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Achieving and maintaining sustainability in irrigated agriculture production in the era 

of rapidly increasing stress on our natural resources require, among other essential 

actions, optimum control and management of the applied water. Thus, a significant 

upgrade of the currently available soil water monitoring technologies is needed. The 

primary goal of this work was to reduce the uncertainties of spatially variable soil 

water in the field. Two approaches are suggested: 1) The Bayesian decision model that 

implicitly accounts for spatial variability at minimal cost based on limited field data, 

and 2) The Actively Heated Fiber Optic (AHFO) method that explicitly accounts for 

spatial variability with high sampling density at relatively low cost per measurement 

point. 

The Bayesian decision model uses an algorithm to integrate information embodied in 

independent estimates of soil water depletion to derive a posterior estimation of soil 



 

water status that has the potential to reduce the risk of costly errors in irrigation 

scheduling decisions. The sources of information are obtained from an ET based water 

balance model, soil water measurements, and expert opinion. The algorithm was tested 

in a numerical example based on a field experiment where soil water depletion 

measurements were made at 43 sites in an agricultural field under center pivot 

irrigation. The results showed that the estimates of the average soil water depletion in 

the field obtained from the posterior distributions of soil water depletion proved to 

outperform simple averaging of n soil water depletion measurements, up to n = 35 

measurements. For n< 3, the model also provided a 39% average reduction in risk of 

error derived from non-representative measurements. 

The AHFO method observes the heating and cooling of a buried fiber optic (FO) cable 

through the course of a pulse application of energy as monitored by a distributed 

temperature sensing (DTS) system to reveal soil water content simultaneously at sub-

meter scale along the FO cable that can potentially exceeds kilometers in length. A 

new and simple interpretation of heat data that takes advantage of the characteristics of 

FO temperature measurements is presented. The results demonstrate the feasibility of 

AHFO method application to obtain <0.05 m
3
m

-3
 error distributed measurements of 

soil water content under laboratory controlled conditions. The AHFO method was then 

tested under field conditions using 750 m of FO cables buried at 30, 60, and 90 cm 

depths in agricultural field. The calibration curve relating soil water content to the 

thermal response of the soil to a heat pulse was developed in the lab. It was 

successively applied to the 30 and 60 cm depths cables, while the 90 cm depth cable 



 

illustrated the challenges of soil heterogeneity for this technique. The method was 

used to map with high spatial (1m) and temporal (1hr) resolution the spatial variability 

of soil water content and fluxes induced by the non-uniformity of water application at 

the surface.   
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1. General Introduction 

 

1.1 Uncertainty in Soil Moisture Measurements  

The fundamental objective of scientific irrigation scheduling is accurate tracking of 

crop-available water in the soil. A variety of techniques are employed to measure soil 

water content, which is then used to calculate the amount of available water remaining 

in the root zone. But measurements of soil water content are inherently uncertain, and 

because crop water availability is defined in terms of the remaining ‘available 

capacity’ in the root zone the uncertainty of measured soil moisture is compounded by 

the natural variability of soil water holding characteristics and inexact knowledge of 

crop root zones and water uptake patterns.  

 

The net effect is that estimates of field-wide crop water availability derived from soil 

moisture measurements are quite uncertain. Some degree of uncertainty is intrinsic to 

the measurement technique used. Additional uncertainty derives from soil 

heterogeneity and uneven distribution of applied water. 

 

A point measurement of soil water content will often not be representative of average 

conditions, nor will it provide any information about the variability of soil water 

content. Additionally, the uncertainty of computed values of crop available water will 

be compounded by wide variations in total holding capacities. 
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1.2 Dealing with Uncertainty 

When water supplies are not limited the problem of measurement uncertainty is often 

circumvented by maintaining soil moisture at higher than critical levels, relying on 

point measurements of soil moisture to decide when to irrigate, and maintaining some 

soil water in reserve as a hedge against uncertainty. But with the accelerating 

competition for water and resulting increases in opportunity costs of water, the 

practice of holding soil moisture in reserve will become progressively more expensive. 

That implies a need for more accurate ways of estimating crop water availability in 

heterogeneous fields. 

 

More accurate determinations can be derived by replication, i.e., by taking 

measurements at several points in the field. The common assumption is that the 

variance of measured depletion is reduced inversely with the square of the number of 

replicated measurements. However the validity of this assumption is limited by two 

factors: 

 Individual measurements are not always statistically independent. Different 

soil types encompassed within a single field imply patterned variations in 

water holding characteristics. 

 Non-uniform applications of irrigation water, compounded by redistribution of 

surface runoff and preferential subsurface flows may result in systematic 

variations in soil water distributions. Consequently, soil moisture 
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measurements taken within definable sub-sectors of a field may be highly 

correlated.  

 Uncertainties of crop root zone and uptake patterns are not reduced by 

replication of soil moisture measurements. The uncertainty of available 

capacity remains a confounding factor. 

 

The cost of replication is also another important factor. Because the accuracy of 

measurements is more or less inversely proportional to cost, the irrigation manager 

faces a Hobson’s choice. The high cost of more accurate measurements may preclude 

taking multiple measurements; lower cost methods characterized by low accuracy 

require multiple measurements to be effective. 

 

1.3 Alternative Approaches-Objectives 

The primary goal of this work is develop alternative approaches for reducing the 

uncertainties of spatially variable soil water contents in the field. Two approaches are 

suggested:  

1. The Bayesian decision model that implicitly accounts for spatial variability 

with virtually no additional cost. 

2. The Actively Heated Fiber Optic (AHFO) method that explicitly account for 

spatial variability with relatively low cost per measurement point and replica. 
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For the first approach, the specific objective is to explore the concept of using a 

Bayesian algorithm to integrate information embodied in independent estimates of soil 

water depletion generated from an ET based model with the information derived from 

soil moisture measurements in the field as well as additional subjective information to 

derive a posterior estimation of soil water status that has the potential to provide a 

better basis for irrigation decisions. An irrigation decision that will be based on: 

1. More accurate estimation of the average condition of soil water in the field. 

2.  Reduced risk of relaying on measurements or modeling outputs that are 

substantially non representative of the average condition of soil water in the 

field. 

The Bayesian decision model approach is detailed in Chapter 2. 

 

For the second approach, the objectives are first to test, under controlled conditions, 

the feasibility of using a novel approach for analyzing the thermal response of buried 

fiber optic cable to a heat pulse in order to retrieve high temporal (< 1 hr) and spatial 

(< 1 m) resolution distributed measurements of soil water content. The feasibility 

analysis of the AHFO method is presented in Chapter 3. 

 

Then, condition the capability of the AHFO method to capture with high spatial and 

temporal resolution the spatial variability of soil water content and fluxes is tested 

under field. The AHFO field testing methodology and results are presented in Chapter 

4. 
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2. A Bayesian Decision Model for Reducing the Uncertainty of Soil 

Water Determinations 
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2.1 Abstract 

Scientific irrigation scheduling often relies on calculated evapotranspiration (ET) to 

estimate daily soil water depletion. Since the resulting estimates of soil water content 

are uncertain, and become increasingly uncertain as ET estimation errors accumulate 

over a period of time, it is common practice to measure soil water periodically to 

correct the soil water content estimates. But soil water content measurements are also 

subject to substantial error. While both ET-based estimates and field measurements of 

soil water content provide useful information, neither is sufficiently accurate for 

purposes of precise irrigation management.  

 

An algorithm for minimizing uncertainty of soil water depletion determinations is 

presented. Based on Bayesian decision analysis, the algorithm integrates information 

from ET estimates and soil water content measurements to derive i̂  , the posterior 

estimate of soil water content at each particular location in the field. i̂  has the 

potential to provide a better basis for irrigation decisions. An indicator was also 

developed to identify potential problems with the various sources of the model inputs. 

The algorithm was tested in a numerical example where soil water depletion 

measurements were made at 43 sites. These provided a basis for evaluating the 

performance of the model. For determining average condition of soil water depletion 

in the field, the estimates derived from i̂  proved to outperform simple averaging of n 

soil water depletion measurements. For n<4, the model also provided a 39% average 
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reduction in risk of error derived from extremely non representative measurements of 

the average conditions of soil water depletion, i.e., measurements or combination of n 

measurements that are outside an error band of ± 50% range of the true average soil 

water depletion. 
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2.2 Introduction 

In any irrigation management decision irrigation managers need to answer the three 

fundamental questions: 1) How much water to apply?, 2) When to apply it?, and 3) 

How to apply it? [Fereres et al., 2003]. 

 

From a conventional irrigation management perspective, the answers for the three 

former questions are strategically shaped by the objective of minimizing yield losses 

through: 1) satisfying all plant evaporative demands, 2) before crop water-stress 

occurs and 3) in >90% of the field [English et al., 2002]. The answers are usually 

formulated by quantitative approaches [Fereres et al., 2003] such as direct soil water 

measurements and monitoring, and soil water balance modeling. A variety of 

techniques are employed to determine soil water content, which is then used to 

calculate the amount of available water remaining in the root zone. All of these 

techniques are subject to error, and because crop water availability is defined in terms 

of the remaining fraction of ‘available capacity’ in the root zone, the uncertainty of an 

estimated or measured soil water content is compounded with the natural variability of 

soil water holding characteristics and inexact knowledge of crop root zones and water 

uptake patterns. Several methods are usually employed to mitigate the effects of 

uncertainty associated with soil water depletion determinations when conventional 

irrigations scheduling methods are employed. For instance, the threshold of soil water 

content at which an irrigation event will be initiated is usually set higher than the true 

water stress threshold level at which crop yields will be reduced, in order to minimize 
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the risk of crossing the stress threshold [Schmitz and Sourell, 2000]. Likewise, the 

target soil water refill level is often set lower than field capacity to avoid overfilling 

the root zone profile. Using such uncertainty mitigation techniques, conventional 

irrigation management can maximize crop yield while minimizing associated risks.  

But such strategies for mitigating uncertainty can be expensive, and are inconsistent 

with economically optimized irrigation scheduling strategies such as deficit irrigation 

[English et al., 2003].  

 

The accelerating competition for water and resulting decreases in availability and 

increases in opportunity costs of water have motivated the emergence of a 

fundamentally new paradigm for irrigation management that seeks to maximize net 

economic returns to water rather than maximizing yields [English, 1996; 2002] 

especially in arid and semi-arid regions [Debaeke and Aboudrare, 2004]. Generally, 

deficit irrigation is an effective strategy for maximizing returns to water [English, 

1990; Fereres and Soriano, 2006; Geerts and Raes, 2009]. Deficit irrigation involves 

deliberate under-irrigation of some land at some times during the irrigation season soil 

water content is allowed to fall below the soil plant water-stress threshold level and 

crop stress and potential yield reduction are expected.  

 

Optimum management will therefore require accurate tracking of crop-available water 

in the soil to enable carefully controlled levels of soil water depletion. Thus, 

uncertainty mitigation techniques routinely used in conventional irrigation scheduling 
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are no longer applicable, and consequently, errors in implementation of optimal 

irrigation strategies are practically inevitable. Such errors can eventually lead to sub-

optimal irrigation management, reduced net returns, increased economic risk [English, 

1981] and increased environmental impacts [English, 2002]. 

 

Irrigation managers currently seek to reduce the uncertainty by methods that vary in 

reliability and precision. Some involve scientific measurement, but the irreducible 

uncertainties associated with all practical, currently available scientific measurement 

techniques are generally substantial. To reduce these uncertainties much more 

measurement replicas in the field are needed than what is currently employed in the 

field of irrigation management. This requires additional investments that can only be 

justified economically by high value crops, extreme water resources stress and costs, 

or by very tight regulatory constraints on non-point sources pollution driven by 

agricultural water application. Other methods are more or less subjective, including 

unverified simulation and professional judgment, but such subjective methods may 

embody valuable information. The argument we make here is that valuable 

information gleaned from multiple sources, including both imperfect measurements 

and subjective information, may be combined for a more useful estimate of soil water 

depletion than is possible with any single source. But all such information is 

intrinsically uncertain, and that uncertainty must be accounted for in the analysis. 
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This paper will focus on a methodology to reduce the uncertainty, of some of the 

already commercially available methods for determination of soil water depletion. 

English et al. [2008] and Sayde et al. [2008] proposed an analytical approach to 

reduce the uncertainty of estimated crop available water with virtually no additional 

cost, utilizing a Bayesian decision model to integrate information embodied in 

different estimators of soil water depletion. In their approach, the uncertainties of two 

common methods of estimating soil water depletion, one based on cumulative 

estimated ET the other on soil water measurements, are quantified. Then the 

probability distributions of the two estimators are incorporated into a posterior 

probability distribution of depletion that provides a better basis for assessing average 

plant available water in the field. However, their approach did not account for the 

spatial variability of actual crop water uptake and applied water, which can lead to 

subsequent variability in soil water depletion across the field. 

 

 In this paper, we propose an analytical method to reduce the uncertainty in 

determinations of soil water depletion while accounting for its variability in the field. 

A normal-normal Bayesian model will be used to combine estimates of soil water 

depletion from two sources: 1) soil water measurements, and 2) an irrigation 

scheduling model that accounts for the spatial variability of soil physical properties 

and non-uniformity of antecedent soil water content (due to uneven uptake and non-

uniform application). The irrigation Management Online (IMO) model will be used as 

the evapotranspiration (ET) and irrigation scheduling model in this paper. 
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2.3 The Bayesian Model 

The objective of this work is to provide a mechanism for explicitly accounting for and 

reducing the uncertainty in soil water depletion estimates when formulating optimum 

irrigation strategies. To this end, estimates of soil water depletion from both the IMO 

model (the ET model) and soil water measurements will be treated as random 

variables rather than deterministic quantities. The probability distributions of each will 

be combined in a Bayesian analysis to derive a posterior distribution of depletion, 

which will, on the one hand, provide a better basis for irrigation decisions, and on the 

other hand, adjust the soil water distribution estimates generated by the IMO model to 

provide better initial estimates of soil water distribution for the day that follows a soil 

water measurement. 

 

The following is a list of parameters used in the model formulation: 

δi True soil water depletion at location i (mm) 

Di Measured soil water depletion at location i (mm) 

σDi
2 

Variance in Di due to measurement errors at location i (mm) 

ω  True field-average soil water depletion (mm) 

τ
2
 True spatial variance of soil water depletion in the field (mm

2
) 

m Modeled field-average soil water depletion from IMO (mm) 

s
2 

Modeled spatial variance of soil water depletion in the field from 

IMO 

(mm
2
)
 

α
2
 Coefficient of confidence in the IMO model outputs (mm

2
) 

i  True maximum amount of water stored in the crop root zone at 

field capacity at location i 

 

(mm) 
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i  
True soil water content at location i (mm) 

Mi Measured soil water content (mm) at location i (mm) 

MFCi Measured soil water content at field capacity at location i (mm) 

ξi random error in soil water measurement at location i (mm) 

σi
2
 Variance of ξi (mm

2
) 

ξFCi random error in soil water measurement at field capacity at 

location i 

(mm) 

σFCi
2
 Variance of ξFCi (mm

2
) 

i̂  
Posterior estimate of δi (mm) 

2ˆ
i
 

Posterior variance of i̂  (mm
2
) 

 
̂  Estimated average soil water depletion in the field (mm) 

2
̂   Variance of ̂  (mm

2
) 

D i  Sample average of Di across the field (mm) 

 Variance of D i  (mm
2
) 

p
 Difference between ̂  and m (mm) 

m  Difference between ̂  and D i  (mm) 

N Total number of Di   

 

2.3.1 The model structure 

A normal Bayesian model with known variance and normal prior for the mean is 

suggested to estimate δi, the true soil water depletion at a particular location (i) in the 

field. The advantage of this model is that it accounts for both the spatial variability of 

soil water depletion across the field (by allowing each location its own mean), and the 

uncertainty of soil water depletion measurements (i.e. the measured error) while 

keeping the computational costs manageable.  

2
iD


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The structure of the model is presented in Figure 2.1. Here we assume that at a 

particular moment in time, the prior distribution of δi in the field follows a normal 

distribution N(m, s
2
 + α

2
) where m is the IMO simulated average soil water depletion 

in the field. s
2
 the variance of the IMO simulated soil water depletion in the field and 

α
2
 is a coefficient added to s

2
 to reflect the uncertainty in the IMO model outputs. A 

full description of the prior distribution can be found in section 2.3.3. 

 

Di is the measured soil water depletion at location (i). Assuming that the measurement 

instrument is unbiased we take σDi
2 

to be the error of a particular measurement, Di. We 

assume that Di follows a normal distribution (as indicated in section 2.3.2) so that: 

 

               Di│δi , σDi
2
 ~ N(δi , σDi

2
)                                  Eq. 2.1          

                         

 

Figure 2.1   Structure of the normal model 
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Our objective is to obtain an estimate of the average soil depletion in the field for 

irrigation management decisions. This will be obtained in two steps: 1) First, posterior 

estimate and variance for each δi is calculated by using the  normal Bayesian model to 

combine the measured soil water depletion data and a prior distribution for the δi ‘s 

obtained from IMO. Then 2) the various posterior estimates of δi obtained in the 

previous step are used to calculate an estimated mean of the soil water depletion in the 

field (i.e. an approximate posterior field average soil water depletion) as well as the 

uncertainty in this estimated mean. 

 

In the following sections we will first describe, in section 2.3.2, how the Di probability 

distribution is obtained. Then in section 2.3.3, we will address the prior distribution 

characteristics and the IMO model description that is used to generate the prior. 

Finally in section 2.3.4, we present the posterior distribution formulation and the use 

of the posterior distributions of the δi to calculate an approximate posterior estimate of 

field-average soil water depletion and its related uncertainty.  

 

2.3.2 Probability distributions of measured soil water depletion  

Measured soil water depletion is derived from the difference between the measured 

maximum amount of water stored at field capacity (MFC) and measured current soil 
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water content (M). Estimates of depletion derived from soil water measurements may 

be quite uncertain. In fact, in addition to the uncertainty associated with measuring 

MFC and M, both are measured at random points in a heterogeneous field, and 

integrated through an uncertain root zone. Soil water depletion is known to vary across 

a field. This is mainly due to 1) heterogeneity of water application and 2) the spatial 

heterogeneity of crop-available water and crop development, and the consequent 

variability of crop ET associated with areas of low water availability.  

 

The main sources of uncertainties associated with the determination of soil water 

depletion at a particular location in the field are: 1) errors in measurement of current 

soil water content, 2) uncertainty in MFC. 

 

We define i to be the true maximum amount of water stored in the crop root zone at 

field capacity at a particular location (i) in the field, and i  to be the true soil water 

content (mm) at a given time. Then δi, the true soil water depletion at location i, can be 

expressed as: 

 

iii                                                      Eq. 2.2                                                                             

 

i , and i  are usually unknowns, and we rely on measurements to determine the soil 

water depletion at a particular location. But, every measurement imbeds errors that 
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need to be characterized in order to be used effectively in determination of soil water 

depletion. 

 

In this context we will assume that Di is obtained from subtracting Mi, the measured 

soil water content (mm) at location i , from MFCi the measured soil water content at 

field capacity at location i such as: 

Di = MFCi - Mi                                                  Eq. 2.3 

 

To account for the uncertainty in soil water measurements, Mi is expressed as: 

Mi = i  + ξi                                                  Eq. 2.4 

 

Where ξi is a random error with  ξi ~ N(0,σi
2
 )  

 

Here, σi
2
, the variance of random errors at a particular point in the field, usually comes 

from: I) instrument error, II) calibration error and III) integration error (including the 

uncertainty of root zone depth). For example, in the case of neutron probe 

measurements (the instrument we will focus on here), the instrument error is 

associated with the count measurement precision. The calibration variance is 

associated with the use of single calibration curve for all locations, and errors arising 

from the calibration process itself [Hupet et al., 2004]. The integration variance is 

associated with the numerical technique used to integrate measurements through the 

root zone [Haverkamp et al., 1984]. Detailed statistical methods to quantify the 
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uncertainty in neutron probe soil water measurements are detailed in Haverkamp et al. 

[1984] and Hupet et al. [2004].  

 

To account for the uncertainty in the field capacity measurements, MFCi can be 

expressed as: 

MFCi = i  + ξFCi                                               Eq. 2.5 

where: 

 ξFCi is a random (measurement) error such that ξFCi ~ N(0,σFCi
2
). The same 

methodology described above can be used to quantify σFCi
2
.  

 

Ideally, a specific value of MFCi is obtained at each location (i). This can be achieved 

by direct measurement of soil water content when location i is assumed to be at field 

capacity. However, in most cases such measurement is difficult and expensive to 

obtain under field conditions, leading the irrigation manager to use a single value of 

soil water content at field capacity. In this case additional sources of uncertainty are to 

be expected in the determination of soil water depletion at any location in the field. 

Characterizing and accounting for these additional sources of uncertainty will be 

discussed in the results and discussion sections. 

 

Again, the objective is to obtain a statistical distribution of the uncertain measured soil 

water depletion (Di) to be used in the Bayesian model. This can be obtained by 

deriving the expected value and the variance of Di in Equation 2.3. Being the 
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difference of two normally distributed parameters (Mi and MFCi) assumed to be 

independent for the sake of simplicity, then Di follow a normal distribution as follows: 

Di ~ N(δi, σDi
2
)                                                  Eq. 2.6 

where:   

σDi
2
 = σFCi

2 
+ σi

2
                                                 Eq. 2.7 

2.3.3 Prior distribution of soil water depletion in the field 

The prior distribution of soil water depletion across the field is obtained using IMO 

simulations. IMO is a web-based advisory service for optimum irrigation 

management. It is designed to assist irrigation managers with planning and 

implementing optimum irrigation strategies when water supplies are limited or 

expensive. 

IMO uses a soil water balance model, tracking irrigation and precipitation inputs, 

estimating potential crop ET, adjusting the potential ET to account for low soil water 

or wet surface conditions, and application non-uniformity. It has two components:  

1. A preseason planner that allows the irrigation mangers to test the performance 

of different cropping patterns and irrigation scheduling strategies.  

2. A near real-time irrigation scheduler that automatically downloads near real-

time data from weather stations and incorporates measured soil water to 

provide irrigation scheduling advice during the growing season.  
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This application is different from most other scheduling tools in that it is focused on 

maximizing net economic returns from irrigation rather than simply maximizing yield. 

Of particular relevance is that IMO explicitly models the spatial n heterogeneity of soil 

physical properties and soil water availability, the key parameters of interest here.    

 

IMO simulates the spatial variability of the applied water (AW), available water 

holding capacity (AWHC), and soil depths (RD) using a Monte-Carlo method to assign 

random values of AW, AWHC and RD to a set of random monitoring points within a 

field.  Using a water balance approach, these spatially variable factors are combined 

with algorithms for estimation of spray loss, ET, infiltration and percolation to 

estimate field scale variability of plant available water and soil water depletion.  

 

The IMO model outputs that we are interested in are m, the simulated average soil 

water depletion in the field, and s
2
, the variance of the simulated soil water depletion 

in the field. A parameter, α
2
, is added to s

2
 to reflect the uncertainty in the IMO model 

outputs. For the scope of this paper, we assumed that α
2
 is a user input based on an 

educated guess. Nevertheless, IMO could be adapted to calculate an α
2
 value for each 

time step by accounting for the various sources of uncertainties associated with its 

input parameters and algorithms involved in the simulations. Two general objections 

might be raised from incorporating “subjective” information into the analysis; first, 

that such information lacks scientific rigor, and second that judgment can vary from 

one individual to another. But by using expert judgment the analyst is introducing 
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valuable additional information that could not otherwise be incorporated into the 

analysis. The loss of objectivity and lack of consistency that may result must be 

viewed as reasonable tradeoffs for the additional information introduced to the 

analysis [English and Orlob, 1978]. In addition this additional information is used in a 

decision making context, which is the purpose of developing this Bayesian decision 

model in the first place. This is fundamentally different from the scientific inquiry 

context where analysts prefer not to take the risk of biasing their results by adding 

subjective information [English and Orlob, 1978]. 

 

In the follow-up example in section 2.3.4, the educated guess for α
2
 will be based on 

Sayde et al. [2008] analysis of the uncertainly in ET and ETc in the region where the 

test field is located. 

The assumed prior distribution of δi is: 

2 2( , , )iP m s  ~N(m, s
2
 + α

2
)                                                  Eq. 2.8 

 

2.3.4 The posterior distribution of soil water depletion and an approximate 

posterior estimated field average soil water depletion  

Using Bayes rule to combine the data distribution 2( , )|i i DiP D   and the prior 

distribution 2 2( , , )iP m s  , the posterior distribution of δi is given up to a constant of 

proportionality as: 

),|(),,(),,,,|( 222222
DiiiiDiii DPsmPsmDP                        Eq. 2.9 
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Using the assumption that both data distribution and prior distribution are normal, we 

obtain: 


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   Eq.2.10          

After performing the necessary calculation (see Appendix A) we obtain the estimated 

posterior distribution of δi as follows: 

   2 2 2

ˆ
ˆ ˆ ˆ, , , ~ ,i i i i

P D m s N


                                              Eq. 2.11 

where: 

2 2 2

2 2 2

ˆ
1 1

i

Di
i

M i

Dm

s

s 

 


 









                                         Eq. 2.12 

and 

2 2 2 2

ˆ

1 1 1

ˆ
Dii

s


  
 



                                        Eq. 2.13 

i̂  can be combined to calculate a approximate posterior distribution of field average 

soil water depletion, as follows: 
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and, 

                                                     






n

i i1
2

2

ˆ

1

1
ˆ








                                             Eq. 2.15 

where: 

 ̂ is the estimated average soil water depletion in the field 

 2ˆ
  is the estimated variance of ̂  

 n is the number of measurement locations that are averaged 

 

2.3.5 Assessing the model output 

In order to provide decision makers with additional information that reflects the 

degree of belief in the posterior estimates, an indicator is developed to identify 

potential problems with the various sources of inputs. This indicator can be potentially 

used for the IMO model calibration. Here, we argue that there is no established 

measure of credible interval for the Bayesian model outputs. Absent any such measure 

of credibility we cannot judge whether the posterior distribution is a reliable basis for 

decision making. An appropriate measure of credibility can indicate whether the 
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approximate posterior distribution is reasonably consistent with the original input 

information; if the approximate posterior distribution is consistently and substantially 

different from either the measurements or the prior (IMO modeling outputs), this will 

indicate that a problem exists in either or both sources of information, in which case a 

careful assessment of those sources of information is warranted, and the posterior 

output should be used with extra caution.  

 

One way to identify potential problems with the model outputs is to use the 

approximate posterior outputs to judge the likelihood of observing the measured and 

prior values. An example of this procedure is to look at both the estimated differences 

( p ) between the mean of the approximate posterior distribution and the mean of the 

prior distribution, and the estimated differences m   between the mean of the 

approximate posterior distribution and the mean of  D i  distribution. Here D i  is the 

weighted average of n Di : 











n

i Di

n

i Di

i

i

D

D

1
2

1
2

1





                                                 

 Eq. 2.16

 

and, 
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





n

i Di

iD

1
2

2

1

1





                                          

 Eq. 2.17 

As normality is assumed for the measured, prior, and approximate posterior 

distributions then, p  ~ N(m-̂ , σp
2
)                and       m ~ N( iD -̂ , σm

2
), Where: 

σp
2
 =σDi

2
+ 2ˆ

                                             
Eq. 2.18

   

and, 

                
σm

2
=α

2
+s

2
+ 2ˆ

                                             Eq. 2.19 

 

Then, p and m distributions can be used to verify that the probability of observing 

the zero difference value (the value which would indicate there is no difference 

between the means under the criteria that are tested) is within a certain range “d”. 

Here, d is left to the user judgment. Note that, in principle, the variances of the two 

“differences” distributions should decreases with increasing n, and thus allowing 

testing the difference between the parameters over stricter interval.  

 

This methodology can also be used to calibrate the IMO model. For instance if a time 

series of soil water depletion measurements is available, IMO input parameters can be 
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calibrated such as to observe at every time step a  probability of zero difference 

between the posterior means and IMO generated prior that is in a certain range d. 

2.3.6 An alternative Bayesian model to estimate the average soil water depletion 

in the field 

The Bayesian model described in the previous paragraphs treats every Di 

independently to obtain one particular posterior distribution for each one of the Di. 

The advantage of such technique is that it will potentially allow each Di to have its 

own prior distribution in case additional information is available on the spatial 

location of the measurement. An example of the potential additional information is the 

farmer/irrigation manager judgement on how representative a particular measurement 

location is in relation to the patterns of depletion across a particular field. 

If spatial information on each of the Di cannot be obtained, an alternative hierarchical 

normal-normal model can also be employed to generate a posterior distribution 

estimate of the field average soil water depletion. The structure of the model is 

detailed in Figure 2.2. 

 In this model we have: 

          
     (       

 )                   
  assumed known 

        
     (     

 )                     
     assumed known from IMO 

     (     )                                m assumed known from IMO 

                                                            user input 
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Then the posterior distribution of ω, can be expressed as (see Appendix 2 for full 

derivation for the posterior distribution):  

 (     ̃)   ( ̂  ̂ ) 

With:  

 ̂  

 
  

 ∑
  

   
    

 
 
   

 
  

 ∑
 

   
    

 
 
   

                                     Eq.2.20 

And, 

 ̂  

 
  

 ∑
  

   
    

 
 
   

 
  

 ∑
 

   
    

 
 
   

                                    Eq.2.21 

 

 

 

Figure 2.2 Structure of the hierarchical normal-normal model 
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2.4 A Numerical Example 

The analytical approach outlined above is illustrated in a case study for mid-season 

irrigation of a winter wheat field on a cooperating farm near Echo, Oregon. The 

objective of the numerical example is to gain some insights on how the model 

performs, and what are its limitations.   

 

The data used in the numerical example are from a non-published field experiment to 

study the yield response to different irrigation treatments. In the experiment, the field 

was divided in three sections. In section 1 (~15.4 ha), water was applied to meet the 

evaporative demands. In section 2 (~15.4 ha), the center pivot speed was adjusted to 

apply 60% of the water application in section 1. Section 3 (~25.1 ha), was divided into 

eight zones of application treatments by adjusting the center pivot speed at each of the 

eight zones. The eight treatments are: 110, 90, 85, 80, 70, 50, 30, and 0% of the water 

applied in section 1 in each single irrigation event. 

 

In this numerical example, we will use the data of soil water monitoring network 

installed in section 1 to illustrate the spatial variability of soil water depletion 

measured in the field. The soil monitoring network consisted of fifty 1.5” PVC tube 

distributed in section 1 and monitored periodically by a neutron probe (CPN 503DR). 

The locations of the access tube are illustrated in Figure 2.2.  Soil water measurements 

were taken at 15cm increments in depth. Each measurement consisted of a 16 seconds 
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reading time. A calibration equation to transfer the measured neutron count ratio into 

soil water value was developed specifically for this field. 

 

Field capacity measured in the field at the beginning of the irrigation season showed 

significant spatial variability (Figure 2.3). This can be explained mainly by the large 

variation in soil depth in the field (Figure 2.4). 

 

Out of the 50 access tubes installed in section 1, 43 will be used in the analysis. The 

remaining 7 were not installed when the field capacity values were obtained or were 

not measured on the 27
th

 of May, the day that we will focus on for this numerical 

example 
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  

 

Figure 2.3   Location of the neutron probe access tubes 

in the field. 
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Figure 2.4   Distribution of measured soil water content at field capacity 

 

 

 
Figure 2.5   Distribution of measured soil depth 
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Though the objective of the irrigation treatment in Section 1 was to meet all 

evaporative demands, this was not possible due to several water shortages, including 

the time period between May 24 and May 27. The effect of the water shortages is 

clearly visible in the IMO simulation of both soil water budget (Figure 2.5) and ETc 

(Figure 2.6). On May 27, a soil water measurement event was conducted in section 1. 

The results of this soil water measurement event will be used to calculate soil water 

depletions (Figure 2.7) that will be refer to as measured depletions in the following 

sections. 

 

 

Figure 2.6   Estimated soil root zone water contents from IMO simulations (blue line), 

applied water (red bars), and precipitation (green bars) as shown in IMO output plots. 
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Figure 2.7   Cumulative potential and actual average ET simulated by IMO. 

 

 
Figure 2.8   Measured Depletion on the 27

th
 of May 
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Input Parameters: 

On the 27
th

 of May, the IMO simulated spatial variability of depletion is presented in 

Figure 2.8. The average and variance calculated from 300 monitoring points’ 

simulations are: 

   m = 38.8 mm   and s
2
 = 56.2 mm

2 

 

 

Figure 2.9   Distribution of the simulated soil water depletion from IMO 

 

An α
2
 value of 21.8 mm

2
 is used in Equation 2.8 though Equation 2.15. This value is 

obtained from the analysis of the uncertainly in ET and ETc estimates in the area 

where the field is located. The standard deviation of the simulated cumulative ETc was 

0

5

10

15

20

25

30

35

F
re

q
u

en
cy

 

Simulated Depletion (mm) 



35 

 

 

15% of the mean (see Sayde et al., 2008 for more details). As depletion is directly 

associated to ETc, we assumed α
2
 is equal (0.15 x m)

 2
. 

 

The values of soil water depletion measurements (Di) and their associated σFCi
2
, σi

2
, 

and σDi
2
 on the 27

th
 of May are shown in Table 2.1. The different variance components 

are calculated using the method detailed in Haverkamp et al. [1984] and Hupet et al. 

[2004]. 

 

Table 2.1   Di and i̂ values, and their associated uncertainties for each measurement 

location on the 27
th

 of May 

Tube # Di σFCi
2
 σi

2
 σDi

2
 i̂  2ˆ

i  

1.1 56.5 20.2 11.3 31.5 51.3 22.6 

1.2 49.8 14.5 11.3 25.8 46.9 19.5 

1.3 26.9 2.9 1.6 4.4 27.5 4.2 

1.4 30.0 15.2 12.4 27.5 32.1 20.5 

1.5 44.0 2.7 2.2 4.9 43.7 4.6 

3.1 14.4 4.4 3.8 8.2 16.6 7.5 

3.2 6.3 5.3 4.0 9.3 9.6 8.3 

3.3 28.6 8.2 6.5 14.8 30.1 12.5 

3.4 20.6 4.1 3.1 7.3 22.0 6.7 

3.5 8.4 4.4 3.9 8.3 11.2 7.5 

4.1 19.1 3.5 2.8 6.3 20.5 5.8 

4.2 24.8 6.0 4.9 10.9 26.4 9.6 

4.4 32.4 3.2 3.6 6.8 32.8 6.3 

4.5 10.4 6.0 5.8 11.9 14.0 10.3 

5.1 33.1 5.1 6.4 11.5 33.7 10.1 

5.2 59.0 6.4 8.4 14.8 55.8 12.5 

5.3 57.8 6.7 10.3 17.0 54.3 14.0 

5.4 68.1 5.7 10.2 16.0 63.1 13.3 

5.5 43.4 5.1 7.7 12.9 42.7 11.1 

6.1 61.0 4.8 7.4 12.1 58.0 10.5 

6.2 31.4 5.2 6.3 11.5 32.2 10.0 

6.3 52.9 5.0 6.5 11.5 51.1 10.0 

6.4 34.8 4.5 5.5 10.0 35.2 8.9 
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Table 2.1 (Continued)   Di and i̂ values, and their associated 

uncertainties for each measurement location on the 27
th

 of May 

Tube # Di σFCi
2
 σi

2
 σDi

2
 i̂  2ˆ

i  
 

6.5 62.2 5.5 8.9 14.4 58.6 12.2 

7.1 47.6 5.7 8.2 13.9 46.2 11.8 

7.2 78.9 4.7 9.8 14.6 72.6 12.3 

7.3 56.6 5.5 9.3 14.8 53.7 12.5 

7.4 63.4 5.0 9.1 14.0 59.7 11.9 

7.5 51.4 4.9 7.8 12.6 49.5 10.9 

8.1 53.3 8.4 16.4 24.7 49.7 18.9 

8.2 83.9 6.3 16.6 22.9 73.7 17.8 

8.3 36.9 3.6 16.5 20.1 37.2 16.1 

8.4 44.1 3.0 16.6 19.6 42.9 15.7 

8.5 15.7 4.6 16.4 20.9 20.4 16.6 

9.1 39.9 3.5 5.5 9.0 39.7 8.1 

9.2 61.9 3.6 7.9 11.5 58.9 10.1 

9.3 41.9 4.3 6.9 11.2 41.4 9.8 

9.4 42.5 3.3 4.9 8.2 42.1 7.5 

9.5 41.5 4.3 5.7 9.9 41.2 8.8 

10.1 31.2 4.4 5.8 10.2 32.0 9.1 

10.2 32.5 4.9 6.0 10.9 33.2 9.6 

10.3 31.5 3.7 5.1 8.8 32.1 7.9 

10.4 21.7 4.4 5.5 10.0 23.6 8.9 

 

Posterior output: 

The estimated posterior i̂ and 2ˆ
i   values, calculated using Equation 2.12 and 

Equation 2.13 respectively, are presented in Table 2.1. 

What we expect of the Bayesian decision model output are 1) a more accurate 

estimation of soil water depletion status in the field and 2) a reduced risk of serious 

estimation errors derived from a measurement or combination of measurements that is 

extremely non-representatives of the average soil water depletion in the field. The 

performance of the Bayesian model was assessed with these two criteria in mind based 

on the May 27
th

 field measurements.  
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The probability of observing n soil water depletion measurements with a weighted 

average (by their variance) that falls outside a certain range of error (R) around the 

true average soil water depletion in the field was calculated. That probability was then 

compared to the corresponding probability that an average of n posterior soil water 

depletion estimates would fall outside that range. Here we assume that the weighted 

average of the 43 soil water depletion measurements is the true average soil water 

depletion is the field. This comparison was performed for n ranging from 1 to 39. 

 

Figure 2.10   Example of the prior, measured, and approximate posterior distributions 

 

To test the improved accuracy in determination of average soil water depletion, R was 

set to ± 10% of true soil water depletion (the true value being the weighted average of 

43 soil water depletion measurements).The percentages of 2000 randomly generated 

combinations of n soil water depletion measurements and 2000 randomly generated 

combinations of n posterior depletion estimates that have average depletion values 
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located outside R was calculated. This calculation was repeated for n ranging from 1 to 

39 measurement locations and 1 to 39 posterior depletion estimates.  

 

The same methodology was used to assess the performance of the Bayesian model in 

reducing the risk of obtaining a measurement or combination of measurements that are 

extremely non-representatives of the field average soil water depletion. The only 

difference is that for purposes of this assessment R was set to ±50%. Here we argue 

that if the average of n measurements (and reciprocally the average of n posterior 

depletion estimates) falls outside the range of ±50% of the true water depletion then it 

can be considered extremely non-representatives of the field average soil water 

depletion. Using such data to schedule irrigations based on average soil water 

depletion will significantly increase the risk of substantially under or over irrigating 

the majority of the field. 

 

The results show that for a high number of measurements made in the fields, there was 

little or no improvement in accuracy or risk reduction reported from the use of the 

Bayesian decision model (Figures 2.10 and 2.11). But in practice, multiple 

measurements are expensive, and irrigation managers usually rely on very few 

measurements to assess soil water status and decide the timing and the depth of the 

next irrigation events. Thus, there is advantage in using the Bayesian decision model 

in this case, where the greatest improvement in risk reduction is observed at low 

numbers of measurement combinations (Figures 2.10 and 2.11).   
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Figure 2.11   Percent of n Di combinations (blue line) and n i̂  combinations (red line) 

that are outside an error band of ± 10% range of the 43 measured depletion average 

values. 

 

 

 

Figure 2.12   Percent of nDi combinations (blue line) and n i̂  combinations (red line) 

that are outside an error band of ± 50% range of the 43 measured depletion average 

values. 
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Again, what we are suggesting here is a new approach that helps irrigation managers 

make use of multiple sources of information conjunctively to improve their irrigation 

scheduling decisions. The Bayesian model, presented in this work, is basically a first 

attempt to tackle this approach and to provide guidance for future work.  In particular, 

future work should address the following issues: 

 The normality assumptions suggested for the different parameters employed in 

the model. How will the model perform if the normality assumption is 

breached for any of its parameters? And how to deal with it? 

 The assumption that the soil water depletion measurements are unbiased. This 

can be true in the case of the above numerical example because of the site 

specific soil water measurement calibration employed. But bias in neutron 

probe measurements is commonly observed in irrigation management. Such 

bias is often due to the use of generic calibration curves that are not 

representative of a particular local soil.   

 The assumptions that Individual measurements are statistically independent. 

Generally the chances of correlation increases with decreasing spacing 

between measurements. A refined version of the model should deal with the 

non independence by accounting for correlation between measurements. 

 There are additional sources of information that could be integrated in this 

analysis that might provide additional insights on the status of soil water 

depletion in the field. Specifically, we would expect that most experienced 

farmers could judge how representative a particular measurement location is 
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in relation to the patterns of depletion across a particular field e.g. a particular 

farmer might judge a particular measurement site to represent average, or dry, 

or wet sections of a field. In principle such subjective information represents 

additional information that could be utilized by a simulation model that 

explicitly accounts for spatial variability in the field (e.g. IMO). This would 

allow us to generate stratified prior distributions that reflect defined conditions 

in the field (e.g. driest 25%, average, wettest 25%, etc…). Another advantage 

of including such information is that it will allow additional flexibility for 

decision makers to adapt wide range of irrigation scheduling strategies instead 

of the targeting the average condition in the field as the current version of the 

model implicitly suggest.  

 

2.5 Conclusions 

Estimators of soil water depletion commonly used in the practice of irrigation 

scheduling are characterized by pervasive uncertainty. The Bayesian method outlined 

here provides a way to explicitly account for and reduce the uncertainties of those 

estimators, while making full use of the information embedded in those estimators. 

The analysis highlights the usefulness of water balance models, such as IMO, that 

explicitly account for the variability of soil physical properties and non-uniformity of 

applied water. Insights derived from the analysis lead to an important general 

conclusion, that scientific irrigation scheduling can be made more effective by 
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accounting for the uncertainties of both ET estimates and soil water determinations 

(including both soil water content and the soil characteristics to which soil water 

measurements are referenced). The paper has presented an analytical procedure for 

reducing uncertainty by explicitly incorporating it into the analysis. Analytical tools 

for irrigation scheduling need not only estimate the most probable levels of depletion; 

they must also quantify the uncertainties of such predictions. 

 

The task of quantifying the uncertainty of soil water measurements and soil 

characteristics may be challenging. Given the pervasive modeling and observation of 

ET, modeling of the uncertainty of ET may require relatively small additional 

investment of time. But it may be much more difficult to devise economical 

techniques for quantifying the uncertainty of measured soil water depletion. A variety 

of techniques for characterizing and mapping the spatial variability and uncertainty of 

soil water measurements might be used, such as distributed networks of point 

measurements, remote sensing and Actively Heated Fiber-Optics method (AHFO). 
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3. Feasibility of Soil Moisture Monitoring with Heated Fiber Optics 
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3.1    Abstract 

Accurate methods are needed to measure changing soil water content from meter to 

kilometer scales. Laboratory results demonstrate the feasibility of the heat pulse 

method implemented with fiber-optic temperature sensing to obtain accurate 

distributed measurements of soil water content. A fiber-optic cable with an electrically 

conductive armoring was buried in variably saturated sand and heated via electrical 

resistance to create thermal pulses monitored by observing the distributed Raman 

backscatter. A new and simple interpretation of heat data that takes advantage of the 

characteristics of fiber-optic temperature measurements is presented. The accuracy of 

the soil water content measurements varied approximately linearly with water content. 

At volumetric moisture content of 0.05 m
3
/m

3
 the standard deviation of the readings 

was 0.001 m
3
/m

3
, and at 0.41 m

3
/m

3
 volumetric moisture content the standard 

deviation was 0.046 m
3
/m

3
. This uncertainty could be further reduced by averaging 

several heat pulse interrogations, and through use of a higher performance fiber-optic 

sensing system. 
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3.2    Introduction 

Soil water accumulation, storage, and depletion play a central role in the hydrologic 

cycle and the global water balance.  Though many accurate methods are available for 

point measurement of soil water content, there are currently no precise in-situ methods 

for measurement of soil water content from meter to kilometer scales. The goal of this 

article is to demonstrate the feasibility of the Active Heat pulse method with Fiber 

Optic temperature sensing (AHFO) to obtain precise, distributed measurements of soil 

water content across these spatial scales and over a broad range of soil water contents.   

 

The ability of fiber-optic Distributed Temperature Sensing (DTS) systems to retrieve 

temperature readings each meter along fiber-optic cables in excess of 10,000 m in 

length at high temporal frequency has afforded many important opportunities in 

environmental monitoring [e.g., Selker et al., 2006a, 2006b; Tyler et al., 2008; 

Westhoff et al., 2007;  Tyler et al., 2009; Freifeld et al., 2008]. Recently, Steele-Dunne 

et al. [2009] demonstrated the feasibility of using the thermal response to the diurnal 

temperature cycle of buried fiber-optic cables for distributed measurements of soil 

thermal properties and soil moisture content. Unlike the AHFO method, the Steele-

Dunne et al. [2009] method does not require an external source of energy. 

Nevertheless, its application remains challenging under conditions where the thermal 

response to the diurnal temperature cycle is not large enough to allow accurate 

estimation of soil moisture content (e.g., under dense vegetative canopy, at depths 
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beyond the top few centimeters of the soil column, cloudy days, or other surface-

energy flux limited systems). 

 

The principle of temperature measurement along a fiber-optic cable is based on the 

thermal sensitivity of the relative intensities of backscattered Raman Stokes and anti-

Stokes photons that arise from collisions with electrons in the core of the glass fiber 

[see Tyler et al., 2009]. A laser pulse, generated by the DTS unit, traversing a fiber-

optic cable will result in Raman backscatter at two frequencies, referred to as Stokes 

and anti-Stokes.  The DTS quantifies the intensity of these backscattered photons and 

elapsed time between the pulse and the observed returned light. The intensity of the 

Stokes backscatter is largely independent of temperature, while anti-Stokes 

backscatter is strongly dependent on the temperature at the point where the scattering 

process occurred. Temperature can be inferred from the Stokes/anti-Stokes ratio. The 

computed temperature is attributed to the position along the cable from which the light 

was reflected, computed from the time of travel for the light [Grattan and Sun, 2000]. 

 

Heat pulse methods are well established for the determination of soil thermal 

properties, soil water content and water movement. These methods usually apply a 

line source of energy to the soil with the resulting temperature fluctuation monitored 

by one or more parallel probes [Bristow et al., 1994]. The rate of radial transmission 

of heat depends on the soil bulk density, mineralogy, particle shape, and—

principally—soil water content [e.g., Shiozawa and Campbell, 1990]. Geometries 
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where the thermal observations are co-located with the heated probe are referred to as 

single probe methods [de Vries and Peck, 1958; Shiozawa and Campbell, 1990; 

Bristow et al., 1994]. Heat pulse methods have also been widely implemented in 

multi-probe geometries, with one or more sensing probes in proximity of the heat 

source [e.g., Lubimova et al., 1961; Jaeger, 1965; Larson, 1988; Campbell et al., 

1991; Bristow et al., 1993, 1994; Heitman et al., 2003; Ren et al., 2003; Ren et al., 

2005]. 

 

Many analytical and numerical methods have been developed for the interpretation of 

heat pulse experiments in soils. Typically, the solutions assume an infinitely small 

radius and infinitely long line-source geometry. The thermal properties of soil are 

calculated from the heat-pulse response via the solution of the radial heat conduction 

equation [Carslaw and Jaeger, 1959]. During heating, a pulse of duration t0 (s) is 

applied to an infinite line heat source in a homogeneous isotropic medium which is 

taken to be at uniform initial temperature. The solution for the resulting temperature 

change following the commencement of heating is given by [de Vries and Peck, 1958; 

Shiozawa and Campbell, 1990; and Bristow et al., 1994]: 

 
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Where q’ is the energy input per unit length per unit time (J m
-1

s
-1

),  is the density of 

the medium (kg m
-3

), c is the specific heat of the medium (J kg
-1

 °C
-1

), r is the distance 

from the line source (m), c  is the thermal diffusivity (m
2
s

-1
),  is the thermal 

conductivity (W m
-1

 °C
-1

), and Ei donates the exponential integral.  

 

In this implementation of the line-source transient method, the radius of the heat 

source is assumed to be infinitely small. A correction factor can be added to the long-

time solution to account for the non-zero radius of the heat source. The validity of 

such a correction decreases with an increase of the probe radius [Blackwell, 1954]. To 

account for the finite dimensions of the cable, the cylindrical transient method can be 

used as described by Jaeger [1965] for a perfectly conducting cylinder with constant 

heat supply per unit length per unit time (q’): 
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                                                                                                         Eq. 3.6 

                                                                                         Eq. 3.7 

          

with a being the heat-source radius (m), S the heat capacity per unit length of the 

cylinder (J m
-1

 °C
-1

), 1/H the thermal contact resistance per unit area between the 

perfect conductor and the surrounding material (m
2 

ºC W
-1

), and Jn(u) and Yn(u) the 

Bessel functions  of u of order n of the first and second kind (dimensionless). 

 

Most of the existing heat pulse method literature focuses first on calculating  and c 

from the thermal responses of the soil to a heat pulse. From these values, the soil 

moisture content is then inferred, since both  and c of the soil monotonically 

increase with increasing water content. The well-known advantage of using the dual-

probe method for soil water determination is that both thermal conductivity and 

volumetric heat capacity can be accurately obtained from a single measurement, while 

the single probe method is primarily sensitive to the thermal conductivity [e.g., de 

Vries, 1952, 1963; Campbell, 1985; Kluitenberg et al., 1993; Bristow et al., 1994]. 

The main advantage of obtaining the volumetric heat capacity of the soil is that it 

allows estimation of the change in soil water content without information on soil-

specific thermal properties [Bristow et al., 1993]. Some have tried to directly correlate 

soil moisture content to the temperature rise during heating [e.g., Shaw and Baver, 

1940; Youngs, 1956]. A disadvantage of such methods is that a calibration curve that 
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relates soil moisture content to temperature change is needed for each soil type, and 

for each probe design. 

 

Systems using more than two probes provide additional information (e.g., direction of 

flux), and are an active area of investigation [e.g., Bristow et al., 2001; Mori et al., 

2003, 2005; Hopmans et al., 2002; Ren et al., 2000; Green et al., 2003; Kluitenberg et 

al., 2007]. Concerns regarding the accuracy of the different heat pulse methods 

remain, related to soil bulk density [Tarara and Ham, 1997], soil mineralogy [Bristow, 

1998], contact resistance between the probe and the surrounding material [Blackwell, 

1954], and temperature sensitivity [Olmanson and Ochsner, 2006]. 

 

The use of actively heated fiber-optic cable for observation of subsurface water 

movement has been demonstrated [e.g., Perzlmaier et al., 2004, 2006; Aufleger et al., 

2005], though for determination of soil water content it was concluded that (1) the 

method could only distinguish qualitatively between dry, wet and saturated soils 

[Perzlmaier et al., 2004, 2006; Weiss, 2003], and (2) small changes in soil water 

content could not be detected at levels above 6% volumetric water content [Weiss, 

2003]. Weiss [2003] concluded that only with dramatic improvement of the signal-to-

noise ratio of the DTS instrumentation could sufficiently accurate thermal 

conductivity be obtained by a DTS heat pulse method to quantify soil water content 

above this level. 
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Although we agree that better DTS performance improves accuracy, here we argue 

that the DTS method can quantify moisture content more precisely than suggested 

previously by using a different approach to data interpretation. Both Weiss [2003] and 

Perzlmaier et al. [2004] used the long-time approximation of either the line-source or 

the cylindrical-source transient methods to calculate the thermal conductivity of the 

soil, deriving the thermal conductivity from the slope and intercept of a line fit to the 

temperature response following an extended heat pulse. They then computed the 

moisture content using a calibration equation. Unfortunately, this fitting routine made 

use of data which varied little between moisture contents (particularly the fitted slope). 

Our approach was, in part, motivated by their data, where it was evident that though 

the slope of heating was rather insensitive to water content, the overall magnitude of 

the temperature change was quite sensitive to moisture content. This is partially due to 

the impact of the early-time data that is not fully incorporated into the late-time 

analysis. In addition, there is an intrinsic improvement in sensitivity found in integral 

methods compared to derivative (slope) approaches. 

 

Recent work has shown that more robust estimates of soil thermal properties are 

obtained using analyses that fit the entire data set of temperature change with time to a 

model [Mortensen et al., 2006]. In this article we do not attempt to optimize the data 

interpretation, but rather demonstrate the power of a simple interpretation 

methodology that appears to make better use of information contained in the heat 
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pulse data obtained with a DTS system. Opportunities for optimization of this method 

are many fold, and will be the topic of further research.  

 

3.3     Materials and Methods 

We seek a response variable that monotonically varies with soil water content and is 

suited to the characteristics of the DTS measurement method. To this end, we propose 

quantifying the thermal response of the soil to the heat pulse in the form of cumulative 

temperature increase over a certain period of time: 

dtTT

t

cum 
0

0      

Eq. 3.8 

 

where Tcum is the cumulative temperature increase [ °C.s ] during the total time of 

integration t0 [ s ], and ΔT is the DTS reported temperature change from the pre-pulse 

temperature [ °C ].  Tcum is a function of the soil thermal properties. Higher heat 

capacity and higher thermal conductivity, both of which monotonically increase with 

soil water content (θ), increase the rate at which heat is conducted away from the 

probe and reduce the integral for sufficiently long heat pulses. Thus, there exists a 1-

to-1 function relating Tcum to θ (under conditions where flow can be taken to be 

negligible) for a given soil, heating rate, integration time, and fiber-optic cable 

characteristics. 

 



55 

 

 

One may ask about the advantage of the integrated parameter compared to the 

maximum temperature increase approach described in Shaw and Baver [1940] and 

Youngs [1956]. The variance of the computed parameter is minimized by taking 

advantage of the fact that the DTS readings are fundamentally based upon cumulative 

photon counting. The standard deviation of DTS temperature measurements reduces 

with the square root of reading time [Selker et al., 2006]. This method allows use of 

relatively long reading times (photon integration) and low sampling rates. In fact, the 

value of Tcum is largely unaffected by sampling rate since the DTS will internally 

compute this integral as it reports lower time resolution data requiring, for example, a 

less expensive DTS recording instrument. It will be shown later that Tcum allows for 

more accurate estimation of soil water content than ΔT in our experimental setup. 

 

The high-speed DTS unit used in this experiment (Sensortran DTS 5100 M4) allows 

high frequency data collection for comparison of more traditional interpretations of the 

integral method. This DTS unit recorded temperature every 0.5 m along the fiber-optic 

cable, with a spatial resolution of 1 m for each measurement. The average reading 

frequency was 0.2 Hz. 

 

A 0.61 m diameter sand column was supported by a 1.46 m tall smooth-interior, 

corrugated-exterior HDPE pipe (Figure 3.1). The bottom of the pipe was sealed with a 

rubber membrane, and an outlet was installed 0.05 m above the membrane seal. A 

0.012 m diameter perforated hose was fitted to the inside of the drainage port and 
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wound in a spiral laying flat on the bottom of the rubber seal to provide an easily 

controlled lower boundary condition. The drainage was actively controlled using a 

peristaltic pump. 

 

Figure 3.1   Images showing a) the sand column and b) fiber-optic section (in helical 

coils) before inserting into the sand column.   

   

b) 

a) 
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Within the column, 31.5 m of BruSteel (Brugg Cable, Brugg, Switzerland) fiber-optic 

cable was distributed in a helicoidal geometry supported by five vertical 0.006 m 

diameter fiberglass rods (Figure 3.1). The 3.8 x 10
-3

 m outer diameter cable made 

twenty-one 0.48-m diameter helical coils, spaced 0.06 m vertically, starting 0.05 m 

from the bottom and ending at the surface of the sand (1.30 m from the bottom). The 

fiber-optic cable employed was composed of two optical fibers encased in a central 

stainless steel capillary tube (OD 1.3 x 10
-3

m / ID 1.07 x 10
-3

m) surrounded by 

stainless steel strands (12 4.2 x 10
-4

m OD stainless steel wires), all of which were 

enclosed in a 2 x 10
-4

 m thick
 
nylon jacket. The metal components were used as an 

electrical resistance heater (0.365 Ω/m). 

 

Air-dried medium sand (d50 = 0.297 mm) was added in 0.30 m deep lifts with 

vibration of the entire column using a rubber mallet to settle the sand between lifts.  

No further settling was observed during the remainder of the experiment. The total 

depth of sand in the column was 1.30 m with 0.12 m of the HDPE pipe extending 

beyond the top of the sand. 

 

Computation of Tcum requires a precise value of the temperature before the start of the 

heat pulse. A 5-minute DTS reading preceding each heat pulse was used as the 

baseline temperature. Thereafter, a 44.5-m section of the cable (including the section 

in the sand column) was heated by connecting the stainless steel windings at both ends 
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of the heated section to a variable voltage AC current source (Staco® Variable 

Autotransformer Type 3PN1010). The drop in voltage along the 12 AWG copper 

connecting wires was ~ 0.1% of the total, and thus was assumed to be negligible. A 

digital timer with a precision of ± 0.01% (THOMAS® TRACEABLE® Countdown 

Controller 97373E70) controlled the duration of the heat pulse. A wide range of 

combinations of power and time were tested, though in this article we discuss only the 

results of 2-minute heat pulses at 20 W/m (120.2 VAC) which appeared to provide an 

appropriate balance of temperature response and duration relative to the DTS 

resolution. The measurements were repeated three times. Tcum was calculated using the 

data obtained over the entire heating period of 120 sec. The temperature increase 

observed at the end of the heating period (∆T120s) will also be reported to compare its 

performance in predicting soil water content with that of Tcum. We chose to employ 

∆T120s because among all values of ∆T for heating and cooling it had the highest 

signal-to-noise ratio. A reference temperature reading was obtained from a 33-m coil 

of fiber-optic cable kept in an ice-filled water bath (0 °C) (Figure 3.2). 
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Figure 3.2   Temperature readings along the fiber-optic cable before (solid line) and at 

the end (dotted line) of a 2-minute – 20 W/m heat pulse for drained soil column 

condition. The before temperature is obtained by averaging all readings during the 5 

minutes directly proceeding the heat pulse start. 

 

 

DTS readings were taken in dry, saturated and drained conditions. The drained 

condition was obtained one month after establishing the water table at 0.4 m above the 

bottom. Following the final DTS measurements in the drained column, triplicate 

volumetric samples were obtained from eight depths between the sand surface and the 

water table (spanning 0.9 m) for calibration.  
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3.4    Results and Discussions 

Volumetric soil moisture content of samples taken from the drained column varied 

from 4% to 41% (saturated), with a sharp transition 0.3 m above the water table, 

typical of sands (Figure 3.3). Repeatable, distinct values of Tcum were obtained up to 

saturation (Figure 3.3).  The slope in the θ - Tcum and θ - ∆T120s relationships decreased 

with water content (Figures 3.4 and 3.5), suggesting lower sensitivity at higher water 

contents, as found in previous studies [e.g., Weiss, 2003]. 

 

Figure 3.3   Measured soil water content (circles), and cumulative temperature 

increase (triangles) as function of depth for a 2-minute - 20 W/m heat pulse. 
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Figure 3.4   Average cumulative temperature increase (Tcum) integrated over 120 

seconds as function of soil water content () for three 2–minute - 20 W/m heat pulses 

and fitted function. For each soil water content value, the error bars are obtained from 

the standard deviation of three repetitions. The R
2
 of the fitted function is 0.994.   

 

 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

 (m3/m3)

1000

1100

1200

1300

1400

1500

1600

1700

T
c
u
m

 (
C

.s
)



62 

 

 

 

Figure 3.5   Average temperature increase at 120 seconds (∆T120s ) as function of soil 

water content (), for three 2–minute - 20 W/m heat pulses and fitted function. For 

each soil water content value, the error bars are obtained from the standard deviation 

of three repetitions. The R
2
 of the fitted function is 0.987. 

 

 

To estimate the error in soil water content (θ) obtained from Tcum, a function f(θ) was 

fitted to the Tcum vs. θ data using least-squares regression (Figure 3.4). For each value 

of θ, the estimated error (σθ) was calculated as: 






 

d

df

cumT

)(
                                Eq. 3.9 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

 (m3/m3)

9

10

11

12

13

14

15

16

17

18


T
1
2
0
s 

 (
C

)



63 

 

 

 Where 
cumT  is the standard deviation of Tcum,  





d

df )(
 is the local slope of the Tcum 

response evaluated at θ. 

 

In general, the standard deviation of DTS-measured temperature depends on the 

distance from the DTS recording unit, increasing with light loss as it potentially 

travels kilometers of distance from the unit [e.g., Tyler et al., 2009]. However, over 

shorter cable distances, such as the 50 m span employed here, this effect is negligible. 

Therefore, the standard deviation of Tcum, 
cumT , should only depend on the 

performance of the DTS system. In this experiment, 
cumT  was computed as the 

average of all standard deviations of Tcum observed along the 30-m cable section in the 

sand column. The same method was employed to estimate the error in soil water 

content obtained from ∆T120s. The error analysis shows that σθ obtained from either 

Tcum or ∆T120s increased approximately linearly with soil water content (Figure 3.6). As 

expected, the error in soil water content obtained from Tcum was much smaller than 

that obtained from ∆T120s (Figure 3.6). This error could be further reduced by 

increasing the signal-to-noise ratio, which could be accomplished by averaging several 

heat-pulse results, using a more precise DTS unit, increasing the heating intensity, or 

increasing the duration of heating. 
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Figure 3.6   Calculated error (σθ) in soil water content derived from Tcum (solid line), 

and from ∆T120s (dotted line), as function of soil water content ( ). 
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et al. [2004]. The much shorter heating interval employed here (120 s), compared to 

626 s used by Weiss [2003] and 7200 s by Perzlmaier et al. [2004], greatly reduces the 

potential for such disturbance. That said, Weiss [2003] indicated that his approach did 

not give rise to water displacement, and our experiment showed no change in Tcum with 

replication, suggesting there were no significant distortions due to the heat pulse 

measurements. Sequential measurements did not show persistent cumulative heating 

in our experiments, but this would ultimately provide a practical limit to the feasible 

sampling frequency using this method. Fortunately, this cumulative heating can easily 

be measured with DTS. 

 

Currently marketed DTS systems have both a ten-fold higher speed of reading 

performance and four times better spatial resolution than that employed here. The 

magnitude of the heat pulse required to obtain a particular level of precision is scaled 

linearly with reading speed, thus we have by no means explored the instrumentation 

limitations on accuracy or energetic requirements of the DTS approach. 

 

While the laboratory results are encouraging, field measurements of soil water content 

using the DTS-based heat pulse method are expected to bring additional sources of 

uncertainty. Expected primary sources of error include poor contact between the probe 

and soil, and the spatial variability of soil thermal properties. 
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Finally, in addition to varying with moisture content, Tcum is expected to be a function 

of the convective flow of water around the heated cable. An increase in convective 

flow will further increase the rate at which heat is dissipated away from the probe and 

thereby reduce Tcum. Thus, this method has the potential to not only detect soil water 

content but also to monitor water fluxes in saturated soils, as demonstrated by 

Perzlmaier et al. [2004], with long heated durations.  The ability to use shorter pulses 

based on the method proposed here allows greater separation between measurements 

of moisture content and flux. 

 

3.5    Conclusions 

We have shown that the heat pulse method using coaxial heating and a DTS system is 

feasible for determination of soil water content across a much broader range of values 

than previously reported. This result was found by using a response metric that has not 

been previously employed: the time integral of temperature deviation. This strategy is 

especially appropriate to the DTS method wherein precision of temperature reporting 

is a direct function of the interval of photon integration. Though we have used high 

temporal resolution in the DTS measurements, this method can provide the same level 

of precision with less expensive, slower DTS instruments since the data can be 

integrated in time for analysis. Further, using more sensitive DTS systems, the 

technique could be more accurate and use shorter, lower energy heat pulses which 

may be of importance in remote application of the method. 
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While this study demonstrates feasibility, additional work is required to develop 

optimal heating and interpretation strategies for DTS-based heat pulse methods, 

building upon the rich literature related to needle heat pulse systems.  The key finding 

of this work is to confirm the potential to employ DTS systems to monitor soil water 

content at temporal resolutions well under one hour and at high spatial resolution (≤ 1 

m).  In principle, this DTS method could monitor soil moisture along cables exceeding 

10,000 m in extent. This would allow for concurrent observation of thousands of 

adjacent locations, which will likely provide new insights into the spatial structure of 

infiltration and evaporation.  Such measurements could be transformative in our 

understanding of soil hydrology in natural and managed systems at field and 

watershed scales. Many challenges remain (e.g., installation in the presence of stones 

and roots), calling for significant further effort in developing this methodology. For 

example, we presented only results from a single-probe DTS approach, though 

multiple probe approaches using DTS are expected to be of utility just as they have 

been in other soil heat-pulse applications. 
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4.1 Abstract  

Achieving and maintaining sustainability in irrigated agriculture production in the era 

of rapidly increasing stress on our natural resources require, among other essential 

actions, a significant upgrade of the currently available soil water monitoring 

technologies to allow optimum control and management of the applied water. Here we 

present field test results of an emerging technology, the Actively Heated Fiber Optic 

(AHFO), which has the potential to simultaneously measure soil water content and 

fluxes many times per hour at 0.25 m spacing along cables of multiple kilometers in 

length.  AHFO observes the heating and cooling of a buried fiber optic (FO) cable 

resulting from an electrical impulse using a distributed temperature sensing (DTS). 

We present field results based on 750 m of FO cables buried at 30, 60, and 90 cm 

depths in agricultural field under center pivot irrigation. The calibration curve relating 

soil water content to the thermal response of the soil to a heat pulse of 10 W m
-1

 for 1 

minute duration was developed in the lab. This calibration curve was successively 

applied to the 30 and 60 cm depths cables, while the 90 cm depth cable illustrated the 

challenges of soil heterogeneity for this technique. The method was used to map with 

high spatial and temporal resolution the spatial variability of soil water content and 

fluxes induced by the non-uniformity of water application at the surface.   
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4.2 Introduction 

Soil moisture is the most important factor in controlling the spatio-temporal variability 

of surface water and energy balances [Western et al., 2003].  Soil water content is 

highly variable in space and time in natural systems [Western, 2004]. These dynamic 

spatial patterns of soil water content ranging from the sub-meter to 10,000 m scales 

are known to impact hydrological processes, but have to date been exceedingly 

difficult to obtain, greatly holding back scientific progress in understanding and 

predicting those interacting hydrological processes [e.g., Western et al., 2001, 2003; 

Wilson et al., 2004].  Processes influenced by soil-water status include, for instance, 

flooding, erosion, solute transport, and the overall division of rainfall between 

infiltration and runoff generation. These processes are significantly impacted by the 

soil moisture variability, exacerbated by the nonlinearities involved [Western, 2004]. 

They are reported to be controlled at scales ranging from 10 m by 2 m plots 

[Bergkamp et al., 1996], to hill slopes [Cerda, 1995; Borga et al., 2007] and 

catchments [Imeson et al., 1992; Borga et al., 2007]. Arora et al. [2001] indicated that 

sub-satellite-grid-scale variability in soil moisture resulted in significant changes in 

the magnitude, time, and frequency of surface runoff generation, partitioning of total 

runoff into surface runoff and infiltration. These data have yet to be obtained with 

sufficient spatial and temporal resolution to fully understand the dependencies. 

Processes such as infiltration [Flury et al., 1994; Raats, 2001] and plant-water 

dynamics [Porporato et al., 2004] are fundamentally controlled by soil water content 

at the point scale. Such processes are of a particular importance in agricultural systems 
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management. Detailed information on soil moisture is needed for applications 

including improved yield forecasting and irrigation scheduling [Shmugge, 1980]. 

Grote et al. [2010] stated that “Accurate characterization of near-surface soil water 

content is vital for guiding agricultural management decisions and for reducing the 

potential negative environmental impacts of agriculture”.  

 

4.2.1 Challenges in monitoring dynamic scales hydraulic processes 

 Understanding the characteristics of scale when related to measurements and 

modeling methods is essential to allow proper evaluation of the performance of these 

methods in capturing the spatio-temporal dynamics of the different hydrological 

processes. 

 

Blöschl and Sivapalan [1995] presented scale for measurements (which can also be 

applied to models) to be a combination of three characteristics: support, spacing, and 

extent. Support being the area or time over which variability is averaged in a particular 

measurement (this can be closely related to the resolution of the measurement in the 

case of spatially continuous values such as obtained by DTS). Increasing the extent of 

measurement support decreases observed variability due to the effect of averaging at 

the expense of feasible observation of features below this length scale [e.g., Western et 

al., 2002]. Increasing spacing between measurements decreases the details resolved, 

similar to support, however without intrinsically decreasing the variability of values 
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obtained [e.g., Western and Blöschl, 1999]. Extent is the total coverage of the 

measurements. Western et al. [2002] indicate that “As extent increases, larger scale 

features are included in the data, and both the variability and the average size of the 

features tend to increase.” 

 

To our knowledge, there is no demonstrated practical method that allows observations 

over all of the three scale-dependent characteristics in both spatial and temporal 

domains simultaneously. Available methods perform well over the range of 1 or 2 

scale characteristics while compromising the third one.  A good example of this is the 

use of remote sensing to characterize soil water content. Beside its limitation for 

capturing soil moisture content beyond the very top section of the soil column, if 

spatial support is minimized in measurement to capture processes relevant to 

agriculture applications, either extent in space or time will suffer greatly making the 

readings of limited applicability. 

 

4.2.2  Soil moisture monitoring in agriculture 

One of the major concerns regarding soil water content monitoring in the agricultural 

context is how to adequately deal with the associated spatial variability. Most of the 

widely used soil-moisture sensors are based on single-point solutions capable of 

measuring soil water content within a limited volume of soil i.e. electromagnetic 

sensor, neutron probes or gypsum blocks.  Thus, small fractions of soil are taken to be 
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representative of the total system. The matter of correctly addressing spatial variability 

pivots on having as many readings as possible. The number of sensors installed in the 

field is practically limited due to economical considerations and sensors construction 

characteristics.  For instance, TDR sensors with cable lengths greater than 30 m suffer 

signal dispersion and attenuation [Robinson et al., 2008]. In this sense, mobile sensor 

platforms are of great interest due to their ability to provide multiple reading by 

moving across the field of study with a single unit of measurements [e.g., Thomsen et 

al., 2007; Sudduth et al., 2001].  

 

A promising line of development is the use of distributed wireless sensor network.  

This technology has the potential to bridge single-point measurement techniques for 

agricultural purposes with a more hydrological oriented technology—geophysical 

methods for medium to big scale soil mapping—. As suggested in Western et al. 

[2002], these sorts of systems rely on low cost single-point, autonomous wireless 

devices that are capable of communicating to a base station using the minimum battery 

consumption within an acceptable radius of influence.  Examples of different 

implementations and limitations are described in the literature [e.g. Lopez-Riquelme et 

al., 2009, Cardell-Oliver et al., 2005, Bogena et al. 2008]. 

 

In the last decades, the development of electronics has also led the opportunity to 

improve the previously described technologies through new approaches. Adamo et al. 

[2004] describes mathematical model to relate water content with the velocity of 
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propagation of sound waves in soil. Also, Michot et al. [2003] describes a non-

destructive and spatially integrated multi-electrode method for measuring soil 

electrical resistivity and monitoring soil water content in a corn field. 

 

Based on the same principles as the established Neutron Probe soil moisture method, a 

new promising non-invasive methodology is described in Zreda et al. [2008] where a 

Cosmic-Ray-neutron probe is able to read water content in the upper 10-100 cm of soil 

within a maximum radius of 350 m. 

 

4.2.3 Novel distributed soil moisture monitoring using actively heated Fiber 

Optics 

Sayde et al. [2010] provided a laboratory demonstration of the feasibility of the 

Actively Heated Fiber Optic (AHFO) method for distributed, 0.25-10,000 m scale 

measurement of soil moisture content. This approach is based on observing the heating 

and cooling of a buried fiber optic cable through the course of a pulse application of 

energy as monitored by a distributed temperature sensing (DTS) system. The objective 

of this work is to evaluate the performance and the applicability of this technology 

under field conditions. 

 

The ability of DTS to report the temperature each meter along fiber optic cables in 

excess of 10,000 m in length at high temporal frequency has opened many important 

opportunities in environmental monitoring [e.g., Selker et al., 2006a, 2006b; Tyler et 
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al., 2008; Westhoff et al., 2007; Tyler et al., 2009; Freifeld et al., 2008; Neilsen et al., 

2010; Vogt et al., 2010]. For instance, passive measurement of spatially distributed 

soil temperature is very informative. With multiple depths, the energy balance of the 

soil system can be computed, allowing for estimation of the energy consumption of 

evapotranspiration [Steele-Dunne et al., 2010]. Observation of the diurnal and 

seasonal temperature oscillations with depth provides the data required to estimate soil 

water. Beyond passive reporting of temperature, a particularly exciting opportunity is 

presented by the possibility of observing the temperature response of a buried Fiber-

Optic DTS probe when it is a source of thermal energy.  

  

The use of actively heated fiber optics for observation of subsurface water movement 

has been mentioned variously [e.g., Weiss, 2003; Perzlmaier et al., 2004; Aufleger et 

al., 2005; and Perzlmaier et al., 2006] and recently our team demonstrated the 

feasibility of using AHFO for accurate distributed measurement of soil water content 

[Sayde et al., 2010].  In these applications the fiber optic is encased in a stainless steel 

capillary tube surrounded by copper windings or a molded aluminum encasement, all 

of which are enclosed in a high-voltage jacket. The metallic component of the fiber 

optic cable is used as an electric resistance heater to inject heat concentric to the fiber 

optic sensing element into the surrounding soil, while the optical fiber is used as a 

thermal sensor to monitor temperature changes. As the thermal properties of soils are a 

function of soil moisture content, soil moisture content can be inferred by analysis of 

thermal responses of specific soils to the heat pulse. Sayde et al. [2010] presents a 
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novel interpretation of these heat pulse signals optimized for use with DTS.  Here, the 

thermal response of the soil is calculated in the form of a cumulative temperature 

increase which represents the product of change in temperature and lapsed time (Tcum) 

from the start of the heat pulse. Soil moisture content is computed via Tcum through a 

calibration equation. This procedure yielded relatively accurate estimation of soil 

moisture content which employs all of the photons possible from the DTS laser 

system. Sayde et al. [2010] found that the accuracy of the soil water content 

measurements varied approximately linearly with water content. At volumetric 

moisture content of 0.05 m
3
 m

-3
 the standard deviation of the readings was 0.001 m

3 

m
-3

, and at 0.41 m
3  

m
-3 

volumetric moisture content the standard deviation was 0.046 

m
3 

m
-3

. Sayde et al. [2010] indicated that this error could be further reduced by 

increasing the signal-to-noise ratio which could be accomplished by: averaging several 

heat-pulse results; using a more precise DTS unit; increasing the heating intensity; or 

increasing the duration of the heating.  DTS instruments have now been developed 

which are approximately ten fold more precise than that used by Sayde et al. [2010] 

suggesting that much more precise measurements are now possible, though calibration 

of the method to specific soils will be required to achieve these limits. 

 

The feasibility of the AHFO method has been demonstrated by Sayde et al. [2010] 

under controlled environment. In this work will explore the performance of this 

method under field conditions. Specifically we will test how well this method is able 

to capture small scale (<1m) variation in soil water content and fluxes as imposed by 
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controlled spatially variable water application at the surface. We will also discuss 

methods to improve the calibration procedure and the quality of the AHFO outputs. 

 

4.3 Materials and Methods 

4.3.1 Site description  

The study site is located in an operating commercial farm near Echo, OR.  The 26 ha 

agricultural field is irrigated by a center pivot system designed to deliver up to 4 cm/d.  

As typically observed in center pivot systems, the spacing between consecutive 

emitters decreased with distance from the center while their discharge rates increased, 

as required to insures a spatially even application depth (Table 4.1).  

 

Table 4.1    Emitters locations, discharges, status and section. 

Sprinkler 

No. 

Actual 

distance from 

center (m) 

Projected 

position on FO 

cable (m) 

Actual 

Discharge 

 (l mn
-1

) 

Emitter 

status 

Section 

# 

1 6.9 N/A 6.1 N/A 1 

2 12.6 N/A 6.1 N/A 1 

3 18.4 23.5 6.1 N/A 1 

4 24.1 30.8 6.1 N/A 1 

5 29.9 37.4 8.0 N/A 1 

6 35.7 43.7 8.7 N/A 1 

7 41.4 49.8 11.0 N/A 1 

8 47.2 56.1 11.0 ON 2 

9 52.2 61.3 12.1 ON 2 

10 57.9 67.2 14.8 ON 2 

11 63.7 73.0 15.9 ON 2 

12 69.4 78.9 17.4 ON 2 

13 75.2 84.7 15.9 OFF 2 
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Table 4.1 (Continued)    Emitters locations, discharges, status and section 

Sprinkler 

No. 

Actual 

distance from 

center  (m) 

Projected 

position on FO 

cable (m) 

Actual 

Discharge 

 (l mn
-1

) 

Emitter 

status 

Section 

# 

14 79.0 88.6 13.3 ON 2 

15 82.8 92.5 13.3 ON 2 

16 86.7 96.4 14.8 ON 2 

17 90.5 100.2 14.8 ON 2 

18 94.3 104.1 15.9 ON 2 

19 98.1 107.8 14.8 OFF 2 

20 101.3 111.0 15.9 OFF 3 

21 105.1 114.9 17.4 ON 3 

22 108.9 118.3 17.4 
Paired with 

23 
3 

23 112.7 122.1 19.0 
Paired with 

22 
3 

24 116.6 126.5 19.0 OFF 3 

25 120.4 129.8 20.5 
Paired with 

26 
3 

26 124.3 133.9 20.5 
Paired with 

25 
3 

27 128.1 138.2 22.0 OFF 3 

28 131.9 141.6 22.0 
Paired with 

29 
3 

29 135.8 145.4 23.9 
Paired with 

28 
3 

30 139.6 149.3 23.9 
Paired with 

31 
3 

31 143.5 153.1 23.9 
Paired with 

30 
3 

32 147.2 157.3 22.0 OFF 3 

33 150.4 160.5 22.0 OFF 4 

34 154.2 164.4 25.4 ON 4 

35 158.0 168.2 27.3 ON 4 

36 161.8 172.0 27.3 OFF 4 

37 165.7 175.9 27.3 ON 4 

38 169.5 179.7 28.8 OFF 4 

39 173.4 183.6 28.8 OFF 4 

40 177.2 187.4 28.8 ON 4 
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Table 4.1 (Continued)    Emitters locations, discharges, status and section 

Sprinkler 

No. 

Actual 

distance from 

center (m) 

Projected 

position on FO 

cable (m) 

Actual 

Discharge 

 (l mn
-1

) 

Emitter 

status 

Section 

# 

41 181.0 191.2 31.1 ON 4 

42 184.9 195.1 31.1 OFF 4 

43 188.7 198.9 31.1 ON 4 

44 192.5 202.8 33.0 OFF 4 

45 196.3 206.5 28.8 ON 4 

46 199.5 209.7 31.1 OFF 4 

47 203.3 213.5 33.0 ON 4 

48 207.1 217.4 34.9 OFF 4 

49 211.0 221.2 34.9 ON 4 

50 214.8 225.1 36.8 OFF 4 

51 218.6 228.9 36.8 ON 4 

52 222.5 232.7 36.8 OFF 4 

53 226.3 236.6 38.3 ON 4 

54 230.1 240.4 38.3 OFF 4 

 

The field was planted with corn on March 17
th

, 2009 and harvested on September 15
th

, 

2009.  The soil is sandy loam (Table 4.2).  The bulk density values measured in the 

field did not correspond well with the NRCS soil survey. The average bulk density 

obtained from a total of 26 non-disturbed soil samples from four locations was 1.67 g 

cm
-3

 with a standard deviation of 0.12 g cm
-3

 compared to the 1.15-1.70 g cm
-3

 range 

indicated by the NRCS (Table 4.2).  
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Table 4.2   Soil physical and hydraulic properties (USDA Natural Resources 

Conservation Service, 2006). 

Depth 

(in) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

Bulk 

density 

(g/cm
3
) 

Sat. Hydr. 

Conductivity 

m/s 

Available 

Water 

capacity 

(cm
3
/cm

3
) 

Organic 

matter 

(%) 

0-4   4-8 1.15-1.30 
14.4-50.4  

10
-6

 
0.14-0.17 0.7-1.0 

4-35   4-8 1.20-1.50 
14.4-50.4  

10
-6

 
0.14-0.17 0.0-1.0 

35-60   4-8 1.40-1.70 
14.4-50.4  

10
-6

 
0.14-0.17 0.0-1.0 

 

4.3.2 Field installation and data collection procedure 

In October 2007, three sets of Fiber Optic (FO) cables were installed below the tillage 

depth along a 240 m transect (Figure 4.1) at 30, 60, and 90 cm below the surface. A 

plow system was designed for this installation.  The plow consisted of a thin (2.54 cm) 

steel blade with trailing-edge tubes through which the cables are introduced below the 

surface (Figure 4.2).  By ganging the three tubes along the trailing edge of the plow, 

we installed three sets of cables at the three depths in a single pass (Figure 4.3). The 

most rapid possible re-establishment of native soil conditions surrounding the installed 

cables was critical to our considerations; therefore, the plow blade was held at a 45 

degree angle as measured perpendicular to the direction of plowing, so that the weight 

of the soil would assist in closing the cut made in the soil.  

 

The first 8 m of each of the three FO cables sets were gathered and submerged in an 

ice bath for calibration and validation purposes. The last 8 m of the three FO cables 
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were also gathered and submerged in an ice bath during calibration. The first 8 m were 

kept in an enclosure near the pivot center, and the last 8 m were buried in the soil 

when the FO system is not in use to allow for normal field operations. 

 

 

Figure 4.1   Fiber Optic transect location in the field. 
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(a)                                                                     (b) 

Figure 4.2   (a) 45-degree “lift-plow” cable insertion tubes design (b) 45-degree “lift- 

plow” cable insertion tubes. 

 

 

Figure 4.3   Photograph from September 2007 showing the “lift-plow” in operation. 
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The FO cable (BruSteel® manufactured by Brugg Cable, Brugg, Switzerland) 

deployed in the field had an outer diameter (OD) of 3.8 x 10
-3

 m and is composed of 

four optical fibers encased in a central stainless steel capillary tube (OD 1.3 x 10
-3 

m; 

ID 1.07 x 10
-3 

m) surrounded by stainless steel strands (12 4.2 x 10
-4 

m OD stainless 

steel wires), all of which were enclosed in a 0.42 x 10
-4

 m thick
 
nylon jacket. The 

cable had a resistance of 0.365 Ω m
-1

 at 20 ºC. 

 

Two of the optical fibers, located at the core of the BruSteel cable, were connected 

between the three different depths sections to form a continuous optical fiber allowing 

simultaneous temperature reading along the whole FO system.  

 

A DTS unit (Sensortran DTS 5100 M4), connected to the FO system, recorded 

temperature every 0.5 m along the fiber-optic cable, with a spatial resolution of 1 m 

for each single measurement. The average reading frequency was 0.2 Hz.  

 

The high voltage power supply available at the center pivot system provided an 

average of 490 V to heat one of the three sections with an average power intensity of 

11 W m
-1

. A series of timers and relays insured that each of the three cable section is 

heated separately for 1 minute duration every hour. A voltmeter located at the center 

pivot, provided discrete measurements of the voltage applied. The spatial variability 

patterns were imposed by spatially varying the water application pattern at the surface. 

The center pivot operation and the discharging emitters’ status were modified to apply 
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four distinct but simultaneous water application treatments along the FO cables 

transect location as follows: 

 Section 1: From 0 to 55 m radial position. The emitters were bagged but did 

not discharge water over this section. The center pivot was programmed to 

repeatedly pass back and forth covering a 21º angle region of the center pivot 

circle such that only the 3 other sections under wet treatments are covered by 

the center pivot path. This insured that no emitters discharged water over 

section 1.  

 Section 2: From 55 to 110 m radial position. The emitters were bagged such as 

water was applied directly below the emitters instead of the typical circular 

pattern (Figure 4.4). This insured high application rate directly below the 

emitters while the inter emitters locations were kept dry. 

 Section 3: From 110 to 158 m. Of the 12 emitters covering this section, one 

was turned off, another was discharging at its regular position, while the rest 

formed five sets of two emitters attached together as showed in Figure 4.5.  

 Section 4:  From 158 to 240 m. Out of the 21 emitters covering this section, 10 

were turned off and the remaining emitters were applying water at their regular 

positions as indicated in Table 4.1 and Figure 4.6.  

 

The total water application duration was 7 hr. If all emitters were discharging water at 

their typical location and circular application pattern, the application rate would be 1.4 

cm/hr.  
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Figure 4.4   Bagged emitters in Section 2. 

 

 

Figure 4.5   A pair of emitters joined in Section 3. 
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Figure 4.6   Example of emitters status in Section 4. 

 

4.3.3 Data interpretation method 

The heat pulse signals were interpreted using the same methodology described in 

Sayde et al. [2010] that is optimized for use with DTS; the thermal response of the soil 

is calculated in the form of a cumulative temperature increase (Tcum) from the start of 

the heat pulse as follow: 

dtTT

t

cum 
0

0                                               Eq. 4.1      

 

where Tcum is the cumulative temperature increase (°C.s) during the total time of 

integration t0 (s), and ΔT is the DTS reported temperature change from the pre-pulse 

temperature (°C).   
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The soil moisture content is inferred from Tcum through a calibration equation. This 

procedure yielded relatively accurate estimation of soil moisture content which 

employs the entire period of measurement from the DTS laser system generated by a 

heat-pulse experiment [Sayde et al., 2010]. 

 

4.3.4  Lab calibration 

The soil specific calibration of the equation relating the thermal response (Tcum) to soil 

water content was obtained from a laboratory experiment. The laboratory experiment 

was carried out using the same type of FO cable (BruSteel®) installed in a vessel of 

repacked soil from the experimental site prepared to reproduce the average bulk 

density observed in the field.  

 

A 0.51 m diameter soil column was supported by a 0.91 m tall plastic barrel.  An 

outlet was installed 0.1 m above the bottom and a 0.012 m diameter perforated hose 

was fitted to the inside of the drainage port and wound in a spiral laying flat on the 

bottom of barrel to provide an easily controlled lower boundary condition. The 

drainage was actively controlled using a peristaltic pump. 

 

Within the column, 10 m of BruSteel® FO cable was distributed in a helicoidal 

geometry supported by three vertical 1.22 m steel rods.  The cable made eight 0.3-m 

diameter helical coils, spaced 0.1 m vertically, starting 0.05 m from the bottom and 
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ending at the surface of the soil (0.9 m from the bottom). Air-dried soil, obtained from 

the field, was added in 20 kg lifts and compacted to the desired bulk density between 

lifts.  No further settling was observed during the remainder of the experiment. 

 

A 4-m section of the cable is inserted in a known-temperature water bath for 

calibration and validation purposes. An 11.4 m section of the cable (including the 

section in the soil column), located downstream of the cable section that was kept in 

the water bath, was heated by connecting the stainless steel windings at both ends of 

the heated section to variable voltage AC current source (Staco® Variable 

Autotransformer Type 3PN1010).  The drop in voltage along the 12 AWG copper 

connecting wires was ~ 0.1% of the total voltage, and thus was assumed to be 

negligible. A digital timer with a precision of ± 0.01 % (THOMAS® TRACEABLE® 

Countdown Controller 97373E70) controlled the duration of the heat pulse. 

 

The calibration data were obtained in three phases: Phase I) for θ ranging from 0.23 to 

0.15 m
3
 m

-3
; Phase II) for θ ranging from 0.11 to 0.05 m

3
 m

-3
; and Phase III) for θ at 

saturation (0.41 m
3
 m

-3
).  

In phase I, the soil column was actively saturated from the bottom using a peristaltic 

pump connected to the drainage outlet. Then, the same setup was used to drain the 

column for a 3-day period with the column top covered to reduce evaporation. 
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Following the final DTS measurements in the drained column, triplicate volumetric 

samples were obtained from seven depths from the soil surface to 10 cm from the 

bottom. 

In phase II, the top cover of the column used in phase I was removed, and the column 

was left exposed to the ambient room environment for three months to generate a 

smooth transition from dry soil at the column top to nearly saturated conditions at the 

column base. After the final DTS measurements made in the air-dried column, 32 soil 

samples for water content determination were collected from around the cable in 12.5 

cm spans along the cable starting from the surface of the soil to 50 cm from the 

bottom.  

In phase III, the remaining 50 cm of the soil column, that was not excavated, was 

saturated from the bottom up using the drainage outlet. The saturated column used in 

phase III of the lab calibration was also used to determine the functional form relating 

the soil thermal response (Tcum) to the heat pulse power intensity (P). Eight different 

levels of power intensity were tested ranging from 5 to 38 W m
-1

. For each power 

level a 2-minute pulse was applied. 

 

Two DTS instruments were used during the lab calibration: 

 Sensortran DTS 5100 M4 was used in phase I: This DTS unit recorded 

temperature every 0.5 m along the fiber-optic cable, with a spatial resolution of 

1 m for each single measurement. The average reading frequency was 0.2 Hz. 
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 Silixa Ultima in phase II and III: This DTS unit recorded temperature every 

0.125 m along the fiber-optic cable, with a spatial resolution of 0.29 m for each 

single measurement. The average reading frequency was 1 Hz. 

 

Three replicates of the same combinations of power intensity and pulse duration were 

applied in the three phases.  

 

4.3.5 Thermal properties of the soil column 

Accurate estimation of soil thermal properties is needed to allow rigorous comparisons 

of the calibration equations obtained from the lab to the ones obtained from either 

analytical or numerical solutions of the heat transport models. To this end, thermal 

conductivity and specific heat were measured with an accuracy of 5% using a dual-

needle probe (Decagon KD2-Pro® equipped with SH-1® dual-needle) for nine 

undisturbed soil samples and for soil water content ranging from saturation (0.40 m
3 

m
-3

) to dry conditions. The nine samples were randomly chosen from a set of 14 non-

disturbed soil samples used for the determination of soil water content distribution 

across the soil column in phase I of the lab calibration. For the air-dry conditions, the 

previously oven dried samples were kept exposed to ambient air for a period of two 

months before thermal properties were measured. For the saturated conditions, the 

same set of samples was submerged in water for 24 hours period prior to 

measurements. For soil water content between saturation and dry conditions, the 
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saturated samples were placed in a pressure chamber  for three days to reach 

equilibrium at each of the four pressure levels (0.07, 0.33, 0.66, and 1 bar), then soil 

water content is determined gravimetrically and soil thermal properties are measured. 

Finally the samples were dried in the oven and left covered for 12 hours in ambient 

room temperature to cool down before thermal properties were measured. 

 

4.3.6 Adjusting for the variation in the applied power intensity 

In the field deployment, variability in the power intensity between different heat 

pulses is to be expected. The sources of such variability are:  1) temporal fluctuation in 

the applied voltage, and 2) thermal dependency of the electrical conductivity of the FO 

cable’s heating element (the stainless steel component). With no regulation applied for 

the input current, the intensity of the heat pulse is sensitive to the voltage fluctuations 

of the power distribution network at the center pivot. The fluctuation in voltage in the 

field deployment was in the order of ± 2 volt over the 36 hr duration of the soil 

moisture readings as measured with a standard voltmeter at the center pivot. In 

addition, the fluctuation in the electrical resistance of the FO heating element mainly 

depended on the fluctuation of the cable temperature in time and with depth. When the 

power intensity is not strictly regulated and held constant between different heat 

pulses, it is essential to account for the variability in the thermal response resulting 

from variation in power input.  
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Both the cylindrical source transient and the line source transient methods suggest that 

the temperature increase, and in consequence Tcum, are proportional to the power 

intensity inputs as shown in the temperature change solution for both methods [see 

Blackwell, 1954; de Vries and Peck, 1958; Jaeger, 1965; Shiozawa and Campbell, 

1990; Bristow et al., 1994] 

 

The FO cable geometry is far more complex than the geometry and dimensions 

assumptions of either the cylindrical source transient or the line source transient 

methods, and thus demonstration of the 1:1 relation of the thermal response of soil to 

the power intensity of the heat pulse is needed. 

   

4.4 Results and Discussions 

4.4.1 Power intensity effect on Tcum 

In the AHFO method, if power intensity of each heat pulse is not strictly regulated, 

large uncertainty can be induced into the results due to the power intensity fluctuation. 

To reduce this uncertainty, a method is needed to allow comparison of the thermal 

response of soil to heat pulses with different power intensities. In this section we will 

demonstrate that Tcum can be scaled by a simple multiplicative factor to reflect a 

reference power intensity value. From basic principles, in absence of phase-change, 

the underlying thermal conduction and heat capacity processes are expected to be 

linear, so that any change in power level should be correctable via linear scaling to a 



99 

 

 

reference power application.  To verify the theory of the 1:1 relationship, the concept 

was tested using lab experimental data retrieved from the saturated soil column with 

various heating power levels. Eight different levels of power intensity were tested 

ranging from 5 to 38 W m
-1

. For each power level a 2-minute pulse was applied. 

We first demonstrate that the intercept of the regression line relating  ̇ to  ̇     takes 

on the expected value of zero. Here  ̇ and  ̇     are the results of standardizing  P and 

Tcum by their means of 18.8 W m
-1

 and 889.4 °C s respectively in order to have both 

parameter at the same scale (Figure 4.7). Thereafter, we demonstrate that the slope of 

the resulting regression line is equal to one after setting the intercept equal to zero 

value. Least-Squares Methods (LSM) is applied in the two-step process to estimate the 

proper parameters used in formulating the linear regression model that relates the 

standardized power intensity level ( ̇) to the standardized thermal response ( ̇   ). 

The first step uses a linear regression model that includes both slope and intercept to 

test if the intercept is different from zero. The estimated linear regression has the 

following form: 

 ̂{ ̇   | ̇}   ̂   ̂  ̇                                             Eq. 4.2 

 

Where  ̂{ ̇   | ̇} is the estimate of the regression of   ̇    on   ̇ (dimensionless), 

 ̂  is the estimated intercept of the regression line (dimensionless),  ̂  is the estimated 

slope of the regression line (dimensionless). 
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The results of the LSM fit showed that the p-value of the hypothesis that the intercept 

is non-zero ( ̂ ) is 0.938 after accounting for the slope effect (Table 4.3); therefore, 

there is no statistical evidence that the intercept is different from zero.  

 

Table 4.3   Regression parameters estimate using Equation 1with both slope and 

intercept 

  Coefficients Standard Error t-statistic p-value 

Lower 

95% 

Upper 

95% 

 ̂  0.002 0.026 0.081 0.938 -0.062 0.066 

      ̂  0.998 0.022 44.397 8.7E-09 0.943 1.053 

 

The second step uses the linear regression of Equation 4.2 with  ̂  set to zero. The 

results of LSM fit strongly support the theory of the 1:1 relation that relates power 

intensity to thermal response (Table 4.4 and Figure 4.7) for the range of power and 

conditions of the lab experimental setup.   

 

Table 4.4   Regression parameter estimates using Equation 1 with  ̂  set to zero 

  Coefficients Standard Error t-statistic p-value 

Lower 

95% 

Upper 

95% 

 ̂  0.999 0.011 94.826 3.82E-12 0.975 1.024 

 

The implication is that if there is a temporal variation in the power intensity applied, 

the obtained thermal response can be easily (linearly) scaled to reflect a reference 

power intensity. This can be achieved by knowing the power, voltage or current 

associated with each particular heat pulse, or by using a reference section of the heated 

fiber optic cable held in a medium with constant thermal properties throughout the 
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experiment. This technique was applied in both lab calibration and field application to 

account for the power fluctuations. 

 
Figure 4.7   Standardized power intensity level ( ̇) vs. standardized thermal response 

( ̇   ) 

 

4.4.2 Lab calibration results and system performance 

A calibration equation was fitted to the data relating measured soil water content to 

measured Tcum (Figure 4.8). The gravimetric samples obtained from the soil column, 

indicated an average bulk density (ρb) of 1.63 g cm
-3

 with a standard deviation (σb) of 

0.06 g cm
-3

. The obtained values are in the range of both measured bulk density in the 

field (ρb=1.67 g cm
-3

 and σb=0.12 g cm
-3

) and just within the range suggested of this 

soil by the NRCS survey (1.15-1.70 g cm
-3

 range; Table 4.2).  
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The fitted curve showed that Tcum becomes insensitive to variation in soil water 

content both at very dry soil with degree of saturation (S) below 0.1 and high water 

content (S > 0.4). In the former case, this can be explained by observing the behavior 

of the soil thermal conductivity (λ) at low soil water content. In fact, λ has been 

showed to be nearly constant from zero to a critical value of soil water content (θcr) 

before it starts increasing when the water geometry transitions from pendular to 

funicular [de Vries, 1963; Tarnawski and Leong, 2000]. A similar behavior is 

observed in the measured λ from the calibration of the soil column, where a sharp 

increase in λ is observed beyond 0.03 m
3 

m
-3

 (S > 0.08) of soil water content (Figure 

4.9). The observed θcr value aligns with de Veris [1963] recommendation of using θcr 

values of 0.03 m
3 

m
-3

 for coarse soils and 0.05 to 0.1 m
3 

m
-3

 for fine soils. The value of 

θcr tends to be dependent on the clay content of the soil [Tarnawski and Leong, 2000; 

McInnes, 1981]. This behavior is also observed in the thermal diffusivity curve 

(Figure 4.10). 
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Figure 4.8   Calibration curve relating the degree of saturation (S) to Tcum normalized 

by its value at saturation integrated over 180 seconds for the 1–minute duration heat 

pulses 

 

 
Figure 4.9   S vs. λ measured from non-disturbed samples collected from the 

calibration soil column. After saturation, the samples were drained in a pressure 

chamber to allow measurement of λ at different level of soil water content using a 

KD2 Pro. 
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Figure 4.10   S vs. κ measured from non-disturbed samples collected from the 

calibration soil column. After saturation, the samples were drained in a pressure 

chamber to allow measurement of κ at different level of soil water content using a 

KD2 Pro. 

 

For soil water content ranging from 0.04 to 0.40 m
3 

m
-3

 ( 0.1 < S < 1) the slope in the 

relationship relating θ to Tcum decreases with soil water content (Figure 4.8) indicating 

that the error in soil water content estimation is expected to increase with increasing 

soil water content as observed in Sayde et al. [2010].  

 

The same methodology described in Sayde et al. [2010] was applied to estimate the 

error in soil water content obtained from Tcum. For each value of θ, the estimated error 

(σθ) was calculated using the following equation: 
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                                                     Eq. 4.3 

Where 
cumT  is the error in Tcum (dimensionless), 





d

df )(
 is the local slope of the Tcum 

response evaluated at θ (dimensionless). 

  

 
Figure 4.11   Estimated error in soil water content estimation due to the DTS system 

performance. 

 

 

σTcum was obtained by measuring the variability in Tcum over repeated measurements at 

constant soil moisture content. Under the lab controlled conditions, 85% of the 

variability in σTcum (3.18 °Cs) is due to instrument noise, the high resolution Silixa 
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noise in Sensortran 5100 unit was around 12.60 °C, a level at which  any other source 

of error is negligible and undetectable. 

 

4.4.3 Field test results  

In this section, the results of the field test of section 4.3.2 are presented. The 

calibration equation developed in section 4.4.2 (Figure 4.8), is used to translate Tcum 

values observed over the three depths cables to soil water content values. The shape of 

the calibration curve indicates that if error in calibration occurred it would be easily 

detected in the results. i.e. the calibration curve in Figure 4.8 is very steep toward high 

soil water content and very flat at low soil water content. As soil is wetted to near 

saturation in many locations in the field and if the calibration curve is slightly biased 

toward the wet side, the obtained soil moisture estimates from the calibration curve of 

the wetted location would be off the chart and easily detected. On the other hand, if 

the calibration curve is biased toward the dry side, then obtained soil moisture 

estimates from Tcum will indicate that the soil is very dry at all time and no significant 

changes in soil water content will be detected. Again here, such type of error can be 

easily detected in this work due to the high variability (both in space and time) in soil 

water content that is expected from the imposed water application spatial variability at 

the surface. And in fact, the 90 cm depth soil water contents as estimated using the 

calibration curve of Figure 4.8, clearly show the signs of biased calibration as stated in 

the previous paragraph for a calibration curve biased toward the dry end: the changes 
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in Tcum at the 90 cm depth were of same magnitude than the one observed at the 30 and 

the 60 cm depths (see Figure 4.12). Nevertheless, this change in Tcum did not translate 

in significant soil water content changes when the calibration curve of Figure 4.8 is 

applied as observed with the 30 and the 60 cm depths. 

 

 

 

Figure 4.12   Observed standard deviation of Tcum at the 30, 60 and 90 cm depths 

during the 36 hr duration of the experiment.   
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 The 30 and the 60 cm DTS estimated soil water content did correspond to what to be 

expected from the four patterns of spatial variability imposed at the surface, as shown 

in the followings paragraphs.  

 

The section between 0 and 55 m (Section 1) was not irrigated, so as would be 

expected, no significant water change was detected at either depth (see Figure 4.13).  

For the section between 55 and 110 m (Section 2), the constraining bags installed 

around the emitters forced the water to directly fall below the emitters instead of 

spreading in the typical circular pattern. This implies that water was only applied 

directly below the emitters and at a very high rate. This signal of a localized high 

application rate is captured by the FO system as shown in Figure 4.13 where we notice 

nine strips of high soil water content change that corresponds to the locations of the 

nine bagged emitters. Figures 4.14 and 4.15 show clearly the association between the 

highest water increase at a given time step and the location of a discharging emitter.  

In section 3 (between 110 m and 158 m), four sets of two emitters were attached 

together resulting in high discharge over a larger area than that in the bagged 

sprinklers of Section 2.  The location of the four wide strips of high soil water content 

change observed at both 30 and 60 cm depths of the fiber optic cable (Figure 4.13) 

correspond to the four sets of paired emitters. 

 

In section 4 (from 158 m to the end), emitters were switched on and off in space as 

shown in Figures 4.14 and 4.15. The same pattern in soil water change is observed 
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through the FO cable at the 30 cm depth, where the highest soil water content 

increases are observed at the location of the operating emitters. 

 

For the 60 cm depth cable, the little variation in soil water content observed over 

section four is still associated with the status of the above ground emitters. We can 

notice that the water content increase is of similar magnitude at 30 cm depth and is 

much smaller at the 60 cm depth than the one observed with the two other wet 

treatments. This is to be expected as this section received a lower water application 

treatment than the two other sections.  
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Figure 4.13 Soil water content change at the 30 cm (top figure) and 60 cm depths 

(bottom figure). 
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Figure 4.14   DTS-estimated soil water content at 30 cm depth (top figure) and 60 cm depth (bottom figure) with emitter 

positions shown before irrigation, and 3, 9, and 15 hours after the 7 hr irrigation set started.  
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Figure 4.15   Change in soil water content at 30 cm depth (top figure) and 60 cm depth (bottom figure) with emitter 

positions shown before irrigation, and 3, 9, and 15 hours after the 7 hr irrigation set started. 
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To compare the soil water content response for the different wetting regimes, a time-

lagged cross-correlation analysis was performed between the time series of soil 

moisture change at each particular position along the FO cable installed at 30 cm 

depth and those of its corresponding position along the FO cable at the 60 cm depth. 

The cross-correlation method has been employed successfully to study time-lag 

relationship between soil moisture content at variable depths [Georgakakos et al., 

1995; Mahmood and Hubbard, 2007; Mahmood et al., 2012].  

 

Matlab function “Xcorr” is used to calculate the cross-correlation coefficient,  ̂  ( ), 

associated with each time lag (m) tested as follows: 

                 ∑     
     
     

            

  ̂  (  )
                                              ̂  ( )   

  ̂  (  )
                                            

Here x and y are soil water content at the 30 and the 60 cm depth respectively that are 

normalized by their value at time m = 0. N is the length of the x and y vectors. 

The maximum correlation coefficient value is used to identify the appropriate time lag 

to represent the wetting-front travel time at each location (see Annex 1 for a list of 

maximum correlation coefficient per location and its corresponding time lag value). 

The analysis results were separated into two groups based on the maximum change in 

soil water content observed at the 30 cm depth locations. The first group of data 

represents data retrieved from locations where ∆θ > 0.05 m
3
 m

-3
 is observed at the 30 

cm depth during the experiment, while the second group is composed from those at the 
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remaining locations (see Figure 4.16). The reasoning behind this separation is that at 

the three wetted sections along the FO cables, transect water was applied at a set of 

discrete locations, causing a vertically-progressing soil water content change where 

water was applied, when compared to the inter-emitters locations where the observed 

lower soil water content change is expected to be driven by lateral redistribution. For 

the first group, the average time lags were 0.64 hr (Standard deviation of 0.97 hr), 2.55 

hr (Standard deviation of 1.21 hr), and 3.46 hr (Standard deviation of 2.91 hr) hr for 

section 2, section 3, and section 4 respectively. This variation can be explained by the 

pattern of water application at the surface for the three different wet treatment 

sections, with section 2 is expected to be receiving the highest application rate for the 

locations of group 1, and section 4 receiving the lowest application rate.  

 

The same correlation method was used to calculate the wetting front travel time from 

depth 60 cm to depth 90 cm. Since the Tcum to moisture content calibration developed 

for the upper soil was not found to be suitable for the 90 cm depth, the time series of 

change in Tcum (from pre-irrigation conditions) for both 60 and 90 cm depths are 

employed instead of the time series of change in soil water content. As before, the 

calculated time lag was separated into two groups; Group 1 includes the time lag for 

location where ∆θ at 60 cm was > 0.05 m
3
 m

-3
, and Group 2 for where ∆θ at 60 cm 

was < 0.05 m
3
 m

-3
 (Figure 4.17). For the Group 1, the average time lags were 0.93 hr 

(Standard deviation of 1.72 hr), 3.33 hr (Standard deviation of 1.49 hr), and 5.89 hr 

(Standard deviation of 1.83 hr) for section 2, section 3, and section 4 respectively. On 
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average, the wetting front velocity was 32% faster between the 30 and the 60 cm 

depths than between the 60 and the 90 cm depths. 

 

That said, readers should be aware of the high uncertainty associated with the use of 

the time lag to estimates the wetting front traveling time for section 2 of the fiber optic 

cable location. In section 2, about half of the time lag values calculated for the 

different positions in for the 30 cm depth and for a lesser extent for the 60 cm depth 

have either negative or zero values. This is a clear indication that the transit times 

were not long enough to be accurately quantified based on 1-hr measurement intervals 

at the highest fluxes. Thus, the time lag results of section 2 were considered non-

reliable to estimate the water front traveling time and will not be used in the further 

analysis. 

 

The estimates of the wetting front traveling times in section 3 and section 4 are used to 

calculate the wetting front velocity and associated fluxes. For each particular location 

(i) along the fiber optic cables and for each particular depth (d) a wetting front velocity 

(Vid) and a flux (Fid) can be calculated as follows: 

           
                                                    Eq. 4.5 

and 

                                                           Eq. 4.6 
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Where: 

 Did is the distance between two successive depths, Did = 30 cm in our case, 

     
   is the time period elapsed between the wetting front arrival at two 

successive depths (hr).     
   is estimated by the calculated time lag that have 

positive values shown in Figure 4.16 for the 30 cm depth and Figure 4.17 for 

the 60 cm depth with 1 hr added to each time lag. . The reasoning behind 

adding 1 hr to the time lag is due to the hourly time resolution of the heat 

pulses applied; as water front is moving in depth from one cable location to 

another, the arrival time captured by the 1-hr measurement interval could have 

happen anytime between the beginning and the end of this particular hour. 

Adding 1 hr will insure a lower (conservative) boundary on all possible values 

of water front velocity and flux . This also will allow us to avoid  dividing by 

zero value in equation [5]. The obtained values of velocity and fluxes will be 

considered as being the minimum possibly observed. 

          is the maximum change in volumetric water content (m
3 

m
-3

) 

 

As expected, larger water fluxes are observed below the locations that showed higher 

increase in water content (Figure 4.18 , Figure 4.19 and Table 4.5), which in turn are 

associated with the locations of the discharging emitters as discussed in a previous 

section. The Fluxes seem to get smaller with depth. The magnitude in flux reduction 

with depth can be associated with the pattern of water application at the surface. In 

fact the fluxes average was reduced by 41% over section 3, and 71% over section 4 
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(see Table 4.5). This is to be expected, as the applied water discharge rate was the 

largest, and localized over a wetted area that was smaller in section 3 when compared 

to section 4.  

 

Table 4.5   Averages Fluxes (cm hr
-1

) by section observed at different depths 

 

Section 3 Section 4 

Δθ ≥0.5 

m
3
 m

-3
 

Δθ <0.5 

m
3
 m

-3
 

All 

locations 

Δθ ≥0.5 

m
3
 m

-3
 

Δθ <0.5 

m
3
 m

-3
 

All 

locations 

Average Flux at 30 cm 

depth (cm hr
-1

) 
>1.3 >0.2 >0.8 >0.9 >0.2 >0.8 

Average Flux at 60cm 

depth (cm hr
-1

) 
>1.1 >0.3 >0.5 >1.0 >0.1 >0.2 

Average Flux applied 

at the surface (cm hr
-1

) 
- - 1.0 - - 0.8 
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Figure 4.16   Time lag at the highest time-lagged correlation value between ∆θ at 30cm and ∆θ at 60 cm. 
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Figure 4.17   Time lag at the highest time-lagged correlation value between ∆Tcum at 60cm and ∆Tcum at 90 cm 
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Figure 4.18   Water flux, pre-irrigation soil water content, and maximum soil water content at the 30 cm depth. 
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Figure 4.19   Water flux, pre-irrigation soil water content, and maximum soil water content at the 60 cm depth. 
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4.4.4 Addressing the challenge of field calibration 

In this work, the calibration curve (in Figure 4.8) relating DTS measured Tcum to soil 

water content was obtained in a laboratory experiment. Soil was collected from the 

field where the FO system installed and repacked to the observed bulk density in the 

field in a 0.5 m diameter soil column. This operation was tedious and time consuming; 

to cover the whole range of soil moisture conditions; the soil column has to be 

saturated, drained for several weeks, and then left drying over several months.  In 

addition, the soil column was only representative of the top 70 cm of the soil, the 

maximum depth in the field from which soil was collected. In keeping with 

unpublished observations of a textural transition observed during the installation of 

neutron probe tubes, beyond 70 cm depth the soil had different thermal properties and 

thus the calibration equation obtained in laboratory experiment were not directly 

applicable. These results reiterate that a more practical calibration methodology of the 

AHFO method will be needed for the method to find broad adoption. 

 

The most direct, if time intensive, method is to measure the thermal conductivity and 

diffusivity of the soil of interest over the full range of soil moisture conditions (as in 

Figure 4.9 and Figure 4.10).  Samples that were typical of all major soils seen at the 

site would need to be included.  One could then use heat transport models to generate 

calibration curve relating Tcum to soil water content for this particular soil, FO cable 

design, and operating conditions. But measuring thermal properties of soil over the 
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full range of soil water content presents a daunting challenging regard the effort and 

time required to complete such a procedure.  

 

Practical lessons can be learned from looking at how curves relating the thermal 

conductivity (λ) to soil water content (θ). Most models relating λ to θ we use a same 

core assumption that the relationship between λ and θ for all types of soils and bulk 

densities has the same fundamental shape that is scaled by a set of parameters that is 

particular for each soil [see Johansen 1975; Campbell 1985; Cote and Konrad 2005; 

Lu et al. 2006]. Apparently those sets of parameters can be easily obtained by couple 

of simultaneous λ and θ measurements for the soil of interest in the case of the models 

described by Johansen [1975], Cote and Konrad [2005] and Lu et al. [2006]. For the 

model described by Campbell [1985] a single non-disturbed sample that provides 

information on λ for a wet and for the dry condition, and on the bulk density of the soil 

will be enough to generate the curve relating λ to θ for a particular soil. 

 

In principle, calibration curves relating Tcum to soil water content should have also a 

same basic shape; steep slope toward high water content and flat toward low soil water 

content, as observed in this work and in Sayde et al. [2010]. This information suggests 

that calibrations curves for different soil types could be scaled from one reference 

curve using couple of measurements in the field. The only fundamental difference in 

shape that we might expect between curves of different soil types is the θcr value 

below which Tcum is held nearly constant (see section 4.3.1. for more information). 
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The thermal response (Tcum in our case) of the FO cable to a heat pulse is a function of 

how rapidly heat was conducted into the surrounding medium i.e. the thermal 

conductivity of the soil [Weiss, 2003] especially for long heat pulse where the effect of 

the finite dimensions of the FO cable will diminish with time and thus the long time 

solution of the line source transient methods can be applied [Weiss, 2003; Perzlmaier 

et al., 2004].  De Vries [1952] showed that this solution has the following form for the 

heating period: 

                 (     )   ( )                    For t < t0                Eq. 4.7 

 

Here    is the change in temperature (°C), q is the energy input (W m
-1

),   is thermal 

conductivity of the medium (W m
-1 

K
-1

), t  is time (s), t0  is the duration of the heating 

pulse (s), b is a constant independent from time. 

 

The integral with respect of time of Equation 4.7 is: 

     (     ) {  ( )   }                                   Eq. 4.8 

 

Here, the tb term can be easily accounted for with basic algebra if data is available for 

two heating times. For example, take     
  to be the Tcum for an integration time of t 

duration, and     
   to be the Tcum for an integration time of 2t duration such as 2t ≤ 

heating time, then the difference between those two entities, ΔTcum, is: 

  

       (     ) [   (   )]                                     Eq. 4.9 



125 

 

 

 

 

 Following this approach a result is obtained wherein an inverse proportionality holds 

between λ and a form of Tcum that can be used in theory to derive a calibration curve 

relating Tcum to θ with few simultaneous measurements of θ with either λ and Tcum. 

 

4.4.5 How to improve the quality of the AHFO method results? 

In the previous section, the uncertainty level for a particular measurement was shown 

to improve considerably when a high performance DTS unit is employed for the 

temperature measurements. This led to explore the possibilities of improving 

measurements’ performance and its limitations. 

 

In fact, when planning for an AHFO installation, we seek to optimize the quality of the 

measurement while dealing with a constraining budget. The aim of this section is to 

provide guidance for future design and operation of AHFO applications. This 

guidance based on a theoretical analysis of the nature of  the sources of error in DTS 

heat-pulse moisture content measurements, as well as being drawn from extensive lab 

and field operations during the past three years.  

 

 Assuming that the calibration was performed correctly, and there is no drift in 

calibration over time, the quality of the soil moisture measurements using the AHFO 

method will depend mainly on the signal-to-noise ratio delivered by the system. 
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Here, Tcum is the signal magnitude. As demonstrated in section 3.1., Tcum increases 

linearly with the power intensity level. 

 

The noise magnitude will depend on the spatial and temporal lengths of a 

measurement. In fact, the DTS reported temperature is calculated from the ratio of the 

magnitudes of anti-Stokes to Stocks scattered light. Thus, the noise level of a single 

measurement will depends on the accuracy of this ratio, which in turn is a function of 

total number of reflected photons observed. By the law of large number, those 

observed photons follow a normal distribution with a standard deviation decreasing by 

the square root of the total number of photons observed [Selker et al., 2006]. Since the 

number of photons observed will be a 1:1 function of the fiber volume that are emitted 

from and the length of time they are integrated over, the noise level (i.e. precision) 

will decrease by the square root of both spatial and temporal lengths of a 

measurement. 

 

Here we introduce a quality factor index (FQ) that reflects the impact of different 

combinations of heat pulse, data collection, and sensing system characteristics on 

magnitude of the signal-to-noise ratio, such as: 

   
 

 
 [
      

     
]
   

 (        )                          Eq. 4.10 

 

Where : 
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 P is the power applied (W m
-1

). As demonstrated in the previous section, the 

thermal response, Tcum in this case, will increase linearly with applied power. 

 E is the temperature reading error per temperature reading cycle (°C). Here the 

reading cycle refers to the time between the start of successive temperature 

readings on the DTS.  


  LR is the spatial resolution of the temperature readings (m) such as LR > LM,. 

Increasing LR will increase the length over which the measurement is averaged 

over, and thus increasing its precision by square root of the length. LM  is the 

DTS spatial resolution (m). It is closely related to E; to understand the effect of 

LM on the potential precision, think about comparing two DTS unit with the 

same E level but different LM . The one with the lowest LM value has the 

potential to deliver a better precision, proportionally to the square root of LM . 

  N is the number of heat pulses (dimensionless). As errors in Tcum are 

considered normally distributed then precision should increase with square root 

of N. 

 H is the temperature reading frequency (Hz). The precision will increase the 

square root of H. i.e., If two DTS units has the same E value but different H, 

the one with higher H has the potential of delivering more precise reading of 

Tcum, proportionally to the square root of the higher on the lower H ratio. 

 t0 is the heat pulse duration (s),  

 tT is the total reading duration (s). Increasing tT will increase the total error 

values accumulated by square root of tT. Increasing tT will also increase the 
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signal amount captured. This is accounted for in the function  (        ),the 

functional form relating the thermal response of a particular soil, FO cable 

design, and moisture content to t0 and tT (dimensionless).   (        ) is 

independent from the power applied. It reflects how Tcum evolves in time. e.g. 

For the geometry of the FO cable and soil employed in this work, and 

considering that t0 = tT  ,   (        ) =   
     at saturation. This has been 

obtained by fitting a function to a numerical simulation of the heat response of 

a cable with the same geometry and thermal properties of the FO cable 

employed in this experiment, and with a surrounding material with the same 

thermal properties as the one observed in the soil column at saturation. 

 

FQ Limitations  

To increase the expected quality factor index (FQ) of the data in a field deployment, 

one can increase any of the nominator parameters or/and decreases any of the 

denominator parameters in Equation 4.10. Each of these eight parameters has either an 

upper (For Eq. 4.10 nominators) or lower (For Eq. 4.10 denominators) constraining 

value imposed by practical and economical considerations (see Table 4.6). For 

instance, an excessive power application in principle could cause water to evaporate 

and/or diffuse away from the heat source, i.e., the FO cable [Farouki, 1986]. The 

upper limit of P and t0 will depend on:  

 Cable physical properties, i.e., cable’s dimension and thermal properties: The 

thinner the cable or larger the cable thermal conductivity is, the larger the 



129 

 

 

 

thermal increase at the soil-cable interface will be expected and by 

consequence the higher the risk of observing water displacement from around 

the cable.   

 Soil water content: For a similar P not only a higher temperature increase is 

expected at the soil-cable interface with decreasing soil water content, but also 

if some drying due to the previous heating may have occurred, hydraulic 

conductivity might be too low to redistribute the water back to original before 

the start of the next heating pulse.  

It is noteworthy to indicate that for the range of soil moisture content (0.05-0.40m
3
m

-3
) 

observed in the soil column of the laboratory experiment, no signs of water 

displacement due to heating were detected for combinations of power intensity and 

heating duration ranging from 5 to 20 W and 1 to 2 minutes respectively.   

LM, H, and E depend mainly on the performance of the DTS unit employed, which is 

usually selected based on economical and/or logistical assessments. Note that E will 

increase with distance away from the DTS unit. E also depends on the quality of the 

sensing cable, i.e., a sensing cable with high light losses can degrade the measured 

signal.   

Averaging through space and time will increase LR, and N will basically increases the 

extent of measurement support and thus decreases observed variability due to the 

effect of averaging but nevertheless at the expense of feasible observation of features 

below this length scale (As discussed in section 4.2.1). Another method to increase N 

is to inject heat pulses at higher frequency while allowing enough cooling time 
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between two consecutive heat pulses in order for pre-heat pulse conditions to 

reestablish (i.e., compute an hourly value of moisture content from the data arising 

from six pulses that were conducted on 10-minute intervals). 

Increasing tT will increase the total heat signal captured by the  (       ) function in 

[9]. When tT > t0,  (        ) will capture both the heating and the cooling signal of 

the heated cable. The additional signal captured during cooling will decrease with 

increasing tT. In this case, it exists a value of tT where the additional gain in 

  (       ) will be smaller than the additional noise added by the increasing reading 

time (that is adding up by the square root of time). 

 

Table 4.6   Main limitations for the different parameters in the FQ equation 

FQ Parameter Main Limitations 

P, t0 Excessive heating may cause water displacement 

LM, E, H Economical/logistical limitations due to the instrument 

LR Reduced spatial information 

tT Rate of change in Tcum with tT  <  instrument noise per second  

N 
Pre-heat pulse condition not reestablished between heating 

pulses 

 

4.5 Conclusions 

The results of the field testing showed that AHFO method is capable of capturing a 

complex spatial pattern of soil water content and soil water fluxes. Similar spatial 
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patterns are challenging to depict using few measurements at the point scale. Larger 

scale measurements techniques, such as Cosmic-Ray probes and remote sensing, 

might be able to provide an average picture of the change in soil water content at a 

reasonable accuracy. Nevertheless, they will fail to capture all the important small 

scale processes observed in this experiment.  The monitoring such small scale 

processes are of particular importance in irrigated agriculture (e.g. localized 

irrigation), and natural systems (e.g. preferential flows and contaminant transport). 

The results showed that soil moisture contents and fluxes can be measured and 

monitored at a range of values (ranging from dry to saturated conditions) that is 

significantly larger than the  <0.06 range m
3
 m

-3
 reported by Weiss [2003] and more 

informative than  the qualitative “dry, wet or saturated” assessment reported by 

Perzlmaier et al. [2004; 2006]. This improvement is mainly due to the use of a data 

interpretation method (i.e.  The time integral of temperature deviation developed by 

Sayde et al. [2010]) that is appropriate to the DTS method wherein precision of 

temperature reporting is a direct function of the interval of photon integration. 

 

AHFO applications allow operator control over the heat signal that is injected into the 

soil. This is a significant advantage over the diurnal cycle driven heat signal employed 

by the passive distributed temperature sensing method for soil moisture estimation 

described by Steele-Dunne et al. [2010] i.e.  A heat signal that can be significantly 

attenuated under several conditions (e.g.  Increasing soil depth, under dense vegetative 

canopy, cloudy days, or other surface energy flux limited systems). 
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Laboratory experiments showed that the power intensity of the injected heat is 1:1 

proportional to the Tcum response of the FO cable. This can be used to improve the 

quality of the measured data by accounting for fluctuation in power. The deviation 

from the 1:1 line can be used also as an indicator of water displacement due to 

overheating. 

 

The calibration of the AHFO method remains challenging. A calibration method that 

is much less labor and time intensive than the one currently used in this experiment 

needs to be developed in order to allow practical application of the AHFO method. In 

principle, a possible alternative calibration procedure could be based on the theory that 

the calibration curves relating Tcum to θ should have a similar characteristic shape that 

is scalable to fit a particular soil by few measured Tcum-θ couples; similar to what is 

observed with the relationship between thermal conductivity and θ.  

 

Error in soil water content estimates due to instrumentation was reduced considerably 

(from 0.07 to 0.02 m
3
m

-3
 at saturation) when a DTS with better performance is 

employed in the laboratory experiment. This is due to the increase in the signal to 

noise ratio of measured Tcum. A quality factor index (FQ) is introduced to quantify the 

impact of different design and operation decisions and their interactions on the signal 

to noise level. 
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5. General Conclusions and Future Directions 

The objectives of this research were to characterize and reduce the uncertainty 

associated with determination of spatially variable soil moisture conditions. These 

objectives were to be achieved using two approaches: 1) by implicitly accounting for 

spatial variability using a Bayesian decision model, and 2) by explicitly measuring 

spatial variability using the Actively Heated Fiber Optic (AHFO) method. 

 

The content of this research was presented in three core chapters. First, Chapter 2 

discussed a concept approach of using a Bayesian decision model to integrate 

information embodied in estimates of soil water depletion generated from an ET based 

model with the information obtained from soil moisture measurements in the field to 

derive a posterior estimation of soil water status that has the potential to provide a 

better basis for irrigation decisions. Second, Chapter 3 presented the feasibility 

analysis of implementation of a new and simple interpretation of heat data to retrieve 

high resolution soil water content along Fiber Optic cable using the AHFO method. 

Third, Chapter 4 presented the field testing methodology and results of the AHFO 

method. 

 

For the Bayesian decision model, insights derived from the analysis lead to an 

important general conclusion, that scientific irrigation scheduling can be made more 

effective by explicitly accounting for the uncertainties of both ET estimates and soil 

water determinations. 
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Additionally, the results showed that: 

 Analytical tools for irrigation scheduling need not only estimate the most 

probable levels of depletion; they must also quantify the uncertainties of such 

predictions.  

 Uncertainty in field scale estimates of soil water conditions derived from 

measurements can be substantially large. For the specific case of the numerical 

example, 37% of the measurements were located outside the ± 50% of the 

average range. The task of quantifying such uncertainty may be challenging. 

 

The feasibility analysis showed that the AHFO method became feasible for 

determination of soil water content across a much broader range of values than 

previously reported using a response metric that has not been previously employed: 

the time integral of temperature deviation. 

 

The key finding of the feasibility analysis is to confirm the potential to employ DTS 

systems to monitor soil water content at temporal resolutions well under one hour and 

at high spatial resolution (≤ 1 m).  In principle, this DTS method could monitor soil 

moisture along cables exceeding several km in extent. This would allow for concurrent 

observation of thousands of adjacent locations, which will likely provide new insights 

into the spatial structure of infiltration and evaporation. 
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Additional work is required to develop optimal heating and interpretation strategies for 

DTS-based heat pulse methods, building upon the rich literature related to needle heat 

pulse systems 

 

The results of the field testing showed that AHFO method is capable of capturing a 

complex spatial pattern of soil water content and soil water fluxes. 

 

Laboratory experiments showed that the power intensity of the injected heat is 1:1 

proportional to the Tcum response of the FO cable. This can be used to improve the 

quality of the measured data by accounting for fluctuation in power. The deviation 

from the 1:1 line can be used also as an indicator of water displacement due to 

overheating. 

 

Future directions for the Bayesian decision model: 

Several simplifying assumptions are used in the development of the Bayesian decision 

model; assumptions such the normality and statistical independencies of the different 

parameters in the model. Further studies are recommended to   investigate and account 

for possible divergences in the assumptions. 

 

There are additional sources of information that could be integrated in this analysis to 

provide additional insights on the status of soil moisture depletion in the field. In 

specific, we would expect that most experienced farmers could judge how 
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representative is a particular measurement location to the soil moisture depletion status 

observed across a particular field. In principle such additional information could be 

easily adaptable in the model when using a model that explicitly account for spatial 

variability in the field (e.g. IMO). This will allow generating a prior and a posterior 

distribution that reflects defined conditions in the field (e.g. driest 25%, average, 

wettest 25%, etc…). Another advantage of including such information is that it will 

allow additional flexibility for decision makers to adapt wide range of irrigation 

scheduling strategies instead of targeting the average condition in the field as the 

current version of the model suggests.  

 

Future directions for the AHFO model: 

The calibration of the AHFO method remains challenging. A calibration method that 

is much less labor and time intensive than the one currently used in this experiment 

needs to be developed in order to allow practical application of the AHFO method. In 

theory, curves relating Tcum to soil water content should have a same basic shape. This 

suggests that calibration curves for different soil types could be scaled from one 

reference curve using couple of measurements in the field. Field demonstration of this 

methodology is required in future work. 

 

In the AHFO method, the errors in soil water content estimates due instrumentation 

and operation can be reduced by increasing the signal-to-noise ratio of Tcum readings. 

The design and operation of the FO system can be specifically optimized to meet the 
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specific output resolution requirements in all three dimensions: time, space, and 

accuracy. This is can be achieved by economically optimizing a Quality Factor Index 

(FQ), that is presented in this thesis, under a set of constraining values for the eight 

different interacting parameters that are used to calculate FQ. Those parameters are: 

the power intensity applied, the DTS temperature reading error per temperature 

reading cycle, the spatial resolution of the temperature readings, the DTS spatial 

resolution, the rate at which the DTS soil water is measured, the DTS temperature 

reading frequency, the heat pulse duration, and the total Tcum reading duration. Future 

studies should focus on defining the constraining values of the eight parameters 

described above. In addition, the geometry and components of the FO sensing cable 

are known to affect the signal-to-noise ratio of Tcum readings. The design of the FO 

cable sensors should be optimized for the soil moisture measurement application. 
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APPENDIX A - CALCULATION OF THE POSTERIOR 

DISTRIBUTIONS OF THE SOIL WATER DEPLETION AT A 

PARTICULAR LOCATION IN THE FIELD 
 

 

 

Using Bayes rule to combine the data distribution p(Di│δi, σDi
2
)  and the prior 

distribution p(δi│m,s
2
,α

2
), the posterior distribution of the true  soil water depletion at 

a particular location in the field (δi) is given up to a constant of proportionality as: 
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Thus, 
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δi is the true soil water depletion at a particular location (i) in the field, 

Di is the measured soil water depletion at location (i), 

σDi
2 

is the error/uncertainty of this particular measurement of soil water depletion at location (i), 

m is the prior for the true field-average soil water depletion (ω), 

s
2
 is the prior for  true variance of soil water depletion in the field  (τ

2
), 

α is added to the prior s to reflect the uncertainty in the IMO model outputs. 
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APPENDIX B - CALCULATION OF THE POSTERIOR 

DISTRIBUTIONS OF THE AVERAGE SOIL WATER 

DEPLETION IN THE FIELD USING THE HEIRARCHICAL 

MODEL 

 

The measured soil moisture depletion at a particular location i can be expressed as: 

 

          
     (       

 )       
  assumed known 

 

The true soil water depletion at at a particular location i can be expressed as: 

 

        
     (     

 )         
     assumed known from IMO 

 

 

The prior distribution of the average soil water depletion in the field can be expressed 

as: 

     (     )               m  assumed known from IMO 

                                          is a user input based on an educated guess 

 

Then: 
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Where     ̃  ( ̂  ̂ ) is the posterior distribution of the average soil moisture 

depletion in the field 
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APPENDIX C– TIME-LAGGED CROSS-CORRELATION 

RESULTS 
 

Table 1: Time lag at maximum correlation level, maximum correlation value, 

maximum observed ∆θ at the 30 cam depth, and section number for each position 

along the FO cable transect. 

 

Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 4.5 0.00 26 0.01 1 

5 0.08 -22 0.01 1 

5.5 0.13 15 0.01 1 

6 0.33 -2 0.01 1 

6.5 0.53 -3 0.02 1 

7 0.30 -3 0.02 1 

7.5 0.13 -10 0.03 1 

8 0.17 -16 0.08 1 

8.5 0.35 -4 0.18 1 

9 0.30 -10 0.18 1 

9.5 0.29 -10 0.10 1 

10 0.50 -11 0.04 1 

10.5 0.61 -10 0.02 1 

11 0.65 -8 0.02 1 

11.5 0.48 2 0.02 1 

12 0.25 -16 0.02 1 

12.5 0.34 11 0.02 1 

13 0.39 8 0.03 1 

13.5 0.51 6 0.02 1 

14 0.27 -10 0.01 1 

14.5 0.38 5 0.01 1 

15 0.31 17 0.01 1 

15.5 0.27 15 0.01 1 

16 0.29 -10 0.02 1 

16.5 0.30 14 0.02 1 

17 0.37 -9 0.03 1 

17.5 0.27 -6 0.02 1 

18 0.17 -18 0.03 1 

18.5 0.18 -18 0.04 1 

19 0.31 -4 0.03 1 

19.5 0.60 -4 0.04 1 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 20 0.66 0 0.02 1 

20.5 0.62 0 0.02 1 

21 0.37 -4 0.02 1 

21.5 0.25 -5 0.02 1 

22 0.27 -13 0.02 1 

22.5 0.38 13 0.01 1 

23 0.40 13 0.01 1 

23.5 0.30 15 0.00 1 

24 N/A 26 0.00 1 

24.5 N/A 26 0.00 1 

25 N/A 26 0.00 1 

25.5 0.40 -1 0.01 1 

26 0.08 -13 0.01 1 

26.5 0.07 -12 0.02 1 

27 0.40 5 0.01 1 

27.5 0.31 5 0.01 1 

28 0.33 6 0.01 1 

28.5 0.44 5 0.01 1 

29 0.35 6 0.00 1 

29.5 0.45 4 0.01 1 

30 0.45 3 0.01 1 

30.5 0.29 4 0.01 1 

31 0.38 -18 0.01 1 

31.5 0.35 3 0.01 1 

32 0.37 -19 0.02 1 

32.5 0.34 -1 0.01 1 

33 0.46 -1 0.01 1 

33.5 0.33 4 0.01 1 

34 0.25 -1 0.01 1 

34.5 0.38 -2 0.01 1 

35 0.12 8 0.01 1 

35.5 0.20 8 0.01 1 

36 0.19 -8 0.01 1 

36.5 0.42 -8 0.01 1 

37 0.35 3 0.01 1 

37.5 0.18 18 0.01 1 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 38 0.00 -17 0.00 1 

38.5 N/A 26 0.00 1 

39 0.00 23 0.01 1 

39.5 N/A 26 0.00 1 

40 0.35 20 0.01 1 

40.5 0.46 -1 0.01 1 

41 0.37 -17 0.02 1 

41.5 0.33 -2 0.02 1 

42 0.57 8 0.01 1 

42.5 0.59 8 0.00 1 

43 0.64 4 0.00 1 

43.5 0.48 8 0.01 1 

44 0.37 0 0.01 1 

44.5 0.38 -15 0.02 1 

45 0.27 9 0.03 1 

45.5 0.35 18 0.02 1 

46 0.32 18 0.02 1 

46.5 0.38 1 0.01 1 

47 0.31 3 0.01 1 

47.5 0.00 -7 0.01 1 

48 0.00 -1 0.01 1 

48.5 0.00 10 0.01 1 

49 0.33 -2 0.01 1 

49.5 0.35 -1 0.01 1 

50 0.41 -11 0.02 1 

50.5 0.67 0 0.03 1 

51 0.85 0 0.03 1 

51.5 0.94 0 0.02 1 

52 0.92 0 0.02 1 

52.5 0.874 0 0.01 2 

53 0.667 0 0.01 2 

53.5 0.540 1 0.01 2 

54 0.560 -3 0.01 2 

54.5 0.564 -3 0.01 2 

55 0.742 -7 0.03 2 

55.5 0.833 -1 0.05 2 

56 0.870 -1 0.07 2 

56.5 0.926 -1 0.09 2 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 57 0.948 1 0.10 2 

57.5 0.921 0 0.10 2 

58 0.903 0 0.11 2 

58.5 0.915 0 0.12 2 

59 0.906 0 0.14 2 

59.5 0.902 0 0.15 2 

60 0.948 0 0.16 2 

60.5 0.905 -1 0.19 2 

61 0.960 1 0.12 2 

61.5 0.962 1 0.09 2 

62 0.945 -2 0.07 2 

62.5 0.963 -3 0.07 2 

63 0.952 -3 0.05 2 

63.5 0.939 -3 0.04 2 

64 0.923 -2 0.04 2 

64.5 0.906 -2 0.04 2 

65 0.870 -2 0.04 2 

65.5 0.877 -1 0.03 2 

66 0.905 0 0.05 2 

66.5 0.924 2 0.10 2 

67 0.934 1 0.14 2 

67.5 0.946 1 0.13 2 

68 0.961 0 0.11 2 

68.5 0.937 0 0.07 2 

69 0.916 -2 0.05 2 

69.5 0.907 0 0.04 2 

70 0.929 0 0.04 2 

70.5 0.953 0 0.05 2 

71 0.962 0 0.07 2 

71.5 0.978 0 0.10 2 

72 0.971 0 0.11 2 

72.5 0.946 0 0.11 2 

73 0.933 0 0.10 2 

73.5 0.936 0 0.08 2 

74 0.930 0 0.06 2 

74.5 0.930 1 0.04 2 

75 0.827 1 0.02 2 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 75.5 0.510 6 0.01 2 

76 0.500 1 0.01 2 

76.5 0.686 1 0.01 2 

77 0.872 0 0.02 2 

77.5 0.950 0 0.06 2 

78 0.954 1 0.11 2 

78.5 0.958 2 0.25 2 

79 0.913 2 0.37 2 

79.5 0.920 2 0.23 2 

80 0.939 1 0.13 2 

80.5 0.971 0 0.10 2 

81 0.960 0 0.07 2 

81.5 0.900 0 0.06 2 

82 0.866 0 0.03 2 

82.5 0.522 3 0.01 2 

83 0.667 2 0.01 2 

83.5 0.522 2 0.01 2 

84 0.404 3 0.01 2 

84.5 0.588 3 0.03 2 

85 0.611 -2 0.03 2 

85.5 0.830 -3 0.02 2 

86 0.773 -2 0.03 2 

86.5 0.880 1 0.04 2 

87 0.893 2 0.08 2 

87.5 0.918 2 0.15 2 

88 0.892 2 0.13 2 

88.5 0.899 2 0.05 2 

89 0.922 2 0.02 2 

89.5 0.881 2 0.01 2 

90 0.879 1 0.01 2 

90.5 0.883 1 0.02 2 

91 0.896 1 0.04 2 

91.5 0.971 0 0.07 2 

92 0.982 0 0.08 2 

92.5 0.971 0 0.06 2 

93 0.974 0 0.04 2 

93.5 0.942 0 0.03 2 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 94 0.888 0 0.03 2 

94.5 0.929 3 0.04 2 

95 0.949 1 0.05 2 

95.5 0.962 1 0.05 2 

96 0.924 0 0.06 2 

96.5 0.861 0 0.05 2 

97 0.854 0 0.04 2 

97.5 0.890 0 0.05 2 

98 0.952 0 0.05 2 

98.5 0.941 0 0.06 2 

99 0.922 3 0.07 2 

99.5 0.957 0 0.08 2 

100 0.971 0 0.07 2 

100.5 0.979 -1 0.06 2 

101 0.956 -1 0.04 2 

101.5 0.929 -3 0.03 2 

102 0.889 -3 0.02 2 

102.5 0.840 0 0.03 2 

103 0.847 1 0.04 2 

103.5 0.891 -1 0.05 2 

104 0.921 0 0.05 2 

104.5 0.893 1 0.03 2 

105 0.718 4 0.02 2 

105.5 0.566 5 0.02 2 

106 0.480 -3 0.01 2 

106.5 0.263 0 0.01 2 

107 0.175 -10 0.01 2 

107.5 0.105 -19 0.02 2 

108 0.448 0 0.03 3 

108.5 0.498 8 0.03 3 

109 0.479 9 0.02 3 

109.5 0.183 9 0.02 3 

110 0.077 11 0.02 3 

110.5 0.033 15 0.04 3 

111 0.309 1 0.05 3 

111.5 0.567 1 0.05 3 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 112 0.659 3 0.05 3 

112.5 0.733 4 0.06 3 

113 0.776 4 0.08 3 

113.5 0.823 4 0.13 3 

114 0.842 3 0.14 3 

114.5 0.841 2 0.13 3 

115 0.879 5 0.10 3 

115.5 0.883 5 0.08 3 

116 0.909 2 0.09 3 

116.5 0.912 2 0.13 3 

117 0.867 3 0.19 3 

117.5 0.836 3 0.20 3 

118 0.904 2 0.19 3 

118.5 0.931 2 0.19 3 

119 0.928 2 0.12 3 

119.5 0.942 2 0.09 3 

120 0.945 1 0.06 3 

120.5 0.958 2 0.04 3 

121 0.934 2 0.04 3 

121.5 0.950 2 0.04 3 

122 0.933 2 0.04 3 

122.5 0.888 2 0.04 3 

123 0.823 -1 0.04 3 

123.5 0.733 -9 0.03 3 

124 0.623 2 0.01 3 

124.5 0.333 8 0.01 3 

125 0.286 2 0.01 3 

125.5 0.289 8 0.01 3 

126 0.348 7 0.01 3 

126.5 0.112 17 0.01 3 

127 0.067 16 0.01 3 

127.5 0.620 3 0.02 3 

128 0.817 5 0.04 3 

128.5 0.850 4 0.08 3 

129 0.841 0 0.10 3 

129.5 0.843 4 0.12 3 

130 0.887 4 0.14 3 

130.5 0.898 3 0.15 3 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 131 0.861 3 0.18 3 

131.5 0.891 2 0.19 3 

132 0.955 2 0.16 3 

132.5 0.934 2 0.16 3 

133 0.903 1 0.21 3 

133.5 0.878 4 0.23 3 

134 0.900 4 0.15 3 

134.5 0.879 2 0.08 3 

135 0.742 2 0.05 3 

135.5 0.382 8 0.02 3 

136 0.816 -4 0.01 3 

136.5 0.354 -3 0.01 3 

137 0.160 1 0.01 3 

137.5 0.134 7 0.01 3 

138 0.280 8 0.01 3 

138.5 0.571 4 0.02 3 

139 0.782 5 0.04 3 

139.5 0.857 4 0.09 3 

140 0.877 3 0.08 3 

140.5 0.931 2 0.05 3 

141 0.949 2 0.03 3 

141.5 0.938 2 0.03 3 

142 0.938 1 0.03 3 

142.5 0.910 2 0.03 3 

143 0.922 1 0.05 3 

143.5 0.928 2 0.08 3 

144 0.922 1 0.13 3 

144.5 0.923 3 0.20 3 

145 0.911 2 0.25 3 

145.5 0.946 1 0.19 3 

146 0.954 0 0.13 3 

146.5 0.955 0 0.10 3 

147 0.934 1 0.10 3 

147.5 0.940 2 0.13 3 

148 0.960 3 0.25 3 

148.5 0.943 3 0.26 3 

149 0.967 4 0.18 3 

149.5 0.965 3 0.17 3 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 150 0.947 3 0.14 3 

150.5 0.943 3 0.10 3 

151 0.966 2 0.07 3 

151.5 0.962 2 0.05 3 

152 0.954 3 0.05 3 

152.5 0.945 1 0.05 3 

153 0.925 1 0.04 3 

153.5 0.902 1 0.03 3 

154 0.837 5 0.02 3 

154.5 0.805 6 0.01 3 

155 0.408 -11 0.01 3 

155.5 0.286 -2 0.01 3 

156 0.263 15 0.01 3 

156.5 0.286 15 0.01 3 

157 0.445 13 0.01 3 

157.5 0.445 13 0.01 3 

158 0.615 6 0.01 3 

158.5 0.356 6 0.02 4 

159 0.492 -12 0.02 4 

159.5 0.627 -5 0.03 4 

160 0.839 0 0.04 4 

160.5 0.873 1 0.05 4 

161 0.834 3 0.05 4 

161.5 0.767 4 0.04 4 

162 0.578 5 0.04 4 

162.5 0.624 8 0.03 4 

163 0.762 4 0.03 4 

163.5 0.890 3 0.03 4 

164 0.924 2 0.04 4 

164.5 0.904 3 0.06 4 

165 0.896 3 0.08 4 

165.5 0.887 3 0.11 4 

166 0.879 2 0.14 4 

166.5 0.940 2 0.12 4 

167 0.924 1 0.08 4 

167.5 0.891 0 0.06 4 

168 0.833 0 0.06 4 

168.5 0.850 0 0.06 4 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 169 0.861 0 0.06 4 

169.5 0.881 2 0.07 4 

170 0.902 2 0.07 4 

170.5 0.878 2 0.09 4 

171 0.853 3 0.08 4 

171.5 0.896 1 0.05 4 

172 0.832 -2 0.03 4 

172.5 0.738 -3 0.03 4 

173 0.660 -3 0.03 4 

173.5 0.747 -2 0.05 4 

174 0.590 -2 0.06 4 

174.5 0.696 1 0.07 4 

175 0.778 7 0.07 4 

175.5 0.767 8 0.07 4 

176 0.854 4 0.10 4 

176.5 0.822 4 0.13 4 

177 0.825 1 0.10 4 

177.5 0.770 1 0.05 4 

178 0.564 0 0.02 4 

178.5 0.404 5 0.01 4 

179 0.169 5 0.01 4 

179.5 0.204 5 0.01 4 

180 0.333 14 0.01 4 

180.5 0.316 17 0.01 4 

181 0.213 16 0.01 4 

181.5 0.540 -7 0.02 4 

182 0.655 -7 0.03 4 

182.5 0.632 -7 0.04 4 

183 0.535 2 0.05 4 

183.5 0.638 2 0.05 4 

184 0.742 2 0.05 4 

184.5 0.837 0 0.06 4 

185 0.847 4 0.09 4 

185.5 0.920 2 0.17 4 

186 0.969 2 0.30 4 

186.5 0.965 2 0.34 4 

187 0.916 2 0.41 4 

187.5 0.920 2 0.25 4 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 188 0.922 2 0.18 4 

188.5 0.914 1 0.14 4 

189 0.916 0 0.11 4 

189.5 0.939 1 0.09 4 

190 0.933 1 0.07 4 

190.5 0.935 2 0.06 4 

191 0.889 2 0.07 4 

191.5 0.888 4 0.08 4 

192 0.873 2 0.08 4 

192.5 0.848 3 0.07 4 

193 0.909 4 0.05 4 

193.5 0.879 4 0.04 4 

194 0.895 3 0.03 4 

194.5 0.872 1 0.04 4 

195 0.867 3 0.04 4 

195.5 0.869 4 0.05 4 

196 0.818 4 0.05 4 

196.5 0.841 4 0.07 4 

197 0.843 -1 0.09 4 

197.5 0.876 3 0.11 4 

198 0.912 3 0.11 4 

198.5 0.928 2 0.11 4 

199 0.920 0 0.10 4 

199.5 0.941 0 0.09 4 

200 0.925 0 0.09 4 

200.5 0.930 1 0.09 4 

201 0.933 0 0.07 4 

201.5 0.899 0 0.06 4 

202 0.878 0 0.04 4 

202.5 0.892 1 0.03 4 

203 0.809 0 0.02 4 

203.5 0.808 3 0.02 4 

204 0.791 0 0.03 4 

204.5 0.700 0 0.03 4 

205 0.735 0 0.04 4 

205.5 0.722 0 0.05 4 

206 0.782 6 0.05 4 

206.5 0.811 2 0.05 4 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 207 0.828 4 0.06 4 

207.5 0.819 4 0.07 4 

208 0.803 6 0.07 4 

208.5 0.833 4 0.06 4 

209 0.769 4 0.06 4 

209.5 0.724 3 0.06 4 

210 0.773 3 0.07 4 

210.5 0.776 3 0.08 4 

211 0.851 3 0.10 4 

211.5 0.898 3 0.11 4 

212 0.912 3 0.08 4 

212.5 0.895 4 0.05 4 

213 0.838 4 0.06 4 

213.5 0.855 1 0.06 4 

214 0.811 1 0.08 4 

214.5 0.842 1 0.10 4 

215 0.868 1 0.13 4 

215.5 0.877 1 0.17 4 

216 0.884 7 0.20 4 

216.5 0.866 7 0.19 4 

217 0.864 7 0.19 4 

217.5 0.777 4 0.14 4 

218 0.629 5 0.10 4 

218.5 0.773 7 0.10 4 

219 0.838 5 0.09 4 

219.5 0.901 5 0.06 4 

220 0.907 4 0.04 4 

220.5 0.884 4 0.03 4 

221 0.809 4 0.04 4 

221.5 0.856 4 0.05 4 

222 0.785 3 0.10 4 

222.5 0.704 4 0.15 4 

223 0.702 3 0.13 4 

223.5 0.644 4 0.09 4 

224 0.680 7 0.09 4 

224.5 0.666 7 0.08 4 

225 0.731 7 0.08 4 

225.5 0.817 5 0.11 4 
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Position Corr. Coef. Time Lag Max ∆θ Section 

(m) 

 

(hr) (m
3
/m

3
) 

 226 0.938 3 0.12 4 

226.5 0.963 2 0.12 4 

227 0.961 2 0.11 4 

227.5 0.939 2 0.11 4 

228 0.883 2 0.13 4 

228.5 0.892 2 0.14 4 

229 0.696 6 0.10 4 

229.5 0.626 5 0.07 4 

230 0.572 0 0.06 4 

230.5 0.383 6 0.06 4 

231 0.055 11 0.07 4 

231.5 0.021 11 0.07 4 

232 0.074 15 0.07 4 

232.5 0.220 14 0.08 4 

233 0.662 9 0.12 4 

233.5 0.856 9 0.20 4 

234 0.840 6 0.24 4 

234.5 0.856 5 0.21 4 

235 0.875 4 0.17 4 

235.5 0.891 4 0.18 4 

236 0.879 4 0.17 4 

236.5 1.000 0 0.01 4 

237 1.000 0 0.01 4 

237.5 1.000 0 0.01 4 

238 1.000 0 0.01 4 

238.5 1.000 0 0.01 4 

239 1.000 0 0.01 4 

239.5 N/A 26 0.00 4 

240 N/A 26 0.00 4 

240.5 N/A 26 0.00 4 

 

 

 

 

 

 

 

 

 


