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HYPERPOLARIZABILITY AND FORBIDDEN
RAMAN LINES

CHAPTER I
INTRODUCTION

In the Raman spectrum of certain molecules and ionms
weak transitions occur which are forbidden to take place
when one considers the symmetry of the free molecule. An
article by Gray and Waddingten ( 6, p. 901-908 ) presents a
summary of the articles which have been written on the azide
ion which is usually assumed to have (O, symmetry, i. €.,

a linear symmetric triatomic ien. Many investigators of this
ion have observed its 2. and 75 bands in the Raman spectrum.
In lead azide a partial covalent bond has been postulated to
exist between the lead and the azide which destroys the
symmetry for the azide ion. However, for the azide salts of
the alkali metals this could not be postulated. It was stated
that the normal selection rules are relaxed under the influence
of the perturbing electric fields of neighboring ioms.

It has also been noted by Welsh, et al., ( 11, p. 99=110)
that carbon dioxide at high density shows the existence of both
the 7. and 75 bands in the Raman spectrum, They suggested that
the molecule was distorted under an influence of the field of
neighboring molecules in such a way that the u&hcuk took on
Ceov type symmetry, i. e., the molecule remained linear but



one carbon oxygen bond became longer thai the othexr, This
conclusion was drawn from the fact the 7 band had a double
maxinum while the fainter 75 band was narrow, indicating a
strong Q branch with rotational wings of low intensity. They
made no depolarization measurements.,

Evans and Bexnstein ( 3, p. 1127-1133 ) found that in
concentrated solution of carbon disulfide using cyclopentane
as a solvent that the existing 7, and 7 bands were both
polarized ([, = 0.63 for both bands ) and that the 7. bands
of carbon disulfide showed no indication of a double peak. A
tziateﬂe molecule with Cmv symmetry requires that there
be twe polarized  7),7}) bands and one depolarized band ( 7. ).
Hence it was concluded that distortion in a carbon disulfide
molecule under the influence of a perturbing neighboring field
is not only along the SCS axis but also at a right angle to
this axis, They gave the distorted carbon disnlﬁdé molecule
| a symmetry of C; . They alse found the ratio of the intensity
of the 7; band to the 4 band of carben disulfide to be
~ proportional to the volume-fraction of carbon disulfide /
cyclopentane to the 1ma~t.h_im power,

'.mg paper will be an attempt to discuss the appearance
of such forbidden bands, retaining the symmetry of the free
molecule, |



CHAPTER II
CLASSICAL THEORY OF THE RAMAN EFFECT

The introduction of an atom or molecule into an electric
field ¥ induces an electric dipole moment P in the system, If
a component of the electric dipole is expanded by a Taylor's
series expansion in terms of the ammati of the electric
field,
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Thus, the induced dipele, neglecting quadradic and higher
terms of the components of the electric field, is |

- 2
@ Pe = %,:(5%.5),5':’
Let %F; (%“éf,)obe the components of the polarizability.
It can be shown ( 12, p. 44 ) that a set of axes in a meolecule
exists such that

&) B = dx Ex ) Pz} = O\«J.E}. y P}. = d’i’E}

If light of frequency ) falls on an ion or melecule, the
varying electric field produced by the light may be represented
by

@ Eq = Eg cos (aTiit)

This field produces a varying dipole moment which itself causes



emission of light of the same frequency as the incident light.
For a classical oscillating dipole the intensity of the emitted
radiation, I, is given by

© T o= 45 P

( see appendix 6). This accounts for the Rayleigh scattering
which is responsible for the phenomena of dispersion and the
Tyndall effect. The polarizability must change if internuclear
distances change ( vibrations ) or if the molecule undergoes
rotation, since the polarizability depends on the orientation
of the molecule. By expanding the components of the polariz-
ability, Oy in texms of the normal coordinates of the molecule

® oy = dgo + = (3%). Pk

is a normal coordinate of the molecule and changes with
a frequency characteristic of the molecule,

™ Qk = Qf [Cosiz42)].

Now, combining equations 3, 4, 6, and 7

(9) Fg = [0(30 +% —%%%)o Cag(zm%z‘)jfo@os(aﬂ%z‘)

) F; = Ogo £o, Cos (21 %t

+ 3 (585). Q Eygo [ Cos2m (1 +24) ¢ #0520



Thus, when one considers small changes in < with vihut!on;
the induced dipole moment changes not only with the frequenmecy
z, of the incident light but also with frequencies z/-z/( or
with frequencies 2/z>z/for rotations ). The Raman lines dis-
placed toward the longer wave lengths are called Stokes linmes
(Z/-z, ) and those displaced toward the shorter wave lengths
(z/+24) are called anti-Stokes lines. Thus, one should
expect displacements on either side of the excitation line
equal to 2, for vibrations and 22, for rotations. Classically
24 is fixed while 27, ean\ take on any mlmy. Hence, one should
expect a continuous spectrum about the exciting Rayleigh line
due to rotation and that the long wave length component of the
displacement should have the same intensity as the short wave
length displacement. These two expectations are not observed,
Thus, although the classical treatment gives a qualitative
picture of the Raman effect it does not give a quantitative
picture. ( 12, p. 4346 )



CHAPIER III
QUANTUM THEORY OF THE RAMAN EFFECT

If there are N, molecules in the k'! state which are
of a lower energy and N, in the n'! state which is of a higher
enexrgy, the average intensity of the line arising from the
transition k-n is proportional to N (Vo-Tak ) wnile that
arising from the transition n—k is proportiomal to N, (Vo +Vak )4,
Thus,

4 _ nVak
R _(u,,«we )4 N, =(v,,+vnn)6 KT
Is - vo--unl& NR -VO"vnk

since N /N, is the Boltzman factor between the two states.
This simple derivation explains why the intemsity of the Stokes
lines are generally more intense than those of the anti-Stokes
lines.

The mean rate of total radiation of an induced dipole is
given classically by equation (5). The hypothesis is made
( Dirac radiation theory ) that the classical formulas can be
converted into quantum formulas by replacing P°2 by 4] [pel "?
in which

an [P = [V, PV, dT
thus,

(12) T-= %[U\VH*PW’M df”a



Now,

a®  [B]7 = EX o Yo VM dT
+ES Sy Yo W T + ES [okxz Yo W'd T

Similar equations hold for (P S\™ and [P, 0", E°,ES°,
and E,° are the components of the amplitudes of the incident
light wave, and the integrals

a0 [T "= o Y VKT e

are the matrix elements of the six components of the pelar-
izability tensor, In the Raman effect the electric vector of
the incident illumination, acting on the charges of the mclecule,
perturbs its wave funetion. If the integrals [P]™® are calculated
using perturbed wave functions ( imeluding time factors ), it

is ‘tem that for n=m there are texrms of the same frequemcy Z/
as the incident light, but for n“m there are terms with the
fﬁquney Ztz) +» The terms with unshifted frequency are
responsible for Rayleigh scattering while those of frequency
p}"% give rise to the Raman effect. A Raman tﬁa&inan is
allowed if at least ome of the six quantities .. ™0, For
the approximation that the wave fumction can be written as a
product of a rotational function, \//, with quantum numbers R

and a vibrational wave function, W. the integral



aw [tgp] = [V d T [V e Vd T,

since 0(33’( in molecular-fixed axes ) does not involve the
coordinates of rotation ( 12, p. 52 ). The orthogomality of the

rotational wave functions, therefore, leads to the result
' 744
nm
ae) [ %3] = Sav (Y]

Ceuomntly[o(g 1]“ is zero unless the rotational states axe the
same, These integrals can be treated exactly the same way as

the integrals of the electric moment; that is to say, they vanish
unless the symmetry of the set of functions \/fv*%/fu the two
levels under consideration has some species in common with the
species of &y,  (yy ete. For fundamentals this requires that
the normal vibrations for a given frequency fall into one of the
species associated with the (('s, if this frequenmcy is to occur
in the Raman effect. ( 12, p. 48-53 )



CHAPTER IV
HYPERPOLARIZABILITY

As in the case of the polarizability, a component of the
electric dipole moment may be expanded in terms of the components
of the electric field acting upon the meolecule in question,

Hence,

r gy 2 M

an —/QF :(/‘é)af%(gT/:F)o EF‘f‘Elgg (‘%T;&‘E;')OE;’EF" + -
The components of the pelarizability ave

‘ 3
£18) (A?F(,F)o = ep-

Suppose that for a given vibration of a molecule all of the
partial derivations of the components of the polarizability
uith respect to the normal coordinates of this particular
vibration vanish, i. e., the line is forbidden by polarizability
theoxy ( for a free molecule or ion the line would also be
forbidden for the hyper-Raman effect because of the intemsity
Mndam upon concentration ). ( See appendix 7 ). 1In this
case the intensity of the emitted light will be dependent upon
the partial derivatives of the components of the hyperpolariz~
ability with respect to the normal coordinates of this parti-
cular vibration provided they do not vanish., The components of
the hyperpolarizability are given by

a9 Perrr = 5 ( éEﬁ’égF”> °



10
In the hyper-Raman effect the induced dipole moment of
a molecule may be represented as |
20) p=> 2> Bwkile
£ F"
The /7, ,in turn can be expanded in terms of the normal co
ordinates of the molecule,

_ IBenirt
e b= (8,,.) +4R‘__(Mﬁ | Qn

The (8., . \ean be shown to be all zero for molecules with a

center of symmetry, The (5,.....) may be non-vanishing for
molecules with no center of symmetry which will give rise to

a pure rotational spectrum, If one separates Ep into the field,
due to the light source, & Fr and the field due to the neighboring
ions and molecules,AC. o Ep becomes:

@  E.= &+ A6
éfnybcnpunmw
(23) €, = E cos(@lmnt)

where j{ is the frequency of the incident light. At , may
be represented as

@) Af = AE,, * AEL Cos(amapt)

where VR, is a nml,tum'my of a neighbor and AEFDis the
time independent part of the surrounding field, The normal



coordimate,Q, + may also be written as

5 Qe = Q% Cos (2T ¢)

wheve 7¢ is the normal frequency of the molecule in question.
Combining these equations:

@) g =235 (Y& Qf COS 2myt [(€; (05 2THt
+4& COS 27 Y t)(€7COS 27 2 ¢ |
+AE + AELy COs 2T, t)]

Expanding this becomes

@n R-55> (3EEE) O [626, COS 27 3 Cos* 214t

tép (cosamy2)(Cos 2T 247) 4E ¢

+E% A& (Coszfrw)(coszﬂy,.z‘)(coszwpk, )
+AEpo E pr (cosz 2 ¢)Cos gz 7/,,2‘)

+ A4 E0 A& COS 2T Lt

+ A&y AEF (COS 2™ t)(COs 2# Heor )
+AE7E, (Cos 2T 4t)(Cos 2TH1)(Cos 2T % ¢)
+AES A€ (cosa mHDCos 2T Zut)

+AEp NEp (COS 21 Ut )(cos 2T He-f)zj

n



Thus, the escillating dipole due to the hyper~Raman effect

uin.han frequencies of the following types:
2Y Y, BEH, % %L, 1Y, ¥ ;uk,)aj,{,:’%_

A Raman apparatus is usually only designed to obsexve slight
shifts from the exciting frequency. Hence, only the terms which
invelve % 2% and %% %, {are of importance., Terms of the type
which involve frequenmcies %/ Z1{ are dependent upon &, /Af,,

Terms of frequencies % * %?%- ave dependent upon £ A€, ., It
seems logical to consider the 4., terms as being much smaller
than Ag,;a texms. This being the case,

ey P=5S F = Ble/-‘ﬁf‘;a) Q;@gﬂp{;} (Cosazﬁj{f)@ojlf)’:{-g
8) F.=_2 )
FFoF” R

29k
+ A€, E (cos 2Ty f}@“"”‘@ "').7
for observable lines in the hyper-Raman effect.,
Depolarization Ratics: ( 12, p. 43-47 )

The two quantities most commonly measured are the relative
intensities of the Raman shifts and their depolarization ratios.
The depolarization ratios will now be discussed.

For the laboratory fixed axes, the total radiation emitted
per unit solid angle in the X direction is given by

3
en = 2TZ° (uiy + 45

CJ
( see appendix 6 )
Consider that the direction of propagation of the incident



incident light coincides with the Y axis.

Incident X Incident Z
Polarized ~ Polarized

R’?j‘// - y Mot Hr} A Y
" H‘m*“’mm,% A Trooss. 1)

-

SHE A D : W EL
i ﬁi:::::::o:f ' Direction of
< Obsexrvation
_ P4

If the incident light is plane polarized in the T direction

and the total scattered intensity is observed along the X
axis, this total scattered intensity is represemted by
I,_.kens. 11). If the incident lighi is Z~polarized and the
total scattered intemsity is observed along the X axis, this
total scattered intensity is represenmted by xrtms. L
in this second case the scattered light is pelarized parallel
to the Z axis, the scattered intemsity is represented by

Ill (0BS.1). If we now consider only lines which are for-
bidden in the firsteorder~Raman effect, but allowed in the
hyper~Raman effect, the intemsities according to equation

(17) and (29) awd the above definitions are
ﬂ3V4
@0 T, (o8s.1) = (X prerlEcdent AbeNcSextoce) |

+’;-ZF: p ZFF I(c'c)(chX +Af}\=)(é‘x(§;:')( Tt Afpaz}

13
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34 2
Ir (oBs. )= %{LZF, EYFF’ (Ezcéz + A&, )(EerF'z * Agr-’)]
t [,-FZF' Forps (fchFz *Z’EF)(csz{;;‘z + 4 5@7?

€L, (OBSJ_~ c-* [Z B.re (E Irz # AEF) Endrz "LAEFJ

FF!

whexe F}; B £, E, =F%- Byee &+ 26:)Ep 2 2 5,:/) :

(E&, Ey,g . ) is the electric vector of the external light
source and (Afx a€y 4¢,) is the electric vector acting on

the molecule in question due to the molecules which surround it.
These equations apply only to a single radiator; tér N radiators
which are free to assume all orientations with mmt to the
cbserver's axes with equal probability, the equations are to be
‘multiplied by N and the average of each expression is to be
fund as the radiator is allowed teo au?a& all orientations.

It can be shown ( see Wudlx 1) tki_s the general formulas

of transformation of Brr/ » in laboratory fixed axes to

in molecular fixed axes are given by '

@D Borpr = =, Poggr Ers Frig Zpngy

Now considerx,



32) 4% :F'ZF” B.ppr Epr Epr =F'ZF" Brer (EFM-AEF’)@:” %JEF”)

If the incident light from the source is such that
£X¢O > E}/:O =E=

t“‘g

N = F% Berir (oiderx + A )Epr e + AEF)

If we now consider only&;Af-/ type terms to be those which

produce the hyper-Raman effect  see equation 28 ), may

be reduced for our purpeses to
@3 o e (&1 Apndrix +Epr ASFfpry)
Upon expansion this gives,

A = Prexy (5(46(%5/ Asx) + EF}L@ Ay

+ PRzl A&z + Reyx Cxdcy + Byzx ExAEx

However, | .
%) - e
SEF'BEF// o z)EF/'éE,c’
(34) C.o, Peerr = Brre
Then
— T—  _ \®
(35) Ay T = (Z ﬁw) EF 45;
FI
‘mle‘.

. (36) (see next page)



2 ~2 . 2 2
36) M; = %EfAé;:[ é (é /5;3'3" §:g’ §ig’ §F'§"

22 /63 3’3”@!'.1'.’(‘,”- k2 F3 §x;’§z='3” §t—'i. Exi. §F’L”>

3<L

+ 2 Z Z Z [3’3;'3" ﬁéi.‘[," §F;§x5'§f;'g"§Fi§xi' §G'l.":{

"F'Ke § L

From equation (36) it is apparent that the intensity of the
exciting light is proportiomal to £f . The termA( . can be
computed by intreducing some assumptions rvegarding the inter-
molecular forces ( see appendix 7 ). But 23 :.3.. =| and

F! :
§.§F‘j"§F‘L" =§g't" « Also only the average value of M

is Wc 81&0& Z §F3§XS'§F'3"§FL§XU§GL” =O) /"(rz_-
F<LG

reduces to

e “+ 2 —Z e
‘37, MF =_3—é:A€ﬂ- [% p;g'éﬂ §F3_§X3.,

+29§J(zlgnﬁjjrg "/séilz./lfFa§K§'§Fi §Xi /J

The depolarization ratio is "defined as the ratio of the
scattered intensity which is polarized perpendicular t‘.‘o_z?.
that is, in the direction of propagation of the incident light,
to the intemsity paralled to B." ( 12, p. 47 ). " If the
incident light is natural ( umpolarized ), the depolarization
ratio may be computed by considering the scattered light te
represent the sum of the intensities of the ohservations made
parallel and perpendicular to the incident electric vector of a
pelarized beam, That part of the light from the parallel
cbsexvation, being unpelarized, contributes one-half its
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- intensity to the scattered light polarized, respectively, parallel

and perpendicular to E: |
»

(38) Pn = T, (0BS.L)—TI,(oBSs. L) —%IT(OBS.H)
(12, p. 47 )

Now let é\)(:é\z 3 é‘y:—_O
~ Then

@p = 22 Bage B%s Byt + 43%‘%"" Py ProeRygBogy @z

2Fgs 05 Ty T4 Seefpg it 2 Bay B ot

+§ Frag 2240y T 2 3§—.5a"c'"paa*x pt DaBrq By By

This may be written more concisely as

(40) a0 — EZ:B%/_XF
Y Y Bt i
F@yv* FﬁZZF
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CHAPTER V
THE ., SYMETRY POINT GROUP

First it will be necessary to determine which of the

ten distinct s exist as linear combinations which transform
as certain of the symmetry species of the group. One may observe
tl‘ge following transformations under the operations of the group:
xyz Es xX¥z; X'1'z* —i»cmmwnxrz

x'y'z* wam - xz; x'72' P40 () (om)- vz
12 29 () () 2= X225 X772 TR () (oy) (2) - -x22
12 2% 0 (o) (- 1923 X772 e () ()= X2

)

( See appendix 2 for the character table of $,) )
Hence, this shows that (v, transforms as A, ( 12, p. 359~
360). 1In a like manmer it may be easily shown that Bzzze
Prxa and By, transform as B, By . Prxyr and Pzzy

transform as 3, .

The character per unshifted atom ( see appendix 3) for
E equals the number of coordinmates. This is also the total
nmumber of linear combinations of the coordinates which will
transform as the various species ( 12, p. 106). Hence, in the
infrared there are three combinations; in the Raman there are
six combinations. This shows that the ten hyperpolarizability
components listed are all of the ones for this point group.

In order to illustrate that there are molecules which
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allow vibrations which are inactive in the ordinary Raman effect
to become active in the hyper-Raman effect, consider the

ethylene molecule.
By standaxd metheds ( 12, p. 106~113 ), it is found that

the vibrational normal coordinates are of species:

The fellowing table summarizes the number of frequencies active
respectively in infrared absorption, the ordinary Raman, and
the hyper~Raman effects.

n{") n(Y) n(Y)
1B . - '

A *

31 0

. L

52 1

-

B 2

2 \

N .
B 2 2
tu

Bz 2 2
4

£ '

Y)
n( is the mumber of infrared modes.

ng) is the number of Raman modes.

“n};’ax.n is the number of hyper-Raman meodes.
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Hence, by observing the £,, character table the infrared
frequencies are seen to be allowed in the hyper-Raman effect
and an additional fundamental frequency is allowed in the
hyper-Raman effect which is not allowed in either the infrared
or Raman effect. ( 12, p. 106~109 )

Next the observable quantities (3, for the various species
of the 5,) point group will be tabulated. First consider the
B*u species. Let ( represent a normal coordinate for this

species. Then from the character table for £, j in appendix
2, it follows that:

(42) 2_%;-53 ) éxxg1 ) Béf&fﬂr ;

but all other 26 _ ' |
=0

For simplicity of notation let

‘“’ 9&_}} = ﬁ-s-ss 3 )%35}3 p“'s.j >.%%h-}= @223

Hence, since the order of cartesian subscripts is irrelevant,

the non-vanishing terms for these species are

{ﬁ’m) Buz, Bisi, Pan, Pz23, Besz B322]
From equation ( 40), Zﬁ'a;': and ;/EEZF soed to be

F
evaluated,

(44) FZ ﬁ?/ XF = %ﬁgﬁ' 8” §Y‘} § %al +2 g% g@"‘-ﬂﬁ%ﬁ%ﬂ ﬁ""lzﬂg)[}?xa,}w'@‘-‘

“5) % Fass Tra iy = s Th B + iz B B



{45) continued -f-pizm Ey, E)'é -t ﬁ‘fn §y3 E;}l
s 2 = T
+ ﬁ';zz Fh 25 + Pz BN Fiz + Pzzz§y3§x7;_
- 2
= 753z + & /@'3/3 + %/3223

The averages §f3§jél and other similarly needed averages
are calculated in appendix 4,

‘“’6% & s’ ﬁ%' ! ”§Yw§xa' By Bt = (333 s B 2438y, By,
N Przs fr23 vz Bxz Eyadxn + o323 i B Evaing

thisfan EyB s Eys By + (2237322 FreBiz s By

R
- 30 (ﬁ’“ B33 223 3333+ Piis Prazt ﬁfs 7 (62223)
- Thus, from equations (44), (45), and (46),
. R
an =B = Efs + G +75 f3n

~ 7k (Pusfosss + a2z fazs + Bz o23)
Next, the value d%/}é;h needed which is given by

‘ﬂig ;3—22; r = % Fgaalau 523. Ezz‘y ~+ ga‘;&'%u palxay Fﬂ/“ﬂmhv ‘

The first term on the right-hand side of equation (48) may
be expanded, Thus,



W X poyy S5 Ty = (s TL + s (BT 280 85)

+ 523 ( B2, + 255 B7s)

From the average values of the direction cosines,

(50) %-.- IB%% 8” §Z%’ = ““@333 -+ 3@”3 + 3 PZZCS

The second texm on the right-hand side of equation (48) may
be expanded to give
ég"t” P’g% ‘C‘)"ﬂu'a o EZ%Ez@?ém Pzit = is ﬁu:s ﬁ33‘5

Eﬁzzsﬂa‘s.} + Is (3/13@223 + 1= o +/5‘327_3
Thus, from equations (48), (50), and (517,

(61) 3¢

(52) %@F = ;= /5//3 + 55 ﬁ,zzs + 5@333

+&5Bn3 3333 + %ﬁzzs Ba3zz + Z B3 {3223
Using equation (40),
;114/553 +4(3§z3 +ﬁ§33 _P’B (&333 -(6223[5333~l@”3ﬁ223]

Pr = (185 + 11Bzzs + 453+ (usasz t223Lzas + s Beas)
The values of [}, are quite restricted as shown by determining
the maxioum and wisimum values of )O,( o For simplicity, let
Puz= Xy Pp= ¥y and Oy = 3. Hence,

2[A4XF+ 4 Y? 4 2%— Xy —VZ—X2]

(54 =
/O" CHX* + NY* + 42 +XV+YZ +XZ ]

Pl will expexience a relative extremum value when

&5) %ﬁ:%@ﬁ-:l%-:



Let
(56) A=Llx2+lly2+4z*+ xy+xz+yz]
Now, performing the indicated partial differentiation

6D p _ 2[ex-y-z]_ [z2x-y+Z] _ o

X A AZ
OPn . 2LBy-x-z]_ [22y +x+2Z]_
- 9y A B "0
Sen_,__ Z[Zz—Z‘X — [82+X+Lj=0
= A AT

Three sets of solutions are obtained from these equations:

60 Afx-y, 2:37}, Bix=-4y, 237} Clyss, 233
Solution A gives (~4/13. Solutions B and C both give

Pn = 6/T. 4/13 was found to be the absolute minimum and
6/7 was found to be the absolute maximum of Fn.

Similar selutions for (), to the ome for the By, species
are obtained for the By, and By, species of O gpe The re-
mining species in.Ogy for which 2 's appear is A,, For this
species %éfx_Qz;ﬁ 0; while the derivatives of the other nine of
the ten 3 's are zero. As before, let ?_5%1%: B2se The
non-vanishing 3 's become | 8.5 8., 8., Bos/, Bz }s |
In this case the required texrms for the determimation of £, ave

y N 2
59) % F)%%%I §22% §zz%’ = % ,6123

— s _ __‘_ 2
g" Sugr oy frov BeqBegFaFar = SPies



2 2 2 _ 4 2
Zéﬂéérj” §)’J §zg B —3—/61;3

‘ - __/__ 2
J%z dirg"Bay's Bivir Fyg L2g®yi®ait =~ o Bras

Applying equation (40) to the equation given in (59)

(60) A = ©/7

A summary of the ~,'s for the various species of this
group and the Og, and (5., point groups will be found in
appendix 5.



CHAPTER VI
THE [}, STETRY POINT GROUP

As in the case of the [gy, group, let us determine which
of the ten distinct linear combimations of the 's are assecie
ated with the various species of the group. In a process |
sinflax to those of equations (41) it can be shown that g,
m?m,u F yys transform as Ajye 5 yyy — 3 Pyyy transforms
a8 Agyt Py -3Fyyy transforms as Boyr ( Fyagt Pyxy) and
C Byyy+ F ymx' Prom+ FPxyy ) transform as Eyy ¢ and
‘(P xya' s Fyys) transforms as Ep, (see appendix 3).
Benzene is a representative molecule of this group and a
procedure similar to that which was carried out fox ethylene

of [) gy will be carried out for this molecule.
. 3

The normal vibrations of Cg Hy ave: |
g Ry’ Py Frgt Fagt A’ Bpt By Ty By
Then, since the infrared active species are A, and Ej,+ the
erdinary Raman active species are Ay, Ejg, and Epg, while
the hyper-Raman active species axe, as indicated above, Ay
Agye Boyy Ejye and Egy, the nunbexs of active frequemcies are



as given in the following table.

R A B

e i N i e

Hence, the infrared frequencies are allowed in the hyper-Raman
effect and six addiuml fundamental frequencies are allowed
also which are not in either the infrared or Raman spectrum,

Next the observable mntitm. P qt for the various
species of the [) . point group will be caleulated. First
considexr the Ela species. Let Q represent a nmormal coordinate
for this species. Hence:

Ya )
and all sider of the Linser conbisntions of m—%%— for this

group are zero., From this it is found that

(62) see next page



0 uy 2 5
62) o e X
and all mm%% 's vanish., Let a—%%é = B2a5 and
’@m
represented by {ﬁzzzg ﬂimoﬂ 12!' ﬂﬂli « In this case,
. s m=— _ 8 pa
“ %ﬂaé’g” FisBey 775 B
%L é‘c"g" Iggg'g"(@éi’é" 523 §z§’§zi ?zé' =0
2 = T 2 - 2 2
2833y &g 8ay = T fae
32;"-693'&”/@(’(:!(-"” ('_”5" Iygsz/ y". éz(/ L5 A
Applying equation (40), to the equations of (63),

(64) /On = ©/;

o Hence the non-vanishing terms for this species may be

The species B, has linear combination of the /5 similax

to that of B, . This yields that /0: for By, is given by
(65) P = o

Also 53” of the degenerate pair (S, v 4 . B o)) of
the species E, acts identically as the & xyz °f the species
Au of the peint group °‘er Hence,

66) P, = 6/7

for the Ezu species.
Next, consider the /@ 's of the “2u species. If Q



represents a normal coordinate for this species, then
, 3F722 o 3(Bxxar Fyys) _ o NBuz-Bigs).
((Yp) 3 @ ) > & =0, o @)

Thus, it is found that

_3F
oo 2o o, STu- - S 2O

and all of the otuz—%—g 's are zero for this species. Let

R 3z By, BBE = Fuzs

Hence, the non~vanishing texrms for this species may be re-

presented by {2333 Bris' Fis1® Fsn’ Fazs’ Fam' e

These [ 's are exactly those obtained in the Blu species of
the |) o Point group. This leads directly to

RL::. Z E4/6;/§’ L 4@2‘—?&/6;'233 — 3 Lams- By Srzs ~/3 5023/
D' 5/123 /1 /3_—:2::3 ~ 4//%3?‘_3 + Pz Bsga - FZaz FPraz + /37/3/?.7_:%-7

for the “Zu species of /@6!:' But, for this species
6223 —_ gliﬁ' This reduces Pﬂ to

) P:= E [7 B2z + 5333 — 2 Fys Fass]
[225)5+ 7 F%ss + 2155 Feas]

Again the maximmm and minimum values of Pn Put a useful

restriction on the range of Fa® For simplicity, let
113 =% and Sgaa <y, Hence,

2(1x%+y2-2XY
234% 44 7?— A2y
As before the relative extremum values are found by setting

—
—
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) 3L = 24 - o
D X dy

This leads to the following set of equations:

2 3L - 28Bx=9y 27k Hyi-2xyd4ex +2y)

3 X 23Xz+4yz+2xy (23x*+4y?4 Zzy)z

3P, . 4y -4« 27kt - 2y )(By 4 25)
o y ‘ 237)(12,-4-4)(14-2)()/ (23x%+ 4y2+ZXy)l

Two sets of solutions are obtained from these equations:

73) Afsx=yf ; B{zx=-y¢f

Solution A gives O, 4/13. Selution B gives Pa O

4/13 is found to be the absolute minimum and 6/7 is found

to be the absolute maximmm of /0 a for species Ay, of the group
L 6h* , |
The remaining species dﬁ& which has linear combinations
of (5's assoeiated with it is Eyu® If Q be a normal coordinate
for this species, then

74) ’ 3{:0’_x'zz 2.0 ) S ( Brxx +F@xyy> 24 O
3 Q . dQ

while

(T5) 0=3Lyzz . (Byyy* ﬁx&y>: 3 Buxz +Lyyz ). é(ﬁxxx'?’,@w»
3R 3 Q 9@ 3Q

and so forth. n”. it is found that

(76) see next page



(76) 5/9’)(22;5 o ; dBxxx— 3.3_._5__1” g <)
Y= 3 DR

and all of the ctnr%g 's are zere for this species and
particular normal coordinate., Let

7N E/szz . ﬁd? ] AEX_Y\X: Ell‘ ; anz)’: Braz .
Y= R LX<
Hence, the non~vanishing texms for this species may be ree-

prosented bY(Bin® Pre’ a2’ Foar' Siss' Bars' 5ast
This set is equivalent to the set of non~vanishing 5 's of
the B, species of the D?.h point group., This leads directly to

B = [4,?1_32/,?02 + 4 @les - Bl = Bize oy - 33 By — Bz /3]
[”}3,23_4»// 15’,233 FER + Fizz B + Brashsy, —/3/::41?/357

for the E“ species of ,D oh° But, for this species

(78) o= 15 By * 18 e =515, Frre]
[5’0/5;% ~ 77 f‘;izf?z + /2B Pzz]

Again the relative extremum values of [° will be determined

dX DY
Hence _
a9 pr= HL5K £/8y% =~ Sxy]
SO X2+ Tyt laxy
@) 25 - 2Gox=3Y)  _ LEErigytsylooxr2y)

d X 50x% 49 /Z #2XY (0K +99y2 £ /2% vy
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(80) continued
P _ a2y =X) _ 12(SKEyR INY6EYH4Y)
2 T soxr+q9y2+12XY (50X24 99y2 4 12X Y}

Two sets of solutions are obtained from these equations:

) = 7 1R (X EIB Y =3x Gy Y * )
r‘ b oX*+994 2 +2axy w

Solution A gives 0, = 0.363. Selution B gives [ = 0.732.
0.363 was found to be the absolute minimum and 0,732 was found
to be the absolute maximum of fn for the species EI.».

A summary of the Pu's for the various species of this
group will be found in appendix 5.

7a+3r’§9_‘}‘2n4 B{X 270~ /5"740}
/l{—- /40

L



CHAPTER VII
TE ), SYMETRY POINT GROUP

As in the case of the BZh group, let us determine
which of the ten distinct linear combinations of the O's
are associated with the various species of the growp., In a
process similar to that shown by equations (14), it can be
shown that ( — and ﬁm + F’ s transform as the species
Zar Pyag gy and Coyyt Py P ot Ly
transform as the species 7, € Byoes— [Bm. pm )
transforns as the species [\u, and (B, — 38yy* Pyyy
—aﬁm) transforms as the species [° ~ (see appendix 2),

Carbon dioxide is a representative molecule of this
group and a procedure similar to that for ethyleme of & 2B

LY

will be carried mt'ta{ this molecule.

ohé-:‘@__z the z axis is the
o molecular symmetric axis

Y’
The normal vibrations of mz are of the types ZJ +2u+t T,
Thus, since dipole moment is of species >} - 77 p and oxdinary
polarizability is of species 22;+77 gt Ag ¢ the active modes

are as given in the table. (see next page)
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For a linear triatomic symmetric molecule, such as
carbon dioxide, there are four fundamental frequencies of
molecular vibration. The totally symmetric vibration associated
with > ; is active only in the Raman effect, comparing only the
Raman and infraved spectra, while on the same basis the anti~
symmetric stretch of the molecule associated with the > i
species is active only in the infraved spectrum, and the de-
generate bending motion, associated with the T/, species, is
also active only in the infrared spectrum. Thus, it is readily
seen that the existence of linear combinations of the /O's
associated with both > and 77, insure that the infrared
active fundamentals will also be active in the hyper-Raman
effect.

Next, consider the species [,,. A consideration of



either By, or By, of the point group @éh will show that
/On = 6/7 for this species also.
If the ('s of the species T 1 of Ciohare compared with
the 16'3 of the species Ay, of Oy + it is apparent that

(70) /[_% - 2 ( 7,3//3 +ﬁ333 2/8/13 3310

23313 + 43533+ 2133353
for the > | species and that the range of (3 is given by

- 4 Z 6
8D 4208

The last species of @oun which linear combinations of
the (¥s are asscciated is 17,. A comparison of the 3's of
this species with those of the species Ej, of the peint group

@6& shows that

8 4lspin +l&’ﬂ;33 — 3853
Pn - S08) + 99@/33‘*/2@”@33

for the species TTys The range of p, again being given
by

(82) 0.363 & (0,1 L O TBE

A summary of the 10!: 's for the various species of this
group will be found in appendix 5.



CHAPTER VIII
CONCLUSION

Huch work on this subject is yet to be done. The theo~
retical expectation for the concentration dependence of the
hyper~Raman lines should be determined for cases of ion-ion,
ion~dipole, dipole~dipole, etc., interactions in much more detail
than in appendix 7. The quantum mechanical aspect of this werk
should be worked out to show the validity of the classical
approach, However, the experimental side of the theery cam not
be overlooked, Although the values for the depolarization
ratios for the 2] and 7T, species for carbon disulfide have
been measured and fall within the theoretically predicted range,
many more cases should be studied. A very interesting pmietloa
is offered by the hyperpolarizability theory. For ethylene a
fundamental mode of vibration is allowed in the hyper-Raman
effect which is nei allowed in either the infrared ox the
usual Raman effect. This mode oorresponds to the A, species.
Theoretically this line should have a depolarization ratie
of 6/7T, In the em' of benzene even more apparent should be
the confirmation of the theory. Allowed fundamental medes of
vibration in the hyper-Raman effect correspond to the species
By,» Bgye and Ep o All six of these aumgd lines should have
depolarization ratios of 6/7.

This theory should not be considered as a contradietion



or a rival theory of those previously presented in papers

by Evans and Bernstein, and Welsh, et al. However, it should
be considered as a complementary theory deseribing the same
phenomena only considered from a slightly different point of

view,
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ON FOR THE ﬁwo;u

In the hyper-Raman effect /uy is given by

1) — R S g
Me = FZF,,ﬂ'FFF Er Er
also
3
« Er = %§3FE’}

where (Ey, Eyo Eg) is the electric vector of the incident
light along the axes of the molecules and (Ey, Eyy Ep) is

the electric vector of the incident light along the labor-
atory fixed axes. {Z.-] ave the direction cosimes between
the two systems. A product of two components of the electric
field in the (X, ¥, Z) system in terms of the (1, 2, 3) system
is given by

{3; EF EF’ = % Z §3F§%‘F' E% Eﬁ,’
%I
Now, combining equations (1) and (2)
{" /C/F —::FZ %Z%’ /GFFIF// E% E%l E}F'Eslf:”
'FII

But, /(in the (X, Y, 2) system is given by

3
©) Me = XZ//JEM

in the (1, 2, 3) system. Lat



( /BF‘F'F‘ EPE ’F)E%r ok Ar

® B =
R %a PP

Then, selving for /{,( /
Ax E;.x ESX

Ay By Bay
Az Bpz Bz

m " =

since m% are the elements of an orthogonal matrix,
Expansion of the determinant gives

® <[ Z( (Beer EBrE g ErExll (BB 24y

§3 FF'

3 Tt

bonce. - o [% (Pé pZFF'EﬂFgﬁ'FJ ESE*é'](Ezﬁay —§$X§ZY)
? /6/%%1 = Zp XFFIEBF 53'/: '<E2 y B3z —§3)/§zz)

+FZ ﬂypp'ﬁgfﬁgr (EZZ Bax §3’2§?x)
FI

—+ Z ﬂZFF’EgF ngfl(ffzx?’:;;y ~Fisx Spy)

=0 [PFF'F' 2 p Bap' Bayrpr
m,iamn:nf /G Y

10) /3%%. 3 = o /GFF’I—’ Egi-‘ Loy By

or

@FF'F” = gga /6%35" @%Q,&'QEF%



APPENDIX 2
ACIERS OF THE 6ROUPS Db ( n=2, 6,)

@ @™ 1 6ty 6 64w
Ay 101 1 1 1 1 11
By ! 1 <1 -1 1 1 4 e
By 1 -1 1 1 1 1 -
Bgg 1 -1 =1 1 1 <1 o« 1
A 11 1 1 A A -
By 1 1 1 el e el 1 1
Byy 1 <1 1 < & 1 e 1
By 1 =1 1 1 a 1 1 -
s e,y e
Blg R Oxy
B & Ol
by W O
My foys
Blu Iz Bazn, [Pxxz, Cxys
B2y Ty (rrys fxxy, Pysa
SO S (o, iy, s



-
s

D & 2 2 & 3 36" 1 25 25 cn ¥ 3
Mg 11 11 1 1 11 1 11 1
Agg 11 11 41 -1 11 1 1< -
Byg 1 =1 1« 1 =1 11 1 =1 1 <
By 1 =1 1< <1 1 1« 1 &< 1
Bg 2 1 -1 <2 0 2 1 «1 2 0 0
Bpg 2 <1 <1 2 6 24 < 2 0
g 1 2 11 R T S S S S |
Ay 1 1 1 1 ol =l <1 o1 <11 1
By 1«1 11 1 <1 «1 1 «1 1« 1
By 1«1 11 =1 1 =1 1 «1 1 1 =
By 2 1 <1 <2 0 2 -1 1 2

Bpy 21 =1 2 0 0 -2 1 1 <2 0 0O






'Qoh E a:;‘:,,. obu i 25\2‘2... ooCe _
Z 11 e 11 1 e 1 it Oyy 10z
Zy 11 e sl 1 1w el Ry

T 274, 02 293, 0 Guiy) Fys, U
Da 2 a4, 0 2 226, 0 € %0 Oyy>Uey)
ZE 11 e 1l A e A T,

ZU 11 g Wlwl el e 1

T 2 2054, 02 20054, 0 (TygTy)

..é."‘.. 2 2024, 02 200528, @

Ju 2 2a4 0-2 234,

> Pass, P Byys

2y

T (Pyaa, Bxaa)  (ByyyPoysFooct bayy)

Au_ (Bxxa =3 yyz, £ xya )

N Pxxt3Bxyy, Lyyi ey




mmmmunwﬁummx’.m

needs only to note its definition, i. e.

m xR = ) R €12, p. R2)

in which R is a diagonal coefficient in the transformation

. n
i=

and then add up the B terms of the transformation. Thus,
in general for a votation CE and about the Z axis, the transe

formation is %

y' = swEEx + casEEY
2z =Z

(6]

Thus, Kk ,
Y X& — )4 2cos R

Next, for a genexal rotary reflection, S
X' = 00527’5.3)( — S ok y

w
Y = SwaZr y 4+ cog RZRY
2 = -Z P

Hience,



where the positive sign is used for proper rotations, simple
rotations, and the negative sign is used for isproper rotations,
rotary reflections,

This concept can be extended for the transformation of
the kind which invelve the product of twe coordinates. This
would be the charactex of a transformation for polarizability
components. Thus, in general for a rotation é the trans-
formation is

2
(X’)z = (cosd x — sinvd Y)

WYY = (sivd Xt cos 8 Y

(21)2. = Z*
(X)y)= (Cosd x = sl Y)(SIWAX + S dv)

(x)(2)= (cosd X ~9ne ¥)(Z)

)

Nz = (smd X + cosd v)(Z)

Hence,
. k
i X§ — 2 cosd (2¢080+ 1)

Now consider a gemeral rotary reflection, 35. The enly changes
from that of the rotation C,are

) (x')z') = — (cosol X — s/nd ¥)(Z)
(8 (yhZ) = — (SING X+ cosd Y)(E)

Hence, (see next page)



R
(0] )(&5“ — 2 cosd (2 cosd -1)

Thus,
(10) X8 = 2 cosd (2cosd £1)

The components of the hyperpolarizability transform as
the product of three coordimates. Hence, the character of a
transformation for the hyperpolarizability components may be
found in the same way as in the previous two cases. Thus,
in general for a rotation, CX, the transformation is

an  a98< ((wsd) x - (smod ¥) 3
3= ((smol) x +(cosd) ¥) 3
zn?= 28
@2 (= (@sol) X - (sIo)) )2 ((SINYX -+ (0osch ¥)
&9 (x92= (oS X ~ (SIND ¥)((SINOD XH{COSh ¥)2
a2z = ((osh X - s00) )2 2
(x" @'P= (tosh X = (smh ¥) 2°
2@ = ((smwh X+ (0sh ¥)? 2
an @9%= (st x+ (osh ¥) 2
X" @) 2= (s X - (Smoh ¥) (tSINch X+ tcosdh ¥) 2
Hence,

P

u2) Xlé’—‘nk — 2 cos 0l (4cos?ol+ 2cosa -1)



Now consider a gemeral rotary reflection, SK. The only
e!mtau from that of the rotation Q are

an @93= .7
9% @9=- ((wsd) X = (smd) ¥) 2 2
)? @9= - ((sI8o) X + (cosch ¥) 2 z
X (@Y= - (0Sh X - (SIND ¥)((SINOD X-HC0Sch ¥)Z
once, |

(14 Sk
‘XF" = 20080, (4 cos*d — 2coso— 1)

€15) chf — 2cos0 (400&2d iZCO.SO("")



APPENDIX 4

EUDERIAN ANGLES AND THE AVERAGES OF NEEDED PRODUCIS OF DIRECTION
COSINES

The Eulerian angles are defined as the three successive
angles of rotation by means of which a given cartesian coox-
dinate system may be txansformed to another ¢ 5, p. 107-109 ),
Here the system as shown in Goldstein's Classical Mechanics
will be used, Hence, the Eulerian angles are defined by the
following three rotations:

@ F=dX; T =CF ;X¥=BY

where T X o G's and X' xepresent column matrices; X repre
sents the coordinates of the initial cartesian coordinmate
system and X' represents the coordinates of the final systen,
Dy C, and B are the matrices

| cos< SiNe 0O
) D = (-SING wsd 0 |

0 0 1
1 0 0

c=(0 c0s sIe

(a ~SIN O me)

cosV SINV 0
B = [-SINV sy o
0 0 1

The product matrix A=BCD will furnish the direction cosines
which connect the initial and final cartesian coordinate
systems,



50
(3) / 08V C0S)=C0SS SINS SINY -SIN ¥ SING-COS © SIN § C0SY SINO SIN )
A | «~SINY C0S4=008 o SIN ¢ COS L «SIN ¥ SIN/COS © C0S 4 (081 «SIN o 008 ¢

SIN oSIN ¢ SIN e C0S ¢ s

There arve only four distinct types of products of divection
cosines which need to be evaluated, These are

—

———

p T =3 )
{35*‘ ) 5)“?!’5;') §)<I ;z) §x:§w§xz§yz§
For Eulexian angles the average of a funetion, (e, 05)‘/’), is

given by
—— | 2m 27 .7
) 5(8)45)4}): eﬂsz/)c(a,(b,‘/‘).s,fne dacMuH“
Hence,
) %, = s
g, &y ° "Jis
ML
/
§Xl§y/§x2§>{z = .- /30
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APPENDIX &

SUMMARY OF THE FORM AND RANGE OF THE VARIOUS /-:s OF THE SPECIES
OF THE POINT GROUPS D) gpeDgye  AND ook

E.. Faas Pow, fyys | 413=/k = /T

By, B, ? vy Py, Pes BZ < 6T
P Foxpuy s WI8= Rz 67




L < 6T

6/7

6/7

_—

0,368 /2 £ 0,732

-

s

6/7




7

4/13= Ph< ¢/
oy < 0,732

7;_ | 0,363 < P <

Tl | m

AV |

o/7
i




APPENDIX 6
THE AVERAGE INTENSITY FROM
A CLASSICAL OSCILLATING DIPOLE
“Consider a linear current element QOL of lemgth L
along the Z axis with its center at the origin.” ( 8, p, 416 )

o R P

X
5

%0 Ko N

e

v

Let the currvent flowing through the element be given by

() I = I.8INwt

The magnetic induction® and the electric field strength
F may be written in texms of a vector potential A and a sealar
potential & . Thus, |

@ B= VXA E+¢g =V
A solution of A and ¢ may be given as a retarded potestials

@ Ko = %S%P(t'%)dT ;

where



Hence, it is seen that the electric field intensity may
be cbtained by evalusting ¥.(t)and Ap (t), For our problem

=4 %

since oV s dizected along the Z axis wheve
¢/,

® ‘2= o j SNMU-RG). s d 2
msummmu&mmmum«mm.

"R is the distance from P to the elemsat of leagth da,”
(8, p. 416 ), The space is takenm as free space so that
m=K=| amdU =Cs The solution of A_ after imtegration
becomes

) 'A,-_-kl SIN w(tez/e)

for the assumption that r>>/2. In sperical coordimates
M X =7% 4 W80-6A SIS

Thus, since §=VSI

@ ®B=-0; H =0; Hy- L..s:ueﬁmm-w
| +mm~wj

The sealar potential is given by the Loventz zelation
(‘3 ﬂ:”CV‘_A)
' ot :

The solution of ¢ frem the previously mxﬂmaf



gives

(10) g_%ﬁ COS(wtekr) + Lk COSO

Now the components of the electric field intemsity may be solved

0S8(k SIN(wtwkr) - #m&mm]
x

E, j.u‘;rm[k?mcmm & SINGwt-ia) &mmﬂ

The Poynting vectox 4%? XH for the oscillating dipole becomes

TP -2 2R
. c Py ey To L'k w * CoS(wtkx)
a2 S Fx/ - ﬁrﬁc—é—(m 8) ( eost )X
The time average of the Poynting vector becomes
e P T2 )P R
a3 CFxA = WLk Ve
| o BrC Y®

- The total radiation may be obtained by integrating the
Poynting vector over a surface of a sphere of radius r., The
element of area is given by xzsin_ededda. After pexforming this
integration, the result is

] _ Jerriprt
whe — T&Q* nd = A
re Poa - C4,’g_ a 2/ Zr



57
APPENDIX 7

EPENDENCE OF THE INTENSITY OF A HYPER-RAMAN LINE
UPON ION CONCENTRATION

In the Debye-Hiickel theory the electrostatie potemtial,
(,b v @t a given peint in the vicinity of a positive ( or
negative ) ion is given by ( 4, p. 956~958 )

-tz
D

~+ for a positive ion

— for a negative fon
where r1is the distance from the ion, D is the dielectric
constant, & is the charge on one electron, Z; is the number of
charges on the ion, and K is given by
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where k is the Boltzman constant and n; is the numbexr of each
kind of fon per cc.
The electric field at a distance r may be obtained by
tnding 2P |
£inding %—i . Hence,
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However, the electric field at this point due to the ion
itself is given by |
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Thus, the electric field on the ion itself due to the sur~
rounding atmosphere is
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£\ is small thenc " ‘and ™ my be expanded as
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Using these expansions,
4

rzice ™ | KA * 7, e ¥
LI =2 [hw-e®]- —__,__.DZAE (-¥20%)

Thus, \C » may be given by
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This reduces to
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Equation (35) of the text gives
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and equation (29} of the text gives
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This means that the intensity in the hyper-Raman effect is
proportional to (AC,)? for a constant &
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The above argument ignoves the emlimum that

Al y= —%%—Z— vy in contrast to AC )= %‘EL + is apparently
indeterminate as n—>0, One resolution of this difficulty

may involve the assumption of finite radius for the ioms.



