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ABSTRACT: This paper considers the regulation of a natural resource within a dynamic common agency framework. In 
setting harvest quotas, the regulator responds to lobbying pressure (contributions) from harvesters and conservationists. The 
truthful Markov perfect equilibrium stock is then an increasing function of the effective political weight for conservationists. 
Since the contributions to the regulator are independent of the no-regulation equilibrium, both individual and aggregate 
welfare may decline by adopting regulation. Indeed, harvesters operating under private property will always oppose 
regulation, and harvesters operating under common property will oppose regulation if their welfare is not valued highly 
enough by the regulator. Since conservationists' gross welfare is always improved by regulation, and since the regulator 
cannot fully capture their rents, conservationists will support regulation. For regulation to be supported by harvesters and 
conservationists, it is more important that the welfare of harvesters be taken into account by the regulator. This is because 
harvesters, like conservationists, value the stock, but conservationists, unlike harvesters, place no value on the harvests. 
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I. Introduction 

For many natural resources, regulatory agencies have been established to determine the total harvest quota and to 
allocate harvest quotas across user groups. For example, the Magnuson Fishery Conservation and Management Act (1976) 
created regional fishery management councils in the United States with these powers.i In many instances, the user groups 
considered by these agencies include harvesters�fishermen, whalers, oil producers, land- and resource-owners, etc.�and 
non-consumptive users such as conservationists. Indeed, many of the fisheries management councils in the U. S. have among 
their voting members representatives of both harvesting and conservation groups.ii Conservationists even dominate some 
regulatory agencies (the International Whaling Commission, the Convention on Trade in Endangered Species), and are very 
influential in others (the Montreal Protocol and the Kyoto Agreement).  

This paper considers a dynamic common agency model of natural resource regulation in which harvester and 
conservation groups compete to influence a regulator who chooses and allocates harvest quotas. The model is dynamic, 
because the main issue in most natural resource problems is the rate at which the stock is exploited over time. In the model, 
each harvester�s welfare is increasing and concave in his own harvest quota, and each conservationist�s welfare is increasing 
and concave in the size of the stock remaining after harvesting. The regulator cares about the gross welfare of both harvesters 
and conservationists, since their gross welfare translates positively into electoral support for the regulator or the regulator�s 
overseers. However, since the regulator can affect their utility, harvesters and conservationists also expend resources 
lobbying the regulator (via campaign contributions). The regulator benefits from the contributions, since these may be either 
consumed directly or used to influence uninformed voters.iii The contributions paid by each interest group are in the form of 
contingency contracts specifying a payment that depends upon the harvest quotas chosen by the regulator. A key assumption 
is that neither the regulator nor the interest groups are able to commit to future actions. This assumption not only drives the 

                                                      
* I have benefited on this research from comments from Diane Bischak, Chris Bruce, Gardner Brown, Jeff Church, Curtis 
Eaton, Herb Emery, Mukesh Eswaran, Ken McKenzie, Liz Wilman, and Lasheng Yuan. All errors are my own. 
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solution technique (Markov perfect), but it also focuses attention on the �constitutional� restrictions one might expect to see 
in successful treaties, laws, and agreements.iv   

The common agency model was first developed by Bernheim and Whinston (1986), adapted to political economy by 
Grossman and Helpman (1994), and extended to a dynamic framework by Bergemann and Valimaki (1998).v The harvesters 
and conservationists act as principals who each attempt to influence the common agent, the regulator, in the regulator�s 
choice of the harvest quotas. As in Bergemann and Valimaki (1998), the strategy space of each agent is restricted to Markov 
decision rules, implying that the history of the game is reduced to the current state�here, the size of the resource stock. 
Following Bernheim and Whinston, the strategies employed by the principals are also required to be �truthful.� Bernheim 
and Whinston show that restricting players to truthful strategies in common agency games involves no cost, since if other 
players behave truthfully, then a truthful strategy is always a best-response. Bergemann and Valimaki show that this holds in 
dynamic games as well. 

The first objective of this paper is to derive and characterize the truthful Markov perfect equilibrium  (TMPE) harvest 
quotas in a dynamic common agency model of the regulation of a natural resource that generates consumptive and non-
consumptive use values to different groups.vi Since the functional forms utilized are those that are known to produce tractable 
results (e.g., Levhari and Mirman 1980, Eswaran and Lewis 1985, Renganim and Stokey 1985), it is possible to characterize 
the equilibrium behavior of the model for any initial stock size. Dixit, Grossman and Helpman (1997) and Persson (1998) 
showed in static additive utility models that the equilibrium policy is equivalent to the policy that would be chosen by a 
benevolent social planner who assigns particular weights to the welfare of the interest groups.vii This result also holds in the 
dynamic game considered here. The effective political weights assigned to each group in the common agency equilibrium are 
increasing in the group�s electoral importance to the regulator, decreasing in the transaction costs faced by the group in 
raising the contributions, and increasing in the intensity of the group�s preferences. Thus, the share of the stock harvested in 
each period decreases as the effective political weight for the conservationists increases or as the effective political weight of 
the harvesters decreases.  

The second objective of the paper is to address the question of when and in what form regulation is likely to occur.viii It is 
well known that the common agency equilibrium is Pareto efficient, given that regulation is in place (e.g., Dixit, Grossman 
and Helpman 1997, Persson 1998, Bergemann and Valimaki 1998). However, this says little about the efficiency of the 
institution of regulation or about the conditions under which regulation will be voluntarily adopted.ix The question then is, 
what is the welfare effect to each group, and to society as a whole, of moving from the unregulated non-cooperative Markov 
perfect equilibrium, in which each harvester determines his own harvest level, to the regulated equilibrium? 

There are two main ways in which regulation may fail to be socially optimal. The first is where the non-transfer rent-
seeking expenditures by the principals outweigh the gross benefits of regulation. While this conclusion is perhaps obvious, it 
turns out to have important implications. Absent constitutional restrictions on the regulator, once regulation is in place, the 
dissipation of rents is independent of the unregulated equilibrium. This is because the amount each principal is willing to 
expend in lobbying depends only on the difference between the equilibrium policy and the policy the regulator would choose 
if that principal abstained from lobbying. Second, if the effective political weights are sufficiently skewed, it is possible that 
the (un-weighted) gross welfare of society will decrease relative to the unregulated case by adopting regulation. Since 
successful regulations are presumably ones that have overcome these problems, one can then predict the form of constraints 
observed in successful regulations. 

Since the lobbying contribution transferred to the regulator is not a social cost, welfare-improving regulation may not be 
voluntarily supported by both harvesters and conservationists. In particular, in the event that property rights for the stock are 
well defined (but transactions costs prevent conservationists from participating in that market), the harvesters will always 
oppose regulation. This is because regulation will force them to internalize the externality they impose on conservationists. 
Harvesters are more likely to support regulation when property rights to the stock are not well defined, but even in this case 
they will support regulation only if their interests are given sufficient weight in the regulatory equilibrium. Conservationists, 
on the other hand, are much more likely to support regulation, since even if their interests are not given positive weight in the 
regulatory equilibrium, they benefit from the resolution of the common property problem.  

The remainder of the paper is organized as follows. Section II characterizes the truthful Markov perfect equilibrium of a 
simple dynamic common agency model. Section III derives the Markov perfect equilibrium for the unregulated case, and 
shows how this is affected by different property rights regimes. Section IV examines the welfare effects, both on the 
individual interest groups, and for society as a whole, of adopting regulation. Section V concludes the paper with a brief 
discussion of the results. 

II. The Renewable Resource Markov Common Agency Equilibrium. 

A. Assumptions. 
Let the set of principals (the interest groups) be denoted as Γ = ΓH∪ΓC, where ΓH ≡ {1,2,...,N} is the set of harvesters and 

ΓC ≡ {1,2,�,M} the set of conservationists. Throughout, the notation ΓH\i or ΓC\c will be used to denote the set excluding 
harvester i or conservationist c. The instance where there is one harvesting group (N = 1) is taken to imply that private 
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property rights exist for the stock, since with private property rights the harvesters will maximize the joint returns of the 
harvesting sector (Scott 1955).x 

Harvester i exploits the resource, harvesting hi,t units in period t. The aggregate harvest in period t is yt = Σi∈ΓHhi,t. Let zt ≡ 
xt − yt, denote the stock remaining at the end of each harvest period, where xt is the stock beginning at period t.xi The utility in 
period t is ui = νilog(hi) for harvester i and uc = νclog(zt) for conservationist c. Thus, both types have concave utility functions 
in the relevant arguments.xii The preference intensity parameters νj ≥ 0, j ∈ Γ, measures the relative preference intensity of 
group j. Both total and marginal utility are increasing in νj, implying that the νj act as demand shifters. 

The regulator R chooses the harvest quota for each harvester in each period. In making this choice, the regulator 
considers how the harvest quotas affect the welfare of the harvester and conservation groups, and how the harvest quotas 
affects the contributions each group pays to the regulator (Bernheim and Whinston 1986, Grossman and Helpman 1994). The 
regulator cares about the welfare of the groups because the group�s support for the regulator (e.g., votes, demonstrations, 
letter-writing campaigns, etc.) depends upon their utility level.xiii The regulator cares about the contributions because she can 
use the funds either for herself or to convince uninformed voters to vote for her. The contributions the regulator receives are 
incentive contracts that specify the contribution as a function of the current harvest quotas. 

The model is dynamic, because the future stock is affected by the harvest decisions in the current period. Following 
Levhari and Mirman (1980), assume the equation of motion of the stock is given by 

(1) xt+1  =  (xt − yt)α,          t = 0, 1, 2, �, 

for some α∈[0,1], with x(0) = x0 fixed. This function has the property that the un-exploited (yt = 0 for all t) steady state stock 
is x− = 1. As the parameter α increases, the value of xt+1 decreases for any zt = xt − yt < 1. Thus, lower levels of α correspond to 
faster growing biological populations. Indeed, as α→1, the rate of growth approaches zero, so harvesting exhausts the 
resource (e.g., oil, minerals, or old growth forest). As α→ 0, the resource renews itself to the same level (xt+1 = x−) each year, 
independent of the size of the remaining stock. This occurs for resources such as ground and surface water and, to some 
extent, herring, which are harvested after they spawn. 

The objective of harvesters and conservationists is to maximize the present value of the stream of utility net of the costs 
of influencing the regulator. In each period, each principal observes the stock xt, and then the principals simultaneously and 
non-cooperatively offer the regulator payment bj(ht), j ∈ Γ, contingent upon the vector of harvest quotas ht ≡ {h1, h2,�,hN} 
chosen by the regulator. The regulator, after observing the stock xt and the incentive contracts bj

*(ht), chooses the harvest 
quotas ht to maximize her own utility. Thus, there exists a Stackelberg relationship between the interest groups and the 
regulator, with the interest groups moving first, but simultaneously with one another. 

Following Bergemann and Valimaki (1998) and Boyce (1999), the strategy space of the harvesters and conservationists 
is restricted to Markov strategies.xiv In addition, I use a methodology first developed by Levhari and Mirman (1980) to solve 
dynamic Markov games, that Boyce showed to be useful in dynamic common agency games. Levhari and Mirman assume 
that the harvest quotas are endogenously chosen only up to period T. After period T, the actions are fixed. This allows one to 
utilize backwards induction methods to solve the game beginning at some arbitrary period T−t.xv The steady-state is found by 
taking the limit as t→∞. This methodology is not as general as that used by Bergemann and Valimaki, but what is given up 
by generality is gained in both tractability and transparency of the results. 
B. The Game at Period T. 

In the game considered by Levhari and Mirman (1980) and Boyce (1999), there are no conservation groups. Thus, they 
assume that the stock is fully consumed in period T, with each harvester getting an arbitrary but fixed share. However, since 
the conservationist�s utility depends upon the stock remaining after harvesting, I modify the final period problem so that that 
in all periods beyond T, the aggregate harvest quota is a constant proportion of the stock, with each harvester receiving a 
fixed share.xvi Thus, the period T+1 aggregate harvest is yT+1 = φxT+1; the period T+2 aggregate harvest is yT+2 = φxT+2 = φ[(1 
− φ)xT+1]α, and so on, where φ ∈ [0,1) is the proportion of the stock harvested in each period. Harvester i�s harvest quota is 
assumed to be θiyT+t, where  Σi∈ΓHθi = 1. Under these assumptions, after period T the stock evolves according to: 

(2) xT+1+t  =  (1 − φ)
αΣτ=0

t−1ατ

 xT+1
αt
 . 

Thus, the present value of the utility to harvesters and conservationists, respectively, at time T+1 is 

 Ui(xT+1) =  ∑
t=0

∞

 βtνilog



θiφ(1 − φ)

αΣτ=0
t−1ατ

 xT+1
αt

    ≡  
ανilog(xT  − yT)

1 − αβ   +  Ai,  i ∈ ΓH, 



IIFET 2000 Proceedings 
 

 

4 

Uc(xT+1) =  ∑
t=0

∞

 βtνclog



(1 − φ)

αΣτ=0
t−1ατ

 xT+1
αt

    ≡  
ανclog(xT  − yT)

1 − αβ   +  Ac,  c ∈ ΓC, 

where Ai = νilog(θiφ)/(1 − β) + αβνilog(1 − φ)/(1 − β)(1 − αβ) and Ac = νclog(1 − φ)/(1 − β)(1 − αβ) are constants. The 
parameter β ∈ (0,1) is the (common) discounted value of one period future returns. Thus, the period T utility functions for the 
harvesters and conservationists, respectively, are: 

(3)  Ui(xT, hT)  =  νilog(hi)  −  
bi(hT)

κi
  + 

αβνilog(xT − yT)
1 − αβ   +  βAi,   i ∈ ΓH, 

(4)  Uc(xT, hT)  =  νclog(xT − yT)  −  
bc(hT)

κc
 +  

αβνclog(xT − yT)
1 − αβ   +  βAc,   c ∈ ΓC. 

The first two terms on the right-hand-side are the gross utility less the payment to the regulator in period T, and the third and 
fourth terms are the present value of the period T+1 forward actions, using (2). The parameter 1/κj, κj ∈(0,1], j ∈ Γ, measures 
the transactions costs to group j of raising the payment bj(hT) (e.g., Olson 1965, Aidt 1998). To better understand the 
parameter κj, note that the non-transfer cost associated with payment bj(hT) is  

(5) 
bj(hT)

κj
 − bj(hT)  =  



1 − κj

κj
 bj(hT),             j ∈ Γ. 

Thus, as κj→1, the transaction costs to group j of making payment bj(hT) approaches zero. However, as κj→0, the transaction 
costs become prohibitively large. Thus, κj serves as a parametric measure of the lobbying ability of principal j to influence 
policy via bribes. As κj increases, group j costs of raising bj(hT) decreases, so I refer to κj as the lobbying ability weight for 
group j.  

Let us now turn to the regulator. Following Grossman and Helpman (1994), let the regulator�s utility be a linear function 
of the utility and contributions of the harvesters and conservationists: 

(6) UR(xT, hT) = ∑
i∈ΓH

γiνilog(hi) + ∑
c∈ΓC

γcνclog(xT − yT) + ∑
i∈Γ

bi(hT)  

+  



αβ

1 − αβ




∑

j∈Γ
γjνj log(xT − yT)  +  βAR, 

where AR ≡ Σj∈ΓγjAj, and the γj parameters (γj ≥ 0, j ∈ Γ) measure the value to the regulator of the welfare of the interest 
groups. Since groups with larger voting populations may receive a larger γj (cf., Denzau and Munger 1986), γj is denoted as 
the electoral weight the regulator places on the gross welfare of group j. 

The Markov common agency game in period T proceeds as follows. From Proposition 1 of Grossman and Helpman 
(Lemma 2 of Bernheim and Whinston 1986), the regulator chooses the harvest quotas h*

T to maximize UR(xT, hT), taking the 
optimal incentive contracts b*

j(hT) of the interest groups as given. Thus: 

(7)  
γiνi
h*

i
  − 

γcνc

xT − y*
T
 +  ∑

j∈Γ
 



∂b*

j(h*
T)

∂hi
 −  

αβΣj∈Γγjνj

(xT − y*
T)(1 − αβ)   =  0,    i ∈ ΓH. 

Therefore, the regulator takes into account how an increase in h*
i affects both present and future utilities of each of the groups 

as well as how it affects the contingency payments from each group.  
Similarly, Grossman and Helpman�s Proposition 1, which Bergemann and Valimaki (1998) show holds in general 

dynamic games, implies that the harvest quota must also maximize the joint welfare of the regulator and each interest group 
individually, i.e., h*

T maximizes UR+Uj, j ∈ Γ. However, since (7) implies ∂UR/∂hi = 0, maximization of UR+Uj implies ∂Uj/∂hi 
= 0, for each i ∈ ΓH, and each  j ∈ Γ. Thus 

 
∂b*

i(h*
T)

∂hi
  =   

κiνi
h*

i
  −  

αβκiνi

(xT − y*
T)(1 − αβ),       i ∈ ΓH, 

(8)  
∂b*

j(h*
T)

∂hi
  =  − 

αβκjνj

(xT − y*
T)(1 − αβ),          j ≠ i; i, j ∈ ΓH, 
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∂b*

c(h*
T)

∂hi
  =  − 

κcνc

xT − y*
T
 − 

αβκcνc

(xT − y*
T)(1 − αβ),       i ∈ ΓH, c ∈ ΓC. 

These conditions imply that the contributions are locally truthful: At the margin, the change in the contribution from group j 
as hi increases equals the change in value to group j of a unit of additional harvest quota given to harvester i. In general, an 
increase in the harvest quota to harvester i reduces the payment from other harvesters and conservationists, reflecting the 
externality the group imposes on these other groups. For a self-replenishing resource such as ground or surface water, where 
α = 0, it follows that ∂b*

j/hi = 0, for i≠j, i, j ∈ ΓH. Thus, other harvesters are unaffected by an increase in i�s harvest quota.xvii 
However, conservationists are affected even when α = 0, since their utility depends upon the quantity of water left in the 
reservoir at the end of each period. For any resource for which tomorrow�s stock depends upon today�s harvest quotas (i.e., α 
> 0), both the other harvesters and the conservationists will oppose an increase in harvester i�s quota. Finally, note that a 
decrease in the lobbying ability of group j (an increase in j�s transaction costs) will diminish the ability of group j to offer an 
effective incentive contract. Indeed, in the limit as κj→0, the marginal contribution vanishes, and the group has no influence 
over the regulator other than through the electoral weight γj the regulator places on the group�s utility. 

Let us now characterize the common agency equilibrium in period T. Combining (7) and (8) yields: 

(9) 
ωi
h*

i
   =   

ωC + αβωH

(xT − y*
T)(1 − αβ),       i ∈ ΓH. 

where ωj ≡ (γj + κj)νj, j ∈ Γ, are the effective political weights assigned to the harvesters and the conservationists in the 
political equilibrium, and ωH ≡ Σi∈ΓHωi and ωC ≡ Σc∈ΓCωc are the aggregate effective political weights placed on harvesters 
and conservationists. The effective political weight for group j is increasing in group j�s electoral weight γj, transactions costs 
weight κj, and preference intensity weight νj. 

Solving the system of equations in (9) for the hi
* yields the TMPE harvest quotas, given the stock xT: 

(10)  h*
i(xT)  =  



(1 − αβ)ωi

ωH + ωC
xT,  i ∈ ΓH, 

where s*
i = (1 − αβ)ωi/(ωC + ωH) is the share of the stock harvested by harvester i. The aggregate period harvest in period T is 

thus: 

(11)  y*
T(xT)  ≡  ∑

i∈ΓH

h*
i(xT)  =  



(1 − αβ)ωH

ωH + ωC
xT, 

where the aggregate share of the stock harvested is s* ≡ Σi∈ΓHs*
i = (1 − αβ)ωH/(ωC + ωH). The stock remaining at the end of 

period T is thus (1 − s*)xT: 

(12)  z*
T(xT) ≡  xT − y*

T(xT)  =  



ωC + αβωH

ωH  + ωC
xT. 

I will discuss the properties of these solutions shortly. However, first let us consider the properties of the contribution 
functions when each principal is globally truthful, since a very important conclusion immediately follows. The necessary 
conditions (8) tie down only the marginal properties of the contribution functions, so there are any number of contribution 
functions that satisfy (8). However, Bernheim and Whinston (1986) show that if we restrict ourselves to contribution 
functions that are globally truthful, denoted as bT

j (hT), so the superscripted �T� implies �truthful�, then unique contribution 
functions exist. These are also a best-response when the other players behave truthfully, and are coalition proof, implying no 
individual principal nor any group of principals can improve their lot by deviating.  
C. Truthful Contributions. 

A truthful contribution by principal j ∈ Γ is one such that j pays exactly the difference between his gross utility in 
equilibrium and his gross utility to he contributes zero. Let h−j

T  be the policy chosen when bT
j (h−j

T ) = 0. In order for the 
regulator to choose policy h*

T, she must be indifferent between choosing policy (h*
T, {bT

k(h*
T)k∈Γ}) and policy (h−j

T ,{0, bT
k(h−j

T 

)k∈Γ\j}), where the jth contribution has been replaced with zero.  No principal wishes to contribute more than bT
j (h*

T), since his 
net utility is decreasing in bT

j (h*
T). 
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By way of illustration, for the ith harvester the regulator�s indifference implies 

bT
i (h*

T)   =  ∑
j∈ΓH

γjνjlog



h−i

j 
h*

j
   +  ∑

c∈ΓC

γcνclog



xT − y−i

T 

 xT − y*
T

   +   



αβ

1 − αβ




∑

j∈ΓH

γjνj + ∑
c∈ΓC

γcνc log



xT − y−i

T 

 xT − y*
T

 + ∑
j∈ΓH/i∪ΓC

 [bT
j (h-i

T ) − bT
j (h*

T)] 

If the other contributions are globally truthful, then  

bT
j (h−i

T ) − bT
j (h*

T)  ≡  κjνjlog



h−i

j 
h*

j
   +   



αβκjνj

1 − αβ log



xT − y−i

T 

 xT − y*
T

,   j ∈ ΓH\i  

bT
c(h−i

T ) − bT
c(h*

T)  ≡  



κcνc

1 − αβ log



xT − y−i

T 

 xT − y*
T

,     c ∈ ΓC. 

Solving the regulator�s indifference condition for bT
i (h*

T) yields: 

(13) bT
i (h*

T)  =  γiνilog



h−i

i 
h*

i
  +  



ωC + αβ(ωH/i + γiνi)

1 − αβ log



xT − y−i

T 

 xT − y*
T

  + ∑
j∈ΓH/i

 ωjlog



h−i

j 
h*

j
,  i ∈ ΓH, 

where ωH\i ≡ Σj∈ΓH\i ωj, and the harvest quotas when harvester i does not contribute are h−i
i  ≡ s−i

i xT and  h−i
j  ≡ s−i

j xT, with 
aggregate harvest y−i

T  ≡ s−ixT, where s−i
i  ≡ (1 − αβ)γiνi/(ωC + ωH\i + γiνi), s−i

j  ≡ (1 − αβ)ωj/(ωC + ωH\i + γiνi) for i ≠ j ∈ ΓH, and s−i 
≡ (1 − αβ)(ωH\i + γiνi)/(ωC + ωH\i + γiνi).  By a similar process, the equilibrium contribution for conservationist c can be 
shown to be: 

(14)  bT
c(h*

T)  =  



ωC/c + γcνc + αβωH

1 − αβ log



xT − y−c

T 

 xT − y*
T

  +  ∑
j∈ΓH

 ωilog



h−c

j 
h*

j
,   c ∈ ΓC. 

where ωC\c ≡ Σk∈ΓC\cωk, and the harvest quota shares when conservationist c does not contribute are h−c
i  ≡ s−c

i xT, with aggregate 
harvest y−c

T  ≡ s−cxT, where s−c
i  ≡ (1 − αβ)ωi/(ωC\c + γcνc + ωH) and s−c ≡ (1 − αβ)ωH/(ωC\c + γcνc + ωH). Thus, when principal j 

does not contribute, it is as though their effective political weight becomes γjνj, which, as Grossman and Helpman (1994) 
observe, is the weight j would receive if it were unorganized, i.e., if κj = 0. 

The interesting thing about the truthful contributions in (13) and (14) is that they do not depend upon the stock xT. This is 
because the ratio h−k

j /h*
j = s−k

j /s*
j, and (xT − y−k

T )/(xT − y*
T) = (1 − s−k)/(1 − s*), for all j ∈ ΓH, and k ∈ Γ. Thus, the xT terms cancel 

out in each part of (13), and all that is left are terms involving the equilibrium share of the harvest. Therefore, define the 
equilibrium contributions as: 

(15)  bT
i (s*)  =  γiνilog



s−i

i 
s*

i
  +  



ωC + αβ(ωH/i + γiνi)

1 − αβ log



1 − s−i

1 − s*   +  ∑
j∈ΓH/i

 ωjlog



s−i

j 
s*

j
, i ∈ ΓH, 

(16)  bT
c(s*)  =  



ωC/c + γcνc + αβωH

1 − αβ log



1 − s−c

1 − s*   +  ∑
i∈ΓH

 ωilog



s−c

i 
s*

i
,   c ∈ ΓC, 

where s* ≡ ({si
*, s−i

i , s−i
j }i,j∈ΓH, {s−c

i }i∈ΓH, c∈ΓC) are the equilibrium harvest quota shares.  Notice that this implies that the 
equilibrium contributions are a constant, independent of the stock. 

Since the equilibrium contributions do not depend upon the stock, the optimized value of harvester i�s objective function 
can be written as 

 Ui
*(xT)  =  

νilog(xT)
1 − αβ   +  νilog(si

*)  +  
αβνilog(1 − s*)

1 − αβ   −  
bT

i (s*)
κi

  +  βAi,  i ∈ ΓH, 

where this expression uses (10)-(12). Thus, the period T−1 objective function for this harvester is: 

Ui(xT−1, hT−1)  =  νilog(hi)  −  
bi(hT−1)

κi
  +  

αβνilog(xT−1 − yT−1)
1 − αβ    

+  βνilog(si
*)  +  

αβ2νilog(1 − s*)
1 − αβ   −  

βbT
i (s*)
κi

  +   β2Ai, i ∈ ΓH. 
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Except for the constants (the terms on the second line), this expression is identical in form to that in (3). Similar expressions 
can be derived for the conservationists and the regulator. Thus, the harvest quota shares s* are valid for any stock x. In each 
period, the regulated equilibrium involves a constant proportion of the stock being harvested.xviii This was assumed for 
periods T+1 forward, but it is true for each period.  

Since an identical proportion of the stock is consumed in each period, it means that the steady-state for renewable 
resources will only be approached asymptotically, and that an exhaustible resource will never be completely consumed. Thus, 
is possible to talk about the utility at any point along the steady-state approach path. In the limit as t→∞, the values of the 
objective functions become:  

(17)  Ui
*(x)  =  

νilog(x)
1 − αβ   +  

νilog(si
*)

1 − β   +  
αβνilog(1 − s*)
(1 − β)(1 − αβ)  −  

bT
i (s*)

(1 − β)κi
,   i ∈ ΓH, 

(18)  Uc
*(x)  =  

νclog(x)
1 − αβ   +  

νclog(1 − s*)
(1 − β)(1 − αβ)  −  

bT
c(s*)

(1 − β)κc
,    c ∈ ΓC. 

These objective functions do not depend upon the arbitrary actions in periods T+1 forward, since the outcome of these actions 
has been discounted to zero. 

Thus, in the Markov common agency equilibrium, each harvester removes a constant portion of the stock si
* = (1 

− αβ)ωi/(ωH + ωC), i ∈ ΓH. The proportion of the stock harvested by harvester i is an increasing function of the effective 
welfare weight given to harvester i, and a decreasing function of the effective welfare weight to other harvesters and 
conservationists. In addition, harvester i�s harvest quota share is increasing in the rate of growth of the stock (i.e., as α 
decreases), and decreasing in the discount rate β. The share of the stock harvested in aggregate, s* ≡ (1 − αβ)ωH/(ωH + ωC), is 
an increasing function of the harvester�s effective welfare weights, a decreasing function of the conservationist�s effective 
welfare weight, and a decreasing function of both α and β. Thus, the increase in i�s aggregate harvest due to an increase in ωi 
is greater than the decrease to the other N−1 harvester�s aggregate harvest due to an increase in ωi. The proportion of the 
stock remaining at the end of each period, 1 − s* =  (ωC + αβωH)/(ωH  + ωC), is an increasing function in ωC, a decreasing 
function in ωH, and an increasing function in both α and β. 

The other shares of interest appear in the bT
c(s*) and bT

i (s*) functions. Harvester i�s share when he does not contribute is 
s−i

i  = (1 − αβ)γiνi/(ωC  + ωH\i + γiνi), i ∈ ΓH. Since si
* is increasing in ωi, harvester i�s share decreases when harvester i does not 

contribute to the regulator: s−i
i  < si

*. However, when harvester i does not contribute, each other harvester�s share, s−i
j  = (1 

− αβ)ωj/(ωH\i + γiνi + ωC), i ≠ j, i, j ∈ ΓH, increases: s−i
j  > sj

*. When harvester i does not contribute, the aggregate harvest quota 
share s−i = (1 − αβ)(ωH\i + γiνi)/(ωC  + ωH\i + γiνi), i ∈ ΓH, is smaller than when i does contribute: s−i < s*. Therefore, the 
reduction in harvester i�s quota share is greater than the increase in all other harvester�s quota shares. This also implies that 1 
− s−i > 1 − s*, or that the proportion of the stock remaining at the end of each period when i does not contribute is smaller than 
when i does contribute, which implies conservationists are made worse off if i contributes. Similarly, if conservationist c does 
not contribute, then s−c

j  = (1 − αβ)ωj/(ωC\c + γcνc + ωH), and s−c
j  > sj

*, since sj
* is decreasing in ωC. If conservationist c does not 

contribute, the aggregate harvest quota share, s−c = (1 − αβ)ωH/(ωC\c + γcνc + ωH), is greater than s*, since s* is decreasing in 
ωC. Since s−c > s*, it follows that 1 − s−c < 1 − s*, or that each conservationist is worse off when conservationist c does not 
contribute.  

For harvester i, the second and third terms in bT
i (s*) (see (15)) represent the payments to the regulator for the costs 

harvester i imposes on the other harvesters (since s−i
j  > sj

*) and conservationists (since 1 − s−i > 1 − s*), less the reduction 
(since s−i

i  < si
*) in the payment to the regulator, because the regulator values the benefits accruing to harvester i. The 

equilibrium contribution for conservationist c (see (16)) includes the costs conservationist c imposes on each harvester i 
(since s−c

i  > si
*) in the political equilibrium less the reduction in the payment to the regulator since increased conservation 

benefits both other conservation groups and the harvesters in the future (since 1 − s−c < 1 − s*). Both the harvesters and 
conservationists impose net costs on the other groups. 

Finally, for cases where the resource is renewable (i.e., whenever α < 1), the steady-state stock equals 

(19)  x* = 



ωC + αβωH

ωH  + ωC

α/(1−α)

 

 
. 

Thus, the steady-state stock shares the same qualitative properties as the stock remaining at the end of each harvest period: It 
is increasing in the aggregate effective political weight of conservationists and decreasing in the effective political weight of 
harvesters. When ωH = 0, the welfare of conservationists is maximized, and the individual and aggregate harvest quota shares 
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equal zero. In this case the stock reverts to its natural steady-state value x−. We shall see in a moment that when ωC = 0, the 
harvest quota share equals 1 − αβ, which maximizes the joint welfare of harvesters. 

III. The Unregulated Common Property Equilibrium. 

In this section, I solve for the equilibrium payoffs when there is no regulation. These results are used in the next section 
both to assess the conditions under which regulation will be voluntarily adopted and to determine when regulation is welfare-
improving, relative to the unregulated equilibrium. The assumption maintained throughout is that the public good nature of 
the conservation benefits prevents conservation groups from purchasing the stock. Thus, even if harvesters enjoy private 
property rights to the stock, they will still impose an externality on the conservationists. In addition, the structure of the 
harvesting sector, here taken to be the number of harvesting groups N, is exogenous. 

In period T, given (2), harvester i chooses hi to maximize 

 Ui(xT, hT)  =  νilog(hi)  + 
αβνilog(xT − yT)

1 − αβ   +  βAi,   i ∈ ΓH, 

taking the harvest choice of the other groups as fixed. The Nash equilibrium in period T thus satisfies 

 
νi
h#

i
  −  

αβνi

(xT − y#
T)(1 − αβ)   =  0,       i ∈ ΓH. 

This has solutions 

(20)  h#
i(xT)  =  



1 − αβ

N(1 − αβ) + αβ xT,       i ∈ ΓH, 

where the share of the stock harvested by harvester i, s#
i = (1 − αβ)/[N(1 − αβ) + αβ], is decreasing in the number of 

harvesters N, and decreasing in αβ. The aggregate harvest is thus  

(21)  y#
T(xT)  =  



N(1 − αβ)

N(1 − αβ) + αβ xT, 

where the aggregate share of the stock harvested, s# = N(1 − αβ)/[N(1 − αβ) + αβ], is increasing in N and decreasing in αβ. 
Thus, the stock remaining at the end of period T is 

(22)  z#
T(xT)  =  



αβ

N(1 − αβ) + αβ xT, 

where the share of the stock remaining at the end of each period under the non-cooperative equilibrium, 1 − s# = αβ/[N(1 
− αβ) + αβ], is decreasing in N and increasing in αβ.  

The equilibrium period T utility for harvester i in the non-cooperative harvesting game is given by 

 U#
i(xT)  =    

νilog(xT)
1 − αβ  + νilog(s#

i)  + 
αβνilog(1 − s#)

1 − αβ   +  βAi,    i ∈ ΓH. 

Thus, the period T−1 utility function for harvester i can be written as 

 Ui(xT−1, hT−1)  =  νilog(hi)  + 
αβνilog(xT−1 − yT−1)

1 − αβ   +  βνilog(s#
i)  + 

αβ2νilog(1 − s#)
1 − αβ   +  β2Ai,   i ∈ ΓH. 

This is identical to the period T objective function, except for the constant term. Therefore, as in the dynamic common 
agency case, the non-cooperative equilibrium involves a constant proportion of the stock being harvested in every period.xix 
For an arbitrary stock, the welfare of each harvester is thus: 

(23)  U#
i(x)  =    

νilog(x)
1 − αβ   +  

νilog(s#
i)

1 − β   +  
αβνilog(1 − s#)
(1 − β)(1 − αβ),    i ∈ ΓH. 

Similarly, for an arbitrary initial stock x, each conservationist�s utility can be shown to equal 

(24)  U#
c(x)  =   

νclog(x)
1 − αβ   +   

νclog(1 − s#)
(1 − β)(1 − αβ),      c ∈ ΓC. 

As the number of harvesting groups grows, the aggregate share of the stock that is harvested approaches unity. Thus, in 
the limit as N → ∞, the stock is completely consumed in the first period. Conversely, when there is only one harvesting 
group, the share of the stock harvested in each period equals s#

H  = 1 − αβ, where the subscript �H� is taken to imply that 
private property rights exist to the stock, so the harvest quota share maximizes the welfare of fishermen.xx This is what occurs 
if private property rights are well defined for the stock.  
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In the event that the resource is renewable (i.e., α < 1), the unregulated steady-state stock equals 

(25)  x#  =  



αβ

N(1 − αβ) + αβ

α/(1−α)

 
 

, for α < 1. 

Taking the limit as N → ∞, we see that the stock is completely consumed instantaneously, so x# → 0. In contrast, in the 
private property case, the steady-state stock equals x#

H = (αβ)α/(1−α), which is greater than x#, since x# is decreasing in N.  
It is now possible to show the effect regulation has on the share of the stock that is harvested, and, for the case where α < 

1, on the steady-state stock. With regulation, the aggregate share of the stock harvested is unambiguously smaller, and the 
aggregate share of the stock that remains after each harvest period is unambiguously larger, than that which occurs absent 
regulation, i.e., 

(26)  s# − s* =  (1 − s*) − (1 − s#)  =  
ωCN(1 − αβ) + (N − 1)(1 − αβ)αβωH

(ωC + ωH)[N(1 − αβ) + αβ]    >  0. 

In the event that ωC = 0, the regulated aggregate harvest quota share is s* = 1 − αβ, which corresponds to the aggregate 
harvest quota share that maximizes harvesters� joint welfare. In the event that ωH = 0, the regulated aggregate harvest quota 
share is s* = 0, which corresponds to the aggregate harvest quota share that maximizes conservationists� joint welfare. These 
suggest that when ωC and ωH  are each greater than zero, the regulated harvest quota share maximizes the joint welfare of 
harvesters and conservationists. However, this is not the case. The equilibrium harvest quota share that maximizes the joint 
welfare of harvesters and conservationists equals (1 − αβ)(Σj∈ΓHνi)/(Σj∈ΓHνi + Σc∈ΓCνc). Thus, the regulated harvest quota 
share s* maximizes the joint welfare of harvesters and conservationists if and only if the effective political weights are all in 
the same relative proportions as the harvest intensity parameters, i.e., when ωj ≡ kνj for all j ∈ Γ. This difference occurs 
because the regulator, in effect, is weighting each group�s preference intensity by the sum of its electoral plus lobbying 
ability weights. In the event that the electoral plus lobbying ability weight is equal across groups, the regulator maximizes 
aggregate welfare because that maximizes the possible contributions she can extract. However, in general, there is no reason 
for these weights to be equal across interest groups. 

IV. Net Welfare Effects of Regulation. 

This section examines two issues: When is regulation is likely to be voluntarily supported? And When is regulation 
socially beneficial, relative to the un-regulated case? The first question is important for understanding the �constitutions� 
under which regulation is adopted.xxi An important conclusion from this analysis is that harvesters are in general less likely to 
voluntarily support regulation. Thus, the model predicts that harvester�s welfare will be given greater weight than that of 
conservationists in successful regulations.xxii The second question raises the issue that socially beneficial regulation might not 
be adopted if the regulator takes too large of a proportion of the surplus. 
A. Voluntary Support of Regulation by Conservationists. 

Let ∆Uc ≡ U*
c(x) − U#

c(x) be the net change in welfare to conservationist c of adopting regulation. From (16) and (24), the 
necessary condition for conservationist c to support regulation is that 

(27)  ∆Uc(x)  =  



νc

(1 − β)(1 − αβ) log



1 − s*

1 − s#   −  
bT

c(s*)
(1 − β)κc

   >  0,   c ∈ ΓC. 

The first term in ∆Uc(x) is the gross increase in the present value of welfare to conservationists from the adoption of 
regulation and the second term is the present value of the cost of raising contributions bT

c(s*). This condition is not affected by 
the starting stock x, since neither the contributions bT

c(s*) nor the harvest quota shares s* or s# depend on x.  
Since the contributions are non-negative, it is necessary that the gross welfare change be positive in order that 

conservationists to support regulation. However, this condition always holds, since s* < s# (see (26)). Thus, the question is 
when will the gross benefits outweigh the costs to conservationists? Suppose that conservationist group c is completely 
unorganized in the sense that κc→0. Since group c�s cost of contributing even a penny becomes prohibitive, c�s contributions 
vanish.xxiii But if this is so, then c will be willing to support regulation no matter what the current state of the property rights, 
since its gross welfare change from the adoption of regulation is positive whenever ωC = Σc∈ΓCγcνc > 0. Indeed, this point can 
be extended to the case where ωc = 0 for all c ∈ ΓC.xxiv In this event, every conservationist�s contributions vanish. However, 
by (27), ∆Uc(x) is determined entirely by the change in group c�s gross welfare, which is non-negative (and strictly positive 
for N > 1). Thus, even if their own interests are not explicitly accounted for, conservationists will support regulation.  

In contrast, suppose harvesters are given zero weight in the equilibrium, i.e., let ωH = 0, so that γi = κi = 0, for all i ∈ ΓH. 
Then no harvest is allowed even if conservationist c does not contribute (indeed, even if none of the conservationists 
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contribute), so long as the regulator places positive electoral weight on the welfare of at least one conservationist group (i.e., 
so long as ωc > 0 for some c ∈ ΓC). Then, each conservationist contributes zero, since no conservationist affects the outcome 
(i.e., s* = s−c = 0). Therefore, conservationists support regulation when the regulator cares only about their interests. This 
suggests that conservationists support a regulator such as the International Whaling Commission, which has placed a 
permanent moratorium on whaling, not just because the regulator cares more about their interests than those of the harvesters, 
but also because the regulator can not credibly extract rents from the conservationists groups. 

Finally, suppose that the weight the regulator places on the welfare of harvesters is independent of the number of 
harvesters, so that ωH is fixed, but N may vary. Then, as N increases, the change in the gross welfare to conservationist c is 

∂
∂N



log



1 − s*

1 − s#  =  
1 − αβ

(1 − s*)αβ   >  0. 

Thus, the change in gross welfare to conservationists as regulation is adopted is increasing in N. Furthermore, since ωH is 
independent of N, there is no corresponding increase in bT

c(s*). This implies that conservationists are more likely to prefer 
regulation as the common property problem worsens. Since the gross welfare change to conservationists is increasing in N, 
consider the case where private property rights exist, so N = 1. Expanding (27) by explicitly considering the contributions 
yields: 

  ∆Uc(x)  = 



νc

(1 − β)(1 − αβ) log



1 − s*

1 − s#  + 



ωC/c + γcνc

(1 − αβ)(1 − β)κc
log



1 − s*

1 − s−c   

−  
ωH

(1 − β)κc



log



s−c

s*   +  



αβωH

1 − αβ log



1 − s−c

1 − s* . 

The terms on the first line are positive in total, and represent the gross increase in welfare to conservationist c plus the 
increase in welfare to conservationists as a group of the incremental increase in the remaining share of the stock due to 
conservationist c�s contribution (1 − s* > 1 − s−c), given that regulation is in place. The terms on the second line represent the 
present value of the costs each conservationist c imposes on the (sole) harvester due to c�s contribution, given that regulation 
is in place. Since s−c > s*, the first expression on the second line is positive, but the second is negative. Thus, so long as the 
cost to harvester is not too great, the net change in welfare to conservationists is positive, even when there is no common 
property problem with the use of the stock. This occurs because in the regulated equilibrium the share of the stock harvested 
decreases (see (26)). Furthermore, since the contributions by each conservationist are reduced by the amount of benefit they 
create for other conservationists, there is no free-rider effect among conservationists in the dynamic common agency 
equilibrium.xxv 
B. Voluntary Support of Regulation by Harvesters. 

Now consider the condition under which harvesters support regulation. Let ∆Ui ≡ U*
i(x) − U#

i(x) be the net change in 
welfare to harvester i ∈ ΓH of adopting regulation. From (15) and (23), the necessary condition harvester i to support 
regulation is that 

(28)  ∆Ui(x)  =  



νi

1 − β log



s*

i

s#
i

  +  



αβνi

(1 − β)(1 − αβ) log



1 − s*

1 − s#   −  
bT

i (s*)
(1 − β)κi

  > 0, i ∈ ΓH. 

The first two terms are the present-value of the gross welfare change to harvester i of adopting regulation, and the third term 
is the present value of the cost of contributing bT

i (s*) into perpetuity. As with the conservationists, whether harvester i will 
prefer regulation is independent of x. 

First, suppose that private property rights exist to the stock. Thus, let N = 1. Since the share of the stock harvested in 
each period absent regulation maximizes the harvester�s gross utility, and since the equilibrium regulated share s* declines as 
ωC increases, the harvester�s gross utility of adopting regulation is unaffected when ωC = 0 and reduced when ωC > 0. 
Furthermore, since the regulator captures part of the rents in the form of the equilibrium payment bT

i (s*), which is strictly 
positive when ωC > 0 for N = 1, the (sole) harvester�s welfare is unambiguously reduced by the adoption of regulation when 
ωC > 0, and is unaffected when ωC = 0. Thus, with well-defined private property rights for the resource, regulation will not be 
supported by the harvesters, and will be actively opposed whenever the harvesters view the regulator as being responsive to 
conservationists.xxvi 

When the resource is owned in common among N harvesters it is possible that the harvesters will benefit from 
regulation, since regulation will resolve the common property problem. Suppose that ωC = 0, so that conservationists are 
given zero weight in the effective political welfare function, and assume that each harvester is identical in the sense that ωi  
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= (1 − αβ)/N, for all i ∈ ΓH, so each harvester gets share 1/N of the optimal harvest quota in the regulated equilibrium. Then 
the change in the gross utility of to the ith harvester of adopting regulation is 





νi

1 − β log



N(1 − αβ) + αβ

N   +  



αβνi

(1 − β)(1 − αβ) log( )N(1 − αβ) + αβ ,  i ∈ ΓH. 

This expression vanishes for N = 1. However, this expression is increasing in N, i.e., 
∂(⋅)
∂N   =  



νi

1 − β 



(N − 1)αβ

 N(1 − αβ) + αβ   >  0. 

Thus, the change in gross utility to harvesters is positive for N > 1. Furthermore, under these conditions, s−i = s*, since 
conservationists are ignored, and s i 

−i/si
* = N/[N(1 − αβ) + αβ]. Thus, bT

i (s*) = νilog{N/[N(1 − αβ) + αβ]}, which is decreasing 
in N. Thus, when fishermen in a common property fishery are homogeneous and the regulator places zero weight on 
conservationists, fishermen will support regulation. However, violation of either the homogeneity or zero weight on 
conservationists� assumptions may cause fishermen to oppose regulation, since the contributions will be positive and the 
gross change in welfare may be negative under these circumstances.xxvii 

Finally, note that in the limit as the share to harvester i approaches zero, the harvester will clearly oppose regulation (i.e., 
the limit of log(s i 

−i/si
*) approaches negative infinity). Thus, a necessary condition for harvesters to support regulation is that 

the regulator values their welfare in equilibrium with significant enough weight. This could explain why whaling countries 
such as Norway and Japan have considered withdrawing from the International Whaling Commission. 
C. Social Welfare and Regulation. 

Next, consider the conditions under which social welfare is improved by regulation. The key assumption here is that 
when regulation exists, the regulator cares about the gross welfare of the groups only because their welfare translates 
positively into electoral support. Thus, absent regulation, the regulator does not care about the group�s welfare in any 
meaningful way. Thus, the regulator�s valuation of the gross utility of the harvesters and conservationists is ignored in what 
follows. However, the contributions are counted, since they are transfers from the pie of actual wealth.  

Let ∆ ^Uj(x) be the change in gross utility less the transactions costs associated with the contributions: 

(29)  ∆
^Uc(x)  =  



νc

(1 − β)(1 − αβ) log



1 − s*

1 − s#   −  



1 − κc

κc 



bT

c(s*)
1 − β ,   c ∈ ΓC, 

(30)  ∆
^Ui(x)  =  



νi

1 − β log



s*

i

s#
i

  +  



αβνi

(1 − β)(1 − αβ) log



1 − s*

1 − s#   −  



1 − κi

κi 



bT

i (s*)
1 − β , i ∈ ΓH. 

Since ∆Uj(x) − ∆
^Uj(x) = bT

i (s*)/(1 − β) > 0, if both harvesters and conservationists support regulation, then regulation is 
clearly welfare-improving. However, since both harvesters and conservationists perceive the contributions as a cost, when 
they are not social costs, it is possible that regulation that improves welfare is not voluntarily adopted.  

The net welfare change to society is  

(31)  ∆WS(x) = ∑
i∈ΓH

 



νi

1 − β log



s*

i

s#
i

 +   



Σc∈ΓCνc + αβΣi∈ΓHνi

(1 − β)(1 − αβ) log



1 − s*

1 − s#  − ∑
j∈Γ

 



1 − κj

κj 



bT

j (s*)
1 − β . 

We have already seen that as κj→0, the cost of the contributions vanish for both conservationists and harvesters. The 
same thing occurs here. Indeed, if all groups are unorganized in the sense that κj = 0 for all j ∈ Γ, then no group contributes in 
equilibrium. Similarly, the transactions costs also vanish if κj = 1 for all j ∈ Γ. Thus, the transactions costs associated with the 
contributions vanish in either case. Then if the regulator is �benevolent� in the sense that γj = γ, for some γ > 0, for all j ∈ Γ, 
then regulation will be welfare-improving. Furthermore, since by (26) we know that the aggregate share of the harvest 
declines under regulation (i.e., s* < s#), so the second term in (31) is always positive. However, this means that the first term, 
on average, has to be negative. Thus regulation is socially beneficial whenever conservationists� aggregate preference 
intensity is sufficiently large. 

Two other special cases are interest. First, we saw above that as ωi → 0 for i ∈ ΓH, the welfare loss to harvesters grew 
extremely large. Thus, for ωi small enough, social welfare is clearly made worse off by the adoption of regulation. Therefore, 
for regulation to be socially beneficial, as well as for it to get the support of harvesters, it is necessary that the regulator place 
sufficient weight on the welfare of the harvesters. In contrast, suppose that ωc = 0 for all c ∈ ΓC, and that each harvester is 
identical, so that γi = γj, κi = κj, and νi = νj, for all i, j ∈ ΓH. We saw above that this resulted in support for regulation both 
from harvesters and conservationists. Thus, when ωC = 0, social welfare is improved, except in the instance where there 
exists private property, in which case regulation has no effect.   
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Combining these results suggests that harvesters are more important than conservationists in determining whether the 
regulated equilibrium is a welfare improvement over the common property equilibrium. This occurs because harvesters, like 
conservationists, value the stock, but conservationists, unlike harvesters, place no value on the harvests. 

Finally, there exists an interesting parallel between common agency and bidding (Bernheim and Whinston 1986, 
Bergemann and Valimaki 1998). Suppose the regulator places zero electoral weight on each interest group. In this case, each 
harvester earns zero net utility in equilibrium, since failure by harvester i to pay results in i receiving zero harvest quota. By 
(15), each harvester pays the regulator for the cost harvester i imposes on the other N−1 harvesters for the reduction in their 
harvest quota, and the cost imposed on conservationists and harvesters of the increase in the total harvest. In contrast, 
conservationist c receives positive utility in equilibrium, since he only has to pay for the net reduction in the harvest quota 
from s−c to s*. From (16), the equilibrium contribution is the sum of the costs imposed on each harvester for the reduction in 
their harvest quota less the value of the increase in the stock due to the overall reduction in the harvest quota. If both 
harvesters and conservationists face zero transactions costs (κj = 1 for all j ∈ Γ), then the allocation maximizes social welfare 
in the standard sense. However, if as is more likely the conservationists face positive transactions costs, then the allocation 
will be skewed towards harvesters. Since harvesters earn zero net rents under an auction, one would not expect to see 
auctions very often. Indeed, the most common form of auctions occurs with resources not currently available, such as the 
newly exploited parts of the radio spectrum and new oil and gas leases. 

IV. Discussion and Conclusions. 

This paper has examined a dynamic common agency model in which harvester and conservation groups compete over 
the exploitation of a natural resource, where the rate of that exploitation is regulated by a public agency. The equilibrium 
concept employed is that of a truthful Markov perfect equilibrium (Bernheim and Whinston 1986, Grossman and Helpman 
1994, Bergemann and Valimaki 1998). Simple logarithmic utility functions are assumed for both the harvesters and 
conservationists, and the regulator's utility is assumed to be additively linear in the utility and contributions of the interest 
groups. These assumptions give sufficient concavity to make the results relatively general, and they ensure that the results are 
tractable and transparent.  

The following results are obtained: 
1. The share of the stock harvested in each period is increasing in the relative aggregate political strength of harvesters and 

decreasing in the relative aggregate political strength of conservationists.  
2. For regulation to be supported by harvesters, it is necessary that the no-regulation status quo involve common-property 

rent dissipation among the harvesters and that the effective political weight for harvesters under regulation be sufficiently 
high.  

3. Since the gross change in conservationists' welfare is always non-negative and the regulator generally does not fully 
capture the rents earned by them, conservationists support regulation.  

4. As the transactions costs associated with rent-seeking approach zero or become arbitrarily large, the equilibrium 
contributions vanish, and regulation is more likely to be socially beneficial and to be supported by each group. 

5. Regulation is socially beneficial if the weight given to harvesters is sufficiently large relative to that given to 
conservationists. This occurs because harvesters, like conservationists, value the stock, but conservationists, unlike 
harvesters, place no value on the harvest. 
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Endnotes 

                                                      
i Other renewable resource examples include the Migratory Waterfowl Treaty, signed by Canada, the United States and 
Mexico in 1916 to allocates harvests of waterfowl across the three countries; the Colorado River Compact, signed by 
Arizona, California, Colorado, Nevada, New Mexico, Utah and Wyoming in 1921 to allocate water rights among the western 
states; the International Pacific Halibut Commission, formed in 1923 by the United States and Canada to allocate halibut 
harvests both across countries and fishery harvest gear types; the International Whaling Commission, formed in 1946 by forty 
whaling nations to allocate harvest quotas (it now has banned all harvests); the Convention on International Trade in 
Endangered Species, formed in 1973 and now signed by 150 countries to prohibit or control trade in many endangered 
species; and the Common Fishery Policy, enacted by the European Union in 1980 to allocate commercial harvests of fish. 
Examples dealing with exhaustible resources include unitized oilfields, where the regulator allocates extraction shares in 
commonly owned oil pools, and the Organization of the Petroleum Exporting Countries, which allocates production quotas 
across its members. In addition, many major environmental treaties such as the Montreal Protocol on ozone depleting 
substances and the Kyoto Agreement on greenhouse gases (if ratified) grant regulators with the power of determining the 
total quota and allocating that quota across various users. In almost all of these examples, quota regulations are used in lieu of 
price regulations. 
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ii The 1995 House amendment to the Magnuson Act explicitly allowed for voting members �selected for their fisheries 
expertise as demonstrated by their academic training, marine conservation advocacy, consumer advocacy, or other affiliation 
with nonuser groups.� However, the Senate version, which became law, only required that voting members �must be 
individuals who, by reason of their occupational or other expertise, scientific expertise, or training are knowledgeable 
regarding the conservation and management, or the commercial or recreational harvest, of the fishery resources� (Section 
302(b) 16 U. S. C. 1852). 
iii The assumption that the regulator can use the contributions to influence uniformed groups is a key, but controversial, 
assumption in the common agency literature. See Coate and Morris (1995) for a criticism of the view that uninformed voters 
can be influenced by politicians. Ironically, even with the assumption that politicians are able to deceive uninformed voters, it 
is possible to obtain results that appear remarkably efficient (Dixit, Grossman and Helpman (1997). 
iv Constitutional restrictions include boilerplate statements about conservation being the primary goal (included in most 
agreements), explicit statements about which members have which particular voting rights (e.g., the United Nations), and, in 
some instances, specific allocations of the resource (e.g., the Colorado River Compact). In addition, there is often (although 
not always) some sort of super-majority requirement for the adoption the regulation.  
v Other applications of the common agency model include regulation of multinational firms (Bond and Gresik 1996), 
government tax policy (Dixit, Grossman and Helpman 1997), lobbying by capital and labor over labor policies (Rama and 
Tabellini 1998), supply of public goods (Persson 1998), the internalization of environmental externalities (Aidt 1998), and 
common property resource games (Boyce 1999). 
vi Freeman (1992) reviews the literature on non-consumptive use values. 
vii Both models consider tax policy rather than quota policy. However, regulators of natural resources tend to use quota 
regulations more than price regulations, so the present paper focuses on these. 
viii Boyce (1999) considers a similar question. However, he was only able to solve for the steady-state equilibria, so his 
comparisons ignore the costs along the transition. Here, I derive analytical solutions for an arbitrary initial stock. The analysis 
here also focuses on the properties of the constitution one might expect in treaties, laws, and agreements, given the conditions 
necessary for each principal to agree to adopt regulation. See Eggertsson (1990) for review of the transactions cost literature 
on these issues.  
ix Both Dixit, Grossman and Helpman (1997) and Bergemann and Valimaki (1998) are interested in the efficiency of 
regulation, but only in so far as regulation exists. Dixit, Grossman and Helpman examine the efficiency of regulation when 
the marginal utility of income is not constant. Bergemann and Valimaki show that when an additional principal is added to a 
coalition, the net return to the coalition of adding that principal equals the marginal contribution of the principal to the 
coalition. The present paper follows Persson (1998) in focusing on the idea that some groups are less adept than others are at 
influencing policy. However, the model departs from the literature in its evaluation of regulation from the perspective of no 
regulation, rather than from the perspective of alternative instruments of regulation.  
x So long as there are no price effects�as is assumed�this will maximize the joint welfare of harvesters. 
xi For simplicity, the time subscripts are written only for the aggregate variables, xt, yt, and zt. 
xii It is possible to make this model more general by allowing harvesters utility to be of the form ui = νilog(hi) + ηilog(xt − yt). 
In this case, the equilibrium involving only harvesters will maintain a larger stock than when the utility of harvesters involves 
only the νilog(hi) term (e.g., Clark and Munro 1975), assuming second order conditions hold. However, the additional 
insights appear to be few relative to the notational costs. 
xiii However, I do not explicitly model the process by which the regulator is selected. See Persson (1998). 
xiv This rules out punishment strategies such as the  �trigger strategies� used by Cave (1987) and Hannesson (1996). 
xv This assumption does not affect the steady-state equilibrium. For example, I show below that the equilibrium is equivalent, 
in effect, to the regulator choosing harvest quotas to maximize weighted joint welfare of the principals. If one simply 
assumes Markov behavior and begins with Bellman�s difference equation, 

W(xt) = ωHlog(ht) + ωClog(xt − ht) + βW[(xt − ht)α], 

(only one harvester is assumed for the sake of simplicity), then the principle of optimality implies 
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ωH/ht  − ωC/(xt − ht) = αβ(xt − ht)α−1WX(xt+1). 

Differentiating the difference equation with respect to xt using the Envelope Theorem yields 

WX(xt) = ωC/(xt −  ht) + αβ(xt −  ht)α−1WX(xt+1). 

These, together with (1) may be combined to show that the steady-state stock and the harvest quota shares are identical to 
those derived below, using the assumption in the text. 
xvi The behavior of this system away from the steady-state will be different from that using Levhari and Mirman�s 
assumption, but the steady-state is not affected. 
xvii This assumes that the pumping costs are unrelated to the stock size. In a more general model (see note 9, supra), where the 
utility of harvesters also depends upon the stock remaining, this would not be true. 
xviii Boyce (1999) finds that under the assumption that all of the stock is consumed in period T+1, the share of the stock 
harvested does change as one moves away from T. However, it is possible to show that even in this case, the contributions are 
constant in each period, and that the steady-state share of the stock harvested equals that in the text. 
xix See note 15, supra. 
xx With N harvesters, the harvest quota shares that maximize the joint utility of the harvesters satisfies 

νi
h#

i
  −  

αβΣj∈ΓHνi

(xT − y#
T)(1 − αβ)   =   0,            i∈ΓH. 

Thus, the optimal harvest quota shares are s#
i = (1 − αβ)νi/(Σj∈ΓHνj), implying that the aggregate harvest quota share is s# = 1 

− αβ.  
xxi See note 2, supra. 
xxii This is similar to the argument by Libecap and Wiggins (1985) regarding oil field unitization, that says smaller firms will 
hold out for larger relative shares since regulation benefits them less than larger firms. Here, this result occurs because 
harvesters are unwilling to agree to regulation that does not give them sufficient weight.  Thus, both models are based in part 
on the implied bargaining strength of the participants, although, here, it also turns out that harvesters must get large relative 
share for regulation to be welfare-improving. 
xxiii The limit of the first term in the contributions as κc→0 is −ωH/(ωH + ωC/c + γcνc), and the limit of the second term is 
ωH/(ωH + ωC/c + γcνc), so the limit as κc→0 of bT

c(s*)/[(1 − β)κc] = 0. 
xxiv Conservation groups often complain that regulator�s are skewed towards the interests of harvesters. The Audubon Society 
complained that the regulatory panel for the Atlantic States Marine Fisheries Commission �is composed of 19 individuals. Of 
these, 15 are associated with the fishing industry� (quoted in Horseshoe Crab Plan, November 1998, National Audubon 
Society, Washington, D. C.). 
xxv Aidt (1998) makes a similar point regarding the internalization of externalities. 
xxvi This will also occur in model where harvesters care about the stock (see note 9, supra), since the adoption of regulation 
will increase the stock. 
xxvii See Johnson and Libecap (1982), Libecap and Wiggins (1985), and Karpoff (1987) for discussions of the effect of 
heterogeneity on common property resource regulations. 
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