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Chapter 1 – Introduction

With ever increasing oil prices and diminishing oil reserves, it has become both

economical and environmentally necessary to preserve as much fuel as possible.

One way to improve fuel efficiency while driving is to use the most effective driving

techniques. For example, driving at lower speeds on the highway, braking smoothly

and accelerating slowly are all ways to travel further on a gallon of gas. However,

it is impractical for a human to compute the optimal position of their accelerator

pedal to both save on fuel and still keep to the schedule they are on to get to their

destination. One solution is to partially automate the vehicle’s speed to optimize

efficiency.

Cruise control, now standard or optional in most cars, was the first attempt to

assist the driver. Conventional cruise control will help fuel efficiency on long flat

stretches of highway by decreasing gas guzzling accelerations and decelerations.

However, when the vehicle approaches an incline, the amount of fuel needed to

maintain a constant speed is much greater. In this scenario, conventional cruise

control can be very wasteful. One way to improve upon conventional cruise control

is to use knowledge of the vehicles environment to adjust the vehicles speed for

optimal fuel efficiency. If an incline is approaching then the vehicle can speed up

before the hill so that it does not have to put so much gas into ascending that

incline. This kind of technology is called Predictive Cruise Control(PCC) [23].
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Predictive cruise control utilizes Global Positioning Systems (GPS) to obtain the

changes in road elevation and curvature along the intended path of travel. Using

this knowledge, it is possible to calculate the best velocity curve to optimize factors

such as fuel economy and cost of time.

One of the largest industries to feel the fuel price increase is the trucking indus-

try. Semi-Trucks are also notorious gas guzzlers due to their large size and weight.

Although fuel rates are a big factor to trucking companies and independent truck-

ers alike, a driver still wants to get to his/her destination in a timely manner. One

of the challenges in optimizing fuel efficiency is finding a good balance between

fuel consumption, and time constraints. Given a good model of the vehicle, its

environment, and an objective function, an optimal solution can be found [23].

Herein lies the challenge. With such a complex system as a truck in a dynamic

environment such as the open road, it is nearly impossible to produce an accurate

model.

Traditional control methods are not often robust to inaccuracies in the model

or unaccounted for sources of noise [37]. In the semi-truck example, such inac-

curacies could be a result of miscalculated weight of the truck, slightly flat tires,

wet or icy road conditions, high winds, and many more uncontrollable or unac-

counted for factors. Adaptive control methods are much more robust to unknown

functions [30]. As long as these unknown factors produce a continuous function,

then a learning algorithm can find this trend despite not knowing the origin of the

error [2]. This quality makes learning controls ideal for a scenario in the variable

highway environment.
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Daimler Trucks North America is one company that has decided to participate

in PCC research. With a created objective function and a complicated model of a

moving semi-truck, they were able to calculate a desired velocity curve to optimize

their objective function. However, it has been found through empirical testing and

data collection that the vehicle is not able to accurately follow the desired velocity.

This error is likely due to variables unaccounted for in the mathematical model.

Because of this error it is necessary to recalculate the desired velocity curve using

PCC after a certain distance has been traveled by the vehicle. These recalculations

are expensive and it is desired to minimize the number of recalculations needed by

predicting the offset between the desired velocity and the actual velocity that the

vehicle obtains. If the offset can be accurately predicted, then we will be able to

make corrections to increase required recalculation distance.

The contribution of this thesis is to improve upon a model based control system

by integrating a learning control method into the system. The adaptive part of the

control improves the performance of the controller by accounting for imperfections

in the model that cause error. This improvement will ultimately reduce errors in

PCC, resulting in:

1. An increase in the controllers ability to reduce fuel consumption

2. A potential increase in the recalculation distance, thus reducing the process-

ing power required.

In this thesis, we explore the use of neural network learning as applied to

predictive cruise control.
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Chapter 2 provides background information on recent works related to PCC

and optimal fuel control. This chapter also briefly describes the different variables

that can affect a moving vehicle on the highway and the important roles they play

in velocity adjustment for optimal fuel efficiency.

In chapter 3, the problem definition and approach to the problem will be ex-

plained. Since we didn’t know exactly what information or how much information

would be needed to represent the function we were trying to learn, we approached

the problem simply at first and then added complexity as needed. A simple solution

would be best since it would be the quickest and least expensive to implement. Sev-

eral input mappings were explored. We used different configurations rooted from

the desired velocity curve from the PCC, and the elevation curve from the GPS.

In chapter 4, the most simple problem approaches are presented. What we have

labeled “single concept” approaches, only use information from either the desired

velocity curve or elevation data. We will see that even a very easy and simple

neural network can show improvement in the system.

On the other hand, “Multi concept” approaches involve neural network inputs

from both the desired velocity curve as well as the elevation curve. In chapter 5,

two multi-concept approaches will be presented and the results discussed. We will

see that giving the neural network more information can be beneficial or may yield

no improvements.

Lastly, in chapter 6, conclusions will be drawn from the information presented

in the previous chapters. Contributions of this thesis will also be discussed and

possible future work in the area presented.



5

Chapter 2 – Related Research

In this chapter we will discuss the general field of autonomously driving vehicles

and the technologies that have been developed in recent years. Then we will go

into further detail of the predictive cruise control idea and the basic mathematics

behind the model.

2.1 Advancements toward Autonomously Driving Vehicles

There have been several advances toward autonomously driving vehicles over the

past decade. Many of the technologies developed are to further the comfort of

driving or energy efficiency of the vehicle while maintaining or enhancing safety

features. One of the more significant inventions is Adaptive Cruise Control (ACC).

Traditional cruise control is a very common feature in modern vehicles and gives

the driver the ability to take his/her foot off the pedal and still move at a constant

speed that is inputted by the driver. Adaptive Cruise Control takes this idea to

the next level of convenience. Vehicles equipped with ACC will automatically slow

down when approaching a car directly in front of it. The vehicle with ACC will then

maintain a safe following distance from the preceding vehicle. This is made possible

by placing an ultrasonic or laser sensor in front of the vehicle [22, 29, 42]. This

sensor will measure the distance between the vehicles. Paired with the values from
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the vehicle speedometer, an appropriate deceleration rate and following distance

can be determined. Adaptive Cruise Control started with just control over the

accelerator, but more current models can also control the brakes, therefore being

able to avoid rear end collisions without any input from the driver [22, 32].

There are several suggested benefits to using ACC such as: It provides luxury

and convenience to the fatigued driver, it can be used as a safety device if the

driver is not paying attention, it helps reduce traffic congestion, and it improves

gas efficiency by forcing slow accelerations and decelerations as traffic moves [5, 6,

22, 42]. One study claims that in a single lane, high speed (30m/s) scenario, traffic

jams can be avoided if at least 20% of the vehicles are equipped with ACC [5].

Multiple lane and on ramp scenarios are more complex and the simulation results

vary [6, 7].

The next most noteworthy technology being researched is predictive cruise con-

trol(PCC). In many ways, PCC is the next addition to the cruise control family

after ACC. Traditional cruise control is able to increase gas efficiency on long flat

highways, while ACC saves fuel in higher traffic scenarios. Adding PCC to the

control system of the vehicle will help increase fuel efficiency by saving gas while

driving through variable road conditions. However, the complete cruise control sys-

tem is not ready yet. Predictive cruise control is still in the early years of research.

A patent for the basic idea behind PCC was filed in 2002 by DaimlerChrysler AG

and issued in 2006 [23]. A study into “Look Ahead Control to minimize fuel con-

sumption” was conducted in Sweden in 2007 and utilizes a complex vehicle and
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road model within a control system using several numerical methods. Results of

the study found a successful decrease in fuel usage [14].

2.2 Predictive Cruise Control

Predictive Cruise Control(PCC), utilizes knowledge of road conditions further

along the intended path so that the vehicle can take actions that will decrease

the total fuel needed for not only the present time, but also for several moments

in the future. In traditional cruise control, a hill can be approaching but the ve-

hicle will continue to go the same speed. In PCC, the fuel optimal action to take

may be to increase speed before the hill and decrease speed during the climb up

knowing that once the peak of the incline is reached, gravity may help to alleviate

the energy required from the engine. Figure 2.1, shows the basic concept of PCC.

In the figure we can see lower and upper bounds for the velocity. Having these

boundaries prevent the vehicle from driving too fast and getting a speeding ticket,

and driving too slow to where it doesn’t meet the time restraints.

Although the models used in the current PCC algorithms are extremely com-

plex with several factors, the basic mathematics are simple to explain and under-

stand. To give the reader a very brief introduction to why PCC works, we will

discuss the main forces that act on a moving vehicle. In Figure 2.2 we can see a

free body diagram of these base forces. The major forces acting on the vehicle are

drag force, force associated with the incline of the road, the force applied by the
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Figure 2.1: Predictive Cruise Control main concept: Given specified speed con-
straints, PCC system will solve for the optimal velocity profile for several meters
ahead of the vehicle’s current position.

Figure 2.2: Forces on a vehicle: Several forces affect the vehicle as it moves

brake, and the force that results from the energy spent by the engine. Given these

forces, the acceleration of the vehicle can be determined by Equation 2.1.
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∑
F = m

dv

dt
= Fmotor − Fdrag − Fincline − Fbrake (2.1)

Fmotor = η
τ

rcrankshaft
(2.2)

Fdrag = (
1

2
cdAρair)(v + wind)2 (2.3)

Fincline = mg sin θ (2.4)

Fbrake = 0 (2.5)

Equations 2.2 - 2.5 give more detailed calculations of the forces on the vehicle.

We can see that the force required by the motor increases as the drag force, incline,

brake force and acceleration of the vehicle increase. As seen in Equation 2.5, we

assume that the force of the brake is zero because similar to conventional cruise

control, if the driver taps the service brakes, then cruise control will turn off. The

incline affects Fincline by changing the angle Θ and therefore, changing the affect

that gravity has on the vehicle(Equation 2.4). Figure 2.3(Left) shows how the

incline of the hill affects the associated force. The drag force is mostly effected by

the changing velocity of the vehicle but can also be effected by wind. Equation 2.3

gives the equation for drag force, where cdA is a constant for the vehicle and ρair is
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the density of air at sea level and at 20◦C. In Figure 2.3(Right), wind is neglected

and the relationship between drag and velocity of the vehicle is shown [12].

Figure 2.3: Left:Relationship between the incline of a hill and the force that acts
on the vehicle due to the gravitational pull at that incline Right: Relationship
between velocity of vehicle and the drag it creates

Unfortunately, this approach is not as simple as it seems. There are several

approximations that must be made in this model. The coefficient of drag used

in Equation 2.3 is complicated to calculate on a geometry such as a truck. Even

something as easy to comprehend as mass in Equation 2.4 is difficult to estimate

for a truck that can weigh tons less when empty as compared to when it is full.

Equation 2.2 calls for an η, which represents the efficiency of the engine. This

value involves several factors including efficiencies of several components in the

engine. Different conditions can vary this efficiency. Now that every seemingly

simple equation presented has been dissected for inefficiencies, it is safe to say that

even a well done model of such a system could never be 100% accurate.
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Chapter 3 – Problem Description and Approach

Although predictive cruise control has already had fairly successful results, we

believe that applying a learning algorithm to the control system will make the

results more accurate in highly variable conditions. A learning environment will

account for several variables not easily modeled in traditional control systems.

This could result in a greater increase in fuel efficiency.

The problem at hand is that there already exists a model based predictive

cruise control algorithm that outputs a desired velocity that is not obtainable by

the truck. This problem is demonstrated in Figure 3.1. The red line is the desired

velocity, vdes, that represents the velocity at which PCC wants the truck travel.

The blue line is the actual velocity, vact, that the truck is obtaining.

Rather than learn the entire objective function with the learning controller, we

can implement the learning into the system with the PCC algorithm. If the the

offset between the PCC desired velocity and the actual realized velocity by the

vehicle were known, then it would be possible to correct the desired velocity to

values that the truck can reach. This would reduce the frequency at which the

desired velocity curve needs to be recalculated, thus saving computational time

and fuel. Therefore, we want the learner to learn the offset in order to make a

correction to the system. This proposed solution is demonstrated in the block

diagram in Figure 3.2.



12

Figure 3.1: PCC error offset: The red line labeled vdes, is the desired velocity curve
that is outputted from the PCC algorithm. The blue line labeled vact, is the actual
velocity that the truck travels. The difference between the two is the offset.

Figure 3.2: Proposed Solution to the PCC problem: Given the model based PCC,
we propose to implement a learning based control method in order to predict the
offset between the desired velocity from PCC and the actual velocity the vehicle
travels. If we know what the error is going to be ahead of time, then we may be
able to correct the problem or adjust the desired velocity in order to minimize the
number of times PCC needs to recalculate.
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As we can see from Figure 3.2, the learner can use information from both the

GPS and the desired velocity curve outputted from the PCC. Using that infor-

mation, it will have to accurately output an offset for each time step. There are

several different types of learners that are available for such a task. However, each

learner specializes in different areas and it is often difficult to know which one fits

the problem at hand. Next, we will discuss some of the different types of learn-

ing control methods and why we eventually determined that an Artificial Neural

Network approach would be the best fit for this problem.

3.1 Learning Control Methods

There are several learners that could be utilized in this study. The key is to find

the learner that is best suited for the problem stated above. Therefore, we will

discuss some of the possible learners that could be implemented as well as their

pros and cons with respect to this thesis.

3.1.1 Back Propagating Neural Network

Back propagating neural networks use a large data set of input values and target

output values to learn unknown functions. This data set is used to “teach” what

actions are good, bad, and exactly what to do to make the network better. This

learning method is called supervised learning because the data leads the network

in the right direction with hard values in order to change the parameters of the
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network for minimum output error [2, 16, 27, 30, 46].

Pros:

• Can learn any continuous function given the right parameters

Cons:

• Using gradient decent, the solution can get stuck in local minima of objective

function

• It is somewhat of an artform to find the best input/output mapping

3.1.2 Neuro Evolutionary Neural Network

Neuro Evolutionary neural networks use unsupervised learning to find the best

action. This type of learner has no data examples to follow, but rather takes

an action and then receives feedback on its performance. Next, rather than de-

terministically changing some parameter based on solid data, the network will be

randomly changed. The performance of each state will be evaluated and the better

will be selected and the worse discarded. This will eventually produce a network

that delivers decent performance based on some objective function [1, 8, 21, 27, 30].

Pros:

• No data set is needed

• Less likely to get stuck in local minima due to stochastic search

Cons:
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• Slow to get good results due to stochastic search features

3.1.3 Reinforcement Learning

Reinforcement learning is as its title implies. It is a reward based learning con-

troller. That is to say that it learns from its interactions with the environment.

After taking an action, the system will receive some feedback from the environ-

ment. Based on this feedback, the behavior will be modified until some goal is

reached [36, 27, 30, 43].

Pros:

• Applicable to problems with long term vs. short term reward trade off

• Can reward for a sequence of good actions, not just single actions

Cons:

• Slower to converge to solution than back propagation

3.2 Approach: Artificial Neural Networks

Due to the easy access to thousands of sample data points, it was determined that

back propagating neural networks would be a good approach for this problem.

Throughout the rest of the paper, back propagating neural networks will now be

referred to as neural networks or artificial neural networks(ANN).
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3.2.1 Algorithm

The neural network algorithm effectively utilizes its extensive data set by learning

from experience. A data set consists of input values that correspond to target

output values. On the highest level, we can think of a neural network as a black

box that takes inputs and produces outputs. When in the learning stage, this

output is compared to the target output and an error is calculated. Using this

error, changes can be made to the network properties. The next iteration of this

sample will produce an output closer to the target value. When we present several

samples to the neural network that follow the same basic function, the error will

be reduced several times and the parameters changed each time until the error is

at a minimum and function is learned.

Figure 3.3 shows the basic structure of a two layer neural network. The inputs

can be represented by the neurons in the input layer and the output of the system

will be the result of the output layer neurons. In this problem, there will be only

one output and so only one output neuron is shown. However, in this paper we

will present many different ANN configurations were we will have 4, 6, 8, or 10

inputs.

Although there are only five displayed, the hidden layer can have any number

of hidden units. Having a hidden layer allows the ANN to learn more complicated

functions. The more hidden units there are, the greater complexity the function

can have [30]. Both the hidden and output layer neurons have what is called an

activation function. The tangential activation function used for this study takes
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Figure 3.3: A two layer neural network: Simple neural networks can be composed
of an input layer, hidden unit layer, and an output layer, with weights connecting
every “neuron” in each neighboring layer. The lines drawn are these weights. The
number of weight layers gives the neural network its name. This example has
two layers of weights separated by the hidden layer, hence it is a two layer neural
network. The hidden units and outputs will have some type of activation function.
In this study, tangential activation is utilized. The system can have any number
of inputs,hidden units, hidden layers, and outputs, but the more there are, the
greater the computational time.

the input to the neuron and gives it a value between -1 and 1 that will affect the

outputted value. The lines connecting the neurons are extremely important. These

lines represent weights. Therefore, every value that is connected from an input

neuron to a hidden unit or from a hidden unit to the output will be weighted when

fed through the neural network. Figure 3.4 shows the basic structure of a neural

network algorithm. The main goal of the algorithm is to update the weights, vi,j,

and wj,k, which correspond to the weights connecting the input layer to the hidden

layer and the weights connecting the hidden layer to the output layer respectively.
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For each epoch, loop:

For each sample in training set, loop:

1. Feed forward:

– Compute hidden layer
hj = tanh(

∑

i

xivi,j + biasj)

– Compute output layer
yk = tanh(

∑

j

hjvj,k + biask)

– Compute errors at each output
ek = tk − yk

2. Back propagate error and calculate weight updates

3. Update Weights
new weight= old weight + weight update
vi,j = vi,j + ∆vi,j

wj,k = wj,k + ∆wj,k

Figure 3.4: Feed Forward Back Propagating Neural Network Algorithm: The neu-
ral network algorithm consists of 3 major sections. The first is the feed forward
section which uses the input values and weights to ultimately calculate the out-
puts. The weight vi,j corresponds to the weight between input xi and hidden unit
hj. The weight wj,k corresponds to the weight between hidden unit hj and output
yk. There are also bias weights for each hidden unit and each output, which acts
to set the threshold for the activation function, tanh. To compute the error at
each output, the calculated output, yk is simply subtracted from the target value,
tk. The second step is to back propagate the error through each layer of weights.
Using the error as well as a derived form of the activation function and the val-
ues at each input and hidden layer, an update for each weight can be calculated.
The last step is to update the weights. The next iteration then uses these new
weights. Weights are updated until some stopping criteria is met and the most
recent weights are then used for the test simulation.
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The subscript i, denotes the input, j denotes the hidden unit, and k denotes the

output. If there are n inputs, m hidden units, and d outputs, then the v is a

n×m matrix and w is a j× k matrix. There are also bias weights for each hidden

unit and each output, which act to set the threshold for the activation function.

These weights are the parameters that can be changed during the learning process.

Therefore the function to be learned is Fw, the function as a function of the weights

in the neural network [2, 27, 30].

The weights are adjusted to minimize the mean square error at the output level.

When the error is back propagated through the layers, it adjust the weights using

gradient decent to lower the mean square error. The weights will be adjusted for

each sample presented to the network. The network is “trained” in this fashion

using what is called a training set. The neural network will present every sample in

the training set once per epoch. In the next epoch, every sample will be presented

again until the error stops improving or some other criteria is met. The weights

that are settled on in the last epoch will then be used to test the performance of

the system. Testing requires that the system sees a data set that it has never seen

before. Therefore, it will be be tested on the test set which contains none of the

same samples as the training set. Performance is determined by presenting the

data set to the network and comparing its simulated output to the desired output

and calculating the error between them.

In this paper the full data set is split into a training set and a test set using

two different methods. As displayed in Figure 3.5, the first method is a segregated

approach where the training set consists of the first third of the data and the test
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Figure 3.5: Separation of Training and Testing set using segregation: The first
method of separating training and testing data is to take the first third of the data
for training and the rest will be reserved for testing. This method is very straight
forward and easy to implement but may cause large error in the test set when a
scenario is presented that is not similar to anything from the training set.

set is the other two thirds of the data. This method is used first because it is all

around easy to implement in the code. However, as seen in the figure, the training

set does not seem to represent the total data set very well. While we don’t want to

have the exact data in both the training and test sets, it is important for testing

that the system was trained on something similar. The second method shown in

Figure 3.6 is an integrated approach. One third of the data is still used for training

but it is evenly spaced throughout the entire data set so that more scenarios of the
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Figure 3.6: Separation of Training and Testing set using an integrated approach:
This method of separating the training data will better represent the entire data
set since it is inter-dispersed throughout the data. Every third data point is used
as a training point and the rest is used for testing.

data are represented. Therefore, every third data point is used for training, and

the remaining 2 of 3 points are used in testing.

3.2.2 Input/Output mapping and representation

When an unknown function is presented in a problem such as this one, it is vital to

find the most relevant inputs to fit the problem. For example, in this study we are

trying to learn the offset between the PCC desired velocity and the actual velocity

the vehicle realizes. Factors that would not affect this would be things like the

trucks cargo, or phase of the moon. Factors that might affect the offset slightly,

could be things like temperature of the environment, condition of the road surface,

and slight winds. Factors that we suspect play a major role in the offset are the

velocity of the vehicle, the PCC desired velocity, and the grade of the incoming

terrain. Therefore, simply using the knowledge presented in Section 2.2, the plot
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we saw in Figure 3.1, and some common sense, we have predicted that information

obtained from the PCC desired velocity, and the elevation curve will give us the

most relevant inputs to our neural network.

Given this prediction and a prior knowledge of how neural networks perform,

we have chosen to train and test the networks based on the 7 different input con-

figurations shown in Figure 3.8. These are all variants of the desired velocity and

elevation curves. The left column shows the elevation based input configurations

and the right column shows the desired velocity based input configurations. Before

we go into greater detail about the different configurations, lets look at what we

will be doing with these inputs.

In Figure 3.7 we can see the setup of the learning problem. In this example,

the inputs will be from the “elev” configuration. There will be four elevations

from equally spaced points within the “look ahead window” (i.e. the furthest

distance that the neural network is gathering information from). The “look ahead”

distance will help to find how much distance is relevant. For example, we know

that the elevation curve contains relevant information; however, an elevation 50

miles ahead of the vehicle will not affect the next 50 meters. In this example, we

have a look ahead distance of 100 meters. Therefore, the 4 inputs will be placed

at approximately 0, 33, 66, and 100 meters away from the current vehicle location.

The offset we are trying to learn will be half of the look ahead distance. In this

case, it is 50 meters away. Now that we know some terminology and the basic set

up of the learning problem, we can discuss in more detail the plots in Figure 3.8.
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Figure 3.7: Input/Output mapping for a 100 meters look ahead distance using
“elev” input configuration: These plots show that the inputs used in the neural
network come from evenly spaced points of the elevation or desired velocity curve.
The output used for each sample is the offset at 1/2 the look ahead distance. In
this example, the look ahead distance is 100 meters, therefore the inputs will be
the elevation at a distance of 0, 33, 66, and 100 meters, while the output will be
the offset at a distance of 50m.

Starting on the top left and going down, we see that the “elev” configuration

inputs elevations at equally spaced points within the look ahead window. The

“grade” configuration inputs the road grade of the road at these same points. In

the “slopes” and “bridge” configurations, we have to set up one more equally spaced

point in the look ahead window in order to get the same number of inputs. The

inputs for “slopes” are the slopes of the lines that connect the current elevation

to the four future elevations. The inputs for “bridge” are the slopes between
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Figure 3.8: Configurations for neural network inputs: The neural network is
exposed to several different configurations in order to see what information is
most relevant to our desired target. Configuration “elev” inputs elevation val-
ues at equally spaced points within the look ahead window. Configuration
“grade”inputs the road grade at equally spaced points within the look ahead
window. Configuration “slopes” inputs the slopes from the current elevation to
n evenly spaced elevations in the look ahead window. For this example, n, the
number of inputs, is 4. Configuration “bridge” inputs the slopes between each
neighboring equally spaced elevation, like the slopes of a connect-the-dots puzzle.
Configuration “vdes” inputs the desired velocity values at equally spaced points
within the look ahead window. Configurations “vdesslopes” and “vdesbridge”
are calculated in the same way as their elevation based counter parts, except the
desired velocity curve is used to extract the input values.
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each neighboring elevation point, like the slopes of a connect-the-dots puzzle. On

the right column, the “vdes” configuration inputs the four equally spaced desired

velocities within the look ahead window. Do not confuse the “vdes” configuration

with the desired velocity curve, vdes which is the actual curve while “vdes” is

referring to the input configuration mapping. The “vdesslopes” and “vdesbridge”

configurations follow the same rules as “slopes” and “bridge” respectively, however

they use the desired velocity curve instead of the elevation curve. Note that the

desired velocity based inputs underwent a preprocess smoothing procedure. In the

data, the PCC model based control system recalculates the desired velocity every

4000 meters. This results in discontinuities in the data where it will abruptly

change to meet the actual velocity curve. Since neural networks cannot learn

discontinuous functions, it was vital to smooth this data out. To smooth the data,

each point in the vdes curve is replaced with an average of the values of itself and

the nearest 20 points.

The reason these configuration variants of the raw data were created was to

see which form has the relevant information most readily available to the neural

network. Choosing inputs is somewhat of an art. At times, trying different variants

of the same information is the only way to get the best results possible.

Matlab’s neural network toolbox aided this study. Therefore, many of the

neural network parameters were determined by the toolbox. Several conditionals

including gradient, validation checks, and a maximum number of 1000, were used to

determine the number of epochs. Learning rate was optimized within the toolbox.

Number of hidden units was user modified to be 20 hidden units for the 4 and 6
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input variations and 40 hidden units for the 8 and 10 input variations. The reason

for this parameter set is that greater numbers of inputs will require a greater

number of hidden units to learn the function.

A common approach to Neural Networks is to move from simple inputs to more

complex. Starting with the easiest information to process and implement in the

algorithm is always a good idea. Complexity can then be added as needed to

improve the performance of the learner. As we discussed earlier, the greater the

number of neurons, the more computational time is required. Therefore, we have

started with 4 inputs with a look ahead distance of 100 meters in our examples

but will also see the affects of 6, 8, and 10 inputs as well as look ahead distances

of 400 and 800 meters. We have also started by using one type of input for each

configuration. That is, the inputs are in the same form and derive from either the

desired velocity curve or the elevation curve. The results for these “single-concept”

neural networks will be presented in Chapter 4. In Chapter 5 we will see the effects

of using multi concept inputs. That is, we will enrich the input space by using

both elevation based and desired velocity based inputs in the neural network to

see if the addition of information is beneficial to the system.
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Chapter 4 – Single Concept Inputs

The first results we will discuss come from the single concept input configurations

that were presented in Figure 3.8. Over three hundred different single concept vari-

ations of neural networks were run to find out which inputs and training methods

would perform the best. The varied parameters included:

1. Configuration: Seven configurations as described in Section 3.2.2 and Fig-

ure 3.8 were used. Representing the data in different ways will give us an

idea of what aspects of the environment affect the PCC error the most.

2. Number of Inputs: The number of inputs were varied to see how many

inputs were needed to sufficiently represent the system. Fewer inputs are

desirable because greater number of inputs will be computationally taxing.

We experimented with 4, 6, 8, and 10 inputs.

3. Look Ahead Distance: How much of the future terrain affects the offset?

If we don’t look far enough then we are not getting enough information, but

looking too far will result in extraneous data. For this study, 100, 400, and

800 meter look ahead distances were sampled.

4. Training Method: Two training methods were used: Segregated and Inte-

grated training as demonstrated in Figure 3.5 and Figure 3.6 respectively.
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Figure 4.1: top: Results from one run with “grade” configuration, 6 inputs, 400
look ahead window, using integrated training bottom: The elevation curve corre-
sponding to the position of the simulation results.

5. “No limits” analysis: “No limits” analysis is another variation of training

and testing that has not yet been introduced. A brief description of this

analysis is that it only uses a subset of the data. Results for “no limits”

analysis will be presented in Section 4.4.

The results will be presented in two main forms: Graphical and tabular. Using

both of these methods together will give a much better idea of how the learners

are performing than if we only used one or the other.

Plotted in Figure 4.1(top) are three curves. The first blue curve is the actual

velocity(data vact) of the vehicle and the red line is the PCC desired velocity(data

vdes) curve. The black line represents the actual velocity that the neural network
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has simulated as a prediction(sim vact). Therefore, we want the black line to

be as close as possible to the blue line for best results. At worst, we want the

black line to be closer to the blue line than the red line is so that at least our

learning controller improves upon the model based PCC. Figure 4.1(bottom) is the

elevation curve that corresponds to the positions on the top plot. The elevation

curve is plotted beneath the results because the simulation used “grade” inputs

which utilizes information from elevation. Visually seeing where inputs come from

can help one to understand why a learner is doing what it does.

Table 4.1: 400 look ahead- segregated training All test terrain
Configuration 4inputs 6inputs 8inputs 10inputs
no learning 0.225
elev 0.719/− 219% 1.001/− 344% 0.538/− 138% 0.543/− 141%
grade 0.165/26.7% 0.165/26.5% 0.190/15.5% 0.203/9.6%
slopes 0.173/23.0% 0.187/17.1% 0.241/− 6.9% 0.223/1.8%
bridge 0.181/19.8% 0.179/20.5% 0.234/− 4.1% 0.216/4.2%
vdes 0.167/25.6% 0.171/24.1% 0.217/3.4% 0.199/11.6%
vdesslopes 0.208/7.4% 0.204/9.4% 0.243/− 8.1% 0.240/− 6.7%
vdesbridge 0.205/8.8% 0.210/6.5% 0.239/− 6.0% 0.216/4.2%

Such plots as seen in Figure 4.1 are very interesting as a visual. However,

after looking at the hundreds of result plots that can come from the hundreds of

variations itemized earlier in this chapter, all these plots start to look very similar

and the actual performance cannot be ascertained. Therefore, it is important to

know quantifiable measures of how the learners are performing. Table 4.1 shows

two things. Each cell represents the results of a single run, training and test-

ing, through the neural network using the corresponding configuration(rows) and

number of inputs(columns). Therefore, each table will display 28 different runs(7
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configurations × 4 inputs). During each run, every testing point simulates a pre-

diction of what the actual velocity will be. The offset between the simulated vact

and the data vact is calculated for every testing point and averaged to find the first

value in each cell. The offset distance without learning is simply the difference at

every point between the desired velocity and the actual velocity. These offsets will

have units of meters/second since they are velocities. Similar to how we wanted

the simulated vact (black line) to be closer to the data’s vact (blue line) than the

PCC’s desired velocity, vdes (red line), we want the learners offset to be smaller

than PCC’s offset.

The second value in the cell represents the percent improvement that the learner

has obtained over the “no learning” scenario. For Table 4.1, the “no learning”

scenario resulted in an average of 0.225 meters/second over the entire testing set.

Any value lower than that means that the learner has improved the system by

some positive percentage. Any value greater than that means that the learner

made the system worse and will result in a negative percent improvement.

The single concept results chapter will present how changing different param-

eters of the neural network can affect the overall outcome. First we will discuss

the benefits and limitations of post process smoothing. Secondly, the results will

be dissected into different terrain classifications, and we will see how the systems

perform on flat, uphill, and downhill road segments. Next we will see how num-

ber of inputs and look ahead distances impact the results. Lastly, we will present

“no limits” analysis and how well the neural networks performed under these new

conditions.
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4.1 Post Process Smoothing

To generate the best results possible we first post processed the data. The nature

of this neural network is that every input is slightly different and the previous

predicted error from the iteration before is not known. The product is sometimes

bumpy results. If we were to implement these values into the vehicle control

system, the vehicle would have difficulties following the path. Due to the nature of

the neural network used in this study, post process smoothing is a very beneficial

tool.

Figure 4.2(top) presents the raw results from the “grade” configuration using 4

inputs, a 100 look ahead distance, and segregated training. In Figure 4.2(bottom),

we see the same plot but smoothed using an average of the nearest surrounding

100 data points. We can see that the results look much better and appear to fit

more closely to the target values.

Table 4.2 shows quantitatively how the results from the learner can be improved

upon with smoothing techniques. The first of the three table series shows the raw

results from all configurations and all number of inputs from the 400 look ahead,

segregated training scenario. The second table gives the results from the same

runs that have been smoothed using 100 data points. The third table is another

representation of the same data being smoothed with 200 data points. In this

case, greater smoothing produces better results. This is not to say that more

smoothing will always produce more benefit. Smoothing with maximum amount

of data points would end up in a straight line at the average velocity. Another
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Figure 4.2: top: Results without smoothing bottom: Results with smoothing -
Post process smoothing helps to obtain better improvement in the system as well
as a velocity curve that could realistically be followed by a vehicle.

thought to consider is that large amounts of smoothing may benefit the overall

performance, but may hurt sections of the results. For example, smoothing may

help in hilly terrain and decrease the improvement in flat terrain resulting in an

overall improvement, but not a desirable result. This is just to show that smoothing

does help in moderation. Smoothing with too many points will result in greater

error. It is important to find a good balance that optimizes the benefit of this

process.
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Table 4.2: Smoothing benefits: 400 look ahead- segregated training

Raw results - not smoothed

Configuration 4inputs 6inputs 8inputs 10inputs
no learning 0.225
elev 0.719/− 219% 1.001/− 344% 0.538/− 138% 0.543/− 141%
grade 0.165/26.7% 0.165/26.5% 0.190/15.5% 0.203/9.6%
slopes 0.173/23.0% 0.187/17.1% 0.241/− 6.9% 0.223/1.8%
bridge 0.181/19.8% 0.179/20.5% 0.234/− 4.1% 0.216/4.2%
vdes 0.167/25.6% 0.171/24.1% 0.217/3.4% 0.199/11.6%
vdesslopes 0.208/7.4% 0.204/9.4% 0.243/− 8.1% 0.240/− 6.7%
vdesbridge 0.205/8.8% 0.210/6.5% 0.239/− 6.0% 0.216/4.2%

Smoothed with 100 surrounding data points

elev 0.717/− 218% 0.996/− 342% 0.531/− 136% 0.538/− 139%
grade 0.161/28.5% 0.161/28.3% 0.180/19.9% 0.194/13.8%
slopes 0.164/26.9% 0.178/21.1% 0.221/1.8% 0.202/10.4%
bridge 0.171/24.0% 0.168/25.2% 0.210/6.5% 0.190/15.5%
vdes 0.164/27.2% 0.167/25.8% 0.202/10.1% 0.188/16.4%
vdesslopes 0.200/11.3% 0.194/13.6% 0.226/− 0.5% 0.220/2.2%
vdesbridge 0.197/12.4% 0.198/12.0% 0.221/1.9% 0.201/10.8%

Smoothed with 200 surrounding data points

elev 0.715/− 217% 0.989/− 339% 0.526/− 133% 0.535/− 137%
grade 0.159/29.1% 0.161/28.5% 0.174/22.5% 0.189/16.1%
slopes 0.160/28.8% 0.175/22.4% 0.214/4.7% 0.195/13.5%
bridge 0.167/25.7% 0.164/27.0% 0.199/11.8% 0.179/20.3%
vdes 0.161/28.3% 0.166/26.5% 0.191/15.2% 0.180/19.9%
vdesslopes 0.195/13.3% 0.192/14.6% 0.218/2.9% 0.214/4.8%
vdesbridge 0.194/14.0% 0.194/13.9% 0.214/4.9% 0.197/12.5%
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4.2 Terrain Results

Next, we are interested is seeing where in the test set improvements (or degen-

erations) are being made. The total improvement over the entire terrain will be

presented as well as a further dissection that shows how the network improves

over different areas of the data set. The terrain of the testing data was classified

into either “flat”, “uphill”, or “downhill”. The terrain was parsed using grade

as the classifier. If the average of the grades within the look ahead window was

greater than or equal to .015, then that area was classified as “uphill”. Where

as if the average grade was less than or equal to -.015, then the area was classi-

fied as “downhill”. All points with an average grade between -.003 and 003, was

considered “flat”. Figure 4.3 demonstrates the areas and their labels.

Figure 4.3: Terrain classification: The value of the grade in each area was used
to determine what sections of the terrain would be classified as flat, uphill, and
downhill. Other classifications included “midranged” and was not used in the
analysis.
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Table 4.3: All test terrain with 100 look ahead - segregated training - smoothed
with 200 pts

All Terrain - smoothed with 200 pts

Configuration 4inputs 6inputs 8inputs 10inputs
no learning 0.225
elev 1.270/− 465% 1.193/− 430% 1.291/− 474% 0.440/− 95.6%
grade 0.170/24.1% 0.165/26.6% 0.172/23.3% 0.172/23.5%
slopes 0.585/− 160.2% 0.162/28.1% 0.585/− 160.3% 0.162/27.9%
bridge 0.168/25.4% 0.157/30.3% 0.164/26.9% 0.168/25.4%
vdes 0.172/23.6% 0.165/26.5% 0.181/19.3% 0.183/18.8%
vdesslopes 0.585/− 160.3% 0.190/15.3% 0.194/13.8% 0.194/13.7%
vdesbridge 0.190/15.3% 0.194/13.8% 0.195/13.2% 0.196/12.8%

Flat Terrain - smoothed with 200 points

no learning 0.093
elev 1.360/− 1356% 1.266/− 1255% 1.373/− 1370% 0.409/− 338%
grade 0.084/10.4% 0.085/9.2% 0.086/7.5% 0.086/7.7%
slopes 0.492/− 427% 0.085/9.2% 0.492/− 427% 0.086/8.3%
bridge 0.088/5.9% 0.085/9.3% 0.086/7.9% 0.088/5.8%
vdes 0.090/3.5% 0.087/6.7% 0.092/1.2% 0.089/4.89%
vdesslopes 0.492/− 427% 0.104/− 10.9% 0.107/− 14.7% 0.105/− 12.1%
vdesbridge 0.101/− 11.4% 0.103/− 10.2% 0.102/− 9.4% 0.106/− 13.8%

Uphill Terrain - smoothed with 200 points

no learning 0.765
elev 0.672/12.1% 0.584/23.6% 0.697/8.9% 0.510/33.3%
grade 0.458/40.1% 0.404/47.2% 0.429/43.9% 0.399/47.8%
slopes 1.209/− 58.2% 0.348/54.5% 1.209/− 58.2% 0.366/52.1%
bridge 0.390/49.0% 0.324/57.6% 0.367/51.9% 0.362/52.7%
vdes 0.363/52.6% 0.350/54.2% 0.409/46.5% 0.411/46.2%
vdesslopes 1.209/− 58.2% 0.443/42.1% 0.442/42.2% 0.437/42.9%
vdesbridge 0.437/42.9% 0.445/41.8% 0.470/38.6% 0.446/41.6%

Downhill Terrain - smoothed with 200 points

no learning 0.435
elev 1.460/− 235% 1.498/− 244% 1.523/− 249% 0.617/− 41.7%
grade 0.408/6.3% 0.416/4.4% 0.442/− 1.5% 0.471/− 8.3%
slopes 0.504/− 15.7% 0.439/− 0.8% 0.505/− 16.0% 0.418/4.0%
bridge 0.425/2.3% 0.423/2.8% 0.432/0.8% 0.446/− 2.4%
vdes 0.418/3.9% 0.415/4.7% 0.436/− 0.2% 0.454/− 4.3%
vdesslopes 0.505/− 16.0% 0.458/− 5.2% 0.469/− 7.8% 0.474/− 8.9%
vdesbridge 0.465/− 6.7% 0.470/− 8.0% 0.462/− 6.2% 0.470/− 8.0%
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Table 4.3 shows the performance over the entire data set, the flat areas ,the

uphill areas, and the downhill areas. All these tables come from the same 28 runs

that were produced using a 100 meter look ahead distance, segregated training and

smoothed with 200 surrounding data points.

From these tables we observe that most of the improvement is made on the

uphill portions of the data while the improvement on the flat and downhill areas

are less and sometimes are not improving at all, but worsening. The improvement

distribution is probably because the PCC desired velocity achieves better offset

values on the flat and downhill portions and very bad offset values on the uphill

terrain. Therefore, there is more room for improvement when PCC is failing. These

trends are seen throughout all the variations.

A side observation that does not pertain to terrain trends, involves the ex-

ceedingly poor performance of the “slopes” configuration with 4 and 8 inputs,

the “vdesslopes” configuration with 4 inputs, and all of the “elev” configurations.

These large negative improvements can be seen all the way through each terrain

table. These values can be explained.

The “elev” configuration performs very poorly when using segregated training

because the inputs are the actual elevation values. Looking at the segregated

training figure, Figure 3.5, we notice that the elevations in the second half of the

terrain sees much greater heights. Since the neural network has not seen such values

in the training examples, it doesn’t know what to do during the test set. However,

in the integrated training scenario as seen in Table 4.4, the “elev” configuration

does very well because it has seen these values before. This implies that the
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neural network has put great importance on the “elev” input values rather than

the relationship between the inputs(i.e. the change in elevation or grade). Hence,

even if “elev” outperforms “grade” using integrated training, “grade” would still

be a better choice of configuration because it will apply to any road in the world,

where as to get a good result for “elev”, training examples at all possible ranges

of elevations would have to be gathered and implemented at high cost.

Table 4.4: All test terrain with 100 look ahead - integrated training - smoothed
with 200 pts

Configuration 4inputs 6inputs 8inputs 10inputs
no learning 0.195
elev 0.125/36.1% 0.125/36.1% 0.113/42.3% 0.116/40.4%
grade 0.140/28.3% 0.136/30.2% 0.136/31.6% 0.131/32.9%

The configurations “slopes” and “vdesslopes” have done poorly for a different

reason. Recall that each cell in the table comes from a single run. While most

runs perform well, others can fail. These two configurations have demonstrated

inconsistency in their learning ability. Since back propagating neural networks use

gradient decent to converge to the the minimum training error, it is possible to get

stuck in local minima in the objective function. When this happens, a less than

ideal solution can be produced. However, if the training is closely monitored, these

configurations could still be practically implemented.
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4.3 Parameter Impact on performance

Parameters including number of inputs, look ahead distance, configuration, and

training method define the system and ultimately determine how the learners will

perform. We will now try to find the trends that form from all the parameter

variations.

The results from all the raw data(not smoothed) have been compiled and dis-

played in Table 4.5. In this table we can compare the results between differing

training methods as well as number of inputs, look ahead distance, and configu-

rations. Given the versatility of this table, it will be referenced in other sections

to come. Please note that for space efficiency, only the percent improvement is

shown. Raw data was chosen over smoothed for comparison purposes. Smoothing

as a post process to this results could improve them by up to 9 percent units. All

results that exceed 20% improvement will be bolded for quick reference.

We will specifically discuss the impact of input quantity and look ahead dis-

tance in Section 4.3.1 and Section 4.3.2 respectively. Trends that arise in the

configuration and training method will be mentioned as they present themselves.

4.3.1 Number of Inputs

All the tables we have seen so far are compiled from single runs. In some cases it

is misleading to detect trends when only looking at single runs. To remedy this,

4 configurations were selected and ran 30 times at each of the 4 different input

quantities. This gives some amount of statistical significance and will enable us to
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Table 4.5: All raw results both segregated and integrated training

100 look ahead window

Segregated Training Integrated Training
Configuration 4inputs 6inputs 8inputs 10inputs 4inputs 6inputs 8inputs 10inputs
no learning 0.225 0.195
elev −466% −432% −477% −103% 37.8% 38.5% 43.9% 41.8%
grade 19.8% 23.0% 17.0% 16.7% 27.2% 29.2% 30.0% 31.6%
slopes −160% 23.1% −160% 20.1% 24.7% 26.3% 25.8% 23.8%
bridge 20.9% 24.5% 19.5% 16.8% 24.0% 25.1% 27.6% 17.3%
vdes 21.5% 25.0% 9.9% 9.2% 23.0% 23.1% 25.2% 24.5%
vdesslopes −160% 10.8% 7.9% 7.1% 15.5% 15.8% 14.6% 12.0%
vdesbridge 11.5% 8.9% 6.9% 5.2% −866% 9.4% 5.4% 2.5%

400 look ahead window

Segregated Training Integrated Training
Configuration 4inputs 6inputs 8inputs 10inputs 4inputs 6inputs 8inputs 10inputs
no learning 0.225 0.195
elev −219% −344% −138% −141% 25.4% 24.7% 32.7% 32.4%
grade 26.7% 26.5% 15.5% 9.6% 17.9% 14.3% 23.4% 23.6%
slopes 23.0% 17.1% −6.9% 1.8% 15.9% 14.8% 21.8% 23.8%
bridge 19.8% 20.5% −4.1% 4.2% 17.1% 16.0% 22.6% 23.5%
vdes 25.6% 24.1% 3.4% 11.6% 17.2% 15.9% 22.2% 22.3%
vdesslopes 7.4% 9.4% −8.2% −6.7% −1.1% 6.0% 5.3% 6.7%
vdesbridge 8.8% 6.5% −6.0% 4.2% 7.6% 4.0% −1.9% 5.1%

800 look ahead window

Segregated Training Integrated Training
Configuration 4inputs 6inputs 8inputs 10inputs 4inputs 6inputs 8inputs 10inputs
no learning 0.226 0.195
elev −440% −140% −137% −138% 9.2% −866% 11.5% 11.8%
grade −0.2% −12.2% −10.1% −7.7% 3.3% 1.8% 7.3% 7.7%
slopes −1.8% −1.4% −32.6% −26.2% 2.8% 5.0% 6.7% 6.6%
bridge −7.2% −4.5% −25.7% −41.3% 1.5% 4.2% 6.2% 7.0%
vdes −1.4% −37.3% −45.7% −24.8% 0.5% 3.4% 5.7% 6.5%
vdesslopes −14.1% −11.8% −29.1% −31.5% −9.1% −9.6% −10.6% −10.3%
vdesbridge −159% −16.8% −24.8% −35.0% −10.3% −14.6% −11.6% −11.9%

see how the number of inputs affect the overall performance of the learner. It will

also let us compare the performances of the different configurations.
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Figure 4.4 shows the results of this test. The learner implemented used 400 look

ahead data, segregated training, and 4 configurations: “vdes”, “grade”, “slopes”,

and “vdesslopes”. These configurations were chosen so as to have two from the

elevation based inputs and two from the desired velocity based inputs. The number

of inputs is represented on the x-axis of the plot. Percent improvement based off

the PCC desired velocity offset is the quantity being evaluated on the y-axis.

The error bars are calculated using the standard deviation(σ) and the number of

runs(N), such that the length of the bar is 2E. Where E = σ√
N

.

Note that to save on computational time for the statistical plots, the maximum

number of epochs trained was decreased to 250 epochs from the original 1000

maximum that was used for the single runs.

First, the unusual data points will be addressed. The “vdesslopes” configura-

tion with 8 inputs and the “slopes” configuration with 6 inputs both have large

error bars compared to the rest. Also, these points do not follow the same trend

as the others. This likely goes back to the explanation that these configurations

are inconsistent. In a set of 30 data points, it only takes one or two outliers to

taint the average and standard deviation.

The “vdesslopes” data point at 10 inputs doesn’t have a large error bar but is

still in the negative improvement range. This means that this particular variation

plainly did not do well. The tables we have seen so far verify that “vdesslopes”

and “vdesbridge” have generally done worse than the other configurations.

The trends that we see in the rest of the data show comparable improvements

for 4 and 6 inputs, but then a decline in improvement when there are 8 or 10 inputs.
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Figure 4.4: Impact of input quantity on percent improvement: Different configu-
rations, all with a look ahead distance of 400 meters, were ran through the neural
network 30 times with 4, 6, 8, and 10 inputs.
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This is counter intuitive because one would think that more inputs would represent

the system better or at least equally. This result could mean that greater inputs

are not necessary and therefore give extraneous information. The fault could also

lie with the neural network set up. Twenty hidden units were used for the 4 and

6 input variants while 40 hidden units were used for the 8 and 10 input variants.

However, all of the networks were subject to a maximum of 250 epochs. It might

be that the many more weights that a 40 hidden unit network has to learn were

not learned as well within that epoch restriction. However, if it had more time

to learn, would it have performed better than or on par with the fewer input

examples? Both the 4 and 6 inputs resulted in similar improvements which leads

one to believe that more inputs would not improve the system.

We can check this hypothesis by looking at the training error plots that track

the mean square error of the system at each training epoch. We will compare

the training error plots for both the 6 input and 10 input variants of the “vdes”

configuration.

Figure 4.5 shows the comparison of the two plots using the average and standard

deviation for the 30 training runs. These plots show that the 10 input variant had

enough time to converge to an error. The 10 input error even converges to a lesser

value than the 6 input scenario. This leads one to think that there then could be

another flaw in the system. Forty hidden units could be overtraining the network,

making it learn the training data too well and resulting in poor testing results.

Another supporting fact that this outcome may be due to overtraining, is that

integrated training generally gets better results as input number increases as seen
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Figure 4.5: Left:Training error for the 6 input variant Right: Training error for the
10 input variant. Plots consist of training, validation, and test errors. Validation
sets are used in training as part of the epoch stop criteria to prevent overtraining.

in Table 4.5. Since the segregated training uses data that is unlike the testing

data, overtraining is detrimental, where as the integrated training uses data that

is almost exactly like the testing data and therefore overtraining could actually be

good for the testing results.

Coming to the conclusion that the 8 and 10 input variations are overtrained,

means that we would only want to use this system for a practical application if

there is access to training data that is highly representative of the test set. The

benefit of segregated training is that we are able to see how the system would

perform given a whole new environment.

If the 8 and 10 input variations were not overtrained with too many hidden

units, it is suspected that they still would not have done much better than their

lesser input versions. The reasoning behind this prediction is that the 4 and 6
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input variations were not overtrained and the 6 inputs performed about the same

as 4 inputs.

4.3.2 Look Ahead Distance

This section will specifically address the impact of look ahead distance on the

results as well as further discuss configuration and training method performance.

Using the same configurations as Figure 4.4, a 30 run statistical investigation

into the impact of look ahead distance was conducted using 100, 400, and 800 meter

look ahead distances. Number of inputs was held constant at 4. Once again, the

number of epochs per run was capped at 250. Figure 4.6 displays the results of

this experiment.

The “vdesslopes” at 4 inputs has once again demonstrated this configurations

inconsistency. This data point will be excluded from the trend analysis. Although

it was initially thought from the single run analysis that 400 look ahead distance

did better than the 100 look ahead, the trend in the figure clearly shows that

increasing the look ahead distance, decreases the improvement of the system. It

is confirmed by Table 4.5, that a look ahead distance of 800 meters will result in

drastically worse results. Integrated training results from the same table verify the

same trend.

The results shown are conclusive. A look ahead distance of 400 meters or

greater presents the neural network with extraneous information that is not needed

to predict the offset and will even hurt the system performance.
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Figure 4.6: Impact of look ahead distance on percent improvement: Different
configurations, all with 4 inputs, were ran through the neural network 30 times
with 100, 400, and 800 meter look ahead distances.
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Consolidating the information gained from Section 4.3, we can make several ob-

servations about configuration performance. The most obvious observation is that

the “grade” configuration generally produces the largest improvements. “vdes”

performs the best of the desired velocity based inputs because “vdesslopes” and

“vdesbridge” typically do the worse of all the other configurations. Similarly,

“slopes” and “bridge” maintain about the same improvement values. The most

complicated configuration is “elev” which does terribly with segregated training

and very well with integrated training. On that same note, we have also considered

that an input mapping that performs well using segregated training is preferred

over one that only does well on integrated training because that implies it adapts

better to new terrain and is therefore a more robust mapping.

4.4 Removing limit areas

There was interest to see how this system would behave when certain areas of the

data were excluded from the training and testing procedure. The areas where the

desired velocity curve reaches its minimum allowable speed and flattens out are

called lower velocity limits. Much less of an issue are the upper velocity limits

where the vehicle has reached its maximum allowable speed. The largest offsets

between the PCC desired velocity and the actual velocity occur at the lower ve-

locity limits. These are also the areas where our learners have been making the

largest improvements to the PCC system.
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The questions posed in “no limits” analysis is:

How well would the learner perform if all the areas where the desired velocity has

reached its lower velocity limit were removed from the data set?

Figure 4.7 displays several areas where the desired velocity has reached its lower

limit. The red stars represent each position that corresponds to a data point that

will be excluded from the training and testing set. Data starts to be excluded

before it reaches the limit area due to the look ahead window. The larger the look

ahead distance is, the more data will be excluded.

During a “no limits” scenario, it is likely that the vehicle has reached a long

incline in the road and is called to decelerate until it reaches the minimum allowed

velocity and then hold at that speed. However, the truck is so massive that it

is difficult to simply stop decelerating, so it overshoots the target speed. This

overshoot cannot be prevented and therefore learning the offset will not lead to

better performance on a practical level. This leads to the “no limits” rationale

that we might as well focus on improving the performance of the other areas more

effectively. These other areas are mostly flat, mid-range, and downhill terrain.

The raw results from every test is presented in Table 4.6. From this table there

are several observations that are immediately noticeable:

• Most of the segregated data produces negative improvement which means

the function was not learned at all.

• Most of the integrated data produces positive improvement.



48

Figure 4.7: Excluded data from “no limits” analysis: All data involving a desired
velocity that has reached its lower velocity limits will be excluded from the training
and testing samples.

• Segregated training data yields worse results with greater input quantity.

• Integrated training data yields better results with greater input quantity.

• Segregated training data yields worse results with greater look ahead dis-

tance.

• Integrated training data yields better results with greater look ahead dis-

tance.

Figure 4.8 and Figure 4.9 confirm these trends for the integrated training sam-

ples using 30 runs for statistical significance.

The problem we are facing is that the segregated training and the integrated

training have complete opposite trends with respect to how number of inputs and

look ahead distance affects the performance. These events can be understood using

the same explanations as in the previous section.
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Table 4.6: All raw results for “no limits” analysis

100 look ahead window

Segregated Training Integrated Training
Configuration 4inputs 6inputs 8inputs 10inputs 4inputs 6inputs 8inputs 10inputs
no learning 0.147 0.127
elev −169% −172% −220% −172% 30.1% 28.5% 34.9% 35.8%
grade 9.2% 8.8% 5.5% −10.5% 16.9% 15.9% 21.5% 20.5%
slopes 7.7% 9.4% −2.6% −4.7% 12.5% 10.6% 12.0% 10.5%
bridge 7.7% 7.2% 0.3% 3.3% 11.6% 11.5% 14.5% 12.7%
vdes −6.6% −4.6% −13.3% −17.3% 4.3% 1.3% 8.1% 10.0%
vdesslopes −0.7% −0.2% −3.7% −192.9% 1.3% 1.5% 1.3% 1.8%
vdesbridge −1.2% 0.7% −2.5% −4.3% 1.7% 1.4% 1.9% 1.3%

400 look ahead window

Segregated Training Integrated Training
Configuration 4inputs 6inputs 8inputs 10inputs 4inputs 6inputs 8inputs 10inputs
no learning 0.144 0.124
elev −117% −141% −295% −173% 39.6% 38.8% 49.2% 50.0%
grade −7.2% −3.6% −13.9% −16.2% 28.1% 25.7% 39.6% 36.6%
slopes −15.8% −25.1% −35.5% −34.2% 19.1% 25.2% 29.1% 34.9%
bridge −19.2% −9.8% −33.6% −31.3% 23.2% 26.2% 33.2% 35.5%
vdes −8.6% −20.3% −29.9% −26.0% 13.4% 16.2% 30.3% 31.7%
vdesslopes −12.3% −18.5% −25.2% −23.4% 3.4% 1.6% 6.2% 7.0%
vdesbridge −12.2% −16.0% −19.3% −26.6% 3.4% 2.6% 7.0% 5.7%

800 look ahead window

Segregated Training Integrated Training
Configuration 4inputs 6inputs 8inputs 10inputs 4inputs 6inputs 8inputs 10inputs
no learning 0.142 0.122
elev −586% −586% −213% −601% 45.0% 45.8% 60.6% 62.8%
grade −12.2% −18.1% −35.4% −40.3% 25.2% 32.0% 49.4% 49.9%
slopes −59.1% −32.2% −34.4% −104% 30.1% 30.0% 47.0% 48.7%
bridge −45.2% −55.6% −75.0% −70.4% 30.0% 32.4% −572% 47.3%
vdes −24.8% −21.9% −64.2% −64.0% 25.6% 36.7% 52.2% 54.5%
vdesslopes −22.1% −25.2% −48.6% −51.6% 6.9% 6.1% 25.2% 27.7%
vdesbridge −17.5% −20.6% −44.2% −45.0% 3.5% 4.5% 18.7% 26.2%

Segregated training only gives a subsect of the possible terrains to train on. If

that data is learned too well, then it will not test well on new data. However, if

it doesn’t learn enough, it will also perform poorly. We can tell which extreme is
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Figure 4.8: Impact of input quantity on percent improvement in “no limits” anal-
ysis : Different configurations, all with a look ahead distance of 400 meters, were
ran through the neural network 30 times with 4, 6, 8, and 10 inputs.

occurring by the trends. By adding more inputs, we are inputting more information

about the elevation or desired velocity curve to the neural network. It is possible

that greater amounts of inputs defines too specific of a curve and fewer inputs

generalize the terrain better, therefore making it easier to implement on new data.

However, in the integrated training examples. More specific is better because it

will be tested on data that is very similar to the training data. The same argument

can be made for look ahead distance. The explanation for the very poor result of

the ”bridge” configuration, 8 input data point, is that the system most likely hit a
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Figure 4.9: Impact of look ahead distance on percent improvement in “no limits”
analysis: Different configurations, all with 4 inputs, were ran through the neural
network 30 times with 100, 400, and 800 meter look ahead distances.

local minima in its training, resulting in bad neural network weights and therefore

a bad solution.

Even if integrated training is not best for robustness, these “no limits” analysis

results are excellent. An improvement of up to 60% would benefit this system

greatly.
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Chapter 5 – Multi-Concept Inputs

Although the single concept inputs have produced very beneficial results, in many

cases a multi concept approach can improve the performance of a learner.

Two multi-concept inputs were explored:

Enriched Input Space: This method enriches the input space by including in-

puts from both the elevation based configurations and the desired velocity

based configurations.

Ensemble: This method combines the results from several of the single-concept

neural networks. In this method, not just one input from each input space

will be used, but up to 28 different input representations will be incorporated

into one solution.

First we will briefly discuss the results from the enriched input space method.

Lastly, we will examine the benefits and disadvantages of ensemble solutions.

5.1 Enrich Input Space

By enriching the input space we are simply adding more types of inputs to the

neural network. For example, in our single concept 4 input configurations, 1 piece

of information is given at 4 points in the future. Now in our new enriched input
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space, we will input 2 pieces of information each at 4 points in the future for a

total of 8 inputs. For this study, we have two types of information easily on hand

in the form of the GPS acquired elevation curve and the PCC acquired desired

velocity curve. Using the 4 input configurations from before, we will input the two

types of information into the neural network together. Figure 5.1 demonstrates

this idea.

Figure 5.1: Multi-Concept learning: Learning can occur with two different types
of inputs. It is possible that with information from both the desired velocity curve
and elevation curve, better learning can be realized.

Intuition makes us believe that if a neural network can learn on one type of

information, then more information will result in greater learning ability. This

makes since to us as humans because our own brains are able to link together
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multiple pieces of knowledge to quickly make conclusions. This is not always

true for a neural network. Sometimes, when different types of information are

entered together into the same neural network, the network can interpret the extra

information as noise [16]. This kind of result is not a certainty, so it is a good

method to experiment with as better learning can occur. However, this concern

will help to choose which inputs to use.

Three different input pairings were chosen for testing. Each of these pair a

elevation based configuration input with a desired velocity based configuration

input. Following are the input pairings and the reason behind its selection:

1. “vdes & grade”: This pairing was chosen based on their superior perfor-

mance in the single concept results.

2. “vdesslopes & slopes”: We want to try to avoid confusing the neural

network. Although these inputs come from different data, they are in the

same form, which may help the neural network make the correct connections

for learning.

3. “vdesbridge & bridge”: This pairing was chosen as a variation of a “same

form” input type

Results for each run are presented in Table 5.1. Networks were all run with

40 hidden units. Four inputs of each type were used for a total of 8 inputs to the

system. Columns are divided into 100, 400 and 800 look ahead window data. For

comparison, the best single concept improvement from a single run is tabulated
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Table 5.1: Enriched input space results: Raw results with various multi-concept
configurations

Basic analysis

Segregated Training Integrated Training
Configuration 100 look 400 look 800 look 100 look 400 look 800 look
no learning 0.225 0.225 0.225 0.195 0.195 0.195
“vdes & grade” 25.8% 11.53% 5.1% 0.6% −0.9% −3.8%
“vdesslopes & slopes” 25.4% 0.5% −6.0% 5.9% 0.4% −1.6%
“vdesbridge & bridge” 25.0% −9.4% −3.8% 3.0% −0.3% −3.5%
best single concept 25.0% 26.7% −0.2% 43.9% 32.7% 11.8%

“No limits” analysis

Segregated Training Integrated Training
Configuration 100 look 400 look 800 look 100 look 400 look 800 look
no learning 0.147 0.144 0.142 0.127 0.124 0.121
“vdes & grade” −10.6% −32.3% −44.9% 50.1% 59.6% 62.8%
“vdesslopes & slopes” −0.7% −24.7% −69.1% 32.7% 51.2% 58.8%
“vdesbridge & bridge” −0.4% −14.4% −78.1% 27.9% 44.6% 57.8%
best single concept 9.4% −3.6% −18.1% 35.8% 49.2% 62.8%

under the multi-concept configurations. Values are in bold if they exceed the

improvement of the best single concept result.

In the basic analysis the multi concept solutions exceeded the best single con-

cept solution only 3 times and each of these times were by inconsequential amounts.

The “no limits” analysis has some results of interest. With integrated training and

100 or 400 meter look ahead windows, the “vdes & grade” and the “vdesslopes &

slopes” configurations have exceeded the best single concept result. The former

configuration does better than the latter in these instances. This result is worth

following, however multi-concept systems are more complex and if it were to be

utilized, a cost analysis would need to be conducted to see if it really does perform

better than the single concept networks.
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5.2 Ensemble Methods

The concept of ensemble started for the purpose of classification. The idea is that

many systems using different inputs will output a class prediction and then vote

upon what classification to select. This vote can perform better than a single

system. Applied to this study, the ensemble will average the solutions of each

system so as to let each system contribute to the ensemble solution. The only way

this will be successful is if each of the systems have made different errors [2, 3, 17,

25, 28, 33, 40]. For example, if the elevation based inputs tend to overshoot the

target value during the downhill terrains, then we hope that at the same position

the desired velocity based inputs undershoot so that the average is closer to the

target than any one of the single concept inputs. Figure 5.2 demonstrates this

concept.

Selecting how to combine the systems into different sized ensembles is not too

difficult. Ideally, all the systems would be used; however, knowing some of the

results from the single concept section, ensemble inputs can be selected intelli-

gently. The total number of systems that can be used for the ensemble is 28,

given 7 configurations and 4 choices of input quantity. Runs of different training

method, and look ahead distance cannot be ensembled because they do not share

common testing samples. From the single concept results, the “elev” configuration

performs terribly with segregated training. Therefore, each of these 4 systems are

not used during the segregated training runs only. Another observations from the

single concept results is that configurations “vdesslopes” and “vdesbridge” often
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Figure 5.2: Ensemble Learning: The outputs of several systems can be averaged
in the hopes that this cooperative solution is closer to the target than any one of
the single-concept systems.
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perform below average. Therefore, for one of the tests in each training method,

these configurations were omitted. Consider that each configuration contributes 4

systems corresponding to that configuration analyzed with 4, 6, 8,and 10 inputs.

The ensembles tested are as follows:

• For 100, 400 and 800 look ahead distances

– Segregated Training

∗ A 16 system ensemble omitting “elev”,“vdesslopes”, and “vdes-

bridge” configurations

∗ A 24 system ensemble omitting “elev” configurations

– Integrated Training

∗ A 20 system ensemble omitting “vdesslopes”, and “vdesbridge” con-

figurations

∗ A 28 system ensemble with all configurations at all input quantities

Table 5.2 shows the results for these tests using the basic analysis and “no

limits” analysis. The first column of each training method is labeled “no learning”

and is the average meters/second offset between the actual velocity and PCC’s

desired velocity. All other cells represent the percent improvement over the no

learning offset from a single run. The different learners shown are those stated

above, as well as the best run from the single concept networks. These values

can be extracted from Table 4.5 for the basic analysis or Table 4.6 for “no limits”

analysis.
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Table 5.2: Ensemble results: Raw results with various ensemble sizes

Basic analysis

Segregated Training Integrated Training
Ensemble Size no learning 16 systems 24 systems best single no learning 20 systems 28 systems best single
100 look ahead 0.225 21.3% 21.4% 25.0% 0.195 37.3% 28.9% 43.9%
400 look ahead 0.225 30.8% 30.6% 26.7% 0.195 28.0% 25.9% 32.7%
800 look ahead 0.225 25.7% 20.5% −0.2% 0.195 −0.7% 4.2% 11.8%

“No limits” analysis

Segregated Training Integrated Training
Ensemble Size no learning 16 systems 24 systems best single no learning 20 systems 28 systems best single
100 look ahead 0.147 11.5% 10.8% 9.4% 0.127 24.9% 21.3% 35.8%
400 look ahead 0.144 -2.1% -1.9% −3.6% 0.124 43.5% 38.6% 50.0%
800 look ahead 0.142 -10.9% -7.6% −18.1% 0.121 42.9% 45.7% 62.8%

In the basic analysis we see that ensemble methods using segregated training

performs the best at 400 meters look ahead distance and about the same at 100

and 800 meters look ahead distances. We also see that the 16 system ensemble and

the 24 system ensemble have very similar improvement values. A very interesting

result occurs in the 400 and 800 meter look ahead rows. The ensembles from

both segregated and integrated training methods perform better than any of the

single concept networks within their own look ahead window. In fact, the 400 look

ahead ensemble performs better than any other non-smoothed run using segregated

training.

In the “no limits” analysis we notice the same trends as with the single concepts.

That is, the segregated training method has better results with shorter look ahead

distances and the integrated training method has better results with longer look

ahead distances. Omitting the weaker networks from the ensemble sometimes

helped and sometimes hurt the system. However, the best result seen includes all

the networks. This result is found with the 800 look ahead, integrated learning



60

run. We also see that ensemble reaches higher improvement percentages than the

single concepts using segregated training but not integrated training.

Recall that in Table 4.6 the 800 look ahead, 8 input, “bridge” configuration in

“no limits” analysis had a poor result due to a faulty training session. Removing

this network from the ensemble results in a 27 system ensemble with an improve-

ment of 51.4%. This result was plotted next to the best “no limits” result from the

single concept network: The “elev” configuration with 10 inputs and integrated

training. This solution yielded a single run improvement of 62.8%. See Figure 5.3

for the comparison.

Figure 5.3: top: The best solution found for a single concept neural network.
bottom: The best ensemble solution found for “no limits” analysis. A comparison
between the best solutions from single concept and ensemble methods.
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These plots show that they both look like very good solutions compared to the

others we have seen. One thing to notice is that with either of these, smoothing

would do little benefit. In reviewing the ensemble results it is important to note

that averaging networks is a form of smoothing the solution. Therefore, while

many of the single concepts raw results have room for improvement in the form of

smoothing, the ensembles does not have this opportunity as it is already smoothed.

A hinderance for ensemble is that it requires 16 or more networks to be run

rather than just one. Therefore, the pay off has to counter balance the additional

computational cost.
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Chapter 6 – Conclusion

The work presented in this thesis aims to find an input representation that im-

proves the performance of a pre-existing model based controller using predictive

cruise control technologies. The biggest challenge in this thesis was to find the

input mapping that best predicts the PCC desired velocity offset from the actual

vehicle velocity. Hundreds of different input variations were analyzed. These vari-

ations varied input parameters such as input quantity, look ahead distance, and

configuration, as well as training and testing methods such as segregated training,

integrated training, and “no limits” analysis.

Although there were many results that did not perform well, there were a few

input representations that consistently produced promising results and deserve

further attention.

6.1 Contributions of this Thesis

In applying neural network learning in combination with the PCC model based

learner, we have found that the learner can benefit the system by up to about 60%

improvement. This success is contingent upon several trends that were seen from

experimentation with different networks. Perhaps the most interesting results come

from the differences between segregated and integrated type training methods.
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Every trend seems to be opposite for integrated training than it is for segregated

training. For example, the affect of input quantity and look ahead distance. This

makes it difficult to tell what parameters are good and which are bad. Ultimately,

the performance of the parameter is effected by the training method. Integrated

training, as expected, is able to get better results because the training data is very

similar to the testing data. The segregated training method will identify the more

robust input mappings. Overall, the training data that is available and the terrain

that the vehicle will be subject to, will determine what network will be chosen.

Furthermore, this study effectively discovered what does not work. Several

of the configurations including “elev”, “vdesslopes”, “vdesbridge”, and to a lesser

extent, “slopes”, do not perform up to an adequate performance. We also know

that to get decent results for the “no limits” analysis, we must have a very complete

training set that represents the terrain the vehicle is expected to travel. Given

the segregated training, the “No limits” solutions performed awfully, while the

integrated training solutions exceeded expectations.

Multi-Concept solutions were most often not worth the added complexity and

computational time. However, there were a few instances that easily bested even

the highest single concept performance within the same learning method and look

ahead distance categories.

The conclusions drawn from this thesis include:

1. Success rates are highly dependant on training method. To obtain the best

results possible, availability of relevant data sets will be vital to the success

of the learner if implemented into a commercial vehicle.
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2. Segregated training and Integrated training represent the two extremes of

training: not very representative and very representative of full data set,

respectively. Therefore, a more moderate training method may be beneficial.

3. Elevation based inputs typically produce better results than the desired ve-

locity based inputs. Within the elevation based inputs, the “grade” configu-

ration was the most consistent performer. This means that the grade of the

road is one of the more relevant attributes in finding the PCC offset.

4. Multi-concept methods of learning have potential but a cost analysis must

be conducted to know its true benefit.

From these conclusions we derive 3 significant contributions of this thesis. All of

these contributions stem from improving the Predictive Cruise Control and result

in saving both fuel and money.

The main contributions that this thesis has shown are as follows:

1. Improvement upon PCC by implementing learning control: Im-

provement in the total system of up to 60% can be made by implementing

a learner into the Predictive Cruise Control algorithm. This improvement

will ultimately reduce errors in PCC, resulting in: 1) An increase in the con-

trollers ability to reduce fuel consumption and 2) A potential increase in the

recalculation distance, thus reducing processing power required.

2. Extraction of relevant input configurations: This thesis’ results reveal

which environmental attributes contribute most to the PCC model offset.
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For example, “grade” and the other elevation based input mappings per-

formed the best in the single concept results. For the multi concept results,

“grade” paired with “vdes” configurations performed the best. Knowing

which configurations perform well will lead to the development of a more

effective predictive cruise controller.

3. Indication of training method and data set suited for practical im-

plementation: In analyzing results with different training methods, we have

discovered the important role that the training set will play during the prac-

tical implementation of this controller. Given what data is available to train

on, we can predict how much the learner can benefit the PCC system on a

given road. For example, if the training data is very representative of the

road the truck will be driving on, then we can predict that the learner will

benefit the system by up to 60%.

Having demonstrated that learning methods are a good fit for this problem,

there are several options open for future work in this area.

6.2 Future Work

The future work for this study in collaboration with Daimler Trucks North Amer-

ica, will be geared toward implementation of a learner into PCC for vehicle control.

Improving the “no limits” analysis will be a major focus. As of now, there are short

term goals and long term goals:
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Short Term Goals: There are several short to mid ranged goals that will need

to be completed before this technology makes it into commercial vehicles.

1. Now that a extensive search for valid inputs has been conducted it would

be beneficial to narrow down the input representation variants to about

4 or 5 of the most promising mappings.

2. Once narrowed down, much more in-depth experiments can be ran on

these network parameters and input configurations. Based on the results

from this study, the “grade” and “vdes” configurations would be obvious

choice for configuration.

3. Integrated and Segregated training methods are two training extremes.

Several more moderate training approaches like segmented training method,

can be analyzed to see more realistic results.

4. Analyze the pay-off/cost of Multi-concept learning methods to deter-

mine if this thread should be pursued.

5. Test other options such as hierarchial decision making to choose a con-

trol method based on the upcoming terrain. Also, other learners such

as reinforcement learning could be explored.

6. Optimize the performance and robustness of the network.

Long Term Goals: The long term goals of this project are to:

1. Implement the learner into the PCC controller
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2. Apply the network into a real world situation(i.e. in a truck’s cruise

control system)

Control of a commercial vehicle for fuel optimality is a very interesting and

current topic. This thesis has shown that a learning approach can benefit the

robustness of vehicle control and that there is great potential for the future of this

technology.
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