Vascular Transport in Plants

N. Michele Holbrook
Organismic and Evolutionary Biology
Harvard University
Cambridge, Massachusetts, USA

Maciej A. Zwieniecki
The Arnold Arboretum
Harvard University
Cambridge, Massachusetts, USA
Contents

Contributors xiii
Preface xvii
Acknowledgment xix

Part I Fundamentals of Transport

1. Perspectives on the Biophysics of Xylem Transport
 William F. Pickard and Peter J. Melcher
 I. The Biophysics of Sap Ascent in the Xylem 4
 II. Discussion 13
 References 15

2. Physiochemical Determinants of Phloem Transport
 Aart J.E. van Bel and Jens B. Højr
 I. Structure-Functional Basics of Phloem Transport 19
 II. Generation of a Hydraulic Pressure Gradient in Collection Phloem 21
 III. Maintenance of Hydraulic Pressure Gradient in Transport Phloem 32
 IV. Manipulation of the Hydraulic Pressure Gradient in Release Phloem 34
 V. Radius of the Sieve Tubes 36
 VI. Viscosity, Sugar Species, and Concentrations in Sieve Tubes 36
 VII. Physiochemical Relationship Between Xylem and Phloem Pathway 37
 VIII. Concluding Remarks 37
 References 39

3. Pathways and Mechanisms of Phloem Loading
 Robert Turgeon and Brian G. Ayre
 I. Minor Veins 46
 II. Transport Between Mesophyll Cells 49
 III. The Role of Phloem Parenchyma Cells 51
Primary production by plants requires the loss of substantial quantities of water when the stomata are open for carbon assimilation. The delivery of that water to the leaves occurs through the xylem. The structure, condition, and quantity of the xylem control not only the transport efficiency but also the release of water from storage. For example, if there is high resistance to water flow in the stem, then less water is available to the leaves, so less primary production may occur. High resistance can result from wood material with low conductivity, from having only a small amount of conductive wood, or from having very slow release of stored water to the transpiration stream. The subject of this chapter is the efficiency with which different parts of the sapwood transport, store, and release water, and how the structure of the wood affects these processes. Particularly, we describe the radial patterns of axial water transport, their anatomical and physiological causes, the effect that sapwood width and wood structure, especially density, have on water transport, and determinants of sapwood water storage properties.

We define sapwood as the xylem that is conductive to water, although sapwood can also be defined on the basis of color, respiration, and parenchyma vitality. Although our discussion refers to sapwood versus heartwood, many species also have intermediate wood, which is located between the sapwood and heartwood, and is said to have intermediate characteristics (Hillis, 1987). However, some intermediate woods may not have living cells (Hillis, 1987), and more research is needed to delineate which functions are still active in this zone for different species. Likewise, wood has a variety of types, but for simplicity we discuss only three: coniferous, and angiosperm ring-porous and diffuse-porous. These classifications capture much of the interspecific variation in gross wood structure in the temperate and arctic zones, but because most tropical species are
diffuse-porous and have extremely variable vessel groupings and/or parenchyma patterns, additional classifications may be more useful for tropical woods.

Radial Changes in Wood Anatomical Characteristics and Hydraulic Properties

The anatomy of the wood follows systematic patterns of variation that depend on the ring number outward from the pith, the height in the tree, and the radial growth rate. Also, because the xylem transports water for several years, there may be changes in its water transport properties as the cells age. This section describes these basic patterns of wood anatomy, focusing on radial variation, and how they affect the hydraulic conductivity of sapwood.

Within-Bole Patterns of Wood Anatomy and Properties

In all woody plants, the anatomy of wood changes systematically along a radial (pith-to-bark) direction. The magnitude of the changes depends on the species and the type of wood (e.g., diffuse versus ring-porous). Superimposed on this variability is that caused by environmental factors such as the amount and timing of rainfall and temperature. The most obvious change to the naked eye is the pith-to-bark decrease in growth ring width. At the base of the tree, the first several rings near the pith are usually narrow, produced when the tree was growing slowly while becoming established. Beyond that zone, the rings are wide, then gradually become narrow, associated with slower growth and/or with having a larger cylinder around which to place the new wood produced by a constant-sized crown (Duff and Nolan, 1953). Depending on the species, the percentage of latewood within each ring can increase (common in conifers), decrease (common in ring-porous species), or stay the same with increasing cambial age. Diffuse-porous species are special cases because they have weaker anatomical gradients across the growth ring, so the pith-to-bark changes in growth rate probably have less of an effect on their anatomy.

The second type of radial change in wood structure is referred to as the juvenile/mature wood transition. Juvenile wood (JW) denotes the wood adjacent to the pith. Its properties (anatomical, mechanical, hydraulic, chemical composition) change dramatically from one growth ring to the next (Larson et al., 2001; Senft et al., 1985). In contrast, the properties of mature wood (MW) are relatively constant from ring to ring (if environment remains constant). The extent of the JW zone (in number of growth rings from the pith) depends largely on genetics (Zobel and Sprague, 1998). The juvenile wood zone is usually better correlated with number of growth rings than with distance from the pith (Zobel and Sprague, 1998). In conifers, JW may persist well past 100 years from the pith (Wellwood et al., 1974), but in general the overwhelming majority of the total change will have occurred in the first 10 to 20 years. Most properties either increase or decrease extremely quickly and then reach an asymptote. The radial pattern can be somewhat different with vertical position, but changes with height for the same cambial age are usually small compared to the changes with cambial age at the same height.

In all woody plants studied, the JW shows a gradual increase in the length of the tracheids and/or libriform fibers, usually accompanied by an increase in their diameter with increasing tree age (Zobel and Sprague, 1998). The magnitude of this and other anatomical changes is much higher in gymnosperms than in angiosperms (Panshin and deZeeuw, 1980). For example, in Pseudotsuga menziesii, tracheid length increases from 1 to 5 mm from growth rings 2 to 25 (Megraw, 1985) and earlywood tracheid diameter increases from 22 to 40 µm over the same age interval (Spicer and Gartner, 2001). In the ring-porous oak Quercus garryana, tracheid length increases from 1.0 to 1.2 mm and earlywood vessel diameter increases from 150 to 250 µm from growth rings 2 to 25 (Lei et al., 1996). Diffuse-porous species have similar increases in cell length and diameter as ring-porous ones.

In diffuse-porous angiosperms, the other radial changes are highly species-specific. As a general rule, their wood has the most constant pith-to-bark properties of any wood type. For example, red alder (Alnus rubra Bong) shows no significant change in wood density across the radius (Gartner et al., 1997; Harrington and DeBell, 1980) or at radial growth rates that vary by a factor of 5 (Lei et al., 1997). There may be some difference in the proportion of the growth ring that is vessel, libriform fiber, and parenchyma, and there can be modest increases in vessel diameter (e.g., Lei et al., 1996).

In contrast to diffuse-porous species, ring-porous angiosperms have more significant changes in their wood from pith to bark. In general, these species maintain a similar earlywood width, with the decrease in ring-width at the expense of latewood (Phelps and Workman, 1994; Zhang and Zhong, 1991). Thus, in contrast to the conifers, wood density decreases and proportion of vessel area increases through the JW to the MW.

In conifers, significant changes in wood structure from the JW to MW also include a tendency toward having a higher latewood proportion, thicker cell walls in the earlywood and latewood, denser wood (mostly due to denser latewood) and a change in the cell wall ultrastructure: Microfibrils within the S2 layer decrease from 45 degrees (with respect to axial) in the JW to about 5 degrees in the MW (Larson et al., 2001). The combination of a
what appeared to be the sapwood (e.g., *Quercus*, *Prauxinus*, *Celtis*, *Aesculus*). The remaining hardwoods had a variety of moisture content patterns in the sapwood, such as a gradual (*Pagus sylvatica*, *Populus*, *Alnus glabra*) or steep (*Robinia pseudoacacia*) decrease, or a gradual (*Ailanthus*) or steep (*Cedrus*) increase from the outer sapwood inward. These patterns do not follow differences in ring porosity versus diffuse porosity. Using both soft X-ray and cryoscanning electron microscopy, Usymi et al. (2003) have shown in several conifer species (*Picea jezoensis*, *Larix kaempferi*, and *Abies sachalinensis*) that the outer ring has higher moisture content than do the inner growth rings. Similarly, Lu et al. (2000) showed that the outer growth ring in the angiosperm *Mangifera indica* had higher moisture content than did the other growth rings.

Effects of Wood Anatomy and Characteristics on Specific Conductivity

Specific conductivity (k_s) is usually higher in the outer than the inner sapwood. As discussed here, k_s refers to the water volume per time that will pass a unit cross-sectional area of sapwood with a given pressure gradient across it. The higher k_s in outer than inner sapwood can be caused by differences in wood structure associated with a decline in radial growth rate or JW/MW changes, and/or from blockages that accumulate in the inner sapwood as it ages. The total sap flow depends on both k_s and sapwood width (see next section).

In MW, the effect of radial growth rate on k_s depends on its effect on late-wood proportion. The changes in wood structure that result from the typical decrease in radial growth rate with age may be confounded with the changes occurring in the JW zone. In a study of *Pseudotsuga menziesii*, k_s was positively correlated with height growth, but there was no correlation with diameter growth (Domoc and Garrner, 2003).

In diffuse-porous hardwoods, MW should have higher k_s than JW because of the gradual increase in earlywood vessel diameter (Zimmermann, 1978) and the direct relationship between flow and radius to the fourth power. In ring-porous hardwoods, increases in k_s toward the bark are caused by two factors: the increase in earlywood vessel diameter and in the decrease in latewood proportion. In hardwoods, the longer cells in MW than JW should have only a negligible effect on k_s because water moves primarily through the perforations at the ends of vessels (rather than pits), and the perforations contribute less to flow resistance than do pits. In gymnosperms, MW is expected to have higher k_s than JW both because the tracheids are wider and because they are longer. These factors more than compensate for MW’s lower earlywood proportion (Mencuccini et al., 1997). Tracheid length is important if a large part of the hydraulic resistance is associated with pit membranes (Pettit and Puritch, 1970; Pothier et al., 1989). Water must traverse twice as many pit membranes per meter of stem if the tracheids are half the length.
Because there are no development-caused differences in the anatomy of wood produced from year to year within the MW, outer sapwood should not vary in \(k \) from year to year. However, there is usually a decline in \(k \) from outer to inner sapwood, in spite of the lack of changes in the cellular structure. This decrease has been observed in conifers (e.g., Booker and Kininmonth, 1978; Comstock, 1965; Domec and Gartner, 2001, 2002a; Markstrom and Hann, 1972; Spicer and Gartner, 2001) and ring-porous species (Ellmore and Ewers, 1985; see Granier et al., 1994). We do not know of research on diffuse-porous species. One study showed that the pits were "immature and nearly imperforate" in the outer sapwood (Mark and Crews, 1973), from which one would predict lower \(k \) in the outer sapwood, with an increase inward. To our knowledge, no other research followed up the study by Mark and Crews.

The most likely cause for these declines is a higher incidence of blockages in the inner sapwood. These blockages could be in the form of air (emboli) and/or gums, resins, etc. (extractives). Indirect evidence that inner sapwood may have more embolisms than outer sapwood is found in the studies that show lower moisture content in inner than outer sapwood above). Decrease in relative water content is associated with a decrease in \(k \) (Edwards and Jarvis, 1982; Puritch, 1971) and sap flow (Granier et al., 2000). Because extractive content influences heartwood durability, nearly all research on extractives has focused on heartwood rather than sapwood. One article on pit membranes, however, reported an increase in membrane incrustation from outer to inner sapwood (Mark and Crews, 1973).

Patterns of Sapwood Width

Generally, in both conifers and hardwoods, sapwood width is positively correlated with tree health, vigor, crown class, or radial growth rate (Brix and Mitchell, 1983; de Kort, 1993; Hillis, 1987; Lassen and Okkonen, 1969; Sellin, 1996; Smith et al., 1966). The tree's design criteria for sapwood quantity are unclear because although the pipe model and its modifications often explain sapwood quantity (Margolis et al., 1995; Whitehead et al., 1984), in many cases they do not (e.g., Gartner, 2002). The relationships are stronger between growth rate and sapwood width than between growth rate and number of rings in sapwood. That is, the amount of wood needed for physiological processes is independent of how that wood was developed.

There is little research on the width of sapwood in relation to stem age. In some species, sapwood width of individuals within similar environments is very constant. Examples are the genus *Eucalyptus* (Hillis, 1987) and the species *Pseudotsuga menziesii* (Brix and Mitchell, 1983), although it should be noted that in *P. menziesii*, the sapwood is wider in the bottom meter (Gartner, 2002), and that when the trees are several hundred years old, the sapwood width diminishes (BLG, personal observation). In contrast, in some species, sapwood width increases with tree age. For example, in *Picea*, the sapwood width increases until the cambium attains an age of between 20 and 90 years, depending on species and dominance class of the trees (Hazenberg and Yang, 1991; Sellin, 1996).

How Species-Specific Characteristics of Sapwood Affect Whole-Tree Water Transport

Many of the radial and developmental changes in sapwood anatomy, structure, and hydraulic properties described in the previous section are largely species-specific and are expected to have an impact on spatial patterns of water movement within the sapwood. For example, radial profiles of axial flow may be associated with species-specific differences in hydraulic architecture that determine the nature of hydraulic connections between leaves and different layers of sapwood. Here we discuss how species-specific variation in fundamental traits such as hydraulic architecture and sapwood quantity, water storage capacity, and density influence water transport within the tree.

Sapwood Quantity

It is common knowledge that the sapwood cross-sectional area for a given stem diameter varies widely among tree species. For individuals with stem diameters from 0.5 to 1.0 m, radial sapwood depth can range from less than 6 cm in species such as *Eucalyptus regnans* (Wullschleger et al., 1998) and *Pseudotsuga menziesii* (Phillips et al., 2002), to 10 to 20 cm in *Pinus ponderosa* (Domec and Gartner, 2003), and greater than 20 cm in a number of tropical species (James et al., 2003; Meinzer et al., 2001). Despite its implications for rates of whole-tree water use and sap flow per unit sapwood area (sap flux density), the consequences of this wide variation in sapwood area among trees of similar size remain largely unexplored. However, improvements in techniques for measuring sap flow have facilitated determination of the detailed radial profiles of axial flow necessary to analyze how different relationships between sapwood area and tree size among species influence water transport at different scales (e.g., James et al., 2002; Jiménez et al., 2000).

Plant vascular systems, and therefore water use, have been proposed to scale allometrically as power functions of body mass or size (West et al., 1999):

\[Y = Y_0 M^b \] \hspace{1cm} (1)

where \(M \) is mass, \(b \) is a power exponent, and \(Y_0 \) is a normalization constant. Although exhaustive tests of the universality of this model have yet to be conducted, it is supported by some empirical data on plant water
utilization (Enquist et al., 1998; Meinzer et al., 2001). If the model proves to be generally valid, it would greatly simplify prediction of water utilization over a large range of tree size, and in stands comprising multiple species. Given the large range of sapwood area among trees of similar size, however, it seems clear that multiple allometric functions, rather than a single universal function, are required for predicting hydroactive xylem area as a function of tree size. Nevertheless, differing amounts of sapwood in individuals of similar size do not necessarily preclude similar rates of whole-tree water use as explained later.

Whole-tree water use can be estimated by multiplying the mass flow of sap per unit sapwood area, or sap flux density, by the cross-sectional area of sapwood at the point where flow is measured. Thus, if the allometric scaling model presented previously is valid despite large differences in sapwood area for trees of the same size, it can be hypothesized that a universal proportionality constant describes the relationship between sap flux density and sapwood area. That is, for a given sapwood cross-sectional area, sap flux density would be identical across species regardless of tree diameter. Figure 15.1 shows the relationship between maximum sap flux density in the outer 2 cm of sapwood and sapwood area for five temperate coniferous species and 24 largely tropical angiosperm species. In both groups, sap flux density initially declines steeply, then more gradually with increasing sapwood area. When the relationships are linearized, it is clear that a single function adequately describes the relationship between sap flux density and sapwood area within each group. Sap flux density was consistently greater in the angiosperms than in the gymnosperms. Whether these differences would be maintained when whole-tree water use is estimated from the product of sap flux density and sapwood area depends on the profile of axial flow over the remaining depth of the sapwood. If the differences persist at the whole-tree level, then a single allometric equation cannot be used to scale water use in both angiosperms and gymnosperms. Initial determinations of radial profiles of axial flow for some of the species represented in the figure suggest that for a given stem diameter or basal sapwood area, whole-tree water use of conifers may be substantially lower than that of angiosperms (James et al., 2003; Meinzer, unpublished observations).

It is tempting to infer that the overall greater sap flux density in angiosperms than conifers (Fig. 15.1) is associated with the presence of vessels in the former versus tracheids in the latter. This is probably an oversimplification because sap flux density is not governed by the hydraulic properties of the xylem elements alone. For instance, both the whole-tree leaf area to sapwood area ratio (A_L/A_S) and the ratio of xylem element lumen area to sapwood area are expected to influence sap flux density. The decline in sap flux density with increasing sapwood area observed in both angiosperms and conifers appears to be consistent with reports that A_L/A_S typically decreases with increasing tree height (McDowell et al., 2002). It should be noted, however, that sapwood area is not necessarily a reliable surrogate for tree height because of the species-specific differences in the relationship between sapwood area and tree size described previously. It is interesting that despite the large differences in sap flux density between angiosperms and gymnosperms over the range of sapwood area shown in Fig. 15.1, the y-intercepts of the two regressions at zero sapwood area are similar. The differences in sap flux density are thus chiefly a consequence of the steeper negative slope for gymnosperms. If the relationships in Fig. 15.1 are governed by A_L/A_S, then it could be hypothesized that A_L/A_S may decline more steeply with increasing tree size in gymnosperms than in angiosperms. If this proves to be true, it may indicate that greater hydraulic constraints associated with tracheids than vessels require larger developmental adjustments in hydraulic architecture (e.g., A_L/A_S) in gymnosperms in order to maintain sufficiency of water transport to leaves (Becker et al., 1999).

Radial Profiles of Axial Sap Flow

Numerous studies have reported a range of radial profiles of axial sap flow, but the causes of these patterns are not entirely known. The main sap flow patterns from the outer sapwood inward are even, decreasing, sharply decreasing, peaked (Phillips et al., 1996), and erratic (Fig. 15.2). Even flow...
denotes similar sap flow at all measured radial depths in the sapwood. The decreasing and sharply decreasing patterns denote a gradual and more abrupt decline, respectively, from the values in the outer sapwood to those near the sap/heart border. The peaked pattern (called Gaussian by Phillips et al., 1996) shows highest sap flow at some distance interior to the outer sapwood, usually within 1 to 3 cm of the cambium. Lastly, the random flow pattern shows values that go up and down across the radius in a nonsystematic manner.

To interpret radial variation in axial sap flow, more studies are needed of petiolar connections to the stem xylem (Tison, 1902; Elliott, 1937; Maton and Gartner, 2005), the pathways for radial water movement in the stem xylem, and sapwood width. Water is withdrawn only from the points at which the leaf petioles attach to the xylem. In trees with leaves that survive one year or less, all the water is withdrawn through the outer ring of the sapwood. If the stem xylem has high radial resistance to water flow, then these trees should have most of the flow in the outer sapwood with a very steep decline (pattern A, Fig. 15.2). Such a pattern of sharply decreasing flow has been reported for the ring-porous deciduous trees Quercus robur (Granier et al., 1994) and Q. velutina (Miller et al., 1980), as well as the diffuse-porous deciduous species Salix fragilis (Germak et al., 1984). One might expect decreasing axial sap flow from bark inward (pattern B, Fig. 15.2) in two circumstances: trees with only current year leaves and moderate resistance to radial flow, or trees with leaves that persist for a number of years, with either moderate or strong radial resistance. This pattern of decreasing flow is commonly reported for angiosperms: the diffuse-porous deciduous species Cordia alliodora (James et al., 2002), Liriodendron tulipifera (Wullschleger and King, 2000), the diffuse-porous evergreen species Citrus sinensis (Cohen et al., 1981), and several species of Populus (Edwards and Booker, 1984) and some individuals of the Quercus species mentioned previously. This pattern has also been reported in two conifer species: Pinus taeda (Phillips et al., 1996) and Pseudotsuga menszeisi (two of the four individuals, Cohen et al., 1984). Most conifers exhibit peaked flow (below), and it is possible that these conifer individuals have peaked flow but that the sensors missed the peak.

Peaked flow (pattern C, Fig. 15.2) is an interesting case because there are few mechanistic hypotheses to explain its occurrence. In conifers, peaked flow has been reported for Picea excelsa (Cermak et al., 1992), Picea abies (Cermak et al., 1992), Picea engelmannii (Mark and Crews, 1973; Swanson, 1971), a few individuals of Pseudotsuga menszeisi (Cohen et al., 1984), Pinus contorta (Mark and Crews, 1973), and Pinus sylvestris (Nadezhdina et al., 2002; Waring and Roberts, 1979). In angiosperms it has been reported for the deciduous species Prunus serotina and Populus canescens (Nadezhdina et al., 2002) and for the evergreen species Rhododendron ponticum (Nadezhdina et al., 2002), Magnifera indica (Lu et al., 2000), Ficus insipida (James et al., 2002), and Laurus azorica, Persea indica, Ilex perado, Myrica faya, and Erica arboarea (Jiménez et al., 2000). To our knowledge, none of these angiosperms are ring-porous.

Could peaked flow be caused by deeply inserted leaves that had high transpiration rates? Probably not. Deep leaf insertion can never explain peaked flow in deciduous species. In species with long-lived leaves, leaves would probably not stay attached long enough to explain the flow: If one assumes that the peak flow is 1.5 cm from the cambium and that radial growth is 0.5 cm/year, then the foliage attached to the peak radial position would be 5 years old. It is highly unlikely that the cohort of 5-year old foliage would cause the highest flux. Possible explanations are structural, but the only structure that appears able to increase, rather than decrease conductivity once the cells are produced, is the pit membranes. Mark and Crews (1973) reported that the pit membranes were not yet open in the growth rings near the cambium in Picea engelmannii, and that their amount of openness correlated with the flow they observed. This observation leads to the hypothesis that the pit membrane pores need to become enlarged beyond the cambial zone, perhaps by erosion during transpiration. Yet another possible explanation is that there are more air blockages in the outer sapwood than in the location where the flow peaks, but this explanation is not consistent with reports that moisture content appears highest in the outer sapwood. In the case of Magnifera, the researchers reported that the peaked flow could not be accounted for by the radial patterns of wood density and relative water content (Lu et al., 2000).
of a *Larix decidua* tree, whereas water stored in branches accounted for 24% of the total daily transpiration (Schulze et al., 1985).

Water released from both elastic compartments, such as parenchymatous tissue, and inelastic compartments, such as apoplastic capillary spaces and vessel and tracheid lumens during cavitation, can contribute to sapwood capacitance (Holbrook, 1995). Water withdrawn from living cells in stems of *Thuja occidentalis* was estimated to contribute about 6% to the total daily transpirational loss (Tyree and Yang, 1990). It has been proposed that daily cycles of cavitation and embolism followed by refilling of xylem elements may have a positive influence on leaf water balance by transiently releasing stored water into the transpiration stream (Lo Gullo and Saliceo, 1992). Mounting evidence that embolism repair can occur over very short timescales, even when the surrounding intact xylem is still under tension (see Chapter 18), suggests that lumens of xylem elements constitute a dynamic and reusable water storage compartment.

Capacitance has been formally incorporated into Ohm's law analog models of water transport along the soil/plant/atmosphere continuum (e.g., Cowan, 1972; Phillips et al., 1997). It is typically defined as the ratio of change in water content to change in water potential of a tissue. This relationship specifies the absolute volume of water that can be exchanged with storage tissues over the normal operating range of water potential for those tissues in a given species. Estimates of capacitance obtained from *in situ* measurements on intact trees vary from approximately 0.4 to 2 kg MPa⁻¹ for a number of coniferous and angiosperm species (Kobayashi and Tanaka, 2001; Milne, 1989; Tazikawa et al., 1996; Tyree, 1988; Wrouski et al., 1985). It is unclear, however, whether this range of values largely reflects intrinsic, species-specific differences in the biophysical properties of the storage tissues involved, or merely differences in the size of the storage compartment, because none of the estimates was normalized for differences in tree size or the total volume of storage tissue. Species-specific values of sapwood capacitance normalized on a sapwood volume basis ranged from 83 to 416 kg m⁻³ MPa⁻¹ among four co-occurring tropical forest tree species (Meinzer et al., 2003), confirming that intrinsic differences in sapwood water storage capacity can be profound over the normal physiological operating range of stem water potential.

Despite the central role of sapwood water storage in whole-plant water relations, specific relationships between short-term cycles of capacitive discharge and recharge and the daily dynamics of stomatal behavior, transpiration, and plant water balance have not been studied until relatively recently. Capacitive exchange of water between storage compartments and the transpiration stream leads to daily fluctuations in apparent soil-to-leaf hydraulic conductance, provoking dynamic stomatal responses that maintain the balance between transpiration and hydraulic conductance, thereby
limiting daily fluctuations in leaf water potential (Andrade et al., 1998; Meinzer, 2002). Consistent with this, Williams et al. (1996) attributed the afternoon decline in CO₂ uptake in a mixed Quercus-Acer stand to partial stomatal closure in response to depletion of stored water, and Goldstein et al. (1998) reported that tropical forest trees with greater water storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity.

In a recent study, it was shown that a suite of whole-tree water transport characteristics scaled with species-specific variation in sapwood capacitance (Fig. 15.3). Daily minimum branch water potential and soil-to-branch hydraulic conductance increased linearly with sapwood capacitance. In addition, maximum sap velocity, as estimated from the transit time of deuterated water injected as a tracer, decreased linearly with increasing capacitance. Although strong linear relationships between sapwood capacitance and features such as branch water status, whole-tree hydraulic conductance, and sap velocity do not necessarily imply direct mechanistic linkages, it was notable that based on the four species studied, the scaling of these features with capacitance appeared to be species-independent. Comparative studies of whole-plant water transport would therefore benefit from consideration of the constraints that sapwood biophysical features, such as capacitance, place on physiological functioning.

Sapwood Density

Wood density ranges from <0.2 g cm⁻³ in species such as Ochroma pyramidale (balsa) to >1.0 g cm⁻³ in species such as Diospyros ebenum (ebony), and is an important determinant of xylem water transport and storage properties and whole-plant water relations. For example, the xylem tension threshold for 50% loss of specific conductivity by cavitation showed a strong positive correlation with wood density among several species spanning a relatively broad range of wood density (Hacke et al., 2001). Although the relationships were distinct for angiosperms and gymnosperms, there was a common relationship between increasing wood density and increasing resistance to cavitation within each group. Wood density may also prove to be an essential normalizing variable for allometric scaling models that predict growth as a function of tree size. Growth rates of 45 co-occurring tropical tree species scaled with the 3/4 power of mass, but species-specific relationships with identical slopes and different intercepts did not collapse onto a common line until changes in diameter were normalized by the corresponding values of wood density (Enquist et al., 1999). In view of the well-established positive correlation between biomass production and transpiration, these results imply an interaction between water transport and wood density.

Roderick and Berry (2001) developed a model to estimate how wood structure and density should affect water transport. One modeling result was that in softwoods, wood density should be negatively correlated with temperature during the growing season, because if the temperature is lower, then the water is more viscous and a lower density wood is needed to maintain the same flux. This pattern is apparent in many conifers, which have lower wood density at higher elevation or higher latitude. The model further predicted that there would be no such correlation in hardwoods.
because another term, related to the variability of conduit diameter, swamps the term in which viscosity was important. Again, this prediction is consistent with observations.

The widely reported negative correlation between sapwood saturated water content and density implies that the intrinsic capacitance of sapwood (see previously) diminishes with increasing density (Meinzer et al., 2008). Low capacitance in species with dense wood could reduce the relative contribution of stored water to their daily water budget. However, compensatory behavior, such as stomatal regulation that allows stem water potential to fall to more negative values in species with denser wood, may stabilize the relative contribution of sapwood water storage to daily transpiration in species comprising a broad range of wood density.

There is some evidence that the gain in cavitation resistance associated with increasing wood density is associated with a cost in terms of reduced sapwood hydraulic conductivity. In six co-occurring Hawaiian dry forest species specific hydraulic conductivity of branches increased fivefold as wood density decreased from 0.65 to 0.5 g cm\(^{-3}\) (Stratton et al., 2000). Similarly, leaf-specific hydraulic conductivity of upper canopy branches of 20 co-occurring Panamanian forest species showed a sixfold increase as wood density decreased from 0.7 to 0.35 g cm\(^{-3}\) (Santiago et al., 2004).

Although numerous reports of hydraulic properties of woody stems are available, their relationship with wood density is difficult to document because corresponding values of wood density are rarely reported. Sapwood density and hydraulic conductivity averaged over entire stem cross sections may conceal within-ring variation in density and conductivity that may be associated with within-ring partitioning of water conduction and storage functions (Domec and Gartner, 2002b), or water transport and mechanical functions (Mencuccini et al., 1997).

If both hydraulic conductivity and sapwood water storage capacity are negatively correlated with wood density, it is reasonable to expect that species with greater wood density may experience both larger daily fluctuations in leaf water deficits and more extreme seasonal water deficits. Consistent with this, a strong positive correlation (\(R^2 = 0.96\)) between the magnitude of daily fluctuations in leaf water potential and wood density was noted among 27 diverse species with wood densities ranging from 0.14 to 0.9 g cm\(^{-3}\) (Meinzer, 2003). The daily fluctuation in leaf water potential increased from c. 0.5 to 2.5 MPa over this range of wood density. The 27 species surveyed occupied habitats ranging from the humid tropics to deserts. The leaf water potential corresponding to turgor loss should be associated with the minimum leaf water potential normally experienced by a species, and therefore should provide an integrated measure of prevailing leaf water deficits. A survey of 12 species for which values of both wood density and leaf turgor loss point determined by the pressure-volume method were available revealed a strong negative correlation between the turgor loss point and wood density (Fig. 15.4). The turgor loss point declined from c. -1.2 to -4.5 MPa over a range of wood density from 0.16 to 0.90 g cm\(^{-3}\). The preceding examples suggest that variation in wood density is a strong predictor of variation in a suite of characteristics related to regulation of leaf water deficits and avoidance of turgor loss, and that this feature constrains physiological options related to plant water economy, leading to functional convergence across a broad range of species.

Prospects for Further Research

A wealth of detailed information is available on developmental and spatial variation in xylem anatomy and structure in trees. Similarly, advances in techniques for measuring sap flow have contributed to a rapidly expanding literature on spatial and temporal variation in water movement through

Figure 15.4 Leaf water potential at the point of turgor loss in relation to wood density. (\(\triangle\)) *Acacia greggii* (Nilsen et al., 1984); (○) *Liriodendron tulipifera* (Roberts et al., 1980); (▼) *Metrosideros polymorpha* (Stratton et al., 2000); (△) *Neolepis polynesiaca* (Stratton et al., 2000); (○) *Nestegis sandwicensis* (Stratton et al., 2000); (Φ) *Populus* spp. (Tyree et al., 1978); (◇) *Pouteria sandwicensis* (Stratton et al., 2000); (●) *Prosopis glandulosa* (Nilsen et al., 1981); (■) *Pseudobombax septenatum* (Machado and Tyree, 1994); (●) *Rhus* sp. (Melcher et al., 2001); (●) *Schiffiera morototoni* (Tyree et al., 1991); (▲) *Schinus terebinthifolius* (Stratton et al., 2000). Values of wood density were obtained from Alden (1995), Meinzer (2003), and Stratton et al. (2000).
trees. However, improved mechanistic understanding of relationships between xylem water transport and sapwood biophysical properties is hampered by a scarcity of studies in which water movement and sapwood properties have been measured in the same individuals. Therefore, to establish mechanistic linkages between xylem structure and water transport in intact trees, comprehensive characterizations of water movement, sapwood properties, and hydraulic architecture across a broad range of scale and tree size are required. Moreover, many more species must be examined because it is clear that there is more than one evolutionary solution to the problems of water transport.

To assimilate carbon, trees lose water. The amount they lose and how it travels through the sapwood are apparently quite variable. For a given sap flux, plants can co-vary factors such as sapwood permeability (and the anatomical means by which this is achieved), sapwood area, the depth of water transport within the sapwood, the extent to which stored water is accessed (daily and seasonally), and the timing of water transport (daily and seasonally). Are there suites of characteristics that often co-vary? If so, what are their ecological and anatomical patterns? Waring and Roberts (1979) and Dye et al. (1991) speculated that the inner sapwood primarily supplied water to the older branches. Does pruning shift sap flux outward in the sapwood? In some but not all coniferous species, petioles break their vascular connections with the previous year’s xylem and make new connections annually (Tison, 1902; Maton and Gartner, 2005). Is this pattern unusual or the norm? Does peaked flow occur because of higher driving force on inner growth rings, or higher ks there? In which ecological settings and with which other characteristics (sapwood depth, permeability, radial and temporal patterns of transport, deciduous/evergreen foliage) is capacitance most pronounced? How do species maintain the moisture content differences across the sapwood, and how do they maintain different moisture contents in the sapwood and the heartwood? An emphasis on the functional tradeoffs among these characteristics may help us see a number of distinct strategies for water transport, which would greatly help our understanding, which is currently on a species- and age-specific basis.

A special case of the previous discussion is why co-occurring tropical trees of a given diameter appear to have the same sapwood depth (Meinzer et al., 2001), but temperate ones vary from one extreme to the other. Likewise, more research is clearly needed on understanding sap flux in species without annual growth rings. Because of the clear role in water transport, much of the emphasis in ecological wood anatomy has been in vessel and tracheid characteristics. However, there is a myriad of patterns of xylem parenchyma, especially in tropical hardwoods, which merit a functional understanding. For example, the longitudinal parenchyma can be dispersed or aggregated. If it is aggregated, it can be near the vessels or apparently distanced from them ("apparently" because although it appears distanced in a cross section, the three-dimensional configuration of parenchyma, including the rays, has not been characterized). It can form tangential or radial bands, or a combination. The radially oriented parenchyma (in the rays) can be abundant or rare, and the cells can be aggregated into very wide multisierate rays, or uniseriate rays (either of which can be tall or short). Within the rays, there can be procumbent cells and upright ones, and there can be rays within the same individual that are made up of different combinations of these geometric types. What are the roles of these different parenchyma cells and patterns? In what ecological settings are they found, and what is their role in water storage/release and water transport?

Another area that raises many questions is the striking relationship of wood density to the vulnerability of wood to embolism (Hacke et al., 2001). On what structural features do these relationships depend? Given that wood density and the anatomy of the transport cells can vary independently of one another, it would not appear that there should be a relationship. For example, the density of hardwoods can vary simply by having an increase in libriform fiber cells and a decrease in parenchyma cells, with no effect on vessels. This line of research is an excellent example of recent progress in synthesizing data from diverse species and wood strategies. It shows, for example, that many hardwoods fall on one line, and that softwoods fall on another. It is also an example of a line of research that opens many questions about why the observed patterns are there. Many questions remain about structural causes of water transport and the strategies that are used in different ecological settings. These areas will continue to benefit from both the detailed species- and age-level research, and from the multispecies syntheses.

Acknowledgments

Some of the data presented were obtained with support from National Science Foundation grant IBN 99-05012 to FCM, and with support from the Wind River Canopy Crane Research Facility located within the Wind River Experimental Forest, T. T. Munger Research Natural Area. The facility is a cooperative venture among the University of Washington, the USDA Forest Service Pacific Northwest Research Station and Gifford Pinchot National Forest. BLG wishes to acknowledge the special USDA grant to Oregon State University for wood utilization research.
References

Larson, P. R., Kretschmann, D. E., Clark, A. I. and Isbrands, J. D. (2001) Formation and properties of juvenile wood in southern pines: A synopsis. FPL-GTR-129. USDA Forest Service, Forest Products Laboratory, Madison, WI.

Markstrom, D. C. and Hann, R. A. (1972) Seasonal variation in wood permeability and stem moisture content of three Rocky Mountain softwoods. RM-212. USDA Forest Service, Rocky Mountain Forest and Range Experimental Station, CO.

15. Structure-Function Relationships in Sapwood Water Transport and Storage

