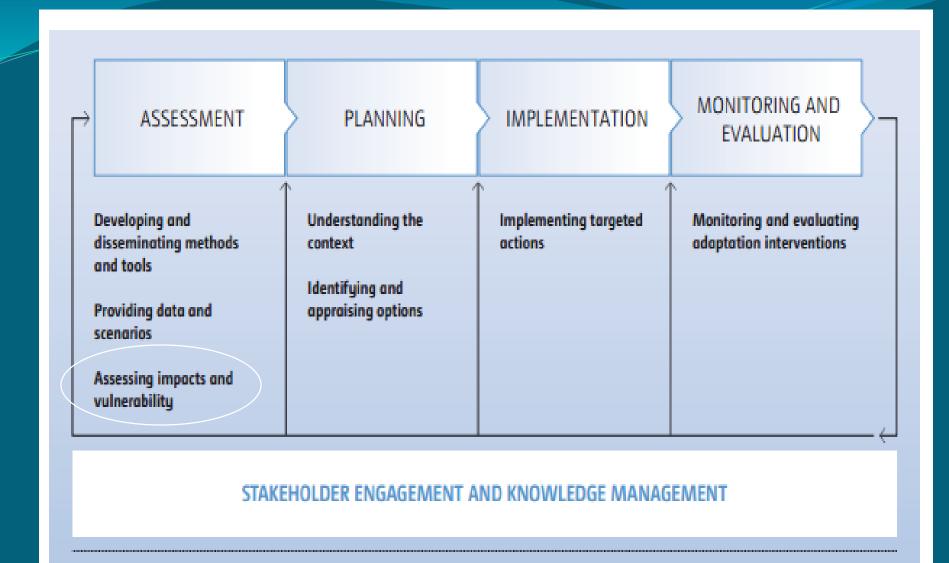
Vulnerability assessments in fisheries social-ecological systems: some experiences in their development and implementation for adaptation planning

Results of a PaCFA workshop

Cassandra De Young (FAO), Eddie Allison (UEA), Cécile Brugère (FAO consultant)

IIFET 2014

Brisbane, Australia 8-11 July 2014


Outline

- Why do a vulnerability assessment?
- How are different groups approaching VA?
- The IPCC VA framework
- Some examples of VA in fisheries
- Some concluding thougths

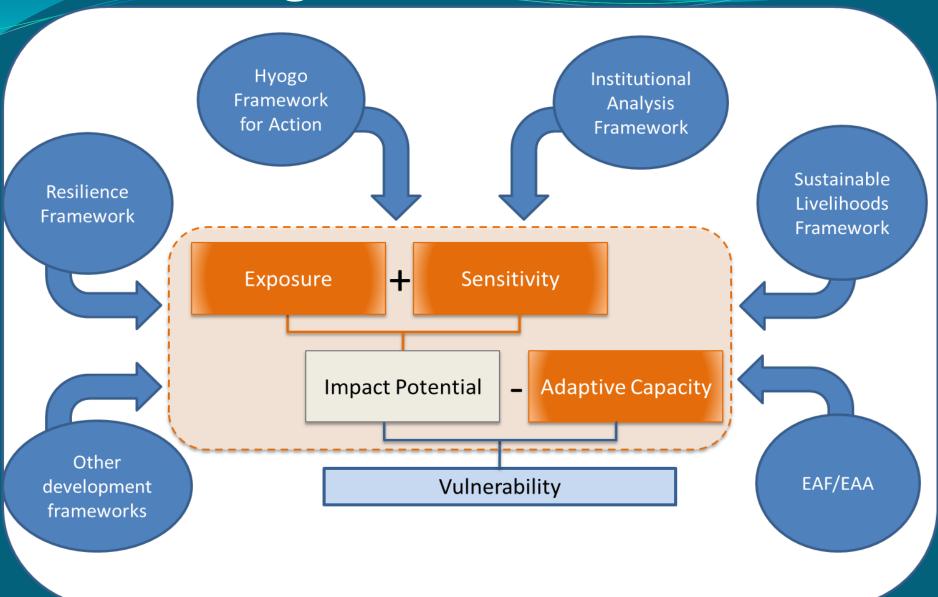
Why do a vulnerability assessment?

The main purpose of vulnerability analysis is to improve targeting and effectiveness of adaptation actions:

- Who are the vulnerable <u>people\species\sectors</u> and how can their vulnerability be reduced?
- Where are the vulnerable ecosystems? Can their capacity to adapt be supported by resource management?
- Where will the social and economic consequences of vulnerability of fishery systems be felt most? How can we plan to minimize those consequences?
- Where will climate change create new opportunities and bring benefits? For whom?

Vulnerability of what-whom to what?

- Vulnerability <u>of</u> people individuals, social groups, households, communities, provinces, nations, regions
- Vulnerability of human activities agriculture, fishing, tourism, transport, habitation etc.
- Vulnerability <u>of</u> places low-lying coasts, enclosed seas, deltas, upwelling systems, river basins, lakes
- Vulnerability to particular stressors/hazards: natural disasters, global environmental change, change in general


Different schools of thought/perspectives

	Risk/hazard	Political economy/ecology	Resilience
Key focal questions	What are the hazards? What are the impacts? Where and when?	How are people and places affected differently? What explains differential capacities to cope and adapt? What are the causes and consequences of differential susceptibility?	Why and how do systems change? What is the capacity to respond to change? What are the underlying processes that control the ability to cope and adapt?
Key attributes	Exposure, sensitivity	Adaptive capacity, sensitivity, exposure	Thresholds of change, reorganization, capacity to learn and adapt
System (unit of exposure)	Places, sectors, activities, regions	Individuals, households, social groups, communities, livelihoods	Ecosystems, coupled human-environmental system
Scale Eakin and Luers, 2	Regional, global	Local, regional, global	Landscapes, ecoregions, multiple scales

Different Disciplines

	Outcome vulnerability	Contextual vulnerability
Root problem	Climate change	Social vulnerability
Policy context	CC mitigation, compensation, technical adaptation	Social adaptation, sustainable development
Vulnerability and adaptive capacity	Adaptive capacity determines vulnerability	Vulnerability determines adaptive capacity
Starting point of analysis	Scenarios of future climate hazards	Current vulnerability to climatic stimuli
Main discipline	Natural sciences	Social sciences
Meaning of vulnerability	Expected net damage for a given level of global climate change	Susceptibility to climate change and variability as determined by socio-econ
O'Brien et al., 2004, 2007		factors

The IPCC generic VA framework

3 examples of VA in marine fisheries

Example 1 Allison, et al. 2005, 2009

Vulnerability Question:

How are national economies vulnerable to potential climate change impacts arising through their fisheries?

EXPOSURE

Nature and degree to which countries are *exposed* to predicted climate change

SENSITIVITY

Degree to which economies & people are likely to be affected by fishery-related changes

POTENTIAL IMPACTS

All impacts that may occur without taking into account planned adaptation

ADAPTIVE CAPACITY

Abilities and resources to cope with climate-related changes

VULNERABILITY

Data and methods

Exposure

2050 surface temperatures (HadCM3 model, 2 scenarios)

Sensitivity (Fisheries dependency – marine and inland)

• Landings and contribution of fisheries to employment, exports and dietary protein (FAO, World Bank)

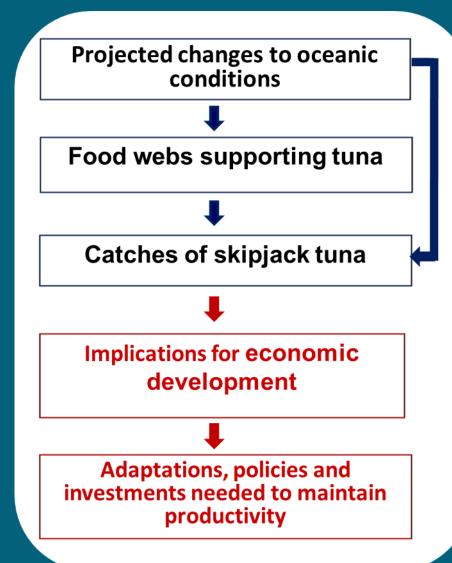

Adaptive capacity

 Human development indices (health, education, governance, and economy size)

<u>Vulnerability</u> = E + S - AC

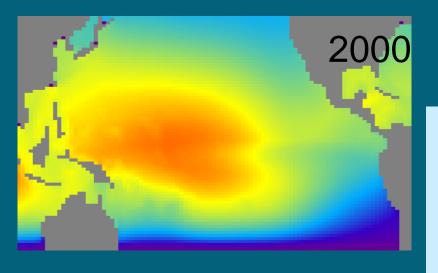
- 132 nations
- Robust to different methods of weighting and combinations

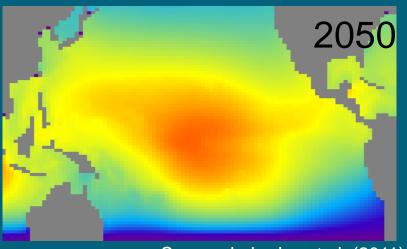
Graphical presentation of relative vulnerabilities



Example 2: Bell et al, 2012

Vulnerability Question:


How are Pacific SIDS' economies vulnerable to CC through potential changes in tuna fisheries?


Approach used

Projected effects on skipjack tuna

A2 emissions scenario

Redistribution east due to:

- Increases in sea surface temperature in eastern Pacific
- Shift of prime feeding areas to the east

Source: Lehodey et al. (2011)

Expected benefits or losses (% change)

PICTs	1999–	2008	203	35	20!	50	21	00
	L	U	L	U	L	U	L	U
Governmer	Government revenue							
FSM	6	12	+1	+2	0	+1	-1	-2
Kiribati	30	50	+11	+18	+13	+21	+7	+12
Nauru	10	25	+2	+6	+2	+5	0	0
Palau	2.5	3.2	+0.2	+0.3	0	+0.1	-0.7	-0.9
Tokelau	2	15	+1	+9	+1	+10	+1	+9
Tuvalu	10	25	+4	+9	+4	+10	+2	+6
GDP								
American Sam	oa 20	25	+3	+6	+2	+4	-1	-2
Marshall Island	ds 10	25	+2	+6	+2	+6	+1	+2
PNG	1.5	4	0	+0.1	-0.2	-0.4	-0.4	-1.2
Solomon Island	ds 2	5	+0.1	+0.2	-0.1	-0.3	-0.3	-0.8

Data and methods

 $\overline{Potential\ impact} = Exposure\ x\ Sensitivity\ (PI = E\ x\ S)$

Exposure estimated from projected change in tuna catch

Sensitivity estimated as average contribution to gov't revenue and GDP

Adaptive capacity (AC) estimated from four indices – health, education, governance and the size of the economy

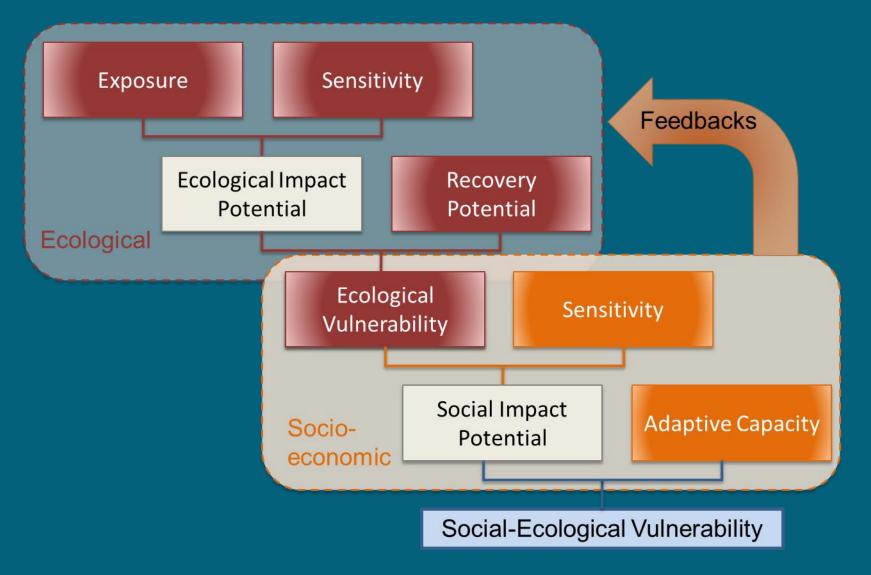
Vulnerability

In PICTs where contributions from tuna expected to decrease or increase:

 $Vulnerability = PI \times (1-AC) \text{ or } = PI \times AC$

Comparative benefits and vulnerabilities

PICT	2035	2050	2100
PNG	+ Very low	- Very low	- Very low
Solomon Islands	+ Very low	- Very low	- Low
FSM	+ Low	+ Very low	- Low
Kiribati	+ Very high	+ Very high	+ Very high
Marshall Islands	+ Low	+ Low	+ Low
Nauru	+ Moderate	+ Moderate	- Very low
Palau	+ Very low	+ Very low	- Very low
Tokelau	+ High	+ High	+ Very high


(+) benefit, (-) vulnerability to negative economic impacts

Example 3: Cinner et al, 2013

Vulnerability Question:

What is the Social-ecological vulnerability of coral reef fisheries to climate change?

Ecological V nested in Socio-economic V

Adapted from Marshall et al. (2010).

Methods-ecological vulnerability

Ecological exposure – Site-specific index of bleaching stress based on temp, currents, temperature, light, tidal variation, chlorophyll, water quality

Ecological Sensitivity – 2 indicators

Susceptibility of coral community to bleaching

 Using genus-specific bleaching sensitivity (McClanahan et al. 2007 MEPS)

Susceptibility of fish community to population declines associated with coral habitat loss from bleaching

 Using species-specific climate vulnerability index (Graham et al. 2011 Ecology Letters)

Ecological Recovery Potential

• 5 indicators for corals, 6 indicators for fish species

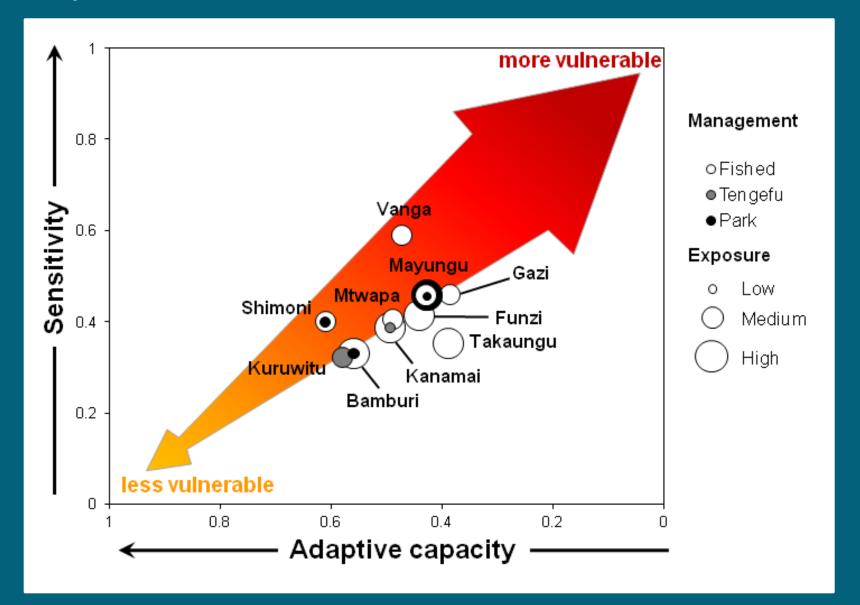
Methods-Social vulnerability

Social Exposure = Ecological Vulnerability

Social Sensitivity - 2 indicators:

- Livelihood sensitivity: dependence on marine resources
- Gear sensitivity: data on how susceptible the catch composition of different gears is to coral bleaching

Social adaptive capacity – 11 indicators:


- 1) Recognition of causal agents impacting marine resources
- 2) Access to credit

- 6) Material assets
- 3) Occupational mobility 7) Technology
- 4) Occupational multiplicity 8) Infrastructure

5) Social capital

- 9) Debt levels
- 10) Trust of community members, local leaders, police, etc
- 11) Capacity to anticipate change and to develop strategies to respond

Social-ecological vulnerability evaluated for 10 Kenyan communities

Some concluding thoughts

 A VA starts with the Vulnerability Questions needing to be answered

- The scale, approach and method of vulnerability analysis used should be determined by its purpose but will be influenced by resources, time, expertise and availability of data
- Combine top-down and bottom up analysis, keeping indicators simple, pathways of impact clearly defined and policy/practice objectives in focus

 Many climate-change adaptations in fisheries are 'no regrets' actions and detailed VA to justify them may not be necessary

 The IPCC «simple» model is evolving and gaining experience in FI&AQ

• Lots of learning to come (e.g. linking scales, mixing models and perceptions, better communicating to those who need to adapt)

For your calendar – As a follow up to the ICES-PICES-IOC Symposium on the Effects of Climate Change on the World's Oceans will be held in Santos (Brazil), we'll be organizing a global conference on CC adaptation in the fall, 2015

Send me your VA experiences!

cassandra.deyoung@fao.org

THANK YOU!