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Spatial variation of available food resources can be difficult to accurately quantify for wide ranging organisms
at landscape scales. Lichens with usnic acid, a yellowish pigment, constitute a large portion of caribou winter
diet across much of their range. We take a new approach of modeling lichen abundances by capitalizing
on unique spectral characteristics of usnic acid lichens. We utilize a recently completed ground reference
vegetation data set extending over 12,000 km2 in Denali National Park and Preserve, Alaska to model the
abundance of usnic lichen and other forage vegetation groups. Spectral signatures were obtained for more
than 700 vegetation monitoring plots in Denali from Landsat 7 ETM+ imagery. We fit models of the absolute
percent cover of vegetation groups corresponding to caribou diet items, with a focus on lichens. We used
non-parametric multiplicative regression to capture the non-linear relationships between vegetation cover
and spectral and environmental data. Different groupings of lichen cover were tried as response variables
in addition to usnic lichens to see if other lichen color groups were more detectable. The best fitting lichen
model was for usnic acid lichens, which explained 37% of the variation using only three predictors (elevation,
bands 1 and 7). Elevation had a non-linear, double-humped shaped relationship to usnic lichen abundance
while bands 1 and 7 were positively correlated with usnic lichen cover. These results support previous
spectroradiometric ground measurements that indicated usnic lichens were distinctive at those wavelengths.
Other vegetation groups had models that explained between 31% and 51% of the variation in cover. Maps of
estimated abundance of usnic lichens and other vegetation groups covering the northern half of Denali were
generated using our models. These maps enable the study of the role of food resources as a continuous re-
source in winter habitat selection by caribou, rather than assuming food as a coarser, categorical or thematic
variable assigned to discrete areas of the landscape as has been done in most previous studies.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

It is difficult to conduct detailed habitat studies of highly mobile
terrestrial species whose individuals range over large areas in a single
year. To do so, relevant habitat characteristics must be measured
over a wide spatial extent at sufficient resolution to be biologically
meaningful. Caribou (Rangifer tarandus) are excellent study organisms
in this respect. They are also of central importance for subsistence
for many human populations across the northern latitudes, both as
wild game and domestic livestock. Caribou have large home ranges,
in some cases migrating over thousands of miles in a single year
(Russell et al., 1993). Caribou respond to many habitat factors but
Plant Pathology, 2082 Cordley
. Tel.: +1 541 231 5584.
Nelson), carl_roland@nps.gov

rights reserved.
we focused on one, the abundance of winter food resources at
landscape spatial scales. Caribou need more energy in the winter
due to cold temperatures and difficulty of travel and foraging in
snow. Wintering areas therefore often have higher forage abundance
(e.g., Johnson et al., 2000). Most caribou subspecies are similar in
that their winter diet is composed mostly of lichens, often in the
genus Cladonia, a terrestrial fruticose macrolichen common across
the high northern latitudes (Heggberget et al., 1992; Joly et al., 2007;
Russell et al., 1993). Increased soil temperatures in northern latitudes
are thought to have caused a decrease in lichen cover caused by tree
and shrub expansion (ACIA, 2005; Cornelissen et al., 2001). We need
new tools for measuring large-scale woody plant encroachment into
lichen-rich areas that are critical to caribou diet during the winter.
Such tools would allow us to detect possible changes in forage re-
sources as well as gain a better understanding of caribou ecology.
This paper presents a method to make continuous vegetation maps
for caribou to meet this need.

Some lichens are distinguishable from other elements of the
vegetation using remote sensing data, including use of Normalized
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Difference Vegetation Index (NDVI) (Stow et al., 1993). Many lichen
species, including Cladonia, are lighter colored and reflect more light
in blue to yellow wavelengths than green vegetation, helping to
distinguish them from other vegetation (Petzold & Goward, 1988).
Cladonia species eaten by caribou also commonly contain usnic acid,
a pale yellow pigment that is spectrally distinct and has been suggested
as a potentially useful characteristic in remote sensing (Petzold &
Goward, 1988; Rees et al., 2004). However, no study has focused on
the continuous mapping of usnic lichens using remotely sensed data.

Previous studies of caribou habitat incorporated food items by
mapping them using remote sensing alone or in combination with
other methods (Bechtel et al., 2002; Gilichinsky et al., 2011; Nordberg
& Allard, 2002; Petzold & Goward, 1988; Théau et al., 2005). Caribou se-
lect food resources at multiple scales (Johnson et al., 2004; Mayor et al.,
2009) but most previous studies of caribou habitat that include forage
used thematicmaps (e.g., categories of % lichen) rather than continuous
measures of forage. This approach may be too coarse-grained to detect
multiple spatial scales at which caribou are selecting habitat based
on food resources if these themes mask important variation in forage.
We seek to produce continuous estimates of food resources to enable
study of caribou forage resources across multiple spatial scales.

Caribou habitat studies using spectral data fall into three categories:
classification, inversion and regression. Classification finds groups of
pixels with consistent spectral signatures and assigns a vegetation
type to those areas based on reference vegetation data (Jensen, 2005).
Classification is useful because itmaximizes the purity of spectral signa-
tures of each vegetation type by searching through homogenous pixel
areas to gather a larger sample from which to calculate mean spectral
characteristics. Inversion solves an equation for the observed reflec-
tance across all bands in a pixel, assuming the spectroradiometric
properties of pure pixels for each surface are known (e.g., Hoge &
Lyon, 1996; Schlerf & Atzberger, 2006). A successful reflectance model
estimates the quantity of each component surface contributing to
the reflectance in each pixel. However, pure pixel characteristics for
all vegetation types and surfaces in a scene are rarely known. Backscat-
tering, which has been shown to significantly alter spectral signatures
of lichens at different illumination angles (Kaasalainen & Rautiainen,
2005), further complicates reflectance modeling. Spectral signatures
can be obtained by taking field measurements for all surfaces with
field spectroradiometers. However, the potential number of surfaces
with unique spectral characteristics and angles of illumination for
each can be prohibitively large. We took the third approach, in which
we regressed the abundance of vegetation cover groups against spectral
and environmental data. Regression enables targetedmodeling of spec-
trally heterogeneous surfaces without having to explicitly account for
reflectance properties of other surfaces, as in inversion (Oltof & Fraser,
2007). Regressions can estimate continuous quantities of a target
surface within a mixture of co-occurring surfaces, unlike classification,
which produces categories of abundance for a target surface. Both of
these attributes of regression made it preferable over inversion or clas-
sification since we sought to make models and maps of continuous
cover for specific vegetation groups.

We seek to map the continuous abundance of major caribou diet
categories, especially lichens, by using a large sample of vegetation
plots as ground reference data to which we compare the spectral sig-
natures of the same plots. The resulting models and maps will help
scientists better quantify food resources for caribou, assess threats
to caribou habitat and analyze habitat selection patterns across their
range.

Our specific goals are to:

1) Create models to estimate the continuous cover of selected groups
of lichens in relation to spectral and environmental data. Lichen
groupswere: total lichen, usnic lichens (usnic), light-colored lichens
(light), usnic plus light colored lichens (usnlite) and dark colored
lichens (dark).
2) Create models to estimate the continuous cover of other important
caribou diet categories (coniferous and deciduous trees, shrubs and
graminoids) using spectral and environmental data as predictors.

3) Estimate the continuous cover of each lichen and vegetation group
in areas not directly measured by ground observation (generate
maps).

4) Discuss the best predictors in each model and spatial patterns in
each map in terms of known ecological and reflectance properties
of each lichen and vegetation group.

2. Methods

2.1. Study area

Denali National Park and Preserve (henceforth “Denali”), located
in central Alaska (Fig. 1A), covers slightly more than 2.4 million ha
between 62° 18′ and 64° 04′ N and between 148° 48′ and 152° 52′
W. Our study area lies in the northern portion of the park covering
1.28 million ha. The Alaska Range, North America's highest moun-
tains, bisects Denali along a northeast/southwest line. North of
the Alaska Range is a predominantly continental climatic regime
influenced by polar air masses. Vegetation in Denali varies from boreal
forests and taiga at the lowest elevations (ca. 100 m), shrublands at
middle elevations, and alpine tundra at higher elevations up to the
rock and ice zone, which extends to the summit of Mt. McKinley
(5934 m; Fig. 2). In Denali, ground dwelling lichens are most abun-
dant in alpine tundra, windswept ridges or lowland open conifer
forests but can occur in most habitats except for dense, broadleaf
forests or alder thickets. Permafrost occurs sporadically in Denali,
from discontinuous patches in mid-elevations to continuous polygons
in lower elevations in poorly drained soil types.

2.2. Response data

Response variables were the percent cover of vegetation cover
groups, based on data acquired from the National Park Service vegeta-
tionmonitoring program (Roland et al., 2004). These vegetation cover
groups corresponded to categories commonly used by caribou biolo-
gists to study diet, including shrubs, graminoids, lichens, deciduous
and coniferous trees (Heggberget et al., 1992). Forbs were excluded
because we focused on winter diet. We further divided lichens into
color groups, partially based on Rees et al. (2004) including yellow
colored lichens with usnic acid, such as Cladonia arbuscula (Table 1),
light colored lichens, such as Cladonia rangiferina (Table S1), usnlite
(yellow + light) and dark colored lichens, such as Peltigera aphthosa
(Table S2a–c). We expected lighter colored lichens to be more detect-
able than dark lichens but also wanted to see if light lichens were
spectrally similar enough to usnic lichens to be lumped with them.
We therefore also tried the combination of usnic plus light-colored
lichens (usnlite) as a response variable. Usnic lichens are yellow in
color, light lichens white or gray colored and dark lichens are brown
or black. The lichen color categories are mutually exclusive, except
for usnlite lichens, which contain both yellow and light color lichens.
Usnic lichens are listed in Table 1.

The vegetation monitoring sampling design used a 100 m grid
overlaid on Denali based on a random starting position (see Roland
et al., 2012). Plots were positioned on the original 100 m grid
in groups of 25, called mini-grids (Fig. 1C). Each mini-grid was sepa-
rated from the next by 20 km (Fig. 1B). Mini-grid spacing was de-
creased from 20 km to 10 km among-grid spacing in two areas of
the park: 1) a 6 km buffer along the park road (which increases
ease of access and decreases logistical costs); and 2) in the vicinity
of the Toklat basin ecoregion (as a baseline for an area into which a
road was being proposed at one time). Within each mini-grid, plots
were positioned 500 m apart in each cardinal direction (e.g., every
5th 100 m point) (Fig. 1C). Each plot was a 16 m diameter circle



Fig. 1. Maps of nested sampling design for vegetation monitoring in Denali: A) outline of the Park in Alaska B) all mini-grids of vegetation monitoring plots used in this study
C) a single mini-grid of vegetation monitoring plots and D) a single plot showing positions of quadrats (squares) and transects (cross lines in circle).

Fig. 2. Elevation map of Denali National Park and Preserve.
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Table 1
Abundance and frequency of usnic lichen species found on 722 vegetation monitoring
plots in Denali. Mean cover (%) for lichen species used for modeling was calculated as
the mean from four 1 m2 quadrats per plot which was then averaged across all 722
plots. Maximum cover (%) is the highest average cover on a plot. Frequency is the pro-
portion (0–1) of plots that each lichen occurred in. Total cover is the sum of averages
by species from all 722 plots. Species are listed in a decreasing order of total cover.

Lichen species Mean cover Max cover Frequency Total cover

Cladonia arbuscula 0.39 30.25 0.44 562.19
Cladonia amaurocraea 0.29 10.25 0.49 212.44
Nephroma arcticum 0.18 18 0.11 129.06
Cladonia stellaris 0.17 34.56 0.1 121.31
Flavocetraria cucullata 0.16 3 0.44 113.5
Cladonia uncialis 0.09 11 0.15 65.7
Flavocetraria nivalis 0.04 11.56 0.09 30.31
Cladonia mitis 0.03 16.25 0.02 21.69
Dactylina arctica 0.02 1.75 0.12 18.01
Alectoria ochroleuca 0.02 9.56 0.04 16.89
Cladonia deformis 0.02 2 0.14 15.81
Cladonia cyanipes 0.02 0.5 0.19 14.19
Cladonia borealis 0.01 1.06 0.08 8.56
Parmeliopsis ambigua 0.01 0.25 0.1 8.39
Cladonia botrytes 0.01 0.56 0.07 7.68
Asahinea chrysantha 0.01 1.62 0.03 6.38
Arctoparmelia separata 0.01 1.5 0.02 6.12
Cladonia carneola b0.01 0.5 0.04 3.5
Cladonia pleurota b0.01 0.88 0.04 3.12
Cladonia sulphurina b0.01 0.31 0.04 2.69
Arctoparmelia centrifuga b0.01 1.5 b0.01 2.62
Cladonia bacilliformis b0.01 0.25 0.03 2.19
Flavocetraria miniscula b0.01 0.25 0.02 1.56
Cladonia metacorallifera b0.01 0.19 0.01 1
Cladonia coccifera b0.01 0.25 0.01 0.94
Arctoparmelia incurva b0.01 0.5 b0.01 0.56
Cladonia transcendens b0.01 0.12 0.01 0.5
Cladonia bellidiflora b0.01 0.06 b0.01 0.12
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(Fig. 1D). Although each mini-grid had a maximum of 25 plots, some
mini-grids had fewer than 25 plots worth of data due to sampling in-
accessibility (plots landing in lakes, on a cliff face, etc.). Plots were
sampled between 2002 and 2008.

The abundance of vascular vegetation cover groups (shrubs,
graminoids, deciduous and coniferous trees) was measured by point
intercept along two perpendicular transects (Fig. 1D), one 16 m
long running east to west and the other segmented into two 6 m
long segments oriented north to south. Plant species presence was
recorded at each intersection of the transect and an imaginary line
extended vertically from the ground to infinity. Transects were read
in three different horizontal spacing categories (30, 40 or 50 cm)
depending on the stature of the vegetation. For example, for plots in
forests, 50 cm spacing was used whereas in alpine tundra, a 30 cm
spacing was used. The abundance of each plant species was calcu-
lated as the percentage of the transect points where each species
was present at any vertical stratum directly above the transect tape
(absolute percent cover). Absolute percent cover was then aggregated
for all plant species in a diet category. Lichen cover at the species level
was estimated in a series of four 1 m2 quadrats per plot (Fig. 1D),
which were averaged over the plot to yield a percent cover by lichen
species by plot. Quadrats were located in the same position on each
plot relative to the plot center. Mean cover by lichen color group
was calculated by summing the average cover for all lichens in a
given color group. Total lichen cover was measured on the transects
because that method sampled a larger area. Lichens were not identi-
fied on the transects.

Transect data came from 853 plots from 44 mini-grids, after ex-
cluding plots with inadequate or missing spectral data (see Predictor
Data Section 2.3). These data included coniferous and deciduous
trees, shrubs, graminoids and total lichen. Coniferous tree species
cover were almost entirely Picea glauca and Picea mariana, which
was treated as a single group (Picea). A third conifer, Larix laricina,
is deciduous and contributed very little to the total cover of conifer-
ous trees and was therefore excluded. Deciduous tree cover was
composed of Betula neoalaskana, Populus balsamifera and Populus
tremuloides. Shrubs include dwarf shrubs (Empetrum, Dryas, Cassiope,
Salix and others) and tall shrubs, including deciduous (Betula,
Salix, Alnus and others) or evergreen shrubs (Ledum, Juniperus and
others). Graminoid cover was predominantly sedge species (Carex
and Eriophorum) and a variety of grass genera.

Quadrat data for lichen color groups came from 725 plots from
41 mini-grids. Plots lacking adequate spectral data (see Predictor
data Section 2.3) were excluded. The lichen specimens from four
mini-grids were not identified in time for this analysis due to budget
and schedule constraints, which excluded an additional 90 plots.
Upon review of the taxonomic determinations of lichens made by
one observer, we determined that quadrat data from 38 plots visited
by this individual were unreliable for detailed analysis. However,
transect data from this set of plots were usable because no taxonomic
errors were detected for vascular plants, which were collected by a
different observer. A total of 277 macrolichen species were found on
the 725 plots. Each of these species was coded by color corresponding
to spectral groups based on Rees et al. (2004). We did not group
Stereocaulon sp. with usnic lichens like Rees et al. (2004) because
Stereocaulon lacks usnic acid and we specifically wanted to test the
detectability of usnic lichens. The 725 plots contained 28 lichen species
with usnic acid. The seven most abundant usnic lichens (>0.03% aver-
age cover) were, from most to least abundant: C. arbuscula, Cladonia
amaurocraea, Nephroma arcticum, Cladonia stellaris, Flavocetraria
cucullata and Cladonia uncialis (Table 1). All four Cladonia species in
this list are important caribou winter forage.

Our plots were much smaller than the area covered by a Landsat
pixel. To be sure we had an adequate signal/noise ratio to use plots
as our sample units for quadrat-level data (usnic, usnlite, light and
dark lichens), we verified that between-plot variation in lichen cover
was greater than within plot variation. ANOVA of quadrat lichen
cover (n = 2368 quadrats) with plot (n = 592) as a factor showed
more variation in lichen cover between plots than between quadrats
within plots, with a signal/noise ratio of five (F = 5.03, df = 591,
p b 0.0001).

2.3. Predictor data

We obtained plot spectral characteristics from two scenes (August
16, 2000) from the Landsat 7 ETM+ sensor (Path 70/Rows 15 and
16). The 30 m pixels (bands 1/2/3/4/5/7) for the two scenes were
calibrated to top-of-atmosphere reflectance (TOA) (Chander et al.,
2009). The reflectance values (0–1.0) were scaled by 10,000 and
stored as signed integers. The two scenes were mosaicked together
and then clipped to a bounding box defined by the border of Denali
plus a 16 km buffer.

Denali contains extensive areas of hilly and mountainous terrain,
where these topographic effects on remote-sensing imagery are
most pronounced. Sun angles are low at high latitudes, which further
increase topographic effects. To minimize these effects, we normal-
ized illumination and corrected for backward radiance (Colby, 1991)
using a Minnaert correction (Smith et al., 1980). The Minnaert correc-
tion model is expressed as:

ρH ¼ ρT � cos e= cos e cos ið Þk ð1Þ

where ρH is the equivalent reflectance on a flat surface with incident
angle of zero, ρT is the observed reflectance, e is the terrain slope, i is
the solar incidence angle (the angle between the terrain normal and
the solar radiation) and k is the Minnaert value (Table 2). The cosine
of the solar incidence angle (cos i) is calculated as:

cos i ¼ cos θ cos eþ sin θ sin e cos φm–φsð Þ ð2Þ



Table 2
Minnaert k values used for incidence angle
correction (Macander, 2010).

Band k

1 0.226
2 0.416
3 0.555
4 0.577
5 0.71
7 0.825

Table 3
Principal components used to extrapolate relationships of vegetation to spectral data.
To apply eigenvectors to new values, the bands are first log transformed, then
variable's mean is subtracted and divided by the corresponding standard deviation.
Note the naming convention LPCA is used for both lichen and veg data sets but sample
sizes differed (n = 722 for lichen data, n = 850 for veg data) between PCAs. LICB
stands for “log10 incident corrected band”.

PCA data sets and
statistics

LICB1 LICB2 LICB3 LICB4 LICB5 LICB6

Plots with lichen data
Mean 2.997 2.959 2.848 3.513 3.311 2.964
Standard deviation 0.034 0.055 0.096 0.099 0.115 0.128
Eigenvectors

1 −0.381 −0.457 −0.453 −0.232 −0.421 −0.458
2 −0.491 −0.152 −0.242 0.726 0.379 0.084
3 0.286 0.426 −0.031 0.535 −0.379 -0.553
4 0.700 −0.327 −0.587 0.091 0.206 0.090
5 0.203 −0.665 0.624 0.207 0.062 −0.284
6 −0.032 0.193 −0.041 −0.288 0.700 −0.623

Plots with veg data
Mean 2.998 2.959 2.847 3.508 3.302 2.956
Standard deviation 0.041 0.062 0.106 0.109 0.126 0.136
Eigenvectors

1 −0.383 −0.471 −0.472 −0.186 −0.394 −0.468
2 0.470 0.205 0.241 −0.661 −0.456 −0.187
3 −0.204 −0.408 0.024 −0.633 0.317 0.539
4 0.739 −0.288 −0.569 0.078 0.190 0.067
5 0.206 −0.662 0.626 0.185 0.097 −0.290
6 −0.047 0.223 −0.051 −0.295 0.701 −0.606
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where θ = solar zenith angle, φs = solar azimuth, e = terrain slope
and φm = terrain aspect. Terrain slope and aspect were calculated
from the National Elevation Dataset 2-minute DEM data (resampled
to 30 m resolution using bilinear resampling) while solar parameters
were obtained from the Landsat metadata. Minnaert k values were
assigned based on an analysis done for a Landsat mosaic in northwest
Alaska with similar land cover types (Macander, 2010). Incident
corrected reflectance values were calculated from top of atmosphere
reflectance values using Eq. (1).

A 9-pixel (3 × 3 window of 30 m pixels = 8100 m2) neighbor-
hood centered on each plot was used as the area from which spectral
signatures (mean reflectance by band) were obtained. Within each
plot's 9-pixel neighborhood, pixels were flagged if they fell in stripes
(instrument artifacts), shadow, or very low illumination angles. Plots
without complete 9-pixel signatures (containing flagged pixels) were
not used in the analyses.

Three plots nearly devoid of vegetation and located on steep
slopes were deleted from the pool of plots with quadrat data. They
also had abnormally high reflectance across most bands. This was
likely caused by the combination of steep slopes and high mineral
cover on these plots. The remaining 722 plots with lichen data were
used for modeling lichen cover groups based on their cover averaged
across quadrats on a plot (see Section 2.2 Response data). Three plots
were deleted from the pool of plots with transect data for the same
reasons, two of which were the same plots excluded from the pool
of plots for the quadrat data, for a total of 850 plots used in plot-
level modeling based on transect cover of vegetation groups.

Scatterplots between predictors (spectral and environmental data,
Table 4) and the responses (lichen and vegetation data) indicated
possible benefits of log transformation of the spectral bands and ele-
vation. Also, as spectral bands are inter-correlated, a principle compo-
nent analysis (PCA; McCune &Mefford, 2011) was conducted on log10
transformed reflectance values. PCAs were run separately for both
pools of plots (quadrat data and transect data, respectively) because
the identity and number of plots differed (n = 722 for quadrats vs.
n = 850 for transects, see Section 2.2 Response data). PCAs used
correlations in the cross-product matrix. Eigenvectors for both PCAs
are in Table 3. Scores of plots on all 6 axes (principal components)
are orthogonal, linear composites of the bands. All PCA axes were
retained because any axis was a potentially informative predictor of
vegetation. Relationships between the abundance of vegetation groups
in spectral space were also visually assessed using symbol-size overlays
in PC-ORD (McCune & Mefford, 2011) (Fig. 3). Normalized Difference
Vegetation Index (NDVI) was calculated using the log10 transformed
bands (LNDVI) to maintain comparability between the scales of the
spectral predictors. LNDVI is strongly correlated (R2 = 0.96) with
NDVI and can be interpreted in the same way as NDVI.

In addition to the spectral data, environmental variables from each
plot were included in the predictor matrix. The non-spectral variables
were added to the predictor matrix to account for environmental
gradients known to influence the abundance of vegetation groups
but not necessarily captured by spectral variables. Environmental
data collected on the plot used for modeling include slope, aspect
and elevation. Derivations of these environmental data also added
to the predictor matrix include aspect off 180°, equivalent latitude,
PDIR (Potential Direct Incident Radiation) and heatload. The aspect
off 180 (degrees away from south) was calculated in a database,
equivalent latitude (Dingman & Koutz, 1974) calculated in R and
PDIR and heatload (McCune, 2007) calculated in HyperNiche
(McCune & Mefford, 2009). Geologic environmental variables includ-
ed in the predictor matrix were extracted from GIS layers (1:250,000
scale) based on the Denali soil survey (Clark & Duffy, 2006), including
permafrost, lithology (surficial geology), parent material, landform
and ecoregion subsection (Table S3). We collapsed the ecoregion sub-
section from eighteen down to eleven classes to reduce the number of
categories. We also used fire year as a predictor, which was obtained
from the NPS Alaska Region Fire perimeter GIS layer (1:63,360 scale)
and calculated as year of the Landsat scene (2000) minus the fire
year plus 1 year. Fires were assigned “1” that occurred the same
year but before the day the Landsat scene was acquired. These envi-
ronmental variables were rasterized to 30 m pixel grain to match
the Landsat image so that they could be used in generating maps
(see Section 2.5 Outputs). A final pool of 25 predictors (Table 4)
was used in the regression step detailed in the next section.

2.4. Model type and parameters used

The percent covers of lichen and vegetation groups (dependent
variables) were regressed against the spectral and environmental pre-
dictor variables (independent variables; Table 4)with non-parametric
multiplicative regression (NPMR) (McCune, 2006) in the program
HyperNiche (McCune & Mefford, 2009). NPMR can recover complex
unanticipated nonlinear response surfaces and automatically represents
interactions among predictors using multiplicative weights with a ker-
nel smoother. We used NPMR with a Gaussian kernel and forward
stepwise variable selection, simultaneously optimizing the smoothing
parameters (tolerances) for all predictors included in the model. NPMR
controls over-fitting with leave-one-out cross validation during model
selection and calculating fit so that splitting into training/validation
data sets is automatically built into model development.

We set the minimum average neighborhood size for an acceptable
model to 10 and the allowable missing estimates for an acceptable
model to 3%. The neighborhood size setting means that, on average



Fig. 3. Abundance of vegetation groups and usnic and usnlite lichens superimposed on the first two principal components (LPCA1 and LPCA2) of 722 plots in spectral space
(variables LICB1–5 and 7 in Table 4). LPCA stands for principle component analysis using log10 incident corrected bands. LICB means log10 incident corrected bands. Triangles
represent plots and the symbol size is proportional to abundance.

Table 4
List of predictor codes and descriptions for those used in modeling vegetation and lichen
cover. NDVI was calculated as (LICB 4–3/LICB 4+3) with log10 transformed bands for
the sake of comparability to the other bands. See Section 2.3 predictor data for methods
of calculating each predictor. See Table S3 classes of categorical variables.

Predictor code Predictor description Units

pslope Plot slope Degrees
pelevati Log10 plot elevation Meters
pequival Plot equivalent latitude Degrees
paspecto Plot aspect off 180 Degrees
LICB1–5 & 7 Log10 incident corrected

Landsat 7 ETM+ band 1–5,7
Reflectance

LNDVI Normalized Difference
Vegetation Index calculated
using log10 transformed bands

Unitless

PDIR Potential direct incident radiation Mega joules/cm2/year
heatload Heatload Unitless transformation

of PDIR
LPCA1-6 Principle component axes 1–6

using log10 transformed incident
corrected bands

Standard deviations
from the centroid

litho Lithography Categorical
parent Parent material Categorical
landfor Landform Categorical
perma Permafrost Categorical
ecoreg Ecoregion subsection Categorical
fireyear Time since fire Year
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for a given model, the equivalent of 10 or more plots must bear on an
estimate for a model to be retained. By using a low allowance for
missing estimates we forced the model to maintain adequate spatial
coverage; this results in a more conservative model with broader
tolerances. Although model fit increases if more missing estimates
are allowed, gaps are produced in the maps, which is not desirable
for the sake of continuity. Attempts to improve a given model were
abandoned when all trial improvements in cross-validated R2 (xR2)
were less than 1%. This criterion was chosen to prevent addition of
variables that made only small improvements to the fit. More parsi-
monious models are more readily interpreted and result in fewer
missing estimates because of insufficient data. This is because each
additional predictor narrows the multidimensional window in the
predictor space, such that new data points are more likely to have
combinations of predictor values that are poorly represented in the
calibration data.

The model with the largest xR2, subject to the overfitting con-
straints described above, was selected as the best model for each
vegetation group. The best model for each vegetation or lichen color
group was tuned in HyperNiche, which makes fine adjustments in
the tolerances of each predictor. The model with highest xR2 after
tuning was retained as the best model. The relative importance of
predictors was evaluated with a sensitivity analysis in HyperNiche.
The sensitivity analysis nudges the value of each predictor and

image of Fig.�3
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measures the change in the response. Sensitivity to a predictor is a
change in the response, measured as a percentage of the range of
the response, expressed relative to the magnitude of the change in
the predictor. For example, a sensitivity of 0.5 means a 5% change
in the predictor causes a 2.5% change in the response. Higher values
mean the model is more sensitive to changes in that predictor,
which can be interpreted as more importance for that predictor in
the model. Sensitivities for models with xR2 b 0.2 were not evaluated.

Finally, for each final model we tested the null hypothesis that the
fit is no better than expected by chance alone, based on a randomiza-
tion test. The probability of Type I error was calculated by refitting the
model 100 times after randomizing the rows of the predictor matrix
relative to the response variable. The resulting p-value is the propor-
tion of models fit to randomized data with the same number of pre-
dictors that had as good or better fits than with the nonrandomized
data. Models with xR2 b 0.2 were not subject to a randomization test.

2.5. Output maps

Maps of the vegetation groups were generated using the best, tuned
model for each respective vegetation group (Table 5). HyperNiche uses
a chosen model and rasters of each predictor to make estimates for the
response, resulting in an output grid for the response of the same di-
mensions as the input rasters. Rasters for the predictors of equal spatial
coverage and cell size were generated in ArcGIS 9.3.1 (see Predictor
data Section 2.3). Rasters of PCA axeswere generated from eigenvectors
(Table 3) from PC-ORD using the Map Algebra tool in ArcGIS. Finally,
output grids from HyperNiche for lichen and vegetation groups were
imported into ArcGIS for display as maps.

3. Results

3.1. Lichen group models

Usnic lichens had the best fitting model (xR2 = 0.37) of the lichen
groups followed by usnlite lichens, light and dark lichens. Of the lichen
groups, only usnic and usnlite lichens had good fitting models
(xR2 > 0.2; Table 5). Usnic and usnlitemodels both included elevation
but differed in the spectral and environmental predictors selected
(Table 5). In addition to elevation, usnic lichens were related to log10
incident corrected bands 1 and 7 (LICB1 and LICB7). The relationships
between the best predictors and usnic lichen cover were nonlinear,
with high cover corresponding to areas in low elevations but high
Table 5
Best predictors and models for each vegetation and lichen group with model statistics an
p = proportion of models fit to 100 randomized copies of original data set that were bet
N-hood = average neighborhood size (sum of weights, number of plots), tol = tolerance is t
sens = sensitivity is the percent change in response resulting from 1% nudging of predictor,
subjected to sensitivity analysis. “*” indicates sensitivities that weren't calculated because mod

Quadrat data (n = 722)

Model stats Usnic Light Usnlite Dark

p 0.01 * 0.01 *
xR2 0.37 0.19 0.32 0.11
RMSE 2.9 * 6 *
N-hood 31.4 23.6 23.2 42
pred 1 pelevati pslope pelevati pelevati
tol. 1 0.05 10.38 0.05 0.05
sens. 1 0.23 * 0.23 *
pred 2 LICB1 pelevati LICB2 LNDVI
tol. 2 0.01 0.05 0.06 0.01
sens. 2 0.23 * 0.05 *
pred 3 LICB7 LICB4 landfor LPCA6
tol. 3 0.11 0.1 0 0.08
sens. 3 0.08 * n/a *
pred 4 – landfor LPCA2 fireyear
tol. 4 – 0 1.3 8.8
sens. 4 – n/a 0.04 *
reflectance in LICB1 (Fig. 4). The usnic lichen model had sufficient
data to make estimates for most of the study area (Fig. 5A). Areas
with no estimates include most high elevation rock and ice areas,
water bodies and gravel bars. The best usnlite lichenmodel performed
slightly worse (xR2 = 0.32) than the best usnic lichen model. In addi-
tion to elevation, the best usnlite lichen model contained landform as
well as two spectral predictors (Table 5). The inclusion of landform,
a categorical variable, resulted in a less continuous and blockier
map for usnlite lichens (Fig. 5B). Dark and light lichen models
performed poorly. Both usnic and usnlite models fit significantly
better than models fit to 100 randomizations of the original data
(Table 5). Although our plots were much smaller than Landsat pixels,
we confirmed that there was five times more signal (between-plot
variation) than noise (within-plot variation) in our usnic lichen data
(see Section 2.3 Predictor data).

3.2. Vegetation group models

Picea had the best fitting model (xR2 = 0.53) of all the vegetation
groups followed by shrub, graminoid, total lichen and deciduous tree.
The best predictors for Picea cover were elevation, log10 incident
corrected band 5 (LICB5) and principle components axis 1 (LPCA1,
loading most heavily bands 2, 3 and 7) from a PCA of log10 incident
corrected bands. The best shrub model had only two predictors,
log10 incident corrected band 2 (LICB2) and normalized difference
vegetation index calculated from log10 incident corrected bands 3
and 4 (LNDVI), yet a moderately good fit (xR2 = 0.4). The best
graminoid model had four predictors (elevation, slope, log10 incident
corrected band 3 (LICB3) and ecoregion) that accounted for 31% of
the variation. Total lichen had a poorer fitting model accounting for
27% of the variation using elevation and log10 incident corrected
bands 3 and 5 (LICB3 and LICB5). Deciduous trees had the poorest
fitting model (xR2 = 0.24) with the predictor elevation, log10 inci-
dent corrected band 3 (LICB3) and ecoregion. All vegetation cover
models beat the randomization test (Table 5).

4. Discussion

4.1. Lichen models — spectral characteristics
Usnic lichens reflect more light at visible to near infra-red wave-

lengths compared to other lichen or vegetation groups (Fig. 6). This
is especially true in band 1 or blue bandpass (450–520 nm) (Petzold
&Goward, 1988; Rees et al., 1998), where other lichens and vegetation
d sample sizes for each data source (quadrat or transect); each column is a model;
ter than original model, xR2 = cross-validated R2, RMSE = root mean square error,
he width of the Gaussian kernel measured as a percentage of the range of the predictor,
pred = predictor. Categorical variables have zero tolerance by definition, and were not
els had a poor fit (xR2 b 0.2). See Table 4 for predictor abbreviation definitions.

Transect data (n = 850)

Picea Deciduous tree Shrub Graminoid Lichen

0.01 0.01 0.01 0.01 0.01
0.51 0.24 0.4 0.31 0.27
1.57 1.26 3.22 1.41 1.38
53.3 57.1 83 24.5 63.8
pelevati pelevati LICB2 pslope pelevati
0.13 0.13 0.02 6.51 0.14
0.08 0.6 0.3 0.11 0.13
LICB5 LICB3 LNDVI pelevati LICB3
0.05 0.12 0.01 0.13 0.06
0.32 0.04 0.73 0.1 0.4
LPCA1 ecoreg – LICB3 LICB5
0.54 0 – 0.07 0.05
0.45 n/a – 0.17 0.41
– – – ecoreg –

– – – 0 –

– – – n/a –



Fig. 4. Contour surface of estimated percent cover of usnic lichens in relation to the two most important predictors (log10 incident corrected band 1 and log10 elevation) as deter-
mined by sensitivity analysis. The 3D surface was based on the tolerances selected for the four-predictor model (Table 5). Gray background indicates areas where the model made
no estimate.
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absorb strongly (Fig. 6). This explains the positive relationship between
usnic lichen abundance and brightness in log10 incident corrected band
1 (LICB1) (Fig. 4). Surprisingly, the pale yellow color of usnic lichens did
not correspond to a spectral predictor in the models. If the yellow color
of usnic acid had been a useful spectral characteristic, then band 2
(green into yellow bandpass, 520–600 nm) would have been included
in the models. The breadth of band 2 likely diminishes the signal of
yellow wavelengths because the dominant green reflectance of many
vascular plants (Fig. 6) dilutes the yellow signal. Furthermore, spectro-
photometer trials with pure usnic acid dissolved in acetone showed the
spectral signal in the yellow range to be very weak, compared to the
peak in UV absorbance.

Both light lichens (e.g., Stereocaulon paschale in Fig. 6) and usnic
lichens possess much stronger reflectance in green bandpass than
other vegetation, which likely explains why log10 incident corrected
band 2 (LICB2, green bandpass, 520–600 nm) came into the usnlite
model. However, adding usnic and light lichens together may have
diluted the distinctiveness of usnic lichens in band 1, diminishing
the power of the best usnic lichen spectral predictor.

Dark lichens absorb much of the visible electromagnetic spectrum
but their reflectance shows a rapid rise and small peak in near-
infrared reflectance (Fig. 6) (Petzold & Goward, 1988), which pro-
vides a spectral basis for their differentiation. Rocks with and without
dark lichens have been successfully differentiated using hyperspectral
imagery (e.g., Zhang et al., 2005). However, these features may be too
narrow spectrally for the wide bandpass of the sensor used, which
may explain the poor fit of the model for this color group.

4.2. Lichen models — ecological and spatial patterns
We found two peaks in usnic lichen abundance in Denali: lowland,

largely forested, alluvial terraces and alpine tundra (Fig. 5A). We hy-
pothesize that these peaks in lichen correspond to areas that lack
densewoody vegetation and lack deepmossmats, as explained below.

Rockiness is positively related to lichen abundance in the arctic
(Holt et al., 2007). Very rocky soils suppress vascular plant cover,
favoring lichens and bryophytes. Lichens are poor competitors against
vascular plants but tolerate high stress environments where low tem-
peratures and low water availability reduce or exclude vascular plant
cover (Grime, 1977). We therefore expect lichens to be most abun-
dant in areas with thin or rocky soils, less conducive to abundant
vascular plant cover.

Furthermore, deep moss mat development appears to disfavor
lichens. Forests in interior Alaska that have not burned often develop
a thick moss mat and spruce overstory that insulates the active layer.
Deeper moss furthers the development of permafrost via insulation
and favors a bryophyte understory and low lichen abundance (Bonan
& Shugart, 1989; Viereck & Schandelmeier, 1980).

Ourmap shows a large patch of high usnic and usnlite lichen abun-
dance (Fig. 5A and B) in the low elevation spruce forests (Fig. 5C) in
the western region of our study area. During field work in this area,
we observed very thin, rocky soils on this large alluvial terrace
(Clark & Duffy, 2006), which conforms to the idea that lichens are
more abundant on less productive, rocky, well-drained soils.

Usnic and usnlite lichen cover was high on alluvial terraces that
experienced large fires in 1986, 1990, 1991 and 1993. This develop-
ment of lichen mats on recent burns conflicts with some prior studies
on lichen regeneration after fire (Joly et al., 2009) but is supported by
others (Holt et al., 2008). We observed dense lichenmats below burnt
P. glauca snags amongst widely spaced, younger Populus trees that
had established post-fire. While fires may reduce lichen abundance
in the short term, they may enhance it in the long term, depending
on soil characteristics, pre-fire lichen abundance and fire behavior
(Kershaw, 1978). When fires remove the dense moss and organic
layers there is more substrate available for lichens to colonize, al-
though mosses are often more abundant post-fire in areas of perma-
frost (Viereck & Schandelmeier, 1980). Fires also favor lichen growth
by increasing the amount of light reaching the understory by removing
the forest canopy.

Lichen covered ridges are a familiar sight to visitors to the interior
of Alaska, where light yellowish lichen-tinted tundra stands out at a
distance against the dark green of surrounding forests. These alpine
communities with high lichen abundance within the study area are
visible on our map as a fine, reticulated higher lichen abundance
north and southwest of the end of the park road (Fig. 5A and B).
The alpine lichen communities are less pronounced on the map but
reflect the same ecological tendency of lichens to be abundant on
thin, rocky soils (Ahti, 1977; Bonan & Shugart, 1989; Holt et al.,
2007, 2008). In the alpine, cold temperatures due to higher elevations
and wind exposure, especially on ridges, suppress large woody plants.
This combination of environmental factors allows lichen communities
to establish and persist.

4.3. Vegetation models

Two predictors, green bandpass (log10 incident corrected band 2
(LICB2), 520–600 nm) and NDVI based on log10 incident corrected
bands (LNDVI), accounted for 40% of the variation in shrub cover.
These predictors correspond to the reflectance features of shrubs; in
particular, the reflectance profile of the common and abundant
shrub Betula glandulosa (dwarf birch) peaks in bands 2 and band 4
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Fig. 5. Maps of the estimated cover of vegetation groups and usnic and usnlite lichens in Denali. Cover estimates were generated using models of spectral and environmental char-
acteristics of the vegetation monitoring plots: A) usnic lichens B) usnlite lichens C) Picea sp. D) shrubs E) deciduous trees and F) graminoids. Black areas inside Denali's border had
no estimate made for the vegetation group because of too few plots that were sampled on sites with those spectral and environmental characteristics.
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relative to band 3 (Fig. 6). The resulting shrub map shows a broad
swath of high abundance in mid-elevations along the north slope of
the Alaska Range (Fig. 5D). This pattern is largely driven by dwarf
birch and Alnus viride (alder). Alder is found in steep or wet areas
lacking permafrost, whereas dwarf birch tends to occupy colder soils
(Viereck et al., 1992).

In our models, Picea cover is strongly related to elevation because
factors such as soil moisture, permafrost, and temperature, among
others, which have been shown to control tree patterns at a
landscape-scale in Denali, also change with elevation (Roland et al.,
2012; Stueve et al., 2010). Areas of high Picea cover in Denali all
occur north of the Alaska Range where elevations fall below 600 m
(Fig. 5C). In contrast, most of the middle elevation areas have sparse
conifer cover and abundant shrubs (Fig. 5D). The broad swath of
high Picea cover at low elevations corresponds to either taiga domi-
nated by P. mariana in areas of cold, wet soils on permafrost or
P. glauca in well-drained, warmer soils or riparian areas thawed
by moving water (Roland et al., 2012). Abundance of Picea is
negatively related to log10 incident corrected band 5 (LICB5). Other
authors have also found low reflectance in the near infra-red to be a
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Fig. 6.Mean reflectance profiles of plant and lichen species belonging to vegetation cover groups used here. P. mariana = Picea, Betula glandulosa = shrub, Cladonia stellaris = usnic
lichens, Stereocaulon paschale = light lichens, Cetraria ericetorum = dark lichens. Spectral profiles were not reported beyond 1050 nm in original publication. Data adapted from
Petzold and Goward (1988). Gray bars indicate the bandpasses for the first four bands in the Landsat 7 ETM+ sensor.
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good predictor of high conifer cover (Horler & Ahern, 1986). PCA axis
1 based on log10 incident corrected bands (LPCA1) also came into the
Picea model and is strongly loaded with bands 1, 2 and 3. LCPA1 was
likely selected as a predictor of Picea because Picea strongly absorbs
energy in bands 1 and 3 (Fig. 6), relative to other vegetation and li-
chen groups. Picea abundance is more sensitive to the spectral predic-
tors than elevation (Table 5), so small variations in LICB5 and LPCA1
across the Landsat scene allowed the model to successfully recover
several small conifer patches, such as those south of Wonder Lake
just south of the western end of the park road (Fig. 5C).

Despite the relatively poor fit of the deciduous tree model (xR2 =
0.24), it successfully detected the large patch of forest, primarily
B. neoalaskana, in hills around Lake Chilchukabena in the northwest
corner of the map (Fig. 5E). This area has well-drained, warmer, min-
eral soils, much of which burned 44 years ago. Fire increases decidu-
ous tree abundance in Denali (Roland et al., 2012). However, fire (as
years since burn) did not enter the model, possibly because too few
plots occurred in dense broadleaf forests, which are relatively rare in
this landscape (Roland et al., 2012). The model also correctly mapped
Populus forests in the west central portion of the map (Fig. 5E), corre-
sponding to conifer forests on alluvial terraces that burned
10–15 years ago and regenerated as deciduous forests. This is note-
worthy in part due to the rarity and patchiness of Populus
occurrence in Denali (Roland et al., 2012). Both of these high
deciduous tree cover areas fall within two ecoregion subsections
(low mountain and alluvial terraces, respectively), explaining why
the ecoregion subsection came into the model as a predictor. Like
our Piceamodel, elevation was the single best predictor for deciduous
trees because it is correlated with factors such as temperature
that control tree establishment and growth in this area (Roland
et al., 2012). Log10 incident corrected band 3 (LICB3, red bandpass,
630–690 nm)was negatively related to deciduous tree cover. Another
study mapping broadleaf tree cover also found a negative relationship
between cover and red bandpass (Franklin et al., 1991), although the
physical mechanism for this was not stated.
Slope was the best predictor of graminoid cover, reflecting the
tendency of graminoids to occur in flat areas in Denali. Elevation
has a more complex, non-linear relationship to graminoid cover,
since some uplands have abundant grasses and sedges. However,
the highest graminoid cover in Denali tends to be tussock tundra
and muskeg in low to mid elevations dominated by two species,
Eriophorum vaginatum and Carex bigelowii. The Toklat basin ecoregion
subsection is one such area, depicted as a roughly circular feature
of high graminoid cover in the north central portion of Denali
(Fig. 5F). Since it is its own ecoregion subsection and has such high
graminoid cover, the Toklat basin likely influenced ecoregion subsec-
tion to come in the graminoid model. NDVI has a positive relationship
with graminoid cover (Riedel et al., 2005) but did not enter the
model. Instead, only a component of NDVI, log10 incident corrected
band 3 (LICB3, red bandpass), was selected as a good spectral predic-
tor, which had a unimodal or hump-shaped relationship to graminoid
cover. Graminoids generally co-occur with other plants with a stron-
ger relationship to NDVI (shrubs), which may partially explain why
NDVI didn't come into the graminoid model. Also, the graminoid
tussocks have many shadows and may have a very large standing
dead/litter component. Much of the graminoid may have also senesced
by Aug. 16 when the Landsat scene was acquired. Shadow, litter or
senesced leaves would dilute the positive relationship between NDVI
and graminoids and combined, may explain why NDVI failed to come
into the model.

5. Conclusions

Other studies have estimated the cover of groups of forage lichens
that included those with usnic acid (Nordberg & Allard, 2002; Théau
et al., 2005). However, this is the first study to focus on modeling
usnic lichens to estimate their landscape-scale abundance. Usnic li-
chen cover is positively correlated with total lichen cover (Fig. 7).
Caribou also consume light and dark lichens, making usnic lichens a
useful tool for mapping total lichen cover. Models could be improved
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Fig. 7. Scatterplot of total lichen cover versus total usnic lichen cover from 722 plots. Both lichen cover estimates are averaged over four quadrats per plot. Triangles represent plots.
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by increasing the number of quadrats sampled for lichens at each
plot and increasing plot size relative to image pixel size. Repeating
these analyses with finer grained, hyperspectral products could also
capitalize on finer spectral characteristics in lichens in general and
usnic lichens in particular (Kaasalainen & Rautiainen, 2005; Korpela,
2008; Solheim et al., 2000). For example, usnic acid has a strong
yellow reflectance and a strong absorption peak in the UV (Gauslaa,
1984). These unique spectral features of usnic lichens could be utilized
for mapping if sensors with narrower bandpasses in the visible wave-
lengths were used in conjunction with those capable of measuring
UV absorption.

Our results support the hypothesis that usnic lichens would be the
most detectable lichen cover group. Our model of usnic lichen cover
revealed nonlinear relationships with spectral and environmental
variables. High usnic lichen cover occurs in lowland boreal forests
on alluvial terraces and middle and higher elevation alpine ridges.
This spatial pattern is supported by other studies that document
high lichen abundance in sandy or rocky soils in lowland forests
(Ahti, 1977; Kershaw, 1978) or alpine tundra (Holt et al., 2007).

Our models of non-lichen vegetation groups that are important in
caribou diets were also successful with between two and four spectral
and environmental predictors. The resulting maps of deciduous and
coniferous trees, shrubs and graminoids correspond to known ecolog-
ical patterns for these vegetation groups. Deciduous trees were
most abundant in post-fire areas with warmer or well-drained soils.
Conifer abundance peaked in the lower elevations in well-drained,
warmer soils inhabited by P. glauca or areas underlain by permafrost
dominated by P. mariana. Areas of high shrub abundance formed a
swath in the mid-elevations, dominated by Betula nana in colder
soils and A. viride in wetter, warmer soils. Graminoids were most
abundant in flat, mid-elevation, frozen soils encapsulated by the
Toklat basin ecoregion subsection.

These maps of continuous vegetation abundance could be used for
many types of ecological studies at multiple spatial scales. The maps'
utility for improving our understanding of caribou biology must be
tested elsewhere but it is plausible that continuous (vs. categorical)
measures of the abundance of diet categories will improve our under-
standing of habitat selection of caribou and other organisms that
range over large areas.
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