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Tidal marshes are dynamic ecosystems that are threatened by climate change and sea-

level rise. To characterize baseline condition and historic climate sensitivities, and 

improve projections into the future, new methods are required that integrate data from the 

field and remote sensing platforms. Marsh elevation response models can be calibrated 

with site-specific data to determine the vulnerability of a marsh to sea-level rise and help 

guide management decisions. Elevation models are sensitive to initial elevation, the rate 

of accretion, and aboveground biomass. The overarching goal of this dissertation was to 

develop techniques to improve these important model inputs and evaluate the range of 

spatial and temporal variation.  

Light detection and ranging (lidar) is an invaluable tool for collecting elevation 

data, however dense vegetation prevents the accurate measurement of the tidal marsh 

surface. In Chapter 2, I describe the development of a technique to calibrate lidar digital 

elevation models with survey elevation data using readily available multispectral aerial 

imagery from the National Agricultural Inventory Program (NAIP). Using survey 

elevation data across 17 Pacific Coast tidal marshes, I demonstrated the utility of the 



 

 

Lidar Elevation Adjustment with NDVI (LEAN) technique to account for the positive 

bias in lidar due to vegetation. LEAN reduced error from an average of 23.1 cm to 7.2 cm 

root mean squared error and removed the positive bias caused by vegetation. This 

increase in accuracy will facilitate more accurate assessments of current and future 

vulnerability to sea-level rise.  

The phenology of aboveground biomass in tidal marsh plants in relation to 

climate variation has not been explored in the Pacific Northwest (PNW). In Chapter 3 I 

explain how I leveraged the Landsat archive and cloud computing capabilities to assess 

how Tasseled Cap Greenness (TCG, a proxy for aboveground biomass) in three PNW 

tidal marshes has responded to recent variation in climate to characterize sensitivity to 

climate change. Through analysis of over 3700 Landsat images obtained from 1984-

2015, I found increased annual precipitation resulted in a higher peak TCG, while 

warmer May temperatures resulted in an earlier day of peak TCG. These results also 

demonstrate how time-series analysis of remote sensing data can be used to examine the 

sensitivity of tidal marsh plants to climate variability and directional change. 

The range of variation in tidal marsh accretion rates has not been characterized 

across the PNW. For Chapter 4, I collected and analyzed twenty-two soil cores from eight 

estuaries to estimate historic accretion rates with radioisotope dating techniques and 

evaluated the amount and source of variation across estuaries. I found that tidal marshes 

across the PNW had accretion rates greater than the current rate of sea-level rise, ranging 

from 2.3 – 7.3 mm yr-1. Using a watershed-scale analysis, I found that long-term average 

annual fluvial discharge was the top predictor of tidal marsh accretion rates. Additionally, 



 

 

I found that calibrating the Wetland Accretion Rate Model for Ecosystem Resilience 

(WARMER) with accretion rate data from nearby estuaries can result in uncertainties of 

up to 41% (50 cm) after 100 years. Finally, in Chapter 5, I demonstrate that a range of 62 

cm of error is possible in WARMER models after a 100 year simulation when both 

uncorrected lidar and non-local accretion rates are used, fundamentally changing the 

interpretation of the results. Altogether, this dissertation illustrates the importance of 

collecting site-specific wetland vegetation and elevation data and demonstrates how lidar 

and multispectral remote sensing data can be leveraged to improve our understanding of 

how climate variability and change impacts coastal ecosystems.  
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Contemporary climate change, driven by the anthropogenic addition of greenhouse gases, 

will reshape coastal estuaries through changes in sea level, salinity, and storm frequency 

and severity (IPCC 2007, NRC 2012). Dense human populations along the coasts already 

impact these ecosystems through urbanization, habitat fragmentation, altered hydrology, 

pollution, and the introduction of invasive species (Thorne et al. 2012, Williams 2013), 

compounding the impacts of climate change. Global projections of sea-level rise (SLR) to 

2100, are highly variable (10-180 cm; Rahmstorf 2007, Vermeer and Rahmstorf 2009, 

Grinsted et al. 2010, Church et al. 2013), largely due to uncertainty in future greenhouse 

gas emissions and melting rates in the polar regions. Despite the uncertainty surrounding 

the magnitude of sea-level rise through 2100, there is no doubt in the direction. At the 

beginning of the 20th century, global sea levels rose at a rate of 1.7 mm/yr that has 

increased in the last two decades to 3.1 mm/yr (Williams 2013).   

On the Pacific Coast of the United States, sea levels are projected to increase by 

10-166 cm by 2100 (NRC 2012), but with substantial variation due to regional factors. 

Local tectonic movement can offset or exacerbate relative sea-level rise. For example, 

tectonic rebound from the last ice age is projected to partially mitigate SLR in Oregon 

and Washington (NRC 2012). Other local factors, such as subterranean fluid extraction 

(i.e. water and oil) can cause local subsidence, increasing the rate of relative SLR 

(Bawden et al. 2001).  

Within coastal estuaries, salt marshes are vulnerable to climate change. Ecological 

vulnerability is defined by both the exposure and sensitivity of an ecosystem or habitat to 
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shifts in climate (Glick et al. 2011). Sea-level rise and increasing storminess will both 

impact salt marshes, but on different time scales (Thorne et al. 2013). Sea level is not 

projected to increase at near exponential rates until the second half of this century, 

however, marshes are already experiencing the synergistic effects of sea-level rise and 

storms (e.g., Hurricane Katrina; Morton and Barras 2011). Storm surges caused by wind 

forcing and the inverse barometer effect increases inundation depth and duration, which 

can increase sediment deposition (Thorne et al. 2013). Wind-induced waves can mobilize 

sediment from adjacent mudflats and result in increased deposition (Fagherazzi et al. 

2013), but can also increase erosion at the marsh scarp. In fluvial-dominant estuaries, 

freshwater runoff during storms can carry large sediment loads; for example in the 

Tijuana Estuary, marsh sediment deposition rates were 8-9 cm/yr during the 1997-98 El 

Nino Southern Oscillation (ENSO; Ward et al. 2003).  

Salt marshes may also be sensitive to changes in temperature and precipitation 

associated with climate change. Increasing temperature can boost biomass production in 

some salt marsh plants (Charles and Dukes 2009), while increasing precipitation may 

reduce salt stress or increase waterlogging stress, depending on the ambient conditions 

(Noe and Zedler 2000). The phenology of salt marshes are also likely to shift as the 

climate changes, leading to the potential of trophic mismatches (Walther et al. 2002, 

Cleland et al. 2007). Assessing the biomass and phenology response to climate variation 

is important for a holistic understanding of climate change impacts to salt marsh 

ecosystems.  

The changes due to sea-level rise, climate change, and increasing storminess 

threaten the sustainability of intertidal systems (Day et al. 2008). Historically, salt 
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marshes have kept pace with changes in sea level through a variety of feedback 

mechanisms, including the inverse relationship between elevation and inundation 

(sedimentation) and the relationship between autochthonous productivity and inundation 

(Morris et al. 2002, Day et al. 2008, Janousek et al. 2016). However, the rapid rise in 

projected sea level casts doubt on the capacity of salt marshes to persist into the future. A 

comparison of several marsh elevation models found the combination of low suspended 

sediment concentrations and small tidal range increases the risk of marsh drowning 

(Kirwan et al. 2010). Continued development of dynamic, elevation response models 

calibrated with site-specific data can assist land managers in planning for the uncertainty 

of climate change.  

Three parameters are particularly critical for accurate models of marsh elevation 

responding to sea-level rise: baseline elevation, sedimentation rates, and organic 

production. High quality elevation data are necessary to accurately predict the timing of 

habitat changes, which is of particular concern for resource managers. Marsh accretion 

models are sensitive to initial elevation (Swanson et al. 2015) and high quality DEMs 

improve marsh inventories and habitat distribution estimates necessary for characterizing 

risk for species of concern. Second, site-specific data on sedimentation rates are required. 

Substantial variation in sediment accumulation rates across estuaries can be linked to 

terrestrial land use patterns (Wright and Schoellhamer 2004) and freshwater flow 

(Weston 2014), and needs to be accurately estimated for local projections of marsh 

elevation. Finally, the plant community contributes to vertical elevation by facilitating 

sediment deposition and through direct deposition of organic matter to marsh soils 

(Leonard and Luther 1995, Morris et al. 2002).   



5 

 

Remote sensing data offers invaluable spatial information for monitoring and 

modeling coastal ecosystems and can improve our projections of climate change impacts. 

Airborne light detection and ranging (lidar) is a common tool used to generate digital 

elevation models (DEMs) and is becoming more readily available to coastal managers 

and scientists. Detectors mounted underneath small aircraft record the timing of laser 

pulse reflections off the ground to determine elevation. However, the inability of the laser 

pulse to penetrate the dense vegetation canopy of most tidal marshes limits the accuracy 

of lidar-derived DEMs (Rosso et al. 2005, Montané and Torres 2006, Sadro et al. 2007, 

Schmid et al. 2011, Hladik and Alber 2012). Correcting vertical errors in lidar is then 

necessary for accurate predictions of flooding risk, marsh elevation change under sea-

level rise, or any application where inundation is of primary concern. In chapter 2, I 

assessed the error of lidar with GPS elevation field survey data across 17 marshes on the 

Pacific Coast of the United States and developed a novel method for correcting the bias 

in lidar-derived DEMs using fine resolution aerial imagery.  

Landsat satellite imagery offers another crucial remote sensing dataset for 

continuous monitoring of ecosystem change in wetlands. Imagery dating back to the 

1980s can be used to compare wetland extent and relative stress (Klemas 2001). 

Transformations of the spectral bands create vegetation indices that correlate with 

photosynthetic activity and when calibrated with ground data can be used to map 

aboveground biomass (Klemas 2013). With a revisit period of 16 days, calibrated Landsat 

scenes can be used to track changes in aboveground biomass over the course of a year 

and through time (Mo et al. 2015). Time-series remote sensing datasets are especially 

valuable for tracking responses to abiotic factors that are being altered as the climate 
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shifts (e.g., O’Donnell and Schalles 2016). In chapter 3, I calibrated Landsat data with 

biomass clip-plots and assessed how marsh biomass and phenology have responded to 

ENSO-driven variation in temperature, precipitation and sea level since 1984.  

While remote sensing datasets aide our ability to monitor and measure salt 

marshes, site-specific data is also required to parameterize models that project elevation 

changes in to the future. Previous sea-level rise modeling assessments of Pacific 

Northwest salt marshes (e.g., Glick et al. 2007) have used an average rate of accretion for 

the region based on data from Thom (1992), which is the only available study with results 

for accretion in the region. Estuaries across the PNW are heterogeneously exposed to sea 

level rise and storms and have a range of land use histories that may make the regional 

mean an overly simplistic approximation of marsh accretion rates. For chapter 4, I 

collected and analyzed 22 soil cores across eight PNW salt marshes and correlated the 

variation in accretion rates with watershed-scale factors. I also demonstrated the amount 

of uncertainty that can be incurred by using a regional mean instead of site-specific data 

in marsh elevation models. Finally, in Chapter 5 I calculate how much uncertainty is 

possible when both uncorrected lidar and non-local accretion rates are used in marsh 

elevation models, and identify several next steps for tidal marsh climate change research. 
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ABSTRACT 

 

Airborne light detection and ranging (lidar) is a valuable tool for collecting large amounts 

of elevation data across large areas; however, the limited ability to penetrate dense 

vegetation with lidar hinders its usefulness for measuring the tidal marsh surface. 

Methods to correct lidar elevation data are available, but a reliable method that requires 

limited field work and maintains spatial resolution is lacking. We present a novel method, 

the Lidar Elevation Adjustment with NDVI (LEAN), to correct lidar digital elevation 

models (DEMs) with vegetation indices from freely available multispectral airborne 

imagery (NAIP) and RTK-GPS surveys. Using 17 study sites along the Pacific coast of 

the U.S., we achieved an average root mean squared error (RMSE) of 0.072 m, with a 40-

75% improvement in accuracy from the lidar bare earth DEM. Results from our method 

compared favorably with results from three other methods (minimum-bin gridding, mean 

error correction, and vegetation correction factors), and a power analysis applying our 

extensive RTK-GPS dataset showed that on average 118 points were necessary to 

calibrate a site-specific correction model for tidal marshes along the Pacific coast. By 

using freely available data and with minimal field surveys, we showed that lidar-derived 

DEMs can be adjusted for greater accuracy while maintaining high (1 m) resolution. 
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INTRODUCTION 

 

The structure and function of tidal marshes are strongly driven by physical gradients 

including elevation and tidal range. Elevation, relative to mean sea level, is responsible 

for variation in abiotic features like accretion rates (Butzeck et al. 2014), soil 

characteristics (Cahoon and Reed 1995), pore water salinity, and oxygen availability 

(Hackney et al. 1996). Tidal marsh plants and animals have numerous adaptations for 

surviving these gradients in physical conditions (Pennings et al. 1992, Silvestri et al. 

2005); however, the elevation range in which species can persist is often narrow (< 1 m). 

In addition, small changes in marsh elevation can lead to large increases in inundation 

time under normal tidal cycles. Consequently, accurate characterization of elevation is 

critical for understanding tidal marsh ecogeomorphology, and tidal marsh structure and 

function are especially sensitive to changes in relative elevation due to sea level rise 

(Kirwan and Temmerman 2009, Kolker et al. 2009).   

Growing concern about the effects of climate change and sea-level rise on tidal 

marsh sustainability has increased interest in creating accurate digital elevation models 

(DEMs) of tidal marshes to better inform modeling and planning efforts. Airborne light 

detection and ranging (lidar) is a common tool used to generate DEMs and is becoming 

more readily available to coastal managers and scientists. High point return densities (1-

10 points/m) and relative ease of data collection across large areas have made lidar a 

popular option for measuring bare earth elevation and vegetation height (Hodgson and 

Bresnahan 2004, Kane et al. 2010). In areas with low vegetative cover (e.g., open terrain 

or concrete), the vertical accuracy of airborne lidar is between 15-25 cm root mean 

squared error (RMSE, eq. 2; Hodgson and Bresnahan 2004, Mitasova et al. 2009), with 
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normally distributed errors (mean error approaching zero). However, the inability of the 

laser pulse to penetrate the dense vegetation canopy of most tidal marshes limits the 

accuracy of lidar-derived DEMs (Montané and Torres 2006, Rosso et al. 2005, Sadro et 

al. 2007, Schmid et al. 2011, Hladik and Alber 2012). For example, one study found that 

just 3% of lidar points were reflected off the marsh surface (Sadro et al. 2007), and 

another found that lidar elevation error in tidal marshes was greater than in adjacent 

upland habitats (Schmid et al. 2011), creating a positive bias in mean elevation of 10-40 

cm (Sadro et al. 2007, Foxgrover et al. 2011, Hladik and Alber 2012). Even lidar 

collected during periods of seasonally low biomass in tidal marshes can exhibit 

significant (>20 cm) vertical errors (Schmid et al. 2011). Correcting vertical errors is 

necessary for accurate predictions of flooding risk, marsh elevation change under sea-

level rise, or any application where inundation is of primary concern. 

Several methods have been used to correct lidar error in tidal marshes, including 

vegetation correction factors (Hladik and Alber 2012), minimum-bin gridding (Schmid et 

al. 2011), an aboveground biomass model (Medieros et al. 2015), and statistical 

correction of full waveform lidar (Parrish et al. 2014); however, each of these methods 

have limitations that may hinder broad adoption. Vegetation correction factors require 

extensive vegetation surveys or expert knowledge of a marsh coupled with high accuracy 

GPS surveys to correlate lidar error with plant communities (Hladik and Alber 2012; 

overall RMSE = 0.1 m). Hyperspectral data can be useful in species and community 

classification in wetlands (Rosso et al. 2005, Sadro et al. 2007, Adam et al. 2010), but 

those data are not widely available and expensive to acquire. In addition, plant height and 

cover can vary substantially across elevation and salinity gradients, potentially requiring 
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multiple corrections for a single species or community. Minimum-bin gridding (MBG) 

uses the minimum lidar return value within a predefined grid pixel to set the value for the 

DEM. As pixel size increases lidar error generally decreases as more low values are 

included; however, horizontal resolution of the DEM decreases and because so few lidar 

returns hit the marsh platform, a positive bias remains (Schmid et al. 2011; RMSE = 0.17 

m). Medieros et al. (2015) used a combination of remote sensing datasets (ASTER 

imagery and interferometric synthetic aperture radar, InSAR) in a Florida tidal marsh to 

model aboveground biomass density and then correct lidar error. They achieved a 38% 

reduction in RMSE at 5-m horizontal resolution (0.65 to 0.40 RMSE). In addition to 

Real-Time Kinematic (RTK) GPS surveys, the biomass model requires labor-intensive 

vegetation sampling that may require destructive sampling if allometric equations for 

biomass are not available. Relying on two statistical models, each with a measure of 

uncertainty, may also limit the accuracy of the adjusted DEM. Vertical correction of full 

waveform lidar using waveform features is promising (Parrish et al. 2014), however, 

broad collection of waveform lidar is still relatively rare and it requires extensive 

processing skills; we focus our analysis on DEMs derived from discrete return lidar. 

Our objective was to develop a correction model for lidar-derived DEMs using 

readily available, high resolution (1 m), multispectral (red, green, blue, near-infrared) 

airborne imagery from the US Department of Agriculture (USDA) National Agriculture 

Inventory Program (NAIP). Derived products from the NAIP imagery, such as the 

Normalized Difference Vegetation Index (NDVI), correlate well with the spatial variation 

in vegetation biomass and structure (Gamon et al. 1995, Myneni et al. 1995, Filella et al. 

2004, Pettorelli et al. 2005), and we tested the ability of NDVI to calibrate a statistical 
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model of lidar error when used in conjunction with baseline elevation datasets (e.g., 

RTK-GPS surveys). We developed a statistical model of lidar error for a gradient of 

study sites in 17 tidal marsh sites along the Pacific coast of the United States. We applied 

the models and compared them to RTK-GPS field data to assess DEM accuracy, and we 

compared the performance of our model against other commonly applied correction 

techniques. Finally, we determined the minimum density of RTK-GPS data points 

necessary to achieve a DEM with maximum accuracy and tested the sensitivity of the 

statistical model to use NAIP images from years different than when the lidar data were 

collected. 

 

METHODS 

 Study Area 

Our study included 17 tidal marsh sites located in eleven estuaries where both lidar data 

and NAIP imagery were available (Fig. 2.1, Table 2.1). Sites were chosen to be 

representative of historic marsh conditions and many were on U.S. Fish and Wildlife 

Service National Wildlife Refuges (NWRs). While each study site had unique ecological 

and geomorphic characteristics, for broad comparisons they were grouped into three 

regions. Pacific Northwest (PNW) sites included: Grays Harbor NWR (hereafter Grays 

Harbor); Tarlet Slough in Willapa Bay NWR (Willapa); Millport Slough in Siletz Bay 

NWR (Siletz); Bull Island within the South Slough National Estuarine Research Reserve 

in Coos Bay (Bull Island); and the Bandon marsh unit in Bandon NWR in the Coquille 

Estuary (Bandon). San Francisco Bay (SFB) sites included: Black John marsh (Black 

John) and Petaluma marsh (Petaluma) on the west shore of the Petaluma River at the 
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northwest corner of San Pablo Bay; Coon Island and Fagan along the Napa river; San 

Pablo NWR (San Pablo) along the north shore of San Pablo Bay; China Camp State Park 

along the south shore of San Pablo Bay (China Camp); and the Corte Madera Marsh 

Ecological Reserve (Corte Madera) on the west shore of Central San Francisco Bay. 

Southern California (SCA) sites included: Morro Bay State Park (Morro); Naval Air 

Station Point Mugu (Mugu); Seal Beach NWR (Seal Beach); Upper Newport Bay Nature 

Preserve (Newport); and Tijuana Slough NWR (Tijuana). Tidal range increases with 

latitude, ranging from 1.75 m at Tijuana in the south, to 2.79 m at Grays Harbor in the 

north (tidesandcurrents.noaa.gov). 

Plant community composition and species richness varies substantially in marshes 

along the Pacific coast (Table 2.1). The PNW sites are comparatively species rich with a 

mix of salt, brackish, and fresh water sedges, grasses and rushes (Thorne et al. 2015). In 

SFB, the higher salinity sites (San Pablo, China Camp, Corte Madera, Black John and 

Petaluma) are dominated by Salicornia pacifica (mean height 20 cm), that creates dense 

mats at mid-high elevations, with Schoenoplectus spp. (mean height 86 cm) and Spartina 

foliosa and invasive Spartina alterniflora hybrids (mean height 91 cm) in lower 

elevations and along channels. The more brackish sites (Coon Island and Fagan) have 

higher species richness, with Schoenoplectus spp., Typha angustifolia (mean height 108 

cm), and Potentilla anserina (mean height 26 cm) also common (Takekawa et al. 2013). 

The SCA sites are characterized by high salinity and plants with a shorter growth forms 

including Salicornia pacifica (mean height 33 cm), Batis maritima (mean height 20 cm), 

and Distichlis spicata (mean height 14 cm; Thorne et al. 2016). 
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RTK-GPS surveys 

We conducted elevation surveys using survey-grade GPS rovers (RTK GPS, 2-5 

cm vertical accuracy, Leica Viva GS15 and Leica GX1230, Atlanta, GA, USA) and 

referenced the rovers to nearby National Geodetic Survey (NGS) benchmarks. Real-time 

corrections were provided by the Leica SmartNet station network in SFB, while in 

Oregon the Oregon Real-Time GNSS Network (ORGN) provided corrections. In SCA 

and Washington, we deployed a Leica GS10 base station with a radio link at a temporary 

benchmark that provided real-time corrections to the Leica Viva GS15 rover. We 

surveyed nearby NGS benchmarks for vertical control. We submitted the temporary 

benchmark locations to the NGS Online Positioning User Service that uses the precise 

ephemeris from the GPS satellite network to provide accurate (< 2 cm) temporary 

benchmark locations. We surveyed elevations at stations placed on gridded transects that 

ran perpendicular to the marsh-mudflat boundary. Transects were separated by 50 m and 

RTK sample stations were located every 25 m (SFB) or 12.5 m (PNW and SCA) on each 

transect for a density of 7-14 points per hectare. We used the geoid09 gravitational model 

to convert ellipsoid heights to North American Vertical Datum of 1988 (NAVD88) for 

the SFB and SCA sites, and used the geoid03 model for the PNW sites, matching the 

geoid models used in each lidar datasets. Across all sites the mean RMSE of the RTK–

GPS surveys was 0.046 m. 

For this study, we were interested in correcting the positive bias across the marsh 

platform, or mineral surface, and not in correcting possible bias in unvegetated marsh 

channels or mudflats. The RTK-GPS dataset used in this study were originally meant for 

developing DEMs through interpolation and included points that were near 
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topographically steep features (channels and scarps). We manually removed RTK-GPS 

points from the dataset that were within 2 pixels (m) of marsh channels or platform edge 

and likely subject to error due to pixel resolution (i.e., the lidar DEM pixel represented 

the side or bottom of a steep channel while the RTK-GPS point is on the marsh platform 

adjacent to the channel). 

 Airborne lidar data 

We obtained lidar-derived DEMs from the NOAA Digital Coastal Data Access 

Viewer (https://coast.noaa.gov/dataviewer/; Table 2.2). We used the local UTM (zone 10 

or 11) for the horizontal datum, and NAVD88 for the vertical datum. We selected mean 

grid averaging of all lidar returns at 1-m resolution. Our goal was to use ‘as-received’ 

lidar DEMs to eliminate any lidar processing from the workflow and to maximize the 

accessibility of the procedure. We determined lidar elevation at each RTK-GPS location 

with the ‘extract’ function in the ‘raster’ package in R (www.r-project.org). 

Multispectral imagery 

We obtained multispectral airborne imagery data for each site from the National 

Agriculture Imagery Program (NAIP, 1-m resolution; USDA Farm Service Agency). 

NAIP imagery is collected for each state on a rotating basis, roughly every two years and 

typically at the peak of the growing season. We preferentially chose imagery that was 

collected during the same year that lidar was flown to minimize potential error due to 

annual variation in plant productivity (Table 2.1). While the majority of our sites had 

imagery and lidar data collected in the same year, there were three exceptions. At two 

sites (Bandon, Bull Island) imagery was not available for 2008, so we used 2009 imagery 

http://www.r-project.org/
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instead. At China Camp and Corte Madera part of the 2010 image for the marsh was 

taken at high tide resulting in an uneven image; we instead used 2012 imagery for China 

Camp and Corte Madera. To assess the quality of georeferencing of the NAIP imagery, 

we visually compared NAIP and lidar landscape features (channels, roads, buildings) at 

each site. We found the 2009 and 2010 NAIP images aligned with the lidar and made no 

adjustments. The 2011 and 2012 NAIP imagery, however, were misaligned with the 

lidar; in ArcGIS we shifted those NAIP datasets slightly (< 3 m) to align with the lidar 

datasets, using 1-2 points across the marsh as ground control.  

The USDA releases full county, color-corrected mosaics of their NAIP imagery; 

however, the near-infrared band is removed and image compression reduces image 

fidelity. We instead used multiple unadjusted 4-band quarter quads at each study site for 

full coverage. We mosaicked together quarter quads in ENVI (v. 5, Exelis Inc, Boulder, 

CO, USA) using histogram matching of overlapping scenes to correct for differences in 

brightness across images. We then applied a dark object subtraction using the histogram 

of each band to correct for atmospheric interference (Chavez 1988). From the NAIP 

imagery, we calculated the Normalized Difference Vegetation Index (NDVI), as: 

NDVI =  
NIR−R

NIR+R
        Eq. 1. 

where, NIR is the near-infrared band (750 nm, band 4), and R is the red band (650 nm, 

band 3). NDVI is a relative index that ranges from -1 to 1, with values above 0 generally 

considered to be vegetated. While not an issue at our study sites, NDVI can saturate at 

high values; in areas where this occurs we suggest using the Wide Dynamic Range 

Vegetation Index instead. NDVI is also sensitive to electromagnetic absorption from 

water, thus it is important to use imagery collected during low tides.   
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Accuracy Assessment  

Following the accuracy assessment guidelines from Maune et al. (2007) and the 

National Standard for Spatial Data Accuracy (Federal Geographic Data Committee, 

1998), we used root mean squared error (RMSE), Fundamental Vertical Accuracy (FVA), 

and the 95th Percentile Error (PE) as metrics of DEM accuracy (Flood, 2004). RMSE is 

calculated as: 

   RMSE = sqrt[∑(zlidari − zRTKi)
2/n]    Eq. 2 

where, zlidari is the elevation of the lidar-derived DEM at ith RTK-GPS point, zRTKi is the 

elevation of the ith RTK-GPS point, n is the number of RTK-GPS points, and i is an 

integer (1 - n). RMSE is a common statistic used to determine the difference between two 

datasets and can be interpreted as the standard deviation if errors are normally distributed 

(NDEP, 2004). If errors are not normally distributed, then interpretation of RMSE is 

simply the magnitude of error. FVA is the 95% confidence interval for RMS and is 

calculated by RMSE*1.96. PE is defined as the absolute value that is greater than 95% of 

dataset. RMSE and FVA are only appropriate if errors follow a normal distribution; 

otherwise PE should be used (Flood 2004). We calculated the skewness of error of the 

original and adjusted DEMs, and following Flood (2004), considered error distributions 

normal if skewness was within the range [-0.5, 0.5]. We also calculated mean error (ME) 

as a measure of bias in the original and adjusted lidar DEMs  

ME =  ∑
(lidar elevation−RTKGPS elevation)

n
           Eq. 3 

where, n is the number of RTK-GPS points.  
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Model development 

We used a site-specific, multivariate approach to model the relationship between 

lidar error, determined by subtracting the lidar DEM from the RTK-GPS data, NAIP-

derived vegetation indices, and lidar elevation. Specifically, the model was defined as:  

    E = l + v + v2 + l*v + l*v2 + v2*v + l*v*v2  Eq. 4 

where, E is the error (lidar elevation minus RTK-GPS elevation), l is the uncorrected 

lidar DEM elevation, and v is the NDVI. The model is fit to a training dataset using least-

squares regression. We define this technique (Eq. 4) as the Lidar Elevation Adjustment 

with NDVI method (hereafter, the LEAN method).  

To test the sensitivity of LEAN to particular RTK-GPS points, we ran a 100-fold 

cross-validation analysis, randomly withholding 30% of the dataset for testing in each 

iteration. We calculated the average model correction from the individual cross-

validation runs and reported the standard deviation of percent improvement in RMSE 

compared with the original lidar-derived DEM. To develop the best possible LEAN 

model, we trained the final NAIP model using the entire RTK-GPS dataset for each site.  

We produced an adjusted DEM by applying LEAN to the lidar DEM and NDVI 

from the NAIP image. This was accomplished by converting the raster values of the 

aligned lidar DEM and NDVI datasets to numeric vectors and using the ‘predict’ function 

in base R to generate predictions of lidar error. The predicted lidar error was then 

subtracted from the original lidar DEM to produce an adjusted DEM of the marsh 

platform. To restrict model corrections to areas above the elevation of the mudflat and 
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channels, we determined a site-specific marsh elevation height from inspection of the 

original lidar and NAIP imagery (Table 2.4). The final DEM was a mosaic of the LEAN-

adjusted DEM above the marsh elevation height, and the original lidar DEM below the 

marsh elevation height. Our calibration RTK-GPS dataset did not include data from the 

channels (sides nor bottoms) or mudflats; we assumed any error in these areas were not 

due to dense vegetation and therefore LEAN was not appropriate for making adjustments 

to the DEM.  

The timing of lidar acquisition is an important factor when considering effects of 

marsh vegetation on lidar returns. To assess the importance of concurrent (same year) 

lidar collection and NAIP imagery, we compared performance of models trained using 

NAIP images from different years than the lidar was flown at a subset of sites (Coon 

Island, Fagan, Mugu, Petaluma, Siletz, Tijuana). We analyzed the difference in RMSE 

between the correction models using a paired t-test (α=0.05).  

Seasonal differences in vegetation height and density due to phenology are 

important in the context of vertical lidar error. To make our technique as broadly 

applicable as possible, we relied on readily available NAIP imagery that was collected in 

a different season than the lidar acquisition at several of our sites (Table 2.1). Our goal 

was not to directly infer aboveground biomass in our models, but rather to use the NAIP 

imagery as an indicator of spatial variability in vegetation height and density. Our 

approach assumes that the spatial variability detected in the NAIP imagery correlates 

with the variability in plant height and density when the lidar was flown (e.g., the 

location of dense vegetation in June is reasonably correlated with the location of dense 

vegetation in October). As we are relying on site-specific data to calibrate the correction 
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model, only the relative magnitude of the NDVI signal across marsh is important, rather 

than the absolute value, thereby reducing the effect of seasonal differences in lidar and 

NAIP collection in our model. Caution should be used in areas with substantial 

senescence of vegetation when there is seasonal mismatch between lidar and 

multispectral imagery acquisitions.  

Comparison of LEAN to Alternative Models 

We compared LEAN to three published methods for adjusting lidar derived 

DEMs; minimum-bin gridding (MBG), mean error correction (MEC), and vegetation 

correction (VC). We compared LEAN to MBG and MEC across all our sites. For MBG, 

we acquired 5-m resolution lidar DEMs from NOAA’s Coastal Data Viewer using the 

minimum grid averaging option. We then estimated the RMSE and mean error between 

the RTK-GPS elevation and elevation of the 5-m DEM at each RTK-GPS location. For 

MEC, we subtracted the mean difference between the 1-m lidar DEM and the RTK-GPS 

elevation from the original DEM. We then calculated the RMSE and ME for the MEC 

DEM. As MEC only uses RTK-GPS data, the difference in performance between MEC 

and LEAN represent the benefit for including NDVI from NAIP imagery into a 

correction model. For the three correction models (LEAN, MBG, MEC), we randomly 

subset the RTK data into 70% training and 30% testing datasets and used a 100-fold 

cross-validation compare model performance. For two sites in SFB (China Camp and 

Coon Island), we also compared the RMSE of an existing VC DEM (Schile et al., 2014) 

with the RMSE from LEAN using our RTK data. The existing VC DEMs were created 

from the same SFB lidar dataset used in this study. We used paired t-tests (α=0.05) to 
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compare the RMSE from the alternative methods with LEAN, and one-way ANOVAs to 

compare initial and adjusted RMSE across regions.  

Power Analysis 

Finally, we conducted a power analysis to estimate the minimum number of RTK-

GPS points necessary to create a LEAN model that was statistically equivalent to the 

cross-validated LEAN model. For each site we randomly stratified RTK-GPS points into 

four classes, above and below mean lidar elevation and mean NDVI value, selecting an 

increasing number of points per class and replicating the subset 1000 times. We then 

determined the number of RTK-GPS points that would calibrate a model with a RMSE 

within 1 cm of the mean cross-validated RMSE. We calculated the mean, standard 

deviation and median of the lowest number of points per site. We conducted all analyses 

and model development using R version 3.2.2 (http://cran.r-project.org) and ArcGIS 

(version 10.1, ESRI, Redlands, CA). 
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Figure 2.1. Location of 17 tidal marsh study sites along the Pacific coast of the 

United States. Study sites represented a range of dominant tidal marsh vegetation, 

climate, and tidal ranges to test the applicability of model corrections across 

different veg 
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Table 2.1. Characteristics of study sites used to correct lidar data for coastal tidal marshes 

using NAIP imagery. Area (ha), number of RTK-GPS points and year collected, lidar and 

NAIP acquisition months, and dominant vegetation. More specific acquisition dates could 

not be determined from available metadata at Bull Island and Bandon, and we could only 

determine a range of dates for San Francisco Bay. Species are listed if they were found in 

at least 25% of vegetation survey plots (Takekawa et al. 2013, Thorne et al. 2015, Thorne 

et al. 2016).  

 

Site Area 

RTK-

GPS 

RTK 

Year 

Lidar 

Acq. 

NAIP 

Acq. Dominant Vegetation 

Pacific Northwest  

  Grays H. 68 1166 2012 9/2009 9/2009 CarLyn, ArgSto, TriMar, PotAns 

  Willapa 27 420 2012 9/2009 9/2009 DisSpi, SalPac, TriMar, DesCep, CarLyn 

  Siletz 69 1113 2014 9/2009 6/2009 ArgSto, CarLyn, DisSpi, PotAns, JunBal 

  Bull Island 97 1166 2012 2008 6/2009 CarLyn, SalPac, DisSpi, DesCep 

  Bandon 97 1495 2012 2008 6/2009 SalPac, DisSpi, DesCep, CarLyn, AgrSto 

San Francisco Bay 

  Petaluma 81 623 2009 2-4/2010 6/2010 SalPac, SpaFol 

  Black John 31 203 2009 2-4/2010 6/2010 SalPac, SpaFol 

  San Pablo 147 374 2009 2-4/2010 6/2010 SalPac, SpaFol 

  Fagan 68 578 2010 2-4/2010 5/2010 SalPac, BolMar, PotAns 

  Coon Island 99 728 2009 2-4/2010 5/2010 SalPac, BolMar 

  China Camp 97 697 2009 2-4/2010 5/2012 SalPac, SpaFol 

  Corte Madera 45 399 2010 2-4/2010 5/2012 SalPac, SpaFol 

Southern California 

  Morro 154 2247 2013 10/2009 6/2009 SalPac, JauCar 

  Mugu 109 1465 2013 11/2009 6/2009 SalPac, FraSal 

  Seal Beach 266 3208 2011 9/2009 6/2009 SalPac FraSal, SpaFol 

  Newport 60 962 2012 9/2009 6/2009 SalPac, SpaFol, BatMar 

  Tijuana 62 896 2011 11/2009 6/2009 SalPac, JauCar, FraSal, DisSpi 

Species codes are: CarLyn = Carex lyngbyei; ArgSto = Agrostis stolonifera; TriMar = Triglochin maritima; 

PotAns = Potentilla anserine; DisSpi = Distichlis spicata; DesCep = Deschampsia cespitosa; JunBal = 

Juncus balticus; SalPac = Salicornia pacifica; SpaFol = Spartina foliosa; JauCar = Jaumea carnosa; FraSal 

= Frankenia salina; BatMar = Batis maritima; BolMar = Bolboschoenus maritimus.  
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Table 2.2. Flight characteristics and accuracy of lidar data. 

  San Francisco Bay 

CA State Coastal 

Conservancy DOGAMI 

Contractor Fugro EarthData Fugro EarthData Watershed Sciences 

Sensor Leica ALS60 MPiA Leica ALS60 MPiA Leica ALS50 Phase II 

Points/m 1 1 8.60 

RMSE (m, open terrain) 0.026 0.048 0.044 

Geoid Model Geoid09 Geoid09 Geoid03 

Flightline overlap (%) 20 20 50 

Altitude (m) 2000 1900 900 

Field of View (degrees) 30 30 28 

Pulse Rate (Hz) 121,300 121,300 105,000 

Scan Rate (Hz) 41 41 52.2 

Returns Discrete Discrete Discrete 

Abbreviation SFB SCA PNW 

 

 

RESULTS 

RTK-GPS Surveys 

After removing points outside the marsh platform, a total of 17,740 RTK-GPS points 

across all sites were included in model development and analysis. Sites had an average of 

96.0% (SD = 7.7) of their RTK-GPS elevations lower than the lidar DEM, indicating that 

vegetation biased lidar returns across all our study sites. Even when accounting for 5 cm 

of RTK-GPS measurement error, sites had an average of 88.9% (SD = 15.5) points that 

were lower than the lidar DEM. Across all sites, ME for lidar was 0.208 m (SD = 0.109) 

and RMSE was 0.231 m (SD = 0.010; Table 2.3).  

Lidar data 

Lidar error varied across study regions and between sites within regions (Fig. 

2.2). Grays Harbor and Willapa had higher initial lidar RMSE, while Bull Island, 



28 

 

Bandon, Mugu and Tijuana had lower initial RMSE. The higher point density of the 

PNW lidar dataset (8 pts/m vs. 1 pt/m) did not appear to have an effect on lidar error, as 

Willapa and Grays Harbor had the highest lidar error while Bull Island and Bandon had 

some of the lowest error. This likely is related to differences in the vegetation 

communities across the sites. 

Initial RMSE across the PNW sites and the SFB sites were significantly greater 

than the initial RMSE across the SCA sites (PNW vs. SCA, t = 2.39, df = 8, p = 0.044; 

SFB vs. SCA, t = 5.29, df = 10, p < 0.0001). While the PNW sites had a larger range of 

initial RMSE, it was not significantly different than the SFB initial RMSE (t = 0.78, df = 

10, p = 0.45). Mean initial RMSE across all site was 0.231 m (sd = 0.098). 

DEM correction 

The LEAN model reduced lidar bias by an average of 58.5% across all sites, 

ranging from 40-75% (Table 2.3). The mean RMSE after LEAN correction across all 

sites was 0.072 m (sd = 0.018). LEAN successfully eliminated the positive bias in lidar 

error (Fig. 2.3); ME across all sites was 0 (sd = 0.065). Mean percent improvement in 

RMSE using LEAN varied significantly across regions (ANOVA, F2, 14 = 5.05, p = 

0.022).  

Alternative Models 

Mean RMSE across the sites calibrated with alternative year NDVI data was 

0.059 m (SD=0.005), while the mean RMSE of models calibrated with the NDVI from 

the same year as the lidar was 0.065 m (SD=0.009). Correlation in NDVI between years 

ranged from moderate (0.52) to low (0.028) with a mean of 0.20. There was no 
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significant difference in RMSE between the alternative NDVI year models and the 

models with the original NDVI (paired t-test; t = 1.50, df =4, p = 0.103).   

The MGB, MEC, and VC lidar correction methods reduced the RMSE of the lidar 

data, but not as much as the LEAN method when compared to the RTK-GPS elevation 

points. Correcting the lidar DEM with the MEC reduced RMSE to an average of 0.096 m 

(CI = 0.188 m), which was significantly greater than the RMSE using LEAN (paired t-

test, t = 2.79, df = 16, p = 0.007; Table 2.4). MBG at 5 m resolution increased mean 

RMSE across sites to 0.271 m, and ME was positively biased at 0.065 m. At a few sites 

(Newport, Tijuana), MBG reduced signed mean error to within ±5 cm of 0, however, the 

RMSE was > 0.2 m (Table 2.5). At China Camp, RMSE of the VC DEM was 0.12 m, 

compared to 0.051 m RMSE achieved using LEAN, while at Coon Island, RMSE of the 

VC DEM was 0.084 m compared to a RMSE of 0.070 m using LEAN. 

Power Analysis 

Across sites, an average of 118.3 (SD = 56.7) total RTK-GPS ground points, 

stratified by mean elevation and NDVI, resulted in a LEAN model RMSE that was within 

1 cm of the mean cross-validated RMSE, while an average of 87 total RTK-GPS points 

resulted in models within 2 cm of the mean RMSE. Three sites (Corte Madera, China 

Camp, and Willapa) did not converge on the mean cross-validated RMSE and were 

excluded from the average. Grays Harbor needed the highest number of RTK-GPS points 

(236), while Black John required only 52 to build a robust LEAN model. The median 

number of RTK-GPS points needed was 104. Figures for each site are provided as 

supplemental information (Appendix A, S1-S3).  
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Figure 2.2. Boxplot of uncorrected lidar error (top) and errors from Lidar Elevation 

Adjustment using NDVI (LEAN) corrections (bottom) across study sites. Lidar error was 

calculated by subtracting RTK-GPS elevation from the lidar DEM. Box shading 

designates region. 
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Figure 2.3. Positive bias in lidar DEM before Lidar Elevation Adjustment using NDVI  

(LEAN) correction (top) and after LEAN correction (bottom), with a 1:1 line. Units in m, 

NAVD88. 
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Table 2.3. Uncorrected lidar data root mean squared error (RMSE), initial mean error 

(ME), and fundamental vertical accuracy (FVA), 95th Percentile Error (PE, with standard 

deviation) from the training data, and mean (SD) Normalized Difference Vegetation 

Index (NDVI) for 17 study sites along the Pacific coast of the United States. Lidar error 

was calculated by subtracting RTK-GPS elevations from a 1-m lidar DEM for each study 

site. Sites where the skewness of the error distribution exceeds [-0.5, 0.5] are denoted 

with *. 

Site RMSE ME FVA PE NDVI Mean (SD) 

Pacific Northwest 
    

  Grays Harbor 0.466 0.419 0.912 0.871 (0.017) 0.228 (0.156) 

  Willapa* 0.392 0.382 0.768 0.501 (0.008) 0.203 (0.101) 

  Siletz* 0.304 0.269 0.596 0.434 (0.010) 0.410 (0.067) 

  Bull Island* 0.145 0.078 0.284 0.476 (0.15) 0.138 (0.099) 

  Bandon* 0.118 0.016 0.232 0.243 (0.004) 0.289 (0.127) 

PNW Mean 0.285 0.233 0.560 0.505 (0.011) 0.254 (0.057) 

San Francisco Bay 
    

  Petaluma* 0.289 0.282 0.566 0.382 (0.004) 0.259 (0.058) 

  Black John 0.278 0.264 0.546 0.418 (0.011) 0.222 (0.053) 

  San Pablo 0.265 0.253 0.520 0.374 (0.003) 0.385 (0.094) 

  Fagan 0.256 0.242 0.502 0.376 (0.006) 0.339 (0.094) 

  Coon Island 0.273 0.260 0.535 0.401 (0.007) 0.348 (0.075) 

  China Camp 0.233 0.228 0.457 0.309 (0.003) 0.155 (0.047) 

  Corte Madera 0.182 0.228 0.357 0.367 (0.008) 0.218 (0.068) 

SFB Mean 0.254 0.251 0.498 0.375 (0.006) 0.275 (0.070) 

Southern California 
    

  Morro* 0.109 0.082 0.214 0.216 (0.002) 0.011 (0.137) 

  Mugu 0.155 0.154 0.303 0.266 (0.003) 0.238 (0.142) 

  Seal Beach* 0.168 0.147 0.329 0.295 (0.003) 0.347 (0.123) 

  Newport 0.183 0.140 0.358 0.352 (0.008) 0.235 (0.126) 

  Tijuana* 0.113 0.084 0.221 0.209 (0.006) 0.239 (0.074) 

SCA Mean 0.145 0.121 0.285 0.268 (0.004) 0.214 (0.120) 

Overall Mean 0.231 0.208 0.453 0.382 (0.007) 0.251 (0.097) 
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Table 2.4. Lidar Elevation Adjustment using NDVI (LEAN) corrected DEM accuracy 

statistics for 17 tidal marshes along the Pacific coast of the United States. Root mean 

squared error (RMSE) for LEAN-corrected DEMs using all RTK-GPS points, Mean 

RMSE (standard deviation) from 100-fold cross-validation, mean error (ME), 

fundamental vertical accuracy (FVA), 95th Percentile Error (PE, with SD), and percent 

improvement in PE (Imp.). Sites where the skewness of the error distribution exceeds [-

0.5, 0.5] are denoted with *. 

Site 

RMSE 

(All Pnts) RMSE Mean ME FVA PE Mean Imp. 

Mud

-flat 

Elev 

(m) 

Pacific Northwest 
     

 

  Grays Harbor 0.118 0.121 (0.005) 1.77E-15 0.236 0.231 (0.010) 73.4 2.1 

  Willapa 0.079 0.072 (0.011) 5.50E-16 0.141 0.126 (0.015) 74.9 2.2 

  Siletz* 0.090 0.092 (0.006) -5.86 E-15 0.181 0.182 (0.019) 58.0 2.3 

  Bull Island* 0.076 0.080 (0.006) -2.01E-16 0.156 0.150 (0.009) 42.5 1.7 

  Bandon 0.069 0.071 (0.004) 8.93E-16 0.138 0.139 (0.007) 42.6 1.5 

PNW Mean 0.086 0.087 (0.006) 0.000 0.170 0.166 (0.013) 58.3 - 

San Francisco Bay 
     

 

  Petaluma* 0.056 0.069 (0.028) 2.00E-15 0.135 0.110 (0.009) 71.2 1.3 

  Black John 0.071 0.081 (0.012) 3.01E-15 0.158 0.136 (0.014) 67.4 1.3 

  San Pablo 0.070 0.075 (0.011) 1.04E-14 0.146 0.142 (0.014) 62.1 1.3 

  Fagan 0.064 0.070 (0.013) 3.36E-15 0.138 0.127 (0.013) 66.3 1.3 

  Coon Island* 0.070 0.071 (0.004) -9.86E-15 0.140 0.144 (0.011) 64.0 1.3 

  China Camp 0.051 0.054 (0.004) 7.74E-16 0.106 0.099 (0.008) 67.9 1.3 

  Corte Madera 0.057 0.062 (0.009) -1.77E-15 0.122 0.150 (0.012) 59.0 1.3 

SFB Mean 0.063 0.069 (0.012) 0.000 0.135 0.130 (0.012) 65.4 - 

Southern California 
     

 

  Morro 0.056 0.057 (0.003) 1.06E-15 0.112 0.113 (0.008) 47.8 1.3 

  Mugu 0.049 0.049 (0.001) -5.94E-16 0.096 0.107 (0.005) 59.7 1.3 

  Seal Beach 0.074 0.074 (0.002) 7.39E-15 0.146 0.149 (0.006) 49.6 1.3 

  Newport* 0.102 0.104 (0.008) -5.61E-16 0.203 0.211 (0.019) 40.0 1.2 

  Tijuana* 0.064 0.065 (0.004) -1.94E-15 0.127 0.123 (0.011) 41.1 1.3 

SCA Mean 0.069 0.070 (0.004) 0.000 0.137 0.142 (0.010) 47.6 - 

Overall Mean 0.072 0.076 (0.008) 0.000 0.138 0.143 (0.011) 58.1 - 
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Table 2.5. Estimated error for alternative methods for correcting lidar digital terrain 

models. Mean Error Correction (MEC) root mean error squared (RMSE, m; with standard 

deviation), 5 m minimum bin gridding (MBG) RMSE (m; SD), and 5 m MBG mean error 

(m; SD) are reported from the 100-fold cross-validation models. 

Site MEC RMSE MBG RMSE MBG Mean Error 

Pacific Northwest 

  Grays Harbor 0.204 (0.010) 0.360 (0.014) 0.271 (0.012) 

  Willapa 0.089 (0.010) 0.312 (0.020) 0.227 (0.014) 

  Siletz 0.101 (0.006) 0.226 (0.012) 0.089 (0.008) 

  Bull Island 0.092 (0.007) 0.259 (0.020) -0.062 (0.011) 

  Bandon 0.141 (0.008) 0.258 (0.019) -0.075 (0.011) 

PNW mean 0.125 (0.008) 0.283 (0.016) 0.090 (0.011) 

San Francisco Bay 

  Petaluma 0.064 (0.004) 0.286 (0.020) 0.162 (0.015) 

  Black John 0.089 (0.006) 0.245 (0.026) 0.153 (0.022) 

  San Pablo 0.080 (0.005) 0.259 (0.025) 0.113 (0.019) 

  Fagan 0.083 (0.004) 0.224 (0.016) 0.077 (0.014) 

  Coon Island 0.084 (0.004) 0.288 (0.021) 0.105 (0.016) 

  China Camp 0.054 (0.003) 0.251 (0.022) 0.106 (0.014) 

  Corte Madera 0.063 (0.007) 0.278 (0.013) 0.114 (0.014) 

SFB mean 0.074 (0.005) 0.262 (0.021) 0.119 (0.016) 

Southern California 

  Morro 0.072 (0.004) 0.213 (0.012) -0.051 (0.006) 

  Mugu 0.064 (0.002) 0.209 (0.006) 0.135 (0.006) 

  Seal Beach 0.081 (0.002) 0.315 (0.011) -0.083 (0.008) 

  Newport 0.118 (0.010) 0.240 (0.022) 0.000 (0.011) 

  Tijuana 0.075 (0.002) 0.229 (0.021) -0.033 (0.013) 

SCA mean 0.082 (0.005) 0.241 (0.015) -0.007 (0.009) 
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DISCUSSION 

Consistent with previous studies, we found that lidar overestimated tidal marsh surface 

elevation at all our study sites. The bias ranged from 0.11-0.47 m (RMSE), which at the 

high end exceeds values for sites in South Carolina (0.15 m; Schmid et al. 2011) and 

Georgia (0.23 m; Hladik and Alber 2012), but is less than the bias found in a Florida 

marsh along the Gulf of Mexico (0.65 m, Medeiros et al. 2015). Lidar bias in our study 

varied by study region, likely because each region has distinct dominant vegetation 

communities (Table 2.1) with different canopy heights and densities (Schmid et al. 2011, 

Hladik and Alber 2012, McClure et al. 2016). Additionally, lidar was acquired in 

different seasons, which may also explain regional differences in initial error.   

The LEAN model reduced positive bias in lidar DEMs 40-75% across the 17 tidal 

marshes, with low variation in final RMSE (Fig. 2.4). By relying on a statistical approach 

to lidar error correction, LEAN was insensitive to temporal mismatches between NDVI 

and lidar datasets, evidenced by the low standard deviation in final RMSE across sites 

(0.018 m; an 82% reduction in RMSE variation across sites). LEAN successfully reduced 

lidar error across a wide variety of dominant marsh vegetation communities while 

maintaining high spatial resolution, and the mean RMSE of 0.072 m across all our sites is 

lower than previous attempts to correct lidar in tidal marshes. In comparisons with other 

correction methods, the accuracy of our LEAN model was followed by MEC (0.096 m 

RMSE), VC (0.10 m RMSE, for China Camp and Coon Island), and MBG (0.271 m 

RMSE). Unexpectedly, MBG resulted in increased mean RMSE across sites, likely due 

to the addition of channel and mudflat features within the 5 m pixels. Because we 

modeled total lidar elevation errors, LEAN accounts for both random sensor error and the 
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systematic influence of dense vegetation canopies. Our focus was to correct the positive 

bias across the marsh platform as our RTK-GPS dataset did not include points within 

channels or on mudflats; additional work is warranted to address lidar error in these 

important marsh features. 

LEAN (RMSE of 0.051 m) outperformed two prior efforts to correct lidar at 

China Camp that used vegetation correction methods. Schile et al. (2014) used the mean 

error for the dominant species (Salicornia pacifica) to correct the lidar DEM and 

achieved a RMSE of 0.12 m. McClure et al. (2016) used a more detailed vegetation map 

and correction factors for five species of plants to create a modified DEM with a RMSE 

of 0.098 m. LEAN likely outperforms VC methods because NDVI captures variation in 

both plant canopy height and aboveground biomass that can influence lidar reflectance 

and canopy penetration. More important than the relatively small improvements in 

accuracy is that LEAN does not require time-consuming vegetation surveys and airborne 

photo interpretation or expensive hyperspectral data to develop correction factors for 

individual species or communities, making LEAN relatively easy and inexpensive to 

implement.  

The temporal mismatch between the RTK-GPS surveys and lidar acquisition is a 

potential source of uncertainty. Annual changes in tidal marsh elevations, however, occur 

at the millimeter-scale (2-8 mm/yr at our study sites, Thorne et al. 2015, Thorne et al. 

2016) and the amount of instrument error in both the RTK-GPS (~2 cm) and lidar (>4 

cm) is too large to robustly detect marsh elevation changes over relatively short time 

periods. A greater temporal mismatch is not necessarily an issue, provided the RTK-GPS 

surveys occur after the lidar acquisition; adjustments to the original lidar DEM using 
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LEAN can be interpreted as both correcting for dense vegetation and updating the DEM 

for changes in surface elevation. 

Lidar-derived DEMs corrected using LEAN can be confidently used in mid-term 

(2050) SLR projections. NOAA recommends that DEMs used in sea-level rise (SLR) 

projections should be at least twice as accurate (using the 95% confidence interval, 

RMSE*1.96) as the SLR increment being modeled (NOAA 2010). Mean SLR projections 

for our study regions and the recommended DEM accuracies for 2030, 2050 and 2100 are 

provided (Table 2.6). The uncorrected lidar appears to have sufficient accuracy for 100-

year projections across our SCA sites, but not our SFB or PNW sites illustrating that 

uncorrected lidar should be used with caution for assessing flooding risk to tidal marshes 

and other coastal zones without a correction for vegetation. Technological and analysis 

advances are necessary before lidar is capable of the accuracy needed for short-term 

(2030) projections, especially for areas with relatively low SLR projections as in the 

PNW.   

Reliance on unadjusted lidar has consequences for both short and long term 

ecological applications for low slope tidal marshes. In the short term, LEAN-adjusted 

DEMs can correct projections of inundation frequency during the 24-hour tide cycle. For 

example, at three representative sites the estimate of inundation duration for the mean 

elevation of each site ranged from 1.3 to 4 times longer using the LEAN adjusted DEM 

versus uncorrected lidar (results not shown). Small changes in duration of inundation 

may change productivity (Janousek et al. 2016) and community composition of marsh 

plants (Kirwan and Guntenspergen 2012, Langley et al. 2013), and affect wildlife that 
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rely on intertidal habitats for nesting, foraging, and refugia (Shaughnessy et al. 2012, 

Takekawa et al. 2012).  

In the long term, unadjusted DEMs can bias predictions of marsh persistence 

under SLR. Models like the Sea Level Affecting Marshes Model (SLAMM; Craft et al. 

2009), Marsh Equilibrium Model (MEM; Morris et al. 2002), and Wetland Accretion 

Model for Ecosystem Resilience (WARMER; Swanson et al. 2013) all require an initial 

DEM with accurate starting elevation upon which to make future elevation projections 

under SLR. Sensitivity analysis of WARMER results indicate that 30-50% of the 

variance in final elevation is due to initial elevation (Thorne et al. 2015, Thorne et al. 

2016). In comparing WARMER projections for 2110 with uncorrected DEMS and LEAN 

adjusted DEMs for three of our study sites (Grays Harbor, Petaluma, and Tijuana), we 

found WARMER predicted a loss of high marsh habitat 30 years earlier at Grays Harbor 

with the LEAN adjustment. At Petaluma, high marsh classified with the lidar DEM was 

reclassified as mid marsh with the LEAN DEM, and the transition to mudflat was 

predicted to be 10 years earlier, and at Tijuana the amount of habitat currently classified 

as high marsh was reduced by 46%, illustrating the importance of correcting lidar for 

marsh vegetation (results not shown, marsh classifications from Thorne et al. 2015 and 

Thorne et al. 2016). 

LEAN was also robust to variation in NAIP image availability. We found that 

LEAN calibrated with NAIP imagery from years other than those of the lidar data 

performed as well as the LEAN corrections using lidar data and NAIP imagery from the 

same year. Due to the variance in correlation of NDVI between images, however, a 

LEAN model should not be calibrated with a NAIP image from one year and projected 
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using a different year. Theoretically, the shorter the timespan between lidar and NAIP (or 

NDVI) data acquisitions, the more accurate the model corrections; however, the results 

seem robust to differences of several years, likely due site-specific model calibration and 

low interannual variation of marsh perennials. In addition, NAIP images may be acquired 

during high tides or cloudy conditions in some years which will affect NDVI values, thus 

the capability of LEAN to use images from any recent year is especially useful.   

We suggest taking at least 40 RTK-GPS points per vegetation class (± mean 

elevation and ± mean NVDI) to produce a robust DEM using LEAN, and up to 60 per 

class if the marsh has greater spatial variation in plant density and height. This number of 

sample points (~120) would also be sufficient to run a cross-validation for assessing 

model performance. In addition, separate model calibrations should be performed in areas 

that have very different dominant vegetation. For instance, we recommend modeling salt, 

brackish, and freshwater marshes within an estuary separately as the relationship between 

lidar error and NDVI may vary across these different marsh types. From the power 

analysis, we found no relationship between marsh area and number of RTK-GPS needed 

for LEAN calibration. While our sites were generally small in area, this result highlights 

the importance of capturing the variation in NDVI and initial lidar DEM with the RTK-

GPS surveys rather than ensuring a specific density of points. Additional RTK-GPS 

points should be collected in areas with complex vegetation communities and high 

variability in NDVI. Finally, to avoid errors related to lidar DEM resolution, we advise 

surveying elevation at least 1 pixel (m) away from areas with steep slope such as 

channels and scarps.  
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CONCLUSION 

 

Airborne lidar provides valuable elevation data by generating thousands of data points 

per hectare. However, some correction to lidar DEMs is required to offset the positive 

bias caused by the dense vegetation canopy in tidal marshes. The LEAN method for 

correcting lidar data requires a relatively small dataset of ground elevation points for 

calibration and a spatial map indicative of vegetation density (e.g., NDVI). The power 

analysis showed that on average approximately 120 RTK-GPS points were necessary for 

a robust LEAN model.  

LEAN could be applied to other habitat types where dense vegetation obstructs 

the ground surface and high vertical accuracy is needed. So long as a sufficient number of 

RTK-GPS data are available, our statistical approach to lidar correction should be robust. 

The flat terrain and dynamic coastal landscape necessitates that tidal marsh DEMs be 

highly accurate to be useful across ecological, geomorphological, and engineering 

applications. NDVI derived from commercially available satellite images could be used 

in place of the NAIP airborne images to expand our method to areas in the world not 

covered by NAIP imagery. 
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Figure 2.4. Example results from each region (Pacific Northwest: Grays Harbor; San 

Francisco Bay: Petaluma; Southern California: Tijuana. (a) Uncorrected lidar digital 

terrain model (DEM; (b) model adjusted DEM, and (c) total adjustment. Elevation in m, 

National Vertical Datum of 1988. 
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Table 2.6. Sea-level rise (SLR) projections (National Research Council 2012) and 

recommended digital elevation model accuracy (root mean squared error [RMSE]) for 

San Francisco Bay (SFB), Southern California (SCA), and Pacific Northwest (PNW) 

study sites. 

 

 
SLR Projection (cm)  RMSE (cm) 

Year SFB/SCA PNW  SFB/SCA PNW 

2030 14.4 6.8  3.8 1.7 

2050 28.0 17.2  7.1 4.3 

2100 91.9 63.3  23.2 16.0 
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ABSTRACT 

Tidal marsh plant sensitivity to climate change impacts beyond sea-level rise has not 

been well established. Plant biomass is critical in the biogeomorphic feedback that occurs 

in marshes, which helps maintain marsh elevation relative to sea-level, as well as 

sequestering carbon. Furthermore, the phenology range of peak biomass has not been 

well documented in tidal marshes even though it may have important ecological 

consequences. We used the Landsat archive to assess how recent climate variation has 

affected biomass production and plant phenology across three maritime tidal marshes in 

the Pacific Northwest of the United States. We developed models of annual phenology 

using the Tasseled Cap Greenness (TCG) vegetation index and up to 29 years of images. 

We harvested biomass across 30 Landsat pixels to validate the relationship between TCG 

and aboveground biomass, and developed a significant model with reasonably high 

predictive power (r2 = 0.72). We then assessed relationships between both peak biomass 

and peak day of year (DOYP) and 94 climate and sea-level metrics using generalized 

linear models and Akaike Information Criterion model selection. We found peak biomass 

was positively related to total annual precipitation, while the best predictor for DOYP 

was average temperature in May, with DOYP 4.5 days earlier per degree C. Our study 

shows how plants in maritime tidal marshes respond to interannual climate variation and 

demonstrates the utility of time-series remote sensing data to assess ecological responses 

to climate change.   
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INTRODUCTION 

Tidal marshes are among the world’s most productive ecosystems (Mitsch and Gosselink 

2007) and they are among the most vulnerable to climate change. Climate change will 

impact coastal ecosystems through sea-level rise, increasing temperatures, and changing 

precipitation patterns (Scavia et al. 2002, Day et al. 2008), risking the loss of ecosystem 

services (Barbier et al. 2011) such as carbon storage (Chmura et al. 2003) and alteration 

of habitat composition important to wetland wildlife (Takekawa et al. 2012). Changes in 

tidal marsh plant community composition are already apparent and are projected to 

continue (Jarrell et al. 2016, Ward et al. 2016, Thorne et al. 2015, Thorne et al. 2016). 

However, the sensitivity of tidal marsh plants to changes in climate is not well 

understood (e.g., Osland et al. 2016).   

A change in peak biomass and phenology of plant growth are two possible 

consequences of climate change in coastal tidal marshes (Cleland et al. 2007, Kirwan et 

al. 2009, Morisette et al. 2009, Walther 2010). Shifting phenology can lead to temporal 

mismatches between producers and consumers with ecosystem-wide consequences 

(Stenseth et al. 2002, Visser and Both 2005). Wildlife and fish communities may 

experience the effects of shifting phenology indirectly through changes in the abundance 

and composition of the invertebrate community, which may be more closely tied to the 

green-up of emergent vegetation (Baxter et al. 2005). Furthermore, mismatch between 

plant green-up and migrant arrival can reduce breeding success in migratory birds (e.g., 

Aubry et al. 2013). Changes in plant biomass not only influences the energy available to 

herbivores, it also plays a critical role in the biogeomorphic feedbacks that maintain 

marsh surface elevation with rising sea levels (Morris et al. 2002). For example, 
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increased aboveground biomass can stimulate sediment deposition by increased sediment 

trapping and reduced water velocities (Leonard and Luther 1995). In a fertilization 

experiment of Spartina alterniflora, Morris et al. (2002) found a 150% increase in 

sedimentation rate when aboveground biomass increased 320%. While the interannual 

variation in aboveground biomass in natural systems is much lower, these results 

demonstrate the important role that aboveground biomass plays in tidal marsh 

vulnerability to sea-level rise.  

By examining how tidal marsh plants have responded to recent climatic variation, 

we can gain insight into how sensitive they may be to future changes in climate and how 

existing interactions between plants and species that rely on them might change. Across 

the Pacific coast of the United States, the El Nino-Southern Oscillation (ENSO) generates 

substantial interannual variation in temperature and precipitation (Gershunov and Barnett 

1998), which may influence the timing of the growing season and aboveground biomass 

production. ENSO-driven variation has been used to assess the climate sensitivity of 

forests, salmon, and water resources (e.g., Parson et al. 2003), however, the sensitivity of 

tidal marsh plant phenology to climate variation has not been well explored. 

Remote sensing is an alternative to more expensive field-based methods for 

monitoring vegetation at broad spatial and temporal scales (Goetz and Dubayah 2011). 

Moderate resolution satellite sensors such as Landsat offer sufficient detail to examine 

ecosystem patterns and the 16-day revisit time allows the study of annual phenology 

patterns (e.g., Fisher et al. 2006, Melaas et al. 2013, Mo et al. 2015). Additionally, the 

Landsat archive provides a global dataset for analysis of temporal trends over the last 45 
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years allowing researchers to retroactively investigate the roll of past climate on marsh 

plant vegetation.  

We use the Landsat archive (1984-2015) to explore the relative influences of 

climate and sea level on tidal marsh aboveground biomass and phenology in three 

maritime tidal marshes in the Pacific Northwest of the United States. Specifically, our 

goals were to: 1) calibrate a model of aboveground tidal marsh plant biomass with field 

sampling; 2) determine the most important climate drivers of aboveground biomass and 

phenology; and 3) demonstrate the utility of Landsat and cloud computing for near-real 

time monitoring of coastal systems.   

 

METHODS 

Study sites 

Our study sites included four Pacific Northwest tidal marshes: three outer coast sites 

(Bandon National Wildlife Refuge [NWR] on the Coquille river [hereafter Bandon], 

Grays Harbor NWR, north of Bowerman airport [Grays], Willapa Bay NWR, near Tarlett 

slough [Willapa]) and a Puget Sound site (Nisqually NWR [Nisqually]; Figure 3.). Tidal 

marshes can be defined into different marsh communities based on inundation rates; low 

marsh (lowest elevation of vegetation to inundation under 50% of high tides), mid marsh 

(25-50% inundation), and high marsh (3-25% inundation; Thorne et al. 2015). The 

marshes have broadly similar plant communities, with Sarcocornia pacifica, Jaumea 

carnosa, and Carex lyngbyei dominant in the low marsh, Distichlis spicata, Triglochin 

maritima, and Agrostis stolonifera found in the mid marsh, and Deschampsia cespitosa, 

Juncus balticus, and Potentilla anserine found in the high marsh (Thorne et al. 2015). 
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The Pacific Northwest experiences a maritime climate with cool, wet winters and warm, 

dry summers. Interannual climatic variation primarily is driven by cyclic patterns of sea 

surface temperature (ENSO and PDO), where El Nino tends to bring warmer 

temperatures and less precipitation, and La Nina cooler temperatures and greater 

precipitation (Gershunov and Barnett 1998).  

 

Figure 3.1. Map of study site locations along the Pacific coast.  

Landsat Imagery 

Landsat images (30 × 30 m resolution) were obtained and processed via Google 

Earth Engine (GEE). GEE provides access to the Landsat archive with cloud computing 

capabilities that facilitate online batch processing of the entire archive without having to 
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download the original images. We employed several steps to calibrate Landsat imagery 

so the spectral data were comparable through time and to ensure only high quality images 

were included in the dataset. The period of study (1984-2015) included images collected 

by different Landsat Sensors (Thematic Mapper/Enhanced Thematic Mapper Plus 

[TM/ETM+] and Operational land Imager [OLI]). To account for differences in spectral 

and radiometric resolution we harmonized the OLI images to TM/ETM+ images using a 

standard set of coefficients (Roy et al. 2016). For our analysis, we used the surface 

reflectance products from the USGS that were calculated using the Landsat Ecosystem 

Disturbance Adaptive Processing System (LEDAPS) algorithm (Masek et al. 2008). 

From surface reflectance we calculated Tasseled Cap Greenness (TCG; Kauth and 

Thomas 1976), which is a principal component transformation of six Landsat bands and 

correlates closely with photosynthetic activity. Unlike the widely used Normalized 

Difference Vegetation Index, TCG does not saturate in dense vegetation (Mutanga and 

Skidmore 2004) making it suitable for biomass estimation in productive tidal marshes. 

We removed cloud and cloud shadows within the Landsat images using the ‘cfmask’ 

product from the USGS (Zhu and Woodcock 2012).  

We also wanted to compare the effect of additional quality control steps on the 

peak TCG and day of peak TCG. We visually inspected every image and removed 

images that had incomplete cloud and cloud shadow masking for each study site. Because 

water reduces the spectral signal of vegetation through the absorption of electromagnetic 

energy, we used hourly sea level data from nearby NOAA gauges and site-specific sea 

level thresholds to remove images acquired during high tide (tidesandcurrents.noaa.gov). 

Due to the high tide range at our sites water levels can rise and drop substantially within 
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one hour. To avoid removing too many images from the data set, we improved the 

temporal resolution of the water level data by interpolating the hourly data to 15 minutes 

using an exact interpolation method (natural spline) over five hour intervals. Two sets of 

time-series stacks of Landsat images (every image and QC images) were then extracted 

from GEE for each study site by year and used for the phenology and biomass analysis. 

Of the 3754 Landsat images available for the three sites, 1465 had less than 50% cloud 

cover and were included in the final analysis (every image), while an additional 202 were 

removed due to high tides or incomplete cloud masking (QC images). We used a paired t-

test to assess whether the image QC steps significantly changed the biomass and DOY 

model results. 

Abiotic Drivers of Biomass and Phenology 

We assessed the relative influence of climate and sea level on peak TCG (TCGP) 

and day of peak TCG (DOYP) using an annual phenology model and time-series stacks 

of Landsat images. We modeled annual phenology for each pixel by fitting a Gaussian 

function (‘nls’ function in R) to TCG values and the day of the year the image was 

obtained (e.g., Mo et al. 2015),  

𝑇𝐶𝐺 = 𝐵 + 𝐴𝑒−(𝑋−𝜇)2/2𝜎2
    Eq. 1 

where B is the background TCG value during winter, A is the amplitude of TCG during 

the growing season, μ is the day of peak TCG (DOYP), and σ is the standard deviation 

and controls the width of the curve. Considering these four parameters, we set a 

minimum requirement of five images per year to fit the phenology function. To protect 

against producing outlier metrics, we constrained the parameters to a range of reasonable 
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values derived from a regression fit that included images from all years. Additionally, we 

calculated Efron’s pseudo r2 ([-∞ - 1]; e.g., Mo et al. 2015) and used a threshold of 0.4 

for the nonlinear regression to protect subsequent analysis from poor quality phenology 

models. Using a lidar-derived DEM, corrected for vegetation bias with the LEAN method 

(Chapter 2, Buffington et al. 2016) and standardized for tidal range using z* (z* = [z – 

MSL]/[MHHW – MSL]; where MSL: mean sea level, MHHW: mean higher high water; 

Swanson et al. 2013), we selected marsh areas that were between z* 0.9 and 1.0 for the 

final analysis. This elevation range represented the mid-high marsh transition zone (z*= 

1.0 is MHHW). We then calculated the median of TCGP and DOYP by year across each 

site.  

To examine how TCGP and DOYP varied with climate and sea level we gathered 

annual and seasonal datasets representing five categories of explanatory variables: 

temperature, precipitation, drought, ENSO, and sea level. We used gridded monthly 

datasets of temperature and precipitation from PRISM (PRISM, 2016) for 1984-2015. 

For each study site we extracted mean, min, and max temperature, and total precipitation 

for each year by month and season (winter: JFM, spring: AMJ, summer: JAS, fall: OND), 

and calculated mean and standard deviation of monthly mean temperature during the 

growing season (April-September). We considered mean annual and seasonal drought 

indices, including the Self-Calibrating Palmer’s Drought Severity Index (SCPDSI; Wells 

et al. 2004), the Standardized Precipitation Index (SPI; Mckee et al. 1993) and the 

Standardized Precipitation Evapotranspiration Index (SPEI; Vicente-Serrano et al. 2010). 

SCPDSI represents the relative water deficit and is a function of eight climatic variables 

including evapotranspiration, temperature, and precipitation. SPI compares total 
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precipitation within a given time period to the historic average, while SPEI incorporates 

the effect of temperature on evapotranspiration rates into the index. We also considered 

the multivariate ENSO index (MEI) and the Pacific Decadal Oscillation (PDO), 

summarized globally by year and season, and the annual Oceanic Nino Index (ONI).  

Sea level tidal datums were calculated using data from nearby NOAA tide gauges 

and site-specific water level data (Thorne et al 2015). We used a second-order 

polynomial to predict the offset in water level height between the NOAA gauge and each 

site, and then applied the offset to the historic NOAA water level data. Annual and 

seasonal mean high water (MHW) and mean higher high water (MHHW) tidal datums 

were then calculated from the adjusted water level data. Altogether, we obtained 94 

climate and sea level variables to analyze with TCGP and DOYP. 

Biomass model 

To validate our assumption of the relationship between TCG and aboveground 

biomass, we developed a model using TCG from Landsat imagery and alive aboveground 

plant biomass using samples collected from plots at Willapa during the summer of 2016. 

To ensure sampling sites included a range of biomass values, the marsh at Willapa was 

stratified into five ‘greenness’ classes based on a one-dimensional ‘natural Jenks’ 

classification of a summer 2015 Landsat-derived TCG image. Six 30 × 30m Landsat 

pixels were randomly selected from each greenness class for a total of 30 pixels. The 

center of each sampling pixel was located in the field with a submeter GPS (Trimble 

GeoExplorer 3000) and three 25 × 50 cm (0.125 m2) biomass plots were established, 

separated by seven m (Figure 3.2). For each plant species in a plot we estimated percent 

cover and measured maximum height (0.01 m) at the center and corners of the plot. We 
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clipped aboveground biomass in each plot and separately bagged living and dead 

vegetation. In the lab, all biomass and litter samples were washed to remove sediment 

and algae, oven-dried in paper bags at 60 °C until constant mass (~4 days), and then 

weighed to a precision of 0.01 g. The aboveground biomass values were adjusted by the 

vegetated fraction (divided by the percent of vegetated ground in the field survey) and 

then averaged within each sample pixel for further analysis. 

We used a cloud-free Landsat 8 OLI surface reflectance image at Willapa 

(obtained May 31, 2016) to calibrate the biomass model from field surveys (July 11-14, 

2016). Our goal was to calculate the average aboveground biomass (g m-2) for each pixel; 

to do this we first needed the proportion of vegetated area in each calibration pixel.  We 

used unsupervised K-means cluster analysis (Hartigan and Wong 1979) to classify a 2013 

1 m National Agriculture Inventory Program (NAIP) image into vegetated/unvegetated 

(1/0), aggregated to a 30 m resolution, and divided by 900 (the number of 1 meter NAIP 

pixels within a 30 m Landsat pixel). Mean biomass values for each sampled pixel were 

then multiplied by the proportion of vegetated area from the NAIP analysis, log-

transformed, and used as the dependent variable in models to predict biomass using TCG. 

We used leave one out cross-validation (LOOCV, Efron 1982) to estimate the root mean 

squared error (RMSE) of predicted biomass.  

Model Development and Analysis 

We used a two-tier approach for model development including an initial variable 

reduction/selection step. Willapa was originally included in the phenology and biomass 

analyses, however it was removed due to the low number of cloud-free images that were 

available for the period of years in the study. First, for each dependent variable, we used 
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generalized linear models (GLMs) to find the top explanatory variable within each 

category of weather variable. We controlled for inherent differences among study sites by 

including site as an explanatory variable in all models, and our ‘null’ model was the 

single factor model with site. The top predictor in each category was then included in the 

second modeling stage. In the second stage, we limited model complexity to three 

explanatory variables in additive models, including every possible combination in the 

model set. Due to correlation between the oceanic indices and local climate we did not 

include the ENSO and PDO indices in models with predictors from the other categories. 

Fourteen models were considered for TCGP and sixteen models were considered for 

DOYP (Table 3.2). We compared among models using AIC values and model weights, 

considering any model within two AIC values of the top model competitive, and we 

evaluated the magnitude and direction of effects using parameter estimates and their 95% 

confidence limits (Burnham and Anderson 2002). We assessed relative variable 

importance of the predictors in the top model with the ‘calc.relimp’ function (library: 

relaimpo, type:’lmg’).  
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Figure 3.2. Locations of biomass clip plots Willapa NWR. False color NAIP imagery 

(left) and Landsat 8 Tasseled Cap Greenness (TCG, right).   

 

RESULTS 

Log-transformed plant biomass at Willapa was significantly related to log-

transformed TCG (r2 = 0.71; F1,28 = 71.6; p < 0.0001; Figure 3.3). We calculated an 

RMSE of 73.6 g using LOOCV. The 6-week disparity between field sampling and a 

cloud-free image means there was a potential of underestimating aboveground biomass 

with the TCG model. We estimated the day of peak TCG at Willapa was DOY 175 (SE = 

4.4). The cloud-free calibration image was acquired on DOY 152 and our field sampling 

occurred on DOY 193-196. Based on the 2016 TCG phenology model and difference in 

predicted TCG between the image calibration and field sampling, we potentially 

underestimated peak biomass by 2%. There was no difference between the complete time 

series image stacks and the QC stacks for either TCGP (t79 = 1.24, p = 0.22) or DOYP (t79 

= 1.78, p = 0.08), so we choose to use the complete stacks for the phenology and climate 
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modeling because that provided an additional seven years of data for the Grays study site. 

We used an average (range) of 19.0 (7-42), 12.9 (5-24), and 16.3 (5-34) images per year 

at Bandon, Grays, and Nisqually, respectively (Fig. 3.4).  

During the years of our study, plant peak biomass varied by 42% (752 – 1064 g 

m-2) at Bandon and 46% (762 – 1116 g m-2) at Nisqually. We did not apply the 

TCG/biomass calibration to Grays because the range of TCGP values at Grays were 

higher than the TCG values that occurred during calibration at Willapa. Given the 

observed correlation between biomass and TCG at Willapa and the long history of using 

vegetation metrics as indicators of biomass (see reviews: Verstraete et al. 1996, Moran et 

al. 1997), we are confident that the relative changes in TCG observed at Grays are 

indicative of changes in aboveground biomass. However, for consistency across sites we 

choose to use TCGP rather than predicted peak biomass for the subsequent climate 

analysis.  

For analysis of TCGP, the single best explanatory variable from each category of 

weather variables was total annual precipitation, annual SPEI, spring minimum 

temperature, spring MHHW, and summer PDO. The top multivariate model had a model 

weight of 0.69 and included site, minimum spring temperature, total annual precipitation, 

and the interaction with site and spring minimum temperature (Table 3.2). In the best 

model, study site accounted for the most variation (80%), followed by annual 

precipitation (17%) the interaction between spring minimum temperature and site (1.6%) 

and spring minimum temperature (1%). TCGP was greater overall at Grays and increased 

with annual precipitation at all sites (Fig. 3.5). The influence of minimum spring 
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temperature varied with site, with a negative relationship at Grays but no relationship at 

the other two sites.   

Median DOYP ranged 34 days at Bandon, 29 days at Grays and 40 days at 

Nisqually. Across sites and years, DOYP ranged 42 days but on average was not 

significantly different across sites within each year (F5,68 = 0.95, p = 0.45). For analysis of 

DOYP, the single best explanatory variable from each category of weather variables was 

summer precipitation, annual SPEI, May mean temperature, annual MHHW, and annual 

PDO. There were seven competitive models that had a combined model weight of 0.99. 

All models included May mean temperature and the confidence limits around the 

parameter estimate did not include zero. The confidence limits around the parameter 

estimates for all other explanatory variables in the competitive model set overlapped 

zero, suggesting they had a very weak influence. The top model included May mean 

temperature, annual MHHW, and the interaction between site and May mean 

temperature. In the best model, May mean temperature accounted for the most variation 

(58%), followed by site (21%), annual MHHW (11%), and the interaction between site 

and May mean temperature (8.9%). Increased May mean temperature and annual MHHW 

resulted in earlier DOYP and across sites, DOYP averaged 4.5 (SE = 0.71) days earlier 

with each degree increase in mean May temperature. 
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Figure 3.3. Relationship between alive aboveground biomass and Tasseled Cap 

Greenness (TCG) derived from a 2016 Landsat 8 image of Willapa Bay, Washington. 
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Figure 3.4. Schematic of Landsat scenes with less than 50% cloud cover for the study 

period (1984-2015; top-bottom, Bandon, Grays, Nisqually). Years with at least five 

images were included in the phenology models. Colors indicate mean Tasseled Cap 

Greenness for the study area, with low values in red and high values in green. 
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Figure 3.5. Relationship between peak TCG and environmental drivers for the three 

Pacific Northwest study sites. Each point represents one year. SPEI is the Standardized 

Precipitation Evapotranspiration Index where negative values indicate deeper drought. 

(Bandon, red circles; Nisqually, blue squares; Grays, green triangles) 
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Figure 3.6. Relationship between day of peak biomass and significant abiotic drivers. 

MHHW is mean higher high water. (Bandon, red circles; Nisqually, blue squares; Grays, 

green triangles) 
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Table 3.1. Mean (±SD) peak biomass, peak TCG, day of peak TCG, climate, and sea 

level metrics for three Pacific Coast mid-high elevation tidal marshes from 1984-2015. 

Precipitation and monthly temperature is from PRISM, and the sea level data is from 

NOAA water level gauges that were calibrated to site-specific conditions. 

  Nisqually Grays Bandon 

Peak Biomass (g m-2) 928 ± 83.4 - 908 ± 80.4 

Peak TCG 1785 ± 157 3076 ± 298 1747 ± 152 

DOY Peak TCG (Days) 199.2 ± 10.1 195.6 ± 7.5 199.1 ± 9.1 

Annual Mean Temp. (C) 10.8 ± 0.6 10.4 ± 0.6 11.0 ± 0.6 

Annual Precip.  (mm) 1125 ± 208 1805 ± 324 1408 ± 315 

Spring MHW (z*) 0.82 ± 0.03 0.73 ± 0.05 0.77 ± 0.05 
 

 

 

Table 3.2. Results from GLM models that predict peak TCG and climate in three mid-

high elevation Pacific Coast tidal marshes.  

Modelabc k 

Log-

likelihood Deviance ΔAIC weight 

Site + Temp + PPT + Site*Temp 7 -483.24 2036460 0 0.69 

Site + Temp + Site*Temp 6 -485.39 2158573 2.31 0.22 

Site + Temp + Tide + Site*Temp 7 -485.26 2150725 4.04 0.09 

Site 3 -498.29 3059039 22.11 0 
aitalics indicates confidence intervals for the parameter estimate did not overlap zero. 
bTemp = mean minimum spring temperature; PPT = total annual precipitation;            

Tide = spring mean higher high water; SPEI = annual average standardized precipitation 

evapotranspiration index. 
cAIC value for the best model = 982.48. 
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Table 3.3. Results from GLM models that relate weather and tide variables to the day of 

peak biomass in three mid-high elevation Pacific Coast tidal marshes. 

Modelabc k 

Log-

likelihood Deviance ΔAIC weight 

Site + Temp + Tide + Site*Temp 7 -246.42 3381.614 0 0.22 

Site + Temp + Site*Temp 6 -247.7 3501.084 0.57 0.17 

Site + Temp + SumPPT + Site*Temp 7 -246.8 3417.077 0.77 0.15 

Site + Temp + Tide  5 -248.94 3620.638 1.05 0.13 

Site + Temp + MHHW 5 -248.94 3620.638 1.05 0.13 

Site + Temp 4 -250.19 3744.942 1.55 0.1 

Site + Temp + SumPPT 5 -249.28 3653.841 1.73 0.09 

Site + PDO + Site*PDO 6 -250.78 3804.313 6.72 0.01 

Site 3 -266.86 5875.221 32.88 0 
aitalics indicates confidence intervals for the parameter estimate did not overlap zero. 
bTemp = mean May temperature; SumPPT = total summer precipitation; Tide = annual 

mean higher high water; PDO = annual Pacific Decadal Oscillation. 
cAIC value for the best model = 508.83. 

 

 

DISCUSSION 

Our study is the first to examine climate drivers of plant phenology and biomass 

across maritime tidal marshes in the PNW. We found that PNW tidal marsh plants 

occupying a narrow elevation range also respond to annual variation in climate. 

Specifically, TCGP and DOYP varied with annual precipitation and spring temperature, 

respectively. Additionally, we were able to detect subtle changes in biomass with time-

series remotely sensed data.   

Greater biomass was associated with increased annual precipitation. Direct 

precipitation on the marsh can reduce pore water salinity, alleviating salt stress and lead 

to increased biomass production (Ustin et al. 1982, Noe and Zedler 2000, Dunton et al. 

2001). This effect depends on the ambient salinity conditions, however, with a stronger 

influence in hypersaline soils that are prevalent in Californian salt marshes. Alternatively, 
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too much precipitation can hinder biomass production by waterlogging the soils (Hanson 

et al. 2016). Given the direction of the significant response and the dominance of salt-

sensitive graminoids in the plant communities we studied (Thorne et al. 2015), we 

hypothesize that soil salinity hinders overall biomass production at our study sites. 

Studies of marshes in other climates support our findings. Across semi-arid Texan tidal 

marshes, biomass was positively related to precipitation (Dunton et al. 2001), while 

drought conditions negatively affected biomass in Spartina alterniflora in a subtropical 

marsh in Georgia (O’Donnell and Schalles 2016). Projected shifts in the timing of 

precipitation and freshwater flow due to climate change across the PNW, along with 

increased saltwater intrusion, may negatively impact biomass production of graminoids 

in favor of more salt-tolerant forbs (e.g., Sarcorcornia pacifica), altering the function and 

community structure of maritime tidal marshes. Additional studies linking soil salinity, 

tides, and precipitation patterns across PNW marshes would help elucidate the underlying 

mechanisms of biomass production and competition between plant communities.  

We predicted that warmer temperatures would result in higher marsh biomass, as 

found in experimental manipulations (e.g., Charles and Dukes 2009), and in latitudinal 

studies of Spartina (Kirwan et al. 2009), however, we found no relationship between 

temperature at two sites and a negative relationship at the third. Instead, biomass 

increased with increased precipitation. The negative relationship of minimum spring 

temperature and biomass at Grays is difficult to understand. While we limited our study 

to a narrow elevation range to control for vegetation community, the much higher TCG 

values and different relationship between biomass and temperature suggest different 

species are dominant at our Grays site than at Bandon and Nisqually. Contrary to other 
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studies (e.g., Kirwan and Guntenspergen 2012, Janousek et al. 2016) we did not find a 

relationship between biomass and inundation, however our narrow elevation range, focus 

on peak biomass, and the relatively small range of variation in the tidal datum metrics are 

likely reasons for the absence of a significant relationship.  

We found that interannual variation in abiotic characteristics resulted in variation 

in time of peak biomass of 34 days. Mo et al. (2015) used three years of Landsat imagery 

and phenology models to compare subtropical tidal marsh responses to extreme 

precipitation across Louisiana and found that drought delayed the peak of the growing 

season by two months; in our study, less precipitation was related to an earlier growing 

season, although temperature had a greater overall influence. Higher mean temperature in 

May lead to a significantly earlier peak of the growing season across our sites. Increasing 

temperatures due to climate change is resulting in earlier growing seasons in ecosystems 

around the world (Linderholm 2006), thus this result was not unexpected. Through 

induction, our results suggest that the mid-high marsh plants in the Pacific Northwest are 

limited in growth by salt stress and respond to warmer temperatures by altering their 

phenology rather than increasing aboveground biomass production; however, these 

findings should be confirmed through manipulation experiments in the field.  

Changes in plant phenology can have impacts of marsh dependent wildlife and 

fish species through phenological mismatches (Canepuccia et al. 2010, Takekawa et al. 

2012). Phenology mismatches due to climate change have been documented in other 

ecosystems, including forests and grasslands (reviewed in Walther 2010); however, the 

phenology shifts in tidal marshes are not well studied in general and ecological studies of 

the consequences are rare in tidal marshes (although see Thorne et al. 2012). The 
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direction and magnitude of responses can vary by trophic level (Doi et al. 2008, 

Ovaskainen et al. 2013, Schwartzberg et al. 2014), with plants tending to have a larger 

response to abiotic changes than higher trophic levels, with potentially broad ecological 

consequences. Additional studies on the impacts of phenological shifts on tidal marsh 

communities are warranted.  

For the phenology modeling at our mid-high tidal marsh sites, removal of the high 

tide images and images with incomplete cloud and shadow masking did not make a 

significant difference in predicted TCGP or DOYP. While there was a statistically 

significant reduction in pseudo r2 in the complete image dataset (0.88 vs. 0.86), in 

practice, we felt the gain in number of years added to our dataset outweighed the 

negligible difference in model performance. These results suggest that the Gaussian 

model regressions were robust to reductions in TCG value caused by water and imperfect 

cloud masking. Previous studies have noted the influence of standing water on the 

spectral signature (e.g., Byrd et al. 2014) and in more sparsely vegetated tidal areas (e.g., 

low marsh) there may have been a greater decrease in median TCG than at our mid-high 

elevation sites.  

 We found a strong relationship between Landsat-derived TCG and aboveground 

biomass at Willapa. We are aware of few studies that have predicted tidal marsh biomass 

using Landsat. In a tidal brackish marsh in the San Francisco Bay Delta, Byrd et al. 

(2016) achieved an R2 of 0.57 when predicting aboveground biomass with spectral 

indices from Landsat 8 images and accounting for vegetated area. Differences in model 

performance likely reflect differences in the relationship among different plant 

communities, but also methodology. By accounting for the vegetated area within each 
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Landsat pixel using high resolution NAIP imagery we were able to predict biomass at the 

native 30 m resolution across the entire site. Accounting for the vegetated fraction is 

particularly important in marshes, where channels and ponds fragment the vegetation, 

causing a mixed spectral signal.  

Calibration of satellite images in coastal areas with high cloud cover is a 

challenge. The paucity of cloud-free 2016 Landsat images at Willapa meant we had to 

rely on a calibration image taken six weeks prior to field sampling. However, through 

phenology modeling using the median TCG value in the available images we found that 

peak biomass likely occurred between sampling and the calibration image, reducing the 

amount of uncertainty in our biomass predictions. To fill in the gaps in our phenology 

model for Willapa, we also investigated the availability of cloud-free Sentinel-2A 

MultiSpectral Instrument images (European Space Agency, 10 m resolution), however, 

the study site was obscured by clouds in all summer 2016 images. When Sentinel-2B 

comes online later in 2017, the Sentinel program will have a 5-day revisit schedule; when 

combined with Landsat 7 & 8 (combined 8 day revisit) the chances of cloud-free image 

acquisition will be further increased and the opportunity for robust time-series analysis 

will be enhanced.   

Finally, the combination of Landsat images and the Google Earth Engine 

analytical platform provides an important tool that can facilitate monitoring of 

ecosystems subject to change and evaluation of threats of sea-level rise and climate 

change. The cloud computing power of Google Earth Engine allowed us to consider over 

3,700 Landsat images for this study. GEE was particularly useful considering the small 

size of our study sites as we did not need to download and process entire Landsat images, 
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saving months of analysis time. While other tidal marsh phenology studies have used 

Landsat for analysis, they have been limited either in the number of years analyzed (3; 

Mo et al. 2015) or in the number of sites (1; O’Donnell and Schalles; 28 years); GEE 

facilitated analysis over 32 years and 3 spatially distinct sites. GEE also allows for rapid 

analysis of new images in context with historic imagery and for the rapid assessment of 

ecosystem change, further improving the utility of Landsat and other remotely sensed 

data for landscape monitoring. The ~2°C range of variation in annual mean temperature 

over the last 32 years suggests that the historic ENSO-related variation is a reasonable 

proxy for near-term climate change (2.0-2.8°C by 2050, Dalton et al. 2017). Further 

integration of time-series remote sensing datasets and biological monitoring is important 

for expanding our understanding of ecological responses to climate change.  
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ABSTRACT  

Tidal marshes are vulnerable to alteration due to climate change, particularly accelerating 

sea-level rise (SLR) and changes in freshwater flow. In the Pacific Northwest (PNW) 

relatively little is known about the variation of accretion rates across estuaries and 

relative marsh vulnerability to SLR into the future. To understand the spatial variability 

in accretion rates across tidal marshes we measured vertical accretion rates using soil 

cores and radioisotope dating for eight PNW estuaries. Mean vertical accretion was 4.5 

mm yr-1 (SD = 2.2), however there were significant differences among tidal marshes, 

highlighting the importance of measuring accretion rates at a local scale. To determine 

the landscape characteristics that were associated with measured accretion rates we 

assessed a suite of physical, climatic, and land use characteristics across each watershed 

and found that mean annual fluvial discharge into the estuary was the best predictor for 

net accretion rates in the tidal marsh. Finally, to test our assumption that site-specific data 

is needed to understand tidal marsh accretion rates and vulnerability from SLR, we ran a 

process-based elevation model at a tidal marsh in Puget Sound and compared results 

when the model was run with accretion rates from other marshes in our study. This 

comparison showed that under a moderate SLR scenario (+63 cm after 100 years), 

differences in final elevation varied up to 41% (50 cm) depending on the source of the 

accretion rate data. Our study highlights the spatial variability in accretion rates and the 

need for site-specific ground data when assessing SLR vulnerabilities for tidal wetlands. 
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INTRODUCTION 

Tidal marshes are an important ecological component of estuaries that provide valuable 

ecosystem services (Craft et al. 2009), support endemic species (Greenberg et al. 2006), 

and sequester carbon belowground (Chmura et al. 2003, Bridgham et al. 2006, Callaway 

et al. 2012). Human development and habitat modification have impacted tidal marshes 

worldwide (Kennish 2002) and accelerating sea-level rise (SLR) due to climate change is 

synergistically increasing tidal marsh vulnerability (van der Wal and Pye 2004, Torio and 

Chmura 2013). Within the broader estuarine watershed, land use changes, resource 

extraction, and human development can also negatively affect the underlying processes 

that facilitate tidal marsh sediment accretion (Mattheus et al. 2009, Kirwan et al. 2011, 

Weston 2014), further influencing marsh vulnerability to SLR through altered freshwater 

flows and delivery of suspended sediment and nutrients (Nixon et al. 1996). 

Models used to forecast tidal marsh persistence to sea-level rise are sensitive to 

estimates of sediment accretion rates. For example, a comprehensive sensitivity analysis 

of the Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) marsh 

elevation model found that after the rate of sea-level rise, model predictions were most 

sensitive to sediment accumulation or accretion rate (Swanson et al. 2015). Additionally, 

experiments with multiple marsh elevation models found that suspended sediment 

concentration (SSC) and tidal range are key parameters for estimating tidal marsh 

persistence under sea-level rise (Kirwan et al. 2010), and models that account for mudflat 

width and tidal marsh area have shown the importance of local sediment supply in long-

term marsh persistence (Mariotti and Fagherazzi 2013).  
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The rate of sediment deposition and accretion in a tidal marsh is a function of 

both local and watershed-scale processes. At the local scale, relative elevation to sea-

level (Morris et al. 2002, Kirwan and Murray 2007), fetch (Day et al. 1998, Kolker et al. 

2009), and distance from marsh edge (van Proosdij et al. 2006) influence deposition rates 

across the marsh. Marine currents and waves can deliver larger grained sediments (sand) 

to tidal marshes, however sand transport up-estuary is typically limited to high-energy 

storms and tsunamis (de Groot et al. 2011). At the watershed-scale, rates of mineral 

transport from terrestrial sources are variable and dependent on watershed characteristics 

such as slope and elevation (Milliman and Syvitski 1992), however, direct links between 

the watershed and tidal marsh accretion are lacking. Additional characteristics, such as 

land use and cover, climate, and weather extremes may also play a role in shaping long-

term tidal marsh vulnerability to sea-level rise but have yet to be evaluated. 

Estimates of accretion rates are necessary for accurate projections of marsh 

persistence to sea-level rise, however these data are relatively sparse. Of 35 major 

estuaries with tidal marshes in Washington and Oregon, only five have published data on 

accretion rates (Thom 1992) and none have elevation data necessary to calibrate models 

of marsh evolution and sea-level rise. When site- or estuary-specific data are not 

available to calibrate marsh process elevation models, the best available data from nearby 

sites or regional means have been used (e.g., Glick et al. 2007); however, the accuracy of 

such an approach has not been validated. Furthermore, there has been no effort to 

evaluate or understand the variation in accretion rates across PNW estuaries specifically. 

Recognizing the degree of spatial variation in accretion rates is important for assessing 
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relative vulnerability to sea-level rise across the landscape, and making robust projections 

of future marsh elevation change under changing environmental conditions.  

In this study we measure the accretion rates for tidal marshes in eight maritime 

estuaries in Oregon and Washington located within PNW of the United States. We then 

determine how accretion rates vary with climatic and landscape factors and explore how 

climate and watershed characteristics relate to mineral and organic accumulation rates 

across the estuaries. Finally, we use a case study to illustrate the value of site-specific 

accretion data when projecting marsh elevation under sea-level rise. 

 

METHODS 

Study Sites 

 Our study covered eight sites and included five outer coast sites (Bandon National 

Wildlife Refuge [NWR] on the Coquille river [hereafter Bandon], Bull Island in Coos 

Bay [Coos Bay], Siletz NWR [Siletz], Tarlet Slough marsh in southern Willapa Bay 

NWR [Willapa], Grays Harbor NWR, north of Bowerman airport [Grays Harbor]) and 

three Puget Sound sites (Skokomish River delta [Skokomish], Nisqually NWR 

[Nisqually], and Port Susan Bay in the Whidbey Basin of Puget Sound, on the 

Stillaguamish river delta [Port Susan]; Fig. 4.1). We selected sites that are conservation 

priorities (NWRs) from a range of estuarine types (drowned river, bar built, river delta) to 

encompasses the potential variation in sea-level rise vulnerability. Sampled marshes 

ranged in size from 29 to 97 ha, with a mean area of 68 ha. All sites have relatively rural 

watersheds, however, much of all watersheds have been extensively logged since 

European settlement (Jiang et al. 2004). All of the study estuaries have been modified to 
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some degree over the last 150 years. Over 80% of the tidal marsh habitats across Puget 

Sound have been lost due to human modifications (Collins 1997, Dean et al. 2001); tidal 

marsh restoration projects are ongoing at Port Susan (Yang et al. 2010), Nisqually 

(Ellings 2011) and Skokomish (SWAT 2016). Willapa Bay has lost 64% of the tidal 

wetland habitat (Coastal Resources Alliance, 2007), while Grays Harbor has lost 60% 

(Boule and Bierly 1987). In Oregon, Siletz Bay has lost 47% of historic tidal wetland 

habitat (USFWS 2012b), the Coquille River (Bandon) has lost 95% (USFWS 2012a), and 

Coos Bay has lost nearly 30% (Borde et al. 2003). Estuary modifications slowed by the 

mid-1970s due to increased state and federal oversight and permitting requirements 

(Adamus et al. 2005). Additionally, there are large dams are present within the Nisqually, 

Skokomish and Grays Harbor watersheds, influencing fluvial discharge. Across the 

PNW, rainfall and fluvial discharge are strongly seasonal with high flows in the winter 

and low flows in the summer (Hickey and Banas 2003). Marsh plant communities are 

broadly similar across sites with Sarcocornia pacifica, Jaumea carnosa and Carex 

lyngbyei dominate in low marsh and Deschampsia cespitosa, Triglochin maritima, 

Juncus balticus, and Potentilla anserina common across the mid and high marsh (Thorne 

et al. 2015). 
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Figure 4.1. Locations of the eight study estuaries and their respective watersheds (shaded 

areas).  

 

Data collection and processing 

Soil cores were collected in winter of 2013/14 at each study site. We used a 50-

cm long, 5 cm diameter Russian peat corer 

(http://www.aquaticresearch.com/russian_peat_borer.htm) to collect one core at low, mid 

and high elevations in each estuary. We stratified each site into low, mid and high 

elevation zones using mean high water (MHW) and mean higher high water (MHHW) 

tidal datum elevations (Thorne et al. 2015). Cores were taken at sampling stations that 
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were placed along a transect spanning the elevation gradient, separated by at least 150 m, 

and away from marsh channels. If soil compaction was greater than 2 cm a replacement 

core was taken. In the lab, cores were cut into 1-cm discs. We calculated bulk density 

(BD) for each disc by drying samples at 80oC until constant mass and dividing by the 

known volume of the disc (10 cm3; Blake and Hartge 1986). We estimated percentage 

organic matter (OM) of each disc using loss on ignition (muffle furnace at 450oC for 8 

hrs).  

We calculated the historic accretion rate for each sediment core using the Cesium-

137 radioisotope. Each disc was placed in a high-purity germanium detector at the 

Oregon State University Radiation Center for 24 hours, enumerating the gamma 

radioactivity at the 137Cs energy level (662 keV). The 137Cs activity was then normalized 

for detection geometry and detection efficiency using calibration standards, and divided 

by sample mass. The sediment disc with the highest 137Cs activity was assumed to 

correlate to the cessation of atmospheric nuclear detonations in 1963 (Ritchie and 

Mchenry 1990); the depth of this disc was divided by 50 (the number of years since the 

1963) to calculate the accretion rate in mm yr-1. 

The mass-based annual organic matter accumulation rate (ROM, g cm-2 yr-1) for 

each core was calculated as: 

𝑅𝑜𝑚 =  
∑ 𝑜𝑏1

𝑑

𝑛
    Eq. 1 

where, d is the depth (cm) of peak 137Cs activity, o is the proportion organic matter in the 

sample, b is the bulk density of the sample (g cm-3), and n is the number of years (50). 

Mineral accumulation rates were calculated with a similar equation, where o is instead 

the proportion mineral matter in the sample. We found the mineral and organic matter 
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density by calculating the mean density across all discs down to the 137Cs horizon. We 

also calculated the total inventory of mineral and organic matter by multiplying the 

density of each by the depth of the 137Cs horizon (Nyman et al. 1993). The total inventory 

of mineral and organic matter is a method to determine the relative amount of each within 

the soil column and is independent of the accretion rate.  

Analysis 

  We used an analysis of variance (ANOVA) to test whether core characteristics 

varied across sites (α = 0.05). We tested whether mineral or organic matter inventory best 

explained vertical accretion rates using an F-statistic and Moran’s I (Moran 1950) to test 

if there was significant spatial autocorrelation in core characteristics across estuaries. We 

limited analysis of organic matter across cores to the top 20 cm, which is the approximate 

depth of the rooting zone.  

To explore how explanatory variables influenced accretion rates, we used 

generalized linear models where the dependent variable was area-weighted mean vertical 

accretion for each estuary. The area-weighted mean accounts for unevenly distributed 

elevation across the marsh platform, providing a more accurate representation of vertical 

accretion across the entire marsh. Since cores were stratified by elevation related to a 

tidal datum, we used a DEM and found the area below MHW, between MHW and 

MHHW, and from MHHW to the edge of marsh vegetation. For this analysis we 

considered several mechanisms that may be responsible for driving variation in accretion 

rates, including geography, topography, rainfall, climate, and erosion-inducing landscape 

disturbances. The explanatory variables that relate to these potential mechanisms 
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included watershed area, watershed age, watershed discharge, precipitation, temperature, 

stream and road densities, and development.   

We calculated the total area of each watershed below major dams (which were 

constructed prior to 1963) using HUC-10 boundaries obtained from the 

GeoSpatialDataGateway (https://gdg.sc.egov.usda.gov). For an estimate of geologic form 

and age of a watershed we used the integral of the hypsometric curve. The hypsometric 

curve describes the distribution of elevation by relative area and the integral 

[standardized 0-1] can be used to compare watershed geologic form and age, where 

higher values are indicative of younger, less eroded basins, and smaller values are 

indicative of older basins (Strahler 1952, Dowling et al. 1998). We calculated the 

hypsometric curve for each watershed with a 30 m resolution DEM (National Elevation 

Dataset) using the ArcGIS add-in ‘CalHypso’ (Pérez-Peña et al. 2009).   

We calculated the proportion of each watershed that was developed, urbanized, 

and disturbed, using the results of the 2011 USGS GAP analysis. We hypothesized that 

different land cover types might influence sedimentation rates. For example, forest 

disturbance such as fires and logging, have the potential to promote erosion and increase 

downstream sediment concentrations (e.g., Beschta 1978). Human development and 

urbanization may also promote erosion through construction activities. In addition, as a 

metric of recent logging history we calculated the area of conifer trees 10–50 years old 

using PNW forest cover predictions from Jiang et al. (2004). We also calculated stream 

and road densities using the National Hydrography Dataset and the 2015 TIGER line 

shapefiles for Oregon and Washington (2015 TIGER/Line Shapefiles). We calculated the 

total length within each watershed and divided by watershed area. We hypothesized that 

https://gdg.sc.egov.usda.gov/
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higher stream and road densities would increase mineral accumulation rates due to 

increased erosion potential. We estimated mean annual watershed discharge (cfs) using 

USGS stream gauge data and the area ratio method (e.g., Archfield and Vogel 2010) to 

scale up stream discharge from gauged sub basins to the entire watershed of each estuary 

by multiplying the discharge of a gauged basin by the ratio of ungauged basin area to 

gauged basin area. 

We obtained 30-year average precipitation and temperature data from PRISM 

(PRISM Climate Group), and used the centroid of each study site to sample the 800 m 

resolution gridded data. We calculated mean and maximum annual average temperature, 

and mean annual and mean growing season precipitation (e.g., Chmura and Hung 2004, 

Charles and Dukes 2009). Annual mean precipitation volume was also calculated for 

each watershed by multiplying the watershed area by the average annual precipitation 

across the watershed. Tidal range and historic rates of sea-level rise were obtained from 

nearby NOAA tidal gauges (noaa.tidesandcurrents.gov). 

 Our sample included eight estuaries (n = 8), we therefore limited our a priori 

model set to single-variable models and the null model. We ranked model performance 

using Akaike’s Information Criterion correction for small sample sizes (AICc) and model 

weights (w), considering all models within 2 AIC values of the best model competitive, 

and we evaluated the direction and strength of variable effects using parameter estimates 

and their confidence intervals (Anderson and Burnham 2002). All analyses were 

conducted in R (www.r-project.org) and ArcGIS (ESRI, Redlands, CA). Watershed 

characteristics for each estuary are provided in Appendix B, S1.  

http://www.r-project.org/
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 Finally, we used the Wetland Accretion Rate Model for Ecosystem Resilience 

(WARMER; Swanson et al., 2013) to illustrate the value of collecting site-specific data 

for making projections about marsh persistence with sea-level rise. WARMER is a cohort 

model that captures the dominant processes that control tidal marsh elevation, including 

mass-based mineral and organic matter deposition, decomposition, compaction, and 

relative sea-level rise. Functions for sediment deposition are based the relationship 

between inundation frequency and elevation, while organic deposition is a unimodal 

function based on Morris et al. (2002). The amplitudes of the sediment and organic 

accumulation functions are calibrated from rates determined from soil cores. We choose 

Nisqually as our focal study site because it had a site-specific mean accretion rate that 

was near the PNW mean. We ran WARMER for Nisqually using the soil core data from 

the other study sites keeping the remaining model parameters constant (Tables 4.1, 4.2). 

Since relative elevation is crucial in controlling accretion rates, we set the elevation of the 

calibration cores after controlling for differences in tide range between Nisqually and the 

other sites. We ran WARMER at a range of initial elevations (20-cm intervals) and used 

linear interpolation to create a continuous surface of marsh elevation from the results at 

10 year increments. We calculated the percent difference in mean elevation under a 

moderate sea-level rise scenario (+63 cm by the year 2110; National Research Council 

2012), and a paired t-test of the final elevation of each model run compared to the final 

elevation of the Nisqually results. We also translated the elevation projections into marsh 

habitat zones based on field surveys (Thorne et al. 2015), and compared percent cover of 

the habitat zones across the model results. For the initial elevation, we used a lidar-
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derived DEM that was corrected for vertical bias caused by vegetation using the LEAN 

method (Chapter 2, Buffington et al. 2016). 

 

RESULTS 

We found 137Cs peaks that corresponded to the 1963 horizon for all but two soil 

cores. The mean vertical accretion rate across sites was 4.5 mm yr-1 (SD = 2.2). Using the 

area-weighted average we found a mean vertical accretion rate of 4.3 mm yr-1 (SD = 2.1).  

There were significant differences across sites in vertical accretion (F7,14 = 17.7, p < 

0.0001), mineral accumulation (F7,14 = 4.4, p = 0.009), and organic matter accumulation 

(F7,14 = 3.5, p = 0.02). Grays Harbor, Port Susan, and Willapa were similar to each other 

but had significantly higher vertical accretion rates than Coos, Nisqually, Bandon, 

Skokomish, and Siletz (Table 4.3). Across all sites there was no trend in accretion rate 

with elevation (standardized for tidal range; Fig. 2). Accretion rates were better explained 

by the mineral inventory than organic matter across all cores (F1,20 = 8.98, p = 0.007), and 

there was no significant spatial autocorrelation between estuaries and their weighed 

average accretion rate (p = 0.67), mineral accumulation rate (p = 0.65), or organic matter 

accumulation rate (p = 0.32).  

There was significant variation in the amount of soil organic matter (top 20 cm) 

across sites, (F7,16 = 3.93, p < 0.011). Siletz and Skokomish had significantly more 

organic matter while Port Susan had the least (Table 4.4). Mean organic matter content in 

the top 20 cm was not significantly different by elevation class, (F2,21 = 1.61, p = 0.22). 

However, an ANOVA with ‘site’ and ‘elevation’ as categorical predictors for organic 
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matter content was significant (r2 = 0.61, F9,14 = 5.1, p = 0.004), indicating extent of 

spatial variation across a site (within marsh) differed among study sites (across estuaries). 

Across all sites and cores, average organic matter content was 12.6%. Mean bulk density 

for the entire depth of each core was not significantly different between elevation classes 

(F2,14 = 2.17, p = 0.15), and only marginal across sites (F7,14 = 2.34, p=0.08; 

BD~Site+Elev: r2 = 0.34, F9,14 = 2.3,  p = 0.078). Complete depth profiles of organic 

matter content and bulk density for all cores are provided in Appendix B, S2.  

Mean annual watershed discharge (D, cfs) was the best single-variable model, 

predicting a positive relationship with vertical accretion (wi = 0.89; 𝑎𝑐𝑐 = 0.14 +

7.54𝑒−5 × 𝐷; Table 4.5) and mineral accumulation (wi = 0.77; 𝑚 = −391.87 + 0.46 ×

𝐷; Appendix B, S3). Tidal range (𝑇𝑅) was the top predictor and had a positive 

relationship with organic matter accumulation (wi = 0.46; 𝑜𝑚 = −19.74 + 267.4 × 𝑇𝑅; 

Appendix B, S3). For each analysis, no other models were competitive.  

The different sources of accretion rate data used to calibrate future projections of 

marsh elevation with sea-level rise at Nisqually resulted in projections that were 

significantly different (p < 0.0001) than the projections calibrated with site-specific data 

(Fig. 4.3). Port Susan and Skokomish represent the range of accretion rates found in this 

study, thus we use those sites to discuss the WARMER comparison results. The higher 

accretion rate from Port Susan resulted in a mean elevation that was 34 cm higher after 

100 years than the site-specific accretion rate. The lower accretion rate from Skokomish 

resulted in a mean elevation that was 16 cm lower than the mean elevation using the rate 

from Nisqually. The range of error in using accretion rates from nearby sites was 41%, or 

50 cm, after 100 years. With site-specific accretion data from Nisqually and a 63-cm 
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increase in sea level, WARMER projected 55% of the marsh will be mid marsh, 38% low 

marsh, and a 61% loss in high marsh (Fig. 4.4). Using the higher accretion rates from 

Port Susan, WARMER projected 91% high marsh and 8% mid, while with the lower 

rates from Skokomish the projections were 18% mid, 72% low and less that 1% high 

marsh.  

 

 

 

Figure 4.2. Vertical accretion rate (mm yr-1) for each Cesuim-137 dated soil core by 

standardized elevation (z*) for 22 soil cores collected in eight estuaries in Oregon and 

Washington in winter 2013-14. z* is calculated by normalizing elevation relative to mean 

sea level by the elevation of mean higher high water.   
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Figure 4.3. Comparison of 100-year Wetland Accretion Rate Model for Ecosystem 

Resilience elevation projections for Nisqually using accretion data (mineral and organic 

matter accumulation rates) that was estimated from soil cores at each study site 

(scenarios). A moderate sea-level rise scenario (+63 cm over 100 years) was used and all 

other model parameters were held constant. 
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Figure 4.4. Marsh habitat zones from Wetland Accretion Rate Model for Ecosystem 

Resilience elevation projections at Nisqually with a 63-cm increase in sea level over 100 

years. Site-specific accretion rates (a), Skokomish accretion rates (b), Port Susan 

accretion rates (c). 
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Table 4.1. WARMER model parameters from Nisqually that were held constant for each 

run. Values calculated from analysis of a mid-elevation soil core. 

Model Parameter Value 

Elevation of Peak Biomass (cm, MSL) 175 

Minimum Elevation of Vegetation (cm, MSL) 105 

Root:Shoot 1.95 

Porosity Surface (%) 94 

Porosity Depth (%) 88 

Refractory Carbon (%) 59.7 

Maximum Astronomical Tide (cm, MSL) 286 

Historic Sea-Level Rise (mm/yr) 1.97 

Organic Matter Density (g/cm3) 1.14 

Mineral Density (g/cm3) 2.61 

 

 

 

Table 4.2 WARMER model parameters changed for each comparison. Calibrated 

sediment accumulation is reported at the elevation of mean sea level (MSL). 

Site 

Sediment Accumulation 

Rate (g m-2 yr-1) 

Max. Aboveground Organic 

Accumulation (g m-2 yr-1) 

Port Susan 9334 302 

Nisqually 2400 120 

Skokomish 912 98 

Grays Harbor 8026 134 

Willapa 3379 198 

Siletz 2984 143 

Coos Bay 988 57 

Bandon 1045 63 
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Table 4.3. Vertical accretion, mineral accumulation and carbon sequestration rates as 

determined by Cesuim-137 dating for soil cores sampled at low, mid and high elevations. 

The weighted mean is based on marsh area and core sampling location.  

  Low Mid High Mean (SD) 

Weighted 

Mean 

Vertical accretion (mm yr-1)    

Port Susan -- 7.2 5.2 6.2 (1.4) 6.7 

Nisqually 3.6 3.4 2.8 3.3 (0.4) 3.3 

Skokomish -- 1.6 2.8 2.2 (0.8) 2.5 

Grays H.  8.0 8.2 7.4 7.9 (0.4) 7.3 

Willapa 6.4 8.8 6.0 7.1 (1.5) 6.4 

Siletz 4.4 3.6 2.0 3.3 (1.2) 2.7 

Coos 3.2 3.2 3.4 3.3 (0.1) 3.3 

Bandon 2.0 2.4 2.4 2.3 (0.2) 2.3 

 

Mineral accumulation (g m-2 yr-1) 
   

Port Susan -- 3895 3536 3716 (254) 3690 

Nisqually 1500   650   925 1025 (434)   720 

Skokomish --   305   215 260 (63)   315 

Grays H. 3432 1411 6158 3667 (2382) 2765 

Willapa 2732 3711   565 2336 (1610) 2331 

Siletz   978 1076   529 861 (292)   654 

Bull Island   290   390   451 377 (81)   315 

Bandon   281   327   780 463 (276)   290 

 

Organic Accumulation (g m-2 yr-1)  

 

 
Port Susan --  163   143 154 (26)   157 

Nisqually   72   125   88 96 (39)   109 

Skokomish --  98   61 81 (35)     91 

Grays H. 164   109   136 138 (46)   116 

Willapa 171   161   81 141 (70)   155 

Siletz 190 182   96 159 (79)   118 

Coos   48   67   79  65 (20)     53 

Bandon   53   70   88 65 (35)     48 
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Table 4.4. Average (standard deviation) percentage organic matter in the rooting zone (top 20 cm) and overall bulk density from 

low, mid and high marsh soil cores across Pacific Northwest estuaries (n = 20). Elevation zones were determined by site-specific 

tidal datums. 

  Organic Matter (%)   Bulk Density (g cm-3) 

  Low Mid High  Low Mid High 

Port Susan   2.2 (0.5)    7.2 (1.3)   5.6 (1.1)  0.28 (0.25) 0.23 (0.11) 0.20 (0.14) 

Nisqually   5.2 (0.7) 23.1 (3.7) 11.2 (6.8)  0.42 (0.14) 0.23 (0.08) 0.39 (0.16) 

Skokomish 13.0 (2.0) 24.9 (2.9) 27.1 (6.8)  0.28 (0.10) 0.23 (0.08) 0.2 (0.11) 

Grays Harbor 11.0 (1.4) 15.6 (2.1)   5.1 (5.7)  0.28 (0.10) 0.10 (0.05) 0.62 (0.33) 

Willapa 11.4 (2.9) 10.5 (1.6) 30.9 (3.2)  0.42 (0.12) 0.27 (0.07) 0.10 (0.03) 

Siletz 21.1 (3.8) 20.9 (5.3) 18.7 (4.6)  0.27 (0.10) 0.36 (0.10) 0.35 (0.14) 

Coos 24.1 (2.7) 22.3 (4.4) 22.6 (5.9)  0.10 (0.04) 0.15 (0.08) 0.16 (0.07) 

Bandon 20.9 (4.1)   6.7 (5.6) 19.0 (2.2)   0.20 (0.23) 0.32 (0.08) 0.41 (0.17) 
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Table 4.5. Predictors of vertical accretion (using the area-weighted mean) for sediment 

cores collected in eight estuaries in Oregon and Washington from single-variable 

generalized linear models. Raw values used for these models are in Appendix B, Table 1.      

Predictors Resid. Df 

Log-

likelihood AICc ΔAICc weight 

Discharge 6 8.57 -5.15 0 0.89 

Hypsometric Integral 6 5.03 1.95 7.1 0.03 

Watershed Precip Vol 6 4.95 2.09 7.24 0.02 

Intercept-Only 7 1.69 3.02 8.17 0.01 

 

 

DISCUSSION 

Our results are the first attempt to measure accretion rates with sediment cores 

along elevation gradients across multiple Pacific Northwest tidal marshes to better 

understand variability in accretion, the physical drivers of accretion rates, and the 

sensitivity of sea-level rise vulnerability assessments. The range of accretion rates we 

measured in all cores across all study sites (2.3 – 7.3 mm yr-1) had accretion rates that 

were greater than the historical sea-level rise rates, which ranged from 0.4 mm yr-1 at 

Willapa to 2.1 mm yr-1 in Puget Sound (NOAA, tidesandcurrents.noaa.gov). Our 

estimates of accretion are comparable to those measured by Thom (1992; 2.3 - 6.6 mm 

yr-1); whose study included tidal marshes in two of our focal estuaries (Nisqually and 

Grays Harbor). Thom (1992) calculated an average accretion rate at Nisqually of 2.8 mm 

yr-1 and 6.6 mm yr-1 at a marsh along the Elk River at the southern side of Grays Harbor, 

similar to the rates we found for those estuaries. While all our study sites appear to be 

keeping pace with the current rate of sea-level rise, disruptions to the sediment supply, 

changes in freshwater discharge to the estuary (Elsner et al. 2010) or accelerated sea-level 
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rise anticipated after 2050 due to climate change (National Research Council 2012) pose 

risks to their long-term persistence. 

Accretion rates varied significantly across estuaries with mean annual watershed 

freshwater discharge as the best watershed-scale predictor of both accretion and mineral 

accumulation rates. Previous studies have found that sediment loads increase with fluvial 

discharge (Milliman and Syvitski 1992, Milliman 2001, Weston 2014), and the 

relationship between suspended sediment concentrations (SSC) and marsh accretion rates 

has been well established through empirical studies and numerical modeling (e.g., 

Temmerman et al. 2004, French 2006, Butzeck et al. 2014). Links between watershed 

discharge and marsh accretion rates, however, have not been explicitly tested. There has 

been a focus on the SSC of the water column during tidal inundation, however SSC can 

be a misleading metric for marsh stability as eroding marshes can produce high SSCs 

(Ganju et al. 2015). From a watershed-scale perspective, we suggest that SSC is a 

proximate factor in tidal marsh accretion and that freshwater discharge (and sediment 

supply) into the estuary is the important factor influencing tidal marsh longevity, at least 

in estuaries with ample supplies of erodible fine sediment and strong fluvial influence. 

However, little work has been done on linking SSC in channels with measured marsh 

surface accretion rates. While researchers have recognized the importance of sufficient 

SSCs for marsh persistence with sea-level rise (e.g., Kirwan et al. 2010), our results 

indicate that changes in discharge and sediment supply (e.g., Ganju et al. 2015) related to 

human influences (e.g., dams; Weston 2014) or precipitation (Rosencranz et al. 2016) are 

also important to consider for a holistic understanding of tidal marsh vulnerability.   
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Watershed-scale disturbances have influenced discharge and sediment loads 

across PNW estuaries. Human activities in watersheds have altered sediment delivery in 

other regions. For example, water retention behind dams is correlated with a decline in 

suspended sediment concentrations (Weston 2014), hydraulic gold mining and European 

settlement in the 1800s has been linked to marsh expansion (Watson and Byrne 2013), 

and road construction and logging has increased erosion, sediment transport, and peak 

discharge rates (Beschta 1978, Jones and Grant 1996). Additional monitoring and linking 

of fluvial SSC and surface elevation tables (SETs) are needed across the PNW to better 

evaluate the long-term impacts of land use and climate change on tidal marsh accretion 

processes (e.g., Nisqually restoration; Barber 2014).  

The relationship between organic matter accumulation and tide range is difficult 

to understand, but may be related to soil flushing. More frequent inundation would 

reduce soil salinities and promote biomass production, leading to increased rates of 

organic accumulation. However, marshes tend to increase in elevation with greater tidal 

ranges, thus it is not clear if increased inundation frequency is a reasonable assumption. 

Unfortunately, water salinity data was not available at every site, thus it was not possible 

to explore salinity as a potential mechanism. Salinity in the summer, when freshwater 

flow is lowest, may be a particularly useful metric to understanding variation in organic 

matter across Pacific Northwest marshes.  

The mineral and organic inventory results indicate that variation in accretion was 

more related to the accumulation of mineral sediment than organic matter. Overall, 

percent organic matter in the root zone and at depth was low in comparison to pickleweed 

(Sarcocornia spp) dominated marshes in the San Francisco Bay, California (Callaway et 
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al. 2012). Furthermore, these results contrasts with the high organic matter contributions 

in East Coast and Gulf Coast marshes of the United States (Nyman et al. 1993, Callaway 

et al. 1997, Chmura and Hung 2004, Kearney and Turner 2016), and underscores 

sediment supply and delivery as critical factors for PNW marsh accretion.  

Through comparison of WARMER model projections under a range of accretion 

rate scenarios, we demonstrated that site-specific measures of accretion are needed for 

accurate projections of marsh elevations with sea-level rise. There was significant 

variation in soil core characteristics and no spatial autocorrelation in accretion rates 

across sites and elevations illustrating that approaches of using nearest neighbor estuaries 

or a regional mean of accretion when site specific data is not available are not likely 

accurate. For example, we found that the higher accretion rate from Port Susan increased 

mean elevation at Nisqually by 26% in the 100-year simulation, while the lower rate from 

Skokomish reduced mean elevation by 14%, compared to using accretion rates from 

Nisqually (Fig. 4.3). After 100 years all of the high marsh habitat at Nisqually was 

projected to be lost using site-specific accretion data, while projections using the Port 

Susan accretion rates show high marsh covering 91% of the area (Fig. 4.4). The use of 

regional mean accretion rates can significantly alter model projections and 

interpretations, with implications for short- and long-term resource management.  

 

CONCLUSION 

We measured vertical accretion in tidal marshes across eight PNW estuaries and 

found that they all have accretion rates greater than the current sea-level rise rate. There 

was also significant variation across the estuaries. The variation in accretion was related 
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to fluvial discharge rates into the estuaries, which deliver sediments to the estuary for 

redistribution and deposition onto the marsh platform. Fluvial discharge rates are 

influenced by human activities and may further be altered by changes in freshwater 

availability and timing of flows due to climate change in the PNW. Integration of soil 

core-based accretion rates from additional estuaries across the PNW and in other climates 

is warranted to validate the model with discharge and explore the generality of the 

relationship. Exploration of hydrologic model climate change projections for PNW 

watersheds in this context would provide additional information about future sediment 

supplies to estuaries. From our model comparison, we found site-specific data are critical 

for accurate projections of marsh elevation into the future under sea-level rise scenarios. 

While there is much uncertainty in the rate of sea-level rise, site-specific accretion data 

helps reduce the overall uncertainty associated with future projections. Finally, holistic 

knowledge on the variation in sediment supply is required for the long-term management 

of tidal marshes facing an uncertain future.  
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As climate change and sea-level rise threaten to change coastal ecosystems (Day 

et al. 2008), resource managers need improved techniques to assist in assessing their 

current conditions, understand historic sensitivities to climate variation, and help guide 

management decisions in the face of future change. The overall goal of my dissertation 

was to integrate remote sensing and field datasets to improve our understanding the 

vulnerability of Pacific Northwest tidal marshes to climate change and sea-level rise. I 

developed a novel technique for improving the accuracy of airborne lidar in dense 

vegetation (Chapter 2), which is necessary for robust assessments of the baseline 

elevation in tidal marshes, and for making future projections of elevation response to sea-

level rise. I demonstrated the utility of time-series Landsat satellite imagery for 

monitoring changes in tidal marsh biomass and phenology due to variation in climate 

(Chapter 3). Finally, I found that tidal marsh accretion rates across the Pacific Northwest 

(PNW) vary considerably among sites, that variation is related to watershed discharge, 

accretion is dominated by mineral deposition, and the current rates of accretion in PNW 

marshes are greater than the current sea-level rise rate (Chapter 4).  

Both accurate initial elevation data and local accretion rates are important for 

making assessments of current tidal marsh vulnerability to sea-level rise and for making 

projections into the future. To further assess how model results respond to uncertainty in 

these two important data inputs, I ran the Wetland Accretion Rate Model for Ecosystem 

Resilience (WARMER; Swanson et al. 2013) at Nisqually with uncorrected and LEAN-

corrected DEMs, and with local and non-local accretion data. Using both the uncorrected 

DEM and non-local accretion data resulted in an error range for elevation of up to 50% 

(62 cm) compared to a LEAN-corrected DEM with site-specific data (Fig. 5.1). This 
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amount of uncertainty has important consequences for mapping current vegetation zones 

(e.g., low, mid, and high marsh communities), and for interpreting WARMER projections 

of the future. Using inundation frequency to define vegetation zones of current conditions 

(Thorne et al. 2015), I found substantial differences in vegetation maps between the 

uncorrected and LEAN-corrected DEMs at Nisqually, with 28% more ‘transitional’ 

vegetation in the uncorrected DEM (Fig. 5.2). These differences persist after a 100 year 

WARMER sea-level rise simulation, with 30% more high marsh projected with the 

uncorrected DEM. Combining uncorrected DEMs with non-local accretion data (from 

Grays Harbor, in this example) resulted in stark differences in the prevalence of 

vegetation in different elevation zones compared with the LEAN corrected DEM and 

local accretion (Fig. 5.2). These findings highlight the nonlinearities in tidal marsh 

systems that can lead to very different model projections if error in initial elevation and 

accretion rates are not controlled.  

Differences in the relative abundance of low, mid, and high marsh can influence 

the suitability of future marsh conditions for wetland-dependent wildlife. For example, 

the relative abundance of suitable habitat for marsh-endemic species such as Ridgeway’s 

Rail (Rallus obsoletus) and California Black Rail (Laterallus jamaicensis coturniculus) 

will change (Thorne et al. 2012). Ridgeway’s rails use low marsh areas dominated by 

Spartina spp for nesting (Zedler 1993), while Black Rails favor high marsh habitat 

dominated by Sarcocornia pacifica (Tsao et al. 2009). Using an inundation (elevation)-

based metric for marsh vegetation zones at China Camp, in San Francisco Bay (Thorne et 

al. 2015), I calculated that the current area of low marsh was underestimated by 220% 

when using uncorrected lidar compared with a LEAN DEM, and high marsh was 
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overestimated by nearly 100%. Under moderate 100 year sea-level rise (+93 cm), China 

Camp is projected to be dominated by low marsh species, with no high marsh remaining 

(Swanson et al. 2013). While elevation alone is an incomplete measure of habitat 

suitability of these species, these results demonstrate how a seemingly small vertical 

offset in elevation (23 cm, on average; Chapter 2) can impact estimates of suitable habitat 

area in tidal marshes. As demonstrated above at Nisqually, accurate initial elevation is 

critical when making projections into the future. Habitat suitability modeling efforts of 

species that live in habitat affected by hydrology need to carefully consider the error 

tolerances of baseline elevation data and the feasibility of adjustment algorithms like 

LEAN to refine projections.   

While my work using soil cores to improve our ability to forecast marsh response 

to sea-level rise is useful, soil cores alone are likely not enough for complete calibration 

of tidal marsh elevation models. Changes in land use across the watershed and in 

precipitation regimes due to climate change can influence the rate of sediment delivery to 

the estuary (e.g., Wright and Schoellhamer 2004, Chapter 4). Integration of accretion data 

from soil cores, suspended sediment concentration monitoring, and surface elevation 

tables (SETs) into model projections would capture both the history of the tidal marsh, 

including rates of soil compaction and organic matter sequestration, and the current 

availability of sediment.  

The integration of climate projections and stochastic drivers (storms, strong El 

Nino conditions) into future estimates of sediment availability (e.g., Ganju and 

Schoellhamer 2010) and accretion within marsh elevation models would potentially 

capture a broader range of future conditions and facilitate a more robust analysis of future 
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uncertainty. Movement away from using long-term average accretion rates for calibrating 

marsh elevation models, and using that data for validation instead, may expose additional 

sensitivities of marsh biogeomporhic processes that are important when considering 

historically rapid shifts in the abiotic environment due to climate change. For example, 

fluvial discharge, and hence sediment delivery, to estuaries along the Pacific coast is 

highly seasonal, however, little is understood about how potential changes in the timing 

of sediment delivery (because of earlier snow melt; Elsner et al. 2010) and altered plant 

phenology (due to climate change or ENSO, Chapter 3) may impact rates of sediment 

deposition and accretion in tidal marshes. Whether extending models like WARMER to 

include stochastic drivers or relying on more sophisticated modeling frameworks like 

Delft3D, there is a general lack of the necessary calibration and validation field data to 

extrapolate lessons learned from one site to others. The expansion of long-term 

suspended sediment monitoring programs (e.g., NOAA National Estuarine Research 

Reserves), coupled with SETs, would provide a valuable dataset for model 

parameterization. A next generation of tidal marsh models, coupled with local sediment 

and vegetation monitoring, would provide managers and scientists an improved guide for 

assessing existing tidal marsh vulnerability to sea-level rise, as well as provide better 

information regarding the necessity and feasibility of tidal marsh elevation enhancement 

(e.g., Ford et al. 1999) and restoration.  

Around the world, tidal marshes have been impacted by human development 

(Kennish 2002, Torio and Chmura 2013) and extensive efforts are underway to restore 

tidal marsh function. As the rate of sea level rise increases it is important to build 

additional capacity into coastal systems if they are to continue providing historic 
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ecosystem functions. My findings in Chapter 4 suggest that estuaries with higher fluvial 

discharge may better support restoration projects as the underlying sediment supply may 

be greater. While other considerations, such as the availability of restorable land and 

initial elevation, are also important, these results suggest fluvial discharge may be a 

useful and readily available metric for ranking restoration priorities at the regional scale.  

The effects of phenology in tidal marsh ecosystems has received relatively limited 

research attention. As they are subject to dynamic abiotic gradients, tidal marsh plants 

and wildlife may be particularly resilient to phenology shifts owing to broad phenotypic 

and behavioral plasticity (Wetson et al. 2012, Di Bella et al. 2014, Carus et al. 2016, 

Hunter et al. 2016). However, temporal and abundance mismatches between producer 

and consumer communities may have important, but subtle, effects on ecosystem 

functioning that may be further exacerbated by climate change and sea-level rise. 

Additionally, altered phenology may impact the net accumulation of carbon, with 

implications for carbon accounting and efforts to include tidal marshes in carbon markets 

(Sutton-Grier and Moore 2016). Further study into the effects of shifting phenology in 

coastal ecosystems is warranted, particularly in regard to potential effects on net 

accretion rates. 

There are several limitations of this dissertation that are important to reiterate. 

The LEAN method was developed using site-specific elevation data, thus extrapolating 

model corrections to other marshes, especially those with different vegetation, should be 

done carefully. Further analysis, including a leave-one-site out sensitivity analysis across 

each region, is needed to determine the amount of uncertainty that is introduced by 

extrapolation. The Landsat time-series and phenology modeling analysis would benefit 
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from further validation of the timing of peak biomass with repeated field sampling across 

the growing season. This would ensure that the interpretation of the temporal Landsat 

spectral signal across Pacific Northwest marshes aligns with the field conditions. The 

accretion rates I found across the Pacific Northwest largely represent the sediment supply 

conditions of the last 50 years. Deployment of surface elevation tables and long-term 

monitoring would help determine whether accretion rates have changed due to watershed 

management practices or climate change. 

Finally, monitoring and projecting tidal marsh responses to climate change 

requires accurate, site-specific data. Remote sensing data, including lidar and Landsat, 

offer a tremendous amount of information that can be used to improve our understanding 

of tidal marsh vulnerability and sensitivity to climate change, although both require 

careful calibration. Active monitoring of coastal systems with Landsat (and now Sentinel) 

and early identification of marsh response to sea-level rise may facilitate more proactive 

management strategies that promote tidal marsh persistence, as well as confirm model 

predictions about climate change impacts. Standardizing monitoring and modeling 

protocols across the landscape (e.g., Thorne et al. 2015, 2016) would give resource 

managers additional confidence in assessments of current and future conditions. 

Additional work is needed to capture the influence of stochastic events on long-term tidal 

marsh persistence, understand the influence of shifting plant phenology on accretion 

rates, move beyond long-term averages in models of tidal marsh vulnerability, as well as 

further integration of remote sensing products, fine-scale monitoring data, and marsh 

elevation models.    
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Figure 5.1. Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) model 

improvement (%) in mean elevation when using the LEAN method to correct the lidar 

digital elevation model at Nisqually.   
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Figure 5.2. Effect of corrected elevations and local accretion data on current and future 

tidal marsh vegetation zones. 100-year WARMER projections used accretion rate data 

from Nisqually (Local) and Grays Harbor (Non-local). Vegetation zones were defined by 

inundation frequency (Thorne et al. 2015). The background is a 2013 false-color NAIP 

composite image. 
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APPENDIX A. Supplemental material for Chapter 2. 
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S1. Power analysis results by study site for the Pacific Northwest sites. The solid black 

lines are the mean root mean squared error (RMSE) across the range of input RTK-GPS 

points, the dotted black lines represent one standard deviation, the blue line represents the 

mean cross-validated RMSE and the red vertical line denotes the number of RTK-GPS 

points that bring the RMSE within 1 cm of the cross-validated RMSE.  
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S2. Power analysis results by study site for the San Francisco Bay sites. The solid black 

lines are the mean root mean squared error (RMSE) across the range of input RTK-GPS 

points, the dotted black lines represent one standard deviation, the blue line represents the 

mean cross-validated RMSE and the red vertical line denotes the number of RTK-GPS 

points that bring the RMSE within 1 cm of the cross-validated RMSE.  
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S3. Power analysis results by study site for the Southern California sites. The solid black 

lines are the mean root mean squared error (RMSE) across the range of input RTK-GPS 

points, the dotted black lines represent one standard deviation, the blue line represents the 

mean cross-validated RMSE and the red vertical line denotes the number of RTK-GPS 

points that bring the RMSE within 1 cm of the cross-validated RMSE.  
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S1.  Area weighted accumulation rates and other watershed characteristics for eight estuaries across the Pacific Northwest. 

  Bandon Coos Siletz Willapa 

Grays 

Harbor Nisqually Skokomish 

Port 

Susan Source 

Vertical Accretion (mm yr-1) 2.3 3.3 2.7 6.4 7.3 3.3 2.5 6.7 Cores 

Organic Matter 

Accumulation (g m-2 yr-1) 52.4 59.9 151.1 225.6 150.0 144.3 109.0 307.7 Cores 

Mineral Accumulation (g m-2 

yr-1) 289.9 314.7 654.2 2330.7 2764.8 719.9 314.7 3690.3 Cores 

Watershed Area (km2) 2736 1590 955 2760 6996.4 1243 394 2173 HUD10 

Hypsometric Integral 0.29 0.30 0.28 0.18 0.13 0.18 0.27 0.23 This Study 

Tide Range (cm) 103 118 111 168 142 150 147 167 NOAA 

Total Precipitation (cm) 151.9 163.2 203.5 194.2 181.3 106.8 196.9 78.9 PRISM 

Growing Season Precip (cm) 4.0 4.2 6.5 2.9 3.8 3.2 1.9 2.8 PRISM 

Mean Annual Temp (C) 11.3 11.1 10.9 10.6 10.6 10.9 10.6 9.7 PRISM 

Max Annual Temp (C) 14.8 15.0 13.9 14.2 14.6 15.8 15.3 13.4 PRISM 

Mean Growing Season Temp 

(C) 13.2 13.6 13.3 14.3 15.1 16.1 18.2 17.6 PRISM 

Road Density 1.91 2.58 2.03 1.48 1.83 2.70 2.04 1.71 TigerLines 

Stream Density 4.09 3.75 4.26 5.44 3.91 2.01 2.98 3.72 TigerLines 

Urban (%) 0.01 0.02 0.00 0.01 0.02 0.04 0.01 0.02 NDLC2011 

Development (%) 0.05 0.06 0.06 0.06 0.06 0.11 0.05 0.08 NDLC2011 

Disturbed (%) 0.18 0.31 0.30 0.43 0.19 0.24 0.21 0.16 NDLC2011 

Fluvial Discharge (cfs) 3419 1986 1669 5411 8204 1227 1321 6254 USGS 

Watershed Precip Volume 

(km3) 4.68 2.96 2.48 5.73 14.76 1.51 2.04 5.20 PRISM 
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S2. Organic matter (%) and bulk density depth profiles from soil cores collected at low, mid, and 

high elevations. (a- Port Susan, b-Nisqually, c-Skokomish, d-Grays Harbor, e-Willapa, f-Siletz, g-

Coos, h-Bandon). 
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S3. AIC ranking of vertical accretion (area weighted mean), mineral accumulation, and 

organic accumulation across eight Pacific Northwest Estuaries from single-variable 

generalized linear models and sorted by ΔAIC. Raw values used for these models are in 

Table S1.      

 Predictors 

Resid. 

Df 

Log-

likelihood AICc ΔAICc weight 

Vertical 

Accretion Discharge 6 8.57 -5.15 0 0.89 

 Hypsometric Integral 6 5.03 1.95 7.1 0.03 

 Watershed Precip Vol 6 4.95 2.09 7.24 0.02 

 Intercept-Only 7 1.69 3.02 8.17 0.01 

 Watershed Area 6 4.36 3.29 8.43 0.01 

 Conifers 10-50 y.o. 6 4.2 3.61 8.75 0.01 

 Tide Range 6 4.16 3.67 8.82 0.01 

 Road Density 6 2.97 6.07 11.22 0 

 Max Annual Temp 6 2.54 6.91 12.06 0 

 Stream Density 6 2.05 7.9 13.05 0 

 Urban (%) 6 1.99 8.02 13.17 0 

 GS Precip 6 1.98 8.04 13.19 0 

 GS Mean Temp 6 1.87 8.26 13.4 0 

 Annual Precip 6 1.83 8.34 13.49 0 

 Sea-Level Rise Rate 6 1.82 8.35 13.5 0 

 Development (%) 6 1.73 8.55 13.7 0 

 Disturbed (%) 6 1.69 8.61 13.76 0 

Mineral 

Accumulation Discharge 6 -62.9 137.8 0 0.77 

 Intercept-Only 7 -68.42 143.25 5.45 0.05 

 Tide Range 6 -65.77 143.54 5.74 0.04 

 Max Annual Temp 6 -66.07 144.13 6.33 0.03 

 Hypsometric Integral 6 -66.43 144.85 7.05 0.02 

 Watershed Precip Vol 6 -66.55 145.1 7.3 0.02 

 Watershed Size 6 -67 146.01 8.21 0.01 

 Conifers 10 - 50 y.o. 6 -67.07 146.13 8.33 0.01 

 Stream Density 6 -67.81 147.61 9.81 0.01 

 Annual Precip 6 -67.85 147.7 9.9 0.01 

 Road Density 6 -67.91 147.81 10.01 0.01 

 GS Mean Temp 6 -67.95 147.91 10.11 0 

 Sea Level Rise Rate 6 -68.04 148.07 10.27 0 

 Urban (%) 6 -68.09 148.17 10.37 0 

 GS Precip 6 -68.13 148.25 10.45 0 

 Development (%) 6 -68.35 148.69 10.89 0 

 Disturbed (%) 6 -68.36 148.71 10.91 0 
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Organic 

Accumulation Tide Range 6 -42.43 96.86 0 0.46 

 Intercept-Only 7 -46.31 99.02 2.16 0.16 

 Max Annual Temp 6 -43.81 99.61 2.75 0.12 

 Sea Level Rise Rate 6 -44.52 101.04 4.18 0.06 

 Discharge 6 -44.98 101.96 5.1 0.04 

 Hypsometric Integral 6 -45.38 102.75 5.89 0.02 

 

Growing Season Mean 

Temp 6 -45.4 102.8 5.94 0.02 

 Annual Precip 6 -45.59 103.18 6.32 0.02 

 Road Density 6 -45.79 103.58 6.72 0.02 

 Development (%) 6 -45.94 103.88 7.02 0.01 

 Urban (%) 6 -45.96 103.91 7.05 0.01 

 Stream Density 6 -46.04 104.08 7.22 0.01 

 Growing Season Precip 6 -46.05 104.11 7.25 0.01 

 Watershed Precip Vol 6 -46.19 104.37 7.51 0.01 

 Conifers 10-50 y.o 6 -46.27 104.54 7.68 0.01 

 Watershed Area 6 -46.28 104.55 7.69 0.01 

 Disturbed (%) 6 -46.3 104.61 7.75 0.01 

   GS is growing season 

 

 

 

 

 

 

 


