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achieved by first solving a pure network subproblem and
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linear programs. Because only the cost coefficients
change from one pure network subproblem to another, the
optimal solution for one subproblem is at least feasible,
if not optimal, for the next pure network subproblem. The
second sequence yields an upper bound on the optimal value
by using a decomposition of the problem based on changes
in the capacity vector. Solving for the decomposed
problem corresponds to solving for pure network
subproblems that have undergone changes in lower and/or
upper bounds. Recently developed reoptimization
technigues are incorporated in the algorithm to find an
initial (artificial) feasible solution to the pure network
subproblem.

A program is developed for solving the network with
GUB side constraints problem by using the relaxation and
decomposition techniques. The algorithm has been tested
on problems with up to 200 nodes, 2000 arcs and 100 GUB
constraints. Computational experience indicates that the
upper bound procedure seems to perform well; however, the
lower bound procedure has a fairly slow convergence rate.
It also indicates that the lower bound step size, the
initial lower bound value, and the lower and upper bound
iteration strategies have a significant effect on the

convergence rate of the lower bound algorithm.
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Network Models with Generalized Upper Bound

Side Constraints

CHAPTER 1

INTRODUCTION

Network flow models arise in a wide variety of
applications such as production—distribution systems,
communications systems, and pipe network systems. All the
activities, other than slacks and surpluses, can be
presented as arcs connecting pairs of nodes in a network.
The values of the variables associated with these
activities can be interpreted as flows in the network and
the constraints as flow balance equations. The arcs may
represent pipes in a water distribution network, telephone
lines in a communication network, etc.; and the nodes may
be interpreted as locations or terminals connected by the
arcs.

Unfortunately, many real world models do not possess
pure network structure. Often additional linear
constraints are essential to model crucial policy
restrictions. These additional constraints are generally
referred to as side constraints. There are numerous
applications of the network with side constraints model

arising in practical settings. Applications utilizing




several types of side constraints models are briefly

described below.

1.

Glover, Glover, Lorenzo and McMillan (1982)
developed a model for Frontier Airlines whose

goal was setting prices more adaptively and
changing them more rapidly, i.e., to determine the
number of passengers at each fare class on each
flight segment that will optimize revenue for any
given set of prices, flight segment capacities and
passenger carrying demand. The system is designed
to accommodate a network of 600 flights and 30000
passenger itineraries (PI) with up to 5 fare
classes per PI. The number of side constraints
ranges from 1800 to 2400.

Klingman, Mote and Phillips (1988) developed an
optimization—based logistics model for W. R.
Grace. W. R. Grace company is one of the nation's
largest suppliers of phosphate—based chemical
products such as fertilizer. The mathematical
model contains 12 monthly time periods and is used
primarily for annual planning purposes. The
system is designed to provide management with
important variable cost and material balance
information so as to minimize the sum over all

periods of shipping costs, production costs, and




inventory costs. It typically has 3408 nodes,
21504 arcs and 288 side constraints.

3. Ali, Helgason and Klingman (1987) developed an
integrated man—-machine decision support system
for the U.S. Air Force whose goal is to select the
least cost set of cargo—routes which satisfy the
point—to—point demands for cargo movement among
the 60 Air Force bases. The system is designed to
aid the Air Force Logistics Command in making
annual design changes in route structure for a
large routing and distribution system. It is also
designed to accomodate a network of 60 bases with
up to 313 flights. The number of side constraints
ranges from 234 to 310.

In a network without additional constraints there are
of course still the conservation equations; in other words
total flow into a node must equal the sum of total flow
out of that node and the node requirement. The
conservation equations are handled graphically by network
solution procedures. Bounds specified for individual arcs
or variables are handled implicitly in a manner analogous
to the bounded-variable simplex method for linear

programs.




1.1 Formal Definition

The general problem to be considered may be defined

as a mathematical program with the following form:

Minimize c¢x + dy

Subject to Ax = r
Ex + Py = b

lix) € x < ulx)

IHy) <y € uly)

In this formulation, A is an (mXn) matrix, E is a (pXn)
matrix and P is a (pXq) matrix. The r is a (mX1l) vector;
x, l(x) and u(x) are (nXl) vectors; b is a (pX1) vector;
vy, l(y) and u(y) are (qX1l) vectors; c¢ and d are
respectively (1Xn) and (1Xq) vectors.

A major portion of the LP literature has been devoted
to the following problems:
(a) Standard LP Problems (m=n=0 and P is an arbitrary

matrix), that is,

Minimize dy
Subject to Py = b
Hy) £y L uly)

Problems having inequality constraints may be placed

in this form via the addition of slack or surplus

variables. The rules for accomplishing this




(b)

(c)

transformation can be found in any text on linear
programming. [ Lasdon (1970) and Murty (1976) 1
LP/GUB Problems (gq=0, A is an arbitrary matrix and E
contains at most one nonzero entry per column), that
is,

Minimize c¢x

Subject to

]

Ax r
Ex = Db
Ix) € x < u(x)
This problem arises from an LP in standard form in
which the constraints fall into two sets. The first
set of m constraints (i.e. Ax = r) is of an arbitrary
nature. The last set of p constraints (i.e. Ex = b)
is termed the generalized upper bound (GUB)
constraints, i.e., they satisfy the property that
every variable in the model appears in at most one
constraint in this set of constraints. [ Murty (1983,
pp. 359-368) ]
Pure Network Problems (p=q=0 and A is a node-arc
incidence matrix), that is,
Minimize c¢x
Subject to Ax = r
l(x) € x £ u(x)

The matrix A is defined to be a node-arc incidence

matrix, that is, a matrix where each column has




exactly two nonzero entries, one being a +1 and the
other a -1. The rows of the node—arc incidence matrix
correspond to the nodes of the network and the columns
to the arcs. The convention used here is that if arc
k is directed from node i to node j then row i will
contain a -1 and row j a +1 in column k of A. In such
cases nodes i and j are referred to respectively as
the from-node and the to-node for arc k. For example,
Figure 1.1 presents a simple network and its
associated node—arc incidence matrix. The vector r
defines the requirements at the various nodes. For
our convention, supply nodes have a negative value in
r, demand nodes a positive value in r and
transshipment nodes a zero r value. 1In addition, r is
such that the sum of its components is zero, that is,
total supply equals total demand. The vector X of
decision variables corresponds to the flows across the
arcs. The ! and u vectors represent the lower and
upper bounds respectively that are placed on x with
-w < | ¢ u < . Many special cases of pure network
problems have been studied. Some of these and their
specialization are:

1. Uncapacitated Transshipment Problem. This problem

is a specialization of the pure network in which

the arcs have infinite capacity (uj = o for all
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Figure 1.1 : A Network and its Associated Node-Arc
Incidence Matrix




2. Capacitated Transportation Problem. This is a

i).

special case of the pure network problem in which
the nodes can be partitioned into two sets, one
consisting solely of supply points and the other
only of demand points, such that all arcs

originate from supply nodes and terminate in

demand nodes. Figure 1.2 illustrates a typical
structure for a capacitated transportation
problem.

Transportation Problem. This problem is a special
case of the capacitated transportation problem in
which the arcs have infinite capacity.

Assignment Problem. This is a special case of the
transportation problem in which the number of
supply nodes is equal to the number of demand
nodes and all demands and supplies are unity
(i.e., |ril = 1 for all i).

Shortest Path Problem. Given a network whose arc
cost is given the physical interpretation of arc
length, the shortest path problem is to find that
sequence of arcs connecting node s to node t such
that the sum of the arc costs on the path is
minimized, where s and t may be any given node

pair. This problem can be viewed as a special
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Figure 1.2 : Transportation Problem
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case of the uncapacitated transshipment problem in
which r, = -1, r, = 1, and all other requirements
are zero. Suppose we wish to find the shortest
path from node 1 to node 4 in the network of
Figure 1.1. The network corresponding to this
problem is given in Figure 1.3. The optimal flow
pattern in Figure 1.3 implies that the shortest
path consists of arcs (1,2), (2,3) and (3.,4).

6. Maximal Flow Problem. For this problem arc
capacities { lj < X < uy for all j) are the only
relevant parameters. For any given node pair s
and t, the problem is to find the maximal
continuous flow from node s to node t. Suppose we
wish to determine the maximal continuous flow from
node 1 to node 4 in the network of Figure 1.1.

The revised network is illustrated in Figure 1.4.
Note that the value of the maximum flow is equal
to 5.
(d) Multicommodity Network Problem ( g=0, A is a
block—diagonal matrix with each block a node-—arc

incidence matrix from one commodity and E is a special

structured matrix), i.e.,




[cost, flow]
{node requirement}

{o}

[6.0]

(-1} [0,0] {1}

[4,1]

{0}

Figure 1.3 : Shortest Path Problem
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[flow,upper bound, lower bound]

[2.4,0] [2,2,0]

(0,1,0] [0,3,0]

[3.6,0]

Figure 1.4 : Maximal Flow Problem
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(e)
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Minimize c¢x

Subject to Ax

]

r
Ex = b
l(x) € x £ u(x)
Problems of this type arise when a network of nodes
and arcs is shared by several different items
(commodities). When k commodities are present, E is
of the special structure [ D1| Dzl eoe Dk] where DY
for i=1,...,k are diagonal matrices. In many cases
Di = I for i=1,....k. [ Kennington and Helgason
(1980, pp. 124-165) ]
Generalized Network Problems (p=q=0 and A contains at
most two nonzero entries per column), i.e.,
Minimize c¢x
Subject to Ax = r
I{x) € x £ u(x)

This is a special case of LP in which each column of
the constraint matrix has at most two nonzero entries.
In many practical applications the two nonzero entries
in each column are of opposite sign. One may
associate a graph with any generalized network
problem. This graph consists of undirected arcs, in

contrast to network graphs (see Figure 1.1).

[ Rennington and Helgason (1980, pp. 91-123) ]
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(f) Network with Side Constraints Problem (A is a node-arc
incidence matrix, and E and P are arbitrary matrices),
i.e.

Minimize c<x + dy
Subject to Ax = r
Ex + Py = b

lix) € x £ u(x)

<
< uly)

Iy) £y
This problem arises when in addition to the
constraints on the flow in a network other linear
constraints are present. [ Kennington and Helgason
(1980, pp. 166-182) 1]

(g) Network with GUB Constraints Problem (q=0, A is a
node—arc incidence matrix and E contains at most one
nonzero entry per column, i.e.

Minimize c¢x + dy

Subject to

Ax r

Ex b

IA

I(x) € x € u(x)
(Note that by adding the vector of slacks y and the
matrix P=I, this is of the form of the general
category of problems considered here.) This is a
special case of the network with side constréints

problem in which the side constraints are generalized

upper bounding (GUB) constraints. This is the problem
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of interest and an algorithm for solving this problem

will be presented in Chapter 3.

1.2 Outline of the Remaining Chapters

The organization of the dissertation will be to first
present a summary of the major results for relevant topics
in optimization theory; this will be done in Chapter 2
along with a review of the literature. The basic
methodology used to solve the network model with
generalized upper bound constraints is explained in detail
in Chapter 3. Chapter 4 presents an overview of software
considerations. Chapter 5 presents our computational
results along with a discussion of relevant findings.
Finally, Chapter 6 provides a summary of the findings and

some suggestions for further study.
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CHAPTER 2

FOUNDATIONS

2.1 Background Results

The results in this section will draw from the work
of Ali, Allen, Barr and Kennington (1986), Fisher (1981),
Held, Wolfe and Crowder (1974), Kennington and Helgason
(1980), Shapiro (1979), Wagner (1975) and Bolouri and
Arthur (1989). The purpose of this section is to present
a summary of the relevant results for (i) solving pure
network flow problems via the simplex method on a graph,
(ii) projecting an infeasible point onto a feasible
region, (iii) the subgradient method for nondifferentiable
optimization, (iv) the Lagrangean dual problem and (v) the
single constraint, bounded variable linear programming
(SCBVLP) problem. All of these ideas will be utilized in
describing the solution of network models with generalized

upper bound side constraints.

2.1.1 Pure Network Problems

The minimum cost network flow or pure network problem

is a special structured linear program of the form:
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]

(NP) minimize c

subject to

i :I
R

I
el

T«
where A is a node—arc incidence matrix with m nodes and n
arcs. Arc (i,j) is directed from node i to node J, and
its flow, unit cost, lower bound, and upper bound are
given, respectively, as Eij' cij' Tij and Gij' The
constant ;k represents the requirement at node k. The
objective is to determine a set of flows which meet the
node requirements and bound restrictions at a minimum
total cost.

In practice, (NP) is transformed to yield a slightly

simplified form with zero lower bounds. By defining

X = x + [, the problem becomes:

minimize cx + oo
subject to

Ax = r

0{x<u

where ¢« = cl, r = ¢ - AT, and u = u - T. It is this form
of the problem that is typically implemented in computer
codes, with the lower bounds maintained separately for

reconstruction of problem (NP) upon solution of the
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transformed problem.
Since the system Ax = r has rank m-1 (see Kennington
and Helgason (1980, p. 56)), an additional arc a. called

the root arc, is added to problem (NP) to get :

(§P) minimize cxX (1)
subject to .

Ax + ae = 7r (2)

0 {x<€u (3)

0afo (4)

where ee is a vector with 1 in the eth position and zeros
elsewhere, 1 < ¢ {m. ¢ is usually referred to as the
root sode. Then the constraint matrix [ A | e’ 1 has full
row rank. It has been shown (Kennington and Helgason

12

(1980, p. 57)) that the only bases for [ A | e ] are et

along with a set of linear independent columns from A.

2.1.1.1 Operations with the Network Basis

This section will introduce some notions from graph
theory that will be used in the characterization of a
basis for the problem (#P). A network is a (directed)
graph ¥ = [ #,4] where ¥ is a finite set of nodes and 4 is
a set of directed arcs joining pairs of nodes of ¥. A
path in 7 is an alternating sequence of distinct nodes and

arcs such that each arc is incident to the two nodes
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immediately preceding it and following it. A path links
its first element to its last element. A cycle in 7 is a
path in 7 whose two endpoints are not distinct. A cycle
links its first element to itself. If every pair of nodes
in 7 is joined by a path then 7 is said to be connected.

A graph which has no cycles is said to be acyclic. A
subgraph of a graph 7 is a graph composed of a subset of
the nodes and arcs of 7. A spanning subgraph of 7 is one
which contains all the nodes in 7.

An important type of a graph is a tree. A (ree is a
connected acyclic graph. The following proposition gives
other characterizations of a tree and will be stated
without proof. ( A proof can be found in Kennington and

Helgason (1980, pp. 203-206).)

Proposition: The following statements are equivalent:
1. ¥ is a tree.
2. Every distinct pair of points of 7 are joined by a
unique path.
3. 7 is connected and the number of nodes is one more
than the number of arcs.
4. 7 is acyclic and the number of nodes is one more

than the number of arcs.

A tree that is a spanning subgraph of a graph 7 is called
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a spanning lree for 7.

Recall that a network basis has one additional column
e’ which is represented on a graph by a link leaving the
root node ¢ and having no to-node. Furthermore, the
corresponding graph is called a rooted grapk, and a
spanning subgraph of a rooted graph that is a tree is
termed a rooted spenning tree for the rooted graph. It is
well known that the set of all arcs that form a basis for
a network, together with the set of all nodes in the
network, form a rooted spanning tree ( Kennington and
Helgason (1980, pp. 58-59)). Figure 2.1(a) shows a
network and Figure 2.1(b) a corresponding rooted spanning
tree (basis tree). The representation of the network
bases as rooted trees is one of the key reasons network
optimization codes are so efficient. The remainder of
this section will be devoted to a few illustrations that
serve to point out how the computational savings occur.

Consider the rooted tree illustrated in Figure 2.1(b)
with the corresponding basis (for clarification, node

numbers are supplied next to the basis matrix):



b.) Rooted Spanning Tree Corresponding
to a Basis for the Network

Figure 2.1

Example Network and its Basis Tree
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(5)

w

1
HNNBWO O

I

[

Note that B has been triangularized by row and column
interchanges. (An algorithm for triangularizing a network
basis can be found in Kennington and Helgason (1980, p.
60) ).

A representation of B is required for two types of
calculations; premultiplication of B by a row vector and
postmultiplication of B by a column vecfor. These
calculations can be represented symbolically as

B = ¢ r~ (6)
which is solved for », and

By = d (7)
which is solved for y, where x, ¢, y and 4 are
appropriately dimensioned row and column vectors. The
special structure of the matrix B greatly reduces the
computational effort.

Consider solving (6) for x» with the matrix B from (5)

when

¢ = [5,0,2,0,1,1,0] (8)

This gives the following set of equations:
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=
i

=N
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(=)

(9)

|
=
+
=

I
oy

To solve for x, the value of the last component is
obtained first and the values of the remaining components
are iteratively obtained by backward substitution. The
solution of (9) is

*r=[6,1,3,1,1,1,0] (10)
The above procedure may be used for solving any triangular
system of equations but the calculation could be
simplified by using a basis tree representation of B.

Recall that for the revised simplex method any

equation for the reduced costs can be expressed as :
¢c - c¢c B A (11)

where B is a basis, cB is the cost associated with the
basic columns, cN is the cost associated with the nonbasic
columns AN and B—1 is the basis inverse. Again, one may

make use of the triangularity of B and solve for
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T = cBB_l, called the dual solution, or node potentials.
The system of equations to be solved is
T = cBB.-1 (12)
or B = cB (13)

where 7 is the row vector representing the duals or node
potentials. Without loss of generality, assume that the
rth column of B, Br, corresponds to the arc (i,j). Then
Br has a value of -1 in the row corresponding to node 1

and a value of 1 in the row corresponding to node j, and

zeros elsewhere. Then the rth equation of (13) is

™ = c .
r 1)
or equivalently,
-x +7 =cC_ (14)
1 i 1)
where ¢ is the cost associated with the arc (i,j). 1In

1]

general, for any basis B, and basis tree 73 with root node

¢, (13) can be reduced to

Te =0 (15)
-+ % =c . for (i,3) € T
1 ] 1}
where the ¥ values are associated with the nodes of the
basis tree and the ¢  values are associated with the
1) .
arcs. Figure 2.2(a) shows a basis tree with the set of

cost coefficients from (8) on the arcs. Because the set

of constraints for the network has rank one less than the
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b.) Basis Tree with Node Potentials Determined

Figure 2.2 : Example Basis Tree
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number of nodes, we can arbitrarily assign a value to any
of the nodes. The convention is to assign a value of zero
to the potential of the root node.

Consider node 4 first. 1In order to determine the
potential for node 4, 14, the following equation has to be
solved

T = C + 7 (16)
The value of c14 is equal to 1. The r4 is equal to c14 or
1 since the value of wl is zero. To calculate the
remaining node potentials the same operations are
performed; each making use of potentials calculated in the
previous step. In order to make sure the calculations are
performed in the right order, a labelling scheme referred
to as the thread function is used. The thread, written as
t (x) where X is a node number, may be thought of as a
thread which passes through each node exactly once in a
top to bottom, left to right order starting from the root
node. The thread function is shown in Figure 2.2(b) as a
dashed line and specifies the order in which the nodes in
the basis tree are visited, e.g. t(6)=2 and t(7)=1. It is
now a simple matter to solve (13). Figure 2.2(b) shows
the complete solution. An algorithm for solving (13) can

be found in Kennington and Helgason (1980, p. 63).
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Now consider solving (7) for y with a 4 vector of

1
nad

SN WwWOOM
|
OO WO

[
[}

(17)

where again the corresponding node numbers are included.

The equations to be solved are:

-y +ty

-y +ty +y¥y
3 4 5

Y +y
2 6

-y - Y Y
5 6

7

]

-3 (18)

To solve this system of equations we use forward

substitution starting with y1=0.

The solution to (18) is
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Ll
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1
4

(19)
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In order to use the basis tree to solve (18) we assign the
di values to each node i in the basis tree and use them to
determine values associated with the arcs. The chain
specified by the dashed line in Figure 2.3 indicates the
order in which the nodes are visited in determining the
arc values. Since the order is opposite that of the
thread function, this chain will be referred to as the
reverse thread function, written as r(x) when x is a node
number; for example, r(1)=7 and r(4)=1 in Figure 2.3. 1In
order to implement the procedure it is also necessary to
maintain a function that specifies for any given node its
immediate predecessor. This function will be referred to
as the predecessor function and written as p(x) when x is
a node number where p(x)=0 if node x is the root node;
e.g. p(3)=4.

To determine the arc values using the tree we begin
at the node r(l), or node 7. If an arc is directed into a
particular node it will receive the value on the node, if
it is directed out of a node it will receive the negative

of the value on the node. Then the value on the node
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Figure 2.3 : Example Basis Tree
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p(7), or node 5, is revised to be the old value on the
node p(7) plus the value on the node 7. The same
procedure is followed for r(7), the reverse thread of 7.
until the predecessor of the current node is zero. For
example, at node 6 the arc value, ys, is equal to 4. Then
the revised value on the predecessor of node 6, p(6)=4,
would be 4 + 0 = 4. Then at node r(6)=3 the arc value,
y4, is equal to 3. The revised value on node p(3)=4 would
be the old revised value on node 4 plus the value on node
3, that is, the value of the sum 4 + (-3) = 1. This value
is used instead of 0 in determining the value to be
assigned to the arc (1,4). Figure 2.3 shows the finished
tree. Note that the operations performed are extremely
simple, resulting in a very efficient method for solving
systems of the form of (7). A general algorithm necessary
to solve (7) is presented in Kennington and Helgason
(1980, p. 171).
For completeness, the steps of the specialized primal

simplex method on a graph are summarized as follows:
Step 0 : Determine Node Potentials.

Assume that an initial feasible basis (possibly

containing artificial arcs) has been determined and

stored as a rooted tree. Flows on the arcs have been

determined as discussed above. The node potentials T

for each node k are determined (on a graph) using the
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technique explained previously.

Step 1 : Identify the Outgoing and Incoming Arcs.
The basis exchange step of the simplex method selects
an incoming arc and outgoing arc from the nonbasic and
basic arcs respectively. The incoming arc is that
particular nonbasic arc which is profitable to enter
the basis. That is, it is a nonbasic arc that has zero
flow and a negative reduced cost or has saturating
(upper bound) flow and a positive reduced cost. If no
such arc exists, the problem is solved. The outgoing
arc, the arc to leave the basis, is an arc in the basis
equivalent path (i.e. the unique path in the basis tree
which connects the two nodes of the incoming arc) whose
flow goes to zero or its upper bound sooner than any
others as a result of a flow change in the incoming
arc. The basis equivalent path can be determined by
tracing the predecessors of the two nodes to their
initial point of intersection.

Step 2 : Execute the Basis Exchange.
The outgoing and incoming arcs swap their basic and
nonbasic statuses to become nonbasic and basic,
respectively; the basis tree functions, basis flows and
node potentials are then updated and the method returns

to step 1 with a new feasible basis.
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Consider Figure 2.4 and assume that link [4,12] has
been selected to enter the basis. The basis equivalent
path for link [4,12] is the set of links in the
predecessor path of the basis tree from node 4 to node 2
(i.e. links [4,3] and [3,2]) and from node 12 to node 2
(i.e. links [12,11], [11,81, [8,6] and [6.,2]). ©Node 2 is
referred to as the iniferseclion node.

Various data structures have been developed to
facilitate implementation of the algorithm. All the data
structures use the predecessor and thread functions plus
various combinations of other functions. Each label or
function used in the data structures requires a
node—length array. Let T be the basis tree and T(x) be
the subtree of T that is rooted at node x (hence the
subtree that includes x and all its successors under the
predecessor ordering). The following functions are widely
used in the data structures.

p{(x) = the predecessor of node x where p(x})=0 if x is

a root node.

t(x) = the thread of x.

r(x) = the reverse thread of x.

c(x) = the number of nodes in T(x) (called the
cardinality of x).

f(x) = the "last node" of the nodes in T(x) (hence the

last node in the thread in T(x)).
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Figure 2.4 : Sample Rooted Spanning Tree
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d(x) = the length (i.e. number of arcs) of the path
linking any node x to the root node, where
d(x)=0 if x is a root node (called the distance
of x).

Table 2.1 illustrates the node functions for the spanning

tree of Figure 2.4.

Table 2.1 : Node Functions for the Rooted Spanning Tree

kex p (k) t (k) r (k) c (k) f (k) d (k)
1 0 2 9 i3 9 0
2 1 3 1 12 9 1
3 2 4 2 3 5 2
4 3 5 3 1 4 3
5 3 6 4 1 5 3
6 2 7 5 8 9 2
7 6 8 6 1 7 3
8 6 10 7 5 13 3
9 6 1 13 1 9 3

10 8 11 8 1 10 4

11 8 12 10 3 13 4

12 11 13 i1 1 12 5

13 11 9 12 1 13 5
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2.1.1.2 Reoptimization Procedures for Pure Network
Algorithms

This section will introduce procedures that use the
spanning tree properties of network simplex bases and the
elegant data structures to quickly reoptimize networks
which have undergone costs and/or bounds changes. In each
instance, the methods keep as much of the existing |
solution as possible. (Ali, Allen , Barr and Kennington
(1986)) .

Consider problem (¥#P) again:

minimize cxX
subject to
Ax + ae =r
0 <x<u
0axfo

The set of arcs, A, can be partitioned into three

subsets:

B = { (i,3) : arc (i,j) is basic }

2
o
I

(i,3) : arc (i,3j) is nonbasic with zero flow }

=2
c
]

(i,3j) : arc (i,j) is nonbasic with flow equal

to its upper bound }

With this partitioning, problem (¥P) can be restated as
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! follows:
min PN I (20)
\ o e H
s.t.
‘ z x - by x +ael =rr 3j€w (21)
(i.jy € 17 (jeky €B K !
0 <x £ u, . for (i,3j) € B (22)
1] 1}
x =0 for (i,3j) € NV (23)
ij
X = u._ . for (i,3j) € NU (24)
ij ij
0<a<o (25)
4 =B UNYUN (26)

where rr 1is called the reduced requiremeni at node 3J,
]

and

rr =r - ( X x - P (27)
]

(irjy €Nv M (jrk) ENY ik )
It is clear that once the nonbasic sets N° and NY are
assigned, equations (21) uniquely determine the basic arc
flows. In addition, the flows give a basic feasible
solution if constraints (22) are satisfied.

The node labels that are useful in the reoptimization
procedures are p(k), Wk, rr(k), t(k), r(k) and FLOW(k) for
a node number k where rr(k) is the reduced requirement at

node k and FLOW(k) is the flow on either (k,p(k)) € B or
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(p(k),k) € B, whichever exists, with FLOW(e¢) = 0. The
reduced requirements rr(i), i € ¥, need not be maintained
explicitly, since they can be reconstructed from a given
set of nonbasic and basic flows. The following procedure
reconstructs the reduced requirements. Upon completion,
each rr(i), i € ¥, corresponds to demand if positive and

supply if negative.

PROCEDURE X2D
Step 1 : Set i + 1 and set rr(i) + FLOW(i).
Step 2 : Increment. Set i « i + 1.

If i > m, go to step 3; otherwise, go to step 1.

Step 3 Let j = t(e) and rr(e) = 0.

Step 4 : Set 1 + 1.

Step 5 : If (j,p(j)) € B, then let
rr(p(j)) = rr(p(j)) + rr(j) and rr(j) = -rr(3):
otherwise, let rr(p(j)) = rr(p(j)) - rr(j).
Step 6 : Increment. Set i +~ i + 1.

If i >m - 1, terminate; otherwise, let j = t(3J)

and go to step 5.

For a given basis B, changes in node requirements are
incorporated via changes in the flow on basic arcs.
Notice that changes to any bounds for nonbasic arcs can

also be made on this set of reduced requirements, since
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each nonbasic arc in N% (N%) with an altered upper (lower)
bound remains nonbasic at its new upper (lower) bound,
thus forcing a change in the basic flows in order to
preserve the conservation of flow. The following
procedure redistributes this modified set of values for

each rr(i), i € #, to the basic variables.

PROCEDURE D2X

Step 1 : Set i + 1., Let FLOW(i) rr(i).
Step 2 : Increment. Set i « i + 1.

If i > m, go to step 3; otherwise, go to step 1.

Step 3 : Let j = r(e). Set k « 1.

Step 4 : Let FLOW(p(j)) = FLOW(p(3j)) + FLOW(Jj).
If (j,p(j)) € B, let FLOW(Jj) = -FLOW(Jj).
Let j = r(3).

Step 5 : Increment. Set k « k + 1.

If k >m - 1, terminate; otherwise, go to step 4.

Upon completion, the basis will have a set of flows
satisfying (21) but not necessarily (22). Any basic
variable whose flow violates one of its bounds must be
handled using the appropriate cases given below.

Assume we have an optimal extreme pointvsolution to
problem (#f), and we are interested in making one or nore

of the following changes to the original problem (NP) and
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finding the optimal solution to the revised problem.

CHANGING A UNIT COST

Changes in unit costs require relatively simple
treatment for reoptimization since the primal feasibility

of the basis is unaffected. Suppose that the unit cost on

arc (i,3j) is changed from ¢ to ¢  for a net change of
1] i]
Ac = ¢ - ¢ . Let 7 be the new dual variables,
1) i} i

determined as follows.

Case 1 : Arc (i,j) is basic.
a. If i = p(j), set Ac = -Ac.

b. Set T = rk + Ac for k € T(i)

-~

T 7 - Ac for k €T - T(i)

k k
Case 2 : Arc (i,j) is nonbasic.

No changes to the dual variables are required.

Notice that if several arcs' costs are modified, it would
be advantageous to replace cij with ;ij and solve for the
dual variables using the procedure discussed in the
previous section with the optimal extreme point solution

as a starting basic feasible solution for the modified

problem.
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CHANGING AN UPPER BOUND

Suppose that the upper bound on arc (i,j), in problem

— -k
(NP), is changed from u., to u. ., 2 { ., for a net change of
1

1) ij] i
X — P ~ X
Au=49 -4 .=u_ =~ f(u  +7T ). Letu =u - T .,
1] 1]} 1) 11} 1) 1]} 1] 1)
then Au = u - u_ . . That is, we have an optimal solution
1) 1]

x for problem

minimize cx
subject to
Ax + ae = r
0 {x<u
0a¥xXo

and we would like to find an initial basic feasible

solution for the problem

minimize cxX
subject to
Ax + ae =r
0 {x<u
0a¥Xo

Case 1 : Arc (i,j) is basic.

a. x <u .

vy - i)
No change is required and the current solution is

both feasible and optimal.
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~

Make arc (i,j) nonbasic at the new upper bound uij

and replace it in the basis tree with the

artificial arc (i,j) having a flow of x - u_ .
1] ij

Case 2 : Arc (i, j) 1is nonbasic.
a. x = 0.
1)

No changes are required and the current solution is

both feasible and optimal.

b. x  =u .
1] 1)

Set xij to its new upper bound uij'
Apply procedure X2D to construct a vector of
reduced requirements, rr(i), from basic flows,
FLOW(i). Set rr(i) = rr(i) + Au and
rr(j) = rr(j) - Au. Apply procedure D2X to
construct a set of basic flows, FLOW(i), from a set
of reduced requirements, rr(i). Adjust any (basic)
flows exceeding their bounds as follows:

For all arcs (p,q) € B, if ; > u__, go to

i P~ P4

case 1lb; if x < 0, set = x___, make arc
1 Xpq Set Xpq T *pq

(p.q) nonbasic at its lower bound (zero), and
replace it in the basis tree with an artificial

-~

reverse arc (q,p), having a flow of - Xoq

Note that if several arcs' bounds are modified, it would

be advantageous to check nonbasic arcs first, and
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therefore procedures X2D and D2X need only be applied

once. 1In this case the basic arcs are only checked once

for feasibility.

CHANGING A LOWER BOUND

Suppose that the lower bound on arc (i,3j), in problem
(NP), is changed from [ _ to ! ., for a net change of
1] 1}
Al =1 -T . That is, the new problem to solve is
1]} 1)
minimize cx

subject to

L
I
al

A

~)
I
®i
I
=1

which is equivalent to

minimize cx

subject to

]
IN
e

o]
I
(@]

where x = x + I, r=r - Al and u = u - 1.
But an optimal extreme solution is available for the

problem
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minimize cxX
subject to .
Ax + ae = r
0<x<u
0afo

~

denoted [xij} where x = x - I, r=7r - AT and u =u - [.
Furthermore,
x=%x-T-Al=x-Al
r=7-AT - AAl = r - AL,
and a=ua-T-Al =u- Al.

Case 1 : Arc (i,j) is basic.

a. Al €x,. € u,..
ij ij

Setting Xi5 = X535 ~ Al yields a solution that is

both feasible and optimal.

-~

b. x.. < Al.
1]

Make arc (i,j) nonbasic at its lower bound (zero),

and replace it in the basis tree with an artificial

reverse arc (j,i), having a flow of Al - X5

Case 2 : Arc (i,3j) is nonbasic.

a. X;.: T U...
1] 1]

No basic flow change is required, the current

solution is both feasible and optimal, and

-~

uij =y Al.
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-~

b. Xij = Q.

Set Xij to be 0.

Apply procedure X2D to construct a vector of
reduced requirements, rr(i), from basic flows,
FLOW(i). Set rr(i) = rr(i) + Au and
rr(j) = rr(j) - Au. Apply procedure D2X to
construct a set of basic flows, FLOW(i), from a set
of reduced requirements, rr(i). Adjust any (basic)
flows exceeding their bounds as follows:

For all arcs (p,q) € B, if ; > u__, adjust the

joge Pq
flows according to case 1lb of CHANGING AN UPPER

~ ~

BO ;. < ' =~ ’
UND if qu 0, set qu qu

(p,q) nonbasic at its lower bound (zero), and

make arc

replace it in the basis tree with an artificial

~

reverse arc (q,p). having a flow of - qu.
Notice that if several lower and/or upper bounds on
arcs are modified case 1 and case 2 of the upper and lower

bound change need only be applied once.

To illustrate the above procedures consider the

following example:
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min 10x +11x +12x +12x +10x + + 6x +14x
1 2 5 6 7 9 10

subject to

-Xx - X - X =
1 2 3
- X - x -X =
4 6
X + x -x +x =
1 4 7 8
X + x +xXx - x =-X +X =
2 5 7 8 9 10
X + x +x - x =
3 6 9 10
0<x <4,0<x <10, 0¢ x3 <4, 0¢( x4 < 4
1 2
0<x <14 ,0<x <4,0<x <10, 0¢<x <1
- 5 ~ = 6 ~ -7 8
0{x <14, 0¢<x < 10.
9 10

An optimal solution to the problem is

x=(x ,Xx ,Xx ,X ,X ,X ,X ,X ,Xx ,x )=(4,2,4,4,6,4,0,0,0,0
1 273" 74" "5 6 7 9 10

-10

~14

) .

Figure 2.5 shows the network and its corresponding optimal

basis tree. Note that arcs xl, x3 and x4 are nonbasic

arcs at their upper bounds. Now suppose that the upper

bounds on arcs x2, xa, X and x6 are changed to u2 = 7,

4
u3 = 3, u4 = 6 and u6 = 3. 1In order to find a feasible

starting point, let x3 = 3 (its new upper bound) and

-~ ~ -~

x4 = 6 (its new upper bound) and find the new basic flows.

Apprlying procedure X2D gives

rr{i) -2 -10 0 8 4




Figure 2.5

-
.

A Network and its Optimal
Rooted Spanning Tree

46
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Arc (1,5) has a net change of -1, so rr{l)=-3 and rr(5)=5.
Arc (2,3) has a net change of 2, thus rr(2)=-8 and

rr(3)=-2. These result in a new vector of reduced

requirements
i 1 2 3 4 5
rr(i) -3 -8 -2 8 5

Applying procedure D2X yields a new basis vector

x (i) 3 0 -2 3 5

That is,
x=(x1,xz,xs,x4,x5,x6,x7,xs,xg,x10)=(4,3,3,6,3,5,0,—2,0,0).
Now all the nonbasic arcs are within their bounds. But x6
and x8 violate their upper bound and lower bound,
respectively. Therefore, x6 is set to 3 and made
nonbasic, and it is replaced by the artificial x11=2 in
the basis (xll is the artificial arc (2,5)). x8 is set to
0 and made nonbasic and it is replaced by the artificial

arc x12=2 in the basis (x12 is the artificial arc (3,4})).

Hence the starting solution for the modified problem is
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L
]

(x ,x ,Xx ,X ,X ,X ,X ,X ,X ,X ,X ,x )
t 2 3 4 5 6 7 8 9 10 1t 12

(4,3,3,6,3,3,0,0,0,0,2,2),
where arcs x , xs, xll and x12 are basic, and arcs xl, x3,'
x4 and x6 are nonbasic at their upper bounds.

2.1.2 Projection Operators

Sohe algorithms (e.g. the subgradient algorithm) make
use of a procedure called a projecltion operator. Let [ be
any compact, convex and nonempty set. The projection of a
point X € I' onto ', denoted by P[x], is defined to be any
point x ¢ I' that is nearest x with respect to the
Euclidean norm. Held, Wolfe and Crowder (1974) have
suggested an extremely simple means for obtaining
projection operators P that project an infeasible point X

onto a feasible region { y =y ,....¥y ) = Yey, =b,
1 n . ] ]
i
0y €u,e >0, j=1,...,n }. Mathematically we wish
) ] ]
to solve the following problem:

i ] ] j 11

min { (x - x) b

1<3i<n } (28)
Kennington and Helgason (1980, p. 228) present a simple
efficient algorithm for solving (28). They show that to

solve (28) one need only find the appropriate ) such that




49

f(4) = b where

£(4)

Yex (}) Y max { min ( e X - e.2A . e_u') . 0}.
- 1] : 1] ] ]

J )

Note that x (A) may be expressed as:
]

[ X - u.
u F € 1—1
] - e.
1
- X - u X
x (1) =4 x - e A 4 1 ¢ } £ —
j j j e. €.
] ]
X
0 ) > el
e,
. J

Clearly each xj(A) is piecewise linear and monotonically
nonincreasing. Hence f(1) is also piecewise linear and
monotonically nonincreasing since the positive sum of such
functions preserves this property.

To illustrate a typical f suppose that X = (il.§2) =

(5,6) and we wish to find a point x = (xl,x2) such that

min { ”x - 2”2 : 5% + Tx =230, 0<x <4, 0<x <5 }.
1 2 1 2

Then




1
4 -
x (1) =4 5 - 54 SRR
1
0 A > 1
1
5 AS-—-.—7——
1 6
X2(A)= 6 - 74 —7—<AS—7—
6
0 A —7—
and
i 55
1
62 - 49) —=— <
() = 5x () + Tx () =3 67 = 74) —;—<
6
25"‘25) —7—(
i 0

30. It is clear

it

We solve for } such that f£(})
Figure 2.6 that A = 0.5. Thus
7 _12.5

[ (5)]-(3:3)
Kennington and Helgason (1980, pp. 231-232) also

an algorithm for obtaining A such that £(i) = b.

procedure consists of a binary search to bracket
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two breakpoints, followed by a linear interpolation. The

algorithm is summarized below:
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Illustration of f(4), xi(}) and xq(J)
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ALG 2.1 ALGORITHM FOR 4

Step 0 : Initialization.

Let a < a, < ... % a, denote the ordered 2n
n
X - u, X
breakpoints —L—g——L and —;L— for j=1,....,n.
j j
If b> X e u or b < 0 terminate with no feasible
N
]

solution; otherwise set l=1, r=2n, L=X e u_ and R=0.
S
]

Step 1 : Test for Bracketing.

l+x

5 1., the

If r-i=1, go to step 4; otherwise set m=[

. < l+r .
greatest integer < -

Step 2 : Compute New Value.
B = ¥ max { min ( exX - e 2a e,u.) , 0 }.
] 1}

Step 3 : Update.

If B = b, terminate with A = a . If B > b, set I=m,

L=B, and go to step 1. If B < b, set r=m, R=B, and go

to step 1.

Step 4 : Interpolate.

Terminate with A= a; + L .

R - L
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To demonstrate the above algorithm consider the previous

example again.

x - u1 1 Eq - u2 1
. : 1 - 2 =
Step 0 : The breakpoints are s 5 ez 7
t
x X 6
—gl- =1, ez = ——. Thus the ordered breakpoints
1 2
. - 1 _ 1 _ _6 -
are: a1 = =5 4 a, = —5— 4 a, - < a4 1.
Set | =1, r =4, L = 55 and R = 0
Step 1 : Since r - | > 1, set m = { —%— ] = 2. Then
Step 2 : B = max{ min(25 - 5, 20), 0 } +
. 161
max{ m1n(42 - —%2 , 35 ), 0 } = 20 + 5
_ 261
= =
261
Step 3 : Since B = E%E >b = 30, set | = 2 and L = 5 -

Step 1 : Sincer - 1l =2 > 1, setm = [ —%~ ] = 3.

Step 2 :

w
]

max<s min{ 25 - 150 , 20), 0 } +

max< min{ 42

25
=3

1
=Y
%)
w
(8]
—
o
[SE——
]
~
+
o
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5
Step 3 : Since B = Eg < b = 30, set r=3, R = 37.
Step 1 : Nowr - | =1, thus
. I - =
Step 4 : ) = 5 hence X = 2.5 and Xy 2.5.

Figure 2.7 illustrates the problem. It is clear that
the closest point to x = (5,6)' that is in the feasible
region is x = (2.5,2.5). The algorithm attempts to find
this point by way of the line —}—+}—{—|— shown in the
figure. ’At the first breakpoint, al, f(al) is equal to 55
which is greater than 30. The algorithm then moves to the

second breakpoint, az. At a2, f(az) is equal to 2%1 which

is still greater than 30. At aa, f(as) is equal to 3;
which is less than 30. Hence f(4) = 30 for some Jl such
that a2 < A < a3. Since we know that f(l) is linear

between the breakpoints, a line interpolation would give

us a value of 1 for which £(A) = 30.

2.1.3 Subgradient Optimization

Consider the nonlinear program given by

min gl(y)

s.t. vy € G
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Figure 2.7 : Illustration of the Problem and ALG 2.1




56

where g is a convex, real-valued function defined over the
compact, convex, and nonempty set G. A vector g is called

a subgraedienl of gly) at y if

gly) -~ gly) 29 (y - ¥ for all y ¢ G.

If g(y) is differentiable at y, the only subgradient at y
is the gradient. For points at which g(y) is not
differentiable, the subgradient is any linear support of g
at y. For any ¥ ¢ G, denote the set of all subgradients
of g at y by dgly).

The subgradient optimization algorithm may be viewed
as a generalization of the steepest descent (ascent)
method for convex (concave) problems in which any
subgradient is substituted for the gradient ét a point
where the gradient does not exist. Although subgradients
do not necessarily provide improving directions, the
convergence of the subgradient algorithm is assured under
fairly minor conditions on the step sizes (see Held, Wolfe
and Crowder (1974) and Allen, Helgason, Kennington and
Shetty (1987)).

Using the projection operator, the subgradient

algorithm in its most general form follows:
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ALG 2.2 THE SUBGRADIENT ALGORITHM

Step 0 : Initialization.
Let Yo € G, select a set of step sizes Sgr Sqr Spr e
and set i + 0.

Step 1 : Find Subgradient.

. L= i ith y.

Obtain some 7. € 0g(yi). If 75 0, terminate wi Y
optimal.

Step 2 : Move to New Point.
Set vy, ., + Ply; - s 751, set i « i + 1, and return to

step 1.

The termination criteria in step 1 may not hold at any
member of G and is thus computationally inefficient.
Hence, some other stopping rule must be devised. 1In
practice this is often a limit on the number of
iterations.

Various proposals have been offered for the selection
of the step sizes. Four general schemes which have been
suggested are:

(i) s. = A,

(ii) s, = —2

Tl
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A.
(iii) s, = —=
2
il
Ai [g(yi) - gl
(iv) s. = 5
: 73l

* . 13
where g is an estimate of g , the optimal objective value.
Convergence of the subgradient algorithm is

established by means of conditions on the constants Ai.

If the conditions

}i > 0 for all i, 1lim ji = 0, and %
i-2o i=0

are satisfied then convergence of a subsequence of
iterates is guaranteed when the step sizes defined by
schemes (i) — (iii) are used (Kennington and Helgason

(1980, pp. 222-227) ). For step sizes defined by scheme

(iv), under the assumption that

for any given § > 0, there exists an iterate M ( see

Allen, Helgason, Rennington and Shetty (1987)) such that

glyy,) < g+ (5—‘_3—7) (g"- g) + & .
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In this case, one eventually obtains an objective value

g

whose error (at worst) is arbitrarily close to 7 times

- *
the error present in the estimate g of g .

2.1.4 Lagrangean Dual Problem
Consider the arbitrary optimization problem (called

the primal problem)

z = min f(x)
s.t- g <o (30)
x ¢ Xx CR?
where £, g(x) = [gl(x),...,gm(x)] are real-valued

functions and X is a nonempty set. If (30) does not have
a feasible solution, we take z = +w. The constraints
g(x) € 0 are the so—called "complicating” constraints,
i.e., the problem would be much simpler to solve without
them.

One way to try to avoid the complicating constraints
g({x) < 0 is to price them out by placing the term ug(x) in
the objective function where u (called the Lagrangean
multipliers) is a nonnegative m—vector of associated dual

variables. We define the lagrangean function
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L(u) = min {f(x) + ug(x) } (31)
x € X

It is also convenient to define:
L(x,u) = £(x) + ug(x) (32)

Let X denote a specific primal solution computed from (31)
for a specific u 2 0; that is, L(u) = L(x,u). There is no
guarantee that x is optimal or even feasible for (30), but

the rationale for selecting u is embodied in the following

conditions.

Definition : A pair (x,u) with X € X, u 2 0 satisfies the
Global Optimality Condition (GOC) for the primal
problem (30) if

1. £(X) + Ug(X) = min {f(x) + Tg (x) }
X € X

2. ug(x) =0

3. g(x) €0

The Lagrangean dual problem to the primal problem (30) is

obtained by finding the greatest lower bound to z; namely

d = sup L(u) (33)



61

Clearly d € z and without further assumptions on the
primal problem {30), it is possible that 4 < z (called a
dualsty gap).

The following theorem gives sufficient conditions for
X to be optimal in the primal problem (30). (A proof can

be found in Shapiro (1979, p. 144)).

Theorem : If (X,u) satisfies the GOC, then X is optimal in

the primal problem (30).

The Lagrangean function L defined in (31) has all the
nice properties, such as continuity and concavity, except
once—differentiability. The function is nondifferentiable
at any u where L(u) has multiple optima. Although it is
differentiable almost everywhere, it generally is
nondifferentiable at an optimal point. It is apparent
that L(u) is subdifferentiable everywhere, i.e., the
Lagrangean function L(u) has subgradients [For a proof see
Bazaraa and Shetty (1979, p. 190)]. It can easily be
shown that the vector g(x) is a subgradient of the
Lagrangean function L at any u for which X solves (31).
Any other subgradient is a convex combination of these
subgradients. Because the subgradient method is easy to
program and has worked well on many practical problems, it

has become the most popular method for solving the
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Lagrangean dual problem (33). For a complete discussion
of various methods for solving the Lagrangean dual problem
(33) see Bazaraa and Shetty (1979), Fisher (1981),

Geoffrion (1974), Lasdon (1970) and their references.

2.1.5 A Singly—Constrained Bounded Variable Linear

Program

The problem considered here is of the following form:

(SCBVLP)

n
minimize z(y) = Y wy (34)

subject to

(35)

o ufq:
(1]
I
o

I
KNK
I

=

(36)

—
—

where w and e. (7 =1, ...
J

numbers, and 0 < u. < ® for all j. Specific instances of
]

related problems have appeared in the literature, to wit:

, n) and b are arbitrary real

Example (a). If it is assumed that b > 0, and for each
j, w, <0, e >0, and u = m, then an optimal
} J ]
solution to the resulting problem is given in

Shapiro (1979, pp. 116-117). By ordering the

yariables so that
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w w w

1 < 2 < ... ¢ n
= e > -
1 2 n

then the (greedy) optimal solution is yl = b/e1 and

e

Y. 0 for j = 2, ..., n.

i

Example (b). As in (a), except that uj < o for all j.
Then the problem is equivalent to a continuous
relaxation of an integer knapsack problem. In this
case (see Wagner (1975, p. 494)) an optimal solution

is found by ordering the variables as in example (a)

and then setting:

u, for j =1,2,...,k-1
]
k-1t
b-Xau
1=1 1 1 .
Yj = 9 3 for j =k
k
0 for Jj=k+1,...,n,

where (k - 1) is the largest integer such that

k-1

(b —,21 au ) 2 0. For more details see Chvatal
1= 1

1

(1980) , Ingargiola and Korsh (1977), Murty (1976, p-
446), Wagner (1975, p. 494) and their references.
Our purpose is to extend the algorithm in (b) to the
more general problem SCBVLP. To this end, some basic
properties of the problem and its optimal solution must

first be developed.
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Assume the index set J = {1, 2, ..., n} has been

partitioned into three subsets

J*={ jJ €T :e >0}
]

J-=1{3j €4 e < 0}
i

JO = { j €3 :e =0}

*
and define b =b - %X e u. .
jeJ' } )

Proposition 1. Problem SCBVLP is feasible if and only if

b > 0.

Proof: (®) If SCBVLP is feasible, then there exists yj,

j € J such that 0 <y u and X ey <b.
j

] jEJ 1]
i.e. Y ey + ¥ ey £b
€3 171 yegm 0T
or Y ey <b- XY ey.
T €3~ i1

But j €EJ- 2 ey 2eu and j E€J* =2 ey 20,

therefore
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(€) If b =b - &£ e u >0, then define y by

jEI- 0

- 0 if j e go u gt
y =

] u if j € J°

i

Obviously y satisfies (3), and

i
Ny

Y ey = ¥ ey e u £ b.
€g 11 j€r- 1) j€I° 13

Thus y is feasible to SCBVLP. o

We now assume SCBVLP is feasible. Then an optimum
exists, since the problem is bounded by (36). The
following results characterize optimal solutions to

SCBVLP.

* )
Proposition 2. In any optimal solution y to SCBVLP, if

j € 3% then

u, ifw <O
* ] . ]
y = 0 if w >
] . ]
any value in [0,u ] if w =
] ]
Proof: Obvious. o

* 3
Proposition 3. In any optimal solution y to SCBVLP, if

*
j €J and w < 0, themy = u_.
] ] }
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*
Proof: Let y be an optimal solution, and suppose there

*
exists k € J° such that wk < 0 but yk <u

.
Let vy be defined by
~ u. if j = k
y = !
i * .
Y. otherwise
)
Then 0 £y £ u and
) J
~ -~ ~ *
Y ey = ¥ ey +ey = ¥ ey +eu
j€r 17 j€3 1) k"k ey T k k

i Fx i Fk

-~ x
Y ey < X e_yf + e y* = X ey <£b.
j€F 1) j€ET 1) k k j€F 1)
i Fk

Therefore y is feasible to SCBVLP. Furthermore,

- -~ -~ ~ *
z(y) = Z wy = X wy +wy = X wy +wu
ey 3] ey 1 i k™ k ey 1 k k
j j j
i Fk i Fx

*
and since wk < 0 and yk < uk, this yields

-~ * 3 *
z(y) < ¥ wy +wy =z(y)
.eg 1) k™ k

}
i Fi

*
which contradicts the optimality of y . o
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Corollary 1. If j € J- and w = 0, then y. u. in an
i

]
optimal solution y to SCBVLP.
Proof: Follows that of Proposition 3, except that

- *
z(y) = z{y ) in the last line. (]

* -
Proposition 4. 1In any optimal solution y to SCBVLP, if

M *
j €3t andw > 0, theny = 0.
] ]
*
Proof: Let y be an optimal solution, and suppose there
*
exists k € J* such that W > 0 but Y, > 0.
Let y be defined by
0 if j = k

*
Y. otherwise

-~ * ~ *
Y ey = % ey +ey < T ey +tey <b
jE7 i j€3 17 Kk seg k™ k
i Fi i Fk

*
where the strict inequality follows from ek) 0, yk > 0 and

yk = 0. So y is feasible to SCBVLP. In addition,

since wk > 0 we get

z(y) = ¥ wy +wy = X w_yf +w .0
)EJ 1] k™ k : €J 1 3} k
j
i Fk i Fk

* * *
< X wy +wy =z(y)
j€x 1) ko k

i Fi
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*
contradicting the optimality of y . o

0 in an

]

Corollary 2. If j € J* and w. = 0, then yj
]

optimal solution y to SCBVLP.

Proof: Follows the construction of y in the proof of

~ *
Proposition 4, except we conclude z(y) = z(y ). o

With these results, problem SCBVLP can be reduced to
a problem involving only two sets of variables, namely

those in the restricted sets

'
t
[}

{ §j €a° w >0}

(X

C4
+
]

' { JeJ* w < 0}

This reduced problem takes on the form:

minimize z(y) =¥ wy + X wy +k (37)
jer; 1) je€Ir 1}

subject to

g/
®
L
+
g
o
[0
IA
o

(38)

0Ly <u j e€J; UJ;g (39)

where k= ¥ wu + T wu is a constant
jego i i jegm i i
w_ <0 w <0
j i
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and b=b - X e u..

jeg- 1}
w_ <0
)
Denote |J;| = k1 and IJ:I = k2. Obviously, if
kl = k2 = 0, then the solution to SCBVLP is completely

determined by the above results, and no problem (37)—(39)
exists. Furthermore, if k1 = 0, then problem (37)—(39) is
in the form of example (b), and the optimal solution to
(37)—(39) is determined via the algorithm stated therein,
thus completing the solution to problem SCBVLP.
Finally, suppose kl > 0. Consider the transformation
on (37)—(39) defined by
_ Y. for j € J;
y = !
) uj - yj for j € J;
Direct substitution and algebraic manipulation results in

the following problem equivalent to (37)—(39):

minimize z(y) =YX wy + X wy +k (40)
. - . +
JEJr 1} ]EJr 1)
subject to
Y ey + ¥ ey £b (41)
jEJ; 1 ] jEJ: 1]
0 Ly <u j €ad; UJ; (42)
) )
where
W for j € J}
w = ]

! -W for j € J;
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_ e for j € J}
e, = }
] ~e. for j € J;

}

k=k+ ¥ wu
JGJ; i)

and

b=b- ¥ eu =b- ¥ eu

)EJ; 1) jEg ] 3
w >0

]
o
|
o
®
e
i
o

j€3- i
Problem (40)—(42) is now in the form of example (b).
Thus, its solution — and the completion of the solution to
problem SCBVLP — can be determined.
The greedy algorithm given by Wagner (1975, p. 494)
has been modified to solve SCBVLP directly, using the
results obtained previously. The algorithm is summarized

below:

ALG 2.3 ALGORITHM FOR SCBVLP PROBLEM

Step 0 : Input n, b and for each j =1, ..., n, e , w,

and u .
}
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Step 1 : Determine J~, J9, J*.
Compute
*

b =b-Y¥ eu.

* -
If b < 0, terminate; the problem is infeasible.

Otherwise, proceed to step 2.

Step 2 : For those j € J9, set

N 0 ifw 20

yj: ]
u. ifw <0

i }
*

For those j € J* with w2 0, set y = 0.

j i

]
e

For those j € J~ with w £ 0, set y.
] i

Step 3 : Determine J; and J!. If J_=J; UJ} =¢.
terminate; an optimal solution has been determined in
steps 1 and 2. Otherwise, let lJrI = k, and order the

elements of J_  so that

Step 4 : Set



Yy . =
1)
u

Adjust b*according to

Step 5 : Let j =3 + 1.

minimum |

- minimum {

(i)

r

(1)

-e

if

if
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(i)

(1)

If j £ k, go to step 4.

Otherwise, terminate with an optimal solution.

The algorithm has been implemented in a FORTRAN code

called SCBVLP and a complete listing is found in Bolouri

and Arthur (1989).

To illustrate algorithm ALG 2.3 consider the

following example.

minimize 6y - 3y - y +
1 2 3

subject to

—

o<y £
1
0 Ly £
4
0 Ly <

10 , 0 £y S16,0<y3

2 :
12, <y < ,OSYGS
2.
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Step 1 : J*=1{2, 31}, 3 =11, 4, 7} and
3% =1{(5,61. |
b =18 - (-1)(10) - (-100)(12) - (-11)(2)
= 1250.

b > 0, thus the problem is feasible.

Step 2

X

Since w5=—6 < 0 and w6=7 > 0, then
3 x

y =5 and y =0.
5 6

*
7 € J- and w7=0 implies that y7=2.

L= { 1, 4 ¢, J; = { 2, 3 } and

J
J, = {1, 2, 3, 4 ;. Then k=4 and

v v, wg 1 Wy 1
e = -6 < — = -3 <= = -5 ¢ 3 = “1o0 ¢
1 2 3 4

j=1.

Step 4 : e =-1 < 0, thus y: =10 - min(lO,LE%Q) = 0, and
1

b= 1250 + (-1)(10) = 1240.
Step 5 : j=2 < k=4.
Step 4 : e2=1 > 0, thus y: = min(ls,i%ég = 16,

and b = 1240 - (1) (16)

]

1224.

Step 5 : Since j=3 < k=4, then
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* *
Step 4 : e3=5 > 0, thus y3=14 and b = 1154.
Step 5 : Since j=4=k, then

Step 4 : e =-100 ¢ 0, thus y: = .46 and

b = 0.

Step 5 : Since j=5 > k=4, terminate with

_ ( % * * * * * *) _
y yll yzl ya' Y4l Y5f y6’ Y7
= (0, 16, 14, 0.46, 5, 0, 2 ) an optimal solution

to the SCBVLP problem.

2.2 Literature Review

Just where the study of networks may be said to have
originated is a debatable question. Hitchcock (1941) was
the first to formulate and solve for a certain minimum
cost transportation problem. Koopmans' (1947) work on the
same category of problems was the first to interpret
properties of optimal and nonoptimal solutions with
respect to the linear graph associated with a network of
routes. Because of this and the work done by Hitchcock,
the classical case is often referred to as the
Hitchcock—Koopmans Transportation Problem.

A few years later Dantzig (1951) showed how his

general algorithm for solving linear programs, the simplex
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method, could be simplified and made more effective for
the special case of the transportation models. Dantzig
(1963) further examined the results and showed that a
basis can be represented as a rooted spanning tree.

The first data structure suggested for implementation
is presented in Johnson (1966). He proposed a labelling
procedure that only requires three labels at each node.
This procedure could be used to carry out the steps of the
simplex algorithm completely in terms of the graph.
Glover, Karney and Klingman (1972) elaborated on Johnson's
procedure by providing a method for characterizing
successive basis trees with minimal relabelling. This
procedure, which is called the augmented predecessor index
(API) method, also provided the most efficient way of
finding the representation of the arc coming into the
basis, pricing out the basic arcs and updating basis
labels. Glover et al. have shown that the major updating
calculations of a basis exchange step can be restricted to
just one of the two subtrees created by dropping the
outgoing arc. Srinivasan and Thompson (1972) have
proposed an alternate procedure for doing this. Their
procedure requires sorting the nodes of the subtree by
their distances from the root and then a full subtree
update of both the distance and the cardinality function

at each basis exchange step is performed. Glover, Karney,
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Klingman and Napier's (1974) use of the API method
resulted in an efficient special purpose primal simplex
transportation code. Srinivasan and Thompson (1973)
succeeded in reducing the solution times of their
accelerated primal transportation code by half by
incorporating the API into their algorithm. Glover,
Klingman and Stutz (1974) developed a new list structure,
called the augmented threaded index (ATI) method, for
recording and updating the basis tree for adjacent extreme
point ("simplex type") network algorithms. The ATI method
is computationally more efficient and requires less
computer memory to implement than all alternate list
structures. This method uses only two pointers per node
to search a spanning tree both upward and downward, while
previously proposed structures required at least three
pointers per node. Glover, Karney and Klingman (1974)
have shown that the ATI method improves the efficiency of
their transshipment code by 10% while requiring less
computer memory. More recently, Barr, Glover and Klingman
(1979) have developed a new type of relabelling scheme,
called the extended threaded index (XTI) method, that can
be used to implement the previous list structures (and
particularly the ATI method) with greater efficiency.
Computational results show that the XTI procedure is

approximately twice as fast as the ATI procedure (the
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previously fastest procedure in the literature) for
implementing the’basis exchange operations. However,
memory requirements were quite close for all of the
procedures.

The pricing strategy, the selection of that
particular nonbasic arc for which flow change will be
allowed, is an important tactic within network programs.
For most pricing strategies the arc file is managed in
what is called a candidate list. The candidate list
serves as a depository for a whole set or a defined subset
of nonbasic arcs. Arcs are exchanged (pivoted) between
basic status and this candidate list. The searching
procedure for an arc in the candidate list is managed as a
wrap-around stack. That is, if in a previous search the
last element scanned resides in position j, the next
search would start in position j+1. Whenever the end of
the array is reached, scanning continues at position j=1.
The simplex algorithm terminates whenever a candidate list
cannot be formed because all arcs are ineligible for
pivoting. Pricing strategies range from selection of the
first candidate arc found (usually referred to as the
"first encountered improvement rule"), to selection of a
nonbasic arc in the candidate array having the most
improved reduced cost (usually referred to as the "most

improvement rule"). Glover, Karney, Klingman and Napier
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(1974) and Srinivasan and Thompson (1973) have advocated
the "most improvement rule". Other pivoting rules are
extensively analyzed by Srinivasan and Thompson (1973) for
dense transportation problems and by Glover, Karney,
Klingman and Napier (1974) for relatively small sparse
transportation problems. Alsoc see Bradley, Brown and
Graves (1977), and Mulvey (1978).

An alternative method, known as the out—of—kilter
algorithm, was first developed by Fulkerson (1961).
Unlike the primal simplex on a graph algorithm, the
out—of—kilter algorithm is not a specialization of a more
general method. This algorithm defines certain "kilter”
conditions which, taken together, constitute primal and
dual feasibility criteria for arcs in a network. The
method brings each non—conforming ("out—of-kilter") arc
"into kilter”" by adjusting its flow (the primal variable)
or changing its node potentials (the dual variables). A
different point of view of this algorithm is given by
Barr, Glover and Klingman (1974). They have reformulated
the algorithm so that it employs a new labelling scheme,
and a special classification scheme for determining the
"kilter status" of each arc. Barr, Glover and Klingman
(1974) and Glover, Karney and Klingman (1974) have shown
with computational tests that basic primal approaches are

considerably more efficient than the out-—of—kilter
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algorithms.

The results for generalized networks may be traced to
Dantzig's (1963) linear programming book. A basis for a
generalized network problem has a graph—theoretic
structure. Each component of the graph associated with a
basis is either a rooted tree or a one—tree (a tree with
an additional arc forming one cycle). As in the pure
network problems, the simplex operations can be carried
out on the graph, thereby eliminating the need for matrix
operations. For a complete description of the algorithm
and discussion of data structures for implementation see
Brown and McBride (1984), Brown, McBride and Wood (1985),
Glover and Klingman (1973), Glover, Klingman and Stutz
(1974) and Kennington and Helgason (1980).

In what follows it is assumed that "side constraints”
are necessary to model key policy restrictions. While the
addition of non-network constraints greatly improves the
realism and effectiveness of the models, it also increases
significantly the difficulty of their solution. Various
algorithms have been developed to solve the network with
side constraints problem. The most popular of these 1is
the primal partitioning modification of the simplex
method. The advantage of this technique is that many of
the simplex operations involving the basis inverse can be

designed to exploit the embedded network structure. Since
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a portion of the basis may be stored as a rooted spanning
tree as in pure network codes, the operations needed to
perform the computation of the dual variables used in
pricing and the computation of the updated column used in
the ratio test may be done much more efficiently than in
standard linear programming packages. The development of
this algorithm can be traced to Bennett (1966), Charnes
and Cooper (1961), Chen and Saigal (1977), Hartman and
Lasdon (1972), and Kaul (1965). A complete description of
the algorithm and an effective implementation are
presented in Barr, Farhangian and Kennington (1986).
Glover and Klingman (1981) describe a highly efficient
algorithm that modifies and implements the steps of the
primal simplex algorithm for the completely general case
of embedded pure network problems. The efficiency is the
direct result of exploiting the pure network portion of
the coefficient matrix and the network-LP interface by
special labelling and updating procedures.

Further specializations of this method have been
developed for restricted classes of networks, such as
multicommodity network flow problems (see Ali, Barnett,
Farhangian and Kennington (1984)) or transportation
problems (see Klingman and Russell (1975)). The papers of
Hartman and Lasdon (1972), Graves and McBride (1976) and

Kennington (1977) deal with primal partitioning techniques
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for multicommodity network flow problems. Kennington
(1977) also discusses implementation techniques for
solving multicommodity transportation problems that make
use of the primal partitioning simplex technique. See
also Kenniﬁgton and Helgason (1980).

Another common method that has been successfully used
to solve various classes of network with side constraints
models has been the Lagrangean relaxation or subgradient
optimization method. In this method, the side constraints
are placed into the objective function where a penalty is
assessed if they are not satisfied. Thus, the linear
programming subproblems which must be solved are pure
network problems with different objective function
coefficients for each subproblem due to modifications of
the Lagrange multipliers. Because only the cost
coefficients change from subproblem to subproblem, the
optimal solution for one subproblem is at least feasible,
if not optimal, for the next subproblem. Shepardson and
Marsten (1980) have used this approach to solve the two
duty period scheduling problem which they reformulated as
a one duty period problem with side constraints. Ford and
Fulkerson (1958), Held, Wolfe and Crowder (1974),
Kennington and Helgason (1980), Kennington and Shalaby
(1977), Tomlin (1966) and Weigel and Cremeans (1972) have

proposed variations of this method for solving
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multicommodity network flow problems. Aggarwal (1985) and
Price and Gravel (1984) have successfully adapted this
approach for solving the constrained assignment problem.
For more complete details of this technique, see
Kennington and Shalaby (1977) and Kennington and Helgason
(1980).

Often the side constraints, which by definition are
not of a network form, may have some other special
structure. For example, in the multicommodity network
flow problem, where there are limits on the total amounts
of commodities that can flow through shared arcs, the side
constraints that are formed on each such arc are
generalized upper bounding (GUB) constraints. Ali,
Barnett, Farhangian, Kennington, McCarl, Patty, Shetty and
Wong (1984) solved this problem by using a primal
partitioning algorithm. The basis inverse is maintained
as a set of rooted spanning trees (one for each commodity)
and a working basis inverse in product form. This working
basis inverse has dimension equal to the number of binding
GUB constraints. The initial basis is obtained using a
multicommodity variation of the routine used in NETFLO
(see Kennington and Helgason (1980, page 244)).

Another network with side constraints problem which
falls into this category of problems is the equal flow

problem. In this problem, the side constraints correspond



83

to pairs of arcs which are restricted to have the same
amount of flow. Ali, Kennington and Shetty (1985)
addressed this problem by solving two sequences of pure
network problems to generate an upper and lower bound.
When the gap between the bounds becomes acceptably small,
this method terminates with a feasible solution which can
be guaranteed to be within a pre—determined percentage of
the optimal.

The network with GUB constraints problem may be
solved as a linear program with GUB constraints using any
of the existing standard methods. Dantzig and Van Slyke
(1967) were the first to propose a well-known Generalized
Upper Bounding Technique (GUBT) which is a specialization
of the revised simplex method. GUBT solves such an LP by
subdividing the coefficient matrix into non-GUB and GUB
components. By reference to this subdivision, the
technique maintains the inverse of a working basis whose
order equals the number of non—-GUB constraints, instead of
maintaining the inverse of the basis of order equal to the
total number of constraints as required by the usual
revised simplex method. All the quantities needed for
carrying out the simplex method on this LP are derived
using the inverse of the working basis and the original
data in the problem, and after each pivot step only the

inverse of the working basis is updated. When the number
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of GUB constraints is large, GUBT results in substantial
savings in the memory space requirements and the total
computational effort over the implementation of the
conventional revised simplex method applied to the same
LP. For more complete details of this technique see
Lasdon (1970) and Murty (1976). Other methods for solving
LPs with GUB constraints were proposed by various
researchers independently but are quite similar in nature;
these include Bennett (1966), Graves and McBride (1976},
Hartman and Lasdon (1970), Kaul (1965), and Sakarovitch
and Saigal (1967).

However, in order to reduce both solution time as
well as computer storage requirements, it is often
advantageous to use any existing network structure when
solving these problems. A new algorithm for solving
networks with GUB side constraints using Lagrangean
relaxation and decomposition approaches, along with a
discussion of software considerations, is presented in the

following chapters.
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CHAPTER 3

SOLUTION METHODOLOGY

In this chapter a new algorithm for solving the
network with generalized upper bound side constraints
problem will be discussed. The solution technique
exploits the special structure of the side constraints and
maintains as much of the characteristics of the pure
network problem as possible. The solution technique
consists of solving two sequences of problems. One
sequence yields tighter lower bounds on the optimal value
by using a Lagrangean relaxation based on relaxing
"copies" of some subset of the original variables. The
second sequence yields a tighter upper bound on the
optimal value for the problem by using a decomposition of
the problem based on changes in the capacity vector and
maintains a feasible solution at all times. Both the
lower and upper bounding algorithms have been developed in
the context of the general subgradient algorithm presented
in Section 2.1.3.

Mathematically, the network flow problem with

generalized upper bound (GUB) constraints is expressed as:
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(¥PE)
z(x) = minimize ¢%% + c!x! + c2x2%2 + ... + cPxP
subject to

A%x% + Aalx! + A%x% + ... + APXP

=r
E!x! <b
1
E%x? <b
2
EPxP < b
p
0 < xi < u! for i = 0,...,p

where Al is an (mxn ) matrix for j=0,....,p. EX is a (lxnk)
}

vector for k=1,...,p, x' and u! ¢ w, for i=0,...,p, are
the decision variables and capacity vectors, respectively.
The matrix A =[A°|A1|A2|...|AP] is a node—arc incidence
matrix. For each k, 1 < k € p, the vector Ef is of the

k

form [el:,ez,...,ek ] where eX¥ # 0 for j=1,...,nk. All the

n, i
variables in the vector x¥ belong to the kth GUB
constraint, for 1 < k £ p. Thus, the variables in the
vector xY do not appear in any GUB constraint. Problem

(¥P({) can also be expressed as :
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z{(x) = minimize ,% c'x!
1=0
subject to

_% Aixi =r
i=0

S k k
‘21 e® x* < b for k=1,....p
] = i)
0 < x' < u! for i=0,...,p
where e? (j=1,...,nk and k=1,...,p) is any nonzero real
}
number.

3.1 The Lower Bound for Problem ¥P§

A lower bound on the objective function of the
problem (¥#Pf) can be obtained by using the Lagrangean dual
of the problem. The natural Lagrangean relaxation for the
problem (¥Pf) is obtained by dualizing the GUB

constraints, resulting in :

(LR) Lr(v) = min 5 cixi + & v (EXx* - b )
1=0 k=1 k k
s.t ,% Alx! =r
1=0
0 < x! < u! for i=0,....p

where vk > 0 is the Lagrange multiplier associated with

the kth GUB constraint and v = (v ,v2,...,v y. The
1 p

Lagrangean dual of the problem ([f) is
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() max Lr(v)
v2>20

The Lagrangean relaxation used in the lower bound
technique is obtained by copying certain variables in
(F¥PF), using ideas presented in Glover and Klingman
(1988). This scheme is interesting in that the Lagrangean
subproblems keep all the original constraints. This
technique is referred to as the lagrangean decomposition
and its dual is called the decomposed Lagrangean dual.

The enlarged equivalent representation of problem (#7{)

is:
(KPGC) min .Eocixi
1 =
s.t. 'E Algi = p
1 =0
0 < x! <yl for i=0,....,p
Ekyk < b, for k=1,....,p
yk = xk for k=1,....p
0 < yk < uk for k=1,....p

The Lagrangean decomposition for (¥FP{() is obtained by

k

dualizing the "copy" constraints yk=x for k=1,...,p,

which will yield a decomposable problem.
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(L2 L(w) = min ,gocixi + kﬁl wk (yk - xK)
1= =
s.t. ‘i Alxl = p
1=0
0 < x! < ul for i=0,...,p
Ekyk < bk for k=1,...,p
0 < yk < uk for k=1,...,p

where wX is the (nkxl) vector of Lagrange multipliers

associated with the kth "copy" constraint, wk=(wf,...,w: )
k

and w=(w!,...,wP). Note that since x and y are bounded

vectors, the feasible region to ([J) is finite. Thus L(w)
is finite for all finite w. For convenience, we assume
that problem (¥#P() is feasible. The decomposed Lagrangean

dual of the problem ([}) is

(00 max L{w)
W

The following proposition provides justification for

considering problem (/7).

Proposition 1 : max L(w) = z(x).
w




90

Proof :
max L(w) = max min & cix! + % wk (yk - xk)
w w 1=0 k=
s.t. _E Alx! = r
1=0
0 < x! <u! for i=0,...,p
Ekyk < b, for k=1,...,p
0 < yk < uk for k=1,...,p
= max min c%%9% + % (ck-wk)xk + E wkyk
k=1 k=1
W
s.t. ,E Alx! = r (z1)
1=
x! < ul (e!)
1
x' 20
kok ¢ 2)
E*y* < bk (lk
vk < uk (ai)
yk >0
where 7!, ! (for i=0,....p), zi and ci (for k=1,...,p)
1

are the dual variables associated with each type of

constraint. By LP duality,
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max Li(w) =
W
max max 7¥'r + ,i el ul o+ $2p + & 42 uk
W 1=20 1 k=1 k k k=1 k
s.t.
ria0 + l; < e°
riak 4+ cé < ck-wk for k=1,...,p

IE EX + IE < wk for k=1,...,p

1

x is unrestricted in sign

I

0 for i=0;--~1p

IA

0 for k=1,....,p

I

0 for k=1,....p

= max «xlr + .ﬁ el ul o+ §.2p + & 2k
1=0 1 k=1 k k k=1 k
s.t.
r'a0 + cé < ef
rlak 4+ vi + wk <k for k=1,...,p
ri EK + ti -wk <o for k=1,....,p
#! and w are unrestricted in sign
el <0 for i=0,...,p
1
ri <o for k=1,...,p
vz <o for k=1,...,p

By LP duality,
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max L(w)
W
= min ‘ﬁ clx!
1=0
s.t. o
,E A'x' = r
1=0
0 < x! € ul for i=0,...,p
Ekyk < bk for k=1,....,p
Yk = xK for k=1,...,p
0 < yk < uk for k=1,...,p
= z(x).
Therefore max L(w) is equal to z(x). ]

w

Proposition 2 below, referred to as the weak duality
theorem, shows that the objective value of any feasible
solution to the decomposed Lagrangean dual (/) yields a
lower bound on the objective value of any feasible

solution to problem (¥P().

Proposition 2 : Let X be a feasible solution to problem
(¥PG), i.e., AX = r, 0 < X < u and Ek¥¥ < b for

k=1,...,p. Let (x,y) be a feasible solution to

problem (¥PG(), i.e., 'go Alxl = r, 0 < X' < u' for
1=

i=0,...,p, EfKg¥ < b , ¥¥ = X*¥ and 0 < ¥¥ < ukK for

k=1,...,p. Let v = (v ,52,...,3 ) be a feasible
P

1
solution to (#), i.e. ¥V 2 0. Let w = (w!,w2,...,wP)



93

since y<=x* 2 wk(yk-x*) =0

{ $ocixi 4 § ak(yk-xk)
1=0 k=1

min i=0
X, ¥

0 < x! <ul for i=0,...,p, E¥yF < b .
0 < yk < u* for k=1,....,p }

L(w)

min {cox0 + k% (ck-wk)xk : 'io Alx! = r,
=1 =

1

x
0 < xt < u' for i=0,...,p } + min { i wryk
A < e
Yy

Ekyk < bk' 0 < y¥ < uk for k=1,...,p }
min { c%%0 + % (ck+v EF)xk : 'ﬁ Alx! = r,

x k=1 k 1=0

0 < x! < u' for i=0,...,p } + min { kgl —VkEkyk

Y

: Ekyk < b .0 < yk < uF for k=1,...,p }
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= min { cfx0 + k% (ck+?7kEk)xk : ,% Alx! = r,
=1

X 1=0
< xt <yl i=0,..., - b +5Fb +
0 < x' < u' for i=0, p } kglvk R AN
min { $ 5 Ekyk : Ekyk < b, 0 < yk < uk for
k=1 k = Tk
Y
k=1, P }

= min { .% cixl + i v (Ekxk - b ) : _% Alx! = r,
1=9 k=1 k k 1=0

o
(VAN
»

1 <yl for i=0,...,p } + & vb o+
k=1 k k

min { E -v Ekyk ; Ekyk < b , 0 < yk < uF for
y k=1 k k

k=1,...,p }

= Lr(v) + min { kﬁlvk(bk-zkyk) : EXy* < b ,

y k
0 < yk < uk for k=1,...,p }
2 Lr(v) since the second term in the above
summation is nonnegative. o

Propositions 1 and 2 establish that the optimal
objective values of (¥Pf{) and the decomposed Lagrangean
dual are equal and that any feasible solution to the
Lagrangean decomposition ([/) provides a lower bound on
the optimal objective wvalue for (#P{). In order to

facilitate the solution of the Lagrangean decomposition,
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we need to examine the properties of the function L(w).

The following result describes L{(w).
Proposition 3 : L(w) is concave.

Proof :

Consider WooW and A € [0,1]. Let (xX,y) be such that
§ iz o+ kil wk (yk-xk)

= min {.% cixi + % wi (yk-xk)
X,y 1=0 k=1

IN

0 < x! u! for i=0,...,p, EKyk < b ,
0

(74N

y*® < uk for k=1,....p }

where w = )wl + (l—A)w2
Then

L(w)

L iw + (1-))w )
1 2

_i cixl + % [Awk + (1-A)wk ] (¥*-xk)
1=0 k=1 1 2

By definition of L,
% cix! + & wk - (gk-xk)
= = 1

(yE-xk)
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Multiplying the first inequality by 1 and the second by
(1-4), we have

AL(WI) + (1—A)L(w2) <

_%ociii + 8 [Awf + (1—A)wg 1 (yk-xk)
1= =

= Li{w)

Hence L(w) is concave. a

Since L(w) is piecewise linear concave (Held, Wolfe and
Crowder (1974)), one must have a way for determining a
subgradient of L(w) at a given w. Consider the following

result.

Proposition 4 : Let (X,y) be an optimal solution to ([})

- - - _ — o\t .
at w. Then ( y! - x', ..., yP - xP ) is a
subgradient of L at w.
Proof :

Let (x,y) be an optimal solution to ([f) at w. Then

L(w) = % cixl + % wk (yk-xk) < ,E cixt + % wk (yK-%¥)
i=0 k=1 i=0 k=1

and

Lim = Seixt + & ak(gr-xx)
1=0 k=1

Thus

Liw) - LW < §  (wk-wk) (Fk-%%).
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- _ _ -\t ,
Hence ( y!' - x!', ..., yP - xP ) is a subgradient of L

at w. ]

The following result will aid us in finding an optimal

solution to problem (NP().

Proposition 5 : (Optimality Conditions)

Let (X,y) be an optimal solution to ([}) at w, i.e.,

L(w) = ,E cixi + & wk(yk-xk). 1f
1=0 k=1

- - — - - t —-
( x!, ..., xP )t =y = ( y! ., ..., ¥P ) , then X is
an optimal solution to problem (¥P{).

Proof :

]
th
"
%

—
.
.

- - — o\t
xP )t = ( vyt ., ..., ¥P ) , then
(i) % cixi + kﬁl wh (FE-x¥) =

min {,% cixi + & wk(yk-x¥) . ,% Alxl = r,

1 k=1 1 =0

0 < x! < ul for i=0,...,p, EXyk < bk'

0 < yk <uk for x=1,....,p }
— _ - -\t

(ii) (w!,...,wP) ( y! - x', ..., yP - xP ) = 0 since

Xk = ¥* for k=1,...,p

k

(iii) x¥ = ¥* for k=1,...,p (given)

that is, (x,y,w) satisfy the Global Optimality Conditions
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(see Section 2.1.4). Hence (x,¥) is optimal to (KP§().

Hence X is optimal to (#P¢). a

Consider the Lagrangean decomposition function again.

For any given value of the vector w,

L(w) = min { c%%0 + % (ck-wk)xk : ,E Alx! = r,
x k=l 1=0
0 < x! < u' for i=0,...,p } + min { % whyk
- - k=1
y
Ekyk < b . 0< v¥ < uk for k=1,...,p }
= min { c%%% + & (ck-wk)xk ,E A'x! = r,
X = 1=
0 £ x' < u! for i=0,...,p }
\'lk nk
+ % min { Y wky Y ekyk < b, 0 < yk < uk }
k=1 i=t i=t 3] k

where the first minimization is a pure network problem and
the second consists of p singly—<onstrained bounded
variable LP (SCBVLP) problems. Algorithms for solving
these were briefly presented in Section 2.1.5. Hence, for
a given w, an optimal solution to problem ([/) is found by
first solving the pure network problem and then solving
the single—constraint bounded variable LPs. The following
summarizes the algorithm for solving the Lagrangean

decomposition function L(w), for any given value of the
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vector w.

ALG 3.1 ALGORITHM FOR L(w)

Step 1 : Solve the pure network problem

min { %0 + § (ck-wk)xk : _& Alxl = r,
X k=1 1 =0
0 < x! < u! for i=0,...,p }.

Let X denote its optimal solution.
Step 2 : set k + 1

Step 3 : Let b =b - ¥ ekuk where Jk= { j : ek < 0 |
k k jEJE b ]

for each k.

Set 1 « 1.

wk

Step 4 : Order ——t— for i=1,...,nk from smallest to
e
1

largest. Denote the ordered values by

W wk w<§ )
(1y < (2) < ... k .
ek - ek - - ek
(1) (2) (nk)
Let §ti) and uti) correspond to the ith ordered
wk

value ——ill .

e .
(1)



Step 5

Step 6

-
S
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wk
If —{L ¢ 0, then
k
e
(1)
[ b
min ( k k) if ek >0
ek (i) (1)
sk o (i)
(i) B
k - min (—%— , uk, if ek <o
(i) |ekl (i) (i)
L (i
Set
b - ek ¥k if ek >
b = k (1) (1) (1)
k b + ek (uk -3k ) if ek <

k (i) (i) (i) (i)

and go to step 6.

If —2 > 0, then

(1)

vk = (i) (i)
(i) . K

set 1 + 1 + 1.
If 1> nk, the kth SCBVLP problem is done, go

to step 7; otherwise, go to step 5.
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Step 7 : Set k + k + 1.
If k > p, terminate with y an optimal solution to
the one constraint bounded variable LPs, and an
optimal objective value for the Lagrangean
decomposition function is

L{w) = ¢%%% + ki (ck-wkyxk + kil wkyk
=1 =

otherwise, go to step 3.

The lower bounding algorithm modifies the generalized
subgradient algorithm to maximize L(w). For a given w,
L(w) is solved to optimality by ALG 3.1. If the
optimality conditions (Proposition 5) are satisfied the
method is terminated; otherwise, a step is taken in the
direction of a subgradient of L at w, a new w 1is
determined and the process is repeated. Since there is a
possibility of never reaching the optimal solution (cyclic
solutions), the method terminates upon reaching an
arbitrary iteration limit. The major difficulty involves
finding the appropriate step size. This problem is
handled by adjusting the step size based on the behavior
of the function, as will be discussed in detail in Chapter
5. The algorithm makes use of a scalar, UBND,
representing an upper bound for the problem. Since the
solution procedure progressively recalculates the lower

bound for the network with GUB constraints problem, the
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lower bound algorithm uses the best value for the UBND
that was obtained in the previous upper bound iteration.

The following summarizes the lower bound algorithm.

ALG 3.2 ALGORITHM FOR THE LOWER BOUND

Step 1 : Initialization.
Initialize UBND, step size 4 and tolerance ¢.

Let w=0.

Step 2 : Find Subgradient.

Let X solve

Ll(w)= min { c%x? + % (ck-whkyxk : E Alx! = r,
x k=1 1 =0
0 < x' < u' for i=0,...,p }
Let y solve
n n
k k
L,(w) = £ nin { Y owkyk o 8 ekyk < b,
k=1 vy i=1 ] i=1 1 1 k

0 < y*¥ < uk }.
If X = y, terminate with X an optimal solution to the
problem (¥P().
Let LBND = LX(W) + LZ(W).
If (UBND - LBND) £ e|UBND|, terminate with X near

— _ — — \t
optimal; otherwise, let g = (y1 -xt, ..., yP - %P ) .
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Step 3 : Move to New Point.
w=w + dy.

Adjust the step size 4.

Step 4 : Repeat the Process.

Go to step 2.

By taking note of the structure of Ll(w) one can see
that once an optimal solution is found for a given w, then
this optimal solution remains feasible to the pure network

problem for all other values of w.

3.2 The Upper Bound for Problem ¥P{

An upper bound on the objective function of problem
(¥P§) can be obtained by using a decomposition approach.

After artificial variables have been added, (/¥?() becomes

(KPGA) min _%0 cixl + Ms
1 =
s.t. 'ﬁ Alx! + Is =r
1 =0
"
¥ ek xk <p for k=1,....,p
}=1 ] ] k
0 < x!' < u! for i=0,...,p
s 20

where M is a vector of large positive numbers, and s is a
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vector of artificial variables. It will be shown that an

alternate formulation of (#f64) can be obtained by

decomposing problem (¥P§4) is given by,

(KPED) min g(y)

yk bk for k=1,....,p

o
IN = &
<
e
I
[~
e

for k=1,---:p

i
——
‘4

—
.
~
o
v
-

where for any vector y

gly) = min ,Eocixi + Ms
1=

s.t.
»% Alx! + Is =1r ()
1 =0
x% < uf (69)
x% >0 (g9
xk < y* for j € g% (a?) (32)
i i
xk < uk for j € 3k (p?)
i i
xk > yk for j € gk (v?)
] j
xk >0 for j € Jk (ﬂ?)
j
s 20

where for each k, 1 <k <p, d¥ =1 j : ek > 0} and
i
gk = { j : eX < 0 }. Furthermore, let x, ¢%, 2%, ¢f and

} }
2% be the dual variables associated with each type of
) :

constraint in (32). By duality theory.
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gly) =
max xr + ¢%u® + gly! + ... + oPyP + E ¥ ak uk
k=1jGJE o
s.t. TAO + ‘0 + ,‘0 - CO
2k + ok + pk = ck for k=1,....,p
<M, %<0, %20
k — k
g <0 for k=1,....,p, j € J%
J
sk >0 for k=1,...,p, j € JK
)
pk <0 for k=1,...,p, J € Jk
j
sk >0 for k=1,...,p, j € J%
J

The following proposition justifies the decomposition of

problem (¥P§) into problem (¥P(D).

Proposition 6 : The decomposed problem (¥FP()) is

equivalent to problem (¥7§).
Proof :

For each k, 1 < k < p, let

<uk} € Rnk, and

0
=
i
»
=
=
e
»
-
A
o
o
N
-
x
A

w
o
i
]
.
!
.
(oo}
o
o]
-
fl
o
o

2 k ]

2n
< < uk for j € gk} €R K.
] ]

<yk <uk, 0 <xk <y for
)

(N
m
<&
-7
LS
[y w
Fas

w
-
I\

n
Let xK€ sk, i.e., 0 < x¥ < u¥ and & ekxk < b
1 =1 j ]



Hence xX€ Sﬁ implies that (xk,yk) € sk.
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case 1 : If £ eKx¥ = 0, then let y§=x? for j € JK.
j

jGJE 1
Since ¥ ekuk > b (otherwise the kth single
jegl 1 k

constraint bounded variable LP is satisfied for any xk

with 0 < x¥ < u¥ and hence can be removed from the
problem), by increasing some or all of the xk to their

]
upper bound we can find a vector yk such that,

; e

I

k -

k
]
and y for j € Jk

]
>

vE =b , 0 <yk <uk, 0<xF<y" for 5 € J5,
] ]

k k

J ]

case 2 : If X e%x? # 0, then by decreasing some or all of

jGJE bl
the x? (for j € JX) to zero and by increasing some or

]
all of the x? (for j € JE) to their upper bounds
]

[notice that this is always possible since the worst

scenario would be the case when x? (for j € J¥) is
J
decreased until ¥ kekxk = 0 and then we have case 1],
€T 11
] -

we can find a vector yk such that

n
k

T ekyk = p , 0 < gk <uk, 0 <xk < yk for j € Jk,
= j

i=1 )] k T

I

and v x¥ < uk for j € gk
) )

1

2
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Pk

Now suppose that (xK,yk) € Sz, i.e., j?l e?y? = bk
0 < yk <uk , 0 < xk < yk for j € J%, and Y? < X?
j j
for j € JX , then
for jeI%, o < x¥ < yk 3 0 < ekxk < ekyk
i j i I
3 ¥ ekxk < ¥ ekyk;
jesk 11 7 yerk
for FE€ J%, y* < xk < uk F ekyk < ekxk < ekyk
j j i i i it
3 T ekxk ¢ ¥ ekyk,
jexk i1 7 yegk i
" "
Thus, T ekxk < ¥ ekyk = p and 0 < x¥ < uk.
i=1 ] ] i=1 ] k
Hence, (xk,yk) € S; implies that x¥€ Sf.

So solving

min _Eocixi + Ms
1=

s.t.
$ oAkt v 1s =1
1=0

Ekxk < p

- k

0 < x9% <y’
0 < xk < uk for k=1,....,p

s 20



is equivalent to solving

min min _& c
y x 1=

o
I
»x

=
I
]
rl—t. rﬁ—l. a'

=
-
<K <

0]

this is just problem

IAN AN I ] I
e =< e o e
~ [

v
o

I ] [ VAN Vo N PaN
= o = ] =
w A x At + a— o

v
o

(¥PGD)

for k=1,...
for k=1,...
for k=1,...

for k=1,...

for k=1,...
for k=1,...
for k=1,...

for k=1,...
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/P
P
p, J € 3%
P, 3 € Jk
,p. j €Ik
P, J € Jk
P
P
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min gly)
s.t. n
k
Y ek yk = p for k=1,...,p
1=1 ] ] k
0 £ yk < uk for k=1,...,p

where g({y) is defined by (32).

Hence, problem (#P§0) is equivalent to problem (#P(). O

Proposition 6 establishes that the decomposition assures
the satisfaction of the GUB constraints. We now prove
that the objective function g(y) of the problem (#P§)) is

a convex function.

Proposition 7 : The function g(y) is convex over

I' = {y : ¥ ek yk=-p , 0« yk < uk for k=1,...,p}.
j=
Proof:
Let ¥ and y be chosen so that ¥y € I' and y € I'. Choose

a€[0,1]. Let

S = {(r,lo,tl,...,tp,po,#l,...,pp) :r <M, % <0,

g% > 0 and for k=1,...,p c? 0 for j € Jk, c? 2 0 for

j € 3k, sk < 0 for j € gk, pk > 0 for j € J¥ }.
] ”)

Then
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glay + (1-a)y) = glay! + (1-a)y! , ... , ayP + (l-a)yP)

max{xr + ¢%u® + kilck[a§k + (1-a)ykK1 + '51 piul :
= l=
Al+ o+ pi < el for i=0,...,p,

(z,6% 0!, ..., 0P g%, pt, ..., pP) €S }

max{ alrzr + ¢%° + kﬁ skyk + _%1 piull + (1-q)[rr +
=1 1=

£0ul + kﬁ skgk 4 f_: piuil: sai+ git gl < of for
=1

1=

i=0,...,p, (7,69, 0t,...,6P 8%, pt,...,8P) €5 }

< amax{rr + ¢%uf + k% skyk + .g pluil:
=1 1=1
1A1+ Ui+ Fl S ci for i=0r...rpl
(x,¢%, 6%, ...,0P g0, p!, ..., pP) €58 }
+ (l—a)max{rr + #%uf + kglckyk + .%l pluil:
= 1=
TAt+ gis at < ¢! for i=0,...,p,
(x,6% 61, ..., 0P, 8% ', ... pP) GS}
= agly) + (l1-a)gl(y).
Hence g(y) is convex over ['. a

The above proposition implies that problem (¥FP§)) is a
convex program with linear constraints. Since g is also
piecewise linear (Held, Wolfe and Crowder (1974)), problem

(¥PGP) may be solved using a specialization of the
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subgradient optimization algorithm. The algorithm begins
with an initial feasible solution, i.e., y €T = { Yy
n
jzt e? y? = bk' 0 < yk¥ < uk for k=1,...,p}. The procedure
involves minimizing the directional derivative of g
subject to feasibility restrictions, which uses a
subgradient to determine a direction in which y can be
moved or shows that y is optimal. If y is not optimal, a
step is taken in the direction, a new feasible point is
determined, and the process is repeated.

To apply the subgradient algorithm to (#P{/}) one must
have a way for determining a subgradient of g(y) at a

given point. Consider the following proposition.

Proposition 8 : Let y €T , 1let
(z,0%, 9, ...,0P, 50, 5!, ..., 8P) be the optimal dual
solution to g(y). Then (¥¢!,...,sP) is a subgradient of
g at y.

Proof:

Let y be any vector in ', and let

1

(v,6% 01, ..., 0P, p% p', ..., pP) denote the optimal dual

solution to g at y. Then
gly)-g(y) = (xr + g%ul + k% skyk + § piui> - (?r + 7%
=1

1m
+ kgjl;kl—,k + & ;iui)

1 =1
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v

(7r + ¢%ul + kﬁ Thyk + ,% Fiui) - (?r + 70%uf
=1 1=

* k%le-y—k * igl Fiui)

= & Tk (gk-gk)
k=1

(¢t,...,7P) (y - ¥).

Hence, (¢!,...,¥P) is a subgradient of g at ¥y. O

Therefore the subgradient is available from the solution

of the network problem. Consider solving the pure network

problem

s.t.
,% Alx! + Is = r
1 =0
0 £ x% < u?
0 < xk < yk for k=1,...,p, j € J%
] i
Yk Sxk Suk for k=1l---lpl j EJIE
i ! j
s 20

If s#0 in the optimal solution, then the problem has no
feasible solution. Otherwise denote the optimal solution

by Xx. Let (x,6%, ¢!, ...,0P,p% pt,...,pP) solve



max{rr + #%0 + k% skyk +
=1

i=0,...,p, 7 <M, ¢°

v

sk < 0 for j € Jk, oK

)] }

j € gk, p? 2 0 for j
]
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,% piul ¢ oxal+ i+ pl < ¢! for
1=1

<0, g% > 0 and for k=1,...,p
>0 for j € g%, u¥ < 0 for

]
€ J‘i}.

Note that for each k, 1 < k < p, ¢¥ + pk = ck - zak and
¢k <0 for j € 3%, 7% > 0 for j € gk, p¥ < 0 for j € Jk
j

}

j
and p¥ > 0 for j € JK. Thus if the jth column of ak,
j

denoted by AF, corresponds to xk and its associated arc is
] ]

incident from node £(j) to node t(j), we have that
for j € JE
sk < min { ck - xak , 0 } = min {c? +r - 0 }
] ) ] J f£(3) t (1)
and for j € Jk
ek > max [ c¥ - zak , 0} = max {c? + 1 - , 0 }
) J } ] f(31) t())
But,
for all j, XX basic 2 ck + 1 - =03 sk <0 ;
] f(1) t(}1) ]
for j € J%, XX = 0 and nonbasic 2 ck + 1 = - .20
] ] fCy3) t (i)
2 ok < o;
i
%X = y* and nonbasic 2 ck +x -1 <
] ] ] () t(1)
02 sk <k +n -

= €, . LI
] ] fC1) t )
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for j € gX, XX = y*X and nonbasic F c + 7 -1 2
) 1 ) £(1) t i)
0>ek 2ck+r -7 g
] ) f¢i) t (1)
xk = uk and nonbasic 2k + 7 -1 (£
] ) ) £(1) t(1)
02 ek >o0.

i)

Hence, for all j, 1 £ j < n_, one solution for sk is
j

c* +r @ -7 if Ek
ek = j £ t i) i

] 0 otherwise

= yk and nonbasic
]

Thus, in using the subgradient optimization algorithm for
the problem (¥P({J) at each point y, the subgradient can be
calculated directly using the above development.

It is possible that moving a step along the

subgradient yields a point which does not belong to the

n

set I =v{ y : jgt e? y? = bk' 0 < vk < uk for k=1,...,p}.
This point is projected onto the set I' by means of a
projection operator. What remains to complete the
procedure is to find an efficient way for projecting an
infeasible point onto I'.

Given a point y € ', we must solve the following

problem:
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min {Hy -yl : 21 ek yk = b, 0 < yk < uk for k=1,...,p}
nk n
= min { T (yk- )2 Y ek yk=p, 0 <yk< uk
=1}=1 i ] 1= ] | k

But this program decomposes on k, therefore we must solve

n
k
min{ '21 (yk- 53)2 : ¥ ek yk=p, 0 <yk <uk } (33)
i= j j i=

for each GUB constraint k=1,...,p.

k k =k k
For each k, if & ek y* = bk and 0 < y* € u® then
1=1 ] )
;5 is within the subset of feasible region Fk where
)

r
1 k

[l

I = { vk : T ek yk=p , 0 < gk <uk } and ' = )
)

(X denotes the k cartesian products); thus let y* = §k for
i )

j=1,...,nk. Otherwise, (33) takes the form
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min —%— ykpkyk -2 ykyk (34)
"k
Y ek yk -pb =0 (AF) (35)
1=1 ] } k
vk - uk <o (4%) (36)
j j i
-y <o (vk) (37)
j j

where D¥=2I, and Ak, u? and VF are the Kuhn-Tucker
1 ]

multipliers associated with the three types of

constraints. The RKuhn—Tucker conditions for (34)—(37)

are:
Zy? —2§§ + w? - v? + e? Ak =0 for all j, (38)
u? (y? - u?) =0 for all j, (39)
u? y? =0 for all j, (40)
u?, u? >0 for all j (41)
plus (35),(36) and (37).

Consider the following solution as a function of Ak
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k
A max{min(e?f?—(e?)z—%,e?uk) ,0} if ek»o0
ek I J il ]
k k j
ye(As)=q ! k
1 —2—-min{max(ek?k—(ek)z—i,eku?) ,0} if ek<o
ok | i 2T j
J
2y 2uk
ek max{———L— ~ Ako ———L—,O} if ek>o0
J ek e ]
Uk()k)= —] ]
} 2y 2uk
ek min{—1— - Ak 1 0 if ek(O
) e ek ]
j
27"
ek max{— 1 4 Ak,O} if e?)O
} ek ]
yl.((}k)= _]
! 2y
ek min{— —l 4 Ak,o} if ek<o
1 ]

=(42)

For any selection of Ak, this solution clearly satisfies

(36), (37) and (41). The following propositions show

(42) will also satisfy (38), (39) and (40).

Proposition 9 : The solution given by (42) satisfies
(39).

Proof:

case 1. S S | S ———%— < 0

that
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3 vk = uk 3 yk(yk-uk) =0
i i | T
2y 2uk
case 2. —d -k - 1 >0
ek ek

_ k
a. ek > 02 eky*—(ek)z—%— > ekuk > 0 3 yk = uk
] 1] ] 1] ] )

1
o

2 wk(yk—u*)
R T

b. ek ¢ 0 2 sk
)

0 2 vK(yk-uk) = 0.
] } ]

1

Hence, the solution given by (42) satisfies (39).

Proposition 10 : The solution given by (42) satisfies

(40) .
Proof :
2y"
case 1. - —1—+ jk ¢ 0
ek
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b. ek < 0 3 ekFr-(ek)2 4 5 03 ¥k =03 yE =0
] } ol 1 2 ] 173
2y
case 2. - —1- 4+ )k >0
ek
]
_ k
a. e >O#GEY"‘-(e‘Wz—%—SO#Y{‘=0=>V‘Fy‘_‘=o
] I I | } ] 1)
= 0.

b. ek <0 2 vk = 0 3 vkyk
} ] ] ]

Hence, the solution given by (42) satisfies (40).

Proposition 11 : The solution given by (42) satisfies

(38).
Proof
case 1. ek > 0
]
- k
a. ekyk-(ek 2—%— > ekuk > 0
1] ] 1]
2y*" 2uk
=>Yk=uk,—l-—‘,lk——-—l——20,
} ek ek
] ]
2y
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2y* 2uk _
— i ko 1> 0 2 bk = 2yk-ekik-2uk.
ek ek 7 ] oo j
] j
2y~
—1i -3k 5 03 sk = 0.
ek )
i
Thus

2yk —2§k + ok - k4 ek gk
j J i i i

= 2uk-27%+ (27k-ek k-2uk)-0+ek )k = 0.
i J i i i

_ k
b. 0 ¢ ekyk-(ek)2 41 ¢ okyk
iTi j 2 i
_ Jko 2y 2u*
3 yk = yk-e . L. - )%- — 1 ¢ 0,
i P2 ok ok
i i
2y"
and —1— -k > 0.
ok
i
2y 2uk
— i k. i co0o3 k=0
ek ek J
i i
27k
—1 )k > 03k =0
e ]
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2v* =275 & oK = pK 4 ek gk
] J j j i
—x__k A% =k k ik
= 2(yf-e*~-2—~)-2y.+0-0+e%1* = 0.
i i 2 3 j
_ k
c e?yk—(ek)z—%— <0
1] ]
2y"
3y = 0 ana —1— -4k <o.
ok
i
27k 27k 2uk
i )k g3 —1_ -3k 1< 0 and
e ek e
j j j
vk = —aykeekik,
J } ]
2y 2uk
—_—d ke 1 <03k =0
ek ek 1
j J
Thus

2yk —2?& + ok - yk 4+ ek Ak
J J i i J

= o—2§§+o—(—2§¥+ekxk)+e?1k = 0.
1 ] ]

case 2. ek <0
]



2y 2uk
0, —I1— )k 1 > o,
ek ek
i i
2uk

2yk —2?? + ok - k4 ek )k
}

-
-
A

-
0-27"
Y3

eky®
1]

] ] i

+0- (-27k+ek k) +ekjk = o,
J } ]
k2 Ak
(ej) —5 < 0
,‘k 21—’. 2ul.<
5 L —}f 1>
- ok

122
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27k 2uk
—_d ko 1> 0 2 4k = 0.
ek ek ]
j j
2y*
— 1)k ¢ 02 sk =0,
ek ]
j
Thus
oyk —2FK + ok - pE 4+ ekpk
i J i J J
_ k -
= 2(7k-ek 4y -27%+0-0+ekAk = 0.
ioi 2 J j

k
ekyk- (ek)z—%— < ekuk <0
it j i

27" 2uk 2y"
3 yk = yk, —1- —jk- — 1 ¢ 0 and — i -)k ¢ o0.
i i
2y 2uk
— i ke i ¢ 0 D sk = 27k-ekik-ayk,
ek ek j i )
j j
2y"
—_—d -}k ¢ 0 2 vk = 0.
k
e
j
Thus

2y% 27 + Wk - ok 4 ek gk
]
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= 2u'$—2§’3?+(ziz"?—e‘uk—zu‘?)—o+e‘_uk = 0.
) ] ] )] )

Hence, the solution given by (42) solves (38).

Hence to solve (34)-(37) one need only find the

appropriate Ak such that (35) is satisfied. Let

1 k
052 S maxfmin{ek7h- () 245, ekuk ), o}
jGJlf. 11 ] i
k
+ X min{max(ek??—(ek)z_i_ , ekyk ) ’ 0}
]EJ‘E | ) 2 S

where JE={j : ek > 0} and JE={j : e? < 0} for each k,
] ]
1 <k < p. Then we must find 4% such that f()k)=bk. So

Yk(lk) may be expressed as follows:
}

for ek > 0,
]

1

TLIE - L L
]

for ek < 0,
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[ 2y
0 ,‘k < —_l
ek
]
s Tkl k
Kk 2y" 2(y*-u®)
yhk) = 4 7k - ek A —L <k g
i i i 2 ek ek
} ]
2 (yk-uk)
uk ,{k > — 1
1 ek
L i

Clearly each y?()k) for j € JE is piecewise linear and
monotonically nonincreasing and each y?(}k) for j € Jk is
piecewise linear and monotonically nondecreasing. Thus
each f(i¥) is piecewise linear and monotonically
nonincreasing. In this instance, a revised version of ALG

2.1 of Section 2.1.2 is used for obtaining Ak for the case

k

]
to zero. The revised algorithm follows.

where the coefficients e® could take any value not equal

ALG 3.3 ALGORITHM FOR Ak

Step 1 : Set k + 1.

Step 2 : Initialization.

Let a¥ < ak < ... < ak denote the ordered 2n
1 2 2n, "k
2(7% - uk) 2y"
breakpoints 1 - l_ and ——t— for j=1,...,nk. If

e’ e’
] ]
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b < % ke?uk where JK = {j . ek > 0} and
] J

gk = {j : ek < 0}, terminate with no feasible solution;
)

otherwise set [k=1, rk=2nk, Lk= £ ek

jGJ&

k

u® and

Rk= © ekuk,

“ .
jGJE 1]

Step 3 : Test for Bracketing.

kypk
If rk-lk=1, go to step 6; otherwise set m = [_L—f___]'
k k
the greatest integer < —i—%E——.

Step 4 : Compute New Value.

k

a

k= © kmax{min(ek?k—(ek)z zm , ekuk ) , 0}
jEJ+ 1 ] ] 1]

~

a
+ X min{max(e???-(e?)z—ﬁﬁ— , ekuk ) , 0}-
jEJE . ) 11

Step 5 : Update.

I1f Bk = bk' terminate with iX = ak. 1If Bk > bk' set

m

lk= m, Lk= B¥, and go to step 3. If BK ¢ bk' set

rk= m, Rk== Bk, and go to step 3.
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Step 6 : Interpolate.

(akp - akk) (b - Lk)
. . kK _ .k r l k
Terminate with Ak = ajk + .
Rk - Lk

Step 7 : Increment.
Set k « k + 1.
If Kk > p, terminate with a Ak for each of SCBVLP;

otherwise, go to step 2.

The subgradient optimization algorithm for problem
(¥P0D) makes use of a lower bound, LBND, on the optimal
objective function in the termination criterion each time
the procedure is invoked. The following summarizes the

upper bound algorithm for problem (¥FP().

ALG 3.4 ALGORITHM FOR UPPER BOUND

Step 1 : Initialization.

Initialize LBND, step size t and ¢.

Step 2 : Find Subgradient and Step Size.
Let x and 7 be the vectors of optimal primal and

dual variables for
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min {'% cix! + Ms : ,& Alx! +Is =1, s 2 0,
1=0 1=0
0 < x% < u®, and for k=1,...,p 0 £ xK < y?
]
. )
for j € J¥X ana yk < xF < uk for j € Jk }
] J )
Let UBND = cX.
If (UBND-LBND) £ e|UBND|, terminate with X near
optimal. Otherwise, let, for k=1,....p,
ck v+ 7 -7 if x* = y¥ and nonbasic
gk = j £(i) £ j i

! 0 otherwise

t
7 = (a:,...,al ,...,a?,...,ap ) .
n

n
1 P
Step 3 : Move to New Point.
y @ Ply - tg].

Adjust the step size t.

Step 4 : Repeat the Process.

Go to step 2.

3.3 An Algorithm for Problem ¥ZP(

The pure network problem with generalized upper bound
constraints can be implemented using decomposition (upper
bound algorithm) without the lower bound procedure. It is

also possible to obtain a lower bound on the optimal value
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of the problem (#P{) by implementing the lower bound
algorithm independently. By merging the two algorithms, a
procedure which adjusts the lower and upper bounds
progressively can be used.

The algorithm for the network with GUB constraints
problem begins with w (the vector of Lagrange multipliers
of the lower bound procedure) equal to 0, this involves
ignoring the GUB constraints and solving the network
portion. Let X denote the optimal solution to the network
problem. If the optimal solution to the pure network
problem satisfies the GUB constraints, the solution is
also optimal for the problem (#f§). Otherwise, a step is
taken in the direction of a subgradient of L at w = 0 and
a new w is determined. The optimal solution to the
initial p SCBVLP problems is obtained using ALG 3.1 for
the case when w=0. The initial solution in the upper
bound procedure is the solution x to the last pure network
problem solved in the lower bound procedure. The most
recent pure network solution in the previous lower bound
procedure is used in reoptimizing the network in the lower
bound algorithm each time it is invoked.

Each time the lower bound procedure is called, a
maximum of LITER iterations are performed. Each time the
upper bound procedure is called, a maximum of UITER

iterations are performed.
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ALG 3.5 ALGORITHM FOR THE PROBLEM /NF{

Step 0 : Initialization.
Initialize UITER, LITER, step size 4 and «¢.
Let w = 0.

Let X solve

min {,% clx! + Ms : ‘g Alx! + Is=1r, s > 0,
1=Q 1=0
0 < x! < u',and for i=0,...,p }
If X satisfies the GUB constraints, terminate with X

optimal to the original problem.

Let y be an initial solution to p SCBVLPs. That is,

for each k, 1 <k < p,

0 if ek >0
] uk if ek <0

— — — —_ \t
Let g, =( y! - x', ..., yP - xP ) .
If g, = 0, terminate with X optimal.
Let w = d T,-

Adjust the step size d.

Let UBND = wm and LBND = & ciX!.

Step 1 : Set Iteration Count.

Set L ~ 0 and U + 0.
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Step 2 : Compute Lower Bounds.
a. Call ALG 3.2 (steps 2 and 3).
b. Set L + L + 1.

If L < LITER, go to step 2a.

Step 3 : Compute Upper Bounds.
a. Call ALG 3.4 (steps 2 and 3).
b. Set U« U + 1.
If U ¢ UITER, go to step 3a.

Otherwise, go to step 1.

3.4 Finding an Initial Basic Feasible Solution

The initialization step of ALG 3.5 assumes that a
basic feasible solution with which to initiate the
algorithm can be found. The purpose of this section is to

! describe a strategy for obtaining such a solution. For

‘ this method a combination of original arcs and artificial

arcs are allowed to carry flow.

Assume the problem has been transformed so that all

| lower bounds are zero. A heuristic procedure is used to
obtain the initial basic feasible solution; the main idea
of this procedure is to quickly find paths through the
network that will transport a large amount of items from

the supply nodes to the demand nodes.
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The heuristic first starts with the initialization
phase. Let the root node, ROOT, be equal to any one of
the supply nodes. For each demand node q € ¥, add ah
artificial axrc (ROOT,q) with cROGT,q = UpgsoT = +m .
These arcs are all made part of the spanniug tree, and
each is assigned an initial flow equal to the unsatisfied
demand at the node that is connected to the root, that is,

r_ . The flow x will be decreased if a

X*RrooT,q - g ROOT, q

set of arcs is found that allows for the achievement of rq
from one or more supply nodes.

A list S[/ is then formed consisting of supply nodes,
ordered by magnitude of node number in the original
problem, with the node having the smal;est number

appearing first in the list. For each node p € §[, define

a quantity USp, which is called the undistributed supply.

Initially, Usp ~-r_ for p € §/. Also for any node

b
{(p.q): (p.q) € 4 }; Tp is simply the set

p € §/, let T,
of all arcs whose "from" node is p. This completes the
initialization phase of the heuristic.

The main portion of the heuristic attempts to build
forward chains (directed paths) beginning at each supply
node and terminating at some node already in the tree.
Each chain consists initially of a single node and may be

extended by the addition of new nodes and connecting arcs.
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The node most recently added to the chain will be referred
to as the highest node on the chain. Chains are extended
only at the highest node. Eventually each chain is
connected to the spanning tree either by an artificial arc
from the highest node in the chain to the ROOT or by an
arc (p,q) € 4, where p is the highest node in the chain
and qg is a demand node.

The procedure consists of two phases. In phase 1,
part of a spanning tree is formed so as to transport the
undistributed supply to demands via chains. For each
supply node p with undistributed supply USp > 0, we append
an arc (p.q) € Tp with flow USp, cost of COSTp'q and bound
of up,q if :

(i) q is a demand node, flow on arc (ROOT,q) is
positive, USp <uy g and USp £ XROOT, q°
(ii) g is either a transshipment or a supply node which
is not in any chain and Usp < up,q.
In case (i) the chain is completed. 1In case (ii) q
becomes the highest node in the chain. If none of the
above cases hold, arc (p,q) may become nonbasic at its
upper bound if
(iii) g is a demand node, flow on arc (ROOT,q) is
positive, u < Us

p.q
(iv) q is either a transshipment or a supply node

p and up o S Xeaop g,

which is not in any chain and U, q < Usp.
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If no q € Tp satisfies the last four cases p is connected
to the root node via an artificial arc having flow of USp:
and p is then removed from §/. The process is repeated
until $Z = ¢. At this point phase 1 is completed. 1In
phase 2, either artificial arcs or real arcs are added
with a flow of zero in order to connect the isolated
transshipment nodes to the tree so as to complete the

spanning tree.

ALG 3.6 : Finding An Initial (Artificial) Feasible Basis
{PHASE 1)

Step 0 : Begin.

Step 1 : Select First Node in Supply List (S$I).
a. If SI= ¢ , go to Step 9 (Check for termination)
Otherwise, let p be the first node in §/.
b. If p = ROOT, remove p from S5/ and go to Step 0.

Step 2 : Check for the Undistributed Supply.
If Usp=0, go to Step 8 (Connect p to ROOT).

Step 3 Select a Node that is a To Node of p.

Y]

If Tp= $ . go to Step 8 (Connect p to ROOT).

Otherwise, let g be the first node in Tp.
If rq > 0, go to Step 4.

Otherwise, go to Step 5.
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Step 4 : A Demand Node.
a. (Demand is satisfied via real arcs)

If = 0, remove q from Tp and go to Step

*ROOT, q
3.
b. (Demand not completely satisfied via real arcs)

Go to Step 6.

Step 5 : A Supply or Transshipment Node.

‘ a. If q is part of a chain, remove g from Tp and go
| to Step 3.
| b. Otherwise, go to Step 7.

Step 6 : A Demand Node May Receive Supply

a. (It is an arc that may be set to upper bound)

If u < min[US 1, let x

p.g - p ' *ROOT., g

USp=USy = ¥y g+ *Roor,q *R00OT.q Vp,q’

from Tp and go to Step 2.

=1 ’
P94 P/q
remove g

b. (It is an arc that may become basic).
If US_ < u & Us < x , let x =UsS_,
p pP.q p - ROOT.q p.q p
us_, USp = 0, connect the chain

*RooT.qa~ *rooT,q” “°p
with p as the highest node in the chain to the
tree via (p,q), remove p from S5/ and go to Step
1.

c. (It is an arc that cannot be set to upper bound or

made basic).

Remove q from Tp and go to Step 3.
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Step 7 : A Supply or a Transshipment Node May Transfer the
Supply.
a. (It is an arc that may be set to upper bound).

If < Us let x USp=US -u

1 ' =u ’ ¢
“p.q = “°p p.q 'p.q r 'p.q
place q in the last position of §f with USq = USq

+ u remove q from Tp, and go to Step 2.

p.q’
b. (It is an arc that may become basic).

If US. < u , let x =US , remove p from S/,
p P.qd P.q p

extend the chain by connecting p to q via (p.q)
so that q becomes the highest node in the chain,
place q in the last position of S5/ with Usq = USq
+ USp , USp = 0, and go to Step 1.

Step 8 : Connect p to Tree With an Artificial Arc.

Remove p from S.L. Create an artificial arc,

p,ROOT ~ “p,ROOT *p,ROOT ~
Uspﬁ Connect the chain with p as its highest

{(p,ROOT) with ¢ = +m,
node to the utmost right hand side of the tree

via (p,ROOT) and go to Step 1.

(PHASE 2)
Step 9 : Initialize Node Counter.
Let p = NUMSUP + NUMDEM + 1.
Step 10: Test for Connectedness of Tree
If all the transshipment nodes are connected to

the tree, Terminate.
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Step 11: Connect to Tree With an Artificial Arc.
a. Create an artificial arc with cp,ROOT = up,ROOT

= +m = 0. Connect (p,ROOT) to the

* ¥p,RO0T
utmost right hand corner of tree.
b. (Increment node counter)
p=p+ 1.

c. If p > number of nodes, Terminate.

d. Go to Step 10.
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CHAPTER 4

SOFTWARE DESCRIPTION

This chapter describes the use of NETGUB for the
solution of the network with GUB constraints problem. The
primary purpose is to provide documentation of the

subroutines which compose the optimization software.

4.1 Data Structures

NETGUB makes use of 14 arc—length arrays to store arc
information. The arcs are rearranged internally with all
arcs incident from node 1, followed by all arcs incident
from node 2, ..., followed by all arcs incident from node
NODES. Table 4.1 gives the use of each of the fourteen
arrays and the name of the subroutines that make use of
these arrays. NETGUB makes use of 9 node—length arrays to
store node information. Table 4.2 gives the use of each
of the nine arrays and the name of the routines that make
use of them. Three GUB-length arrays are used to
represent the GUB information. Table 4.3 gives the use of
each of these arfays and the name of the routines that

make use of themn.
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Table 4.1 : Arc-Length Arrays
Arc
length Description Subroutines that
arrays use these
‘ INPUT, INIT, LBALG, UBALG
ARCNAM Name of arc PURNET , REOPT
. INPUT, INIT, LBALG, UBALG
COST Unit cost on arc PURNET , REOPT, START
CTEMP Temporary unit cost INPUT, INIT, LBALG
or net change in PURNET
unit cost on arc
GCOEF Coefficient of arc INPUT, INIT, LBALG, UBALG
in the GUB SCBVLP,REOPT, PROJOP
constraint UINIT
INIT,BASSAV,BASRED
GFLOW Flow on arc LBALG, UBALG, PURNET
SCBVLP,REOPT, START
UINIT
) INPUT, INIT, LBALG,UBALG
GUBADD Arc address SCBVLP , PROJOP , UINIT
LGMULT Lagrange multiplier INIT,LBALG, SCBVLP
corresponding to an
arc
LOWER Lower bound on INPUT, INIT, LBALG, UBALG
arc flow PURNET, REOPT
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Arc
length Description Subroutines that
arrays use these
STATUS Status of an arc. INPUT, INIT,BASSAV
0, if arc is basic; BASRED, LBALG, UBALG
1, if arc is PURNET, REOPT, START
nonbasic at lower
bound; 2, if arc
is nonbasic at
upper bound; 3, if
arc is fixed.
INPUT, INIT,LBALG, UBALG
TO To-node of an arc PURNET , REOPT, START
UPPER Upper bound on INPUT, INIT,LBALG,UBALG
arc flow PURNET, SCBVLP, REOPT
PROJOP, START ,UINIT
UTEMP Temporary upper UINIT,UBALG,REOPT
bound or net change PROJOP
in upper bound on
arc flow
YFLOW Flow on arc that is INIT,LBALG,SCBVLP
in a GUB constraint
ZFLOW Flow on arc that is UINIT,UBALG,PROJOP
in a GUB constraint REOPT




Table 4.2

Node—-Length Arrays
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Node
length
arrays

Description

Subroutines that
use these

BASIS

CARD

FLOW

FROM

LNOD

NVAL

PI

PRED

THD

Arc joining node with
its predecessor. +,
if arc is (p(i).1i):
-, if arc is (i,pf{i))

Cardinality of a node
in the basis tree

Flow on basic arc

(i,p(i)) or (p(i),i)
The location of the
first arc in the TO

array with node as
its from—node

Last node in the
subtree of this node

Node requirement

Dual variable wvalue

Predecessor node

Thread node

INIT,BASSAV,BASRED
LBALG, UBALG, PURNET
REOPT, START

INIT,BASSAV,BASRED
LBALG, UBALG, PURNET
REOPT, START

INPUT, INIT, BASSAV
BASRED, LBALG, UBALG
PURNET, REOPT, START

INPUT, INIT, LBALG
UBALG, PURNET, REOPT
START

INIT,BASSAV,BASRED
LBALG, UBALG, PURNET
REOPT, START

INPUT, INIT, START

INIT,LBALG,UBALG
PURNET, REOPT

INIT,BASSAV,BASRED
LBALG, UBALG, PURNET
REOPT, START

INIT,BASSAV,BASRED
LBALG, UBALG, PURNET
REOPT, START
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GUB—~Length Arrays
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GUB
length
arrays

Description

Subroutines that
use these

GVAL

NUMVRG

REDGUB

Right hand side of a
GUB constraints

Number of arcs in a
GUB constraints

Determines if a GUB
constraint can be
eliminated. 1, if
vyes; 0, if no.

INPUT, INIT, LBALG
UBLAG, SCBVLP, PROJOP
UINIT

INPUT, INIT, LBALG
UBALG, SCBVLP,UINIT

INPUT, INIT, LBALG
UBALG, UINIT
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Table 4.4 gives the use of each of the constant
parameters. Before compiling NETGUB, one has to decide on
the maximum size problem required to be solved. The
dimensions of the parameters should be changed to
accommodate the desired size problem. The dimensions are
currently set to 2000 for arc-length arrays, 500 for
node—length arrays and 1000 for GUB-—length arrays. The
parameters are currently set to 20 and 10, respectively,
for maximum iterations for lower and upper bound

procedures, and .01 for tolerance.

4.2 Main Program and Subroutines

This section concentrates on the description of the
different subroutines called in the main program. Figure
4.1 shows the various subroutines that constitute the main
program for solving the network with GUB constraints
problem. Descriptions of each subroutine follow. In the
following discussions i will designate an arbitrary node,
while j and k will denote an arc and a GUB constraint,

respectively.

A. Subroutine INPUT
There are four sets of information that are specified
in the input; the nonzero requirements at nodes:; the

number of GUB constraints; the number of variables in each
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Table 4.4 : Constant Parameters

Constant

parameter Type Description

EPSILON R*8 Tolerance on the difference
between lower and upper bound on
the objective function value at
termination

LITER I Maximum iterations for the lower
bound procedure

MAXARC I Maximum number of arcs

MAXGUB I Maximum number of GUB constraints

MAXNOD I Maximum number of nodes

UITER I Maximum iterations for the upper
bound procedure
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A. INPUT

reads the data files
and puts i1t in a format
that can be used in

the network optimizer

B. INIT J. OUTPUT
finds an optimal sol- p———>| stop if there is
to the pure network no such solution

problem print results

-

Figure 4.1 : Flow Diagram of the Main Program
for the Network with GUB
Constraints Problem
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C. LBALG

finds a lower bound
on the problem
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D. BASSAV

saves the optimal sol-
to the latest pure
network problem used
in the lower bound
procedure

[nd
o
®
=
}
4
o
la}

G. UBALG

finds an upper bound
for the problem

+

i

J.
stop

OUTPUT

if optimal

or near optimal

sol-.
print

is found
the sol-

2 4

H. BASSAV

saves the optimal sol-
for the latest pure
network problem that
was solved in the
upper bound procedure

1

I. BASRED

reads the optimal sol-
for the latest pure
network problem that
was solved in the
lower bound procedure

Figure 4.1

(continued)
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[ 3]

E. UINIT

finds an initial

solution for the

decomposition
problem

Figure 4.1

F. BASRED

reads

the optimal

solution to the
latest pure net-
problem that was
solved in the

upper

bound alg-

{continued)
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GUB constraint and the RHS value; and for each arc, the
arc name, from node, to node, cost, upper bound , lower
bound and coefficient in GUB constraint (0, if not in a
GUB constraint).

The input format used for all data and an exanple
(file 8) is given in Appendix A. The input file is
capable of storing successive problems in one file.

This routine sets up the data structures for the
arc—length arrays ARCNAM(j), FROM(j), TO(3), COST(3),
UPPER(j), LOWER(j) and GCOEF(j); NVAL(i):; and all
GUB—-length arrays. The number of arcs, ARCS, number of
nodes, NODES, and the total number of arcs in the GUB
constraints, GARCS, are determined as the data is read in.
This routine introduces a dummy node, DUMMY, when the
total supply exceeds total demand; however, when total
demand exceeds total supply. the problem is declared
infeasible. Unlike some other pure network input files,
the number of arcs out of each node need not be specified,
since the routine calculates these, NUMOUT(i), as the arc
information is read in.

This routine also converts the problem to one with
zero lower bounds and at the same time adjusts for the
objective function value, TCOST, of the network problem
and also adjusts for the right hand side value of the GUB

constraints in the following way:
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Repeat for all j € 4
If LOWER(Jj) # 0, then :
UPPER(Jj) = UPPER(j) - LOWER(J).
TCOST = TCOST + LOWER(j) * COST(Jj).
If j appears in kth GUB constraint, then:

GVAL(k) = GVAL(k) - LOWER(Jj) * GCOEF(j).
To account for the GUB constraint feasibility or for the
constraints that can always be satisfied and hence can be

eliminated, the following inner loop is used:

Repeat for all 1 € k < NGUBS

TGVAL = SGVAL 0.
Repeat for all j € 4 that are in the kth GUB
constraint
If GCOEF(j) > 0, then
TGVAL = TGVAL + UPPER(j) * GCOEF(3])
If GCOEF(j) < 0, then
SGVAL = SGVAL - UPPER(j) * GCOEF(jJ).
If TGVAL € GVAL(k), then REDGUB(k) = 1.
If GVAL(k) < -SGVAL, then the problem is

declared infeasible.

The CTEMP array is used, in this routine only., to

temporarily store SGVAL for each GUB constraint.
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B. Subroutine INIT

This routine is set up to find an initial basic
feasible solution for the lower bound procedure that was
described in the initialization step (Step 0) of ALG 3.5
in Section 3.3. Figure 4.2 shows the various subroutines
that are included in this subroutine.

This routine first attempts to find an initial
feasible solution to the pure network portion of the

problem by using the following subroutine.

a. Subroutine START

This routine makes use of an advanced start procedure
discussed in Section 3.4 to produce an initial basic
feasible solution and whenever necessary, introduces
artificial variables. At the beginning of the routine the
status of the data structure should be exactly as at the
end of the input routine. Then ALG 3.6 is followed to
find an initial (artificial) basic feasible solution.
Also the data structure for the arc length arrays GFLOW(j)
and STATUS(j); and for the node length arrays BASIS(i),
CARD(i), LNOD(i), PRED(i), THD(i), FLOW(i) and PI(i) are
set up.

Every time the flow associated with node i, FLOW(i),
is determined, the objective function value, TCOST, is

adjusted as follows
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finds an
feasible
portion of

initial (artificial) basic
solution for the pure network

a. START

the problen

b. PURNET
solves for the pure network portion of
the problenm
Figure 4.2 : Flow Diagram of the INIT Subroutine
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TCOST = TCOST + FLOW(i) * COST(ABS(BASIS(i))).

Upon completion of routine START, the data structures
for the network problem are all set up. The routine INIT
then makes use of this advanced starting solution to

optimize the pure network portion of the problem.

b. Subroutine PURNET
The routine PURNET performs primal simplex iterations
until optimality criteria are satisfied. The algorithm
procedures makes use of the Big—M method to produce a
feasible solution ( if the problem is feasible) and then
the optimal solution. The cost of artificial variables
(the value of M) used in the procedure is 100000. At the
end of this routine the following arrays contain the
information for the optimal solution:
GFLOW, STATUS, PI, BASIS, CARD, LNOD, PRED, and FLOW.
The optimal objective function value is contained in

TCOST.

At the end of the PURNET routine, the array GFLOW
corresponds to the optimal solution X in step 0 of ALG 3.5
in Section 3.3. At this point the routine INIT attempts
to find an optimal solution for the initial SCBVLPs. The

array YFLOW corresponds to an optimal solution § in step O
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of ALG 3.5 and is determined as follows:

Repeat for all j € A that are in the kth GUB

If REDGUB(k) = 0, then :

]
o

If GCOEF(j) > 0, then YFLOW(Jj)

Else YFLOW(j) = UPPER(J]).

LGMULT (n) LBSTEP * (YFLOW(3j) - GFLOW(j)).

If REDGUB (k)

1, then :
YFLOW(j) = GFLOW(j).

LGMULT (n) = 0.

The Lagrange multiplier array, LGMULT, is arranged with
respect to the location of the arc in the input file.
That is, LGMULT(n) is the lagrange multiplier
corresponding to the nth arc in the input file with an arc
address of GUBADD(n). The reason this array is stored in
this manner will become clear later when one desires to
order the components of the LGMULT array.

This routine also determines the array CTEMP. This
array is used in routine LBALG to determine the new cost
coefficients of the pure network problem in step 2 of ALG

3.2 in Section 3.1.
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Repeat for all GUB k

Repeat for j € A that are in the kth GUB

CTEMP (Jj) The net change in unit cost of the

pure network problem.

n
[y

=0 if REDGUB (k)

L}
o

- LGMULT(n) if REDGUB (k)

At the end of routine INIT, a lower bound on the
objective function value of the network with GUB
constraints problem, LBND, exists. At this point an upper
bound on the objective function value of the problem,

UBND, is set arbitrarily to a large positive number.

C. Subroutine LBALG

This routine recomputes the value of LBND, the lower
bound on the objective function value of problem (¥P{)
using steps 2 and 3 of ALG 3.2. Figure 4.3 shows the
various subroutines that are called in this routine.

The first time this routine is called, the status of
the arrays should be exactly the same as at the end of
routine INIT. The optimal solution of the pure network
problem of step 0 of ALG 3.5 is used as an advanced
starting point fof this network problem (step 2 of ALG
3.2). 1In the subsequent calls the status of the arrays

BASIS, CARD, FLOW, GFLOW, LNOD, PRED, STATUS and THD are
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a. PURNET

finds an optimal solution for the pure netwark
problem that has undergone unit cost change(s)

b. SCBVLP
finds an optimal solution for each single
constraint bounded variable linear program

Figure 4.3 : Flow Diagram of the LBALG Subroutine
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exactly as at the end of routine BASRED. In any case, the
unit costs are changed so the TCOST is recomputed. 1In
this instance, TCOST would be the corresponding objective
function value for the present initial feasible solution.

The changes are done in the following inner loop:

Repeat for all j € 4
If GCOEF(j) # 0, then
CTEMP(j) = COST(j) - LGMULT(n).
Else CTEMP(j) = COST(j]).
TCOST = TCOST + CTEMP(j) * GFLOW(Jj)

where n is the location of arc j in the LGMULT array.

Thus, CTEMP is used here as the arra& of unit costs for
the routine PURNET and it is this array that is passed on
to it and not the array COST. Having the right unit
costs, routine PURNET with arguments: ARCNAM, BASIS, CARD,
CTEMP, FLOW, FROM, FROMO, GFLOW, LNOD, LOWER, PI, PRED,
STATUS, THD, TO, and UPPER is called to solve for the
network problem. At the end of routine PURNET, GFLOW
contains the information for the optimal solution x in
step 2 of ALG 3.2.

To solve for the SCBVLPs in step 2 of ALG 3.2,
routine SCBVLP is constructed. This routine is called

once for each GUB constraint with value of 0 in the
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corresponding component of REDGUB.

b. Subroutine SCBVLP

This routine solves for each GUB constraint (SCBVLP)
separately. The arguments that are passed to this routine
are: GVAL(k), GFLOW, GUBADD, GCOEF, LGMULT, LOCl, LOCZ,
NUMVRG (k) , UPPER, and YFLOW, where k is the GUB constraint
currently being solved for in this routine; initially LOC1
and LOC2 are, respectively, the locations of the first and
the last arcs of the kth GUB constraint in the input file.

This routine makes use of ALG 2.3 of Section 2.1.5 to
solve the SCBVLP. Array YFLOW would be constructed one
component at a time to contain the information for the
optimal solution ¥y of step 2 of ALG 3.2.

Let n indicate the location of an arc anywhere
between LOCl1l and LOC2 inclusive for the kth GUB
constraint. Let j be the arc corresponding to location n,
i.e., j = GUBADD(n). YFLOW is constructed differently
depending on whether

(i) GCOEF(j) > 0 and LGMULT(n) 2 0 ;

(ii) GCOEF(3j) < 0 and LGMULT(n) £ 0;

(iii) either GCOEF(j) > 0 and LGMULT(n) < O,
or GCOEF(j) < 0 and LGMULT(n) > 0.

This routine rearranges the arcs so that the arcs
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belonging to case (iii) are followed by the arcs that
belong to either case (i) or case (ii). At this point
LOC2 is revised to be the location of the last arc that
belongs to case (iii). Let LASTRC be the location of the
last arc in this GUB constraint. Then, the arcs in LOC1
to LOC2 satisfy case (iii), and arcs in locations LOC2 + 1
to LASTRC belong to either case(i) or case (ii). The arcs
in locations LOC1l to LOC2 are then sorted according to
step 4 of ALG 3.1 and the array YFLOW is constructed. The
following loop shows how these components of YFLOW are
computed. At the same time the adjusted right hand side
value of the GUB constraint ADJVAL is computed. Initially

ADJVAL stores the number Ek in step 3 of ALG 3.1.

Repeat for all n € [ LOC1, LASTRC ]
If GCOEF(j) » 0 and LGMULT(n) 2 0, then

YFLOW(])

0.
If GCOEF(j) < 0, then :
ADJVAL = ADJVAL - GCOEF(j) * UPPER(j).
If LGMULT(n) < 0, then :
YFLOW(j) = UPPER(J)

LBND = LBND + LGMULT(n) * YFLOW(j).

What is left is the construction of those components

of YFLOW that follow case (iii). To do this, a routine
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LOCSORT is used that finds the ordered values

LGMULT (n)
GCOEF (3)

for all n € [LOC1l,LOC2] (1)

as was explained in step 4 of ALG 3.1. This routine is a
slight modification of the routine HPSORT [ Nijenhuis and
Wilf (1978, p. 140)]. The arguments that are passed to
this routine are : NUM, LOC1l, LOC2, LGMULT, GCOEF, and
GUBADD. At the end of this routine the arcs in locations
LOCl to LOC2 of the input file, and hence LGMULT, are
rearranged so that arc j1 in LOC1 is the one with the
smallest ratio (1), jn in LOCl1 + 1 is the second smallest

“

ratio (1), ..., and j in LOC2 is the one with the

n

k
largest ratio (1). Having the ordered ratios, step 5 of

ALG 3.1 is used to construct the remaining components of

YFLOW. The following loop does this:

Repeat for all j in location n € [LOC1l,LOC2]

If GCOEF(j) > 0, then :

ADJVAL |

YFLOW(J) |
GCOEF (3j)

min { UPPER(3]) .,

ADJVAL = ADJVAL - GCOEF(j) * YFLOW(j).

Else
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ADJVAL |

YFLOW(3j) = UPPER(j) - min {UPPER(j), |
-GCOEF ( 3)

ADJVAL = ADJVAL + GCOEF(j) (UPPER(j) -YFLOW(j))

LBND = LBND + LGMULT(n) * YFLOW(3j)

Hence, routine SCBVLP terminates with an optimal solution

to the kth SCBVLP problem.

Returning to routine LBALG, if k is equal to NGUBS,
then we are all done with the SCBVLPs; otherwise, the
(k + 1)st SCBVLP is solved by returning to routine SCBVLP.
After all of the SCBVLPs are done the routine recomputes
the components of the array LGMULT and constructs the
array CTEMP as the net change in unit costs of the

problem. The following loop does this

Repeat for all j€4
CTEMP(j) = - LBSTEP ( YFLOW(j) - GFLOW(j) )

LGMULT (n) = LGMULT(n) - CTEMP(Jj)

After computing the components of the arrays LGMULT and
CTEMP the optimality criteria is checked. The optimality
is reached either when YFLOW(j) is equal to GFLOW(j) for
all j € 4, or when (UBND - LBND) is less than or equal to

EPSILON |UBND|. In this case we return to the main
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program with FLGOPT equal to 1.

D. Subroutine BASSAV

This routine saves the optimal sclution of the pure
network problem. The arguments that are passed to this
routine are : BASIS, CARD, FLOW, GFLOW, LNOD, PRED, STATUS
THD and either LBOBAS or UBOBAS, where LBOBAS and UBOBAS
are logical units for scratch files. If this routine is
called after the routine LBALG, then the status of the
arrays are exactly as at the end of routine LBALG and
LBOBAS is the scratch file that stores the values of these
arrays to be recalled later on. If this routine is called
after the routine UBALG, then the status of the arrays are
exactly as at the end of routine UBALG and UBOBAS is the
scratch file that stores these values.

At this instance, the optimal solution is stored to

be used in subroutine LBALG on the next set of iterations.

On returning to the main program NETGUB, a lower
bound on the objective function value of the program
exists. If no feasible solution for the decomposition
algorithm is known, then routine UINIT is the next routine

that is called; otherwise, routine BASRED is called.
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E. Subroutine UINIT
This routine is set up to find an initial basic
feasible solution for problem (¥P§J) using the last
solution of the pure network problem in routine LBALG.
The ZFLOW array corresponds to a solution z for
problem (#P¢P). 1Initially, for each GUB constraint k the

arrays ZFLOW and UTEMP are set as follows:

Repeat for j € 4 that are in the kth GUB

If REDGUB(k) = 0, then :
ZFLOW(j) = GFLOW(j).
If GCOEBF(j) > 0, then UTEMP(j) = UPPER(J).
Else UTEMP(j) = 0.
SUM = SUM + ZFLOW(j) * GCOEF(j).

Else If GCOEF(j) > 0, then ZFLOW(j) = UPPER(]).

Else ZFLOW(j) = O.

UTEMP (j) = 0.

If for any GUB constraint k, SUM is equal to GVAL(k). then
components of ZFLOW that correspond to this GUB are all
feasible; otherwise, routine PROJOP is used to find a
feasible set of components. A description of routine

PROJOP follows.
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c¢. Subroutine PROJOP
This routine makes use of ALG 3.3 to find a feasible
solution to problem (#P{#). This routine deals with one
GUB constraint at a time. The breakpoints are stored in
array BRKPNT, and the sum L and R at step 2 of ALG 3.3 are
computed as these breakpoints are found, in the following

manner.

Set T = R = 0.
Repeat for each GUB k

Repeat for all j € 4 that are in the kth GUB

2 (ZFLOW(j) - UPPER(J))

BRKPNT (i)
GCOEF (3)
BRKPNT (i+1) = —2 CFLOW(J) .
GCOEF (Jj)

If GCOEF(j) > 0, then :
L = L + UPPER(j) * GCOEF(j).
If GCOEF(3j) < 0, then

R = R + UPPER(j) * GCOEF(j).

These breakpoints are ordered using a Heap sort. An
implementation of the HPSORT routine is given in Nijenhuis
and Wilf (1978, p. 140). The code used in NETGUB was also

obtained from Nijenhuis and Wilf (1978, p. 140). The
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array needed for the HPSORT routine is BRKPNT together
with the variable 2*NUMVRG(k). At the end of the HPSORT
routine the BRKPNT array is sorted into nondecreasing
order. It is this array of breakpoints that is used in
steps 4 through 6 of ALG 3.3 to compute Ak and store the
value in variable LAMDA. L1, L2, Rl and R2 are the
variables that store the values of X, L¥, r¥, RK in the
algorithm, respectively. Having determined LAMDA, the
corresponding components of ZFLOW are adjusted and at the

same time the array UTEMP is determined as the following:

Repeat for all j € 4 that are in this kth GUB
If GCOEF(j) > 0, then :

If LAMDA < 2(ZFLOW(j) ~ UPPER(Jj)) . then

GCOEF (3)

ZFLOW(J) UPPER(]) .

Else if LAMDA < 0, then :
ZFLOW(j) = ZFLOW(j) - GCOEF(j) * —Iﬁg—nﬁ—.
Else ZFLOW(j) = 0.

UTEMP(Jj) = ZFLOW(j) - UTEMP(J).

The array UTEMP(j) is used to store the difference between
the previous feasible solution and the current feasible

solution ZFLOW determined in the routine PROJOP. This
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array is used for a different purpose in the UBALG

routine.

F. Subroutine BASRED

This routine reads the optimal solution of the pure
network problem. The arguments that are passed to this
routine are : BASIS, CARD, FLOW, GFLOW, LNOD, PRED, STATUS
THD and either LBOBAS or UBOBAS, where LBOBAS and UBOBAS
are logical units for scratch files. If this routine is
called before the routine LBALG, then the arrays are
reconstructed for the optimal solution of the pure network
problem that was obtained in the last iteration of routine
LBALG from the scratch file LBOBAS. If this routine is
called before the routine UBALG, then the arrays are
reconstructed for the optimal solution of the pure network
problem that was obtained in the last iteration of routine
UBALG from the scratch file UBOBAS.

At this point, the information is read in from the

scratch file UBOBAS to be used in routine UBALG.

G. Subroutine UBALG

This routine recomputes the value of UBND, the upper
bound on the objective function value of problem (¥P()
using steps 2 and 3 of ALG 3.4. Figure 4.4 shows the

various subroutines that are called in this routine.
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decomposed problem

a. REOPT
finds an initial basic feasible solution
for the pure network problem that has
undergone bounds changes

b. PURNET
finds an optimal solution for the pure
network problem with new bounds

c¢. PROJOP

finds a feasible solution for the

Figure 4.4 : Flow Diagram of the UBALG Subroutine
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The first time this routine is called, the values of
the arrays BASIS, CARD, FLOW, GFLOW, LNOD, PRED, STATUS,
and THD are exactly as at the end of routine LBALG; but in
the subsequent calls the values of these arrays are
exactly as at the end of routine BASRED. The values in
the remaining arrays are exactly as at the end of routine
LBALG.

The network problem in step 2 of ALG 3.4 is converted
to a problem with zero lower bounds and the objective

function value is readjusted. That is, for arc j,

0 € GFLOW(j) £ UPPER(J) for GCOEF(j) = 0;
0 < GFLOW(j) < ZFLOW(j) for GCOEF(j) > 0;
0 < GFLOW(3j) € UPPER(j) - ZFLOW(3) for GCOEF(j) < O.

But since the value of ZFLOW(j) might change from one
iteration to the next, a reoptimization procedure for
upper bounds changes that was discussed in Section 2.1.1.2
is used to find an advanced starting feasible solution for
the network problem. At this point the vector UTEMP
contains the net change in the upper bounds that was
obtained in the last call of routine PROJOP. Here, the
values of array UTEMP is exactly as at the end of routine

PROJOP.

a. Subroutine REOPT

When there is a change in the bounds of the network
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problem in step 2 of ALG 3.4, this routine recomputes the
values of the basic variables, i.e. the array FLOW; and
hence GFLOW. The routine makes four arc—length passes to
determine the new values of FLOW and hence GFLOW. 1In the
first pass PROCEDURE X2D of Section 2.1.1.2 is used to
compute the vector of reduced requirements. On the second
pass the vector of reduced requirements is adjusted to
account for the upper bound changes of nonbasic arcs only
( if any exists). On the third pass this vector of
reduced requirements is used to construct the flows on the
basic arcs by using PROCEDURE D2X of Section 2.1.1.2. At
this point, it is possible that the basic flows are either
negative or larger than their upper bounds. Hence, the
fourth pass adjusts for the basic flows that exceed their
bounds as was discussed in case 2b of CHANGING AN UPPER
BOUND in Section 2.1.1.2., It is at this pass that the
UTEMP array is reconstructed to be the new upper bound on

all the variables, that is, for all j € 4

UTEMP (j) = UPPER(J) if GCOEF(3j) = 0:
UTEMP (j) = ZFLOW(Jj) if GCOEF(3j) > O0:
UTEMP (j) = UPPER(J) - ZFLOW(J) if GCOEF(j) < 0.

These values of the arrays FLOW, GFLOW and UTEMP are

passed along to routine UBALG.

Back in routine UBALG, the routine PURNET with the
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vector of upper bounds UTEMP is called to solve for the
pure network problem with GFLOW as an advanced starting
feasible solution.

Having an optimal solution to the pure network
problem, the routine stops with a near optimal solution if
(UBND - LBND) is less than or equal to EPSILON ]UBND];
otherwise, the arrays of the subgradient UBSUBG and the
feasible solution ZFLOW are constructed.

Three arc—length passes are made to determine UBSUBG
and the new values of ZFLOW. In the first pass step 2 of
ALG 3.4 is used to compute the subgradient. This is done

as follows:

Repeat for all j € 4 with j = (£(j),t(3))

If STATUS(J) 2 and GCOEF(j) > 0 or

STATUS (])

1 and GCOEF(3j) < 0, then :

UBSUBG (3j) COST(j) + PI(£(j)) - PI(t(j)).

NORM = NORM + “ UBSUBG (J) ”2.

where NORM is the variable that stores the norm of the
subgradient. This would provide a tool for using any of
the schemes (i) — (iv) that was discussed in Section

2.1.3. Presently UBSTEP is set to be
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UBND - LBND

2 * NORM

On the second pass the new vector of ZFLOW that
corresponds to point y - tg in step 3 of ALG 3.4 is

computed.

Repeat for GUB k
Repeat for all n € [LOC1l,LASTRC] with j=GUBADD (n)
If REDGUB(k) = 0, then
ZFLOW(3j) = ZFLOW(j) - UBSTEP * UBSUBG(J)
If REDGUB(k) = 1, then :
| UTEMP(j) = 0
If GCOEF(j) > 0, then ZFLOW(j) = UPPER(J)

Else ZFLOW(j) = O.

On the third pass, the array ZFLOW is computed so
that it is feasible for problem (#P§J). At the end of
routine PROJOP, ZFLOW would be the next feasible solution

- to problem (¥PGD).

H. Subroutine BASSAV
At this point, this routine stores the information in
scratch file UBOBAS for use in the next set of iterations

of routine UBALG.
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I. Subroutine BASRED
At this point, this routine reads in the information
from the scratch file LBOBAS for use in the next set of

iterations of routine LBALG.

J. Subroutine OUTPUT

This routine produces the objective function values
and the solution for both the lower and upper bound
procedures. It also reports the total number of lower and
upper bound iterations that were performed before reaching
optimality or near optimality. This routine may be
modified to produce an output report to specification for

a given application.
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CHAPTER 5

COMPUTATIONAL EXPERIMENTS

In this chapter a summary of some experimental
results with the software described in Chapter 4 will be
presented. The experiments were intended to give some
general notion on the performance of the software and also
to point out factors that have a substantial effect on

this performance.

5.1 Test Problems

The algorithm has been tested on a set of 13
problems. All the problems were generated using the
NETGEN (Klingman, Napier and sStutz (1974)) program to
randomly generate the pure network portion of the problem.
These pure network problems were solved using the NETFLO
program (Kennington and Helgason (1980, p. 244)), a
large—scale pure network problem solver. The idea was to
use the pure network optimal solution in generating the
GUB constraints portion so that the (network) solution

remains feasikle to the GUB constraints.



173

For each problem, the GUB constraints portion was
generated as follows. A permutation of the arcs was
determined. For each GUB constraint k, 1 < k £ p, the
number of variables in that GUB constraint, nk, was
randomly generated. These numbers have a lower bound
limit of 2 to ensure that each GUB constraint would
consist of at least two variables. Then the first n1
variables in the permutation were selected as the set of
variables in the first GUB constraint, the next n2 were
selected as the set of variables in the second GUB
constraint, ..., the next np were selected as the set of
variables in the pth GUB constraint and the remaining
variables were chosen to be the set of variables not in
any GUB constraint. Having a set of variables for each
GUB constraint, the coefficients of these variables were
then generated to be within prespecified bounds (the lower
bounds ranged from -5 to -2 and the upper bounds ranged
from 2 to 5). These coefficients were further checked to
ensure for their nonzero values. Any coefficient having a
value of zero was then regenerated until a nonzero one was
found. These coefficients together with the pure network
solution provided a way for generating a right hand side
value for each GUB constraint. In generating these
values, the feasibility criteria (step 1 of ALG 2.3) of

the GUB constraint was enforced. At this point the cost
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coefficients of the arcs with nonzero values in the pure
network solution were increased by the amount cmax,
defined to be the maximum of the cost coefficients in the
original pure network problem, to ensure that the pure
network solution was not optimal to the network with GUB
constraints problem. Note that a problem generated in
this manner is known to be feasible, with the pure network

solution not optimal to the problem. Table 5.1 shows the

main characteristics of these sample problems.

5.2 Performance Criteria

Experimental testing was carried out on a SUN 3/50
workstation which uses a MOTOROLA 68020 CPU with 68881
numeric co-—processor, running at 16 MHZ. The
computational results reported are the number of
iterations performed for the lower and upper bound
procedures before reaching a prespecified tolerance «¢.

The SUN FORTRAN function DTIME was considered for timing
purposes; however due to the fact that solution time
depends upon the number of users on the computer and also
the available space on hard disk no times are reported.
For example, problem 1 reached the 1% tolerance in 3.2
seconds and the 0.5% tolerance in 5.6 seconds on a day the
computer was not overloaded, whereas on a day the computer

was overloaded it took 32.4 seconds to reach the 0.5%



175

Table 5.1 : Sample Problems

Problem Nodes Arcs Number of Percentage of
Number GUBs Arcs in GUBs
1 10 30 12 93.33%

2 50 250 75 99.20%

3 50 500 75 79.60%

4 50 500 75 99.60%

5 50 500 100 97.60%

6 100 500 100 99.80%

7 200 500. 100 74.60%

8 50 1000 75 97.20%

9 50 1000 100 “ 97.80%

10 50 1000 100 78.80%
11 200 1000 100 80.30%
12 50 2000 75 75.00%
13 200 2000 100 90.15%
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tolerance. This indicated that the timings were not
reliable. For the 1% tolerance the algorithm made 42
lower bound iterations and 20 upper bound iterations. For
the 0.5% tolerance the number of lower and upper bound

iterations were 100 and 45 respectively.

5.3 Step Sizes

As was mentioned in Section 2.1.3 step sizes play an
important role in the convergence of the lower and upper
bound algorithms. For this reason different step sizes
were tried to find one suitable for these types of
problems. As was also mentioned in Section 4.2, the step
size used in the upper bound procedure is
(UBND - LBND)/Z“qunz, where LBND is the best lower bound
value and 1, is the upper bound subgradient. This scheme
seems to work fairly well. For example, in problem 2 UBND
was within 0.5% of optimality in 10 upper bound
iterations; in problem 4 it was within 0.7% of optimality
in 275 upper bound iterations; and in problems 5 and 6 it
was within 0.5% of optimality in 34 and 273 upper bound
iterations, respectively. Hence the main interest was
focused on the lower bound step sizes. A description of
some of the lower bound step sizes that were tried

together with their effect on convergence follows.
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(a) Fixed Step Size. This would fall in the
category of step sizes of scheme (i) in Section 2.1.3.
The step sizes used were di = adi-1' where d0 is
prespecified and ¢ is a real number less than 1. This
proved to be a very poor choice since for small step sizes
the change in the cost coefficients and hence the change
in the objective function value of the pure network
subproblems becomes very small, thus causing the LBND to
recycle (that is, the same LBND value was repeated).
Secondly this normally occurs a long way from optimality
since the adjustment of the step sizes is not based on the
behavior of the lower bound function. Even if the initial
solution is close to the optimal solution, the convergence
depends on the choice of d0 which in turn requires some
prior knowledge of the optimal objective function value,
which one obviously does not have.

(b) Step Size Based on the Lower Bound Subgradient.

The step sizes are of the form d = J_/”v;”z, where qi is
1 1
the lower bound subgradient at the ith iteration and 1 1is

1

a constant. The difficulty arises in the choice of Ai.
Ideally, if the solution to the current lower bound
problem is close to feasibility, a small step size should
be taken; whereas for solutions far away from feasibility

a larger step size should be taken. But how large is

large? It is clear that A equal to some prespecified
1
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value AO, is a poor choice since 4@ may then be large for
1

small values of 0i, that is, as the solution gets closer
to feasibility a larger step size is taken. A good choice
of 4 would seem to be one that reflects some measure of

1

the violations of the GUBs. Hence | = MAXVLN was

1 1

chosen, where MAXVLNi is the maximum violation in a GUB
constraint after the ith iteration.

An attempt was made to restrict the step sizes so
that an improved lower bound value on the problem is
guaranteed at each lower bound iteration, i.e. so the
sequence of lower bounds was monotonically increasing.
This was tried by limiting the step sizes to be the
maximum of the current step size and the largest of the
previous step sizes taken. This proved to have the same
effect as the fixed step size approach. This is due to
the fact that by limiting the step sizes, we force the
lower bound function value to go in one direction only
which might not be the "best" direction, that is, the
direction might be a direction of descent rather than
ascent.

Table 5.2 summarizes the effect of decreasing ¢ on
the problems when using 4. = (MAXVLNi)/”r]i“2 as the lower
bound step sizes. For each problem and for a given ¢, the

first number in the table is the total number of lower

bound iterations and the second entry is the number of
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Table 5.2 Effect of Decreasing ¢
(DNC - Did not converge after 2000 lower
bound or 1000 upper bound iterations)
€

Problem

Number 5% 3% 1% 0.5%
1 (20) (8) (30) (10) (42) (20) (100) (45)
2 (20) (1) (23) (10) (151) (70) (600) (298)
3 (20) (1) (20) (1) (188) (90) (624) (310)
4 (20) (1) (60) (26) |(2000) (1000) DNC
5 (42) (20) (184) (90) | (1219) (600) DNC*
6 (80) (32) |(171)(80) |(1183) (590) DNC
7 (20) (1) (33) (10) (693) (340) | (1994) (990)
8 (31) (10) (90) (40) |(1197) (590) DNC
9 (122) (60) | (534) (260) DNC** DNC
10 (46) (20) (80) (35) |(1220) (602) DNC
11 (60) (22) (300) (150) DNCX* * * DNC
12 (20) (1) (20) (2) (116) (50) (233) (110)
13 (20) (1) (40) (12) [(1020) (510) DNC

* The .55% tolerance was achieved after 2000 lower

bound and 1000 upper bound iterations.

**  The 2% tolerance was achieved after 2000 lower
bound and 1000 upper bound iterations.

x X X

bound and 1000 upper bound iterations.

The 1.4% tolerance was achieved after 2000 lower
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upper bound iterations before reaching the tolerance «¢.
Recall that the program always performs 20 lower bound
iterations before going to the upper bound algorithm
(unless, of course, feasibility is reached in the lower
bound algorithm). It is clear from these problems that
the percentage of arcs in the GUB constraints has a major
effect on the number of iterations performed and hence on
the solution effort. For example, problems 3 and 4 are of
the same size (50 nodes and 500 arcs). 79.60% and 99.60%
of the arcs in problems 3 and 4, respectively, are in the
GUB constraints. 188 lower bound and 90 upper bound
iterations were needed before reaching the 1% tolerance in
problem 3 whereas 2000 lower bound and 1000 upper bound
iterations were needed in problem 4 to reach the same
tolerance level. It is also clear that the convergence of
the lower bound algorithm is quite slow. Consequently,
further investigation is needed on the lower bound step
sizes in order to improve on the rate of convergence of

the lower bound algorithm.

5.4 Initial Lower Bound Solution

This section investigates the effect of the initial
lower bound value for the problem on the convergence rate
of the algorithm. Note that since w=0 initially (step 1

of ALG 3.2), the initial lower bound value on the problem
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is equal to the optimal objective function value of the
original pure network portion of the problemn.

Table 5.3 demonstrates the percentage difference
between the best UBND value at a given tolerance ¢ and the
initial lower bound value. For instance, at the 3%
tolerance, the difference between the initial lower bound
value and the best UBND value is 1.80% for problem 3,
3.08% for problem 13, and 6.35% for problem 6. By
comparing the number of lower bound iterations from Table
5.2 with the percentages in Table 5.3 (both at the 3%
tolerance), it appears that when the initial lower bound
is within 4% of the best upper bound, the algorithm almost
always requires fewer than 100 lower bound iterations.
This suggests that an improved estimate of w in
calculating Ll(w) in initialization could greatly enhance
the performance of the lower bound algorithm. This is
investigated further with the following example.

Consider problem 6 at the 3% tolerance level. From
Table 5.2 we can see that this tolerance level was
achieved after 171 lower bound and 80 upper bound
iterations. Table 5.4 presents a summary of the best
lower bound and upper bound values on the problem at some
selected iteration counts. The initial lower bound value
is 5.62% different from the optimal objective value of the

problem. It is clear from Table 5.4 that the improvement
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Table 5.3 Distance Between the Initial Lower Bound Value
and the Best Upper Bound.
€
Problem
Number 5% 3% 1% 0.5%
1 9.31% 9.00% 8.38% 8.10%
2 7.19% 7.14% 7.07% 6.99%
3 1.80% - 1.80% 1.47% 1.22%
4 4.19% 3.42% 2.91%
5 6.00% 5.69% 5.68% 5.68%
6 6.73% 6.35%
7 3.44% 3.13% 2.83% 2.83%
8 8.07% 7.63% 7.01%
9 8.96% 8.37% 8.24% **
10 13.49% 13.39% 12.67%
11 5.19% 3.92%
12 3.59% 3.53% 3.01% 2.95%
13 4.03% 3.08% 1.93%

* At 0.55% tolerance level.

¥* At 2% tolerance level.
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Performance of Problem 6 Before Reaching
the 3% Tolerance Level

Total Number| Total Number The Best The Best
of Lower of Upper LBND UBND
Bound Bound Value Value
Iterations Iterations
20 1 148777.13 166168.27
20 10 148777.13 160756.39
30 10 149137.08 160756.39
40 20 149534.85 159397.58
50 20 149918.59 159397.58
60 30 150284.27 158926.75
70 30 150597.03 158926.75
80 40 150941.40 158669.89
90 40 151318.02 158669.89
100 50 151645.62 158495.93
110 50 151919.13 158495.93
120 60 152210.06 158383.68
130 60 152496.88 158383.638
140 70 152737.78 158283.46
150 70 153020.51 158283.46
160 80 153198.63 158237.85
170 80 153438.83 158237.85
171 80 153491.91 158237.85
Optimal Value = 157005.08
Initial Lower Bound Value = 148184.00
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of the lower bound values are quite small. For example,
at the end of the 20th iteration, the difference between
the best lower bound value and the optimal value is 5.24%,
while the lower bound value has only had a 0.40%
improvement (in 20 iterations). At the 60th iteration,
this difference is 4.28%, with an improvement of 1.40%
over the initial lower bound value. At the 170th
iteration, the difference is 4.28%, with an improvement of
3.4% (over the initial lower bound value). On the
contrary, the best UBND values are doing quite well. At
the first iteration, the UBND value is within 5.51% of
optimality; at the end of the 10th upper bound iteration,
the best UBND has improved by 3.26%, giving a value that
is within 2.33% of optimality. At the end of the 20th
iteration, the best UBND value is within 1.5% of
optimality; at the end of the 50th iteration, the best
UBND value is within 0.94% of optimality, an improvement
of over 4.62% from the first UBND value. At 3% tolerance,
the best lower bound value is within 2.24% of optimality,
whereas the best upper bound value is within 0.78%. This
example indicates that if a better initial lower bound
value were available, near optimality could have been
reached for a smaller number of lower bound iterations and

consequently the solution effort could have been reduced.
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5.5 Lower and Upper Bound Iteration Strategies

Recall that the algorithm is developed so that the
lower bound procedure is performed initially before the
upper bound procedure; in addition, the code is written so
that a set of 20 lower bound iterations are invoked before
a set of 10 upper bound iterations. These values were
arbitrarily selected; however it appears from these
experiments that one may need to find a better initial
strategy for the problem in order to improve on the
performance of the algorithm. This is further illustrated
by means of an example.

Consider problem 3 at the 3% tolerance level. This
tolerance level is achieved after 20 lower bound and 1
upper bound iterations. Table 5.3 shows that the
difference between the best UBND value and the initial
lower bound value is 1.80%. This indicates that if one
knew what the UBND wvalue would have been prior to
performing the lower bound procedure, only one lower bound
iteration would have been needed to reach the 3% tolerance
(and therefore also the 5% tolerance level). It might be
advantageous to perform one of each of the lower and upper
bound iterations and compute the difference between the
two bounds before deciding on the number of lower and

upper bound iterations.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

A relaxation and decomposition algorithm for the
network problem with generalized upper bound side
constraints was presented. The solution technique was
developed to take advantage of the structure of the side
constraints and simultaneously maintain as many of.the
characteristics of the pure network problems as possible.
The sequence of relaxation problems, which yields lower
bound values on the problem, has a fairly slow convergence
rate to optimality. On the other hand, the sequence of
decomposition problems which yields upper bound values on
the problem seems to perform quite well. The solution
technique seems best suited for a real-world situation in

which one must quickly obtain near—optimal solutions.

6.1 Results of the Research
The purpose of this research was to develop and
computationally test a new algorithm for the class of
network with GUB side constraints problem. This class of

problem is included in the class of network with arbitrary
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side constraints problem; however, no algorithm that
exploits the special structure of the GUB side constraints
had previously existed. The proposed algorithm solved the
network with GUB side constraints problem using two
sequences of problems. One sequence corresponded to
computing improved lower bounds while the other
corresponded to computing tighter upper bounds on the
optimal value of the problem.

The lower bound procedure was developed to bound the
optimal value from below by using a Lagrangean relaxation
based on relaxing copies of some subset of the original
variables. The Lagrangean relaxation, of course, did not
enforce feasibility of the GUB constraints; hence a
penalty was assessed when the solution to the pure network
subproblem violated the GUB constraints. It was further
established that a lower bound value could be found by
first solving a pure network subproblem and then solving a
set of single constraint bounded variable LPs. Because
only the cost coefficients changed from one pure network
subproblem to another (subproblem), the optimal solution
for one subproblem was at least feasible, if not optimal,
for the next pure network subproblem.

The upper bound procedure was developed to bound the
optimal value from above by using a decomposition of the

problem based on changes in the capacity vector. Solving
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for the decomposed problem corresponded to solving for
pure network subproblems that had undergone bounds
changes. The reoptimization procedures were used in
finding a (artificial) feasible solution to a pure network
subproblem by making use of the optimal solution to the
previous pure network subproblem.

The Lagrangean relaxation and decomposition
techniques have been widely used in mathematical
programming, but no solution technique based on these was
available for the network models with GUB side
constraints; thus their performance for this class of
problems had been unknown. The NETGUB program was
developed for solving the network with GUB constraints
problems by utilizing the relaxation and decomposition
techniques.

The computational experiments indicated that further
improvements on the mechanics of the lower bound procedure
are needed to produce a more efficient algorithm. Further
work is also required on the coding of the program itself

to increase the efficiency of the algorithm.

6.2 Suggestions for Further Research

This section summarizes the suggestions that were
raised in Chapter 5 for further improving the performance

of the algorithm.
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(a) It would be advantageous to find another way of
initializing the problem in order to obtain a better
initial lower bound value. The main difficulty here is in
choosing an initial value for w. One would like to take
advantage of the initial optimal solution to the pure |
network portion of the problem to choose a w so that the
vioclations in the GUB constraints are reduced.

(b) It is clear from the experiments of Chapter 5
that further investigation on the lower bound step sizes
is needed. The difficulty here is that these step sizes
have to satisfy the conditions of Section 2.1.3; they also
have to reflect the behavior of the lower bound function;
and, in addition, they have to work for all the problems
equally well. It is possible that one overall scheme may
not do well for a given problem. One may need to have two
schemes; one scheme when the lower bound values are far
away from optimality (this may be determined by some
measure of the tolerance) so that larger steps are taken,
and another one when the lower bound value is close to
optimality.

(c) It appears from the experiments that a better
iteration strategy for the problem is needed. 1Is it
advantageous, in the long run, to initially do one
iteration of each of the lower and upper bound algorithms?

The difficulty is in finding a strategy that works well
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for every given problem. Suppose that for a given problem
one iteration of each of the algorithms is performed and
the difference between the two bounds are calculated. If
this difference is smaller than the prespecified tolerance
level, the algorithm should clearly stop with a near
optimal solution. If the difference is close but a little
larger than the prespecified tolerénce level, one strategy
might be to perform one additional iteration of each of
the algorithms. If the difference is large, it is not
clear what the strategy should be since ohe has no idea
which of the values needs to be improved the most. One
possibility is to perform a set of lower bound iterations
until small changes in the lower bound values are detected

before going to the upper bound algorithm.
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APPENDIX A

Example Data File

NETGUB has the capability of solving successive
problems in one run. The following is a description of
the data required to specify each problem. In what
follows, I8 indicates an integer field of 8 characters
right justified, 2X indicates two blank spaces, A8
indicates a character field of 8 characters and F10.2

indicates a real field of 10 characters.

Card Compo-
Group sition
1 One NODSEC {node section title)
Card (A8)
2 Card Node Number, Node Requirement (non—zeros
Set (A8) 2X (110) only )
3 One GUBSEC (GUB section title)
Card (A8)
4 Card Number of GUB constraints
Set (18)
Number of var. in a GUB RHS value
(18) 2X (F10.2)
(ordered by GUB constraint number)
5 One ARCSEC (arc section title)
Card (A8)
6 Card Name, from, to, unit cost,
Set (A8) 2X (A8) 2X (A8) 2X (Fl0.2)
upper bound, lower bound,
(F10.2) (F10.2)

coefficient in a GUB constraint
{F10.2)
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The arcs in set 6 are arranged with all arcs that are in
the first GUB constraint, followed by all arcs in the
second GUB constraint, ..., followed by all arcs in the

pth GUB constraint.

Example :

Minimize 1Oxl + 190x2 + 142 x3 + 6x + 53x5 + 109x6 +

4

48x + 60x + 123x + 123x + 54x + 67x
7 3 9 10 11 12
Subject to
-X =—2
10
X -X -X ' = -1
1
X -X +X = 0
1 11 12
X +x +x -X -x = 0
3 4 6 7 9
X +X -x -X = 0
4 ] 8 12
-X -X +x +x = 0
2 3 7 10
+X +x = 2
9 11
X +x = 1
2 8
x -4x -3x < 2.60
-X +2x —-4x +2x +4x < 15.28
6 7 8 9 10
-X =X < 0.05
1112
0 < X <7, 0¢XK X, <5, 0K x <5,
0<x <6, 0<x €17, 0<x L7,
4 5 ]
0<¢x €7,0<x%x €17, 0<x <5,
7 3 9
0<x <5 ,0<¢<x <17, o0<x <17,



NODSEC

w0 -1 N

GUBSEC

N O W

ARCSEC

W ~Joy Ul i»W

10

File for the Example

.60
.28
.05

ahuwkrErsHM>-BENDNDOO

OWWNaANJOoONH UL &N

142.
.00
53.
.00
.00
60.
.00
123.

54.
.00
.00
.00

6

109
48

123
67

10
190

00

00

00
00

.00

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

000000000000

189

.00
.00
.00
.00
.00
.00

.00
.00
.00
.00

o
o

-1

.00
.00
-3.
-1.
.00
-4.
.00
.00
.00
-1.
.00
.00

00

00
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APPENDIX B

NETGUB Source Listing

PROGRAM NETGUB

INTEGER DIMARC,DIMNOD,DIMGUB,DIMGARC
DOUBLE PRECISION LBSTEPZ
PARAMETER(DIMARC=2500)
PARAMETER(DIMNOD=500)
PARAMETER(DIMGUB=500)
PARAMETER(DIMGARC=2500)
PARAMETER(LBSTEPZ=.5)
C
C ARRAYS
C
CHARACTER*8 ARCNAM(DIMARC),NODNAM(DIMNOD),DATAFILE,OUTFILE
INTEGER BASIS(DIMNOD),CARD(DIMNOD),FROM(DIMARC),
1 FROMO(DIMARC),LNOD(DIMNOD),ORDER(DIMARC),
1 NUMVRG(DIMGUB),NVAL(DIMNOD),
1 PRED(DIMNOD),REDGUB(DIMGUB),GUBADD(DIMARC),
1 STATUS(DIMARC), THD(DIMNOD),
1 TO(DIMARC),LSTEP,USTEP,LITER,UITER, ,FIRSTME
DOUBLE PRECISION COST(DIMARC),FLOW (DIMNOD),GFLOW (DIMARC),
1 CTEMP(DIMARC),LGMULT(DIMARC),PI(DIMNOD),
1 UPPER(DIMARC), YFLOW(DIMARC),ZFLOW(DIMARC),
1 UTEMP(DIMARC),GCOEF(DIMARC),
1 GVAL(DIMGUB),LOWER(DIMARC),GARB(2*DIMARC)
C
C LOCAL VARIABLES
C
INTEGER DUMMY ,ENDATA ,PROB,LBOBAS,UBOBAS
C
EQUIVALENCE (IND,CARD),(LEFT,PRED),(RIGHT,THD),
* (NUMOUT,LNOD),(FROMO,ORDER)

INTEGER FLGEND,FLGERR FLGINFJFLGITR FLGOPT,NUMREC

COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR FLGOPT,NUMREC
INTEGER ITRBTB,JTRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /TER/ ITRBTB,ITRDEG,ITRMAX ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD NGUBS,NODES,

* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS MAXARC MAXGUB,MAXNOD,

* NGUBS ,NODES ,ROOT EPSILON,BIG1
DOUBLE PRECISION LBSTEP,ILBSTEP,MAXSTEP
COMMON /STEP/ LBSTEP,JLBSTEP, MAXSTEP
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DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE
COMMON /BOUNDS/ LBND,LBNDPRE,UBND,UBNDPRE
INTEGER FSITER

COMMON /FEAS/ FSITER

DOUBLE PRECISION ALPHA

COMMON /ALP/ ALPHA

INTEGER NGVLT

COMMON /NGV/NGVLT

INTEGER MLITER,MUITER,TLITER,TUITER

DATA ENDATA /ENDATA °/

MAXARC=DIMARC
MAXNOD=DIMNOD
MAXGUB=DIMGUB
BIG1=999999999999.0
BIG=9999999999
PROB=0

FIRSTME-=1
MLITER=2000
MUITER=1000

ALPHA=2.0D0
SET THE LOWER BOUND STEP SIZE

ILBSTEP=LBSTEPZ
LBSTEP=LBSTEPZ

INITIALIZE TOTAL NUMBER OF ITERATION FOR EACH ALGORITHM

LITER=20
UITER=10
TLITER=0
TUITER=0
FSITER=0

SET THE TOLERANCE
OPEN(2,file="fort.2’)

REWIND 2
READ(2,1050) EPSILON

1050 FORMAT(F10.5)

C

READ(*,*) DATAFILE
READ(*,*) OUTFILE
OPEN(S,file="fort.5")
REWIND 35
OPEN(8,{ile=DATAFILE)

201



REWIND §
OPEN(6,file=OUTFILE)
C  OPEN(6.file="fort.6”)
REWIND 6
READ (5,%) ITRMAX,ITROBJ,ITROUT,SAVBAS
C
C STORE THE FINAL NETWORK BASIS IN THESE FILES
C
LBOBAS=10
UBOBAS=14

OPEN(LBOBAS form="UNFORMATTED’ status="SCRATCH")
OPEN(UBOBAS,form="UNFORMATTED"’ status=’SCRATCH")
OPEN(11,form="UNFORMATTED’ status="SCRATCH’)
OPEN(13,form="UNFORMATTED" status=’"SCRATCH’)

IF (ITRMAX .EQ. 0) THEN
ITRMAX=100000
ENDIF
IF (ITROBJ .EQ. 0) THEN
ITROBJ=BIG
ENDIF
IF (ITROUT .EQ. 0) THEN
ITROUT=BIG
ENDIF
C
C READ IN PROBLEM DATA
C
C
10 CONTINUE
PROB=PROB+1
WRITE (6,1000) PROB
C
C
CALL INPUT(ARCNAM,COST,CTEMP,FLOW FROM,GCOEF,GUBADD,GVAL,
* IND,LEFT,LOWER,NODNAM,NUMOUT NUMVRG NVAL,
* ORDER,REDGUB,RIGHT,STATUS,TO,UPPER)

CHECK FOR BAD PROBLEM DATA FILE

oNoRoNe!

IF (FLGERR .EQ. -1) THEN
WRITE (6,2000)
GOTO 30

ENDIF

DONE WITH ALL PROBLEMS?

IF (FLGEND .EQ. 1) GOTO 30

O OO0

C ANY ERRORS?

202
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C
IF (FLGERR .NE. 0) THEN
WRITE(6,3000) PROB

IF THERE WERE FATAL ERRORS CHECK TO SEE IF ENTIRE PROBLEM WAS
READ IN. IF IT WASN'T, MOVE TO START OF NEXT PROBLEM.

oNoNeoNe!

IF (FLGERR .EQ. 1) THEN
20 READ (8,4000) DUMMY
IF (DUMMY .NE. ENDATA) GOTO 20
ENDIF
GOTO 10
ENDIF

INITIALIZE THE PROBLEM

OO0

CALL INIT(ARCNAM,BASIS,CARD,COST,CTEMP,FLOW FROM,FROMO,
* GARB,GFLOW,GUBADD,GVAL,GCOEF,LGMULT,LNOD,
* LOWER,NUMVRG,NVAL,PL,PRED ,REDGUB,STATUS,THD,TO,
* UPPER,YFLOW)
C
IF (FLGITR .EQ. 1) THEN
WRITE(6,5000)
ENDIF

IF (FLGOPT .EQ. 1) THEN
WRITE (6,6000)
WRITE(6,*) 'TCOST = *,TCOST
GO TO 70
ENDIF
C
IF (FLGINF .EQ. 1) GO TO 70
C
60 CONTINUE
C
C INITIALIZE NUMBER OF ITERATION FOR EACH ALGORITHM
C
LSTEP=0
USTEP=0
C
40 CONTINUE
C
C SOLVE THE LOWER BOUND ALGORITHM
C
LSTEP=LSTEP+1
TLITER=TLITER+1
C
CALL LBALG(ARCNAM,BASIS,CARD,COST,CTEMP,FLOW ,FROM,FROMO,
GCOEF,GFLOW,GUBADD,GVAL,LGMULT,LNOD,
* LOWER,NUMVRG,PLPRED REDGUB,STATUS,THD,TO,
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* UPPER,YFLOW)
IF (FLGOPT .EQ. 1 .OR. FLGINF .EQ. 1) THEN
GO TO 70
ENDIF
C
IF(TLITER .GT. MLITER) GO TO 70
IF ( LSTEP .LT. LITER) GO TO 40
CALL BASSAV(BASIS,CARD,FLOW FROMO,GFLOW ,LNOD,PRED,STATUS,THD,
* LBOBAS)
C
C INITIALIZE THE UPPER BOUND PROCEDURE
C
IF (FIRSTME .EQ. 1) THEN
CALL UINIT(GARB,GFLOW,GUBADD,GVAL,GCOEF,NUMVRG,REDGUB,
* UPPER,UTEMP,ZFLOW)
FIRSTME=0
ELSE
CALL BASRED(BASIS,CARD,FLOW,FROMO,GFLOW,LNOD PRED,STATUS,
* THD,UBOBAS)
ENDIF
C
50 CONTINUE
C
C SOLVE THE UPPER BOUND ALGORITHM
C
USTEP=USTEP+1
TUITER=TUITER+1
Cc
CALL UBALG(ARCNAM,BASIS,CARD,COST FLOW,FROM,FROMO,GCOEF,
GFLOW,GUBADD,GVAL,LNOD,LOWER NUMVRG,P],
* PRED,REDGUB,STATUS, THD,TO,UPPER,UTEMP,
* ZFLOW,GARB)
IF (FLGOPT .EQ. 1) THEN
GO TO 70
ENDIF
IF (FLGINF .EQ. 1) THEN
FLGINF=0
GO TO 100
ENDIF

IF (TUITER .GT. MUITER) GO TO 70
IF (USTEP .LT. UITER) GO TO 50

CALL BASSAV(BASIS,CARD FLOW FROMO,GFLOW,LNOD,PRED,STATUS,THD,
* - UBOBAS)
C
100 CALL BASRED(BASIS,CARD,FLOW FROMO,GFLOW,LNOD,PRED,STATUS,THD,
* LBOBAS)
GO TO 60
C

C OPTIMALITY REACHED



0 CONTINUE

PRINT RESULTS

QOO0 L0
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CALL OUTPUT(ARCNAM,BASIS,CARD,COST,FLOW ,FROMO,LNOD,LOWER,

* PRED,STATUS,THD,TO,UPPER,YFLOW,ZFLOW,
* GFLOW ,UTEMP,GCOEF)
PRINT ITERATION COUNTS

WRITE(6,7000) ITRTOT,ITRREG,ITRBTB,ITRDEG
WRITE(6,7500) TLITER,FSITER,TUITER

PRINT TIMING RESULTS

ALL DONE WITH THIS PROBLEM
GOTO 10

ALL DONE WITH PROBLEM SET

OO0 o000 o000

CLOSE(11)
CLOSE(13)
C
30 CONTINUE
C
C FORMATS
o
1000 FORMAT(//1X, ***++* PROBLEM NUMBER ’,13," BEGINS *##%*)
2000 FORMAT(//1X,’BAD SECTION HEADER ENCOUNTERED’)
3000 FORMAT(//1X,"EXECUTION NOT ATTEMPTED ON PROBLEM °,I3)
4000 FORMAT(AS)
5000 FORMAT (//1X,"****** ITERATION LIMIT EXCEEDED *******/1X,
* "BASIS AND DATA STRUCTURES SAVED’)
6000 FORMAT(//1X, ****** OPTIMAL SOLUTION FOUND ****%+")
7000 FORMAT(//1X," TOTAL NUMBER OF PIVOTS =" I6/1X,
* "NUMBER OF REGULAR PIVOTS =" 16/1X,
* "NUMBER OF BOUND-TO-BOUND PIVOTS ="J6/1X,
* "NUMBER OF DEGENERATE PIVOTS  =',6)
7500 FORMAT(//1X," TOTAL NUMBER OF LOWER BOUND ITERATIONS
* *TOTAL NO. OF UB ITERS TO REACH FEASIBILITY =’ J6/1X,
* "TOTAL NUMBER OF UPPER BOUND ITERATIONS  =’,16)
8000 FORMAT(/1X,’TIME FOR INPUT  =",F9.2)
9000 FORMAT(1X, TIME FOR SOLUTION =’,F9.2)
C
STOP

=" 16/1X,
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END

shook st A s e 3k e ke 3k 3 e si e e sk e ok e 3 s sk e st o b s e S s s e ok sk e s e ke s e e o e ok e e ek o e e ke s e e sfesfeofe s

SUBROUTINE BASSAV (BASIS,CARD,FLOW,FROMO,GFLOW,LLNOD PRED,
1 STATUS,THD,UNIT)

C**** Sk e ¢ 3 3 ¢ 3 3k 3 ke 3¢ 3k she s 28 e 3k ok e 3 3 3k o e e e 3 s afe 3 33k S 3 e S Sk o b e S s e ok o e o o e e ok ok e e sk ok ok

C

C SUBROUTINE ARGUMENTS

C

C
C
C
C

INTEGER BASIS(*),CARD(*),LNOD(*),PRED(*),STATUS (*), THD(*),UNIT,
* FROMO(*)
DOUBLE PRECISION FLOW(*),GFLOW(*)
C
C LOCAL VARIABLES
C
INTEGER 1
C
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC MAXGUB MAXNOD N NGUBS,NODES,
* ROOT
COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD,
* NGUBS NODES ,ROOT,EPSILON,BIG1

REWIND UNIT

SAVE DATA STRUCTURES

QOO0 O

DO 10 I=1,NODES
WRITE(UNIT) PRED(I), THD(1), CARD(I),LNOD(I),BASIS(I) FLOW(D),
* FROMO(I)
10 CONTINUE
WRITE(UNIT) ROOT
C
C SAVE ARC STATUS
C
DO 20 I=1,ARCS
WRITE(UNIT) GFLOW(D),STATUS(I)
20 CONTINUE
RETURN
END

QOO0

seste kol akseake e o ok sk ok ke e e sk 7k ok sfe sk Sk ok ok Sk ke 6 o oK ook S s 3 S 3ok s sk e ok sk ok s s s ok o Sk ok sie ek ok skosk sieok

SUBROUTINE BASRED (BASIS,CARD,FLOW ,FROMO,GFLOW,LNOD,PRED,
1 STATUS,THD,UNIT)

CRFser sotdoksoR sk R ok sk gk sdok otk ok solesk sk skttt stk ko ok ok ek ok

C
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C SUBROUTINE ARGUMENTS
C
INTEGER BASIS(*),CARD(*),LNOD(*),PRED(*),STATUS(*), THD(*),UNIT,
* FROMO(*)
DOUBLE PRECISION FLOW(*),GFLOW(*)
C
C LOCAL VARIABLES
C
INTEGER I
C
DOUBLE PRECISION TCOST,EPSIL.ON,BIG1
INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB ,MAXNOD ,NGUBS,NODES,
* ROOT
COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS MAXARC MAXGUB,MAXNGOD,
* NGUBS,NODES ,ROOT,EPSILON,BIG1
C
C READ DATA STRUCTURES
C
REWIND UNIT
DO 10 I=1,NODES
READ(UNIT) PRED(I),THD(I),CARD(I),LNOD(I),BASIS(I), FLOW(I),
* FROMO(I)
10 CONTINUE
READ(UNIT) ROOT
C
C READ ARC STATUS
C
DO 20 I=1,ARCS
READ(UNIT) GFLOW(I),STATUS(I)
20 CONTINUE
RETURN
END

ok sl 3 3ok o ok ok 3K s ok ke ke o sk ook e 3k 3k S e e ke Sl s 3 sk Sk o 3 sk skt Sk e e Sk e s e ke ok e e sk s ok sk e e sk ok s e e ke ok ek ok sk

SUBROUTINE OUTPUT (ARCNAM,BASIS,CARD,COST,FLOW ,FROMO,LNOD,LOWER,
1 PRED,STATUS,THD,TO,UPPER,YFLOW,ZFLOW,
1 GFLOW,UTEMP,GCOEF)

Ot ookt ok ook ok ok sk ook ko ok ook ek ook ek ookl koo e

C

C SUBROUTINE ARGUMENTS

C

C
C
C
C
C

CHARACTER*8 ARCNAM(*)
INTEGER BASIS(*),CARD(*),FROMO(*),LNOD(*),PRED(*),STATUS(*),
* THD(*),TO(*)
DOUBLE PRECISION COST(*),FLOW(*),LOWER(*),UPPER(*),YFLOW(¥),
* ZFLOW (*),GFLOW (*),UTEMP(*),GCOEF(*)
C
C LOCAL VARIABLES
C



208

INTEGER BASISL,DUMMY LUNIT

INTEGER FLGEND,FLGERR FLGINF,FLGITR,FLGOPTNUMREC

COMMON /FLAG/ FLGEND,FLGERR ,FLGINF,FLGITR FLGOPT ,NUMREC

INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT

COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD NGUBS,NODES,
* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS MAXARC . MAXGUB,MAXNOD,
* NGUBS,NODES ,ROOT,EPSILON,BIG1

DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE

COMMON /BOUNDS/ LBND,LBNDPRE,UBND,UBNDPRE

INTEGER NGVLT

COMMON /NGV/ NGVLT

PRINT LAST SOLUTION FOR THE LOWER BOUND PROCEDURE

READ IN THE DATA

CALL LBRED(BASIS,CARD FLOW,GFLOW,LNOD,PRED,STATUS,THD,YFLOW)

WRITE(6,9000)
CHECK FOR FEASIBILITY OF CURRENT SOLUTION
IN INTERMEDIATE CALLS TO OUTPUT, FEASIBILITY IS CHECKED.

AT OPTIMALITY, FEASIBILITY HAS ALREADY BEEN DETERMINED
AND EITHER FLGINF OR FLGOPT IS 1.

a0 00 O0O0000an

IF (FLGINF+FLGOPT .EQ. 0) THEN
DO 30 I=1,NODES
IF (IABS(BASIS(D)) .EQ. ARTADD .AND. FLOW(I) .NE. 0) THEN
FLGINF=1
GOTO 25
ENDIF
30 CONTINUE
25 CONTINUE
ENDIF
IF (FLGINF .EQ. 1) THEN
WRITE (6,1000)
FLGINF=0
ENDIF
C
C WRITE OUT NONZERO ARC INFORMATION
C
WRITE (6,2000)
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DO 40 I=1,NODES
BASISI=BASIS(l)
FLOW(I)=FLOW(I)+LOWER(IABS(BASISI))
IF (FLOW(I) .NE. 0) THEN
IF (BASISI .LT. 0) THEN
K=IABS(BASISI)
WRITE (6,3000) K,[,PRED(I),FLOW(I),COST(IABS(BASIS))
ELSE
WRITE (6,3000) BASISL,PRED(I),],FLOW(I),COST(BASISI)
ENDIF
ENDIF
40 CONTINUE
C
C LOOK FOR NONBASIC ARCS AT UPPER BOUNDS
C
WRITE(6,4000)
DO 50 I=1,ARCS
IF (STATUS() .EQ. 2) THEN
UPPER(I)=UPPER(I)+LOWER(])
WRITE(6,3000) L,FROMO(I), TO(I),UPPER(I),COST(I)
ENDIF
50 CONTINUE
C
C LOOK FOR NONBASIC ARCS AT LOWER BOUNDS
C
WRITE(6,5000)
DO 60 I=1,ARCS
IF (STATUS() EQ. 1 .AND. LOWER(I) .NE. 0) THEN
WRITE(6,3000) I,FROMO(T), TO(I),LOWER),COST(D)
ENDIF
60 CONTINUE
C
C LOOK FOR FIXED ARCS
C
WRITE (6,6000)
DO 70 I=1,ARCS
IF (STATUS(I) .EQ. 3) THEN
WRITE (6,3000) ,FROMO(I), TO(I), LOWER(I),COST(I)
ENDIF
70 CONTINUE

PRINT OBJECTIVE FUNCTION VALUE
WRITE (6,7000) LBNDPRE
WRITE(6,*) 'NUMBER OF VIOLATED GUBS’ NGVLT

C
C
C
C
C
C PRINT SOLUTION FOR UPPER BOUND PROCEDURE
C
C
C
C

READ IN THE DATA
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CALL UBRED(BASIS,CARD,FLOW,GFLOW,LNOD,PRED,STATUS,THD,ZFLOW)

WRITE(6,9500)

QO 00 O

C CHECK FOR FEASIBILITY OF CURRENT SOLUTION
C
C IN INTERMEDIATE CALLS TO OUTPUT, FEASIBILITY IS CHECKED.
C
C AT OPTIMALITY, FEASIBILITY HAS ALREADY BEEN DETERMINED IN SOLVE
C AND EITHER FLGINF OR FLGOPT IS 1.
C
C
IF (FLGINF+FLGOPT .EQ. () THEN
DO 120 I=1,NODES
IF (IABS(BASIS(I)) .EQ. ARTADD .AND. FLOW(I) .NE. 0.00) THEN
FLGINF=1
GOTO 125
ENDIF
120 CONTINUE
125 CONTINUE
ENDIF
IF (FLGINF .EQ. 1) THEN
WRITE (6,1000)
FLGINF=0
ENDIF
C
C WRITE OUT NONZERQ ARC INFORMATION
C
WRITE (6,2000)
DO 130 1=1,NODES
BASISI=BASIS(I)
FLOW()=FLOW(I)+LOWER(IABS(BASISI))
IF (GCOEF(ABS(BASISD) .LT. 0.00) THEN
FLOW(D)=FLOW(I)+ZFLOW(ABS(BASISI))
ENDIF
IF (FLOW(I) .NE. 0.00) THEN
IF (BASISI .LT. 0) THEN
K=IABS(BASISI)
WRITE (6,3000) K,I,PRED(I),FLOW(I),COST(IABS(BASISI))
ELSE
WRITE (6,3000) BASISI,PRED(1), FLOW(1),COST(BASISI)
ENDIF
ENDIF
130 CONTINUE
C
C LOOK FOR NONBASIC ARCS AT UPPER BOUNDS
C
WRITE(6,4000)
DO 140 1=1,ARCS
IF (STATUS(D .EQ. 2) THEN



IF (GCOEF(}) .LT. 0.00) THEN
UPPER(I)=UPPER(I)+LOWER(])
ELSE
UPPER(D=ZFLOW(I)+LOWER()
ENDIF
WRITE(6,3000) I,FROMO(D),TO(I),UPPER(D),COST(I)
ENDIF
140 CONTINUE
C
C LOOK FOR NONBASIC ARCS AT LOWER BOUNDS
C
WRITE(6,5000)
DO 150 I=1,ARCS
IF (GCOEF(]) .LT. 0.00) LOWER(I)=LOWER(I)+ZFLOW(I)
IF (STATUS(I) .EQ. 1 .AND. LOWER() .NE. 0.00) THEN
WRITE(6,3000) LFROMO(I), TO(I),LOWER(I),COST(I)
ENDIF
150 CONTINUE
C
C LOOK FOR FIXED ARCS
C
WRITE (6,6000)
DO 160 I=1,ARCS
IF (STATUS(D) .EQ. 3) THEN
WRITE (6,3000) LFROMO(I),TO(I),LOWER(I),COST(I)
ENDIF
160 CONTINUE
C
C PRINT OBJECTIVE FUNCTION VALUE
C
WRITE (6,7000) UBNDPRE
C
C FORMATS
C
1000 FORMAT(//IX ’****************************’/IX
* INFEASIBLE SOLUTION *'/1X,

* AR R Rk Rk )

2000 FORMAT(//1X,’NONZERQ FLOWS’/1X,"BASIC ARCS’/1X,
* > INDEX FROM TO FLOW’,
* ’ COST?)

3000 FORMAT(1X,318,2F15.5)
4000 FORMAT(/1X,"NONBASIC ARCS AT UPPER BOUND'/1X,

* * INDEX FROM TO FLOW’,
* ’ COST")
5000 FORMAT(/1X,’NONBASIC ARCS AT LOWER BOUND’/1X,
* ' INDEX FROM TO FLOW’,
* ’ COsT)
6000 FORMAT(/1X,’FIXED ARCS’/1X,
* * INDEX FROM TO FLOW’,
* ’ COST?)

7000 FORMAT(//1X,”OBJECTIVE FUNCTION VALUE =’,F20.6)
9000 FORMATY(//1 X, #**ssrsotoksokdokdokdobsdodkthokstokdnd? [
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* ** LOWER BOUND PROCEDURE ~ *'/IX,
* ’*****************************’)
9500 FORMAT(//IX ’*****************************’/IX
** UPPER BOUND PROCEDURE */1X,
% ’****************************’)
999 CONTINUE
RETURN
END
C
o
C**** s e sk e e Sk s ke o se ke st sk ke s e sk s e sk sk e st ok s ok sk sk s s b o e ok s s s ok sk o e e s sk sk ke ol o ok e e ook e ke e sk
SUBROUTINE INPUT (ARCNAM,COST,CTEMP,FLOW,FROM,GCOEF,GUBADD,
* GVAL,IND,LEFT,LOWER NODNAM,NUMOUT,NUMVRG,
* NVAL,ORDER,REDGUB RIGHT,STATUS,TO,UPPER)
C**** s e s o ke 3k 3k s e e o e s s e ok Se ok e ke s o sk o ok sk e ok sl ok sk o o ok S ol Sk e b s e s e sk o e e s e ok sk e sl ek ke ke ok
o
| C SUBROUTINE ARGUMENTS
| C
CHARACTER*§ ARCNAM(*),NODNAM(*)
C
| INTEGER REDGUB(*),FROM(*),GUBADD(*),IND(*),LEFT(*),
*  NUMOUT(*),ORDER(*),RIGHT(*) STATUS(*),
*  TO(*).NUMVRG(*),NVAL(*)

DOUBLE PRECISION COST(*),CTEMP(*),GCOEF(*),GVAL(*) FLOW(*),
* LOWER(*),UPPER(*)

C LOCAL VARIABLES

|

|

|

|

|

|

| CHARACTER*8 ARCSEC,BLANK,DUMMY ENDATA,ENDPRB,FREE,FRMNOD,
‘ * GUBSEC,LABEL NAM,NODE,

‘ * NODSEC,SLACK, TONODE

|
|
|
|
|
|
|
|
|

INTEGER ARCREC,FRMN,LINDEX,
NEXTNEXTAV ,NODSM1,
* NODSP1,REC,TON,VAL
DOUBLE PRECISION CST,COEF,LOW ,SGVAL,TFLOW,TGVAL,UP

INTEGER FLGEND,FLGERR,FLGINFFLGITR,FLGOPTNUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR FLGOPT,NUMREC

INTEGER ITRBTB,ITRDEG,JTRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT

DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD,NGUBS,NODES,
* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB ,MAXNOD,

* NGUBS NODES ROOT EPSILON,BIG1

DATA ARCSEC,ENDATA,NODSEC /ARCSEC ’,ENDATA ’’NODSEC '’/
DATA GUBSEC /"GUBSEC "’/



DATA BLANK,ENDPRB,FREE/

DATA SLACK/SLACK °f
C
C INITIALIZE NODE ARRAYS
C
DO 5 I=1,MAXNOD
NODNAM(I)=BLANK
LEFT(I)=0
RIGHT(I)=0
FLOW(1)=0.0D0
NVAL(I)=0
IND(T)=0
NUMOUT(@)=0
5 CONTINUE
C
C INITIALIZE ARC ARRAYS
C
DO 10 I=1,ARCS
CTEMP(1)=0.0
10 CONTINUE
C
C INITIALIZE GUB ARRAYS
C
DO 15 I=1, MAXGUB
GVAL(D)=0.0D0
NUMVRG(D)=0
REDGUB(I)=0
15 CONTINUE
C
C INITIALIZE CONSTANTS
C
NODES=0
ARCS=0
GARCS=0
NGUBS=0
NEXTAV=2
NUMREC=0
TCOST=0.0D0
FLGERR=0
FLGINF=0
FLGITR=0
FLGOPT=0
C
C BEGIN INPUT
C
READ (8,1000) LABEL
NUMREC=NUMREC+1

IF (LABEL .NE. NODSEC .AND. LABEL .NE. ENDPRB) THEN

FLGERR=-1
RETURN
ELSE

IF (LABEL .EQ. ENDPRB) THEN

'ENDPRB ’,'FREE

!
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C

FLGEND-=1
RETURN
ENDIF

ENDIF

C READ IN RHS VALUES FOR THE NETWORK

C

C

20 CONTINUE

READ(8,2000) NODE, VAL
NUMREC=NUMREC+1
IF ( NODE .EQ. GUBSEC) GOTO 30
IF (VAL EQ. 0) THEN
FLGERR=-1
RETURN
ENDIF
I=NODNUM(LEFT,NODE NEXTAV,NODNAM RIGHT)
IF ( FLGERR .EQ. 1) THEN
RETURN
ENDIF
FLOW(I)=VAL
NVAL(I)=VAL
IND(I)=-1
GOTO 20

30 CONTINUE

214

C READ IN NO. OF VARIABLES IN EACH GUB AND RHS VALUES FOR THE GUBS

C

C

READ(8,1500) NGUBS
NUMREC=NUMREC+1
IF (NGUBS .EQ. 0) THEN

FLGERR=-1
RETURN

ENDIF

DO 35 I=1,NGUBS

READ(8,1500) NUMVRG(I),GVAL(D)
NUMREC=NUMREC+1
IF (NUMVRG() .LE. 0 ) THEN
FLGERR=-1
RETURN
ENDIF
GARCS=GARCS+NUMVRG(I)

35 CONTINUE
READ(8,1000) LABEL
NUMREC=NUMREC+1
IF (LABEL .NE. ARCSEC) THEN

FLGERR=-1
RETURN

ENDIF

C RECORD LOCATION OF ARC DATA

C



ARCREC=NUMREC
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C
C MAKE FIRST PASS THROUGH ARC DATA
C
C
C
C READ IN DATA FOR NEXT ARC
C
40 CONTINUE
READ (8,1000) NAM,FRMNOD, TONODE,CST,UP,LOW ,COEF
NUMREC=NUMREC+1
IF (NAM EQ. ENDATA) GOTO 50
C
C DETERMINE NODE NUMBERS FOR THE FROM NODE AND TO NODE OF THE
C CURRENT ARC
C
FRMN=NODNUM(LEFT FRMNOD,NEXTAV NODNAM RIGHT)
IF (FLGERR .EQ. 1) THEN
RETURN
ENDIF
TON=NODNUM(LEFT,TONODE,NEXTAV,NODNAM RIGHT)
IF (FLGERR .EQ. 1) THEN
RETURN
ENDIF
C
C CHECK NODE INDICATOR
C
IF (FLOW(FRMN) .LE. 0.0) THEN
IND(FRMN)=1
ENDIF
IF (FLOW(TON) .GE. 0.0) THEN
IND(TON)=1
ENDIF
C
C CHECK FOR VALID BOUNDS
C
IF (UP LT. LOW .AND. LOW .NE. 0.0) THEN
FLGERR=2
WRITE (6,%) "ERROR IN BOUNDS’
WRITE (6,%) NAM,FRMNOD, TONODE,CST,UP,LOW,COEF
GOTO 40
ENDIF
ARCS=ARCS+1
NUMOUT(FRMN)=NUMOUT(FRMN)+1
C

C UNRESTRICTED ARC? [F SO, SET UP COMPLEMENTARY ARC.

IF (UP .LT. 0.0 .AND. LOW .EQ. 0.0) THEN
ARCS=ARCS+1
NUMOUT(TON)=NUMOUT(TON)+1

ENDIF

GOTO 40



C
C ALL DONE WITH FIRST PASS THROUGH ARC DATA
C
50 CONTINUE
C
C CHECK FOR PROBLEM FEASIBILITY
C
DO 60 1=1,NODES
IF (IND(I) .EQ. -1) THEN
FLGERR=2
IF (FLOW(I) .LT. 0.0) THEN
WRITE (6,7000) LELOW(I)
ELSE
WRITE (6,8000) LFLOW(I)
ENDIF
ENDIF
60 CONTINUE
IF (FLGERR .EQ. 2) THEN
RETURN
ENDIF
C
C DETERMINE WHETHER DUMMY NODE IS NEEDED
C
TFLOW=0.0D0
DO 70 I=1,NODES
TFLOW=TFLOW+FLOW(I)
70 CONTINUE
IF (TFLOW .GT. 0.0) THEN
WRITE(6,9000) TFLOW
FLGERR=2
RETURN
ENDIF
IF (TFLOW .LT. 0.0) THEN
NODES=NODES+1
IF (NODES .GT. MAXNOD) THEN
FLGERR=2
RETURN
ENDIF
NODSM1=NODES-1
DO 80 I=1,NODSM1
IF (FLOW(l) .LT. 0.0) THEN
ARCS=ARCS+1
NUMOUT(I)=NUMOUT(I)+1
ENDIF
80 CONTINUE
FLOW(NODES)=-TFLOW
NODNAM(NODES)=DUMMY
ENDIF
C
C SET UP FOR SECOND PASS THROUGH ARC DATA
C
C FIRST MOVE POINTER TO BEGINING OF ARC DATA IN FILE 8
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C
REWIND 38
DO 801 I=1,ARCREC
READ(8,2000)
801 CONTINUE
C
C SET FROM(.) ARRAY FOR ALL NODSEC
FROM(1)=1
NODSP1=NODES+1
DO 802 1=2,NODSP1
M1=I-1
FROM(I)=FROM(IM1)+NUMOUT(IM1)
802 CONTINUE
C  WRITE(6,*) * ARCREC = ', ARCREC
C  WRITE(6,*) * FROM(I
C  WRITE(6,*) (FROM(]), I=1,NODSP1)
C
C RESET NUMOUT(.) ARRAY TO USE AS POINTER TO FIRST ARC LOCATION
C FOR EACH NODE I
C
DO 803 1=1,NODES
NUMOUT@)=FROM(])
803 CONTINUE
C
C BEGIN SECOND PASS THROUGH ARC DATA
C
SGVAL=0,0D0
TGVAL=0.0D0
INDEX=1
NEXT=NUMVRG(INDEX)
REC=0
90 CONTINUE
READ (8,1000) NAM,FRMNOD,TONODE,CST,UP,LOW ,COEF
REC=REC+1
IF (NAM .EQ. ENDATA) GOTO 100
C
C RETREIVE NODE NUMBER FOR FROM AND TO NODES
C
FRMN=NODRET(ERROR,LEFT,FRMNOD,NEXTAV,NODNAM,RIGHT)
TON=NODRET(ERROR,LEFT,TONODE NEXTAV NODNAM,RIGHT)
C
C UNRESTRICTED ARC? IF SO, STORE COMPLEMENTARY ARC.
C
IF (UP LT. 0.0 .AND. LOW .EQ. 0.0) THEN
LOC=NUMOUT(TON)
ARCNAM(LOC)=FREE
TO(LOC)=FRMN
COST(LOC)=-CST
LOWER(LOC)=LOW
UPPER(LOC)=BIG1
STATUS(LOC)=1
GCOEF(LOC)=COEF
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UP=BIG1
NUMOUT(TON)=LOC+1
ENDIF

DEFAULT UPPER BOUND?

IF (UP .EQ. 0.0 .AND. LOW .EQ. 0.0) THEN
UP=BIG1
ENDIF

STORE DATA FOR CURRENT ARC

LOC=NUMOUT(FRMN)
ARCNAM(LOC)=NAM
TO(LOC)=TON
COST(LOC)=CST
LOWER(LOC)=LOW
GCOEF(LOC)=COEF

ADJUST FOR NONZERO LOWER BOUNDS

IF (LOW .NE. 0.0) THEN
TCOST=TCOST+LOW*CST
FLOW(FRMN)=FLOW(FRMN)+LOW
FLOW(TON)=FLOW(TON)-LOW
IF (INDEX .LE. NGUBS) THEN

GVAL(INDEX)=GVAL(INDEX)-LOW*COEF
ENDIF

ENDIF

UPPER(LOC)=UP-LOW

STATUS(LOC)=1

CHECK FOR A FIXED ARC

IF (UP .EQ. LOW) THEN
STATUS@L.OC)=3

ENDIF

NUMOUT(FRMN)=LOC+1

STORE GUB ADDRESS
GUBADD(REC)=LOC
CHECK FOR GUB CONSTRAINTS REDUNDANCY & FEASIBILITY

IF (INDEX .GT. NGUBS) GO TO 90

IF (COEF .GT. 0.0) THEN
TGVAL=TGVAL+UPPER(LOC)*COEF

ELSE
SGVAL=SGVAL-UPPER(LOC)*COEF

ENDIF

IF (REC .EQ. NEXT) THEN



IF (TGVAL .LE. GVAL(INDEX)) THEN
REDGUB(INDEX)=1
WRITE(6,*) INDEX,"TH GUB REDUNDANT’
ENDIF
IF (GVAL(INDEX) .LT. -SGVAL) THEN
FLGINF=1
WRITE(6,3000) INDEX,GVAL(INDEX)
RETURN
ENDIF
IF (GVAL(INDEX) .EQ. 0.0) THEN
WRITE(6,4000) INDEX
ENDIF
CTEMP(GUBADD(NEXT))=SGVAL
INDEX=INDEX+1
NEXT=NEXT+NUMVRG(INDEX)
SGVAL=0.0D0
TGVAL=0.0D0
ENDIF
GOTO 90

100 CONTINUE

ALL DONE WITH INPUT
200 CONTINUE

SET ADDRESS, COST AND BOUNDS FOR ARTIFICIAL ARCS

OO0 0000 O

ARTADD=ARCS+1
IF (ARTADD .GT. MAXARC) THEN
FLGERR=2
WRITE (6,6000) NUMREC
RETURN
ENDIF
COST(ARTADD)=BIG1
LOWER(ARTADD)=0.0D0
UPPER(ARTADD)=BIG1
GCOEF(ARTADD)=0.0D0

C CALL SORT(FROM,ORDER,ARCS)
REWIND 12
DO 220 I=1,NODES
LOC1=FROM())
LOC2=FROM(I+1)-1
DO 210 J=LOC1,LOC2
TON=TO(J)
WRITE(12) ARCNAM(J),L, TON,COST(J),LOWER(J),UPPER()),
* STATUS()
C WRITE(6,1030) ARCNAM(J),NODNAM(I+1),NODNAM(TON+1),],
c * TON,COST(J),LOWER(J),UPPER(J),STATUS(J)
C1030  FORMAT(1X,3(A8,2X),415,2110)
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210 CONTINUE
220 CONTINUE
REWIND 12
C
C FORMATS
C
1000 FORMAT(3(A8,2X),4F10.2)
1500 FORMAT(18,2X,F10.2)
2000 FORMAT(A8,2X.110)
3000 FORMAT(1X,’GUB NO.’,I10,’IS INFEASIBLE WITH RHS VALUE OF’,I10)
4000 FORMAT(1X,"GUB NO.”,110,’"HAS ZERO RHS VALUE’)
6000 FORMAT(1X, ***#+* ARC STORAGE HAS BEEN EXCEEDED AT INPUT RECORD’,
* > NO. ’.110)
7000 FORMAT(1X,"NODE NO. ,I5,” HAS SUPPLY OF ’F10.2,
* > BUT NO ARCS OUT OF THE NODE’)
8000 FORMAT(1X,’NODE NO. " ,I5,” HAS DEMAND OF ’F10.2,
* * BUT NO ARCS INTO THE NODE")
9000 FORMAT(1X, ****** PROBLEM INFEASIBLE *******/1 X,
* > DEMAND EXCEEDS SUPPLY BY ’F10.2)
RETURN
END

oNoNeoXe!

C**** 3k 3 6 4 e 3 3 3 e e fe b Sk s e b e b s ok e b 3 s S sk e o s S 3 i sk 3 o e oo ok S s o e e 6 3 o e el b Sk 3 s ek o o e e ok

INTEGER FUNCTION NODNUM (LEFT,NAMNEXTAV NODNAM,RIGHT)

C**** s e a8 3 3 3 3 e 3k s sk 3 sk o o s 3k ok sk o s e 3 ok s s e e e ok o e e e i s s e e ook e e ek sk e ofe e okeok sk ke sk ke sk ok

O

C THIS FUNCTION ASSIGNS A NODE NUMBER TO EACH NODE NAME.
C
C
C FUNCTION ARGUMENTS
C
CHARACTER*8 NODNAM(*),NAM
INTEGER LEFT(*),RIGHT(*)
INTEGER NEXTAV
LOCAL VARIABLES

INTEGER LOC,TLOC

0O On0o0

DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD NGUBS,NODES,
* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS MAXARC MAXGUB,MAXNOD,
* NGUBS ) NODES ROOT,EPSILON,BIG1

START SEARCH FOR EXISTING NODE NAME AT TOP OF LIST

oNeoXe!

C IF NODE NAME ALREADY EXISTS GET NODE NUMBER
C OTHERWISE STORE NEW NODE NAME AND ASSIGN A NODE NUMBER
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THE NODE NAMES ARE STORED IN A BINARY TREE
AT EACH NODE IN THE TREE GO LEFT FOR <, RIGHT FOR >

LOC=1
5 IF NAM.LEQ.NODNAM(LOC)) THEN

MATCH FOUND

NODNUM=LOC-1
RETURN
ENDIF

KEEP SEARCHING
IF (NAM.LT.NODNAM(LOC)) THEN
TOOK LEFT BRANCH AT NODE "LOC’

TLOC=LEFT(LOC)
IF (TLOC.EQ.0) THEN

NO SUCCESSOR NODES, ADD NODE NAME TO LEFT OF CURRENT NODE IN TREE

LEFT(LOC)=NEXTAV
NODNAM(NEXTAV)=NAM
NODNUM=NEXTAV-1
NEXTAV=NEXTAV+1
NODES=NODES+1
IF (NODES .GT. MAXNOD) THEN

FLGERR=1
WRITE(6,1000) NUMREC
ENDIF
RETURN
ELSE

CONTINUE SEARCH
LOC=TLOC
GOTO 5
ENDIF
ELSE
TOOK RIGHT BRANCH AT NODE "LOC’

TLOC=RIGHT(LOC)
IF (TLOC.EQ.0) THEN

NO SUCCESSOR NODES, ADD NODE NAME TO RIGHT OF CURRENT NODE IN TREE

RIGHT(LOC)=NEXTAV
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NODNAM(NEXTAV)=NAM
NODNUM=NEXTAV-1
NEXTAV=NEXTAV+1
NODES=NODES+1
IF (NODES .GT. MAXNOD) THEN
FLGERR=1
WRITE(6,1000) NUMREC
ENDIF
RETURN
ELSE
LOC=TLOC
GOTO 5
ENDIF
ENDIF
C
C FORMATS
C
1000 FORMAT(1X, ****** NODE STORAGE HAS BEEN EXCEEDED AT INPUT RECORD’,
* ’ NO. ’,110)
END

oNeXeoXe]

C**** 3 3 3 s sk 3k ok e sk 3k o ke e b e b e afe e e e ko ok o e s b ofe ofe e e ofe ofe ofe e ke e s Sl b e e S e ofe e e el e oe ok e s e e e e ke

INTEGER FUNCTION NODRET (ERROR,LEFT,NAM,NEXTAV ,NODNAM,RIGHT)

C**** she b b b e e o e 3 oe e oo 3o e 2 e 2k 3 o e s e 3 s o ol e e s s sl e e e e s o e s e e 3 sk e ok ok e sk s e of ke e e sk e e ke

@]

C THIS FUNCTION RETRIEVES A NODE NUMBER
C
C
C FUNCTION ARGUMENTS
C
CHARACTER*8 NODNAM(*),NAM
INTEGER LEFT(*),RIGHT(*)
INTEGER ERROR,NEXTAV
LOCAL VARIABLES

INTEGER LOC,TLOC

QO OO0

INTEGER FLGEND,FLGERR FLGINF,FLGITR ,FLGOPT NUMREC

COMMON /FLAG/ FLGEND FLGERR FLGINF FLGITR FLGOPT,NUMREC

DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB ,MAXNOD NGUBS,NODES,
* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS, MAXARC MAXGUB ,MAXNOD,
* NGUBS NODES ,ROOT,EPSILON,BIG1

START SEARCH FOR EXISTING NODE NAME AT TOP OF LIST

oNeoXe!

C IF NODE NAME ALREADY EXISTS GET NODE NUMBER
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oNoXe!

OTHERWISE SET ERROR FLAG

THE NODE NAMES ARE STORED IN A BINARY TREE
AT EACH NODE IN THE TREE GO LEFT FOR <, RIGHT FOR >

ERROR=0
LOC=1
5 IF (NAM.EQ.NODNAM(LOC)) THEN

MATCH FOUND
NODRET=LOC-1
RETURN
ENDIF
KEEP SEARCHING
IF (NAM.LT.NODNAM(LOC)) THEN
TOOK LEFT BRANCH AT NODE 'LOC’

TLOC=LEFT(ILOC)
IF (TLOC.EQ.0) THEN

NO SUCCESSOR NODES, ILLEGAL NODE NAME PASSED

ERROR=1
RETURN
ELSE

CONTINUE SEARCH

LOC=TLOC
GOTO 5
ENDIF
ELSE

TOOK RIGHT BRANCH AT NODE "LOC’

TLOC=RIGHT(LOC)
IF (TLOC.EQ.0) THEN

NO SUCCESSOR NODES, ILLEGAL NODE NAME PASSED

ERROR=1
RETURN
ELSE
LOC=TLOC
GOTO 5
ENDIF

223



ENDIF

FORMATS

END

aAOOn 000

C**** S e e 3 s e s e s ok e e e ke se s e o s ke sk e sk e sk a2 e o o sk e s e s e ok sk ok ok ek e sk sk sk ke ol ke ke sk ke ok sk

SUBROUTINE SORT(IN,OUT,N)
C**** sk sk s S 3 ofc e e ke e e b e e ok ode o o o ok ofe 3 e oe e ok ke e e o s e sfe o e e s e ke ke o sk e ol e sk s s 3 e sk ke ke ke e
C
C SUBROUTINE ARGUMENTS
C

INTEGER IN(*),0UT(*)

INTEGER N
c
C LOCAL VARIABLES
C

LOGICAL SORTED

INTEGER I,IEND,I1,12,J,NMI1

IEND=N

DO 5 I=1,JEND

OUT()=I

5 CONTINUE
~ NM1=N-1

DO 15 J=1,NM1

IEND=IEND-1

SORTED=.TRUE.

DO 10 I=1,IEND
11=0UT()
12=0UT(1+1)

IF (IN(11).LE.IN(12)) GOTO 10
SORTED=.FALSE.
OUT(D)=I2
OUT(+1)=I1
10 CONTINUE
IF (SORTED) RETURN
15 CONTINUE
RETURN
END

C**** she 33 e e she e e s S e e e oo e e e e e sk b e e s o e e b e she s e ke ke ok sk e e e oo sk e e e ke shese s e e e ek e sk sk

SUBROUTINE INIT(ARCNAME,BASIS,CARD,COST ,CTEMP,FLOW FROM,

* FROMO,GARB,GFLOW,GUBADD,GVAL,GCOEF,
* LGMULT,LNOD,LOWER,NUMVRG,NVAL PLPRED,
* REDGUB,STATUS,THD,TO,UPPER,YFLOW)

C**** s e g 3k s o 3 S ke e 2 s o 3k e 3 Sk o sk o e e o sk s ek ok of s 3 e ok o 3k e e e ke e o o e e 3k e ok sk 2k ok sk sk ek o e e

C

C THE PURPOSE OF THIS ROUTINE IS TO INITIALIZE THE
C RELAXATION/DECOMPOSITION ALGORITHM

C
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SUBROUTINE ARGUMENTS

oNoNoKe!

CHARACTER*8 ARCNAME
INTEGER BASIS(*),CARD(*),FROM(*),FROMO(*),GUBADD(*),
* LNOD(*),NUMVRG(*),NVAL(*),PRED(*), REDGUB(*),
* STATUS(*),THD(*),TO(*)
DOUBLE PRECISION COST(*),CTEMP(*),FLOW (*),GCOEF(*),
* GFLOW(*),GVAL(*),LGMULT(*),LOWER(*),
* PIC*),UPPER(*),YFLOW(*),
* GARB(*)
C
C LOCAL VARIABLES
C
INTEGER LINDEX,LOC1,LOC2NEXT,NUM,REC,count
DOUBLE PRECISION ADJVAL,LBSUBG,NORM,SUM,MAXVLN

INTEGER FLGEND FLGERR FLGINF FLGITR FLGOPTNUMREC

COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR,FLGOPT,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST EPSILLON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD,NGUBS,NODES,

* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS, MAXARC, MAXGUB,MAXNOD,

* NGUBS NODES ,ROOT,EPSILON,BIG1
DOUBLE PRECISION LBSTEP,ILBSTEP,MAXSTEP
COMMON /STEP/ LBSTEP,ILBSTEP,MAXSTEP
DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE
COMMON /BOUNDS/ LBND,LBNDPRE, UBND,UBNDPRE

C
C CONSTRUCT STARTING BASIS
C
DO 10 I=1,ARCS
GFLOW(I)=0.0D0
YFLOW(0)=0.0D0
LGMULT(I)=0.0D0
10 CONTINUE
C
FLGOPT=1
C
CALL START(BASIS,CARD,COST,FLOW FROM,GFLOW ,LNOD,PRED,STATUS,
* THD,TO,UPPER,NVAL)
C
C
C SOLVE THE PURE NETWORK PROBLEM
C
CALL PURNET(ARCNAM,BASIS,CARD,COST,FLOW ,FROM,FROMO,GFLOW,LNOD,

* LOWER PI,PRED,STATUS, THD,TO,UPPER)

IF (FLGINF .EQ. 1) RETURN
C
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LBND=TCOST
C
C SOLVE FOR THE INITIAL SCBVLP PROBLEM AND THE DA
C
count=0
FLGOPT=1
MAXVLN=0.0D0
NORM=0.0D0
NEXT=0
SUM=0.0D0
LOC2=0
DO 50 INDEX=1,NGUBS
NEXT=NEXT+NUMVRG(INDEX)
LOC1=L0OC2+1
LOC2=LOC2+NUMVRG(INDEX)
C
C IF THE GUB CONSTRAINT IS REDUNDANT THEN LET THE FLOWS BE THE SAME
C AS THE NETWORK FLOWS

C
DO 20 I=LOC1,LOC2
REC=GUBADD(])
YFLOW(REC)=GFLOW(REC)
C LGMULT(0)=0.0D0
C CTEMP(REC)=0.0DO

SUM=SUM+GFLOW(REC)*GCOEF(REC)
20 CONTINUE
| ADJVAL=GVAL(INDEX)+CTEMP(GUBADD(NEXT))
IF (ABS(ADJVAL) .LE. 1E-15) ADJVAL=0.0D0
C
| C THE FLOWS ARE THE MINIMUM OF THE NETWORK FLOWS AND THE ADJUSTED
C RIGHT HAND SIDE OF THE GUB

|
C
| C SET THE SUBGRADIENT FOR THE LOWER BOUND ALG
C
IF (REDGUB(INDEX) .EQ. 1 .OR. SUM .LE. GVAL(INDEX)) GO TO 45
C

count=count+1
SUM=SUM-GVAL(INDEX)
MAXVLN=MAX(MAXVLN,SUM)
DO 30 I=LOC1,LOC2
REC=GUBADD(I)
IF (GCOEF(REC) .GT. 0.0) THEN
YFLOW(REC)=0.0D0
ELSE
YFLOW(REC)=UPPER(REC)
ENDIF
LBSUBG=YFLOW{(REC)-GFLOW(REC)
NORM=NORM+LBSUBG*LBSUBG
C LGMULT()=LBSTEP*LBSUBG
IF (ABS(LBSUBG) .LE. 1E-15) LBSUBG=0.0D0
IF (FLGOPT .EQ. 1) THEN
IF (LBSUBG .NE. 0.00) FLGOPT=0
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ENDIF
C IF (ABS(LGMULT(1)) .LE. 1E-15) LGMULT(I)=0.0D0
C CTEMP(REC)=-LGMULT(I)
30 CONTINUE
C

45 SUM=0.0D0

50 CONTINUE
LBNDPRE=LBND
CALL LBSAV(BASIS,CARD FLOW ,GFLOW,LNOD,PRED,STATUS,THD,
* YFLOW)

C

C DETERMINE THE STEP SIZE

C
LBSTEP=MAXVLN/NORM

C LBSTEP=MAXVLN/SQRT(NORM)
MAXSTEP=MAXVLN

C
C DETERMINE THE LAGRANGEAN MULTIPLIERS
C
DO 85 I=1,GARCS
REC=GUBADD(])
LGMULT(I)=LBSTEP*(YFLOW(REC)-GFLOW(REC))
CTEMP(REC)=-LGMULT(l)
85 CONTINUE
C
C CHECK FOR OPTIMALITY
C
IF (FLGOPT .EQ. 1) THEN
WRITE(6,*) "OPTIMAL SOLUTION TO THE PURE NETWORK PROBLEM IS
* OPTIMAL FOR THE ORIGINAL PROBLEM’
RETURN
ENDIF
C
57 CONTINUE
DO 60 I=1 NEXT
REC=GUBADD(])
IF ( ABS(CTEMP(REC)) .GT. 1E-15) GO TO 70
60 CONTINUE
C

C WE HAVE AN OPTIMAL SOLUTION TO THE ORIGINAL PROBLEM
C

FLGOPT=1

RETURN

@]

70 CONTINUE

FLGOPT=0

oNoNeKe!

UBND=BIG1
UBNDPRE=BIG1
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LBNDPRE=LBND

C

C
WRITE(6,*) *'TCOST = °, TCOST

C
RETURN
END

Ot okekoke ook skl o ook ok kool aok ook Aok ok ok ko ok ok
SUBROUTINE START(BASIS,CARD,COST . FLOW,FROM,GFLOW,LNOD,PRED,
1 STATUS,THD,TO,UPPER,US)

s 3t ske ok She s o e e e e o 3k e e e 4 Sk e s e e b 3k e e e 3 sl s e e ek s ke ok s st sk ke ok sk ok S 2k sk S sk s ke ek ok e ke e e K

This routine finds a starting basis for the NETGUB

C
C
C
C
c
C SUBROUTINE ARGUMENTS
C

INTEGER BASIS(*),CARD(*),FROM(*),LNOD(*),

1 PRED(*),STATUS(*),THD(*),TO(*),

1 Us(*)

DOUBLE PRECISION COST(*),FLOW(*),GFLOW (*),UPPER(*)

LOCAL VARIABLES

oNeoNo X!

INTEGER DMNODE ,FMNODE,,L,LOC1,LOCI1 N,
* TONODE

@

INTEGER FLGEND FLGERR FLGINFFLGITR,FLGOPT NUMREC

COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR , FLGOPT,NUMREC

INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT

COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST.EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD NGUBS,NODES,
* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS MAXARC MAXGUB,MAXNOD,
* NGUBS ,NODES ROOT.EPSILON,BIG1

Set the initial undistributed supply.
Set cardinality of each node to node one and last node of each
node to itself.

OO 000

DO 101 = 1,NODES
IF (US() NE. 0) THEN
US(M=-Us)
ELSE
US(D=0
ENDIF
CARD(I)=1
LNOD(I)=I
C
C Initialize node arrays
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PRED(I)=0
THD(I)=0
FLOW (1)=0.0D0

[¢]

10 CONTINUE

Connect the root node to the demands via artificials with positive
flows.

Set ROOT

oNoNoRoNo oKD

ROOT=0
DO 60 I=1,NODES
IF (US(1) .GT. 0) THEN
ROOT=I
GOTO 70
ENDIF
60 CONTINUE
IF (ROOT .EQ. 0) THEN
FLGERR=-1
WRITE(6,*) '"NO UNDISTRUBUTED SUPPLY EXISTS’
RETURN
ENDIF
70 FLOW(ROOT)=0.0D0
CARDROOT)=1
THDROOT)=ROOT
PREDROOT)=0
BASIS(ROOT)=0
LNODROOT)=ROOT
C
C First satisfy the demands via artificials
C
DMNODE=0
DO 80 I=1,NODES
IF (USQ@) .LT. 0) THEN
DMNODE=I
THDROOT)=DMNODE
CARDROOT)=CARD(ROOT)+1
PRED(DMNODE)=ROOT
BASIS(DMNODE)=ARTADD
FLOW(DMNODE)=-US(DMNODE)
TCOST=TCOST+FLOW(DMNODE)*COST(ARTADD)
LNOD(DMNODE)=DMNODE
GOTO 90
ENDIF
80 CONTINUE
C
C No demand node exists
C
GOTO 110
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C
90 IF (DMNODE .NE. NODES) THEN
L=DMNODE+1
DO 100 I=L,NODES
IF (US(I) .LT.0) THEN
THD(DMNODE)=I
CARD(ROOT)=CARDROOT)+1
FLOW(D)=-US(I)
BASIS()=ARTADD
PRED(I)=ROOT
TCOST=TCOST+FLOW(I)*COST(ARTADD)
DMNODE-=I]
ENDIF
100 CONTINUE
ENDIF
LNODROOT)=DMNODE
THD(DMNODE)=ROOT
C
C Build up chains for the tree
C
C
C 1If no undistributed supply exists check for termination
| C
| CllO IF ROOT .EQ. NODES) GOTO 160
| I=ROOT+1
| DO 150 FMNODE=I,NODES
IF (US(FMNODE) .LT. 0) GOTO 150
C
C If no undistributed supply left, connect to tree via
C artificials
IF (US(FMNODE) .EQ. 0) GOTO 140
C

|
|
|
|
|
|
| LOC1=FROM(FMNODE)
‘ LOC2=FROM(FMNODE+1)
120 IF (LOC1 .EQ. LOC2) GOTO 140
: TONODE=TO(LOC1)
|
|
|
|
|
|
\

The "to-node" is a demand node

oNoNe!

IF (US(TONODE) .LT. 0) THEN
IF (FLOW(TONODE) .EQ. 0.0 ) THEN
LOC1=LOC1+1
GOTO 120
ENDIF

A demand node may receive supply

oNoXe!

IF ( (UPPER(LOCT1) .LE. US(FMNODE)) .AND.
* (UPPER(LOC1) .LE. FLOW(TONODE)) ) THEN
C It is an arc that may be set to upper bound.
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US(FMNODE)=US(FMNODE)-UPPER(LOC1)
FLOW(TONODE)=FLOW(TONODE)-UPPER(LOC1)
TCOST=TCOST+UPPER(LOC1)*(COST(LOC1)-COST(ARTADD))
STATUS(LOC1)=2
GFLOW(LOC1)=UPPER(LOC1)
LOC1=LOC1+1
IF (US(FMNODE) .EQ. 0) GOTO 140
GOTO 120

ENDIF

IF ( (US(FMNODE) .LT. UPPER(LLOC1)) .AND.

(US(FMNODE) .LE. FLOW(TONODE)) ) THEN

It is an arc that may bccome basic
FLOW(FMNODE)=US(FMNODE)
FLOW(TONODE)=FLOW(TONODE)-US(FMNODE)
TCOST=TCOST+US(FMNODE)*(COST(LOC1)-COST(ARTADD))
GFLOW(LOC1)=FLOW(FMNODE)
US(FMNODE)=0

Connect the chain with FMNODE as its highest node to
the tree via (FMNODE, TONODE).

CALL CNTDEM(BASIS,CARD,TONODE,FMNODE,LNOD,LOC1,
PRED,STATUS,THD)
GOTO 150
ELSE
It is an arc that cann’t be set to upper bound or made basic.
LOC1=LOC1+1
GOTO 120
ENDIF

ELSE
The to-node is either a supply node or a transshipment node

IF ( (FMNODE .GT. TONODE .AND. TONODE .GE. ROOT) .OR.
THD(TONODE) .GT.0 ) THEN

LOC1=LOC1+1
GO TO 120

ENDIF

IF (UPPER(LOC1) .LE. US(FMNODE)) THEN
It is an arc that may be set to upper bound
STATUS(LOC1)=2
GFLOW(LOC1)=UPPER(LOC1)
TCOST=TCOST+UPPER(LOC1*COST(LOC1)
US(FMNODE)=US(FMNODE)-UPPER(LOC1)
US(TONODE)=US(TONODE)+UPPER(LOC1)
LOC1=LOC1+1
IF (US(FMNODE) .EQ. 0) GOTO 140
GOTO 120

ELSE
It is an arc that may become basic
FLOW(FMNODE)=US(FMNODE)
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GFLOW(LOC1)=FLOW(FMNODE)
TCOST=TCOST+FLOW(FMNODE)*COST(LOC1)

C
C Connect FMNODE to TONODE via (FMNODE,TONODE)
C TONODE becomes the new highest node in the chain
C
CALL CNTSOT(BASIS,CARD,TONODE,FMNODE,LNOD,LOC1,
* PRED,STATUS,THD)
C
US(TONODE)=US(TONODE)+US(FMNODE)
US(FMNODE)=0
GOTO 150
ENDIF
c
C
ENDIF
140 CONTINUE
C
C Connect FMNODE to tree with an artificial arc.
C
BASIS(FMNODE)=-ARTADD
FLOW(FMNODE)=US(FMNODE)
TCOST=TCOST+FLOW(FMNODE)*COST(ARTADD)
CALL CNTREE(BASIS,CARD,FMNODE,LNOD,LOC1,PRED,STATUS,THD)
C .
150 CONTINUE
C
C Connect the wree
C

IF (ROOT .NE. 1) THEN
160 N=ROOT-1
DO 200 FMNODE=1,N
IF (US(FMNODE) .LT. () GO TO 200

If an undistributed supply is left, connect to tree
via artificials

IF (US(FMNODE) .EQ. 0) GO TO 180

O o000

LOC1=FROM(FMNODE)
LOC2=FROM(FMNODE+1)

170 IF (LOC1 EQ. LOC2) GO TO 180
TONODE=TO(LOC1)

The "to-node" is a demand node

oNoNoEoXe]

IF (US(TONODE) .LT. 0) THEN
IF (FLOW(TONODE) .EQ. 0.0 ) THEN
LOC1=LOC1+1
GOTO 170
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ENDIF
A demand node may receive supply

IF ( (UPPER(LOC1) .LE. US(FMNODE)) .AND.
(UPPER(LOC1) .LE. FLOW(TONODE)) ) THEN

It is an arc that may be set to upper bound.
US(FMNODE)=US(FMNODE)-UPPER(LOC1)
FLOW(TONODE)=FLOW(TONODE)-UPPER(LOC1)
STATUS(LOC1)=2
GFLOW(LOC1)=UPPER(LOC1)
TCOST=TCOST+UPPER(LOC1)*(COST(LOC1)-COST(ARTADD))
LOC1=LOC1+1
IF (US(FMNODE) .EQ. 0) GOTO 180
GOTO 170

ENDIF

IF ( (US(FMNODE) .LT. UPPER(LOC1)) .AND.

(US(FMNODE) .LE. FLOW(TONODE)) ) THEN

It is an arc that may become basic
FLOW(FMNODE)=US(FMNODE)
FLOW(TONODE)=FLOW(TONODE)-US(FMNODE)
GFLOW(LOC1)=FLOW(FMNODE)
TCOST=TCOST+FLOW(FMNODE)*(COST(LOC1)-COST(ARTADD))
US(FMNODE)=0

Connect the chain with FMNODE as its highest node to
the tree via (FMNODE,TONODE).

CALL CNTDEM(BASIS,CARD,TONODE FMNODE,LNOD,LOC1,
PRED,STATUS,THD)

GOTO 200
ELSE
It is an arc that cann’t be set to upper bound or made basic.
LOC1=LOC1+1
GOTO 170
ENDIF

ELSE
The to-node is either a supply node or a transshipment node

IF ( (FMNODE .GT. TONODE .AND. TONODE .GE. ROOT) .OR.
THD(TONODE) .GT.0 ) THEN
LOC1=LOC1+1
GO TO 170
ENDIF
IF (UPPER(LOC1) .LE. US(FMNODE)) THEN
It is an arc that may be set to upper bound
STATUS(LOC1)=2
GFLOW(LOC1)=UPPER(LOC1)
TCOST=TCOST+UPPER(LOC1)*COST(LOC1)

233
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US(FMNODE)=US(FMNODE)-UPPER(LOC1)
US(TONODE)=US(TONODE)+UPPER(LOC1)
LOC1=LOC1+1
IF (US(FMNODE) .EQ. 0) GOTO 180
GOTO 170
ELSE

C It is an arc that may become basic
FLOW(FMNODE)=US(FMNODE)
GFLOW(LOC1)=FLOW(FMNODE)
TCOST=TCOST+FLOW(FMNODE)*COST(LOC1)

C
C Connect FMNODE to TONODE via (FMNODE,TONODE)
C TONODE becomes the new highest node in the chain
C
CALL CNTSOT(BASIS,CARD,TONODE,FMNODE,LNOD,LOC1,
* PRED,STATUS,THD)
C
US(TONODE)=US(TONODE)+US (FMNODE)
US(FMNODE)=0
GOTO 200
ENDIF
c
C
ENDIF
180 CONTINUE
C
C Connect FMNODE to tree with an artificial arc.
C
BASIS(FMNODE)=-ARTADD
FLOW(FMNODE)=US(FMNODE)
TCOST=TCOST+FLOW(FMNODEY*COST(ARTADD)
CALL CNTREE(BASIS,CARD,FMNODE,LNOD,LOC1,PRED,STATUS,THD)
C
200 CONTINUE
ENDIF
C
220 CONTINUE
C
C Starting basis is complete
C
C
RETURN
END
C
C
C
C
C
C**** e e e e ok s ok 8 2 ke ok sk ke o ok ok Sk 3 e g ke Sk e S sk sk Sk e o S s sk sk 4 ok sk e o e e ok e e s ke s s e skeofe e sk sk ke ook ok ok

SUBROUTINE CNTSOT(BASIS,CARD,TONODE ,FMNODE,LNOD,LOC,
1 PRED,STATUS,THD)

C**** e ke s e e 3k 3 sk 7 ke g sk e e s ke sk sk ke oo e S e e sk 3k sk sk Sk sk ok sk ok sk e st e ok sk s ke sk e sl e e e ofe st ek sk ke
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C

C  This routine connects the chain with FMNODE as the highest
C  node in the chain to either a supply node or a transshipment
C  node TONODE via (FMNODE,TONODE).

c

C

c

C SUBROUTINE ARGUMENTS

C

INTEGER BASIS(*),CARD(*), TONODE,FMNODE,LNOD(*),LOC,
1 PRED(*),STATUS(*), THD(*)

LOCAL VARIABLES

INTEGER LNODP,P,Q

QO OO0

P=FMNODE
Q=TONODE
LNODP=LNOD(P)
STATUS(LOC)=0
BASIS(P)=-LOC

CARD(Q)=CARD(P)+1 .
THD(Q)=P
LNOD(Q)=LNODP
PRED(P)=Q

@]

RETURN
END

oNoNolo oo Xe)

ik ke Sk 3 s e 3 ke sl s s e ke ke 3k sk o e e e o s sk ke e o o 3 e ke S 3 s s ke b S o s e e sk s s o e e s o e e e ek sk sk sk sk e ke ke sk

SUBROUTINE CNTDEM(BASIS,CARD,DEMAND,FMNODE,LNOD,LOC,
1 PRED,STATUS,THD)

C**** sk s e e e e ke Sk 3 e e ke ok of s e ke ok ok s e e e 3 sk sl e sk s sk Sl ke 3 sk sk sk ofe o e ok ook 2 o e sk ek 3k o o o ke e ke

C  This routine connects the chain with FMNODE as the highest

C  node in the chain to the tree via (FMNODE, TONODE).

C

C SUBROUTINE ARGUMENTS

C
INTEGER BASIS(*),CARD(*),DEMAND,FMNODE,LNOD(*),LOC,
1 PRED(*),STATUS(*),THD(*)

DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS, MAXARC,MAXGUB,MAXNOD,NGUBS,NODES,
* ROOT
COMMON/PARM/TCOST,ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD,
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* NGUBS,NODES,ROOT,EPSILON,BIG1
LOCAL VARIABLES

INTEGER LNODP,LNODQ,P,Q,THDLDQ

O OO0

P=FMNODE

=DEMAND
LNODP=LNOD(P)
LNODQ=LNOD(Q)
THDLDQ=THID{LNODQ)
STATUS(LOC)=0
BASIS(P)=-LOC

CARD(Q)=CARD(Q)+CARD(P)
THD(LNODQ)=P
LNOD(Q)=LNODP

PRED(P)=Q
THD(LNODP)=THDLDQ

CARD(ROOT)=CARD(ROOT)+CARD(P)

IF (LNOD(ROOT) .EQ. Q) THEN
LNOD(ROOT)=LNOD(Q)

ENDIF

(@]

RETURN
END

aOO0O0O0n

C**** se b o ke o e o b e o s b oe e fe s e i e ek s s s e sk o e e o o st e o ke s ke ok s ok e e Sk ok e sk e ke sk ke ke ke ke ek ok

SUBROUTINE CNTREE(BASIS,CARD,FMNODE,LNOD,LOC,PRED,STATUS,THD)

C**** e b s e b ok e e o e sk S e e s e ok e e ke e 8 s e ok Sk ke s 3 e st sk ok o e sk s o s e 3 o ke s e e ok s e e ok ok oe e se s de ke sk sk

This routine connects node FMNODE to ROOT via (FMNODE,ROOT)
and at the same time records the information in a column of
the basis matrix.

SUBROUTINE ARGUMENTS

cCOOOO0O0n0n

INTEGER BASIS(*),CARD(*),FMNODE LNOD(*),LOC,PRED(*),
* STATUS(*),THD(*)

DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS, MAXARC,MAXGUB ,MAXNOD,NGUBS,NODES,
* ROOT

COMMON/PARM/TCOST,ARCS,ARTADD,BIG,GARCS, MAXARC, MAXGUB,MAXNOD,
* NGUBS,NODES ,ROOT EPSILON,BIG1
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LOCAL VARIABLES

INTEGER LNODP,LNODRT.P

cn OO0

P=FMNODE
LNODRT=LNOD(ROOT)
LNODP=LNOD(P)
STATUS(ABS(BASIS(P)))=0

CARDROOT)=CARD(ROOT)+CARD(P)
THD(LNODRT)=P
LNOD(ROOT)=LNODP

PRED(P)=ROOT
THD(LNODP)=ROOT

RETURN
END

C**** s e st e e 3 3 o o e 6 i e e 3 ok ok 3 e oo e ok e 3 Sk Sk sk e e sk S e ke sk ek e e s e s e o S e e ek s s sk e ke sk ek

SUBROUTINE PURNET(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,GFLOW,

1 LNOD,LOWER,PLPRED,STATUS, THD,TO,UPPER)
C**** *****************************#********************************
C
C SUBROUTINE ARGUMENTS
C
CHARACTER*8 ARCNAM(*)
INTEGER BASIS(*),CARD(*),FROM(*), FROMO(*),LNOD(*) PRED(*),
- STATUS(*),THD(*), TO(*)
DOUBLE PRECISION COST(*),FLOW(*),GFLOW (*),LOWER(*) PI(*),
* UPPER(¥)
C
C LOCAL VARIABLES
C
DOUBLE PRECISION DELT,DELTA ,FLOWXU,FLOWXV FLWPRX,
* FX,GUDELT,GVDELT,
* MINCOS,REDCOS
INTEGER BASISI,BASISQ,BASISU,BASISV,BASISX,BASPRX,BX,CARDX,
* CARDPX, FRMNOD FRMBEG,BTB,
* ENTER,GAMMAU,GAMMAY,
+ LINDEX1,INDEX2,J,K.L MUV,
* NODSM1,P,PATHRT PREDJ,PREDPX, PREDX,Q,RTHD,
* THDJ,THDX, THDY1,U,V,W,X,XBAR,XSTAR,XU,XV,X1,X2,X2BAR,
* Y1,Y2,Z
C

INTEGER FLGEND,FLGERR FLGINF,FLGITR,FLGOPT,NUMREC

COMMON /FLAG/ FLGEND,FLGERR FLGINF,FLGITR FLGOPT ,NUMREC

INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT

COMMON /ITER/ ITRBTB,ITRDEG, ITRMAX ITROBJ,ITROUT JITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD NGUBS,NODES,



238

* ROOT
COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS MAXARC,MAXGUB MAXNOD,
* NGUBS,NODES,ROOT,EPSILON,BIG1

C
C ITRTOT = TOTAL NUMBER OF PIVOTS
C ITRREG = NUMBER OF REGUALR PIVOTS
C ITRBTB = NUMBER OF BOUND-TO-BOUND PIVOTS
C ITRDEG = NUMBER OF DEGENERATE PIVOTS
C
ITRTOT=0
ITRREG=0
ITRBTB=0
ITRDEG=0

FRMNOD=1

DETERMINE DUAL VALUES

aaaan o

J=ROOT
PI(J)=0.0D0
NODSM1=NODES-1
DO 90 1=1,NODSM1
THDJ=THD(J)
PREDJ=PRED(THDJ)
BASISJ=BASIS(THDIJ)
IF (BASISI.GT.0) THEN
PI(THDJ)=PI(PREDI)+COST(BASISJ)
ELSE
BASISJ=IABS(BASISJ)
PI(THDJ)=PI(PREDIJ)-COST(BASISJ)
ENDIF '
J=THDJ
90 CONTINUE
C
C FIND ENTERING ARC
C
95 CONTINUE

THIS ROUTINE WILL FIND AN ELIGIBLE ARC TO ENTER THE CURRENT BASIS
BY USING THE CRITERIA OF MOST NEGATIVE (MOST POSITIVE) REDUCED COST
OUT OF A NODE

AS SOON AS A NODE IS FOUND WITH AN ELIGIBLE ARC THE SEARCH STOPS

0 --> ARC BASIC

STATUS = 1 --> ARC NONBASIC AT LOWER BOUND
2 --> ARC NONBASIC AT UPPER BOUND
3 --> ARC FIXED

a0 nn
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C ARC (U,V) WILL BE THE ARC TO ENTER
C
MINCOS=0.0D0
FRMBEG=FRMNOD
800 CONTINUE
INDEX1=FROM(FRMNOD)
INDEX2=FROM(FRMNOD+1)-1
DO 810 K=INDEX1,INDEX2
IF (STATUS(K) .NE. 0) THEN
I=TO(K)
REDCOS=COST(K)+PI(FRMNOD)
REDCOS=REDCOS-PI(J)
IF (ABS(REDCOS) .LE. 1E-15) REDCOS=0.0D0
IF (ABS(REDCOS) .GT. MINCOS) THEN
IF (REDCOS .LT. 0.0 .AND. STATUS(K) .EQ. 1) THEN
U=FRMNOD
V=]
ENTER=K
MINCOS=ABS(REDCOS)
GOTO 810
ENDIF
IF (REDCOS .GT. 0.0 .AND. STATUS(K) .EQ. 2) THEN
=FRMNOD
v=J
ENTER=K
MINCOS=REDCOS
ENDIF
ENDIF
ENDIF
810 CONTINUE
IF (MINCOS .NE. 0.0) THEN
FRMNOD=FRMNOD+1
IF (FRMNOD .GT. NODES) FRMNOD=1
GOTO 830
ENDIF
FRMNOD=FRMNOD+1
IF (FRMNOD .GT. NODES) FRMNOD-=1
IF (FRMNOD .NE. FRMBEG) GOTO 800
C
830 CONTINUE
C
C IF MINCOS = 0 THEN NO ELIGIBLE ARC WAS FOUND
C
IF (ABS(MINCOS) .LE. 1E-15) MINCOS=0.0D0
IF (MINCOS EQ. 0.0) GOTO 145
C
C
C FIND THE BASIS EQUIVALENT PATH AND DETERMINE THE LEAVING ARC
C
C ARC (P.,Q) WILL LEAVE
C
IF (STATUS(ENTER).EQ.1) THEN



GAMMAU=-1
GAMMAV=1

ELSE
GAMMAU=1
GAMMAV=-1

ENDIF

XU=U

XvV=V

DELTA=BIG1

IF (XUNE.XV) THEN

10 IF (CARD(XU) .LE. CARD(XV)) THEN

BASISU=BASIS(XU)

IF (BASISU*GAMMAU .LE. 0) THEN
BASISU=IABS(BASISU)
DELT=UPPER(BASISU)-FLOW(XU)
IF (ABS(DELT) .LE. 1E-15) DELT=0.0D0
IF (ABS(DELT-DELTA) .LE. 1E-15) DELTA=DELT
IF (DELT .LT. DELTA) THEN

DELTA=DELT
MUV=U
=XU
P=PRED(Q)
ENDIF

ELSE
FLOWXU=FLOW(XU)

IF (ABS(DELTA-FLOWXU) .LE. 1E-15) DELTA=FLOWXU
IF (FLOWXU.LT.DELTA) THEN

DELTA=FLOWXU

MUV=U

Q=XU

P=PRED(Q)
ENDIF

ENDIF

XU=PRED(XU)

IF (XU .EQ. XV) THEN
GOTO 20

ELSE
GOTO 10

ENDIF

ENDIF

BASISV=BASIS(XV)

IF (BASISV*GAMMAYV .LE. 0) THEN
BASISV=IABS(BASISV)
DELT=UPPER(BASISV)-FLOW(XYV)
IF (ABS(DELT) .LE. 1E-15) DELT=0.0D0
IF (ABS(DELTA-DELT) .LE. 1E-15) DELTA=DELT
IF (DELT.LT.DELTA) THEN

DELTA=DELT
MUV=V
Q=XV
P=PRED(Q)

ENDIF
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ELSE
FLOWXV=FLOW(XV)
IF (ABS(DELTA-FLOWXV) .LE. 1E-15) DELTA=FLOWXV
IF (FLOWXV.LT.DELTA) THEN
DELTA=FLOWXV
MUV=V
Q=XV
=PRED(Q)
ENDIF
ENDIF
XV=PRED(XV)
IF (XU .EQ. XV) THEN
GOTO 20
ELSE
GOTO 10
ENDIF
ENDIF
C
C SAVE INTERSECTION NODE FROM BASIS EQUIVALENT PATH
C
20 CONTINUE
PATHRT=XU
C  WRITE(6,%)’ ARC ENTERING = ’,U,V,ENTER
C  WRITE(6,%)’ ARC LEAVING = ’P,Q,BASIS(Q
C
C CHECK FOR DEGENERATE PIVOT (LE. NONBASIC ARC AT L.B. CHANGING
C TO NONBASIC AT U.B. OR VICE VERSA).
C
BTB=0
IF (ABS(UPPER(ENTER)-DELTA) .LE. 1E-15) DELTA=UPPER(ENTER)
IF(UPPER(ENTER).LE.DELTA) THEN
BTB=1
: DELTA=UPPER(ENTER)
| ENDIF
C
| C UPDATE FLOWS ON BASIS EQUIVALENT PATH.
C
IF (ABS(DELTA) .LE. 1E-15) DELTA=0.0D0
IF (DELTA .GT. 0.0) THEN
XU=U -
| GUDELT=GAMMAU*DELTA
35 [IF(XUNE.PATHRT) THEN
BASISU=BASIS(XU)
| IF(BASISU.LT.0) THEN
FLOW(XU)=FLOW(XU)+GUDELT
| ELSE
FLOW(XU)=FLOW(XU)-GUDELT
ENDIF
IF (ABS(FLOW(XU)) .LE.1E-15) FLOW(XU)=0.0D0
BASISU=IABS(BASISU)
GFLOW(BASISU)=FLOW(XU)
XU=PRED(XU)
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GO TO 35
ENDIF
XV=vV
GVDELT=GAMMAV*DELTA
36 IF(XV.NE.PATHRT) THEN
BASISV=BASIS(XV)
IF(BASISV.LT.0) THEN
FLOW(XV)=FLOW(XV)+GVDELT
ELSE
FLOW(XV)=FLOW(XV)-GVDELT
ENDIF
IF (ABS(FLOW(XV)) .LE. 1E-15) FLOW(XV)=0.0D0
BASISV=IABS(BASISV)
GFLOW(BASISV)=FLOW(XV)
XV=PRED(XV)
GO TO 36
ENDIF
ELSE }
ITRDEG=ITRDEG+1
ENDIF
C
C BTB = 1 MEANS BOUND-TO-BOUND PIVOT
C IF IT IS THIS TYPE OF PIVOT THEN A BASIS TREE UPDATE IS NOT DONE
C
IF (BTB .EQ. 1) THEN
ITRBTB=ITRBTB+1
IF (STATUS(ENTER) EQ. 1) THEN
STATUS(ENTER)=2
GFLOW(ENTER)=UPPER(ENTER)
ELSE
STATUS(ENTER)=1
GFLOW(ENTER)=0.0D0
ENDIF
GOTO 999
ELSE
ITRREG=ITRREG+1
BASISQ=IABS(BASIS(Q)
IF (ABS(FLOW(Q)) .LE. 1E-15) FLOW(Q)=0.0D0
IF (FLOW(Q) .EQ. 0.0) THEN
STATUS(BASISQ)=1
GFLOW(BASISQ)=0.0D0
ELSE
STATUS(BASISQ)=2
GFLOW(BASISQ)=UPPER(BASISQ)
ENDIF
ENDIF
C
C REGULAR TREE REROOTING PIVOT
C
C UPDATE THE TREE NOT CONTAINING NODE Q FIRST
C
C FIND REVERSE THREAD OF Q



C
RTHD=PRED(Q)
40 IF (THD(RTHD).NE.Q) THEN
RTHD=LNOD(THD(RTHD))
GOTO 40
ENDIF
C
C UPDATE THE THREAD OF RTHD
C
THD(RTHD)=THD(LNOD(Q))
C
C UPDATE LAST NODE
C
XSTAR=PRED(THD(LNOD(Q)))
IF (XSTAR.EQ.0) THEN
XSTAR=ROOT
LNOD(XSTAR)=RTHD
ENDIF
X=P
50 IF (X.NE.XSTAR) THEN
LNOD(X)=RTHD
X=PRED(X)
GOTO 50
ENDIF
IF (LNOD(XSTAR).EQ.LNODQ)) THEN
LNOD(XSTAR)=RTHD
ENDIF

UPDATE CARDINALITY

X=P
PREDPR=PRED(PATHRT)

IF THE PATH ROOT IS THE ROOT THEN ADJUST PREDPR TO AVOID
UPDATING CARDINALITY OF ROOT

IF (PREDPR.EQ.0) THEN
PREDPR=ROOT

ENDIF

60 IF (X .NE. 0) THEN

CARD(X)=CARD(X)-CARD(Q)
X=PRED(X)
GOTO 60

ENDIF

'sXokeXeleNoke ke RN oo Ro Ko RO R D]

C
C UPDATE THE TREE CONTAINING Q
C
PRED(Q)=0
THD(LNOD(Q))=Q
BASIS(Q)=0
C
C DETERMINE WHICH TREE WILL BE T1 AND WHICH WILL BE T2.
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C LET T2 BE THE TREE WITH THE SMALLEST NUMBER OF NODES.

C

O OO0

aon

C

IF (CARD(ROOT) .LT. CARD(Q)) THEN

X1=Q
X2=ROOT
IF MUV.EQ.U) THEN
Y1=U
Y2=V
ELSE
Y1=V
Y2=U
ENDIF

ELSE

X1=ROOT
X2=Q
IF (MUV.EQ.U) THEN
Yi=V
Y2=U
ELSE
Y1=U
Y2=V
ENDIF

ENDIF

WRITE(6,*)’ X1, Y1, X2, Y2 = ", X1,Y1,X2,Y2

UPDATE PREDECESSOR

IF (X2 NE. Y2) THEN

X=Y2
W=LNOD(X)
Z=THD(W)
CARDX=CARD(Y2)
CARDPX=CARD(PRED(Y2))
IF (X1.EQ.Q) THEN
CARD(Y2)=CARD(X2)-CARD(Q)
ELSE
CARD(Y2)=CARD(X2)
ENDIF
PREDX=PRED(X)
PREDPX=PRED(PREDX)

UPDATE BASIS AND FLOW.

BASPRX=BASIS(PREDX)

BASIS(PREDX)=-BASIS(X)

FLWPRX=FLOW(PREDX)

FLOW(PREDX)=FLOW(X)

IF (ABS(FLOW(PREDX)) .LE. 1E-15) FLOW(PREDX)=0.0D0
L=IABS(BASIS(PREDX))

GFLOW(L)=FLOW(PREDX)

70 IF (X.NE.X2) THEN
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C

PRED(PREDX)=X

C FIND REVERSE THREAD OF X

C

C

80

RTHD=PREDX

IF (THD(RTHD).NE.X) THEN
RTHD=LNOD(THD(RTHD))
GOTO 80

ENDIF

IF (PRED(Z).EQ.PREDX) THEN
THD(RTHD)=Z
THD(W)=PREDX
W=LNOD(PREDX)
Z=THD(W)

ELSE
THD(W)=PREDX
W=RTHD

ENDIF

CARD(PREDX)=CARD(Y2)-CARDX

CARDX=CARDPX

IF (PREDPX.NE.0) THEN
CARDPX=CARD(PREDPX)

ENDIF

IF (PREDX.EQ.X2) THEN
X2BAR=X

ENDIF

X=PREDX

PREDX=PREDPX

C UPDATE BASIS AND FLOW

C

C

BX=BASIS(PREDX)

BASIS(PREDX)=-BASPRX

BASPRX=BX

FX=FLOW(PREDX)

FLOW(PREDX)=FLWPRX

IF (ABS(FLOW(PREDX)) .LE. 1E-15) FLOW(PREDX)=0.0D0
L=IABS(BASIS(PREDX))

GFLOW(L)=FLOW(PREDX)

FLWPRX=FX

IF (PREDPX.NE.0) THEN
PREDPX=PRED(PREDPX)

ENDIF

GOTO 70

ENDIF

C UPDATE LAST NODE

C

PRED(Y2)=0
THD(W)=Y2
IF (LNOD(X2) EQ LNOD(X2BAR)) THEN
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LNOD(X2)=W
ENDIF
X=PRED(X2)

100 IF (X.NE.Y2) THEN

LNOD(X)=LNOD(X2)
X=PRED(X)
GOTO 100
ENDIF
LNOD(X)=LNOD(X2)
ENDIF

IS T(Q) = T1?

IF (Q .EQ. X1) THEN
CARD(Y2)=CARD(X2)-CARD(Q)
ENDIF
ENDIF

ATTACHT2 TO Tl
UPDATE PREDECESSOR

PRED(Y2)=Y1
UPDATE BASIS AND FLOW OF Y2.

IF(Y2.EQ.U) THEN
BASIS(Y2)=-ENTER
PI(Y2)=PI(V)-COST(ENTER)
ELSE
BASIS(Y2)=ENTER
PI(Y2)=PI(U)y+COST(ENTER)
ENDIF
IF (ABS{PI(Y2)) .LE. 1E-15) PI(Y2)=0.0D0
IF(STATUS(ENTER).EQ.1) THEN
FLOW(Y2)=DELTA
ELSE
FLOW(Y2)=UPPER(ENTER)-DELTA
ENDIF
IF (ABS(FLOW(Y?2)) .LE. 1E-15) FLOW(Y2)=0.0D0
L=IABS(BASIS(Y2))
GFLOW(L)=FLOW(Y2)

UPDATE THREAD

THD(LNOD(Y2))=THD(Y1)
THDY1=THD(Y1)
THD(Y1)=Y2

UPDATE LAST NODE

XBAR=PRED(THDY1)
IF (XBAR.EQ.0) THEN
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C XBAR=X1
LNOD(XBAR)=LNOD(Y2)
ENDIF
X=Y1
110 IF (X.NE.XBAR) THEN
LNOD(X)=LNOD(Y?2)
X=PRED(X)
GOTO 110
ENDIF
C IF (XBAR.EQ.0) THEN
C LNOD(XBAR)=LNOD(Y?2)
C ENDIF
C
C UPDATE CARDINALITY
C
X=Y1
C IF (X2.EQ.Q) THEN
C 120 IF (X.NE.PATHRT) THEN
CARD(X)=CARDXH+CARD(Y?2)
X=PRED(X)
GOTO 120
ENDIF
IF (PATHRT.NE.ROOT) THEN
CARD(X)=CARD(X)+CARIXY2)
ENDIF
ELSE
130 IF (X.NE.X1) THEN
CARD(X)=CARD(X)+CARD(Y?2)
X=PRED(X)
GOTO 130
ENDIF
CARD(X)=CARD(X)+CARD(Y2)
C ENDIF
C
C UPDATE DUAL VALUES ON REROOTED TREE.
C

o000 00n

X=Y2
140 IF(X.NE.LNOD(Y2)) THEN
THDX=THD(X)
PREDX=PRED(THDX)
BASISX=BASIS(THDX)
IF(BASISX.GT.0) THEN
PI(THDX)=PI(PREDX)+COST(BASISX)
ELSE
BASISX=IABS(BASISX)
PI(THDX)=PI(PREDX)-COST(BASISX)
ENDIF
IF (ABS(PI(THDX)) .LE. 1E-15) PITHDX)=0.0D0
X=THDX
GO TO 140
ENDIF
C
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C CHANGE STATUS OF ENTERING ARC
C
STATUS(ENTER)=0
ROOT=X1
999 CONTINUE

UPDATE OBJECTIVE FUNCTION VALUE
TCOST=TCOST-DFLOAT(DELTA)*DBLE(MINCOS)

INCREMENT ITERATION COUNT

OO0 o0

ITRTOT=ITRTOT+1

IF (ITRTOT .GT. ITRMAX) THEN
FLGITR=1
RETURN

ENDIF

C CHECK FOR INTERMEDIATE OBJECTIVE FUNCTION VALUE REPORT

IF (MOD(ITRTOT,ITROBJ) .EQ. 0) THEN
WRITE (6,1000) ITRTOT,TCOST
ENDIF

C CHECK FOR INTERMEDIATE SOLUTION REPORT

IF (MOD(ITRTOT,ITROUT) .EQ. 0) THEN
WRITE (6,2000) ITRTOT
ENDIF
GOTO 95
C
145 CONTINUE
C
C OPTIMALITY INDICATED, ARE WE FEASIBLE?
C
DO 150 I1=1,NODES
IF (ABS(FLOW(I)) .LE. 1E-15) FLOW(I)=0.0D0
IF (IABS(BASIS()) .EQ. ARTADD .AND. FLOW(I) .NE. 0.00) THEN
FLGINF=1
RETURN
ENDIF
150 CONTINUE
FLGOPT=1
C
C FORMATS
C
1000 FORMAT(1X,’AT ITERATION *,16,” OBJECTIVE FUNCTION VALUE =’ F15.0)
2000 FORMAT(//1X,’AT ITERATION °,I6)
RETURN
END
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SUBROUTINE LBALG(ARCNAM,BASIS,CARD,COST,CTEMP,FLOW,
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FROM,FROMO,GCOEF,GFLOW,GUBADD,GVAL,
LGMULT,LNOD,LOWER,NUMVRG,PL,PRED,
REDGUB,STATUS,THD,

1 TO,UPPER,YFLOW)

ph pd b
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THE PURPOSE OF THIS ROUTINE IS TO CALCULATE A LOWER BOUND
FOR THE PROBLEM (NPG)

SUBROUTINE ARGUMENTS

CHARACTER*8 ARCNAM(*)

INTEGER BASIS(*),CARD(*),FROM(*) FROMO(*),

1 GUBADD(*),LNOD(*),NUMVRG(*),PRED(*),

1 REDGUB(*),STATUS(*),THD(*),TO(*)

DOUBLE PRECISION COST(*),CTEMP(*),FLOW (*),GCOEF(*),GFLOW(*),

1 GVAL(*),LGMULT(*),LOWER(*),PI(*),
1 UPPER(*),YFLOW(*)
LOCAL VARIABLES

INTEGER IINDEX,K,LOC1,LOC2REC
DOUBLE PRECISION NORM,LBSUBG

INTEGER FLGEND,FLGERR FLGINF,FLGITR,FLGOPT,NUMREC

COMMON /FLAG/ FLGEND,FLGERR, FLGINF,FLGITR FLGOPT,NUMREC

INTEGER ITRBTB,ITRDEG,JITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT

COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB MAXNOD NGUBS,NODES,
* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS MAXARC MAXGUB,MAXNOD,
* NGUBS ,NODES ,ROOT,EPSILON,BIG1

DOUBLE PRECISION LBSTEP,ILBSTEP,MAXSTEP

COMMON /STEP/ LBSTEP,JLBSTEP MAXSTEP

DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE

COMMON /BOUNDS/ LBND,LBNDPRE,UBND,UBNDPRE

INTEGER NGVLT

COMMON /NGV/NGVLT

TCOST=0.0D0
NGVLT=0

SOLVE THE NETWORK WITH ADJUSTED COST COEFFICIENTS

CALCULATE THE NEW COST COEFFICIENTS

DO 5 REC=1,ARCS
LOC=GUBADD(REC)
IF (GCOEF(LOC) .NE. 0.0) THEN



IF (ABS(LGMULT(REC)) .LT. 1E-15) LGMULT(REC)=0.0D0
CTEMP(LOC)=COST(LOC)-LGMULT(REC)
ELSE
CTEMP(LOC)=COST(LOC)
ENDIF
IF (ABS(GFLOW(LOC)) .LE. 1E-15) GFLOW(LOC)=0.0D0
TCOST=TCOST+CTEMP(LOC)*GFLOW({LOC)
5 CONTINUE
C
C
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CALL PURNET(ARCNAM,BASIS,CARD,CTEMP,FLOW ,FROM,FROMO,GFLOW,

* LNOD,LOWER PI,PRED,STATUS,THD,TO,UPPER)

IF (FLGINF .EQ. 1) RETURN

LBND=TCOST

FLGOPT=1

a o o0 0

NORM=0.0D0
MAXSTEP=0.0D0
LOC2=0
DO 10 INDEX=1,NGUBS
LOC1=LOC2+1
LOC2=LOC2+NUMVRG(INDEX)
IF (REDGUB(INDEX) .EQ. 1) THEN
DO 20 K=LOC1,LOC2
REC=GUBADIXK)
YFLOW(REC)=GFLOW(REC)
LGMULT(K)=0.0D0
CTEMP(REC)=0.0D0
20 CONTINUE
GO TO 10
ENDIF
CALL SCBVLP(GVAL(INDEX),GFLOW,GUBADD,GCOEF,
1 LGMULT,LOC1,LOC2,NUMVRG(INDEX),
1 UPPER,YFLOW NORM)
10 CONTINUE
C
IF (LBND .GT. LBNDPRE) THEN
CALL LBSAV(BASIS,CARD,FLOW,GFLOW LNOD,PRED,STATUS,
* THD,YFLOW)
LBNDPRE=LBND
ENDIF
IF (NORM .EQ. 0.00) THEN
WRITE(6,%) *OPTIMALITY REACHED ON LOWER BOUND PROCEDURE’
FLGOPT=1
RETURN
ENDIF
C
C
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C IF (UBNDPRE-LBND) .LE. .03*UBND) THEN
LBSTEP=MAXSTEP/NORM
C
C LBSTEP=MAXSTEP/SQRT(NORM)
C ENDFIF
C
C CALCULATE THE NEW LAGRANGE MULTIPLIERS
C
DO 30 INDEX=1,GARCS
REC=GUBADD(INDEX)
LBSUBG=YFLOW(REC)-GFLOW(REC)
IF (ABS(LBSUBG) .LE. 1E-15) LBSUBG=0.0D0
CTEMP(REC)=-LBSTEP*LBSUBG
IF (ABS(CTEMP(REC)) .LE. 1E-15) CTEMP(REC)=0.0D0
LGMULT(NDEX)=LGMULT(INDEX)+LBSUBG*LBSTEP
30 CONTINUE
Cc
C CHECK FOR OPTIMALITY OR NEAR OPTIMALITY
C
IF (FLGOPT .EQ. 1) THEN
WRITE(6,*) *OPTIMALITY REACHED AT LOWER BOUND PROCEDURE’
RETURN
ENDIF
C
40 CONTINUE
C
IF ((UBNDPRE-LBNDPRE) .LE. EPSILON*ABS(UBND)) THEN
FLGOPT=1
LBND=LBNDPRE
WRITE(6,*)’NEAR OPTIMALITY REACHED AT LOWER BOUND PROCEDURE’
WRITE(6,*)’SOLUTION IS WITHIN’,100*EPSILON,’% ’
ENDIF
C
RETURN
END
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SUBROUTINE SCBVLP(VAL,GFLOW,GUBADD,GCOEF,
1 LGMULT,LOC1,LOC2 NUMVRS,
1 UPPER,YFLOW ,NORM)
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C
C SUBROUTINE ARGUMENTS
C

C
C
C
C

INTEGER GUBADD(*),LOC1,LOC2,NUMVRS
DOUBLE PRECISION VAL GCOEF(*),GFLOW(*),
1 LGMULT(*),UPPER(*),YFLOW(*),NORM

C

C LOCAL VARIABLES

C
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INTEGER INDEX REC,LASTRC,LOC,NUM,R2
DOUBLE PRECISION ADJVAL,LBSUBG,L.GLB,L1,L.2,SUM

INTEGER FLGEND,FLGERR FLGINFFLGITR,FLGOPT,NUMREC

COMMON /FLAG/ FLGEND FLGERR,FLGINF,FLGITR FLGOPT,NUMREC

INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT

COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD NGUBS,NODES,
* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS, MAXARC,MAXGUB,MAXNOD,
* NGUBS,NODES ,ROOT ,EPSILON,BIG1

DOUBLE PRECISION LBSTEP,ILBSTEP,MAXSTEP

COMMON /STEP/ LBSTEP,ILBSTEP,MAXSTEP

DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE

COMMON /BOUNDS/ LBND,LBNDPRE,UBND,UBNDPRE

INTEGER NGVLT

COMMON /NGV/NGVLT

DETERMINE THE ADJUSTED RIGHT HAND SIDE
SET ALL THE VARIABLES WITH A ZERO OR POSITIVE RATIO

anan

NUM=NUMVRS

SUM=0.0D0

LASTRC=LOC2

ADJVAL=VAL

DO 10 REC=LOC1,LOC2
5  LOC=GUBADD(REC)

SUM=SUM+GFLOW(LOC)*GCOEF(LOC)

IF (GCOEF(LOC) .GT. 0.0 .AND. LGMULT(REC) .GE. 0.0) THEN
YFLOW(LOC)=0.0D0
LBSUBG=YFLOW(LOC)-GFLOW(LOC)
NORM=NORM+LBSUBG*LBSUBG
IF (ABS(LBSUBG) .LE. 1E-15) LBSUBG=0.0D0

C CTEMP(LOC)=-LBSTEP*LBSUBG
IF (FLGOPT EQ. 1) THEN
LGLB=LGMULT(REC)*LBSUBG
IF (ABS(LGLB) .GT. 1E-15) FLGOPT=0
ENDIF
C LGMULT(REC)=LGMULT(REC)-CTEMP(LOC)
C IF (ABS(LGMULT(REC)) .LE. 1E-15) LGMULT(REC)=0.0D0
NUM=NUM-1
IF (REC .EQ. LOC2) THEN
LOC2=LOC2-1
GO TO 15
ENDIF
L1=LGMULT(REC)
L2=LGMULT(LOC?2)
LGMULT(REC)=L2
LGMULT(LOC2)=L1
R2=GUBADD(LOC?2)
GUBADD(REC)=R2



GUBADD(LOC2)=LOC
LOC2=LOC2-1
GO TO 5

ENDIF

IF (GCOEF(LOC) .LT. 0.0 ) THEN
ADJVAL=ADJVAL-GCOEFLOC)*UPPER(LOC)
IF (ABS(ADJVAL) .LE. 1E-15) ADJVAL=0.0D0
IF LGMULT(REC) .LE. 0.0) THEN

YFLOW(LOC)=UPPER(LOC)
LBND=LBND+LGMULT(REC)*YFLOW(LOC)
LBSUBG=YFLOW(LOC)-GFLOW(LOC)
NORM=NORM+LBSUBG*LBSUBG
IF (ABS(LBSUBG) .LE. 1E-15) LBSUBG=0.0D0
CTEMP(LOC)=-LBSTEP*LBSUBG
IF (FLGOPT .EQ. 1) THEN
LGLB=LGMULT(REC)*LBSUBG
IF (ABS(LGLB) .GT. 1E-15) FLGOPT=0
ENDIF
LGMULT(REC)=LGMULT(REC)-CTEMP(LOC)
IF (ABS(LGMULT(REC)) .LE. 1E-15) LGMULT(REC)=0.0D0
NUM=NUM-1
IF (REC .EQ. LOC2) THEN
LOC2=LOC2-1
GO TO 15
ENDIF
L1=LGMULT(REC)
L2=LGMULT(LOC?2)
LGMULT(REC)=L2
LGMULT(LOC2)=L1
R2=GUBADD(LOC?2)
GUBADD(REC)=R2
GUBADD(LOC2)=LOC
LOC2=LOC2-1
GO TO 5

ENDIF
ENDIF
IF (REC .EQ. LOC2) GO TO 15

10 CONTINUE

C

15 CONTINUE

C

C

C

IF (SUM .GT. VAL) THEN
NGVLT=NGVLT+1
SUM=SUM-VAL
MAXSTEP=MAX(MAXSTEP,SUM)

ENDIF

IF (NUM .EQ. 0) GO TO 30

IF (NUM .EQ. 1) GO TO 25

CALL LOCSORT(NUM,LOC1,LOC2,LGMULT,GCOEF,GUBADD)

25 CONTINUE
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DO 20 INDEX=LOC1,LOC2
REC=GUBADD(INDEX)
IF (GCOEF(REC) .GT. 0.0) THEN
YFLOW (REC)=MIN(UPPER (REC),ADJVAL/GCOEF(REC))
IF (ABS(YFLOW(REC)) .LE. 1E-15) YFLOW(REC)=0.0D0
ADJVAL=ADJVAL-GCOEF(REC)*YFLOW(REC)
IF (ABS(ADJVAL) .LE. 1E-15) ADJVAL=0.0D0
ELSE
YFLOW (REC)=UPPER(REC)-MIN(UPPER(REC),-ADJVAL/GCOEF(REC))
IF (ABS(YFLOW(REC)) .LE. 1E-15) YFLOW(REC)=0.0D0
ADJVAL=ADJVAL+GCOEF(REC)*(UPPER(REC)-YFLOW (REC))
IF (ABS(ADJVAL) .LE. 1E-15) ADJVAL=0.0D0
ENDIF
LBND=LBND+LGMULT(INDEX)*YFLOW(REC)
LBSUBG=YFLOW(REC)-GFLOW(REC)
C CTEMP(REC)=-LBSTEP*LBSUBG
C IF (ABS(CTEMP(REC)) .LE. 1E-15) CTEMP(REC)=0.0D0
IF (FLGOPT .EQ. 1) THEN
LGLB=LGMULT(INDEX)*LBSUBG
IF (ABS(LGLB) .GT. 1E-15) FLGOPT=0
ENDIF
NORM=NORM+LBSUBG*LBSUBG
C LGMULT(INDEX)=LGMULT(INDEX)-CTEMP(REC)
C IF (ABS(LGMULT(INDEX)) .LE. 1E-15) LGMULT(NDEX)=0.0D0
20 CONTINUE
30 LOC2=LASTRC
RETURN
END
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SUBROUTINE LOCSORT(N,INDEX1,INDEX2,B,A,LOC)
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The purpose of this routine is to keep track of the position
of an ordered array

SUBROUTINE ARGUMENTS

oloNoNoXoKe!

INTEGER LOC(*),N,INDEX1,INDEX2
DOUBLE PRECISION B(*),A(*)

LOCAL ARGUMENTS

Q00

DOUBLE PRECISION BSTAR,RSTAR
INTEGER ID1,ID2,L,L1,LOC1,N1,M

ID1=INDEX1
ID2=INDEX2

Nl1=N
L=1+N/2
11 L=L-1
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29

255

RSTAR=B(L+ID1-1)
LOC1=LOC(L+ID1-1)
BSTAR=RSTAR/A(LOC1)
GO TO 30
LOC1=LOC(ID2)
RSTAR=B(ID2)
BSTAR=RSTAR/A(LOC1)
B(ID2)=B(ID1)
LOC(ID2)=LOC(ID1)
N1=N1-1

ID2=ID2-1

30 Li=L

31

M=2*L1
IF (M-N1) 32,3337

32 IF (B(M+ID1YA(LOC(M+ID1)) .GE. B(M+ID1-1)/A(LOC(M+ID1-1))) M=M+1

33

37

IF (BSTAR .GE. B(M+ID1-1)/ALOC(M+ID1-1)) ) GO TO 37
B(L1+ID1-1)=B(M+ID1-1)
LOC(L1+ID1-1)=LOC(M+ID1-1)
L1=M

GO TO 31
B(L1+ID1-1)=RSTAR
LOC(L1+ID1-1)=LOC1

IF (L .GT. 1) GO TO 11

IF (N1 .GE. 2) GO TO 25
RETURN

END
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SUBROUTINE UINIT(GARB,GFLOW,GUBADD,GVAL,GCOEF,NUMVRG,
* REDGUB,UPPER,UTEMP,ZFLOW)

C**** e b e sk e 3 s b e s e sk oe e ke 3 b s e stk s b s b ook e e fe sk e s e o sfe s e e s e ok e e de s e s e sk sk ke sk e ek ke ok
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THE PURPOSE OF THIS ROUTINE IS TO INITIALIZE THE
UPPER BOUND ALGORITHM

SUBROUTINE ARGUMENTS

INTEGER GUBADD(*),NUMVRG(*),REDGUB(*)
DOUBLE PRECISION GARB(*),GCOEF(*),
* GFLOW(*),GVAL(*),UPPER(*),UTEMP(*),ZFLOW(*)

LOCAL VARIABLES

INTEGER [, INDEX,LOC1,LOC2,NEXT,NUM,OPT,REC
DOUBLE PRECISION ADJVAL,LBSUBG,SUM

INTEGER FLGEND,FLGERR FLGINF,FLGITR,FLGOPT,NUMREC

COMMON /FLAG/ FLGEND FLGERR,FLGINF,FLGITR , FLGOPT ,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
COMMON /ITER/ ITRBTB ITRDEG,ITRMAX ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1
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INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD,NGUBS,NODES,
* ROOT
COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS MAXARC,MAXGUB ,MAXNOD,
* NGUBS,NODES,ROOT,EPSILON,BIG1
C
C FIND OPTIMAL SOLUTION TO THE NETWORK
C CONSTRUCT STARTING SOLUTION
C
DO 10 I=1,ARCS
ZFLOW(I)=UPPER(})
UTEMP(I)=UPPER(I)
GARB(1)=0.0D0
10 CONTINUE
C
C SOLVE FOR THE INITIAL SCBVLP PROBLEM AND THE DA
C
NEXT=0
SUM=0
LOC2=0
DO 50 INDEX=1,NGUBS
NEXT=NEXT+NUMVRG(INDEX)
LOC1=LOC2+1
LOC2=LOC2+NUMVRG(INDEX)
C
C IF THE GUB CONSTRAINT IS REDUNDANT THEN LET THE FLOWS BE THE SAME
C AS THE NETWORK FLOWS
C
IF (REDGUB(INDEX) .EQ. 1) THEN
DO 20 I=LOC1,LOC2
REC=GUBADIXI)
IF (GCOEF(REC) .GT. 0.0) THEN
ZFLOW(REC)=UPPER(REC)
ELSE
ZFLOW(REC)=0.0D0
ENDIF
UTEMP(REC)=0.0D0
20 CONTINUE
GO TO 50
ENDIF
SUM=0.0D0

DO 30 I=LOC1,LOC2
REC=GUBADD(I)
ZFLOW(REC)=GFLOW(REC)
IF (GCOEF(REC) .GT. 0.0) THEN
UTEMP(REC)=UPPER(REC)
ELSE
UTEMP(REC)=0.0D0
ENDIF :
SUM=SUM+ZFLOW (REC)*GCOEF(REC)
30 CONTINUE
C




C IF THE FLOWS ARE NOT FEASIBLE FOR THE UPPER BOUND DA
C PROJECT THEM ONTO A FEASIBLE REGION
C
IF (ABS(SUM - GVAL(INDEX)) .GT. 1E-15) THEN
NUM=2*NUMVRG(INDEX)
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CALL PROJOP(GARB,GVAL(INDEX),GUBADD,GCOEF,LOC1,LOC2,NUM,

* UPPER,UTEMP,ZFLOW)
ELSE
DO 40 [=LOC1,LOC2
REC=GUBADD(J)
UTEMP(REC)=ZFLOW (REC)-UTEMP(REC)
IF (ABS(UTEMP(REC)) LE. 1E-15) UTEMP(REC)=0.0D0
IF (FLGOPT .EQ. 1) THEN
IF (UTEMP(REC) .NE. 0.0) FLGOPT=0
ENDIF
40 CONTINUE
ENDIF
C
50 CONTINUE
C
RETURN
END
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SUBROUTINE UBALG(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,

* GCOEF,GFLOW,GUBADD,GVAL,
* LNOD,LOWER,NUMVRG,PLPRED,REDGUB,STATUS,
* THD,TO,UPPER,UTEMP,ZFLOW,UBSUBG)
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C
C THE PURPOSE OF THIS ROUTINE IS TO CALCULATE AN UPPER BOUND
C FOR THE PROBLEM (NPG)

SUBROUTINE ARGUMENTS

QOO0

CHARACTER*8 ARCNAM(*)
INTEGER BASIS(*),CARD(*),FROM(*),FROMO(*),GUBADD(*),
1 LNOD(*),NUMVRG(*),PRED(*), REDGUB(*),
1 STATUS(*),THD(*),TO(*)
DOUBLE PRECISION COST(*),FLOW (*), GCOEF(*),GFLOW(*),GVAL(*),
1 LOWER(*),PI(*),UBSUBG(*),UPPER(*),
1 UTEMP(*). ZFLOW(*)
C
C LOCAL VARIABLES
C
INTEGER FRMNOD,LINDEX,INDEX1,INDEX2,J,K,LOC,LOC1,LOC2,
* NUM,REC,FIRSTM,PASS
DOUBLE PRECISION NORM,UBSTEP,SUM,LTSTEP,LUBND

INTEGER FLGEND,FLGERR FLGINF,FLGITR,FLGOPT,NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF,FLGITR FLGOPT,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT ITRREG,ITRTOT
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COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB ,MAXNOD,NGUBS,NODES,
* ROOT '

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS MAXARC,MAXGUB,MAXNOD,
* NGUBS NODES ,ROOT,EPSILON,BIG1

DOUBLE PRECISION LBND,LBNDPRE,UBND,UBNDPRE

COMMON /BOUNDS/ LBND,LBNDPRE, UBND,UBNDPRE

INTEGER FSITER

COMMON /FEAS/ FSITER

DOUBLE PRECISION ALPHA

COMMON /ALP/ ALPHA

IF (UBND .EQ. BIG1) THEN
FIRSTM=1
UBNDPRE=UBND
LUBND=10.E10

ENDIF

C
10 CONTINUE
FLGINF=0

TCOST=0.0D0 '

CALL REOPT(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,GCOEF,GFLOW,
* LNOD,LOWER PI,PRED,STATUS,THD,TO,UPPER, UTEMP ZFLOW)

UTEMP(ARTADD)=BIG1

CALL PURNET(ARCNAM,BASIS,CARD,COST,FLOW,FROM,FROMO,GFLOW,
1 LNOD,LOWER,PI,PRED,STATUS,THD,TO,UTEMP)

UBND=TCOST
IF (UBND LT. UBNDPRE .AND. FLGINF .EQ. 0) THEN
CALL UBSAV(BASIS,CARD FLOW ,GFLOW LNOD,PRED,STATUS,THD,ZFLOW)
UBNDPRE=UBND
WRITE(6,*) "UBND = *,UBND
ENDIF
C

22 CONTINUE
C
C
IF (FLGINF .EQ. 1) GO TO 25
C
IF ((UBNDPRE-LBNDPRE) .LE. EPSILON*ABS(UBNDPRE)) THEN
UBND=UBNDPRE
FLGOPT=1
WRITE(6,*) '"NEAR OPTIMALITY REACHED AT UPPER BOUND PROCEDURE’
WRITE(6,*) *SOLUTION IS WITHIN’,100*EPSILON,’%OF OPTIMALITY’
RETURN



259

ENDIF
C
25 CONTINUE
C
C DETERMINE THE SUBGRADIENT
C
FLGOPT=1
C
NORM=0
FRMNOD=1
200 CONTINUE
INDEX1=FROM(FRMNOD)
INDEX2=FROM(FRMNOD+1)-1
DO 20 K=INDEX1,INDEX2
UBSUBG(K)=0.0D0
J=TO(K)
IF (GCOEF(K) .NE. 0.0) THEN
UTEMP(K)=ZFLOW(K)
ELSE
UTEMP(K)=0.0D0
ENDIF
LOC2=0
DO 45 INDEX=1,NGUBS
LOC1=LOC2+1
LOC2=LOC2+NUMVRG(INDEX)
IF (REDGUB(INDEX) .EQ. 1) THEN
DO 55 LOC=LOC1,LOC2
REC=GUBADD(LOC)
IF(K .EQ. REC) GO TO 20
55 CONTINUE
ENDIF
45 CONTINUE
IF ((STATUS(K) .EQ. 2 .AND. GCOEF(K) .GT. 0.0) .OR.
* (STATUS(X) .EQ. 1 .AND. GCOEF(K) .LT. 0.0)) THEN
UBSUBG(K)=COST(K)+PI(FRMNOD)-PI(J)
IF (ABS(UBSUBG(K)) .LE. 1E-15) UBSUBG(K)=0.0D0
NORM=NORM+ABS(UBSUBG(K)*UBSUBG(K))
IF (ABS(NORM) .LE. 1E-15) NORM=0.0D0
ENDIF
20  CONTINUE
FRMNOD=FRMNOD+1
IF (FRMNOD .LE. NODES) GO TO 200

IF (NORM .EQ. 0.00) THEN
WRITE(6,*) 'OPTIMALITY REACHED IN UPPER BOUND PROCEDURE’
FLGOPT=1
RETURN

ENDIF

UBSTEP=(UBND-LBND)/(2*NORM)

IF (FLGINF .EQ. 1) THEN
IF (UBND .LT. LUBND) UBSTEP=10*UBSTEP



IF (UBND .GT .LUBND) UBSTEP=UBSTEP/10
ENDIF
C
35 CONTINUE
C UBNDPRE=UBND
UBNDPRE=MIN(UBND,UBNDPRE)
LUBND=TCOST
C
LOC2=0
DO 30 INDEX=1,NGUBS
LOC1=LOC2+1
LOC2=LOC2+NUMVRG(INDEX)
IF (REDGUB(INDEX) .EQ. 1) THEN
DO 40 LOC=LOC1,LOC2
REC=GUBADD(OC)
IF (GCOEF(REC) .GT. 0.0) THEN
ZFLOW(REC)=UPPER(REC)
ELSE
ZFLOW(REC)=0.0D0
ENDIF
UTEMP(REC)=0.0D0
40 CONTINUE
GO TO 30
ENDIF
DO 50 LOC=LOC1,LOC2
REC=GUBADD({LOC)
ZFLOW(REC)=2FLOW (REC)-UBSTEP*UBSUBG(REC)
IF (ABS(ZFLOW(REC)) .LE. 1E-15) ZFLOW(REC)=0.0D0
50 CONTINUE
30 CONTINUE
C
C FIND THE FEASIBLE POINTS
C .
LOC2=0
DO 60 INDEX=1,NGUBS
LOC1=LOC2+1
LOC2=LOC2+NUMVRG(INDEX)
NUM=2*NUMVRG(INDEX)
IF (REDGUB(NDEX) .EQ. 1) GO TO 60

CALL PROJOP(UBSUBG,GVAL(INDEX),GUBADD,GCOEF,LOC1,LOC2,

* NUM,UPPER ,UTEMP,ZFLOW)
60 CONTINUE
C
C
C CHECK FOR INFEASIBILITY
C
DO 70 1=1,ARCS
IF (ABS(UTEMP(])) .LE. 1E-15) UTEMP(I)=0.0D0
IF(UTEMP(I) .NE. 0.00) GO TO 80
70 CONTINUE
IF (FLGINF .NE. 1) FLGOPT=0
GO TO 90

260
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80 CONTINUE
IF (FLGINF .EQ. 1) THEN
FSITER=FSITER+1
GO TO 10
ENDIF
C
90 CONTINUE
RETURN
END
CHomho ook ook ok kA AR AR R R Rkl ok o ko koo
SUBROUTINE UBSAV (BASIS,CARD,FLOW,GFLOW,LNOD,PRED,
1 STATUS,THD,ZFLOW)
Coowdon Sk koo ook Aok ok R Rk ok
C
C SUBROUTINE ARGUMENTS
C
INTEGER BASIS(*),CARD(*),LNOD(*),PRED(*),STATUS (*), THD(*)
DOUBLE PRECISION FLOW(*),GFLOW(*),ZFLOW(*)

LOCAL VARIABLES

INTEGER 1

QO OO0

DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB ,MAXNOD NGUBS ,NODES,
* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS, MAXARC,MAXGUB ,MAXNOD,
* NGUBS ,NODES ,ROOT,EPSILON,BIG1

REWIND 11

SAVE DATA STRUCTURES

oNoNO NN Q!

DO 10 I=1,NODES
WRITE(11) PRED(I), THD(I),CARD(I),LNOD(I),BASIS(I) FLOW(I)
10 CONTINUE
WRITE(11) ROOT
C
C SAVE ARC STATUS
C
DO 20 I=1,ARCS
WRITE(11) GFLOW(I),ZFLOW(),STATUS(I)
20 CONTINUE
RETURN
END
C
C
C**** ***********************************************************
SUBROUTINE PROJOP(BRKPNT,VAL,GUBADD,GCOEF,LOC1,LOC2,NUMBKS,
1 UPPER,TEMP,ZFLOW)

C**** s e s sk K o 3 e s e e sk o ke ok ok sk st e ke o e S e ok sk ke o sk e s Sk o e ke o ool e e ok e e sk e e sk ke et e e Sk e ofe e sk
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C THE PURPOSE OF THIS ROUTINE IS TO PROJECT AN ALLOCATION ONTO
C A FEASIBLE REGION

SUBROUTINE ARGUMENTS

oNoRtNoNe!

INTEGER GUBADD(*),LOC1,LOC2,NUMBKS
DOUBLE PRECISION BRKPNT(NUMBKS),GCOEF(*),TEMP(*),UPPER(*),
* VALZFLOW(*)
C
C LOCAL VARIABLES
C
INTEGER LJLIMR1,REC
DOUBLE PRECISION L2,LAMDA R2,STERM,SUM,UTERM

INTEGER FLGEND,FLGERR,FLGINFFLGITR,FLGOPT NUMREC
COMMON /FLAG/ FLGEND,FLGERR,FLGINF FLGITR FLGOPT ,NUMREC
INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,[TRTOT
COMMON /ITER/ ITRBTB,ITRDEG,JTRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD,NGUBS,NODES,
* ROOT
COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS, MAXARC,MAXGUB,MAXNOD,
* NGUBS ,NODES.ROOT,EPSILON,BIG1
C
C SET THE BREAKPOINTS
C
J=1
L2=0.0D0
R2=0.0D0
DO 10 I=LOC1,LOC2
REC=GUBADD(I)
BRKPNT(J)=2*(ZFLOW(REC)-UPPER(REC))/GCOEF(REC)
IF (ABS(BRKPNT(J)) .LT. 1E-14) BRKPNT(J)=0.0D0
J=J+1
BRKPNT(J)=2*ZFLOW(REC)/GCOEF(REC)
IF (ABS(BRKPNT(J)) .LT. 1E-14) BRKPNT(¥)=0.0D0
J=l+1
IF (GCOEF(REC) .GT. 0.0) THEN
L2=L2+UPPER(REC)*GCOEF(REC)
ELSE
R2=R2+UPPER(REC)*GCOEF(REC)
ENDIF
10 CONTINUE

CALL HPSORT(NUMBKS,BRKPNT)

Ll=1

IF (ABS(L2) .LE. 1E-14) L2=0.0D0
IF (ABS(R2) .LE. 1E-14) R2=0.0D0
R1=NUMBKS
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30

40

IF ((R1-L1) .EQ. 1) THEN
LAMDA=BRKPNT(L1)+((BRKPNT(R1)-BRKPNT(L1))*
* (VAL-L2)/(R2-L2))
IF (ABS(LAMDA) .LT. 1E-14) LAMDA=0.0D0
GO TO 40
ENDIF
=(L1+R1)2
SUM=0.0D0
DO 30 I=LOC1,LOC2
REC=GUBADD(])
STERM=GCOEF(REC)*BRKPNT(M)/2
STERM=(ZFLOW (REC)-STERM)*GCOEF(REC)
IF (ABS(STERM) .LT. 1E-14) STERM=0.0D0
IF (GCOEF(REC) .GT. 0.0) THEN
SUM=SUM+MAX(MIN(STERM,GCOEF(REC)*UPPER(REC)),0.0D0)
ELSE
SUM=SUM+MIN(MAX(STERM,GCOEF(REC)*UPPER(REC)),0.0D0)
ENDIF
IF (ABS(SUM) .LT. 1E-14) SUM=0.0D0
CONTINUE
IF ( SUM .EQ. VAL) THEN
LAMDA=BRKPNT(M)
GO TO 40
ENDIF
IF (SUM .GT. VAL) THEN
Li=M
L2=SUM
GO TO 20
ELSE
R1=M
R2=SUM
GO TO 20
ENDIF
CONTINUE
DO 50 I=LOC1,LOC2
REC=GUBADD(])
UTERM=2*ZFLOW(REC)/GCOEF(REC)
STERM=2*(ZFLOW(REC)-UPPER(REC))/GCOEF(REC)
IF (ABS(UTERM) .LT. 1E-14) UTERM=0.0D0
IF (ABS(STERM) .LT. 1E-14) STERM=0.0D0
IF (GCOEF(REC) .GT. 0.0) THEN
IF (LAMDA LE. STERM) THEN
ZFLOW (REC)=UPPER(REC)
ELSE
IF (LAMDA LE. UTERM) THEN
ZFLOW(REC)=ZFLOW(REC)-GCOEF(REC)*LAMDA/2
IF (ABS(ZFLOW(REC)) .LE. 1E-14) ZFLOW(REC)=0.0D0
ELSE
ZFLOW(REC)=0.0D0
ENDIF
ENDIF
TEMPREC)=ZFLOW(REC)-TEMP(REC)
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IF (ABS(TEMP(REC)) .LE. 1E-14) TEMP(REC)=0.0D0
IF (FLGOPT .EQ. 1 ) THEN
IF (TEMP(REC) NE. 0.0) FLGOPT=0
ENDIF
ELSE
IF (LAMDA LE. UTERM) THEN
ZFLOW(REC)=0.0D0
ELSE
IF (LAMDA .GT. STERM) THEN
ZFLOW(REC)=UPPER(REC)
ELSE
ZFLOW (REC)=ZFLOW(REC)-GCOEF(REC)*LAMDA/2
IF (ABS(ZFLOW(REC)) .LE. 1E-14) ZFLOW(REC)=0.0D0
ENDIF
ENDIF
TEMP(REC)=ZFLOW (REC)-TEMP(REC)
IF (ABS(TEMP(REC)) .LT. 1E-14) TEMP(REC)=0.0D0
IF (FLGOPT .EQ. 1) THEN
IF (TEMP(REC) .NE. 0.0) FLGOPT=0
ENDIF
ENDIF
C
50 CONTINUE
C
C
C THE ALLOCATION IS FEASIBLE
C
RETURN
END
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SUBROUTINE HPSORT(N,B)
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The purpose of this routine is to sort a linear array
into nondecreasing order.

SUBROUTINE ARGUMENTS

DOUBLE PRECISION B(N)

LOCAL ARGUMENTS

aO00n o000

DOUBLE PRECISION BSTAR
INTEGER L,L1 N1M

N1=N
L=1+N/2

11 L=L-1
BSTAR=B(L)
GO TO 30
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29
30
31

32
33

37
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BSTAR=B(N1)

B(N1)=B(1)

N1=N1-1

Li=L

M=2*L1

IF (M-N1) 32,33,37

IF (B(M+1) .GE. B(M)) M=M+1
IF (BSTAR .GE. B(M)) GO TO 37
B(L1)=B(M)

L1=M

GO TO 31

B(L1)=BSTAR

IF L .GT. ) GO TO 11

IF (N1 .GE. 2) GO TO 25
RETURN

END

C**** ke Sk ke e sk e 3 b 3 sk e o s o e ok e e s e s e ke ok o Sl ke s sk ke e sk e oo ok o sk ek sl e o e el o e e sk ok ok ke sk

SUBROUTINE REOPT(ARCNAM,BASIS,CARD,COST,FLOW ,FROM ,FROMO,
1 GCOEF,GFLOW,LNOD,LOWER,PL,PRED,STATUS,THD,
1 TO,UPPER,UTEMP,ZFL.OW)

C**** e s sk sk ke e e s 3 3 i ke e s s sk ke oSk e s Stk o e e o o sk b ol e s skl ek e e s ok kel ok e ook ke ok ke e s ok ok sk e sk ke ke
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THE PURPOSE OF THIS ROUTINE IS TO AN INITIAL FEASIBLE
STARTING POINT FOR THE NETWORK WITH CAPACITY CHANGE

SUBROUTINE ARGUMENTS

CHARACTER*8 ARCNAM(*)

INTEGER BASIS(*),CARD(*),FROM(*)FROMO(*),

1 LNOD(*),PRED(*),

1 STATUS(*),THD(*), TO(*)

DOUBLE PRECISION COST(*),FLOW (*), GCOEF(*),GFLOW(*),LOWER(*),
1 PI(*),UPPER(*),UTEMP(*),ZFLOW(*)

LOCAL VARIABLES
INTEGER DIR,FRMNOD,IJINDEX1,INDEX2J,K,PREDJ,RTHD,TOJ,UP

INTEGER FLGEND,FLGERR FLGINF,FLGITR,FLGOPTNUMREC

COMMON /FLAG/ FLGEND,FLGERR FLGINF,FLGITR FLGOPT,NUMREC

INTEGER ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT

COMMON /ITER/ ITRBTB,ITRDEG,ITRMAX,ITROBJ,ITROUT,ITRREG,ITRTOT
DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB ,MAXNOD NGUBS,NODES,
* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB ,MAXNOD,
* NGUBS,NODES ,ROOT,EPSILON,BIG1

CONSTRUCT THE VECTOR OF REDUCED REQUIREMENTS
PROCEDURE X2D
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FLOW(ROOT)=0.0D0
J=THD(ROOT)
10 INDEX1=FROM(J)
INDEX2=FROM({J+1)-1
PREDJ=PRED(J)
C
C IF STILL AT PHASE I
C
IF (BASIS(J) .EQ. -ARTADD) THEN
FLOW (PREDJ)=FLOW(PREDI)}+FLOW(J)
FLOW(J)=-FLOW(])
IF (ABS(FLOW(PREDY)) .LE. .1E-15) FLOW(PREDJ)=0.0D0
J=THD(J)
IF (J .EQ. ROOT) GO TO 30
GO TO 10
ENDIF
C
DO 20 K=INDEX1,INDEX2
TOJ=TO(K)
IF (TOJ .EQ. PREDJ ) THEN
IF (STATUS(K) .NE. 0) GO TO 20
FLOW(PREDJ)=FLOW(PREDJ)+FLOW(J)
IF (ABS(FLOW(PREDY))) .LE. .1E-15) FLOW(PREDJ)=0.0D0
FLOW(J)=-FLOW(J)
IF (ABS(FLOW(J)) .LE. .1E-15) FLOW(J)=0.0D0
J=THD(J)
IF (J .EQ. ROOT) GO TO 30
GO TO 10
ENDIF
20 CONTINUE
FLOW(PREDJ)=FLOW (PREDJ)-FLOW(J)
IF (ABS(FLOW(PREDYJ)) .LE. .1E-15) FLOW(PREDJ)=0.0D0
J=THD(QJ)
IF J .EQ. ROOT) GO TO 30
GO TO 10
C
30 CONTINUE
C
C ADJUST THE REDUCED REQUIREMENTS FOR THE NONBASIS ARCS
C
FRMNOD=1
40 CONTINUE
INDEX 1=FROM(FRMNOD)
INDEX2=FROM(FRMNOD+1)-1
DO 50 K=INDEX1,INDEX2
J=TO(K)
IF (GCOEF(K) .EQ. 0.0 ) THEN
UTEMP(K)=UPPER(K)
GO TO 50
ENDIF
IF (STATUS(K) .EQ. 2 .AND. GCOEF(K) .GT. 0.00) THEN
IF (UTEMP(K) .NE. 0.0) THEN
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FLOW(FRMNOD)=FLOW (FRMNOD)+UTEMP(K)
IF (ABS(FLOW(FRMNOD)) .LE. .1E-15) FLOW(FRMNOD)=0.0D0
FLOW(J)=FLOW(J)-UTEMP(K)
IF (ABS(FLOW(J)) .LE. .1E-15) FLOW(J)=0.0D0
ENDIF
UTEMP(K)=ZFLOW(K)
GO TO 50
ENDIF
IF (STATUS(K) .EQ. 1 .AND. GCOEF(K) .LT. 0.00) THEN
IF (UTEMP(K) .NE. 0.00) THEN
FLOW(FRMNOD)=FLOW(FRMNOD)+UTEMP(K)
FLOW(J)=FLOW(J)-UTEMP(K)
IF (ABS(FLOW(FRMNOD)) .LE. .1E-15) FLOW(FRMNOD)=0.0D0
IF (ABS(FLOW(J)) .LE. .1E-15) FLOW(J)=0.0D0
ENDIF
UTEMP(K)=UPPER(K)-ZFLOW(K)
IF (ABS(UTEMP(K)) .LE. .1E-15) UTEMP(K)=0.0D0
GO TO 50
ENDIF
IF (STATUS(X) .EQ. 2 .AND. GCOEF(K) .LT. 0.00) THEN
UTEMP(K)=UPPER(K)-ZFLOW(K)
GO TO 50
ENDIF
IF (GCOEF(K) .GT. 0.0) THEN
UTEMP(K)=ZFLOW(K)
: ENDIF
50 CONTINUE
FRMNOD=FRMNOD+1
IF (FRMNOD .LE. NODES) GO TO 40
C
C
C CONSTRUCT A SET OF BASIC FLOWS FROM THE SET OF REDUCED REQUIREMENTS
C PROCEDURE D2X
C
J=LNOD(ROOT)
60 CONTINUE
PREDJ=PRED())
FLOW (PREDJ)=FLOW(PREDJ)}+FLOW(J)
IF (ABS(FLOW(PREDYJ)) .LE. .1E-15) FLOW(PREDJ)=0.0D0
IF (BASIS(J) .EQ. -ARTADD) THEN
FLOW(J)=-FLOW(J)
GO TO 90
ENDIF
INDEX1=FROM(J)
INDEX2=FROM(J+1)-1
DO 80 K=INDEX1,INDEX2
TOJ=TO(K)
IF (STATUS(K) .EQ. 0 .AND. TOJ .EQ. PREDJ) THEN
FLOW(J)=-FLOW(J)
GO TO 90
ENDIF
80  CONTINUE
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90 CONTINUE

C
‘ C  FIND REVERSE THREAD OF J
C
| RTHD=PRED())
| 100 IF (THD(RTHD) .NE. J) THEN
RTHD=LNOD(THD(RTHD))
| GO TO 100
\ ELSE
J=RTHD
| IF (PRED(J) .EQ. 0) GO TO 105
‘ GO TO 60
ENDIF
C
C CHECK THE BOUNDS FOR THE BASIC ARCS
C
C CALCULATE THE OBJECTIVE FUNCTION VALUE
C
| 105 CONTINUE
C
C IF STILL AT PHASE I
C
DO 45 1=1,NODES
IF (IABS(BASIS(D)) .EQ. ARTADD) THEN
IF (FLOW(I) LT. 0.0) THEN
FLOW(I)=-FLOW(D)
BASIS(I)=-BASIS(T)
ENDIF
TCOST=TCOST+FLOW(I)*COST(ARTADD)
ENDIF
45 CONTINUE
C
FRMNOD=1
110 CONTINUE

INDEX1=FROM(FRMNOD)
INDEX2=FROM(FRMNOD+1)-1
DO 120 K=INDEX1,INDEX?2
; J=TO(K)
| IF (J .EQ. PRED(FRMNOD)) THEN
| J=FRMNOD
\ DIR=-1
ELSE
1=
\ DIR=+1
ENDIF
IF (STATUS(K) .EQ. 0) THEN
IF (GCOEF(K) .GE. 0.00 .AND. FLOW(U) .GT. UTEMP(K)) THEN
STATUS(K)=2
GFLOW(K)=UTEMP(K)
| BASIS(IJ)=DIR*ARTADD
‘ STATUS(ARTADD)=0
FLOW(I))=FLOW(D))-UTEMP(K)



IF (ABS(FLOW(IJ)) .LE. .1E-15) FLOW(U))=0.0D0
TCOST=TCOST+UTEMP(K)*COST(K)+FLOW (U)*COST(ARTADD)
GO TO 120

ENDIF

IF (GCOEF(K) .GE. 0.00 .AND. FLOW(U) .LT. 0.0) THEN
STATUS(K)=1
GFLOW (K)=0.0D0
BASIS(IJ)=-DIR*ARTADD
FLOW (U)=-FLOW(1J)
TCOST=TCOST+FLOW (U)*COST(ARTADD)
GO TO 120

ENDIF

UP=UPPER(K)-ZFLOW(K)+UTEMP(K)

IF (ABS(UP) .LE. .1E-15) UP=0.0D0

IF (ABS(FLOW(U)-UP) .LE. .1E-15) FLOW(U)=UP

IF (GCOEF(K) .LT. 0.00 .AND. FLOW (W) .GT. UP) THEN
STATUS(K)=2
GFLOW(K)=UPPER(K)-ZFLOW(K)
BASIS(IJ)=DIR*ARTADD
FLOW (U)=FLOW(IJ)-UP
UTEMP(K)=UPPER(K)-ZFLOW(K)
TCOST=TCOST+UPPER(K)*COST(K)+FLOW(LJ)*COST(ARTADD)
GO TO 120

ENDIF

IF (GCOEF(K) .LT. 0.00 .AND. FLOW() .LT. UTEMP(K)) THEN
STATUS(K)=1
GFLOW(K)=0.0D0
BASIS(1J)=-DIR*ARTADD
FLOW(I)=UTEMP(K)-FLOW(J)
UTEMP(K)=UPPER(K)-ZFLOW(K)
TCOST=TCOST+FLOW (IJ)*COST(ARTADD)+ZFLOW(K)*COST(K)
GO TO 120

ENDIF

IF (GCOEF(K) .GE. 0.0) THEN
GFLOW(K)=FLOW(L])

ELSE
TCOST=TCOST+ZFLOW(K)*COST(K)
FLOW (UJ)=FLOW(IJ))-UTEMP(K)
IF (ABS(FLOW(I))) .LE. .1E-15) FLOW(U)=0.0D0
GFLOW(K)=FLOW(IJ) ,
UTEMP(K)=UPPER(K)-ZFLOW (K)

ENDIF

TCOST=TCOST+FLOW (I)*COST(K)

ELSE

IF (STATUS(K) .EQ. 2) THEN
GFLOW(K)=UTEMP(K)
TCOST=TCOST+UTEMP(K)*COST(K)

ENDIF

IF (GCOEF(K) .LT. 0.00) THEN

TCOST=TCOST+ZFLOW (K)*COST(K)
ENDIF
ENDIF
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120 CONTINUE
FRMNOD=FRMNOD+1
C
IF (FRMNOD .LE. NODES) GO TO 110
C
RETURN
END
ot eokoakobok ook ok ok kAR Aok ok ok oAbk ok ok kool
SUBROUTINE LBSAV (BASIS,CARD,FLOW ,GFLOW,LNOD,PRED,
1 STATUS,THD,YFLOW)
Crokodok Forkobkokaoka koo kR o kb ok okl ok ook ol ok ok
C
C SUBROUTINE ARGUMENTS
C
INTEGER BASIS(*),CARD(*),LNOD(*),PRED(*),STATUS (*), THD(*)
DOUBLE PRECISION FLOW(*),GFLOW(*),YFLOW(*)

LOCAL VARIABLES

INTEGER I

QO OO0

DOUBLE PRECISION TCOST,EPSILON,BIG1

INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD NGUBS,NODES,
* ROOT

COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS, MAXARC,MAXGUB,MAXNOD,
* NGUBS ,NODES ,ROOT,EPSILON,BIG1

REWIND 13

SAVE DATA STRUCTURES

OO0 O

DO 10 I=1,NODES
WRITE(13) PRED(I), THD(I),CARD(I),LNOD(I),BASIS(I), FLOW(I)
10 CONTINUE
WRITE(13) ROOT
C
C SAVE ARC STATUS
C
DO 20 I=1,ARCS
WRITE(13) GFLOW(I),YFLOW(I),STATUS(I)
20 CONTINUE
RETURN
END

sseskoste St desfe sk e st ok s ok ok sk ke ke oe ok ok Sk ok s o sk e sl ke o s e oo s e sk e sk sk e sk e sk e se sk ofe ook ke se e ek ok

SUBROUTINE LBRED (BASIS,CARD,FLOW,GFLOW,LNOD,PRED,
1 STATUS,THD,YFLOW)
CH¥k sfe sk ke e Sk e sk sk e s sk ok Sk e e Sk o s s ok ok Sk ok o o K e e e ook ok ok e sk s o sk ok e ke e b sl sfe s sk ke e sk ok e sk ek ke
C
C SUBROUTINE ARGUMENTS

C
C
C
C
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C
INTEGER BASIS(*),CARD(*),LNOD(*),PRED(*),STATUS (*),THD(*)
DOUBLE PRECISION FLOW(*),GFLOW(*),YFLOW(*)
C
C LOCAL VARIABLES
C
INTEGER 1
C
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB,MAXNOD,NGUBS,NODES,
* ROOT
COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS MAXARC, MAXGUB,MAXNOD,
* NGUBS NODES ,ROOT,EPSILON,BIG1
C
C READ DATA STRUCTURES
C
REWIND 13
DO 10 I=1,NODES
READ(13) PRED(I), THD(I), CARD(I), LNOD(I),BASIS(I), FLOW(I)
10 CONTINUE
READ(13) ROOT
C
C READ ARC STATUS
C
DO 20 I=1,ARCS
READ(13) GFLOW(I),YFLOW(I),STATUS(I)
20 CONTINUE
RETURN
END
C
C
C**** e sk e Sk e S sk e se sk s e s 3 3k ok e Skt ok o sk e se s b 3ok ok e e sk e s sk e o ok s sk ek e sk e se e ok sk e ke e o
SUBROUTINE UBRED (BASIS,CARD,FLOW,GFLOW,LNOD,PRED,
1 STATUS, THD,ZFL.OW)
C**** e sk e s e s e e ke sk o sk b sk s e 3 e skt e o e ol e s b o fe o e ol e e ok ae ek fe S e ook s ke s ke e o e Sk sk ok
C
C SUBROUTINE ARGUMENTS
C
INTEGER BASIS(*),CARD(*),LNOD(*),PRED(*),STATUS(*), THD(*)
DOUBLE PRECISION FLOW(*),GFLOW(*),ZFLOW (*)
C
C LOCAL VARIABLES
Cc
INTEGER 1
C
DOUBLE PRECISION TCOST,EPSILON,BIG1
INTEGER ARCS,ARTADD,BIG,GARCS,MAXARC,MAXGUB MAXNOD,NGUBS,NODES,
* ROOT
COMMON /PARM/ TCOST,ARCS,ARTADD,BIG,GARCS, MAXARC , MAXGUB,MAXNOD,
* NGUBS,NODES,ROOT,EPSILON,BIG1
C
C READ DATA STRUCTURES
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REWIND 11
DO 10 1=1,NODES
READ(11) PRED(I), THD(I),CARD(I),LNOD(D),BASIS(I),FLOW(I)
10 CONTINUE
READ(11) ROOT
C
C READ ARC STATUS
C
DO 20 I=1,ARCS
READ(11) GFLOW(D),ZFLOW(I),STATUS())
20 CONTINUE
RETURN
END




