min t c'x' wk(yk 2ck)

1 =0 k=1

s.t. Aix'
i=0

0 < xi < u' for i=0,...,p

Ekyk < b
k

for k=1,...,p

0 < yk < uk for k=1,...,p

= max min
w

c0x0 (ck_wk)xk wkyk
k=1 k=1

s.t. g24/1x= r
i=0

xi < ui

xi > 0

Ekyk <

yk < u k

yk > 0

where 71, sl (for i=0,...,p), s2 and s2 (for k=1 ..... p)

are the dual variables associated with each type of

constraint. By LP duality,
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max L(w) =
w

max max 71r + 71 ui + 72 b + 72 uk
w

s.t.

i=0 i k=i k k k=1 k

71A0 + 71 <
0

71Ak + 71 < ck -wk
k

72 Ek 72 < wk
k k

for k=1,...,p

for k=1,...,p

71 is unrestricted in sign

'1 < 0 for i=0,...,P
i

72 < 0
k

for k=1,...,P

,2 < 0 for k=1,...,p

= max 71r + ui + 2. 72 b + uk
i=0 i k=i k k k=1 k

s.t.
71A0 4. 71 < cO

0

71Ak + 71 + wk < ck for k=1,...,p

72 Ek + 72 wk < 0
k k

71 and w are unrestricted in sign

for k=1,...,P

fl < 0

72 < 0
k

< 0
k

By LP duality,

for i=0,...,P

for k=1,...,p

for k= 1,...,p



max L(w)
w

min c
1=0

A'x' = r
i=o

0 < xi < ui

s.t.

Ekyk < b
k

yk = Xk

0 < yk < uk

for i=0,...,p

for k=1,...,P

for k= 1,...,p

for k=1,...,p
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Therefore max L(w) is equal to z(x). 0
w

Proposition 2 below, referred to as the weak duality

theorem, shows that the objective value of any feasible

solution to the decomposed Lagrangean dual (BD) yields a

lower bound on the objective value of any feasible

solution to problem (NPC).

Proposition 2 : Let x be a feasible solution to problem

(NP0), i.e., Ax = r, 0 < x < u and Ekxk < bk for

k=1,...,p. Let (i,i07) be a feasible solution to

problem (NPCC), i.e., A'x' = r, 0 < < ui for
i=o

i=0,...,p, Ek;k < b
k, 4

ik and 0 < z.yk < uk for
_

k=1,...,p. Let 7 = (7 ,7 ) be a feasible
1 2

solution to (D), i.e. 7 > 0. Let w =
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be such that wk= -v Ek for 1 < k < p. Then

Lr(v) < L(w) < c'x'.
i=0

Proof :

C X = + ik(i* R*)
i=0 i=0 k=1

since ik=ii.k wc(ik_Ric) 0

> min { cixi ik(yk_xk)

x,Y i=0 k=1 i =0

0 < x' < ui

0 < yk < uk

= L(i)

for i=0,...,p, Ekyk < b ,

k

for k=1,...,P }

= r,

= min fex° +
k=1

(ck-*)xk :

i=o
= r,

x

0 < x' < ui for i=0,...,p 1 + min { kt ikyk=1
Y

Ekyk < b
k,

0 < yk < uk for k=1,...,P 1

= min f ex° + (ck+i Ek)xk : A'x' = r,
k=1 i=0k

0 < x for i=0,...,p + min f
_v Ekyk

k=i k

Ekyky < b 0 < yk < uk for k=1 ..... p
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= min t ex° + t (ck+V Ek)xk : Aixi = r,
x k=1 k i=0

0< xi < ui for i=0,...,pl tVb +t-ib+
k=1 k k k=1 k k

min 1
k1

17

k

Ekyk
Ekyk y < b

k,
0 < yk < uk for

=y

k=1,...,p }

= min
I.

t cixi + t V (Ekxk b ) : t Aixi = r,
x 1=0 k=1 k k i=0

0 < xi < ui for i=0,...,p 1 + t V b +
k=1 k k

min { t _/..7. Ekyk Ekyk < b 0 < yk < uk for

Y
k=i k lc'

k=1,...,p }

= Lr(v) + min
kt 1

V
k
(b

k
-Ekyk) : Ekyk < b

k
,

=

0 < yk < uk for k=1,...,p

> Lr(V) since the second term in the above

summation is nonnegative.

Propositions 1 and 2 establish that the optimal

objective values of (NPC) and the decomposed Lagrangean

dual are equal and that any feasible solution to the

Lagrangean decomposition (ED) provides a lower bound on

the optimal objective value for (YPO). In order to

facilitate the solution of the Lagrangean decomposition,
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we need to examine the properties of the function L(w).

The following result describes L(w).

Proposition 3 : L(w) is concave.

Proof :

Consider w , w and A E [0,1]. Let (x,y) be such that
1 2

ciii wk(ik_ik)
i =0 k=1

= min t c xi + wk(yk_xk) Ai_A = r,
x,y i=0 k=1 i=0

0 < xi < ui for i=0,...,p, Ekyk < b
k

0 < yk < uk for k= 1,...,p

where w = Aw + (1 -A)w
1 2

Then

L(w) = L( lw + (1-A)w )
1 2

= Ciii + [AWk + (1-A)Wk ] (ik-Rk)
i=0 k=1 1 2

By definition of L,

L(w ) < ciii + wk(ik-ik)
1 i=0 k=1 1

L(w) < ciRi + w
2 i=0 k=1
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Multiplying the first inequality by and the second by

(1-A), we have

AL(w ) + (1A)L(w ) <
1 2

+ [Awk + (1A)wk l (Ykik)
i=0 k=i 1 2

= L (w)

Hence L(w) is concave. 0

Since L(w) is piecewise linear concave (Held, Wolfe and

Crowder (1974)), one must have a way for determining a

subgradient of L(w) at a given w. Consider the following

result.

Proposition 4 : Let (i,i) be an optimal solution to (LP)

at ii. Then ( iP iP )
t

is a

subgradient of L at w.

Proof :

Let (x,y) be an optimal solution to (LB) at w. Then

L(w) = c'x' + wk(yk-xk) < + wk(ik-Rk)
i=0 k=1 i=0

and

L(w) = + iWk(ikik) .

i=o k=1

Thus

L(w) L(w) <
k=1
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Hence ( y1 iV ip )t is a subgradient of L

at w. 0

The following result will aid us in finding an optimal

solution to problem (NPC).

Proposition 5 : (Optimality Conditions)

Let (x,y) be an optimal solution to (LP) at w, i.e.,

L(w) = ciii + wk(ik-Sit). If
i=0 k=1

t

yl P then i is) ,

an optimal solution to problem (NPC).

Proof :

(If ( x1, x

(i) + =
1=0 k=1

ip )t, then

min + wk(yk_xk) = r,
x,y i=0 k =1 i =0

0 < xi < ui for i=0 ,...,P, Ekyk < bk,

0 < yk < uk for k=1,...,p }

(ii) (1.71,...,wp) ' - RI, ip - Te)

(

IT
t = 0 since

t kx = y for k=1,...,p

(iii) it = it for k =1 , p (given)

that is, (ii,i,w) satisfy the Global Optimality Conditions
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(see Section 2.1.4). Hence (R.,i7-) is optimal to (YPCC).

Hence x is optimal to (NPe).

Consider the Lagrangean decomposition function again.

For any given value of the vector w,

L(w) = min c°10 + (ck_wk)xk
1.0

= r,
x k=1

0 < x' < ui for i=0,...,p } + min { wkyk
k=1,

Y

Ekyk < b
k,

0 < yk < uk for k=1,...,P }

= min j ex° + (ck_wk)xk
k=i i=0

0 < x < ui for i=0,...,p

r,

n
k

n
k

+ min E wkyk E ekyk < b 0 < yk < uk
Y

k=1 i=1 j j=1 k

where the first minimization is a pure network problem and

the second consists of p singlyconstrained bounded

variable LP (SCBVLP) problems. Algorithms for solving

these were briefly presented in Section 2.1.5. Hence, for

a given w, an optimal solution to problem (LB) is found by

first solving the pure network problem and then solving

the singleconstraint bounded variable LPs. The following

summarizes the algorithm for solving the Lagrangean

decomposition function L(w), for any given value of the
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vector w.

ALG 3.1 ALGORITHM FOR L(w)

Step 1 : Solve the pure network problem

min ex° + (ck_wk)xk Aixi

x k=1 i=0

0 < xi < ui for i=0,...,p }.

Let x denote its optimal solution.

Step 2 : set k 4- 1

Step 3 : Let S = b E ekuk where Jk= j : ek < 0 1

k k JEJk

for each k.

Set i 4- 1.

wk

Step 4 : Order
ek
--I for

k
from smallest to

largest. Denote the ordered values by

wk wk

e
k
_LLL < (2)

e
(1) (2)

(nk )

e k

(n
k

)

Let ik
,

and uk correspond to the ith ordered
(1) (1)

w k

value (i) .

e k

(i)



w k

Step 5 : If
k
(i) < 0, then

e

ky =
(1)

Set

bk =

100

min ( k , uk ) if ek > 0
e k (i) (i)

(i)

u k min ( k uk
i

) if ek < 0
(1) lek () (i)

I (

F ek -37k if ek > 0
(i) (i) (i)

E ek ( uk _ ) if ek < 0
( ) ) (i) (i)

and go to step 6.

wk

If --ILL > 0, then
e
k

uk if ek < 0

Yk
. =

(i) (i)

(I)
0 if ek > 0

(i)

Step 6 : set i i + 1.

If i > n , the kth SCBVLP problem is done, go

to step 7; otherwise, go to step 5.
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Step 7 : Set k k + 1.

If k > p, terminate with y an optimal solution to

the one constraint bounded variable LPs, and an

optimal objective value for the Lagrangean

decomposition function is

L(w) = c0i0 t (ck_wk)Tik wkik
k=1 k=1

otherwise, go to step 3.

The lower bounding algorithm modifies the generalized

subgradient algorithm to maximize L(w). For a given w,

L(w) is solved to optimality by ALG 3.1. If the

optimality conditions (Proposition 5) are satisfied the

method is terminated; otherwise, a step is taken in the

direction of a subgradient of L at w, a new w is

determined and the process is repeated. Since there is a

possibility of never reaching the optimal solution (cyclic

solutions), the method terminates upon reaching an

arbitrary iteration limit. The major difficulty involves

finding the appropriate step size. This problem is

handled by adjusting the step size based on the behavior

of the function, as will be discussed in detail in Chapter

5. The algorithm makes use of a scalar, UBND,

representing an upper bound for the problem. Since the

solution procedure progressively recalculates the lower

bound for the network with GUB constraints problem, the



102

lower bound algorithm uses the best value for the UBND

that was obtained in the previous upper bound iteration.

The following summarizes the lower bound algorithm.

ALG 3.2 ALGORITHM FOR THE LOWER BOUND

Step 1 : Initialization.

Initialize UBND, step size d and tolerance E.

Let w=0.

Step 2 : Find Subgradient.

Let x solve

L
1
(w)= min t ex° + L (ck-wk)x :

k=1 i=0

0 < x

Let y solve

i for i=0,...,P 1-

nk
L (W) = min .E : e k k < b
2

y
k=1 y 1=1 ] I

j=1 j k

0 < yk < uk 1.

If x = Tr, terminate with R an optimal solution to the

problem (NPC).

Let LBND = L (w) + L (W).
1 2

If (UBND LBND) < clUBNDI, terminate with i near

( )
optimal; otherwise, let 7 = il il, ..., ii3 il)
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Step 3 : Move to New Point.

w = w + dy.

Adjust the step size d.

Step 4 : Repeat the Process.

Go to step 2.

By taking note of the structure of L (w) one can see

that once an optimal solution is found for a given w, then

this optimal solution remains feasible to the pure network

problem for all other values of w.

3.2 The Upper Bound for Problem NPC

An upper bound on the objective function of problem

(NPC) can be obtained by using a decomposition approach.

After artificial variables have been added, (NPC) becomes

(NP04) min c'x' + Ms
=o

s.t.
A'x' Is =

1=0

nk
E ek xk < b for k=1,...,p
j=1 j j k

0 < Xi < u' for i=0,...,p

s > 0

where M is a vector of large positive numbers, and s is a
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vector of artificial variables. It will be shown that an

alternate formulation of ($704) can be obtained by

decomposing problem (NPC4) is given by,

(NP CD) min g(y)

s.t.
nkE ek yk b

i =1

0 < yk < uk

where for any vector y = ( yl, yP

g(y) = min c + Ms
i=0

S.t

Aixi + Is = r
i=0

x0 <

> 0

xk < yk for j E 4

xk <kf
j

E jku or

for j E Jk

xk > 0 for j E 4

s > 0

for k=1,...,p

for k= l,...,p

)''

( 32)

where for each k, 1 < k < p, 4 = I j : ek > 0 1 and

Jk = f j : ek < 0 I. Furthermore, let x, r°, 110, 11` and

p. be the dual variables associated with each type of

constraint in (32). By duality theory,
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g(y) =

max rr + r°0 + rlyl + + rPyl)
E
jk ' j

k uk
k=i .E

s.t. rA° + 9.0 + p° = c0

rAk + k + #k = ck for k=1,...,p

< M , r° < 0 , p0 > 0

ffk

trk

<

>

0

0

for

for

k=1,...,p,

k=1,...,p,

j

j

E Jt

E Jt

Ak < 0 for k=1,...,P, j E Jt

#k > 0 for k=1,...,p, j E

The following proposition justifies the decomposition of

problem (NPO) into problem (PIM.

Proposition 6 : The decomposed problem (NM) is

equivalent to problem (NPC).

Proof :

For each k, 1 < k < p, let

sk f xk exk < b 0 < xk < uk
1 E lek, and

1

sk = (xk,yk) Ekyk = b , 0 < yk < uk 0 < xk < yk for
2

-k j2
j E 4, < xk < uk for j E Jk

1 E R n-.
j j

Let xkE Sk, i.e., 0 < x

nk

uk and E ekxk < b .

j=1 j j k
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case 1 : If E ekxk = 0, then let yl=xk for j E Jt.
jEJk j j

Since E ekuk > b (otherwise the kth single
jEJt ) j

k

constraint bounded variable LP is satisfied for any xk

with 0 < xk < uk and hence can be removed from the

problem), by increasing some or all of the xk to their

upper bound we can find a vector yk such that,

nk
E ekyk = b , 0 < yk < uk , 0 < xk < yk for j E
j=1

and 3r1 = xk for j E Jt .

j J

case 2 : If E ekxk 0, then by decreasing some or all of
jEJk J J

the xk (for j E Jt) to zero and by increasing some or

all of the xk (for j E Jt) to their upper bounds

[notice that this is always possible since the worst

scenario would be the case when xk for j E Jt) is

decreased until E ekxk = 0 and then we have case 1],
jEJk j j

we can find a vector yk such that

Ek ekyk b 0 < yk < uk
, 0 < xk < yk for j E Jt,

)=1 j J

and yk < xk < uk for j E Jk .

Hence x kE Sk implies that (xk,yk) E Sk.
1 2
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nk
Now suppose that ( xk,yk) E Sk, i.e., E ekyk b

2 i =1 i j
k

0 < yk < uk , 0 < xk < yk for j E Jt, and yk < xk < uk
I ) I I )

for j E Jt , then

for jEJt, 0 < xk < yk 0 < ekxk < ekyk
J I jj- jj

E ekxk < E ekyk;

jEJt i i jEJt )

for jE J15., yk < xk < uk ekuk < ekxk < ekyk
J l I I J ))

E ekxk < E ekyk.

jEJk ) ) jEJk )

n
k

Thus, E1 ekxk < E ekyk = b and 0 < xk < uk.
j=1 j j j=1 j j

Hence, (xk,yk) E Sk implies that xkE Sk.
2 1

So solving

min t cixi + Ms
i=0

s.t.

tA'x' + Is = r
i =0

Ekxk < b
k

0 < x° < u°

0 < xk < uk for k=1 ..... p

s > 0



is equivalent to solving

min t cixi + Ms
i=0

A'x' + Is = r
i=0

O < x° < u°

Ekyk = b
k

O < yk < uk

< xk < yk

yk < xk < uk
J

s > 0

s.t.
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for k=1,...,p

for k=1,...,p

for k= 1,...,p, j E

for k=1,...,p, j E Jk

which in turn is equivalent to solving

min min t cixi + Ms
y x i=0

S.t.

A'x' + Is = r
i=o

0 < x° <u0

< xk < yk

yk < xk < uk
J J

Ekyk b

0 < yk < uk

s > 0

this is just problem (NPOP)

for k=1,...,p, j E

for k=1,...,P, j E Jk

for k=1,...,p

for k=1,...,P



min g(y)

s.t. nk

E ek yk = b
j =1

0 < yk < uk

where g(y) is defined by (32).

109

for k=1,...,p

for k=1,...,p

Hence, problem (NPOD) is equivalent to problem (NPO).

Proposition 6 establishes that the decomposition assures

the satisfaction of the GUB constraints. We now prove

that the objective function g(y) of the problem (HOP) is

a convex function.

Proposition 7 : The function g(y) is convex over

k
ekP ty E eK yK = b , 0 < yk < uk for k=1,...,101.

=1 j j k

Proof:

Let y and y be chosen so that y E r and y E r. Choose

aE[0,1]. Let

S = 1(7,r0 1,...,,P0 1 ..... 0) : r < M , f° < 0,

#0 > 0 and for k=1,...,p < 0 for j E Jt, 11 > 0 for

j E Jt, #15 < 0 for j E Jt , > 0 for j E Jt f.

Then
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g(ai (1-1Y)y) = g(ail + (1-a)y1 , . . , ayp + (1-a);P)

= max{ rr + f°u° + lfk(ait + (1-oyk] + p' u' :

k=1 i=1

wAi+ fi+ pi < c' for i=0,...,p,

(71f°'''''",f134048,1 ..... #P) E s

= max{ a[rr + roue +
k=1
t fkit 4.

i=1
+ (1-a)[rr

,Ouo + kyk + #iui]: rAi+ fi+ #i < c' for
k=1 i.1

i=0,...,P, S }

< amaxtrr + tr°0 +
k=1 1=1

TA '+ + pi < ci for i=0,...,p,

E S

+ (1-a)maxtwr + f°u° + rkyk + ui]:
k=1 i=i

fi+ pi < cl for i=0,...,p,

tr,f°,fi,...,o-P,p°,p1,...,10) Es}

= ag(i) + (1-e)g(y).

Hence g(y) is convex over r. 0

The above proposition implies that problem (NPOD) is a

convex program with linear constraints. Since g is also

piecewise linear (Held, Wolfe and Crowder (1974)), problem

(HOD) may be solved using a specialization of the
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subgradient optimization algorithm. The algorithm begins

with an initial feasible solution, i.e., y E F = y :

n
k

E ek y-k = b , 0 < yk < uk for k=1 pl. The procedure
i=1 i ]

k

involves minimizing the directional derivative of g

subject to feasibility restrictions, which uses a

subgradient to determine a direction in which y can be

moved or shows that y is optimal. If y is not optimal, a

step is taken in the direction, a new feasible point is

determined, and the process is repeated.

To apply the subgradient algorithm to (HOB) one must

have a way for determining a subgradient of g(y) at a

given point. Consider the following proposition.

Proposition 8 : Let y E r , let

(7,7°71,...,7P7°71,...,-P) be the optimal dual

solution to g(y). Then (71,...,7P) is a subgradient of

g at y.

Proof:

Let y be any vector in r, and let

denote the optimal dual

solution to g at y. Then

g(y)g(i) = (wr + s°u° + olcvk + piui) (ir + /Pu°
k=1 i=1

c7kp iiui)
k=1 i=1



(71. 70u0 ikyk iiui
k=1 i=1

t7k

Elul!k=1 i=i

= 7k(yk..-y-k)
k=1
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it + i°u°

= (y i).

Hence, (71,...,7P) is a subgradient of g at F.

Therefore the subgradient is available from the solution

of the network problem. Consider solving the pure network

problem

min c' x' + Ms
1=0

s.t.

Aixi + Is = r
i=0

0 < x0 <

< xk < yk

yk < xk < uk
3

s > 0

for k=1,...,p, j E J+

for k=1,...,p, j E Jk

If s*0 in the optimal solution, then the problem has no

feasible solution. Otherwise denote the optimal solution

by R. Let (7110,,l,...,c0,11°,111,...,e) solve
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maxfrr + r°u° + i
k=1

irkyk 4. mi iiii+
a-'+

ji1 <

i=1 r
for

i=0,...,p, r < M , a° < 0, o° > 0 and for k= 1,...,p

ak < 0 for j E 4., trk > 0 for j E Jk, Eck < 0 for
i i

j E Jk , Eck > 0 for j E 41.
i

Note that for each k, 1 < k < p, sk + ok = ck rAk and

fk < 0 for j E ffk > 0 for j E Jk, #k < 0 for j E Jk ,

i

and Eck > 0 for j E J. Thus if the jth column of Ak,

denoted by Ak, corresponds to xk and its associated arc is

incident from node f(j) to node t(j), we have that

for j E Jk,

Tt(1)
0I

.
< min I ck rAk , 0 1 = min {ck + 7

f ( j )

and for j E Jk

ok > max I ck rAk , 0 = max {ck + r r
j f(j) t ( )

0 }

But,

for all j, xk basic 4 ck + r - r
t(j)

=
f(j)

fk < 0

for j E 4, .771 = 0 and nonbasic 4 ck + r 7 _> 0
J j f(i) t(1)

4 ,k < 0;
J

xk = yk and nonbasic 4 ck + T r <
J j j f(j) t(j)

0 4 'lc < ck + r r
j i f ( J )

t ( j )
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for j E tit, il` = yl` and nonbasic 4 ck + r r >

J J j f(j) t(j)

0 4 uk > ck -I- It

t(j)
j j f(j)

ik = uk and nonbasic 4 ck + r 7
(j) 5'

j j j f(j) t

0 4 Irk > 0.
i

Hence, for all j, 1 < j < n , solution for ffk is
k,

c k + 7 ar if Xk = yi` and nonbasic
f(i) t(i)

0 otherwise

Thus, in using the subgradient optimization algorithm for

the problem (YM) at each point y, the subgradient can be

calculated directly using the above development.

It is possible that moving a step along the

subgradient yields a point which does not belong to the

nk

set r : E ek yk = b , 0 < yk < uk for k=1,...,pl.
j -1 j

j k

This point is projected onto the set r by means of a

projection operator. What remains to complete the

procedure is to find an efficient way for projecting an

infeasible point onto r.

Given a point y ¢ r, we must solve the following

problem:
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n
k

min ny in : E ek y = b ,

i=1 j
k,

< yk < uk for k=1,...,P}

n
k

= min
kii

E
1

(yk_ Fk)2
=.

nkE ek yk b 0 < yk < uk
J=1 l J

k

for k=1,...,pl.

But this program decomposes on k, therefore we must solve

nk
mintE (yk- ik)2 : E ek yk =b, 0 <y k < uk 1 (33)
j=1 J J j =1 j J

for each GUB constraint k=1,...,p.

n
k

For each k, if E ek -17K = b and 0
j =1 j j

k
< yk < uk then

-171 is within the subset of feasible region r
k
where

J

n

r = yk E ek yk = b 0 < yk < uk f and r x
j=1 j k k=1 k

(X denotes the k cartesian products); thus let yk = -17k for

j=1,...,n . Otherwise, (33) takes the form
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1min T - ykD kyk -2 ikyk

n
kE
1 j j

ek yk - b
k

0 (Ak)

j.
k ky. - u 0 (471)
J J

yk < 0 (vk)

where Dk=2I, and Ak, uk and vk are the Kuhn-Tucker

multipliers associated with the three types of

constraints. The Kuhn-Tucker conditions for (34)-(37)

are:

2y1 ...2ir 4. wk ._ vk + ek Ak = 0
J J J i j

k ( k k
u y u.) = 0 for all j,

i I J

vk yl = 0 for all j,
i I

vk, lik > 0 for all j
i J

plus (35),(36) and (37).

(34)

(35)

(36)

(37)

for all j, (38)

(39)

(40)

(41)

Consider the following solution as a function of Ak:
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e k
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kYrrkkek)
_,_,2 11 1ekuk) 0) if ek >O

1
n tkkk kz. A kuk) ofmintmax(e y.-ke if ek<0

ek jl j jj

k(Ak)=.

ek
J

k
e.

J

2y.k

max
ek

j

2yk
min

ek
j

2uk
1k- ,01 if ek>0

ek J

j

2uk
Ak-

k
,O1 if ek<0

ek J

j

2ik
ek max + Ak,O} if ek>0

ek J

ilk(Ak)= j

j 2yk
ek min j(- + lk,01 if ek<0

i t ek J

j

(42)

For any selection of lk, this solution clearly satisfies

(36), (37) and (41). The following propositions show that

(42) will also satisfy (38), (39) and (40).

Proposition 9 : The solution given by (42) satisfies

(39).

Proof:

case 1.
2ik

e k
A k

2uk
< 0

e k
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ek 0 4 uk 0 4 wk(y_uk) = 0.
J j

4 12/1c ekuk < 0
> uk 4 eqk_(ek)2 Ak

b. ek < 0
k k

J j

case 2.

yk = uk 4 ak(yk_uk) 0.

J J I J J

2.17k

ek

Ak _
2uk

> 0
ek

a. ek > 0 4 ekik_(ek)2 Ak
j

j
2 _ ek uk > 0 4 = uk

J

4 wic(yk_uk) 0.

b. ek < 0 4 twk 0 4 wic(yk_uk) = 0.
J j

Hence, the solution given by (42) satisfies (39).

Proposition 10 : The solution given by (42) satisfies

(40) .

Proof :

case 1.

a.

lk
A < 0

e k

> 0 4 vk 0 4 vkyk 0.

J



b.

case 2.
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< 0 ek-iik_(ek)2 Ak
yk

vkyk = 0.
j

2ik

ek

Ak > 0

a. ek > 0 4 eleik_tek,2
Ak

1j, 5 0 4 yk = 0 vkyk
J J

b. ek
<

0 vk 0 vkyk 0.

I j

Hence, the solution given by (42) satisfies (40).

Proposition 11 : The solution given by (42) satisfies

(38).

Proof :

case 1. ek > 0

kk 2 Aka. e y -(e k
) ek u

k > 0_

2ik
yk uk,

3 ek

and

2yk

ek

_Ak_

Ak > 0.

2uk

> 0,
ek



ek

1
ek

Thus

_Ak_

120

2uk
> 0 4 41k = 2ik_ekAk_2uk.

ek J J i

-1k > 0 Vk = 0.

2yk Y auk - vk ek Ak

= 2uk -2i1!+(257.k_ekAk_2111, )-01-ekAk = 0.
/ J J I

k

b. 0 < e -(ek)2 k k< e U
I J J 4

# yk
2

ik_ek 1k

J
j '

and

2yk

ek

2Fk

ek

Thus

27k

ek

_Ak_

2yk

ek

_Ak
>

0.

2uk

Ak_
2uk

ek

< 0 4 wk = 0.
ek

_Ak >
0 k 0.

< 0,
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ekuk < 0 < ekyk_(ek)2 Ak
j j j

2

= 0,
fik

ek

Ak_
2uk

ek
> 0, and

2Yk 2uk
_Ak_

> 0 4 cik = 0.
ek ek j

j j

2ik
_Ak 0 vk

ek l j j

Thus

.1( vk ek Ak

k +e k
A
k) +e. _kAk 0.= 0-2 +0-(-2y -Yj

k

J j

b. ekuk < ekik_(ek)2 Ak
jj Jj j

2

yk yk_ek Ak
j j 2 '

ek

and
2-17k

e k

Ak < 0.

_Ak_

ek
> 0,

ek

122

-Ak > 0.
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2yk

ek

2i7k

ek

Thus

Ak-
2uk

> 0 4 wk =
ek 7

_Ak < 4 vk 0.

k2y -2 k yk - vk ekAk

Ak k
=

k k .+0-0+ekAk = 0.
j 2 Yj

c. ekik_(ek)2 Ak ekuk

) 2 ) J

2ik 2uk 2STk
yk uk, i Ak 1 < 0 and

ek ek ek

2ik 2uk
Ak_ < 0 4 2ik_ekAk_2uk.

ek ek i j j

2ik
_Ak < 0 vk 0.

ek

Thus

k2y k wk - vk ek Ak

Ak < 0.
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= 2uk-2y +(2ik-ekAk-2uk)-0+eklk = 0.
i J i i ) )

Hence, the solution given by (42) solves (38).

Hence to solve (34)(37) one need only find the

appropriate Ak such that (35) is satisfied. Let

f(Ak). E maxfmin(e1;i1;-(elj`)2 , ekuk ) , Of
jE4 J J

+ E min{max(er.k-(elj`)241 , ekuk ) 01
jEJk

where 4=tj : ek > 01 and Jk=jj : ek < 01 for each k,

1 < k < p. Then we must find Ak such that f(Ak)=bk. So

yk(Ak) be expressed as follows:

for ek > 0,

k AY( k.
/

for ek < 0,

u k Ak <

ek

2(17k-u) 2y. j

k Ak < Ak <
k

y.k ek
2 ek ek

2y.

0 Ak
ek

2(ik_uk)



yk(ik) =

0

ik - ek Ak
j 2

A
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<

e k2iik 2(k-uk)
< 1k < i

e k e
k

2ii(k-uk)
Ak 1

ek

k)Clearly each yk(Afor j E ,J+ is piecewise linear and

kmonotonically nonincreasing and each yk(A
) for j E Jt is

piecewise linear and monotonically nondecreasing. Thus

each f(Ak) is piecewise linear and monotonically

nonincreasing. In this instance, a revised version of ALG

2.1 of Section 2.1.2 is used for obtaining Ak for the case

where the coefficients ek could take any value not equal

to zero. The revised algorithm follows.

ALG 3.3 ALGORITHM FOR Ak

Step 1 : Set k 1.

Step 2 : Initialization.

Let ak < ak < < ak denote the ordered 2n
1 2 k2n

k

2(ik uk) 2yk

breakpoints i i and for j=1,...,n
k

. If
ek ek

J j
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b < E ekuk where Jt = tj : ek > Of and
k

)
EJk J J

J_ = tj : e k
< 01, terminate with no feasible solution;

otherwise set 1k =1, rk=2n , Lk= E ekuk and
k jEJt j j

k_ vR - ekuk.
jEJk j j

Step 3 : Test for Bracketing.

If rk-1k=1, go to step 6; otherwise set m = [
2r 31

the greatest integer <
ik+rk

2

Step 4 : Compute New Value.

ak
Bk= E maxtmin(ekik-(ek)' m

jEJt J i 2

, a k

+ E mintmax(ekik-(ek)4
2
m

jEJt J > j

ekuk ) 01

J j

ekuk ) of.

j j

Step 5 : Update.

If Bk = b , terminate with Ak = ak. If Bk > b , set

ik= Lk= Bk, and go to step 3. If Bk < b , set

rk = m, Rk = Bk , and go to step 3.



Step 6 : Interpolate.

Terminate with
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k 1/1. Lk)(akk
Ak r

aik
Rk Lk

Step 7 : Increment.

Set k k + 1.

If k > p, terminate with a 1k for each of SCBVLP;

otherwise, go to step 2.

The subgradient optimization algorithm for problem

(NPCD) makes use of a lower bound, LBND, on the optimal

objective function in the termination criterion each time

the procedure is invoked. The following summarizes the

upper bound algorithm for problem (NPC).

ALG 3.4 ALGORITHM FOR UPPER BOUND

Step 1 : Initialization.

Initialize LBND, step size t and E.

Step 2 : Find Subgradient and Step Size.

Let x and 7 be the vectors of optimal primal and

dual variables for
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min
tci + Ms : ,2, A'x' + Is = r, s > 0,

i=o i=0

0 < x0 < u°,and for k=1,...,p 0 < xk < yk
j J

for j E 4 and yk < xk < uk for j E Jt }
J j j

Let UBND =

If (UBND-LBND) < cUBNDI, terminate with i near

optimal. Otherwise, let, for k=1,...,p,

c rk + if k kx = y and nonbasic
k= J f(i) t j

0 otherwise

=
1 1

1 nP

Step 3 : Move to New Point.

y P[y tv).

Adjust the step size t.

Step 4 : Repeat the Process.

Go to step 2.

3.3 An Algorithm for Problem NPO

The pure network problem with generalized upper bound

constraints can be implemented using decomposition (upper

bound algorithm) without the lower bound procedure. It is

also possible to obtain a lower bound on the optimal value
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of the problem (NPC) by implementing the lower bound

algorithm independently. By merging the two algorithms, a

procedure which adjusts the lower and upper bounds

progressively can be used.

The algorithm for the network with GUB constraints

problem begins with w (the vector of Lagrange multipliers

of the lower bound procedure) equal to 0, this involves

ignoring the GUB constraints and solving the network

portion. Let i denote the optimal solution to the network

problem. If the optimal solution to the pure network

problem satisfies the GUB constraints, the solution is

also optimal for the problem (YPC). Otherwise, a step is

taken in the direction of a subgradient of L at w = 0 and

a new w is determined. The optimal solution to the

initial p SCBVLP problems is obtained using ALG 3.1 for

the case when w=0. The initial solution in the upper

bound procedure is the solution x to the last pure network

problem solved in the lower bound procedure. The most

recent pure network solution in the previous lower bound

procedure is used in reoptimizing the network in the lower

bound algorithm each time it is invoked.

Each time the lower bound procedure is called, a

maximum of LITER iterations are performed. Each time the

upper bound procedure is called, a maximum of UITER

iterations are performed.
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ALG 3.5 ALGORITHM FOR THE PROBLEM YPC

Step 0 : Initialization.

Initialize UITER, LITER, step size d and e.

Let w = 0.

Let x solve

min
1cixi + Ms : A

i =0 1 =o
+ Is = r, s > 0,

0 < xi < ui,and for i=0,...,p }

If i satisfies the GUB constraints, terminate with x

optimal to the original problem.

Let i be an initial solution to p SCBVLPs. That is,

for each k, 1 < k < p,

0 if ek > 0

Y =
uk if ek < 0

Let 7L =( xl, . . . , yp - RP )t.

If AL = 0, terminate with R optimal.

Let w = d 1/1.

Adjust the step size d.

Let UBND = m and LBND = ciRj.
i =0

Step 1 : Set Iteration Count.

Set L 0 and U 0.
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Step 2 : Compute Lower Bounds.

a. Call ALG 3.2 (steps 2 and 3).

b. Set L 4-- L + 1.

If L < LITER, go to step 2a.

Step 3 : Compute Upper Bounds.

a. Call ALG 3.4 (steps 2 and 3).

b. Set U U + 1.

If U < UITER, go to step 3a.

Otherwise, go to step 1.

3.4 Finding an Initial Basic Feasible Solution

The initialization step of ALG 3.5 assumes that a

basic feasible solution with which to initiate the

algorithm can be found. The purpose of this section is to

describe a strategy for obtaining such a solution. For

this method a combination of original arcs and artificial

arcs are allowed to carry flow.

Assume the problem has been transformed so that all

lower bounds are zero. A heuristic procedure is used to

obtain the initial basic feasible solution; the main idea

of this procedure is to quickly find paths through the

network that will transport a large amount of items from

the supply nodes to the demand nodes.
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The heuristic first starts with the initialization

phase. Let the root node, ROOT, be equal to any one of

the supply nodes. For each demand node q E N, add an

artificial arc (ROOT,q) with cRooT,c, = uROOT,q = +03 .

These arcs are all made part of the spanni:ig tree, and

each is assigned an initial flow equal to the unsatisfied

demand at the node that is connected to the root, that is,

xROOT,q rq . The flow xROOT,q will be decreased if a

set of arcs is found that allows for the achievement of rq

from one or more supply nodes.

A list Si is then formed consisting of supply nodes,

ordered by magnitude of node number in the original

problem, with the node having the smallest number

appearing first in the list. For each node p E SL, define

a quantity US , which is called the undistributed supply.

Initially, US = -r for p E SL. Also for any node

p E SL, let T = ((p,q): (p,q) E A 1; T is simply the set

of all arcs whose "from" node is p. This completes the

initialization phase of the heuristic.

The main portion of the heuristic attempts to build

forward chains (directed paths) beginning at each supply

node and terminating at some node already in the tree.

Each chain consists initially of a single node and may be

extended by the addition of new nodes and connecting arcs.
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The node most recently added to the chain will be referred

to as the highest node on the chain. Chains are extended

only at the highest node. Eventually each chain is

connected to the spanning tree either by an artificial arc

from the highest node in the chain to the ROOT or by an

arc (p,q) E A, where p is the highest node in the chain

and q is a demand node.

The procedure consists of two phases. In phase 1,

part of a spanning tree is formed so as to transport the

undistributed supply to demands via chains. For each

supply node p with undistributed supply USp > 0, we append

an arc (p,q) E T with flow USp, cost of COSTP,q
and bound

of u if :

Piq

(i) q is a demand node, flow on arc (ROOT,q) is

positive, US
p

< u
Pig

and US
p

< xROOT,q'

(ii) q is either a transshipment or a supply node which

is not in any chain and US < u
P,q

In case (i) the chain is completed. In case (ii) q

becomes the highest node in the chain. If none of the

above cases hold, arc (p,q) may become nonbasic at its

upper bound if :

(iii) q is a demand node, flow on arc (ROOT,q) is

positive, u < US and u x
p,q p p,q < x ROOT,q.

(iv) q is either a transshipment or a supply node

which is not in any chain and u
p,q

< USp.
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If no q E T satisfies the last four cases p is connected

to the root node via an artificial arc having flow of USp;

and p is then removed from SL. The process is repeated

until SL = (0. At this point phase 1 is completed. In

phase 2, either artificial arcs or real arcs are added

with a flow of zero in order to connect the isolated

transshipment nodes to the tree so as to complete the

spanning tree.

ALG 3.6 : Findina An Initial (Artificial) Feasible Basis

(PHASE 1)

Step 0 : Begin.

Step 1 : Select First Node in Supply List (Si).

a. If SL= 4 , go to Step 9 (Check for termination)

Otherwise, let p be the first node in SL.

b. If p = ROOT, remove p from SL and go to Step 0.

Step 2 : Check for the Undistributed Supply.

If US =0, go to Step 8 (Connect p to ROOT).

Step 3 : Select a Node that is a To Node of p.

If T = , go to Step 8 (Connect p to ROOT).

Otherwise, let q be the first node in T .

If rq > 0, go to Step 4.

Otherwise, go to Step 5.
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Step 4 : A Demand Node.

a. (Demand is satisfied via real arcs)

If xROOT,q = 0, remove q from T and go to Step

3.

b. (Demand not completely satisfied via real arcs)

Go to Step 6.

Step 5 : A Supply or Transshipment Node.

a. If q is part of a chain, remove q from T and go

to Step 3.

b. Otherwise, go to Step 7.

Step 6 : A Demand Node May Receive Supply

a. (It is an arc that may be set to upper bound)

If u
p,q min[US

p
,xROOT,q ], let x

=u
P.4 P,4

US =US u, -u remove q
p,q ,

p p xROOT,exROOT

from T and go to Step 2.

b. (It is an arc that may become basic).

If US < u & US
p

< x
ROOTP.4 ,q

let xp,q=USp,

=ROOT,q xROOT,q- US US
P
= 0, connect the chain

with p as the highest node in the chain to the

tree via (p,q), remove p from SL and go to Step

1.

c. (It is an arc that cannot be set to upper bound or

made basic).

Remove q from T and go to Step 3.
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Step 7 : A Supply or a Transshipment Node May Transfer the

Supply.

a. (It is an arc that may be set to upper bound).

If u < US let x =u US =US -u
P,q p

p,q,

place q in the last position of Si with USq = USq

+ u remove q from T and go to Step 2.
P,q' P.

b. (It is an arc that may become basic).

If US < u
Pgq

, let x
P,4

=US
P

, remove p from SL,

extend the chain by connecting p to q via (p,q)

so that q becomes the highest node in the chain,

place q in the last position of SL with USq = US

+ USp , USp = 0, and go to Step 1.

Step 8 : Connect p to Tree With an Artificial Arc.

Remove p from SL. Create an artificial arc,

(p,ROOT) with cp,ROOT up,ROOT +c°' xp,ROOT

USp.. Connect the chain with p as its highest

node to the utmost right hand side of the tree

via (p,ROOT) and go to Step 1.

(PHASE 2)

Step 9 : Initialize Node Counter.

Let p = NUMSUP + NUMDEM + 1.

Step 10: Test for Connectedness of Tree

If all the transshipment nodes are connected to

the tree, Terminate.



137

Step 11: Connect to Tree With an Artificial Arc.

a. Create an artificial arc with cp,ROOT up,ROOT

= +m , xp,ROOT = 0. Connect (p,ROOT) to the

utmost right hand corner of tree.

b. (Increment node counter)

p = p + 1.

c. If p > number of nodes, Terminate.

d. Go to Step 10.
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CHAPTER 4

SOFTWARE DESCRIPTION

This chapter describes the use of NETGUB for the

solution of the network with GUB constraints problem. The

primary purpose is to provide documentation of the

subroutines which compose the optimization software.

4.1 Data Structures

NETGUB makes use of 14 arclength arrays to store arc

information. The arcs are rearranged internally with all

arcs incident from node 1, followed by all arcs incident

from node 2, ..., followed by all arcs incident from node

NODES. Table 4.1 gives the use of each of the fourteen

arrays and the name of the subroutines that make use of

these arrays. NETGUB makes use of 9 nodelength arrays to

store node information. Table 4.2 gives the use of each

of the nine arrays and the name of the routines that make

use of them. Three GUBlength arrays are used to

represent the GUB information. Table 4.3 gives the use of

each of these arrays and the name of the routines that

make use of them.
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Table 4.1 : ArcLength Arrays

Arc
length
arrays

Description Subroutines that
use these

ARCNAM Name of arc
INPUT,INIT,LBALG,UBALG
PURNET,REOPT

COST Unit cost on arc
INPUT,INIT,LBALG,UBALG
PURNET,REOPT,START

CTEMP Temporary unit cost INPUT,INIT,LBALG
or net change in
unit cost on arc

PURNET

GCOEF Coefficient of arc INPUT,INIT,LBALG,UBALG
in the GUB SCBVLP,REOPT,PROJOP
constraint UINIT

INIT,BASSAV,BASRED
GFLOW Flow on arc LBALG,UBALG,PURNET

SCBVLP,REOPT,START
UINIT

GUBADD Arc address
INPUT,INIT,LBALG,UBALG
SCBVLP,PROJOP,UINIT

LGMULT Lagrange multiplier
corresponding to an
arc

INIT,LBALG,SCBVLP

LOWER Lower bound on INPUT,INIT,LBALG,UBALG
arc flow PURNET,REOPT
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Table 4.1 (continued)

Arc
length
arrays

Description Subroutines that
use these

STATUS Status of an arc. INPUT,INIT,BASSAV
0, if arc is basic; BASRED,LBALG,UBALG
1, if arc is
nonbasic at lower
bound; 2, if arc
is nonbasic at
upper bound; 3, if
arc is fixed.

PURNET,REOPT,START

TO To node of an arc
INPUT,INIT,LBALG,UBALG
PURNET,REOPT,START

UPPER Upper bound on INPUT,INIT,LBALG,UBALG
arc flow PURNET,SCBVLP,REOPT

PROJOP,START,UINIT

UTEMP Temporary upper UINIT,UBALG,REOPT
bound or net change
in upper bound on
arc flow

PROJOP

YFLOW Flow on arc that is
in a GUB constraint

INIT,LBALG,SCBVLP

ZFLOW Flow on arc that is UINIT,UBALG,PROJOP
in a GUB constraint REOPT
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Table 4.2 : NodeLength Arrays

Node
length
arrays

Description Subroutines that
use these

BASIS

CARD

FLOW

FROM

LNOD

NVAL

PI

PRED

THD

Arc joining node with
its predecessor. +,
if arc is (p(i),i);
-, if arc is (i,p(i))

Cardinality of a node
in the basis tree

Flow on basic arc
(:i,p(i)) or (p(i),i)

The location of the
first arc in the TO
array with node as
its fromnode

Last node in the
subtree of this node

Node requirement

Dual variable value

Predecessor node

Thread node

INIT,BASSAV,BASRED
LBALG,UBALG,PURNET
REOPT,START

INIT,BASSAV,BASRED
LBALG,UBALG,PURNET
REOPT,START

INPUT,INIT,BASSAV
BASRED,LBALG,UBALG
PURNET,REOPT,START

INPUT,INIT,LBALG
UBALG,PURNET,REOPT
START

INIT,BASSAV,BASRED
LBALG,UBALG,PURNET
REOPT,START

INPUT,INIT,START

INIT,LBALG,UBALG
PURNET,REOPT

INIT,BASSAV,BASRED
LBALG,UBALG,PURNET
REOPT,START

INIT,BASSAV,BASRED
LBALG,UBALG,PURNET
REOPT,START
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Table 4.3 : GUBLength Arrays

GUB
length
arrays

Description Subroutines that
use these

GVAL Right hand side of a INPUT,INIT,LBALG
GUB constraints UBLAG,SCBVLP,PROJOP

UINIT

NUMVRG Number of arcs in a INPUT,INIT,LBALG
GUB constraints UBALG,SCBVLP,UINIT

REDGUB Determines if a GUB INPUT,INIT,LBALG
constraint can be
eliminated. 1, if
yes; 0, if no.

UBALG,UINIT
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Table 4.4 gives the use of each of the constant

parameters. Before compiling NETGUB, one has to decide on

the maximum size problem required to be solved. The

dimensions of the parameters should be changed to

accommodate the desired size problem. The dimensions are

currently set to 2000 for arclength arrays, 500 for

nodelength arrays and 1000 for GUBlength arrays. The

parameters are currently set to 20 and 10, respectively,

for maximum iterations for lower and upper bound

procedures, and .01 for tolerance.

4.2 Main Program and Subroutines

This section concentrates on the description of the

different subroutines called in the main program. Figure

4.1 shows the various subroutines that constitute the main

program for solving the network with GUB constraints

problem. Descriptions of each subroutine follow. In the

following discussions i will designate an arbitrary node,

while j and k will denote an arc and a GUB constraint,

respectively.

A. Subroutine INPUT

There are four sets of information that are specified

in the input; the nonzero requirements at nodes; the

number of GUB constraints; the number of variables in each
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Table 4.4 : Constant Parameters

Constant
parameter Type Description

EPSILON R*8 Tolerance on the difference
between lower and upper bound on
the objective function value at
termination

LITER I Maximum iterations for the lower
bound procedure

MAXARC I Maximum number of arcs

MAXGUB I Maximum number of GUB constraints

MAXNOD I Maximum number of nodes

UITER I Maximum iterations for the upper
bound procedure



A. INPUT
reads the data files
and puts it in a format
that can be used in
the network optimizer

B. INIT
finds an optimal sot-
to the pure network

problem
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J. OUTPUT
stop if there is
no such solution

print results

Figure 4.1 : Flow Diagram of the Main Program
for the Network with GUB
Constraints Problem



C. LBALG
finds a lower bound
on the problem

D. BASSAV
saves the optimal sol.
to the latest pure
network problem used
in the lower bound

procedure

either or

G. UBALG
finds an upper bound
for the problem
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J. OUTPUT
stop if optimal
or near optimal
sol is found
print the sol.

H. BASSAV
saves the optimal sol-
for the latest pure
network problem that
was solved in the
upper bound procedure

I. BASRED
reads the optimal sol.
for the latest pure
network problem that
was solved in the
lower bound procedure

Figure 4.1 (continued)
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E. UINIT
finds an initial
solution for the
decomposition

problem
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F. BASRED
reads the optimal
solution to the
latest pure net-
problem that was
solved in the
upper bound alg-

Figure 4.1 (continued)
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GUB constraint and the RHS value; and for each arc, the

arc name, from node, to node, cost, upper bound , lower

bound and coefficient in GUB constraint (0, if not in a

GUB constraint).

The input format used for all data and an example

(file 8) is given in Appendix A. The input file is

capable of storing successive problems in one file.

This routine sets up the data structures for the

arclength arrays ARCNAM(j), FROM(j), TO(j), COST(j),

UPPER(j), LOWER(j) and GCOEF(j); NVAL(i); and all

GUBlength arrays. The number of arcs, ARCS, number of

nodes, NODES, and the total number of arcs in the GUB

constraints, GARCS, are determined as the data is read in.

This routine introduces a dummy node, DUMMY, when the

total supply exceeds total demand; however, when total

demand exceeds total supply, the problem is declared

infeasible. Unlike some other pure network input files,

the number of arcs out of each node need not be specified,

since the routine calculates these, NUMOUT(i), as the arc

information is read in.

This routine also converts the problem to one with

zero lower bounds and at the same time adjusts for the

objective function value, TCOST, of the network problem

and also adjusts for the right hand side value of the GUB

constraints in the following way:
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Repeat for all j E A

If LOWER(j) 0, then :

UPPER(j) = UPPER(j) LOWER(j).

TCOST = TCOST + LOWER(j) * COST(j).

If j appears in kth GUB constraint, then:

GVAL(k) = GVAL(k) LOWER(j) * GCOEF(j).

To account for the GUB constraint feasibility or for the

constraints that can always be satisfied and hence can be

eliminated, the following inner loop is used:

Repeat for all 1 < k < NGUBS

TGVAL = SGVAL = 0.

Repeat for all j E A that are in the kth GUB

constraint

If GCOEF(j) > 0, then :

TGVAL = TGVAL + UPPER(j) * GCOEF(j)

If GCOEF(j) < 0, then :

SGVAL = SGVAL UPPER(j) * GCOEF(j).

If TGVAL < GVAL(k), then REDGUB(k) = 1.

If GVAL(k) < -SGVAL, then the problem is

declared infeasible.

The CTEMP array is used, in this routine only, to

temporarily store SGVAL for each GUB constraint.
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B. Subroutine INIT

This routine is set up to find an initial basic

feasible solution for the lower bound procedure that was

described in the initialization step (Step 0) of ALG 3.5

in Section 3.3. Figure 4.2 shows the various subroutines

that are included in this subroutine.

This routine first attempts to find an initial

feasible solution to the pure network portion of the

problem by using the following subroutine.

a. Subroutine START

This routine makes use of an advanced start procedure

discussed in Section 3.4 to produce an initial basic

feasible solution and whenever necessary, introduces

artificial variables. At the beginning of the routine the

status of the data structure should be exactly as at the

end of the input routine. Then ALG 3.6 is followed to

find an initial (artificial) basic feasible solution.

Also the data structure for the arc length arrays GFLOW(j)

and STATUS(j); and for the node length arrays BASIS(i),

CARD(i), LNOD(i), PRED(i), THD(i), FLOW(i) and PI(i) are

set up.

Every time the flow associated with node i, FLOW(i),

is determined, the objective function value, TCOST, is

adjusted as follows
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a. START
finds an initial (artificial) basic
feasible solution for the pure network
portion of the problem

b. PURNET
solves for the pure network portion of

the problem

Figure 4.2 : Flow Diagram of the INIT Subroutine
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TCOST = TCOST + FLOW(i) * COST(ABS(BASIS(i))).

Upon completion of routine START, the data structures

for the network problem are all set up. The routine INIT

then makes use of this advanced starting solution to

optimize the pure network portion of the problem.

b. Subroutine PURNET

The routine PURNET performs primal simplex iterations

until optimality criteria are satisfied. The algorithm

procedures makes use of the BigM method to produce a

feasible solution ( if the problem is feasible) and then

the optimal solution. The cost of artificial variables

(the value of M) used in the procedure is 100000. At the

end of this routine the following arrays contain the

information for the optimal solution:

GFLOW, STATUS, PI, BASIS, CARD, LNOD, PRED, and FLOW.

The optimal objective function value is contained in

TCOST.

At the end of the PURNET routine, the array GFLOW

corresponds to the optimal solution x in step 0 of ALG 3.5

in Section 3.3. At this point the routine INIT attempts

to find an optimal solution for the initial SCBVLPs. The

array YFLOW corresponds to an optimal solution y in step 0
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of ALG 3.5 and is determined as follows:

Repeat for all j E A that are in the kth GUB

If REDGUB(k) = 0, then :

If GCOEF(j) > 0, then YFLOW(j) = 0.

Else YFLOW(j) = UPPER(j).

LGMULT(n) = LBSTEP * (YFLOW(j) GFLOW(j)).

If REDGUB(k) = 1, then :

YFLOW(j) = GFLOW(j).

LGMULT(n) = 0.

The Lagrange multiplier array, LGMULT, is arranged with

respect to the location of the arc in the input file.

That is, LGMULT(n) is the lagrange multiplier

corresponding to the nth arc in the input file with an arc

address of GUBADD(n). The reason this array is stored in

this manner will become clear later when one desires to

order the components of the LGMULT array.

This routine also determines the array CTEMP. This

array is used in routine LBALG to determine the new cost

coefficients of the pure network problem in step 2 of ALG

3.2 in Section 3.1.
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Repeat for all GUB k

Repeat for j E A that are in the kth GUB

CTEMP(j) = The net change in unit cost of the

pure network problem.

= 0 if REDGUB(k) = 1

LGMULT(n) if REDGUB(k) = 0.

At the end of routine INIT, a lower bound on the

objective function value of the network with GUB

constraints problem, LBND, exists. At this point an upper

bound on the objective function value of the problem,

UBND, is set arbitrarily to a large positive number.

C. Subroutine LBALG

This routine recomputes the value of LBND, the lower

bound on the objective function value of problem (YPO)

using steps 2 and 3 of ALG 3.2. Figure 4.3 shows the

various subroutines that are called in this routine.

The first time this routine is called, the status of

the arrays should be exactly the same as at the end of

routine INIT. The optimal solution of the pure network

problem of step 0 of ALG 3.5 is used as an advanced

starting point for this network problem (step 2 of ALG

3.2). In the subsequent calls the status of the arrays

BASIS, CARD, FLOW, GFLOW, LNOD, PRED, STATUS and THD are
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a. PURNET
finds an optimal solution for the pure network
problem that has undergone unit cost change(s)

b. SCBVLP
finds an optimal solution for each single
constraint bounded variable linear program

Figure 4.3 : Flow Diagram of the LBALG Subroutine
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exactly as at the end of routine BASRED. In any case, the

unit costs are changed so the TCOST is recomputed. In

this instance, TCOST would be the corresponding objective

function value for the present initial feasible solution.

The changes are done in the following inner loop:

Repeat for all j E A

If GCOEF(j) 0, then :

CTEMP(j) = COST(j) LGMULT(n).

Else CTEMP(j) = COST(j).

TCOST = TCOST + CTEMP(j) * GFLOW(j)

where n is the location of arc j in the LGMULT array.

Thus, CTEMP is used here as the array of unit costs for

the routine PURNET and it is this array that is passed on

to it and not the array COST. Having the right unit

costs, routine PURNET with arguments: ARCNAM, BASIS, CARD,

CTEMP, FLOW, FROM, FROMO, GFLOW, LNOD, LOWER, PI, PRED,

STATUS, THD, TO, and UPPER is called to solve for the

network problem. At the end of routine PURNET, GFLOW

contains the information for the optimal solution x in

step 2 of ALG 3.2.

To solve for the SCBVLPs in step 2 of ALG 3.2,

routine SCBVLP is constructed. This routine is called

once for each GUB constraint with value of 0 in the
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corresponding component of REDGUB.

b. Subroutine SCBVLP

This routine solves for each GUB constraint (SCBVLP)

separately. The arguments that are passed to this routine

are: GVAL(k), GFLOW, GUBADD, GCOEF, LGMULT, LOCI, LOC2,

NUMVRG(k), UPPER, and YFLOW, where k is the GUB constraint

currently being solved for in this routine; initially LOCI

and LOC2 are, respectively, the locations of the first and

the last arcs of the kth GUB constraint in the input file.

This routine makes use of ALG 2.3 of Section 2.1.5 to

solve the SCBVLP. Array YFLOW would be constructed one

component at a time to contain the information for the

optimal solution y of step 2 of ALG 3.2.

Let n indicate the location of an arc anywhere

between LOCI and LOC2 inclusive for the kth GUB

constraint. Let j be the arc corresponding to location n,

i.e., j = GUBADD(n). YFLOW is constructed differently

depending on whether

(i) GCOEF(j) > 0 and LGMULT(n) > 0 ;

(ii) GCOEF(j) < 0 and LGMULT(n) < 0;

(iii) either GCOEF(j) > 0 and LGMULT(n) < 0,

or GCOEF(j) < 0 and LGMULT(n) > O.

This routine rearranges the arcs so that the arcs
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belonging to case (iii) are followed by the arcs that

belong to either case (i) or case (ii). At this point

LOC2 is revised to be the location of the last arc that

belongs to case (iii). Let LASTRC be the location of the

last arc in this GUB constraint. Then, the arcs in LOCI

to LOC2 satisfy case (iii), and arcs in locations LOC2 + 1

to LASTRC belong to either case(i) or case (ii). The arcs

in locations LOCI to LOC2 are then sorted according to

step 4 of ALG 3.1 and the array YFLOW is constructed. The

following loop shows how these components of YFLOW are

computed. At the same time the adjusted right hand side

value of the GUB constraint ADJVAL is computed. Initially

ADJVAL stores the number E
k
in step 3 of ALG 3.1.

Repeat for all n E LOCI, LASTRC

If GCOEF(j) > 0 and LGMULT(n) > 0, then :

YFLOW(j) = 0.

If GCOEF(j) < 0, then :

ADJVAL = ADJVAL GCOEF(j) * UPPER(j).

If LGMULT(n) < 0, then :

YFLOW(j) = UPPER(j)

LBND = LBND + LGMULT(n) * YFLOW(j).

What is left is the construction of those components

of YFLOW that follow case (iii). To do this, a routine
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LOCSORT is used that finds the ordered values

LGMULT(n)
for all n E [LOC1,LOC2]

GCOEF(j)
(1)

as was explained in step 4 of ALG 3.1. This routine is a

slight modification of the routine HPSORT [ Nijenhuis and

Wilf (1978, p. 140)]. The arguments that are passed to

this routine are : NUM, LOCI., LOC2, LGMULT, GCOEF, and

GUBADD. At the end of this routine the arcs in locations

LOC1 to LOC2 of the input file, and hence LGMULT, are

rearranged so that arc j in LOCI is the one with the

smallest ratio (1), j in LOCI + 1 is the second smallest

ratio (1), ..., and j in LOC2 is the one with the
n
k

largest ratio (1). Having the ordered ratios, step 5 of

ALG 3.1 is used to construct the remaining components of

YFLOW. The following loop does this:

Repeat for all j in location n E [LOC1,LOC2]

If GCOEF(j) > 0, then :

YFLOW(j) = min I UPPER(j)
ADJVAL

GCOEF(j)

ADJVAL = ADJVAL GCOEF(j) * YFLOW(j).

Else
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(

YFLOW(j) = UPPER(j) min {UPPER(j),
ADJVAL

-GCOEF(j) J

ADJVAL = ADJVAL + GCOEF(j) (UPPER(j) -YFLOW(j))

LBND = LBND + LGMULT(n) * YFLOW(j)

Hence, routine SCBVLP terminates with an optimal solution

to the kth SCBVLP problem.

Returning to routine LBALG, if k is equal to NGUBS,

then we are all done with the SCBVLPs; otherwise, the

(k + 1)st SCBVLP is solved by returning to routine SCBVLP.

After all of the SCBVLPs are done the routine recomputes

the components of the array LGMULT and constructs the

array CTEMP as the net change in unit costs of the

problem. The following loop does this :

Repeat for all jEA

CTEMP(j) = LBSTEP ( YFLOW(j) GFLOW(j) )

LGMULT(n) = LGMULT(n) CTEMP(j)

After computing the components of the arrays LGMULT and

CTEMP the optimality criteria is checked. The optimality

is reached either when YFLOW(j) is equal to GFLOW(j) for

all j E A, or when (UBND LBND) is less than or equal to

EPSILON IUBNDI. In this case we return to the main
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program with FLGOPT equal to 1.

D. Subroutine BASSAV

This routine saves the optimal solution of the pure

network problem. The arguments that are passed to this

routine are : BASIS, CARD, FLOW, GFLOW, LNOD, PRED, STATUS

THD and either LBOBAS or UBOBAS, where LBOBAS and UBOBAS

are logical units for scratch files. If this routine is

called after the routine LBALG, then the status of the

arrays are exactly as at the end of routine LBALG and

LBOBAS is the scratch file that stores the values of these

arrays to be recalled later on. If this routine is called

after the routine UBALG, then the status of the arrays are

exactly as at the end of routine UBALG and UBOBAS is the

scratch file that stores these values.

At this instance, the optimal solution is stored to

be used in subroutine LBALG on the next set of iterations.

On returning to the main program NETGUB, a lower

bound on the objective function value of the program

exists. If no feasible solution for the decomposition

algorithm is known, then routine UINIT is the next routine

that is called; otherwise, routine BASRED is called.
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E. Subroutine UINIT

This routine is set up to find an initial basic

feasible solution for problem (NPOD) using the last

solution of the pure network problem in routine LBALG.

The ZFLOW array corresponds to a solution z for

problem (NPOP). Initially, for each GUB constraint k the

arrays ZFLOW and UTEMP are set as follows:

Repeat for j E A that are in the kth GUB

If REDGUB(k) = 0, then

ZFLOW(j) = GFLOW(j).

If GCOEF(j) > 0, then UTEMP(j) = UPPER(j).

Else UTEMP(j) = 0.

SUM = SUM + ZFLOW(j) * GCOEF(j).

Else If GCOEF(j) > 0, then ZFLOW(j) = UPPER(j)-

Else ZFLOW(j) = 0.

UTEMP(j) = 0.

If for any GUB constraint k, SUM is equal to GVAL(k), then

components of ZFLOW that correspond to this GUB are all

feasible; otherwise, routine PROJOP is used to find a

feasible set of components. A description of routine

PROJOP follows.
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c. Subroutine PROJOP

This routine makes use of ALG 3.3 to find a feasible

solution to problem (YPOD). This routine deals with one

GUB constraint at a time. The breakpoints are stored in

array BRKPNT, and the sum L and R at step 2 of ALG 3.3 are

computed as these breakpoints are found, in the following

manner.

Set T = R = 0.

Repeat for each GUB k

Repeat for all j E A that are in the kth GUB

BRKPNT(i) 2 (ZFLOW(j) UPPER(j))

GCOEF(j)

BRKPNT(i+1) 2 ZFLOW(j)

GCOEF(j)

If GCOEF(j) > 0, then :

L = L + UPPER(j) * GCOEF(j).

If GCOEF(j) < 0, then :

R = R + UPPER(j) * GCOEF(j).

These breakpoints are ordered using a Heap sort. An

implementation of the HPSORT routine is given in Nijenhuis

and Wilf (1978, p. 140). The code used in NETGUB was also

obtained from Nijenhuis and Wilf (1978, p. 140). The
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array needed for the HPSORT routine is BRKPNT together

with the variable 2*NUMVRG(k). At the end of the HPSORT

routine the BRKPNT array is sorted into nondecreasing

order. It is this array of breakpoints that is used in

steps 4 through 6 of ALG 3.3 to compute 1k and store the

value in variable LAMDA. Li, L2, Ri and R2 are the

variables that store the values of 1k, Lk, rk, Rk in the

algorithm, respectively. Having determined LAMDA, the

corresponding components of ZFLOW are adjusted and at the

same time the array UTEMP is determined as the following:

Repeat for all j E A that are in this kth GUB

If GCOEF(j) > 0, then :

2(ZFLOW(j) UPPER(j))If LAMDA , then
GCOEF(j)

ZFLOW(j) = UPPER(j).

Else if LAMDA < 0, then :

ZFLOW(j) = ZFLOW(j) GCOEF(j) *
LAMDA

2

Else ZFLOW(j) = 0.

UTEMP(j) = ZFLOW(j) UTEMP(j).

The array UTEMP(j) is used to store the difference between

the previous feasible solution and the current feasible

solution ZFLOW determined in the routine PROJOP. This
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array is used for a different purpose in the UBALG

routine.

F. Subroutine BASRED

This routine reads the optimal solution of the pure

network problem. The arguments that are passed to this

routine are : BASIS, CARD, FLOW, GFLOW, LNOD, PRED, STATUS

THD and either LBOBAS or UBOBAS, where LBOBAS and UBOBAS

are logical units for scratch files. If this routine is

called before the routine LBALG, then the arrays are

reconstructed for the optimal solution of the pure network

problem that was obtained in the last iteration of routine

LBALG from the scratch file LBOBAS. If this routine is

called before the routine UBALG, then the arrays are

reconstructed for the optimal solution of the pure network

problem that was obtained in the last iteration of routine

UBALG from the scratch file UBOBAS.

At this point, the information is read in from the

scratch file UBOBAS to be used in routine UBALG.

G. Subroutine UBALG

This routine recomputes the value of UBND, the upper

bound on the objective function value of problem (NPC)

using steps 2 and 3 of ALG 3.4. Figure 4.4 shows the

various subroutines that are called in this routine.
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a. REOPT
finds an initial basic feasible solution
for the pure network problem that has
undergone bounds changes

b. PURNET
finds an optimal solution for the
network problem with new bounds

pure

C. PROJOP
finds a feasible solution for

decomposed problem
the

Figure 4.4 : Flow Diagram of the UBALG Subroutine
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The first time this routine is called, the values of

the arrays BASIS, CARD, FLOW, GFLOW, LNOD, PRED, STATUS,

and THD are exactly as at the end of routine LBALG; but in

the subsequent calls the values of these arrays are

exactly as at the end of routine BASRED. The values in

the remaining arrays are exactly as at the end of routine

LBALG.

The network problem in step 2 of ALG 3.4 is converted

to a problem with zero lower bounds and the objective

That is, for arc j,

for GCOEF(j) = 0;

for GCOEF(j) > 0;

ZFLOW(j) for GCOEF(j) < 0.

But since the value of ZFLOW(j) might change from one

iteration to the next, a reoptimization procedure for

upper bounds changes that was discussed in Section 2.1.1.2

is used to find an advanced starting feasible solution for

the network problem. At this point the vector UTEMP

contains the net change in the upper bounds that was

obtained in the last call of routine PROJOP. Here, the

values of array UTEMP is exactly as at the end of routine

PROJOP.

function value is readjusted.

0 < GFLOW(j) < UPPER(j)

0 < GFLOW(j) < ZFLOW(j)

0 < GFLOW(j) < UPPER(j)

a. Subroutine REOPT

When there is a change in the bounds of the network
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problem in step 2 of ALG 3.4, this routine recomputes the

values of the basic variables, i.e. the array FLOW; and

hence GFLOW. The routine makes four arclength passes to

determine the new values of FLOW and hence GFLOW. In the

first pass PROCEDURE X2D of Section 2.1.1.2 is used to

compute the vector of reduced requirements. On the second

pass the vector of reduced requirements is adjusted to

account for the upper bound changes of nonbasic arcs only

( if any exists). On the third pass this vector of

reduced requirements is used to construct the flows on the

basic arcs by using PROCEDURE D2X of Section 2.1.1.2. At

this point, it is possible that the basic flows are either

negative or larger than their upper bounds. Hence, the

fourth pass adjusts for the basic flows that exceed their

bounds as was discussed in case 2b of CHANGING AN UPPER

BOUND in Section 2.1.1.2. It is at this pass that the

UTEMP array is reconstructed to be the new upper bound on

all the variables, that is, for all j E A

UTEMP(j) = UPPER(j) if GCOEF(j) = 0;

UTEMP(j) = ZFLOW(j) if GCOEF(j) > 0;

UTEMP(j) = UPPER(j) - ZFLOW(j) if GCOEF(j) < 0.

These values of the arrays FLOW, GFLOW and UTEMP are

passed along to routine UBALG.

Back in routine UBALG, the routine PURNET with the
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vector of upper bounds UTEMP is called to solve for the

pure network problem with GFLOW as an advanced starting

feasible solution.

Having an optimal solution to the pure network

problem, the routine stops with a near optimal solution if

(UBND LBND) is less than or equal to EPSILON IUBNDI;

otherwise, the arrays of the subgradient UBSUBG and the

feasible solution ZFLOW are constructed.

Three arclength passes are made to determine UBSUBG

and the new values of ZFLOW. In the first pass step 2 of

ALG 3.4 is used to compute the subgradient. This is done

as follows:

Repeat for all j E A with j = (f(j),t(j))

If STATUS(j) = 2 and GCOEF(j) > 0 or

STATUS(j) = 1 and GCOEF(j) < 0, then :

UBSUBG(j) = COST(j) + PI(f(j)) PI(t(j)).

NORM = NORM + II UBSUBG (j) II2 .

where NORM is the variable that stores the norm of the

subgradient. This would provide a tool for using any of

the schemes (i) (iv) that was discussed in Section

2.1.3. Presently UBSTEP is set to be
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On the second pass the new vector of ZFLOW that

corresponds to point y t,, in step 3 of ALG 3.4 is

computed.

Repeat for GUB k

Repeat for all n E [LOC1,LASTRC] with j=GUBADD(n)

If REDGUB(k) = 0, then

ZFLOW(j) = ZFLOW(j) - UBSTEP * UBSUBG(j)

If REDGUB(k) = 1, then :

UTEMP(j) = 0

If GCOEF(j) > 0, then ZFLOW(j) = UPPER(j)

Else ZFLOW(j) = 0.

On the third pass, the array ZFLOW is computed so

that it is feasible for problem (YPOP). At the end of

routine PROJOP, ZFLOW would be the next feasible solution

to problem (HOD).

H. Subroutine BASSAV

At this point, this routine stores the information in

scratch file UBOBAS for use in the next set of iterations

of routine UBALG.
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I. Subroutine BASRED

At this point, this routine reads in the information

from the scratch file LBOBAS for use in the next set of

iterations of routine LBALG.

J. Subroutine OUTPUT

This routine produces the objective function values

and the solution for both the lower and upper bound

procedures. It also reports the total number of lower and

upper bound iterations that were performed before reaching

optimality or near optimality. This routine may be

modified to produce an output report to specification for

a given application.
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CHAPTER 5

COMPUTATIONAL EXPERIMENTS

In this chapter a summary of some experimental

results with the software described in Chapter 4 will be

presented. The experiments were intended to give some

general notion on the performance of the software and also

to point out factors that have a substantial effect on

this performance.

5.1 Test Problems

The algorithm has been tested on a set of 13

problems. All the problems were generated using the

NETGEN (Klingman, Napier and Stutz (1974)) program to

randomly generate the pure network portion of the problem.

These pure network problems were solved using the NETFLO

program (Kennington and Helgason (1980, p. 244)), a

largescale pure network problem solver. The idea was to

use the pure network optimal solution in generating the

GUB constraints portion so that the (network) solution

remains feasible to the GUB constraints.
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For each problem, the GUB constraints portion was

generated as follows. A permutation of the arcs was

determined. For each GUB constraint k, 1 < k < p, the

number of variables in that GUB constraint, n , was

randomly generated. These numbers have a lower bound

limit of 2 to ensure that each GUB constraint would

consist of at least two variables. Then the first n

variables in the permutation were selected as the set of

variables in the first GUB constraint, the next n were
9

selected as the set of variables in the second GUB

constraint, ..., the next n were selected as the set of
p

variables in the pth GUB constraint and the remaining

variables were chosen to be the set of variables not in

any GUB constraint. Having a set of variables for each

GUB constraint, the coefficients of these variables were

then generated to be within prespecified bounds (the lower

bounds ranged from -5 to -2 and the upper bounds ranged

from 2 to 5). These coefficients were further checked to

ensure for their nonzero values. Any coefficient having a

value of zero was then regenerated until a nonzero one was

found. These coefficients together with the pure network

solution provided a way for generating a right hand side

value for each GUB constraint. In generating these

values, the feasibility criteria (step 1 of ALG 2.3) of

the GUB constraint was enforced. At this point the cost
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coefficients of the arcs with nonzero values in the pure

network solution were increased by the amount c
max

defined to be the maximum of the cost coefficients in the

original pure network problem, to ensure that the pure

network solution was not optimal to the network with GUB

constraints problem. Note that a problem generated in

this manner is known to be feasible, with the pure network

solution not optimal to the problem. Table 5.1 shows the

main characteristics of these sample problems.

5.2 Performance Criteria

Experimental testing was carried out on a SUN 3/50

workstation which uses a MOTOROLA 68020 CPU with 68881

numeric coprocessor, running at 16 MHZ. The

computational results reported are the number of

iterations performed for the lower and upper bound

procedures before reaching a prespecified tolerance e.

The SUN FORTRAN function DTIME was considered for timing

purposes; however due to the fact that solution time

depends upon the number of users on the computer and also

the available space on hard disk no times are reported.

For example, problem 1 reached the 1% tolerance in 3.2

seconds and the 0.5% tolerance in 5.6 seconds on a day the

computer was not overloaded, whereas on a day the computer

was overloaded it took 32.4 seconds to reach the 0.5%
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Table 5.1 : Sample Problems

Problem
Number

Nodes Arcs Number of
GUBs

Percentage of
Arcs in GUBs

1 10 30 12 93.33%

2 50 250 75 99.20%

3 50 500 75 79.60%

4 50 500 75 99.60%

50 500 100 97.60%

6 100 500 100 99.80%

7 200 500 100 74.60%

8 50 1000 75 97.20%

9 50 1000 100 97.80%

10 50 1000 100 78.80%

11 200 1000 100 80.30%

12 50 2000 75 75.00%

13 200 2000 100 90.15%
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tolerance. This indicated that the timings were not

reliable. For the 1% tolerance the algorithm made 42

lower bound iterations and 20 upper bound iterations. For

the 0.5% tolerance the number of lower and upper bound

iterations were 100 and 45 respectively.

5.3 Step Sizes

As was mentioned in Section 2.1.3 step sizes play an

important role in the convergence of the lower and upper

bound algorithms. For this reason different step sizes

were tried to find one suitable for these types of

problems. As was also mentioned in Section 4.2, the step

size used in the upper bound procedure is

(UBND - LBND)/2117/ H
2

, where LBND is the best lower bound

value and q is the upper bound subgradient. This scheme

seems to work fairly well. For example, in problem 2 UBND

was within 0.5% of optimality in 10 upper bound

iterations; in problem 4 it was within 0.7% of optimality

in 275 upper bound iterations; and in problems 5 and 6 it

was within 0.5% of optimality in 34 and 273 upper bound

iterations, respectively. Hence the main interest was

focused on the lower bound step sizes. A description of

some of the lower bound step sizes that were tried

together with their effect on convergence follows.
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(a) Fixed Step Size. This would fall in the

category of step sizes of scheme (i) in Section 2.1.3.

The step sizes used were d
i

= ed. , where d is
1-1 0

prespecified and a is a real number less than 1. This

proved to be a very poor choice since for small step sizes

the change in the cost coefficients and hence the change

in the objective function value of the pure network

subproblems becomes very small, thus causing the LBND to

recycle (that is, the same LBND value was repeated).

Secondly this normally occurs a long way from optimality

since the adjustment of the step sizes is not based on the

behavior of the lower bound function. Even if the initial

solution is close to the optimal solution, the convergence

depends on the choice of d which in turn requires some
0

prior knowledge of the optimal objective function value,

which one obviously does not have.

(b) Step Size Based on the Lower Bound Subqradient.

The step sizes are of the form d
i I 1

where qi is
1

the lower bound subgradient at the ith iteration and A. is

a constant. The difficulty arises in the choice of 1..

Ideally, if the solution to the current lower bound

problem is close to feasibility, a small step size should

be taken; whereas for solutions far away from feasibility

a larger step size should be taken. But how large is

large? It is clear that A. equal to some prespecified
1
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value A , is a poor choice since d may then be large for
0

small values of q, that is, as the solution gets closer

to feasibility a larger step size is taken. A good choice

of A. would seem to be one that reflects some measure of
1

the violations of the GUBs. Hence A. = MAXVLNi was

chosen, where MAXVLNi is the maximum violation in a GUB

constraint after the ith iteration.

An attempt was made to restrict the step sizes so

that an improved lower bound value on the problem is

guaranteed at each lower bound iteration, i.e. so the

sequence of lower bounds was monotonically increasing.

This was tried by limiting the step sizes to be the

maximum of the current step size and the largest of the

previous step sizes taken. This proved to have the same

effect as the fixed step size approach. This is due to

the fact that by limiting the step sizes, we force the

lower bound function value to go in one direction only

which might not be the "best" direction, that is, the

direction might be a direction of descent rather than

ascent.

Table 5.2 summarizes the effect of decreasing e on

the problems when using d. = (MAXVLN.)/11/1
.112 as the lower

bound step sizes. For each problem and for a given c, the

first number in the table is the total number of lower

bound iterations and the second entry is the number of



179

Table 5.2 : Effect of Decreasing e
(DNC -4 Did not converge after 2000 lower
bound or 1000 upper bound iterations)

Problem
Number

E

5% 3% 1% 0.5%

1 (20) (8) (30) (10) (42) (20) (100) (45)

2 (20)(1) (23)(10) (151)(70) (600)(298)

3 (20)(1) (20)(1) (188)(90) (624)(310)

4 (20)(1) (60)(26) (2000)(1000 DNC

5 (42)(20) (184)(90) (1219)(600) DNC*

6 (80)(32) (171)(80) (1183)(590) DNC

7 (20)(1) (33)(10) (693)(340) (1994)(990)

8 (31)(10) (90)(40) (1197)(590) DNC

9 (122)(60) (534)(260) DNC** DNC

10 (46)(20) (80)(35) (1220)(602) DNC

11 (60)(22) (300)(150) DNC*** DNC

12 (20)(1) (20)(2) (116)(50) (233)(110)

13 (20)(1) (40)(12) (1020)(510) DNC

The .55% tolerance was achieved after 2000 lower
bound and 1000 upper bound iterations.

** The 2% tolerance was achieved after 2000 lower
bound and 1000 upper bound iterations.

*** The 1.4% tolerance was achieved after 2000 lower
bound and 1000 upper bound iterations.
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upper bound iterations before reaching the tolerance e.

Recall that the program always performs 20 lower bound

iterations before going to the upper bound algorithm

(unless, of course, feasibility is reached in the lower

bound algorithm). It is clear from these problems that

the percentage of arcs in the GUB constraints has a major

effect on the number of iterations performed and hence on

the solution effort. For example, problems 3 and 4 are of

the same size (50 nodes and 500 arcs). 79.60% and 99.60%

of the arcs in problems 3 and 4, respectively, are in the

GUB constraints. 188 lower bound and 90 upper bound

iterations were needed before reaching the 1% tolerance in

problem 3 whereas 2000 lower bound and 1000 upper bound

iterations were needed in problem 4 to reach the same

tolerance level. It is also clear that the convergence of

the lower bound algorithm is quite slow. Consequently,

further investigation is needed on the lower bound step

sizes in order to improve on the rate of convergence of

the lower bound algorithm.

5.4 Initial Lower Bound Solution

This section investigates the effect of the initial

lower bound value for the problem on the convergence rate

of the algorithm. Note that since w=0 initially (step 1

of ALG 3.2), the initial lower bound value on the problem
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is equal to the optimal objective function value of the

original pure network portion of the problem.

Table 5.3 demonstrates the percentage difference

between the best UBND value at a given tolerance f and the

initial lower bound value. For instance, at the 3%

tolerance, the difference between the initial lower bound

value and the best UBND value is 1.80% for problem 3,

3.08% for problem 13, and 6.35% for problem 6. By

comparing the number of lower bound iterations from Table

5.2 with the percentages in Table 5.3 (both at the 3%

tolerance), it appears that when the initial lower bound

is within 4% of the best upper bound, the algorithm almost

always requires fewer than 100 lower bound iterations.

This suggests that an improved estimate of w in

calculating L (w) in initialization could greatly enhance

the performance of the lower bound algorithm. This is

investigated further with the following example

Consider problem 6 at the 3% tolerance level. From

Table 5.2 we can see that this tolerance level was

achieved after 171 lower bound and 80 upper bound

iterations. Table 5.4 presents a summary of the best

lower bound and upper bound values on the problem at some

selected iteration counts. The initial lower bound value

is 5.62% different from the optimal objective value of the

problem. It is clear from Table 5.4 that the improvement
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Table 5.3 : Distance Between the Initial Lower Bound Value
and the Best Upper Bound.

Problem
Number 5% 3% 1% 0.5%

1 9.31% 9.00% 8.38% 8.10%

2 7.19% 7.14% 7.07% 6.99%

3 1.80% 1.80% 1.47% 1.22%

4 4.19% 3.42% 2.91%

5 6.00% 5.69% 5.68% 5.68% *

6 6.73% 6.35%

7 3.44% 3.13% 2.83% 2.83%

8 8.07% 7.63% 7.01%

9 8.96% 8.37% 8.24% **

10 13.49% 13.39% 12.67%

11 5.19% 3.92%

12 3.59% 3.53% 3.01% 2.95%

13 4.03% 3.08% 1.93%

At 0.55% tolerance level.
At 2% tolerance level.
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Table 5.4 : Performance of Problem 6 Before Reaching
the 3% Tolerance Level

Total Number
of Lower
Bound

Iterations

Total Number
of Upper
Bound

Iterations

The Best
LBND
Value

The Best
UBND
Value

20 1 148777.13 166168.27
20 10 148777.13 160756.39
30 10 149137.08 160756.39
40 20 149534.85 159397.58
50 20 149918.59 159397.58
60 30 150284.27 158926.75
70 30 150597.03 158926.75
80 40 150941.40 158669.89
90 40 151318.02 158669.89

100 50 151645.62 158495.93
110 50 151919.13 158495.93
120 60 152210.06 158383.68
130 60 152496.88 158383.68
140 70 152737.78 158283.46
150 70 153020.51 158283.46
160 80 153198.63 158237.85
170 80 153438.83 158237.85
171 80 153491.91 158237.85

Optimal Value = 157005.08
Initial Lower Bound Value = 148184.00
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of the lower bound values are quite small. For example,

at the end of the 20th iteration, the difference between

the best lower bound value and the optimal value is 5.24%,

while the lower bound value has only had a 0.40%

improvement (in 20 iterations). At the 60th iteration,

this difference is 4.28%, with an improvement of 1.40%

over the initial lower bound value. At the 170th

iteration, the difference is 4.28%, with an improvement of

3.4% (over the initial lower bound value). On the

contrary, the best UBND values are doing quite well. At

the first iteration, the UBND value is within 5.51% of

optimality; at the end of the 10th upper bound iteration,

the best UBND has improved by 3.26%, giving a value that

is within 2.33% of optimality. At the end of the 20th

iteration, the best UBND value is within 1.5% of

optimality; at the end of the 50th iteration, the best

UBND value is within 0.94% of optimality, an improvement

of over 4.62% from the first UBND value. At 3% tolerance,

the best lower bound value is within 2.24% of optimality,

whereas the best upper bound value is within 0.78%. This

example indicates that if a better initial lower bound

value were available, near optimality could have been

reached for a smaller number of lower bound iterations and

consequently the solution effort could have been reduced.
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5.5 Lower and Upper Bound Iteration Strategies

Recall that the algorithm is developed so that the

lower bound procedure is performed initially before the

upper bound procedure; in addition, the code is written so

that a set of 20 lower bound iterations are invoked before

a set of 10 upper bound iterations. These values were

arbitrarily selected; however it appears from these

experiments that one may need to find a better initial

strategy for the problem in order to improve on the

performance of the algorithm. This is further illustrated

by means of an example.

Consider problem 3 at the 3% tolerance level. This

tolerance level is achieved after 20 lower bound and 1

upper bound iterations. Table 5.3 shows that the

difference between the best UBND value and the initial

lower bound value is 1.80%. This indicates that if one

knew what the UBND value would have been prior to

performing the lower bound procedure, only one lower bound

iteration would have been needed to reach the 3% tolerance

(and therefore also the 5% tolerance level). It might be

advantageous to perform one of each of the lower and upper

bound iterations and compute the difference between the

two bounds before deciding on the number of lower and

upper bound iterations.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

A relaxation and decomposition algorithm for the

network problem with generalized upper bound side

constraints was presented. The solution technique was

developed to take advantage of the structure of the side

constraints and simultaneously maintain as many of the

characteristics of the pure network problems as possible.

The sequence of relaxation problems, which yields lower

bound values on the problem, has a fairly slow convergence

rate to optimality. On the other hand, the sequence of

decomposition problems which yields upper bound values on

the problem seems to perform quite well. The solution

technique seems best suited for a realworld situation in

which one must quickly obtain nearoptimal solutions.

6.1 Results of the Research

The purpose of this research was to develop and

computationally test a new algorithm for the class of

network with GUB side constraints problem. This class of

problem is included in the class of network with arbitrary
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side constraints problem; however, no algorithm that

exploits the special structure of the GUB side constraints

had previously existed. The proposed algorithm solved the

network with GUB side constraints problem using two

sequences of problems. One sequence corresponded to

computing improved lower bounds while the other

corresponded to computing tighter upper bounds on the

optimal value of the problem.

The lower bound procedure was developed to bound the

optimal value from below by using a Lagrangean relaxation

based on relaxing copies of some subset of the original

variables. The Lagrangean relaxation, of course, did not

enforce feasibility of the GUB constraints; hence a

penalty was assessed when the solution to the pure network

subproblem violated the GUB constraints. It was further

established that a lower bound value could be found by

first solving a pure network subproblem and then solving a

set of single constraint bounded variable LPs. Because

only the cost coefficients changed from one pure network

subproblem to another (subproblem), the optimal solution

for one subproblem was at least feasible, if not optimal,

for the next pure network subproblem.

The upper bound procedure was developed to bound the

optimal value from above by using a decomposition of the

problem based on changes in the capacity vector. Solving
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for the decomposed problem corresponded to solving for

pure network subproblems that had undergone bounds

changes. The reoptimization procedures were used in

finding a (artificial) feasible solution to a pure network

subproblem by making use of the optimal solution to the

previous pure network subproblem.

The Lagrangean relaxation and decomposition

techniques have been widely used in mathematical

programming, but no solution technique based on these was

available for the network models with GUB side

constraints; thus their performance for this class of

problems had been unknown. The NETGUB program was

developed for solving the network with GUB constraints

problems by utilizing the relaxation and decomposition

techniques.

The computational experiments indicated that further

improvements on the mechanics of the lower bound procedure

are needed to produce a more efficient algorithm. Further

work is also required on the coding of the program itself

to increase the efficiency of the algorithm.

6.2 Suggestions for Further Research

This section summarizes the suggestions that were

raised in Chapter 5 for further improving the performance

of the algorithm.
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(a) It would be advantageous to find another way of

initializing the problem in order to obtain a better

initial lower bound value. The main difficulty here is in

choosing an initial value for w. One would like to take

advantage of the initial optimal solution to the pure

network portion of the problem to choose a w so that the

violations in the GUB constraints are reduced.

(b) It is clear from the experiments of Chapter 5

that further investigation on the lower bound step sizes

is needed. The difficulty here is that these step sizes

have to satisfy the conditions of Section 2.1.3; they also

have to reflect the behavior of the lower bound function;

and, in addition, they have to work for all the problems

equally well. It is possible that one overall scheme may

not do well for a given problem. One may need to have two

schemes; one scheme when the lower bound values are far

away from optimality (this may be determined by some

measure of the tolerance) so that larger steps are taken,

and another one when the lower bound value is close to

optimality.

(c) It appears from the experiments that a better

iteration strategy for the problem is needed. Is it

advantageous, in the long run, to initially do one

iteration of each of the lower and upper bound algorithms?

The difficulty is in finding a strategy that works well
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for every given problem. Suppose that for a given problem

one iteration of each of the algorithms is performed and

the difference between the two bounds are calculated. If

this difference is smaller than the prespecified tolerance

level, the algorithm should clearly stop with a near

optimal solution. If the difference is close but a little

larger than the prespecified tolerance level, one strategy

might be to perform one additional iteration of each of

the algorithms. If the difference is large, it is not

clear what the strategy should be since one has no idea

which of the values needs to be improved the most. One

possibility is to perform a set of lower bound iterations

until small changes in the lower bound values are detected

before going to the upper bound algorithm.
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APPENDIX A

Example Data File

NETGUB has the capability of solving successive

problems in one run. The following is a description of

the data required to specify each problem. In what

follows, 18 indicates an integer field of 8 characters

right justified, 2X indicates two blank spaces, A8

indicates a character field of 8 characters and F10.2

indicates a real field of 10 characters.

Card Compo-
Group sition

1 One
Card

2 Card
Set

3 One
Card

4 Card
Set

5 One
Card

6 Card
Set

NODSEC (node section title)
(A8)

Node Number, Node Requirement (nonzeros
(A8) 2X (110) only

GUBSEC (GUB section title)
(A8)

Number of GUB constraints
(I8)

Number of var. in a GUB RHS value
(18) 2X (F10.2)

(ordered by GUB constraint number)

ARCSEC (arc section title)
(A8)

Name, from, to, unit cost,
(A8) 2X (A8) 2X (A8) 2X (F10.2)
upper bound, lower bound,

(F10.2) (F10.2)
coefficient in a GUB constraint

(F10.2)
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The arcs in set 6 are arranged with all arcs that are in

the first GUB constraint, followed by all arcs in the

second GUB constraint, ..., followed by all arcs in the

pth GUB constraint.

Example :

Minimize 10x + 190x + 142 x + 6x + 53x + 109x +
1 2 3 4 5 6

48x + 60x + 123x + 123x + 54x + 67x

Subject to

7 8 9 10 11 12

-x = -2
10

-x -x -x = -1
1 5 6

X -X -MX = 0
1 11 12

x +x +x -x -x = 0
3 4 6 7 9

x +x -x -x = 0
4 5 8 12

-X -X +x +x = 0
2 3 7 10

+X +X = 2
9 11

X +x = 1
2 8

x -4x -3x < 2.60
3 4 5

-x +2x -4x +2x +4x < 15.28
6 7 8 9 10

-x -x < 0.05
11 12

0 < X1 < 7 , 0 < x2 < 5 , 0 < x3 < 5 ,

0 < x4 < 6 , 0 < x5 < 17 , 0 < x6 < 7 ,

0 < x <
7

7 , 0 < x < 17 , 0 < x- < 5 ,

0 < < 5 , 0 < x < 17 0 < x < 17 ,

10 11
,

12



199

Input rile for the Example

NODSEC
1

2

7

8

GUESEC
3

-2
-1
2
1

3 2.60
5 15.28
2 0.05

ARCSEC
3 6 4 142.00 5.00 0.00 1.00

4 5 4 6.00 6.00 0.00 -4.00

5 2 5 53.00 17.00 0.00 -3.00

6 2 4 109.00 7.00 0.00 -1.00

7 4 6 48.00 7.00 0.00 2.00

8 5 8 60.00 17.00 0.00 -4.00

9 4 7 123.00 5.00 0.00 2.00

10 1 6 123.00 5.00 0.00 4.00

11 3 7 54.00 17.00 0.00 -1.00

12 5 3 67.00 17.00 0.00 -1.00

1 2 3 10.00 7.00 0.00 0.00

2 6 8 190.00 5.00 0.00 0.00
ENDATA
ENDPRB
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C

C

APPENDIX B

NETGUB Source Listing

PROGRAM NETGUB

INTEGER DIMARC,DIMNOD,DIMGUB,DIMGARC
DOUBLE PRECISION LBSTEPZ
PARAMETER(DIMARC=2500)
PARAMETER(DIMNOD =500)
PARAMETER(DIMGUB=500)
PARAMETER(DIMGARC=2500)
PARAMETER(LBSTEPZ=.5)

C
C ARRAYS
C

CHARACTER*8 ARCNAM( DIMARC), NODNAM(DIMNOD),DATAFILE,OUTFILE
INTEGER BASIS(DIMNOD),CARD(DIMNOD),FROM(DIMARC),

1 FROMO(DIMARC),LNOD(DIMNOD),ORDER(DIMARC),
1 NUMVRG(DIMGUB),NVAL(DIMNOD),
1 PRED(DIMNOD),REDGUB(DIMGUB),GUBADD(DIMARC),
1 STATUS(DIMARC),THD(DIMNOD),
1 TO(DIMARC),LSTEP,USTEP,LITER,UITER,FIRSTME
DOUBLE PRECISION COST(DIMARC),FLOW(DIMNOD),GFLOW(DIMARC),

1 CTEMP(DIMARC),LGMULT(DIMARC),PI(DIMNOD),
1 UPPER(DIMARC),YFLOW(DIMARC),ZFLOW(DIMARC),
1 UTEMP(DIMARC),GCOEF(DIMARC),
1 GVAL(DIMGUB),LOWER(DIMARC),GARB(2*DIMARC)

C
C LOCAL VARIABLES
C

INTEGER DUMMY,ENDATA,PROB,LBOBAS,UBOBAS
C

EQUIVALENCE (IND,CARD),(LEFT,PRED),(RIGHT,THD),
(NUMOUT,LNOD),(FROMO,ORDER)

INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBLITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG I
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPS ILON,BIG 1
DOUBLE PRECISION LBSTEP,ILBSTEP,MAXSTEP
COMMON /STEP/ LBSTEP,ILBSTEP,MAXSTEP



C

C

C
C
C

C

DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE
COMMON /BOUNDS/ LBND,LBNDPRE,UBND,UBNDPRE
INTEGER FSITER
COMMON /FEAS/ FSITER
DOUBLE PRECISION ALPHA
COMMON /ALP/ ALPHA
INTEGER NGVLT
COMMON /NGV/ NGVLT

INTEGER MLITER,MUITER,TLITER,TUITER

DATA ENDATA /'ENDATA '/

MAXARC=DIMARC
MAXNOD=DIMNOD
MAXGUB=DIMGUB
BIG1=999999999999.0
BIG=9999999999
PROB=0
FIRSTME=1
MLITER=2000
MUITER=1000

ALPHA=2.0D0
C
C SET THE LOWER BOUND STEP SIZE
C

ILBSTEP = LBSTEPZ
LBSTEP=LBSTEPZ

C
C INITIALIZE TOTAL NUMBER OF ITERATION FOR EACH ALGORITHM
C

LITER=20
UITER=10
TLITER=0
TUITER=0
FSITER=0

C
C SET THE TOLERANCE
C

OPEN(2,file='fort.2')
REWIND 2
READ(2,1050) EPSILON

1050 FORMAT(F10.5)
C

READ(*,*) DATAFILE
READ(*,*) OUTFILE
OPEN(5,fi le=--'fort.5')
REWIND 5
OPEN(8,file=DATAFILE)
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REWIND 8
OPEN(6,file=OUTFILE)

C OPEN(6,file='fort.6')
REWIND 6
READ (5,*) ITRMAX,ITROBJ,ITROUT,SAVBAS

C
C STORE THE FINAL NETWORK BASIS IN THESE FILES
C

C

C

LBOBAS=10
UBOBAS=14

OPEN(LBO B AS ,form='UNFORMA 1ED' ,status =' SCRATCH' )
OPEN(UB OB AS ,form=' UNFORMATTED ' ,status='SCRATCH')
OPEN(11,form='UNFORMA11ED',status='SCRATCH')
OPEN(13, form =' UNFORMATTED ' ,status=' S CR ATCH')

IF (ITRMAX .EQ. 0) THEN
ITRMAX=100000

ENDIF
IF (ITROBJ .EQ. 0) THEN

ITROBJ=BIG
ENDIF
IF (ITROUT .EQ. 0) THEN

ITROUT=BIG
ENDIF

C
C READ IN PROBLEM DATA
C
C

C
C

10 CONTINUE
PROB=PROB+1
WRITE (6,1000) PROB

CALL INPUT(ARCNAM,COST,C'TEMP,FLOW,FROM,GCOEF,GUBADD,GVAL,
IND,LEFT,LOWER,NODNAM,NUMOUT,NUMVRG,NVAL,
ORDER,REDGUB,RIGHT,STATUS,TO,UPPER)

C
C
C CHECK FOR BAD PROBLEM DATA FILE
C

IF (FLGERR .EQ. -1) THEN
WRITE (6,2000)
GOTO 30

ENDIF
C
C DONE WITH ALL PROBLEMS?
C

IF (FLGEND .EQ. 1) GOTO 30
C
C ANY ERRORS?



C
IF (FLGERR .NE. 0) THEN

WRITE(6,3000) PROB
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C
C IF THERE WERE FATAL ERRORS CHECK TO SEE IF ENTIRE PROBLEM WAS
C READ IN. IF IT WASN'T, MOVE TO START OF NEXT PROBLEM.
C

IF (FLGERR .EQ. 1) THEN
20 READ (8,4000) DUMMY

IF (DUMMY .NE. ENDATA) GOTO 20
ENDIF
GOTO 10

ENDIF
C
C
C INITIALIZE THE PROBLEM
C
C

C

C

C

CALL INIT(ARCNAM,BASIS,CARD,COST,CTEMP,FLOW,FROM,FROMO,
GARB,GFLOW,GUBADD,GVAL,GCOEF,LGMULT,LNOD,
LOWER,NUMVRG,NVAL,PI,PRED,REDGUB,STATUS,THD,TO,
UPPER,YFLOW)

IF (FLGITR .EQ. 1) THEN
WRITE(6,5000)

ENDIF

IF (FLGOPT .EQ. 1) THEN
WRITE (6,6000)
WRITE(6,*) 'TCOST = ',TCOST
GO TO 70

ENDIF

IF (FLGINF .EQ. 1) GO TO 70
C
60 CONTINUE

C
C INITIALIZF. NUMBER OF ITERATION FOR EACH ALGORITHM
C

LSTEP=0
USTEP=0

C
4() CONTINUE

C
C SOLVE THE LOWER BOUND ALGORITHM
C

C

LSTEP=LSTEP+1
TLITER=TLITER+1

CALL LB ALG (ARCN A M,B AS IS ,C ARD,COS T ,CTEMP,FLOW,FROM,FRO MO,
GCOEF,GFLOW,GUBADD,GVAL,LGMULT,LNOD,
LOWER ,NUM VRG,PI,PRED,REDGUB ,S TATUS ,THD,TO,
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UPPER,YFLOW)
IF (FLGOPT .EQ. 1 .OR. FLGINF .EQ. 1) THEN

GO TO 70
ENDIF

C
IF(TLITER .GT. MLITER) GO TO 70
IF ( LSTEP .LT. LITER) GO TO 40
CALL BASSAV(BASIS,CARD,FLOW,FROMO,GFLOW,LNOD,PRED,STATUS,THD,

LBOBAS)
C
C INITIALI7F THE UPPER BOUND PROCEDURE
C

IF (FIRSTME .EQ. 1) THEN
CALL UINIT(GARB,GFLOW,GUBADD,GVAL,GCOEF,NUMVRG,REDGUB,

UPPER,UTEMP,ZFLOW)
FIRSTME=0

ELSE
CALL BASRED(BASIS,CARD,FLOW,FROMO,GFLOW,LNOD,PRED,STATUS,

THD,UBOBAS)
ENDIF

C
50 CONTINUE

C
C SOLVE THE UPPER BOUND ALGORITHM
C

C

C

C

USTEP=USTEP+1
TUITER=TUITER+ I

CALL UBALG(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,GCOEF,
GFLOW,GUBADD,GVAL,LNOD,LOWER,NUMVRG,PI,
PRED,REDGUB,STATUS,THD,TO,UPPER,UTEMP,
ZFLOW,GARB)

IF (FLGOPT .EQ. 1) THEN
GO TO 70

ENDIF
IF (FLGINF .EQ. 1) THEN

FLGINF
GO TO 100

ENDIF

IF (TUITER .GT. MUITER) GO TO 70
IF (USTEP .LT. UITER) GO TO 50

CALL BASSAV(BASIS,CARD,FLOW,FROMO,GFLOW,LNOD,PRED,STATUS,THD,
UBOBAS)

C
100 CALL BASRED(BASIS,CARD,FLOW,FROMO,GFLOW,LNOD,PRED,STATUS,THD,

LBOBAS)
GO TO 60

C OPTIMALITY REACHED



C
70 CONTINUE

C
C
C
C PRINT RESULTS
C

CALL OUTPUT(ARCNAM,BASIS,CARD,COST,FLOW,FROMO,LNOD,LOWER,
PRED,STATUS ,THD,TO,UPPER,YFLOW,ZFLOW,
GFLOW,UTEMP,GCOEF)

C
C
C PRINT ITERATION COUNTS
C
C WRITE(6,7000) ITRTOT,ITRREG,ITRBTB,ITRDEG

WRITE(6,7500) TLITER,FSITER,TUITER
C
C PRINT TIMING RESULTS
C
C
C
C ALL DONE WITH THIS PROBLEM
C

GOTO 10
C
C ALL DONE WITH PROBLEM SET
C

C

CLOSE(I1)
CLOSE(13)

30 CONTINUE
C
C FORMATS
C
1000 FORMAT(//1X,'****** PROBLEM NUMBER ',I3,' BEGINS ******')
2000 FORMAT(//1X,'BAD SECTION HEADER ENCOUNTERED')
3000 FORMAT(//1X,'EXECUTION NOT ATTEMPTED ON PROBLEM ',I3)
4000 FORMAT(A8)
5000 FORMAT (//1X,'****** ITERATION LIMIT EXCEEDED ******71X,

* 'BASIS AND DATA STRUCTURES SAVED')
6000 FORMAT(//1X,'****** OPTIMAL SOLUTION FOUND ******')
7000 FORMAT(//1X,'TOTAL NUMBER OF PIVOTS =',I6/1X,

'NUMBER OF REGULAR PIVOTS =',I6/1X,
'NUMBER OF BOUND-TO-BOUND PIVOTS =',I6/1X,
'NUMBER OF DEGENERATE PIVOTS =',I6)

7500 FORMAT(//1X,'TOTAL NUMBER OF LOWER BOUND ITERATIONS
'TOTAL NO. OF UB ITERS TO REACH FEASIBILITY =',I6/1X,
'TOTAL NUMBER OF UPPER BOUND ITERATIONS =',I6)

8000 FORMAT(//1X,'TIME FOR INPUT =',F9.2)
9000 FORMAT(1X,'TIME FOR SOLUTION =',F9.2)

C
STOP
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END
C
C
C
C**** **********************************************************

SUBROUTINE BASSAV (BASIS,CARD,FLOW,FROMO,GFLOW,LNOD,PRED,
1 STATUS,THD,UNIT)

C**** **********************************************************

C
C SUBROUTINE ARGUMENTS
C

INTEGER BASIS(*),CARD(*),LNOD(*),PRED(*),STATUS(*),THD(*),UNIT,
* FROMO(*)
DOUBLE PRECISION FLOW(*),GFLOW(*)

C
C LOCAL VARIABLES
C

C

C

INTEGER I

DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXN0D,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES,ROOT,EPSILON,BIG1

REWIND UNIT
C
C SAVE DATA STRUCTURES
C

DO 10 I=1,NODES
WRITE(UNIT) PRED(I),THD(I),CARD(I),LNOD(I),BASIS(I),FLOW(I),

FROMO(I)
10 CONTINUE

WRITE(UNIT) ROOT
C
C SAVE ARC STATUS
C

DO 20 I=1,ARCS
WRITE(UNIT) GFLOW(I),STATUS(I)

20 CONTINUE
RETURN
END

C
C
C
C
C
C**** ********************************************************

SUBROUTINE B AS RED (B AS IS ,CARD,FLOW,FRO MO,GFLOW,L NOD,PRED,
1 STATUS,THD,UNIT)

C * * ** *******************************************************

C
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C SUBROUTINE ARGUMENTS
C

INTEGER B ASIS(*),CARD(*),LNOD(*),PRED(*),STATUS(*),THD(*),UNIT,
* FROMO(*)
DOUBLE PRECISION FLOW(*),GFLOW(*)

C
C LOCAL VARIABLES .

C

C
INTEGER I

DOUBLE PRECISION TCOST,EPSILON,BIG I
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NG UBS ,NODES ,ROOT,EPSILON,BIG1
C
C READ DATA STRUCTURES
C

REWIND UNIT
DO 10 I=1,NODES

READ(UNIT) PRED(I),THD(I),CARD(I),LNOD(I),BASIS(I),FLOW(I),
FROMO(I)

10 CONTINUE
READ(UNIT) ROOT

C
C READ ARC STATUS
C

DO 20 I=1,ARCS
READ(UNIT) GFLOW(I),STATUS(I)

20 CONTINUE
RETURN
END

C
C
C
C
c**** ****************************************************************

SUBROUTINE OUTPUT (ARCNAM,BASIS,CARD,COST,FLOW,FROMO,LNOD,LOWER,
1 PRED , STATUS ,THD,TO,UPPER,YFLOW,ZFLOW,
1 GFLOW,UTEMP,GCOEF)

0,*** ****************************************************************

C
C SUBROUTINE ARGUMENTS
C

CHARACTER*8 ARCNAM(*)
INTEGER BASIS(*),CARD(*),FROMO(*),LNOD(*),PRED(*),STATUS(*),

* THD(*),TO(*)
DOUBLE PRECISION COST(*),FLOW(*),LOWER(*),UPPER(*),YFLOW(*),

ZFLOW(*),GFLOW(*),UTEMP(*),GCOEF(*)
C
C LOCAL VARIABLES
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INTEGER BASISI,DUMMY,I,UNIT

INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB, ITRDEG, ITRMAX ,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXN0D,NGUBS,NODES,

* ROOT
COMMON /FARM/ TCOST,ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXN0D,

NG UB S ,NODES ,ROOT,EPS ILON,B IG 1
DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE
COMMON /BOUNDS/ LBND,LBNDPRE,UBND,UBNDPRE
INTEGER NGVLT
COMMON /NGV/ NGVLT

C
C
C PRINT LAST SOLUTION FOR THE LOWER BOUND PROCEDURE
C
C
C READ IN THE DATA
C

C
C

CALL LBRED(BASIS,CARD,FLOW,GFLOW,LNOD,PRED,STATUS,THD,YFLOW)

WRITE(6,9000)
C
C CHECK FOR FEASIBILITY OF CURRENT SOLUTION
C
C IN INTERMEDIATE CALLS TO OUTPUT, FEASIBILITY IS CHECKED.
C
C AT OPTIMALITY, FEASIBILITY HAS ALREADY BEEN DETERMINED
C AND EITHER FLGINF OR FLGOPT IS 1.
C
C

IF (FLGINF+FLGOPT .EQ. 0) THEN
DO 30 I=1,NODES

IF (IABS(BASIS(I)) .EQ. ARTADD .AND. FLOW(I) .NE. 0) THEN
FLGINF=1
GOTO 25

ENDIF
30 CONTINUE
25 CONTINUE

ENDIF
IF (FLGINF .EQ. 1) THEN

WRITE (6,1000)
FLGINF=0

ENDIF
C
C WRITE OUT NONZERO ARC INFORMATION
C

WRITE (6,2000)
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DO 40 I=1,NODES
BASISI=BASIS(I)
FLOVV(I)=FLOW(I)+LOWER(IABS(BASISI))
IF (FLOW(I) .NE. 0) THEN

IF (BASISI .LT. 0) THEN
K=IABS(BASISI)
WRITE (6,3000) K,I,PRED(I),FLOW(I),COST(IABS(BASISI))

ELSE
WRITE (6,3000) BASISI,PRED(I),I,FLOW(I),COST(BASISI)

ENDIF
ENDIF

40 CONTINUE
C
C LOOK FOR NONBASIC ARCS AT UPPER BOUNDS
C

WRITE(6,4000)
DO 50 I=1,ARCS

IF (STATUS(I) .EQ. 2) THEN
UPPER(I)=UPPER(I)+LOWER(I)
WRITE(6,3000) I, FROMO(I),TO(I),UPPER(I),COST(I)

ENDIF
50 CONTINUE

C
C LOOK FOR NONBASIC ARCS AT LOWER BOUNDS
C

WRITE(6,5000)
DO 60 I=1,ARCS

IF (STATUS(I) .EQ. 1 .AND. LOWER(I) .NE. 0) THEN
WRITE(6,3000) I, FROMO(I),TO(I),LOWER(I),COST(I)

ENDIF
60 CONTINUE

C
C LOOK FOR FIXED ARCS
C

WRITE (6,6000)
DO 70 I=1,ARCS

IF (STATUS(I) .EQ. 3) THEN
WRITE (6,3000) I, FROMO(I),TO(I),LOWER(I),COST(I)

ENDIF
70 CONTINUE

C
C PRINT OBJECTIVE FUNCTION VALUE
C

WRITE (6,7000) LBNDPRE
C

WRITE(6,*) 'NUMBER OF VIOLATED GUBS',NGVLT
C
C PRINT SOLUTION FOR UPPER BOUND PROCEDURE
C
C
C
C READ IN THE DATA
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C
C
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CALL UBRED(BASIS,CARD,FLOW,GFLOW,LNOD,PRED,STATUS,THD,ZFLOW)

WRITE(6,9500)
C
C CHECK FOR FEASIBILITY OF CURRENT SOLUTION
C
C IN INTERMEDIATE CALLS TO OUTPUT, FEASIBILITY IS CHECKED.
C
C AT OPTIMALITY, FEASIBILITY HAS ALREADY BEEN DETERMINED IN SOLVE
C AND EITHER FLGINF OR FLGOPT IS 1.
C
C

IF (FLGINF+FLGOPT .EQ. 0) THEN
DO 120 I =1,NODES

IF (IABS(BASIS(I)) .EQ. ARTADD .AND. FLOW(I) .NE. 0.00) THEN
FLGINF=1
GOTO 125

ENDIF
120 CONTINUE
125 CONTINUE

ENDIF
IF (FLGINF .EQ. 1) THEN

WRITE (6,1000)
FLGINF=0

ENDIF
C
C WRITE OUT NONZERO ARC INFORMATION
C

WRITE (6,2000)
DO 130 I=1,NODES

BASISI=BASIS(I)
FLOW(I)=FLOW(I)+LOWER(IABS(BASISI))
IF (GCOEF(ABS(BASISI)) .LT. 0.00) THEN

FLOW(I)=FLOW(I)+ZFLOW(ABS(BASISI))
ENDIF
IF (FLOW(I) .NE. 0.00) THEN

IF (BASISI .LT. 0) THEN
K=IABS (BASISI)
WRITE (6,3000) K,I,PRED(I),FLOW(I),COST(IABS(BASISI))

ELSE
WRITE (6,3000) BASISI,PRED(I),I,FLOW(I),COST(BASISI)

ENDIF
ENDIF

130 CONTINUE
C
C LOOK FOR NONBASIC ARCS AT UPPER BOUNDS
C

WRITE(6,4000)
DO 140 I=1,ARCS

IF (STATUS(I) .EQ. 2) THEN
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IF (GCOEF(I) .LT. 0.00) THEN
UPPER(I)=UPPER(I)+LOWER(I)

ELSE
UPPER(I)=ZFLOW(I)+LOWER(I)

ENDIF
WRITE(6,3000) I,FROMO(I),TO(I),UPPER(I),COST(I)

ENDIF
140 CONTINUE

C
C LOOK FOR NONBASIC ARCS AT LOWER BOUNDS
C

WRITE(6,5000)
DO 150 I=1,ARCS

IF (GCOEF(I) .LT. 0.00) LOWER(I)=LOWER(I)+ZFLOW(I)
IF (STATUS(I) .EQ. 1 .AND. LOWER(I) .NE. 0.00) THEN

WRITE(6,3000) I, FROMO(I),TO(I),LOWER(I),COST(I)
ENDIF

150 CONTINUE
C
C LOOK FOR FIXED ARCS
C

WRITE (6,6000)
DO 160 I=1,ARCS

IF (STATUS(I) .EQ. 3) THEN
WRITE (6,3000) LFROMO(I),TO(I),LOWER(I),COST(I)

ENDIF
160 CONTINUE

C
C PRINT OBJECTIVE FUNCTION VALUE
C

WRITE (6,7000) UBNDPRE
C
C FORMATS
C
1000 FORMAT(//1X,'****************************'/1X,

'* INFEASIBLE SOLUTION *71X,
****************************,)

2000 FORMAT(//1X,'NONZERO FLOWS71X,'BASIC ARCS'/1X,
* ' INDEX FROM TO FLOW',

COST')
3000 FORMAT(1X,31.8,2F15.5)
4000 FORMAT(/IX,'NONBASIC ARCS AT UPPER BOUND'/1X,

INDEX FROM TO FLOW',
COST')

5000 FORMAT(/1X,'NONBASIC ARCS AT LOWER BOUND' /1X,
* ' INDEX FROM TO FLOW',
* ' COST')

6000 FORMAT(/1 X,'FIXED ARCS '/ I X,
* ' INDEX FROM TO FLOW',

COST')
7000 FORMAT( / /IX,'OBJECTIVE FUNCTION VALUE =',F20.6)
9000 FORMAT(//1X,'*****************************71X,
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'* LOWER BOUND PROCEDURE *'/1X,
,*****************************,)

9500 FORMAT(//1X,'*****************************71X,
'* UPPER BOUND PROCEDURE *'/1X,
,****************************,)

999 CONTINUE
RETURN
END

C
C
C**** *************************************************************

SUBROUTINE INPUT (ARCNAM,COST,CTEMP,FLOW,FROM,GCOEF,GUBADD,
GVAL,IND,LEFT,LOWER,NODNAM,NUMOUT,NUMVRG,
NVAL ,OR DER,REDGUB ,RIGHT, STATUS ,TO,UPPER)

C**** **************************************************************

C
C SUBROUTINE ARGUMENTS
C

C

C

CHARACTER*8 ARCNAM(*),NODNAM(*)

INTEGER REDGUB(*),FROM(*),GUBADD(*),IND(*),LEFT(*),
* NUMOUT(*),ORDER(*),RIGHT(*),STATUS(*),
* TO(*),NUMVRG(*),NVAL(*)

DOUBLE PRECISION COST(*),(- I EMP(*),GCOEF(*),GVAL(*),FLOW(*),
LOWER(*),UPPER(*)

C
C LOCAL VARIABLES
C

C

C

C

C

C

CHARACTER*8 ARCSEC,BLANK,DUMMY,ENDATA,ENDPRB,FREE,FRMNOD,
GUBSEC,LABEL,NAM,NODE,
NODSEC,SLACK,TONODE

INTEGER ARCREC,FRMN,I,INDEX,
* NEXT,NEXTAV,NODSM1,
* NODSP1,REC,TON,VAL
DOUBLE PRECISION CST,COEF,LOW,SGVAL,TFLOW,TGVAL,UP

INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC

INTEGER ITRBTB ,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT

DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB ,MAXN0D,

NG UBS ,NODES ,ROOT,EPSILON,BIGI

DATA ARCSEC,ENDATA,NODSEC /'ARCSEC ','ENDATA ','NODSEC
DATA GUBSEC /' GUBSEC 'I
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DATA BLANK,ENDPRB,FREE/",'ENDPRB ','FREE
DATA SLACK/' SLACK '/

C
C INITIALIZE NODE ARRAYS
C

DO 5 I=1,MAXNOD
NODNAM(I)=BLANK
LEFT(I)=0
RIGHT(I)=0
FLOW(I)=0.0D0
NVAL(I)=0
IND(I)=0
NUMOUT(I))

5 CONTINUE
C
C INITIALIZE ARC ARRAYS
C

DO 10 I=1,ARCS
CTEMP(I)=0.0

10 CONTINUE
C
C INITIALIZE GUB ARRAYS
C

DO 15 I=1,MAXGUB
GVAL(I)=0.0D0
NUMVRG(I))
REDGUB(I)=0

15 CONTINUE
C
C INITIALIZE CONSTANTS
C

NODES=0
ARCS =O
GARCS=0
NGUBS=0
NEXTAV=2
NUMREC=0
TCOST=0.0D0
FLGERR=0
FLGINF=0
FLGITR=0
FLGOPT=0

C
C BEGIN INPUT
C

READ (8,1000) LABEL
NUMREC=NUMREC+1
IF (LABEL .NE. NODSEC .AND. LABEL .NE. ENDPRB) THEN

FLGERR=- 1
RETURN

ELSE
IF (LABEL .EQ. ENDPRB) THEN
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FLGEND=1
RETURN

ENDIF
ENDIF

C
C READ IN RHS VALUES FOR THE NETWORK
C

20 CONTINUE
READ(8,2000) NODE,V AL
NUMREC=NUMREC+1
IF ( NODE .EQ. GUBSEC) GOTO 30
IF (VAL .EQ. 0) THEN

FLGERR.-1
RETURN

ENDIF
I=NODNUM(LEFT,NODE,NEXTAV,NODNAM,RIGHT)
IF ( FLGERR .EQ. 1) THEN

RETURN
ENDIF
FLOW(I)=VAL
NVAL(I)=VAL
IND(I)=-1
GOTO 20

30 CONTINUE
C
C READ IN NO. OF VARIABLES IN EACH GUB AND RHS VALUES FOR THE GUBS
C

C

READ(8,1500) NGUBS
NUMREC=ITUMREC+1
IF (NGUBS .EQ. 0) THEN

FLGERR=-1
RETURN

ENDIF

DO 35 I=1,NGUBS
READ(8,1500) NUMVRG(I),GVAL(I)
NUMREC=NUMREC+1
IF (NUMVRG(I) .LE. 0) THEN

FLGERR=-1
RETURN

ENDIF
GARCS=GARCS+NUMVRG(I)

35 CONTINUE
READ(8,1000) LABEL
NUMREC=NUMREC+1
IF (LABEL .NE. ARCSEC) THEN

FLGERR. -1
RETURN

ENDIF
C
C RECORD LOCATION OF ARC DATA
C



ARCREC=NUMREC
C
C MAKE FIRST PASS THROUGH ARC DATA
C
C.
C
C READ IN DATA FOR NEXT ARC
C

40 CONTINUE
READ (8,1000) NAM,FRMNOD,TONODE,CST,UP,LOW,COEF
NUMREC=NUMREC+1
IF (NAM .EQ. ENDATA) GOTO 50
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C
C DETERMINE NODE NUMBERS FOR THE FROM NODE AND TO NODE OF THE
C CURRENT ARC
C

FRMN=NODNUM(LEFT,FRMNOD,NEXTAV,NODNAM,RIGHT)
IF (FLGERR .EQ. 1) THEN

RETURN
ENDIF
TON=NODNUM(LEFT,TONODE,NEXTAV,NODNAM,RIGHT)
IF (FLGERR .EQ. 1) THEN

RETURN
ENDIF

C
C CHECK NODE INDICATOR
C

IF (FLOW(FRMN) .LE. 0.0) THEN
IND(FRMN)=1

ENDIF
IF (FLOW(TON) .GE. 0.0) THEN

IND(TON)=1
ENDIF

C
C CHECK FOR VALID BOUNDS
C

IF (UP .LT. LOW .AND. LOW .NE. 0.0) THEN
FLGERR=2
WRITE (6,*) 'ERROR IN BOUNDS'
WRITE (6,*) NAM,FRMNOD,TONODE,CST,UP,LOW,COEF
GOTO 40

ENDIF
ARCS=ARCS+ 1
NUMOUT(FRMN)=NUMOUT(FRMN)+1

C
C UNRESTRICTED ARC? IF SO, SET UP COMPLEMENTARY ARC.
C

IF (UP .LT. 0.0 .AND. LOW .EQ. 0.0) THEN
ARCS =ARCS+1
NUMOUT(TON)=NUMOUT(TON)+1

ENDIF
GOTO 40
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C
C ALL DONE WITH FIRST PASS THROUGH ARC DATA
C

C
C CHECK FOR PROBLEM FEASIBILITY
C

50 CONTINUE

DO 60 I=1,NODES
IF (IND(I) .EQ. -1) THEN

FLGERR=2
IF (FLOW(I) .LT. 0.0) THEN

WRITE (6,7000) I,FLOW(I)
ELSE

WRITE (6,8000) I,FLOW(I)
ENDIF

ENDIF
60 CONTINUE

IF (FLGERR .EQ. 2) THEN
RETURN

ENDIF
C
C DETERMINE WHETHER DUMMY NODE IS NEEDED
C

TFLOW=0.0D0
DO 70 I=1,NODES

TFLOW=TFLOW+FLOW(I)
70 CONTINUE

IF (TFLOW .GT. 0.0) THEN
WRITE(6,9000) TFLOW
FLGERR=2
RETURN

ENDIF
IF (TFLOW .LT. 0.0) THEN

NODES=NODES+1
IF (NODES .GT. MAXNOD) THEN

FLGERR=2
RETURN

ENDIF
NODS M1=NODES -1
DO 80 I=1,NODSM1

IF (FLOW(I) .LT. 0.0) THEN
ARCS=ARCS+1
NUMOUT(I)=NUMOUT(I)+1

ENDIF
80 CONTINUE

FLOW(NODES)=-TFLOW
NODNAM(NODES)=DUMMY

ENDIF
C
C SET UP FOR SECOND PASS THROUGH ARC DATA
C
C FIRST MOVE POINTER TO BEGINING OF ARC DATA IN FILE 8
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C
REWIND 8
DO 801 I=1,ARCREC

READ(8,2000)
801 CONTINUE

C
C SET FROM(.) ARRAY FOR ALL NODSEC

FROM(1)=1
NODSP I =NODE S +1
DO 802 I=2,NODSP1

IM1=I-1
FRO M(I)=FROM(IM1)+NUMOUT(IM I)

802 CONTINUE
C WRITE(6,*) ' ARCREC = ',ARCREC
C WRITE(6,*) ' FROM(I)'
C WRITE (6,*) ( FROM(I), I=1,NODSP1)
C
C RESET NUMOUT(.) ARRAY TO USE AS POINTER TO FIRST ARC LOCATION
C FOR EACH NODE I
C

DO 803 I=1,NODES
NUMOUT(I)=FROM(I)

803 CONTINUE
C
C BEGIN SECOND PASS THROUGH ARC DATA
C

SGVAL=0.0D0
TGVAL=0.0D0
INDEX=I
NEXT=NUMVRG(INDEX)
REC=0

90 CONTINUE
READ (8,1000) NAM,FRMNOD,TONODE,CST,UP,LOW,COEF
REC=REC+1
IF (NAM .EQ. ENDATA) GOTO 100

C
C RETREIVE NODE NUMBER FOR FROM AND TO NODES
C

FRMN=NODRET(ERROR,LEFT,FRMNOD,NEXTAV,NODNAM,RIGHT)
TON=NODRET(ERROR,LEFT,TONODE,NEXTAV,NODNAM,RIGHT)

C
C UNRESTRICTED ARC? IF SO, STORE COMPLEMENTARY ARC.
C

IF (UP .LT. 0.0 .AND. LOW .EQ. 0.0) THEN
LOC=NUMOUT(TON)
ARCNAM(LOC)=FREE
TO(LOC)=FRMN
COST(LOC)=-CST
LOWER(LOC)=LOW
UPPER(LOC)=B IG1
S TATUS (LOC)=1
GCOEF(LOC)=COEF
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UP=BIG1
NUMOUT(TON)=L0C+1

ENDIF
C
C DEFAULT UPPER BOUND?
C

IF (UP .EQ. 0.0 .AND. LOW .EQ. 0.0) THEN
UP=BIG1

ENDIF
C
C STORE DATA FOR CURRENT ARC
C

LOC= NUMOUT(FRMN)
ARCNAM(LOC)=NAM
TO(LOC)=TON
COST(LOC)=CST
LOWER (LOC)=LOW
GCOEF(LOC)=COEF

C
C ADJUST FOR NONZERO LOWER BOUNDS
C

IF (LOW .NE. 0.0) THEN
TCOST=TCOST+LOW*CST
FLOW(FRMN)=FLOW(FRMN)+LOW
FLOW(TON)=FLOW(TON)-LOW
IF (INDEX .LE. NGUBS) THEN

GVAL(INDEX)VAL(INDEX)-LOW*COEF
ENDIF

ENDIF
UPPER(LOC)=UP-LOW
STATUS(LOC)=1

C
C CHECK FOR A FIXED ARC
C

IF (UP .EQ. LOW) THEN
STATUS(LOC)=3

ENDIF
NUMOUT(FRMN)=L0C+1

C
C STORE GUB ADDRESS
C

GUBADD(REC)=LOC
C
C CHECK FOR GUB CONSTRAINTS REDUNDANCY & FEASIBILITY
C

IF (INDEX .GT. NGUBS) GO TO 90
IF (COEF .GT. 0.0) THEN

TGVAL=TGVAL+UPPER(LOC)*COEF
ELSE

S G V AL=SG V AL-UPPER (LOC)*COEF
ENDIF
IF (REC .EQ. NEXT) THEN
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C

IF (TGVAL .LE. GVAL(INDEX)) THEN
REDGUB(INDEX)=1
WRITE(6,*) INDEX,'TH GUB REDUNDANT'

ENDIF
IF (GVAL(INDEX) .LT. -SGVAL) THEN

FLGINF=1
WRITE(6,3000) INDEX,GVAL(INDEX)
RETURN

ENDIF
IF (GVAL(INDEX) .EQ. 0.0) THEN

WRITE(6,4000) INDEX
ENDIF
CTEMP(GUBADD(NEXT))=SGVAL
INDEX=INDEX+1
NEXT=NEXT+NUMVRG(INDEX)
SGVAL=0.0D0
TGVAL=0.0D0

ENDIF
GOTO 90

100 CONTINUE
C
C
C ALL DONE WITH INPUT
C

200 CONTINUE
C
C SET ADDRESS, COST AND BOUNDS FOR ARTIFICIAL ARCS
C

ARTADD=ARCS+ 1
IF (ARTADD .GT. MAXARC) THEN

FLGERR=2
WRITE (6,6000) NUMREC
RETURN

ENDIF
COST(ARTADD)=BIG I
LOWER(ARTADD)=0.0D0
UPPER(ARTADD)=B IG I
GCOEF(ARTADD)41.0D0

C
C CALL SORT(FROM,ORDER,ARCS)

REWIND 12
DO 220 I=1,NODES

LOC1=FROM(I)
LOC2=FROM(I+1)- 1
DO 210 J=LOC1,LOC2

TON=TO(J)
WRITE(12) ARCNAM(J),I,TON,COST(J),LOWER(J),UPPER(J),

STATUS (J)
C WRITE(6,1030) ARCNAM( J),NODNAM(I +1),NODNAM(TON +1),I,
C * TON, COST (J),LOWER(J),UPPER(J),STATUS(J)
C1030 FORMAT(1X,3(A8,2X),415,2110)
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210 CONTINUE
220 CONTINUE

REWIND 12
C
C FORMATS
C
1000 FORMAT(3(A8,2X),4F10.2)
1500 FORMAT(I8,2X,F10.2)
2000 FORMAT(A8,2X,I10)
3000 FORMAT(1X,'GUB NO. ',I10,'IS INFEASIBLE WITH RHS VALUE OF',I10)
4000 FORMAT(1X,'GUB NO.',I10,'HAS ZERO RHS VALUE')
6000 FORMAT(1X,'****** ARC STORAGE HAS BEEN EXCEEDED AT INPUT RECORD',

* NO. ',I10)
7000 FORMAT(1X,'NODE NO. ',I5,' HAS SUPPLY OF ',F10.2,

* ' BUT NO ARCS OUT OF THE NODE')
8000 FORMAT(1X,'NODE NO. ',I5,' HAS DEMAND OF ',F10.2,

* ' BUT NO ARCS INTO THE NODE')
9000 FORMAT(1X,'****** PROBLEM INFEASIBLE ******'/1X,

* ' DEMAND EXCEEDS SUPPLY BY ',F10.2)
RETURN
END

C
C
C
C
C * * ** **************************************************************

INTEGER FUNCTION NODNUM (LEFT,NAM,NEXTAV,NODNAM,RIGHT)
c**** ***************************************************************

C
C THIS FUNCTION ASSIGNS A NODE NUMBER TO EACH NODE NAME.
C
C
C FUNCTION ARGUMENTS
C

CHARACTER*8 NODNAM(*),NAM
INTEGER LEFT(*),RIGHT(*)
INTEGER NEXTAV

C
C LOCAL VARIABLES
C

INTEGER LOC,TLOC
C

DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXN0D,

NGUBS ,NOD ES ,ROOT,EPS ILON,BIG1
C
C START SEARCH FOR EXISTING NODE NAME AT TOP OF LIST
C
C IF NODE NAME ALREADY EXISTS GET NODE NUMBER
C OTHERWISE STORE NEW NODE NAME AND ASSIGN A NODE NUMBER
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C
C THE NODE NAMES ARE STORED IN A BINARY TREE
C AT EACH NODE IN THE TREE GO LEFT FOR <, RIGHT FOR >
C

LOC=1
5 IF (NAM.EQ.NODNAM(LOC)) THEN

C
C MATCH FOUND
C

NODNUM=LOC-1
RETURN

ENDIF
C
C KEEP SEARCHING
C

IF (NAM.LT.NODNAM(LOC)) THEN
C
C TOOK LEFT BRANCH AT NODE 'LOC'
C

TLOC = LEFT(LOC)
IF (TLOC.EQ.0) THEN

C
C NO SUCCESSOR NODES, ADD NODE NAME TO LEFT OF CURRENT NODE IN TREE
C

LEFT(LOC)=NEXTAV
NODNAM(NEXTAV)=NAM
NODNUM=NEXTAV-1
NEXTAV=NEXTAV+1
NODES=NODES+1
IF (NODES .GT. MAXNOD) THEN

FLGERR=1
WRITE(6,1000) NUMREC

ENDIF
RETURN

ELSE
C
C CONTINUE SEARCH
C

LOC=TLOC
GOTO 5

ENDIF
ELSE

C
C TOOK RIGHT BRANCH AT NODE 'LOC'
C

TLOC=RIGHT(LOC)
IF (TLOC.EQ.0) THEN

C
C NO SUCCESSOR NODES, ADD NODE NAME TO RIGHT OF CURRENT NODE IN TREE
C

RIGHT(LOC)=NEXTAV
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NODNAM(NEXTAV)=NAM
NODNUM=NEXTAV-1
NEXTAV=NEXTAV+1
NODES=NODES+1
IF (NODES .GT. MAXNOD) THEN

FL GERR=1
WRITE(6,1000) NUMREC

ENDIF
RETURN

ELSE
LOC=TLOC
GOTO 5

ENDIF
ENDIF

C
C FORMATS
C
1000 FORMAT(1X,'****** NODE STORAGE HAS BEEN EXCEEDED AT INPUT RECORD',

* ' NO. ',I10)
END

C
C
C
C
c**** *************************************************************

INTEGER FUNCTION NODRET (ERROR,LEFT,NAM,NEXTAV,NODNAM,RIGHT)
C * * ** *************************************************************

C
C THIS FUNCTION RETRIEVES A NODE NUMBER
C
C
C FUNCTION ARGUMENTS
C

CHARACTER*8 NODNAM(*),NAM
INTEGER LEFT(*),RIGHT(*)
INTEGER ERROR,NEXTAV

C
C LOCAL VARIABLES
C

INTEGER LOC,TLOC
C

INTEGER FLGEND, FLGERR ,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS ,ARTADD,B I G,G ARC S ,MAXARC,MAXGUB ,MAXN0D,NGUBS ,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPSILON,BIG1
C
C START SEARCH FOR EXISTING NODE NAME AT TOP OF LIST
C
C IF NODE NAME ALREADY EXISTS GET NODE NUMBER
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C OTHERWISE SET ERROR FLAG
C
C THE NODE NAMES ARE STORED IN A BINARY TREE
C AT EACH NODE IN THE TREE GO LEFT FOR <, RIGHT FOR >
C

ERROR =O
LOC=1

5 IF (NAM.EQ.NODNAM(LOC)) THEN
C
C MATCH FOUND
C

NODRET=LOC-1
RETURN

ENDIF
C
C KEEP SEARCHING
C

IF (NAM.LT.NODNAM(LOC)) THEN
C
C TOOK LEFT BRANCH AT NODE 'LOC'
C

TLOC=LEFT(LOC)
IF (TLOC.EQ.0) THEN

C
C NO SUCCESSOR NODES, ILLEGAL NODE NAME PASSED
C

ERROR=1
RETURN

ELSE
C
C CONTINUE SEARCH
C

LOC=TLOC
GOTO 5

ENDIF
ELSE

C
C TOOK RIGHT BRANCH AT NODE 'LOC'
C

TLOC=RIGHT(LOC)
IF (TLOC.EQ.0) THEN

C
C NO SUCCESSOR NODES, ILLEGAL NODE NAME PASSED
C

ERROR=1
RETURN

ELSE
LOC=TLOC
GOTO 5

ENDIF



224

ENDIF
C
C FORMATS
C

END
C
C
C
C

SUBROUTINE SORT(IN,OUT,N)
C**** **********************************************************

C
C SUBROUTINE ARGUMENTS
C

INTEGER IN(*),OUT(*)
INTEGER N

C
C LOCAL VARIABLES
C

LOGICAL SORTED
INTEGER LIEND,I1J2J,NM1
IEND=N
DO 5 I=1,IEND

OUT(I)=I
5 CONTINUE

NM1=N-1
DO 15 J=1,NM1

IEND=IEND-1
SORTED=.TRUE.
DO 10 I=1,IEND

I1=OUT(I)
I2=OUT(I+1)
IF (IN(I1).LE.IN(I2)) GOTO 10
SORTED=.FALSE.
OUT(I)=I2
OUT(I+1)=I1

10 CONTINUE
IF (SORTED) RETURN

15 CONTINUE
RETURN
END

c**** ************************************************************

SUBROUTINE INIT(ARCNAME,BASIS,CARD,COST,CTEMP,FLOW,FROM,
FROMO,GARB,GFLOW,GUBADD,GVAL,GCOEF,
LGMULT, LNOD,LOWER,NUMVRG,NVAL,PI,PRED,
REDGUB,STATUS,THD,TO,UPPER,YFLOW)

C**** ************************************************************

C
C THE PURPOSE OF THIS ROUTINE IS TO INITIALIZE THE
C RELAXATION/DECOMPOSITION ALGORITHM
C
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C
C
C SUBROUTINE ARGUMENTS
C

CHARACTER*8 ARCNAME
INTEGER BASIS(*),CARD(*),FROM(*),FROMO(*),GUBADD(*),

* LNOD(*),NUMVRG(*),NVAL(*),PRED(*),REDGUB(*),
* STATUS(*),THD(*),TO(*)
DOUBLE PRECISION COST(*),CrEMP(*),FLOW(*),GCOEF(*),

GFLOW(*),GVAL(*),LGMULT(*),LOWER(*),
PI(*),UPPER(*),YFLOW(*),
GARB(*)

C
C LOCAL VARIABLES
C

C

INTEGER I,INDEX,LOC1,LOC2,NEXT,NUM,REC,count
DOUBLE PRECISION ADJVAL,LBSUBG,NORM,SUM,MAXVLN

INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /FARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS,NODES,ROOT,EPSILON,BIG1
DOUBLE PRECISION LBSTEP,ILBSTEP,MAXSTEP
COMMON /STEP/ LBSTEP,ILBSTEP,MAXSTEP
DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE
COMMON /BOUNDS/ LBND,LBNDPRE,UBND,UBNDPRE

C
C CONSTRUCT STARTING BASIS
C

DO 10 I=1,ARCS
GFLOW(I)=0.0D0
YFLOW(I)=0.0D0
LGMULT(I)=0.0D0

10 CONTINUE
C

FLGOPT=1
C

CALL START(BASIS,CARD,COST,FLOW,FROM,GFLOW,LNOD,PRED,STATUS,
THD,TO,UPPER,NVAL)

C
C
C SOLVE THE PURE NETWORK PROBLEM
C

CALL PURNET(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,GFLOW,LNOD,
LOWER,PI,PRED,STATUS,THD,TO,UPPER)

IF (FLGINF .EQ. 1) RETURN
C
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LBND=TCOST
C
C SOLVE FOR THE INITIAL SCBVLP PROBLEM AND THE DA
C

count=0
FLGOPT=1
MAXVLN=0.0D0
NORM=0.0D0
NEXT=0
SUM=0.0D0
LOC2=0
DO 50 INDEX=1,NGUBS

NEXT= NEXT +NUMVRG(INDEX)
LOC1=LOC2+1
LOC2= LOC2 +NUMVRG(INDEX)

C
C IF THE GUB CONSTRAINT IS REDUNDANT THEN LET THE FLOWS BE THE SAME

C AS THE NETWORK FLOWS
C

DO 20 I=LOCI,LOC2
REC=GUBADD(I)
YFLOW(REC)=GFLOW(REC)

C LGMULT(I)=0.0D0
C CTEMP(REC)=0.0D0

SUM=SUM+GFLOW(REC)*GCOEF(REC)
20 CONTINUE

ADJVAL=GVAL(INDEX)+CTENEP(GUBADD(NEXT))
IF (ABS(ADJVAL) .LE. 1E-15) ADJVAL=0.0D0

C
C THE FLOWS ARE THE MINIMUM OF THE NETWORK FLOWS AND THE ADJUSTED
C RIGHT HAND SIDE OF THE GUB
C
C SET THE SUBGRADIENT FOR THE LOWER BOUND ALG
C

IF (REDGUB(INDEX) .EQ. 1 .OR. SUM .LE. GVAL(INDEX)) GO TO 45
C

count=count+1
SUM = SUM- GVAL(INDEX)
MAXVLN=MAX(MAXVLN,SUM)
DO 30 I=LOC1,LOC2

REC=GUBADD(I)
IF (GCOEF(REC) .GT. 0.0) THEN

YFLOW(REC)=0.0D0
ELSE

YFLOW(REC)=UPPER(REC)
ENDIF
LBSUBG=YFLOW(REC)-GFLOW(REC)
NORM=NORM+LBSUBG*LBSUBG

C LGMULT(I)=LBSTEP*LBSUBG
IF (ABS(LBSUBG) .LE. 1E-15) LBSUBG=0.0D0
IF (FLGOPT .EQ. I) THEN

IF (LBSUBG .NE. 0.00) FLGOPT
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ENDIF
C IF (ABS(LGMULT(I)) .LE. 1E-15) LGMULT(I)=0.0D0
C CTEMP(REC)=-LGMULT(I)
30 CONTINUE

C
45 SUM=0.0D0
50 CONTINUE

LBNDPRE=LBND
CALL LBSAV(BASIS,CARD,FLOW,GFLOW,LNOD,PRED,STATUS,THD,

YFLOW)
C
C DETERMINE THE STEP SIZE
C

LBSTEP=MAXVLN/NORM
C LB STEP=MAXVLN/SQRT(NORM)

MAXSTEP=MAXVLN
C
C DETERMINE THE LAGRANGEAN MULTIPLIERS
C

DO 85 I=1,GARCS
REC=GUBADD(I)
LGMULT(I)=LBSTEP*(YFLOW(REC)-GFLOW(REC))
CTEMP(REC)=-LGMULT(I)

85 CONTINUE
C
C CHECK FOR OPTIMALITY
C

IF (FLGOPT .EQ. 1) THEN
WRITE(6,*) 'OPTIMAL SOLUTION TO THE PURE NETWORK PROBLEM IS

OPTIMAL FOR THE ORIGINAL PROBLEM'
RETURN

ENDIF
C
57 CONTINUE

DO 60 I=1,NEXT
REC=GUBADD(I)
IF ( ABS(CTEMP(REC)) .GT. 1E-15) GO TO 70

60 CONTINUE
C
C WE HAVE AN OPTIMAL SOLUTION TO THE ORIGINAL PROBLEM
C

FLGOPT=1
RETURN

C
70 CONTINUE

C
C FLGOPT=0
C
C

UBND=BIG1
UBNDPRE=BIG1
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C

C

LBNDPRE=LBND

WRITE(6,*) 'TCOST = ',TCOST
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RETURN
END

C * * ** ************************************************************

SUBROUTINE START(BASIS,CARD,COST,FLOW,FROM,GFLOW,LNOD,PRED,
1 STATUS,THD,TO,UPPER,US)

C *** ************************************************************

C
C This routine finds a starting basis for the NETGUB
C

C SUBROUTINE ARGUMENTS
C

INTEGER BASIS(*),CARD(*),FROM(*),LNOD(*),
1 PRED(*),STATUS(*),THD(*),TO(*),
1 US(*)
DOUBLE PRECISION COST(*),FLOW(*),GFLOW(*),UPPER(*)

C
C
C LOCAL VARIABLES
C

C

INTEGER DMNODE,FMNODE,I,L,LOC1,LOC1,N,
* TONODE

INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG I
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS,NODES,ROOT,EPSILON,BIG1

c Set the initial undistributed supply.
c Set cardinality of each node to node one and last node of each
c node to itself.

DO 10 I = 1,NODES
IF ( US(I) .NE. 0) THEN

US(I)=-US(I)
ELSE

US(I)=0
ENDIF
CARD(I)=1
LNOD(I)=I

C
C Initialize node arrays
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PRED(I)=0
THD(I)=0
FLOW(I)=0.0D0

10 CONTINUE
C
C Connect the root node to the demands via artificials with positive
C flows.
C
C
C Set ROOT
C

ROOT=0
DO 60 I=1,NODES

IF (US(I) .GT. 0) THEN
ROOT=I
GOTO 70

ENDIF
60 CONTINUE

IF (ROOT .EQ. 0) THEN
FLGERR=-1
WRITE(6,*) 'NO UNDISTRUBUTED SUPPLY EXISTS'
RETURN

ENDIF
70 FLOW(ROOT)=0.0D0

CARD(ROOT)=1
THD(ROOT)=ROOT
PRED(ROOT)=0
BASIS(ROOT)
LNOD(ROOT)=ROOT

C
C First satisfy the demands via artificials
C

DMNODE4
DO 80 I=1,NODES

IF (US(I) .LT. 0) THEN
DMNODE=I
THD(ROOT)=DMNODE
CARD(ROOT)=CARD(ROOT)÷1
PRED(DMNODE)=ROOT
BASIS(DMNODE)=ARTADD
FLOW(DMNODE)=-US(DMNODE)
TCOST=TCOST+FLOW(DMNODE)*COST(ARTADD)
LNOD(DMNODE)=DMNODE
GOTO 90

ENDIF
80 CONTINUE

C
C No demand node exists
C

GOTO 110
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C
90 IF (DMNODE .NE. NODES) THEN

L=DMNODE+1
DO 100 I=L,NODES

IF (US(I) .LT.0) THEN
THD(DMNODE)=I
CARD(ROOT)=CARD(ROOT)+1
FLOW(I)=-US(I)
BASIS(1)=ARTADD
PRED(I)=ROOT
TCOST=TCOST+FLOW(I)*COST(ARTADD)
DMNODE=I

ENDIF
100 CONTINUE

ENDIF
LNOD(ROOT)=DMNODE
THD(DMNODE)=ROOT

C
C Build up chains for the tree
C
C
C If no undistributed supply exists check for termination
C
110 IF (ROOT .EQ. NODES) GOTO 160

C
I=ROOT+1
DO 150 FMNODE=LNODES

IF (US(FMNODE) .LT. 0) GOTO 150
C
C If no undistributed supply left, connect to tree via
C artificials
C

IF (US(FMNODE) .EQ. 0) GOTO 140
C

LOC1=FROM(FMNODE)
LOC2=FROM(FMNODE+1)

120 IF (LOCI .EQ. LOC2) GOTO 140
TONODE=TO(LOC1)

C
C The "to-node" is a demand node
C

IF (US(TONODE) .LT. 0) THEN
IF (FLOW(TONODE) .EQ. 0.0) THEN

LOC1=LOC1+1
GOTO 120

ENDIF
C
C A demand node may receive supply
C

IF ( (UPPER(LOC1) .LE. US(FMNODE)) .AND.
(UPPER(LOC1) .LE. FLOW(TONODE)) ) THEN

C It is an arc that may be set to upper bound.



231

US(FMNODE)=US(FMNODE)-UPPER(LOC1)
FLOW(TONODE)=FLOW(TONODE)-UPPER(LOC1)
TCOST=TCOST+UPPER(LOC1)*(COST(LOC1)-COST(ARTADD))
STATUS(LOC1)=2
GFLOW(LOC1)=UPPER(LOC1)
LOC1=LOC1+1
IF (US(FMNODE) .EQ. 0) GOTO 140
GOTO 120

ENDIF
IF ( (US(FMNODE) .LT. UPPER(LOC1)) .AND.

(US(FMNODE) .LE. FLOW(TONODE)) ) THEN
C It is an arc that may become basic

FLOW(FMNODE)=US(FMNODE)
FLOW(TONODE)=FLOW(TONODE)-US(FMNODE)
TCOST=TCOST+US(FMNODE)*(COST(LOC1)-COST(ARTADD))
GFLOW(LOC1)=FLOW(FMNODE)
US(FMNODE)=0

C
C

C

Connect the chain with FMNODE as its highest node to
the tree via (FMNODE,TONODE).

CALL CNTDEM(BASIS,CARD,TONODE,FMNODE,LNOD,LOC1,
PRED,STATUS,THD)

GOTO 150
ELSE

C It is an arc that cann't be set to upper bound or made basic.
LOC1=LOC1+1
GOTO 120

ENDIF
C

ELSE
C
C The to-node is either a supply node or a transshipment node
C

IF ( (FMNODE .GT. TONODE .AND. TONODE .GE. ROOT) .OR.
THD(TONODE) .GT.0 ) THEN

LOC1=LOC1+1
GO TO 120

ENDIF
IF (UPPER(LOC1) .LE. US(FMNODE)) THEN

C It is an arc that may be set to upper bound
STATUS(LOC1)=2
GFLOW(LOC1)=UPPER(LOC1)
TCOST=TCOST+UPPER(LOC1)*COST(LOC1)
US(FMNODE)=US(FMNODE)-UPPER(LOC1)
US(TONODE)=US(TONODE)+UPPER(LOC1)
LOC1=LOC1+1
IF (US(FMNODE) .EQ. 0) GOTO 140
GOTO 120

ELSE
C It is an arc that may become basic

FLOW(FMNODE)=US(FMNODE)
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GFLOW(LOC1)=FLOW(FMNODE)
TCOST=TCOST+FLOW(FMNODE)*COST(LOC1)

C
C Connect FMNODE to TONODE via (FMNODE,TONODE)
C TONODE becomes the new highest node in the chain
C

CALL CNTSOT(BASIS,CARD,TONODE,FMNODE,LNOD,LOC1,
PRED,STATUS,THD)

C
US(TONODE)=US(TONODE)+US(FMNODE)
US(FMNODE)=0
GOTO 150

ENDIF

C
ENDIF

140 CONTINUE
C
C Connect FMNODE to tree with an artificial arc.
C

B AS IS (FMNODE)=-ARTADD
FLOW(FMNODE)=US(FMNODE)
TCOST=TCOST+FLOW(FMNODE)*COST(ARTADD)
CALL CNTREE(BAS IS ,CARD,FMNODE,LNOD,LOC1,PRED,STATUS,THD)

C
150 CONTINUE

C
C Connect the tree
C

IF (ROOT .NE. 1) THEN
160 N=ROOT-1

DO 200 FMNODE=1,N
IF (US(FMNODE) .LT. 0) GO TO 200

C
C If an undistributed supply is left, connect to tree
C via artificials
C

IF (US(FMNODE) .EQ. 0) GO TO 180
C

LOC1=FROM(FMNODE)
LOC2=FROM(FMNODE+1)

170 IF (LOCI .EQ. LOC2) GO TO 180
TONODE=TO(LOC1)

C
C
C
C The "to-node" is a demand node
C

IF (US(TONODE) .LT. 0) THEN
IF (FLOW(TONODE) .EQ. 0.0) THEN

LOC1=LOC1+1
GOTO 170
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ENDIF
C
C A demand node may receive supply
C

IF ( (UPPER(LOC1) .LE. US(FMNODE)) .AND.
(UPPER(LOC1) .LE. FLOW(TONODE)) ) THEN

C It is an arc that may be set to upper bound.
US(FMNODE)=US(FMNODE)-UPPER(LOC1)
FLOW(TONODE)=FLOW(TONODE)-UPPER(LOC1)
STATUS(LOC1)=2
GFLOW(LOC1)=UPPER(LOC1)
TCOST=TCOST+UPPER(LOC1)*(COST(LOC1)-COST(ARTADD))
LOC1=LOC1+1
IF (US(FMNODE) .EQ. 0) GOTO 180
GOTO 170

ENDIF
IF ( (US(FMNODE) .LT. UPPER(LOC1)) .AND.

(US(FMNODE) .LE. FLOW(TONODE)) ) THEN
C It is an arc that may become basic

FLOW(FMNODE)=US(FMNODE)
FLOW(TONODE)=FLOW(TONODE)-US(FMNODE)
GFLOW(LOC1)=FLOW(FMNODE)
TCOST=TCOST+FLOW(FMNODE)*(COST(LOC1)-COST(ARTADD))
US(FMNODE)=0

C
C

C

C

C

C

C
C
C

Connect the chain with FMNODE as its highest node to
the tree via (FMNODE,TONODE).

CALL CNTDEM(BASIS,CARD,TONODE,FMNODE,LNOD,LOC1,
PRED,STATUS,THD)

GOTO 200
ELSE

It is an arc that cann't be set to upper bound or made basic.
LOC1=LOC1+1
GOTO 170

ENDIF

ELSE

The to-node is either a supply node or a transshipment node

IF ( (FMNODE .GT. TONODE .AND. TONODE .GE. ROOD .OR.
THD(TONODE) .GT.0 ) THEN

LOC1=LOC1+1
GO TO 170

ENDIF
IF (UPPER(LOC1) .LE. US(FMNODE)) THEN

C It is an arc that may be set to upper bound
STATUS(LOC1)=2
GFLOW(LOC1)=UPPER(LOCI)
TCOST=TCOST+UPPER(LOC1)*COST(LOC1)
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US(FMNODE)=US(FMNODE)-UPPER(LOC I)
US(TONODE)=US(TONODE)+UPPER(LOC1)
LOC1=LOC1+1
IF (US(FMNODE) .EQ. 0) GOTO 180
GOTO 170

ELSE
C It is an arc that may become basic

FLOW(FMNODE)=US(FMNODE)
GFLOW(LOC1)=FLOW(FMNODE)
TCOST=TCOST+FLOW(FMNODE)*COST(LOC1)

C
C
C
C

C

C

*

Connect FMNODE to TONODE via (FMNODE,TONODE)
TONODE becomes the new highest node in the chain

CALL CNTSOT(BASIS,CARD,TONODE,FMNODE,LNOD,LOC1,
PRED,STATUS,THD)

US(TONODE)=US(TONODE)+US(FMNODE)
US(FMNODE)=0
GOTO 200

ENDIF

ENDIF
180 CONTINUE

C
C Connect FMNODE to tree with an artificial arc.
C

B AS IS (FMNODE)=-ARTADD
FLOW(FMNODE)=US(FMNODE)
TCOST=TCOST+FLOW(FMNODE)*COST(ARTADD)
CALL CNTREE(B AS I S ,CARD,FMNODE,LNOD,LOC1,PRED,STATUS,THD)

C
200 CONTINUE

ENDIF
C
220 CONTINUE

C
C Starting basis is complete
C
C

C
C
C
C
C

RETURN
END

SUBROUTINE CNTSOT(BASIS,CARD,TONODE,FMNODE,LNOD,LOC,
1 PRED,STATUS,THD)

C**** ***********************************************************
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C
C This routine connects the chain with FMNODE as the highest
C node in the chain to either a supply node or a transshipment
C node TONODE via (FMNODE,TONODE).

C

C SUBROUTINE ARGUMENTS
C

INTEGER BASIS(*),CARD(*),TONODE,FMNODE,LNOD(*),LOC,
1 PRED(*),STATUS(*),THD(*)

C
C LOCAL VARIABLES
C

C

C

C

INTEGER LNODP,P,Q

P=FMNODE
Q=TONODE
LNODP=LNOD(P)
STATUS(LOC)=0
BASIS(P)=-LOC

CARD(Q)=CARD(P)+1
THD(Q)=P
LNOD(Q)=LNODP
PRED(P)=Q

RETURN
END

C
C
C
C
C
C
c**** ***********************************************************

SUBROUTINE CNTDEM(BASIS,CARD,DEMAND,FMNODE,LNOD,LOC,
1 PRED,STATUS,THD)

C**** ***********************************************************

C
C This routine connects the chain with FMNODE as the highest
C node in the chain to the tree via (FMNODE,TONODE).
C
C SUBROUTINE ARGUMENTS
C

C

INTEGER BASIS(*),CARD(*),DEMAND,FMNODE,LNOD(*),LOC,
1 PRED(*),STATUS(*),THD(*)

DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS , ARTADD, B IG,G ARC S ,MAXARC,MAXGUB ,MAXN0D,NGUBS ,NODES,

* ROOT
COMMON/PARM/TCOS T,ARC S ,ARTADD,BIG,GARCS ,MAXARC,MAXGUB ,1VIAXN0D,



* NGUBS,NODES,ROOT,EPSILON,BIG1
C
C LOCAL VARIABLES
C

C

C

C

C

C

INTEGER LNODP,LNODQ,P,Q,THDLDQ

P=FMNODE
Q=DEMAND
LNODP=LNOD(P)
LNODQ=LNOD(Q)
THDLDQ=THD(LNODQ)
STATUS(LOC)=0
BASIS(P)=-LOC

CARD(Q)=CARD(Q)+CARD(P)
THD(LNODQ)=P
LNOD(Q)=LNODP

PRED(P)=Q
THD(LNODP)=THDLDQ

CARD(ROOT)=CARD(ROOT)+CARD(P)
IF (LNOD(ROOT) .EQ. Q) THEN

LNOD(ROOT)=LNOD(Q)
ENDIF

RETURN
END
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C
C
C
C
C
c**** **************************************************************

SUBROUTINE CNTREE(BASIS,CARD,FMNODE,LNOD,LOC,PRED,STATUS,THD)
C**** **************************************************************

C
C This routine connects node FMNODE to ROOT via (FMNODE,ROOT)
C and at the same time records the information in a column of
C the basis matrix.
C
C
C SUBROUTINE ARGUMENTS
C

C

INTEGER BASIS(*),CARD(*),FMNODE,LNOD(*),LOC,PRED(*),
* STATUS (*),THD(*)

DOUBLE PRECISION TCOST,EPSILON,BIGI
INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXN0D,NGUBS,NODES,

* ROOT
COMMON/PARM/TCOS T,ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXN0D,

NGUBS,NODES,ROOT,EPSILON,BIG1



C
C LOCAL VARIABLES
C

INTEGER LNODP,LNODRT,P
C

P=FMNODE
LNODRT=LNOD(ROOT)
LNODP=LNOD(P)
STATUS (AB S (B AS IS(P)))=0

C
CARD(ROOT)=C ARD(ROOT)+CARD(P)
THD(LNODRT)=P
LNOD(ROOT)=LNODP

C
PRED(P)=ROOT
THD(LNODP)=ROOT

C
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RETURN
END

C**** **************************************************************

SUBROUTINE PURNET(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,GFLOW,
1 LNODLOWE,R,PI,PRED,STATUS ,THD,TO,UPPER)

C**** **************************************************************

C
C SUBROUTINE ARGUMENTS
C

CHARACTER*8 ARCNAM(*)
INTEGER B AS IS (*),CARD(*),FROM(*),FROMO(*),LNOD(*),PRED(*),

* STATUS (*),THD(*),TO(*)
DOUBLE PRECISION COST(*),FLOW(*),GFLOW(*),LOWER(*),PI(*),

UPPER(*)
C
C LOCAL VARIABLES
C

C

DOUBLE PRECISION DELT,DELTA,FLOWXU,FLOWXV,FLWPRX,
FX,GUDELT,GVDELT,
MINCOS,REDCOS

INTEGER B ASISI ,B ASISQ,B ASISU,B ASIS V ,B ASIS X ,B ASPRX,B X,CARDX,
* CARDPX, FRMNOD,FRMBEG ,B TB ,

ENTER,GAMMAU,GAMMAV,
LINDEX 1 ,INDEX2,..1 ,K,L,MUV ,
NODS M 1 ,P,PATHRT,PREDJ,PREDPX,PREDX ,Q,RTHD,
THDJ,THDX,THDY 1 ,U,V ,W, X ,X B AR ,XS TAR,XU,XV, X 1 ,X2,X2B AR,
Y 1 ,Y2,Z

INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB ,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB, ITRDEG, ITRMAX ,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG 1
INTEGER ARCS ,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXN0D,NGUBS,NODES,
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* ROOT
COMMON /FARM/ TCOST,ARCS ,ARTADD,B IG ,G ARC S ,MAXARC,MAXGUB ,MAXNOD ,

NGUBS ,NODES ,ROOT,EPS ILON,B IG 1
C
C ITRTOT = TOTAL NUMBER OF PIVOTS
C ITRREG = NUMBER OF REGUALR PIVOTS
C ITRBTB = NUMBER OF BOUND-TO-BOUND PIVOTS
C ITRDEG = NUMBER OF DEGENERATE PIVOTS
C

C

ITRTOT=0
ITRREG=0
ITRBTB=0
ITRDEG=0

FRMNOD=1
C
C
C DETERMINE DUAL VALUES
C
C

J=ROOT
PI(J)=0.0D0
NODSM1=NODES-1
DO 90 I=1,NODSMI

THDJ=THD(J)
PREDJ=PRED(THDJ)
BASISJ=BASIS(THDJ)
IF (BASISJ.GT.0) THEN

PI(THDJ)=PI(PREDJ)+COST(BASISJ)
ELSE

B AS ISJ=IABS (B AS ISJ)
PI(THDJ)=PI(PREDJ)-COST(BASISJ)

ENDIF
J=THDJ

90 CONTINUE
C
C FIND ENTERING ARC
C

95 CONTINUE
C
C THIS ROUTINE WILL FIND AN ELIGIBLE ARC TO ENTER THE CURRENT BASIS
C BY USING THE CRITERIA OF MOST NEGATIVE (MOST POSITIVE) REDUCED COST
C OUT OF A NODE
C
C AS SOON AS A NODE IS FOUND WITH AN ELIGIBLE ARC THE SEARCH STOPS
C
C
C 0 --> ARC BASIC
C STATUS = 1 --> ARC NONBASIC AT LOWER BOUND
C 2 --> ARC NONBASIC AT UPPER BOUND
C 3 --> ARC FIXED
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C ARC (U,V) WILL BE THE ARC TO ENTER
C

MINCOS 0.0D0
FRMBEG=FRMNOD

800 CONTINUE
INDEX1=FROM(FRMNOD)
INDEX2=FROM(FRMN0D+1)-1
DO 810 K=INDEXLINDEX2

IF (STATUS(K) .NE. 0) THEN
J=TO(K)
REDCOS=COST(K)+PI(FRMNOD)
REDCOS=REDCOS-PI(J)
IF (ABS(REDCOS) .LE. 1E-15) REDCOS=0.0D0
IF (ABS(REDCOS) .GT. MINCOS) THEN

IF (REDCOS .LT. 0.0 .AND. STATUS(K) .EQ. 1) THEN
U=FRMNOD
V=J
ENTER=K
MINCOS=ABS(REDCOS)
GOTO 810

ENDIF
IF (REDCOS .GT. 0.0 .AND. STATUS(K) .EQ. 2) THEN

U=FRMNOD
V=J
ENTER=K
MINCOS=REDCOS

ENDIF
ENDIF

ENDIF
810 CONTINUE

IF (MINCOS .NE. 0.0) THEN
FRMNOD=FRMNOD+1
IF (FRMNOD .GT. NODES) FRMNOD=1
GOTO 830

ENDIF
FRMNOD= FRMNOD +1
IF (FRMNOD .GT. NODES) FRMNOD=1
IF (FRMNOD .NE. FRMBEG) GOTO 800

C
830 CONTINUE

C
C IF MINCOS = 0 THEN NO ELIGIBLE ARC WAS FOUND
C

IF (ABS(MINCOS) .LE. 1E-15) MINCOSODO
IF (MINCOS .EQ. 0.0) GOTO 145

C
C
C FIND THE BASIS EQUIVALENT PATH AND DETERMINE THE LEAVING ARC
C
C ARC (P,Q) WILL LEAVE
C

IF (STATUS(ENTER).EQ.1) THEN
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GAMMAU=-1
GAMMAV=1

ELSE
GAMMAU=1
GAMMAV=-1

ENDIF
XU=U
XV=V
DELTA=BIG1
IF (XU.NE.XV) THEN

10 IF (CARD(XU) .LE. CARD(XV)) THEN
BASISU=BASIS(XU)
IF (BASISU*GAMMAU .LE. 0) THEN

BASISU=IABS(BASISU)
DELT=UPPER(BASISU)-FLOW(XU)
IF (ABS(DELT) .LE. 1E-15) DELT=0.0D0
IF (ABS(DELT-DELTA) .LE. 1E-15) DELTA=DELT
IF (DELT .LT. DELTA) THEN

DELTA=DELT
MUV=U
Q=XU
P=PRED(Q)

ENDIF
ELSE

FLOWXU=FLOW(XU)
IF (ABS(DELTA-FLOWXU) .LE. 1E-15) DELTA=FLOWXU
IF (FLOWXU.LT.DELTA) THEN

DELTA=FLOWXU
MUV=U
Q=XU
P=PRED(Q)

ENDIF
ENDIF
XU=PRED(XU)
IF (XU .EQ. XV) THEN

GOTO 20
ELSE

GOTO 10
ENDIF

ENDIF
BASISV=BASIS(XV)
IF (BASISV*GAMMAV .LE. 0) THEN

BASISV=IABS(BASISV)
DELT=UPPER(BASISV)-FLOW(XV)
IF (ABS(DELT) .LE. 1E-15) DELT=0.0D0
IF (ABS(DELTA-DELT) .LE. 1E-15) DELTA=DELT
IF (DELT.LT.DELTA) THEN

DELTA=DELT
MUV=V
Q=XV
P=PRED(Q)

ENDIF
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ELSE
FLOWXV=FLOW(XV)
IF (ABS(DELTA-FLOWXV) .LE. 1E-15) DELTA=FLOWXV
IF (FLOWXV.LT.DELTA) THEN

DELTA=FLOWXV
MUV=V
Q=XV
P=PRED(Q)

ENDIF
ENDIF
XV=PRED(XV)
IF (XU .EQ. XV) THEN

GOTO 20
ELSE

GOTO 10
ENDIF

ENDIF
C
C SAVE INTERSECTION NODE FROM BASIS EQUIVALENT PATH
C

20 CONTINUE
PATHRT=XU

C WRITE(6,*)' ARC ENTERING = ',U,V,ENTER
C WRITE(6, *)' ARC LEAVING = ',P,Q,BASIS(Q)
C
C CHECK FOR DEGENERATE PIVOT (LE. NONBASIC ARC AT L.B. CHANGING
C TO NONBASIC AT U.B. OR VICE VERSA).
C

BTB=0
IF (ABS(UPPER(ENTER)-DELTA) .LE. 1E-15) DELTA=UPPER(ENTER)
IF(UPPER(ENTER).LE.DELTA) THEN

BTB=1
DELTA=UPPER(ENTER)

ENDIF
C
C UPDATE FLOWS ON BASIS EQUIVALENT PATH.
C

IF (ABS(DELTA) .LE. 1E-15) DELTA=0.0D0
IF (DELTA .GT. 0.0) THEN

XU=U
GUDELT=GAMMAU*DELTA

35 1F(XU.NE.PATHRT) THEN
B AS IS U=B AS IS (XU)
IF(BASISU.LT.0) THEN

FLOW(XU)=FLOW(XU)+GUDELT
ELSE

FLOW(XU)=FLOW(XU)-GUDELT
ENDIF
IF (ABS(FLOW(XU)) .LE.1E-15) FLOW(XU)=0.0D0
BASISU=IABS(BASISU)
GFLOW (B AS ISU)=FLOW(XU)
XU=PRED(XU)
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C LET T2 BE THE TREE WITH THE SMALLEST NUMBER OF NODES.
C

IF (CARD(ROOT) .LT. CARD(Q)) THEN
X1=Q
X2=ROOT
IF (MUV.EQ.U) THEN

Y1=U
Y2=V

ELSE
Y1=V
Y2=U

ENDIF
ELSE

X 1=ROOT
X2=Q
IF (MUV.EQ.U) THEN

Y1=V
Y2=U

ELSE
Y 1 =U

Y2=V
ENDIF

ENDIF
C WRITE(6,*)' Xl, Yl, X2, Y2 = ',X1,Y1,X2,Y2
C
C UPDATE PREDECESSOR
C

IF (X2 .NE. Y2) THEN
X=Y2
W=LNOD(X)
Z=THD(W)
CARDX=CARD(Y2)
CARDPX=CARD(PRED(Y2))

C IF (X1.EQ.Q) THEN
C CARD(Y2)=CARD(X2)-CARD(Q)
C ELSE

CARD(Y2)=CARD(X2)
C ENDIF

PREDX=PRED(X)
PREDPX=PRED(PREDX)

C
C UPDATE BASIS AND FLOW.
C

C

BASPRX=BASIS(PREDX)
BASIS(PREDX)=-BASIS(X)
FLWPRX=FLOW(PREDX)
FLOW(PREDX)=FLOW(X)
IF (ABS(FLOW(PREDX)) .LE. 1E-15) FLOW(PREDX)=0.0D0
L=IABS ( BASIS(PREDX))
GFLOW(L)=FLOW(PREDX)

70 IF (X.NE.X2) THEN
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C XBAR=X1
LNOD(XBAR)=LNOD(Y2)

ENDIF
X=Y1

110 IF (X.NE.XBAR) THEN
LNOD(X)=LNOD(Y2)
X=PRED(X)
GOTO 110

ENDIF
C IF (XBAR.EQ.0) THEN
C LNOD(XBAR)=LNOD(Y2)
C ENDIF
C
C UPDATE CARDINALITY
C

X=Y1
C IF (X2.EQ.Q) THEN
C 120 IF (X.NE.PATHRT) THEN
C CARD(X)=CARD(X)+CARD(Y2)
C X=PRED(X)
C GOTO 120
C ENDIF
C IF (PATHRT.NE.ROOT) THEN
C CARD(X)=CARD(X)+CARD(Y2)
C ENDIF
C ELSE

130 IF (X.NE.X1) THEN
CARD(X)=CARD(X)+CARD(Y2)
X=PRED(X)
GOTO 130

ENDIF
CARD(X)=CARD(X)+CARD(Y2)

C ENDIF
C
C UPDATE DUAL VALUES ON REROOTED TREE.
C

X=Y2
140 IF(X.NE.LNOD(Y2)) THEN

THDX=THD(X)
PREDX=PRED(THDX)
BASISX=BASIS(THDX)
IF(BASISX.GT.0) THEN

PI(THDX)=PI(PREDX)+COST(BASISX)
ELSE

BASISX=IABS(BASISX)
PI(THDX)=PI(PREDX)-COST(BAS ISX)

ENDIF
IF (ABS(PI(THDX)) .LE. 1E-15) PI(THDX)=0.0D0
X=THDX
GO TO 140

ENDIF
C
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C CHANGE STATUS OF ENTERING ARC
C

STATUS(ENTER)=0
ROOT=X1

999 CONTINUE
C
C UPDATE OBJECTIVE FUNCTION VALUE
C

TCOST=TCOST-DFLOAT(DELTA)*DBLE(MINCOS)
C
C INCREMENT ITERATION COUNT
C

ITRTOT=ITRTOT+1
IF (ITRTOT .GT. ITRMAX) THEN

FLGITR=1
RETURN

ENDIF
C
C CHECK FOR INTERMEDIATE OBJECTIVE FUNCTION VALUE REPORT
C

IF (MOD(ITRTOT,ITROBJ) .EQ. 0) THEN
WRITE (6,1000) ITRTOT,TCOST

ENDIF
C
C CHECK FOR INTERMEDIATE SOLUTION REPORT
C

C

IF (MOD(ITRTOT,ITROUT) .EQ. 0) THEN
WRITE (6,2000) ITRTOT

ENDIF
GOTO 95

145 CONTINUE
C
C OPTIMALITY INDICATED, ARE WE FEASIBLE?
C

DO 150 I=1,NODES
IF (ABS(FLOW(I)) .LE. 1E-15) FLOW(I)=0.0D0
IF (IABS(BASIS(I)) .EQ. ARTADD .AND. FLOW(I) .NE. 0.00) THEN

FLGINF=1
RETURN

ENDIF
150 CONTINUE

FLGOPT=1
C
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C FORMATS
C
1000 FORMAT(1X,'AT ITERATION ',I6,' OBJECTIVE FUNCTION VALUE = ',F15.0)
2000 FORMAT(//1X,'AT ITERATION ',I6)

RETURN
END

SUBROUTINE LBALG( ARCNAM ,BASIS,CARD,COST,CTEMP,FLOW,
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1 FROM,FROMO,GCOEF,GFLOW,GUBADD,GVAL,
1 LGMULT,LNOD,LOWER,NUMVRG,PI,PRED,
1 REDGUB,STATUS,THD,
1 TO,UPPER,YFLOW)

C**** **************************************************************

C
C THE PURPOSE OF THIS ROUTINE IS TO CALCULATE A LOWER BOUND
C FOR THE PROBLEM (NPG)
C
C
C SUBROUTINE ARGUMENTS
C

CHARACTER*8 ARCNAM(*)
INTEGER BASIS(*),CARD(*),FROM(*),FROMO(*),

1 GUB ADD(*),LNOD(*),NUMVRG(*),PRED(*),
1 REDGUB(*),STATUS(*),THD(*),TO(*)
DOUBLE PRECISION COST(*),CIEMP(*),FLOW(*),GCOEF(*),GFLOW(*),

1 GVAL(*),LGMULT(*),LOWER(*),PI(*),
1 UPPER(*),YFLOW(*)

C
C LOCAL VARIABLES
C

INTEGER LINDEX,K,LOC1,LOC2,REC
DOUBLE PRECISION NORM,LBSUBG

C
INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS ,ARTADD ,B IG ,G ARC S ,MAXARC ,MAXGUB ,MAXN0D,NGUBS ,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPSILON,BIG1
DOUBLE PRECISION LBSTEP,ILBSTEP,MAXSTEP
COMMON /STEP/ LBSTEP,ILBSTEP,MAXSTEP
DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE
COMMON /BOUNDS/ LBND,LBNDPRE,UBND,UBNDPRE
INTEGER NGVLT
COMMON /NGV/ NGVLT

C
TCOST=0.0D0
NGVLT=0

C
C SOLVE THE NETWORK WITH ADJUSTED COST COEFFICIENTS
C
C
C CALCULATE THE NEW COST COEFFICIENTS
C

DO 5 REC=1,ARCS
LOC=GUBADD(REC)
IF (GCOEF(LOC) .NE. 0.0) THEN
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C IF ((UBNDPRE-LBND) .LE. .03*UBND) THEN
LBSTEP=MAXSTEP/NORM

C
C LBSTEP=MAXSTEP/SQRT(NORM)
C ENDIF
C
C CALCULATE THE NEW LAGRANGE MULTIPLIERS
C

DO 30 INDEX= I,GARCS
REC=GUBADD(INDEX)
LBSUBG=YFLOW(REC)-GFLOW(REC)
IF (ABS(LBSUBG) .LE. 1E-15) LBSUBG=0.0D0
CTEMP(REC)=-LBSTEP*LBSUBG
IF (ABS(CTEMP(REC)) .LE. 1E-15) CTEMP(REC)=0.0D0
LGMULT(INDEX)=LGMULT(1NDEX)+LBSUBG*LBSTEP

30 CONTINUE
C
C CHECK FOR OPTIMALITY OR NEAR OPTIMALITY
C

IF (FLGOPT .EQ. 1) THEN
WRITE(6,*) 'OPTIMALITY REACHED AT LOWER BOUND PROCEDURE'
RETURN

ENDIF
C
40 CONTINUE

C

C
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IF ((UBNDPRE-LBNDPRE) .LE. EPSILON *ABS(UBND)) THEN
FLGOPT=1
LBND=LBNDPRE
WRITE(6,*)'NEAR OPTIMALITY REACHED AT LOWER BOUND PROCEDURE'
WRITE(6,*)'SOLUTION IS WITHIN',100*EPSILON,'% '

ENDIF

RETURN
END

C
C
C
co*** ***********************************************************

SUBROUTINE SCBVLP(VAL,GFLOW,GUBADD,GCOEF,
1 LGMULT,LOC1,LOC2,NUMVRS,
1 UPPER,YFLOW,NORM)

co*** **********************************************************

C
C SUBROUTINE ARGUMENTS
C

INTEGER GUBADD(*),LOC1,LOC2,NUMVRS
DOUBLE PRECISION VAL,GCOEF(*),GFLOW(*),

1 LGMULT(*),UPPER(*),YFLOW(*),NORM
C
C LOCAL VARIABLES
C



C
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INTEGER INDEX,REC,LASTRC,LOC,NUM,R2
DOUBLE PRECISION ADJVAL,LBSUBG,LGLB,L1,L2,SUM

INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB, ITRDEG, ITRMAX ,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB, ITRDEG, ITRMAX ,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPS ILON,B IG 1
DOUBLE PRECISION LBSTEP,ILBSTEP,MAXSTEP
COMMON /STEP/ LBSTEP,ILBSTEP,MAXSTEP
DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE
COMMON /BOUNDS/ LBND,LBNDPRE,UBND,UBNDPRE
INTEGER NGVLT
COMMON /NGV/ NGVLT

C
C DETERMINE THE ADJUSTED RIGHT HAND SIDE
C SET ALL THE VARIABLES WITH A ZERO OR POSITIVE RATIO
C

NUM = NUMVRS
SUM=0.0D0
LASTRC=LOC2
ADJVAL=VAL
DO 10 REC= LOCI,LOC2

5 LOC= GUBADD(REC)
SUM=SUM+GFLOW(LOC)*GCOEF(LOC)
IF (GCOEF(LOC) .GT. 0.0 .AND. LGMULT(REC) .GE. 0.0) THEN

YFLOW(LOC)=0.0D0
LBSUBG=YFLOW(LOC)-GFLOW(LOC)
NORM=NORM+LBSUBG*LBSUBG
IF (ABS(LBSUBG) .LE. 1E-15) LBSUBG=0.0D0

C CTEMP(LOC)=-LBSTEP*LBSUBG
IF (FLGOPT .EQ. 1) THEN

LGLB=LGMULT(REC)*LBSUBG
IF (ABS(LGLB) .GT. 1E-15) FLGOPT=0

ENDIF
C LGMULT(REC)=LGMULT(REC)-CTEMP(LOC)
C IF (ABS(LGMULT(REC)) .LE. 1E-15) LGMULT(REC)=0.0D0

NUM=NUM-1
IF (REC .EQ. LOC2) THEN

LOC2=LOC2-1
GO TO 15

ENDIF
L 1=LGMULT(REC)
L2=LGMULT(LOC2)
LGMULT(REC)=L2
LG MULT(LOC2)=L 1
R2=GUBADD(LOC2)
GUBADD(REC)=R2
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C
DO 20 INDEX=LOC1,LOC2

REC= GUBADD(INDEX)
IF (GCOEF(REC) .GT. 0.0) THEN

YFLOW(REC)=MIN(UPPER(REC),ADJVAL/GCOEF(REC))
IF (ABS(YFLOW(REC)) .LE. 1E-15) YFLOW(REC)=0.0D0
ADJVAL=ADJVAL-GCOEF(REC)*YFLOW(REC)
IF (ABS(ADJVAL) .LE. 1E-15) ADJVAL-.0D0

ELSE
YFLOW(REC)=UPPER(REC)-MIN(UPPER(REC),-ADJVAL/GCOEF(REC))
IF (ABS(YFLOW(REC)) .LE. 1E-15) YFLOW(REC)=0.0D0
ADJVAL=ADJVAL+GCOEF(REC)*(UPPER(REC)-YFLOW(REC))
IF (ABS(ADJVAL) .LE. 1E-15) ADJVALLODO

END IF
LBND=LBND+LGM'ULT(INDEX)*YFLOW(REC)
LBSUBG=YFLOW(REC)-GFLOW(REC)

C C 1 EMP(REC)=-LBSTEP*LB SUBG
C IF (ABS(CTEMP(REC)) .LE. 1E-15) CTEMP(REC)=0.0D0

IF (FLGOPT .EQ. 1) THEN
LGLB=LGMULT(INDEX)*LBSUBG
IF (ABS(LGLB) .GT. 1E-15) FLGOPT=0

ENDIF
NORM=NORM+LBSUBG*LBSUBG

C LGMULT(INDEX)=LGMULT(INDEX)-CTEMP(REC)
C IF (ABS(LGMULT(INDEX)) .LE. 1E-15) LGMULT(INDEX)=0.0D0
20 CONTINUE
30 LOC2=LASTRC

RETURN
END

***** *******************************************************

SUBROUTINE LOCSORT(N,INDEXUNDEX2,B,A,LOC)
***** *******************************************************

C
C The purpose of this routine is to keep track of the position
C of an ordered array
C
C SUBROUTINE ARGUMENTS
C

INTEGER LOC(*),N,INDEXLINDEX2
DOUBLE PRECISION B(*),A(*)

C
C LOCAL ARGUMENTS
C

DOUBLE PRECISION BSTAR,RSTAR
INTEGER ID 1,ID2,L,L1,LOC1,N1,M

C
ID1=INDEX1
ID2=INDEX2

C
N1=N
L=1+N/2

11 L=L-1



255

RSTAR=B(L+ID1-1)
LOC 1 =LOC (L+ID1 -1)
BSTAR=RSTAR/A(LOC1)
GO TO 30

25 LOC1=LOC(ID2)
RSTAR=B(ID2)
BSTAR=RSTAR/A(LOC1)
B(ID2)=B(ID1)
LOC(ID2)=LOC(ID1)

29 N1=N1-1
ID2=ID2-1

30 L1=L
31 M=2*L1

IF (M-N1) 32,33,37
32 IF (B(M+ID1)/A(LOC(M+ID1)) .GE. B(M+ID1-1)/A(LOC(M+ID1-1))) M=M+1
33 IF (BSTAR .GE. B(M+ID1-1)/A(LOC(M+ID1-1)) ) GO TO 37

B(Ll+ID1-1)=B(M +ID1-1)
LOC(Ll+ID1-1)=LOC (M+ID1- 1)
L1=M
GO TO 31

37 B (Ll+I D1 -1)=RSTAR
LOC(L1 +ID1-1)=LOC1
IF (L .GT. 1) GO TO 11
IF (N1 .GE. 2) GO TO 25
RETURN
END

c**** ************************************************************

SUBROUTINE UINIT( GARB, GFLOW,GUBADD,GVAL,GCOEF,NUMVRG,
REDGUB,UPPER,UTEMP,ZFLOW)

C**** ************************************************************

C
C THE PURPOSE OF THIS ROUTINE IS TO INITIALIZE THE
C UPPER BOUND ALGORITHM
C
C
C
C SUBROUTINE ARGUMENTS
C

INTEGER GUBADD(*),NUMVRG(*),REDGUB(*)
DOUBLE PRECISION GARB(*),GCOEF(*),

GFLOW( *),GVAL( *),UPPER( *),UTEMP( *),ZFLOW( *)
C
C LOCAL VARIABLES
C

C

INTEGER LINDEX,LOC1,LOC2,NEXT,NUM,OPT,REC
DOUBLE PRECISION ADJVAL,LBSUBG,SUM

INTEGER FLGEND, FLGERR ,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB, ITRDEG, ITRMAX ,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1
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INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,
* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPS 1LON,BIG1
C
C FIND OPTIMAL SOLUTION TO THE NETWORK
C CONSTRUCT STARTING SOLUTION
C

DO 10 I=1,ARCS
ZFLOW(I)=UPPER(I)
UTEMP(I)=UPPER(I)
GARB(I)=0.0D0

10 CONTINUE
C
C SOLVE FOR THE INITIAL SCBVLP PROBLEM AND THE DA
C

NEXT=0
SUM=0
LOC2=0
DO 50 INDEX=1,NGUBS

NEXT=NEXT+NUMVRG(INDEX)
LOC1=LOC2+1
LOC2=LOC2+NUMVRG(INDEX)

C
C IF THE GUB CONSTRAINT IS REDUNDANT THEN LET THE FLOWS BE THE SAME
C AS THE NETWORK FLOWS
C

IF (REDGUB(INDEX) .EQ. 1) THEN
DO 20 I=LOC1,LOC2

REC=GUBADD(I)
IF (GCOEF(REC) .GT. 0.0) THEN

ZFLOW(REC)=UPPER(REC)
ELSE

ZFLOW(REC)=0.0D0
ENDIF
UTEMP(REC)=0.0D0

20 CONTINUE
GO TO 50

ENDIF
SUM=0.0D0

C
DO 30 I=LOC1,LOC2

REC=GUBADD(1)
ZFLOW(REC)=GFLOW(REC)
IF (GCOEF(REC) .GT. 0.0) THEN

UTEMP(REC)=UPPER(REC)
ELSE

UTEMP(REC)=0.0D0
ENDIF
SUM=SUM+ZFLOW(REC)*GCOERREC)

30 CONTINUE
C



C IF THE FLOWS ARE NOT FEASIBLE FOR THE UPPER BOUND DA
C PROJECT THEM ONTO A FEASIBLE REGION
C
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IF (ABS(SUM - GVAL(INDEX)) .GT. 1E-15) THEN
NUM=2*NUMVRG(INDEX)
CALL PROJOP(GARB,GVAL( INDEX),GUBADD,GCOEF,LOC1,LOC2,NUM,

UPPER,UTEMP,ZFLOW)
ELSE

DO 40 I=LOC1,LOC2
REC=GUBADD(I)
UTEMP(REC)=ZFLOW(REC)-UTEMP(REC)
IF (ABS(UTEMP(REC)) .LE. 1E-15) UTEIVfP(REC)=0.0D0
IF (FLGOPT .EQ. 1) THEN

IF (UTEMP(REC) .NE. 0.0) FLGOPT
ENDIF

40 CONTINUE
ENDIF

C
50 CONTINUE

C
RETURN
END

C**** *************************************************************

SUBROUTINE UBALG(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,
GCOEF,GFLOW,GUBADD,GVAL,
LNOD,LOWER,NUIVIVRG,PI,PRED,REDGUB,STATUS,
THD,TO,UPPER,UTEMP,ZFLOW,UBSUBG)

C**** **************************************************************

C
C THE PURPOSE OF THIS ROUTINE IS TO CALCULATE AN UPPER BOUND
C FOR THE PROBLEM (NPG)
C
C
C SUBROUTINE ARGUMENTS
C

CHARACTER*8 ARCNAM(*)
INTEGER BASIS(*),CARD(*),FROM(*),FROMO(*),GUBADD(*),

1 LNOD(*),NUMVRG(*),PRED(*),REDGUB(*),
1 STATUS(*),THD(*),TO(*)
DOUBLE PRECISION COST(*),FLOW(*),GCOEF(*),GFLOW(*),GVAL(*),

1 LOWER(*),PI(*),UBSUBG(*),UPPER(*),
1 UTEMP(*),ZFLOW(*)

C
C LOCAL VARIABLES
C

C

INTEGER FRMNOD,I,INDEX,INDEX1,INDEX2,J,K,LOC,LOC1,LOC2,
* NUM,REC,FIRSTM,PASS
DOUBLE PRECISION NORM,UBSTEP,SUM,LTSTEP,LUBND

INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB, ITRDEG, ITRMAX ,ITROBJ,ITROUT,ITRREG,ITRTOT
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COMMON /ITER/ ITRBTB,IIRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /FARM/ TCOST,ARCS,ARTADD,BIG,GARCS,MAXARC,IVIAXGUB,MAXN0D,

NGUBS ,NODES ,ROOT,EPSILON,BIG1
DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE
COMMON /BOUNDS/ LBND,LBNDPRE,UBND,UBNDPRE
INTEGER FSITER
COMMON /FEAS/ FSITER
DOUBLE PRECISION ALPHA
COMMON /ALP/ ALPHA

IF (UBND .EQ. BIG1) THEN
FIRSTM=1
UBNDPRE=UBND
LUBND=10.E10

ENDIF
C
10 CONTINUE

FLGINF4)
C

C
C

C

C

C

C

TCOST=0.0D0

CALL REOPT(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,GCOEF,GFLOW,
LNOD,LOWER,PI,PRED,STATUS,THD,TO,UPPER,UTEMP,ZFLOW)

UTEMF'(ARTADD)=BIG1

CALL PURNET(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,GFLOW,
1 LNOD,LOWER,PI,PRED,STATUS,THD,TO,UTEMP)

UBND=TCOST
IF (UBND IT. UBNDPRE .AND. FLGINF .EQ. 0) THEN

CALL UBSAV(BASIS,CARD,FLOW,GFLOW,LNOD,PRED,STATUS,THD,LPLOW)
UBNDPRE=UBND
WRITE(6,*) 'UBND = ',UBND

ENDIF

22 CONTINUE
C
C

C

IF (FLGINF .EQ. 1) GO TO 25

IF ((UBNDPRE-LBNDPRE) .LE. EPSILON*ABS(UBNDPRE)) THEN
UBND=UBNDPRE
FLGOPT=1
WRITE(6,*) 'NEAR OPTIMALITY REACHED AT UPPER BOUND PROCEDURE'
WRITE(6,*) 'SOLUTION IS WITHIN',100*EPSILON,'%0F OPTIMALITY'
RETURN
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IF (UBND .GT .LUBND) UBSTEP=UBSTEP/10
ENDIF

C
35 CONTINUE

C UBNDPRE=UBND
UBNDPRE=MIN(UBND,UBNDPRE)
LUBND=TCOST

C
LOC2=0
DO 30 INDEX= I,NGUBS

LOC 1 =LOC2+1
LOC2=LOC2+NUMVRG(INDEX)
IF (REDGUB(INDEX) .EQ. 1) THEN

DO 40 LOC=LOC1,LOC2
REC=GUBADD(LOC)
IF (GCOEF(REC) .GT. 0.0) THEN

ZFLOW(REC)=UPPER(REC)
ELSE

ZFLOW(REC)=0.0D0
ENDIF
UTEMP(REC)=0.0D0

40 CONTINUE
GO TO 30

ENDIF
DO 50 LOC=LOC1,LOC2

REC=GUBADD(LOC)
ZFLOW(REC)=ZFLOW(REC)-UBSTEP*UBSUBG(REC)
IF (ABS(ZFLOW(REC)) .LE. 1E-15) ZFLOW(REC)=0.0D0

50 CONTINUE
30 CONTINUE

C
C FIND THE FEASIBLE POINTS
C

LOC2=0
DO 60 INDEX=1,NGUBS

LOC1=LOC2+1
LOC2=LOC2+NUMVRG(INDEX)
NUM=2*NUMVRG(INDEX)
IF (REDGUB(INDEX) .EQ. 1) GO TO 60
CALL PROJOP(UBSUBG,GVAL(INDEX),GUBADD,GCOEF,LOC1,LOC2,

NUM,UPPER,UTEMP,ZFLOW)
60 CONTINUE

C
C
C CHECK FOR INFEASIBILITY
C

DO 70 I= 1,ARCS
IF (ABS(UTEMP(I)) .LE. 1E-15) UTEMP(I)=0.0D0
IF(UTEMP(I) .NE. 0.00) GO TO 80

70 CONTINUE
IF (FLGINF .NE. 1) FLGOPT=0
GO TO 90
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80 CONTINUE
IF (FLGINF .EQ. 1) THEN

FSITER=FSITER+1
GO TO 10

ENDIF
C
90 CONTINUE

RETURN
END

c**** **********************************************************

SUBROUTINE UBSAV (BASIS,CARD,FLOW,GFLOW,LNOD,PRED,
1 STATUS,THD,ZFLOW)

C

oft*** **********************************************************

C SUBROUTINE ARGUMENTS
C

INTEGER BASIS(*),CARD(*),LNOD(*),PRED(*),STATUS(*),THD(*)
DOUBLE PRECISION FLOW(*),GFLOW(*),ZFLOW(*)

C
C LOCAL VARIABLES
C

C

C

INTEGER I

DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS ,ARTADD,B IG,G ARC S ,MAXARC,MAXGUB ,MAXIsIOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPS ILON,BIG1

REWIND 11
C
C SAVE DATA STRUCTURES
C

DO 10 I=1,NODES
WRITE(11) PRED(I),THD(I),CARD(I),LNOD(I),BASIS(I),FLOW(I)

10 CONTINUE
WRITE(11) ROOT

C
C SAVE ARC STATUS
C

DO 20 I=1,ARCS
WRITE(11) GFLOW(I),ZYLOW(I),S TATUS (I)

20 CONTINUE
RETURN
END

C
C
C**** ***********************************************************

SUBROUTINE PROJOP(BRKPNT,VAL,GUBADD,GCOEF,LOC1,LOC2,NUMBKS,
1 UPPER,TEMP,ZFLOW)

C**** ***********************************************************

C
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C THE PURPOSE OF THIS ROUTINE IS TO PROJECT AN ALLOCATION ONTO
C A FEASIBLE REGION
C
C
c
C SUBROUTINE ARGUMENTS
C

INTEGER GUBADD(*),LOC1,LOC2,NUMBKS
DOUBLE PRECISION BRKPNT(NUMBKS),GCOEF(*),TEMP(*),UPPER(*),

VAL,ZFLOW(*)
C
C LOCAL VARIABLES
C

C

INTEGER I,J ,L 1 ,M,R 1 ,REC
DOUBLE PRECISION L2,LAMDA,R2,STERM,SUM,UTERM

INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB, ITRDEG, ITRMAX ,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPS ILON,BIG I
C
C SET THE BREAKPOINTS
C

J=1
L2=0.0D0
R2=0.0D0
DO 10 I=LOC1,LOC2

REC=GUBADD(I)
BRKPNT(J)=2*(ZFLOW(REC)-UPPER(REC))/GCOERREC)
IF (ABS(BRKPNT(J)) .LT. 1E-14) BRKPNT(J)=0.0D0
J=1+1
BRKPNT(J)= 2 *ZFLOW(REC) /GCOEF(REC)
IF (ABS(BRKPNT(J)) .LT. 1E-14) BRKPNT(J)=0.0D0
J=J+1
IF (GCOEF(REC) .GT. 0.0) THEN

L2=L2+ UPPER(REC)* GCOEF(REC)
ELSE

R2=R2+UPPER(REC)*GCOEF(REC)
ENDIF

10 CONTINUE
C

C
CALL HPS ORT(NUMB KS ,BRKPNT)

L1=1
IF (ABS(L2) .LE. 1E-14) L2=0.0D0
IF (ABS(R2) .LE. 1E-14) R2=0.0D0
R 1=NUMB KS
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IF ( ABS(TEMP(REC)) .LE. 1E-14) TEMP(REC)=0.0D0
IF (FLGOPT .EQ. 1) THEN

IF (TEMP(REC) .NE. 0.0) FLGOPT=0
ENDIF

ELSE
IF (LAMDA .LE. UTERM) THEN

ZFLOW(REC)=0.0D0
ELSE

IF (LAMDA .GT. STERM) THEN
ZFLOW(REC)=UPPER(REC)

ELSE
ZFLOW(REC)=ZFLOW(REC)-GCOEF(REC)*LAMDA12
IF (ABS(ZFLOW(REC)) .LE. 1E-14) ZFLOW(REC)=-0.0D0

ENDIF
ENDIF
TEMP(REC)=ZI,LOW(REC)-TEMP(REC)
IF (ABS(TEMP(REC)) .LT. 1E-14) TEMP(REC)=0.0D0
IF (FLGOPT .EQ. 1) THEN

IF (TEMP(REC) .NE. 0.0) FLGOPT=0
ENDIF

ENDIF
C
50 CONTINUE

C
C
C THE ALLOCATION IS FEASIBLE
C

RETURN
END

***** *******************************************************

SUBROUTINE HPSORT(N,B)
***** *******************************************************

C
C The purpose of this routine is to sort a linear array
C into nondecreasing order.
C
C
C SUBROUTINE ARGUMENTS
C

DOUBLE PRECISION B(N)
C
C
C LOCAL ARGUMENTS
C

DOUBLE PRECISION BSTAR
INTEGER L ,L 1 ,N1 ,M

C
N1=N
L=l+N/2

11 L=L-1
BSTAR=B(L)
GO TO 30
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25 BSTAR=B(N1)
B(N1)=B(1)

29 N1=N1-1
30 L1=L
31 M=2*L1

IF (M-N1) 32,33,37
32 IF (B(M+1) .GE. B(M)) M=M+1
33 IF (BSTAR .GE. B(M)) GO TO 37

B(L1)=B(M)
L1 =M
GO TO 31

37 B(L1)=BSTAR
IF (L .GT. 1) GO TO 11
IF (N1 .GE. 2) GO TO 25
RETURN
END

C**** *************************************************************

SUBROUTINE REOPT(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,
1 GCOEF, GFLOW ,LNOD,LOWER,PI,PRED,STATUS,THD,
1 TO,UPPER,UTEMP,ZFLOW)

c**** *********************************************************** **

C
C THE PURPOSE OF THIS ROUTINE IS TO AN INITIAL FEASIBLE
C STARTING POINT FOR THE NETWORK WITH CAPACITY CHANGE
C
C
C SUBROUTINE ARGUMENTS
C

CHARACTER*8 ARCNAM(*)
INTEGER BASIS(*),CARD(*),FROM(*),FROMO(*),

1 LNOD(*),PRED(*),
1 STATUS (*),THD(*),TO(*)
DOUBLE PRECISION COST(*),FLOW(*),GCOEF(*),GFLOW(*),LOWER(*),

1 PI( *),UPPER( *),UTEMP( *),ZFLOW( *)
C
C LOCAL VARIABLES
C

C

INTEGER DLR,FRMNOD,11,INDEX1,INDEX2,J,K,PREDJ,RTHD,TOJ,UP

INTEGER FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB, ITRDEG, ITRMAX ,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPS ILON,B IG 1
C
C CONSTRUCT THE VECTOR OF REDUCED REQUIREMENTS
C PROCEDURE X2D
C
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IF (ABS(FLOW(IJ)) .LE. .1E-15) FLOW(U)=0.0D0
TCOST=TCOST+UTEMP(K)*COST(K)+FLOW(U)*COST(ARTADD)
GO TO 120

ENDIF
IF (GCOEF(K) .GE. 0.00 .AND. FLOW(U) .LT. 0.0) THEN

STATUS(K)=1
GFLOW(K)=0.0D0
BASIS(U)=-DIR*ARTADD
FLOW(U)=-FLOW(U)
TCOST=TCOST+FLOW(U)*COST(ARTADD)
GO TO 120

ENDIF
UP=UPPER(K)-ZFLOW(K)+UTEMP(K)
IF (ABS(UP) .LE. .1E-15) UP=0.0D0
IF (ABS(FLOW(U)-UP) .LE. .1E-15) FLOW(U)=UP
IF (GCOEF(K) .LT. 0.00 .AND. FLOW(U) .GT. UP) THEN

STATUS(K)=2
GFLOW(K)=UPPER(K)-ZFLOW(K)
BASIS(IJ)= DIR *ARTADD
FLOW(U)=FLOW(U)-UP
UTEMP(K)=UPPER(K)-ZFLOW(K)
TCOST=TCOST+UPPER(K)*COST(K)+FLOW(U)*COST(ARTADD)
GO TO 120

ENDIF
IF (GCOEF(K) .LT. 0.00 .AND. FLOW(U) .LT. UTEMP(K)) THEN

STATUS(K)=1
GFLOW(K)=0.0D0
BASIS(U)=-DIR*ARTADD
FLOW(U)=UTEMP(K)-FLOW(U)
UTEMP(K)=UPPER(K)-ZFLOW(K)
TCOST=TCOST+FLOW(U)*COST(ARTADD)+ZFLOW(K)*COST(K)
GO TO 120

ENDIF
IF (GCOEF(K) .GE. 0.0) THEN

GFLOW(K)=FLOW(U)
ELSE

TCOST=TCOST+ZFLOW(K)*COST(K)
FLOW(U)=FLOW(U)-UTEMP(K)
IF (ABS(FLOW(U)) .LE. .1E-15) FLOW(U)=0.0D0
GFLOW(K)=FLOW(U)
UTEMP(K)=UPPER(K)-ZFLOW(K)

ENDIF
TCOST=TCOST+FLOW(U)*COST(K)

ELSE
IF (STATUS(K) .EQ. 2) THEN

GFLOW(K)=UTEMP(K)
TCOST=TCOST+UTEMP(K)*COST(K)

ENDIF
IF (GCOEF(K) .LT. 0.00) THEN

TCOST=TCOST+ZFLOW(K)*COST(K)
ENDIF

ENDIF
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120 CONTINUE
FRMNOD= FRMNOD +1

C
IF ( FRMNOD .LE. NODES) GO TO 110

C
RETURN
END

C**** **********************************************************

SUBROUTINE LBSAV (BASIS,CARD,FLOW,GFLOW,LNOD,PRED,
1 STATUS,THD,YFLOW)

C * * ** **********************************************************

C
C SUBROUTINE ARGUMENTS
C

INTEGER BASIS(*),CARD(*),LNOD(*),PRED(*),STATUS(*),THD(*)
DOUBLE PRECISION FLOW(*),GFLOW(*),YFLOW(*)

C
C LOCAL VARIABLES
C

INTEGER I
C

DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXINTOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPS1LON,BIG1
C

REWIND 13
C
C SAVE DATA STRUCTURES
C

DO 10 I=1,NODES
WRITE(13) PRED(I),THD(I), CARD (I),LNOD(I),BASIS(I),FLOW(I)

10 CONTINUE
WRITE(13) ROOT

C
C SAVE ARC STATUS
C

DO 20 I=1,ARCS
WRITE(13) GFLOW(I),YFLOWW,STATUS(I)

20 CONTINUE
RETURN
END

C
C
C
C**** **********************************************************

SUBROUTINE LBRED (BASIS,CARD,FLOW,GFLOW,LNOD,PRED,
1 STATUS,THD,YFLOW)

C**** **********************************************************

C
C SUBROUTINE ARGUMENTS



C
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INTEGER B AS IS (*),CARD(*),LNOD(*),PRED(*),STATUS (*),THD(*)
DOUBLE PRECISION FLOW(*),GFLOW(*),YFLOW(*)

C
C LOCAL VARIABLES
C

C
INTEGER I

DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPSILON,BIG1
C
C READ DATA STRUCTURES
C

REWIND 13
DO 10 I=1,NODES

READ(13) PRED(I),THD(I),CARD(I),LNOD(I),BASIS(I),FLOW(I)
10 CONTINUE

READ(13) ROOT
C
C READ ARC STATUS
C

DO 20 I=1,ARCS
READ(13) GFLOW(I),YFLOW(I),STATUS(I)

20 CONTINUE
RETURN
END

C
C
C * * ** **********************************************************

SUBROUTINE UBRED (BASIS,CARD,FLOW,GFLOW,LNOD,PRED,
1 STATUS,THD,ZFLOW)

C**** **********************************************************

C
C SUBROUTINE ARGUMENTS
C

INTEGER BASIS(*),CARD(*),LNOD(*),PRED(*),STATUS(*),THD(*)
DOUBLE PRECISION FLOW(*),GFLOW(*),ZFLOW(*)

C
C LOCAL VARIABLES
C

INTEGER I
C

DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD, BIG, GARCS, MAXARC ,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT
COMMON /PARM/ TCOST, ARCS, ARTADD, BIG,GARCS,MAXARC,MAXGUB,MAXNOD,

NGUBS ,NODES ,ROOT,EPS ILON,BIG I
C
C READ DATA STRUCTURES
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REWIND 11
DO 10 I=1,NODES

READ(11) PRED(I),THD(I),CARD(I),LNOD(I),BASIS(I),FLOW(I)
10 CONTINUE

READ(11) ROOT
C
C READ ARC STATUS
C

DO 20 I=1,ARCS
READ(11) GFLOW(I),ZFLOW(I),STATUS(I)

20 CONTINUE
RETURN
END


