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Acoustic scanned holography is a method of lensless photography

which uses sound waves to construct the hologram and light waves to

reconstruct the image. The receiving transducer scans a plane area

containing the sound field generated or scattered from the objects. In

simultaneous source receiver scanning, both the source and receiver are

scanned together. A cathode ray tube is used to construct the hologram

and the receiver's position and velocity components are simulated

electronically to control the beam position. The simulated position

and velocity signals contain errors that adversely affect the quality

of the images. This thesis presents an analysis of scanning errors in

holography when both the receiver and source are scanned. These errors

affect the hologram resolution, magnification and image position. The

analysis assumes the simulated velocity and position errors are random

and normally distributed. The hologram resolution, magnification and

image position are derived and the functions linearized to obtain the

approximate variances and expected values. The law of propagation

of errors is assumed valid in the analysis. Its proof is based on the
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assumption that the errors are small with respect to the measured

values of the variables. The maximum deviation from the expected value

is assumed never to exceed 10%.

The approximate variance, standard deviation and expected value

are derived for the hologram resolution using both stationary and

moving source illumination. The most exciting results were obtained

by simultaneously scanning the source and receiver. The expected

value of the hologram resolution is increased by a factor of two

compared with the stationary source value. The variance is decreased

by a factor of four with respect to the variance of the stationary

source resolution. Thus, in addition to the increase in resolution

there is a decrease in the standard deviation in the hologram

resolution as a result of simultaneously scanning the source and

receiver.

The expected value of the simultaneous source receiver scanned

radial magnification was decreased by a factor of two compared with

the stationary source value and the expected value of the lateral

magnification remained the same. These results were unique in that

scanning both the source and receiver together makes the object appear

closer to the hologram plane. In other words, using the identical

stationary source reconstruction geometry the image appears magnified

in the lateral direction.

The expected value of the image position in the reconstruction for

simultaneous source receiver scanning is equal to approximately one-

half the stationary source value. If a plane wave reconstruction



source is used, the expected value of the simultaneous source receiver

scanned image position is exactly half the stationary source value.

The variance of the image position is less in the simultaneous source

receiver scanned hologram than in the stationary source case.

A number of experiments were successfully performed to verify the

theory. The experimental results of the expected values of hologram

resolution, magnification and image position agreed with our

predictions.



Error Analysis in Scanned Holography

by

H. D. Collins

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

June 1970



APPROVED:

Professor of Electrical EngineeAng

In Charge of Major

-

Head of6epartment of Eledtrical and Electronics Engineering

Dean of Graduate School

Date thesis is presented Apri-1 07,0

Typed by Linda Tipton and Judy Gelhaus

Signature redacted for privacy.

Signature redacted for privacy.

Signature redacted for privacy.



ACKNOWLEDGMENTS

The author wishes to take this opportunity to express his sincere

appreciation to Professor R. R. Michael, Dr. B. P. Hildebrand,

Dr. P. Magnusson, Dr. S. Neshbya and Dr. R. D. Stalley, who served on

his doctoral committee,for their suggestions and guidance. He is

also indebted to R. B. Smith for his many valuable suggestions on

scanned holography techniques. He also wishes to thank R. P. Gribble

for his many suggestions on the experimental work.

The author is grateful to Linda Tipton for typing and

Jan Sletager for editing the final copy.

The author would like to acknowledge the extreme patience and

understanding by his wife Kathy Collins through the entire work.



TABLE OF CONTENTS

Introduction 1

Simplified Analysis of Acoustic Holography 3

Generalized Analysis of Scanned Acoustic Holography . . 14

Image Location Equations 21

Magnifications 22

Resolution Errors in Acoustic Holography 23

Variance of the Stationary Source Hologram
Resolution 25

The expected Value of the Stationary Source
Hologram Resolution 29

Simultaneous Source Receiver Scanning Resolution
Errors 30

Variance of the Simultaneous Source Receiver
Scanned Hologram Resolution 33

Expected Value of the Simultaneous Source
Receiver Scanned Hologram Resolution 35

Radial Magnification Errors in Acoustic Scanned
Holography 37

Hologram Radial Magnification 37

Variance of the Radial Hologram Magnification 39

Expected Value of the Radial Hologram Magnification . 43

IV. Lateral Magnification Errors in Acoustic Scanned
Holography 45

Hologram Lateral Magnification 45

Variance of the Lateral Hologram Magnification 46

Expected Value of the Lateral Hologram Magnification. 49

Image Position Errors as a Result of Random Velocity
Errors in the Acoustic Scanning Receiver 52

Variance of the Image Point Position 54

The Expected Value of the Image Point Position 56

Acoustic Scanned Holography System 59

Hologram Reconstruction Geometry 62



TABLE OF CONTENTS (Continued)

Experimental Results 65

Hologram Resolution Experiments 65

Radial Magnification Experiments 72

Hologram Lateral Magnification Experiments 76

Hologram Image Position Experiments 78

Summary and Conclusions 84

Bibliography 87

Appendix A

Appendix B

Appendix C

Appendix D ,



ERROR ANALYSIS IN SCANNED HOLOGRAPHY

I. INTRODUCTION

In 1948 Dennis Gabor(1'2'3') in England proposed a method of lens-

less photography. He showed that by recording the intensity of the

interference pattern produced by the interaction of light from the

illuminated object with that of a coherent source, that the object

could be reproduced in three dimensions when the pattern was illumi-

nated with the same reference source. Gabor coined the word "hologram"

to designate the film recording of the interference pattern that

contained the phase and amplitude information defining the object.

In those days there were no highly coherent light sources and

holography remained dormant until the laser was developed. Leith and

Upatnicks(4'5'6) in 1962 modified Gabor's method of constructing

holograms, so that holography with complete image separation (real and

virtual) was feasible.

During the last few years holography has been applied very

successfully to the field of acoustics.(7'8'9) Acoustic holography

can be loosely defined as any technique that converts an acoustic field

(phase and amplitude) into an optical field. The reconstruction of the

acoustic hologram optically forms a visible image of the recorded

object. Acoustic holography can be divided into two distinct types:

scanned and liquid surface. In this thesis only scanned holography

will be discussed.
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In this thesis we explore the effects of position and velocity

errors on the important holographic parameters. Statistical methods

are used to derive approximate variances and expected or average values

of the image position, radial, lateral magnifications and resolution.

The analysis includes the effects of simultaneous scanning of the

acoustic receiver and source.

Before proceeding with the analysis, a simple discussion of

acoustic holography is necessary to provide the background for the

analysis. In the next section a generalized analysis of scanned

holography employing a stationary source is developed to provide the

basis for the error analysis. The following sections are the deriva-

tions of the variances and expected values of the hologram parameters

for stationary and moving source illumination. Finally, a description

of the experiments that were performed is included to offer experimental

evidence that some of the statistical parameters derived in the

analysis are sound.
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II. SIMPLIFIED ANALYSIS OF ACOUSTIC HOLOGRAPHY

Acoustic holography can be described as any technique for recording

both the phase and amplitude of the sound reflected or scattered from

an object on a medium insensitive to phase. The recorded information

is then reconstructed optically to form the image of the object. The

following is a brief discussion of scanned acoustic holography and the

reconstruction of the true and conjugate images.

Consider the simplified acoustic hologram construction geometry as

shown in Fig. 1. The object is insonafied by a point source or plane

wave acoustic transmitter operating at one frequency. The scanning

receiver intercepts a portion of the reflected acoustic energy from the

object. The receiving transducer responds to variations in the

acoustic pressure and these are generally small and superimposed on

the much larger static pressure. Let the acoustic pressure in the

hologram plane (due to the object)be designated as the object signal

So(x,y,t) = Po(x,y) cos [wt + (po(x,y)] (1)

where Po(x,y) is the amplitude variation,

o(x,y)
is the phase variation,

w is the radian frequency of the acoustic wave, and

(x,y) defines the hologram plane.

The acoustic reference signal is simulated electronically and can

be expressed as

SR(t) = PR cos [wt + 'RS] (2)

where PR and (1)RS are arbitrary constants.



REFERENCE SOURCE

POINT OBJECT

cIRS

OBJECT ILLUMINATION SOURCE

Figure 1. General acoustic hologram construction geometry.

SCANNING ACOUSTIC RECEIVER

HOLOGRAM APERTURE
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The receiving transducer detects the resultant pressure existing

at the point (x,y). The output signal of the receiver is then combined

with the reference signal in a signal processor. The processor output

signal is

1

S(x,y) = yjr cos[wt + (1)0(x,y)] PR cos[Lot + 4)RS]cit (3)

o u

where

S(x,y) =
1

-T jr 1/2 Po(x,y) PR cos {[2t + (1)0(x,y)
(1)RS]

o

+ cos [o(xa)
1)RS]

dt (4)

The first term of Eq. (4) reduces to zero and the final expression is

S(x,y) = 1/2 Po(x,y) PR cospo(x,y) (5)
cl)RS]

In acoustical scanned holography the resultant signal, Eq. (5), is

used to intensity modulate a scanning light or the CRT beam. The

hologram is then constructed on the face of the oscilloscope in the

latter case and directly on transparency film in the former case. The

end result in either process requires the hologram to be recorded on

film. The film recording of the intensity (I) is a function of its

amplitude transmission characteristics. The film emulsion records some

power of the intensity I(x,y), the amplitude transmittance. It is

possible to obtain square-law action over a limited dynamic range with

transparency film of any gamma,(10) gamma being the slope of the

Hurter-Driffield curve which is a plot of the intensity transmittance

versus log of the exposure. If we abandon this traditional curve and
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use a direct plot of the amplitude transmittance versus exposure and

bias the film at the operating point, which lies within the region of

maximum linearity of the t-E curve, then over a certain dynamic range

the film will provide square-law mapping of incremental changes in

amplitude. Figure 2 is a typical amplitude transmittance-exposure

curve for a negative transparency.

We can represent the.t-E curve within this region of linearity by

JT(x,y) = mE + b = mIrT + b = KIAl2 + b (6)

where m is the slope of the curve at the bias point, A represents the

incremental amplitude changes, and K is the product of the slope (m)

and the exposure time (T).
Ir

is the intensity information recorded

EXPOSURE

Figure 2. Typical transmittance-exposure curve for
a negative transparency.
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on the film in constructing the hologram. The intensity Ir is propor-

tional to the incremental amplitude changes (i.e., Ir = 1Al2).

The intensity transmittance T(x,y) of the developed transparency

is defined as the ratio of the local average of the transmitted

intensity at (x,y) to the incident intensity at (x,y). Using this

definition the light emerging from the illuminated hologram during the

reconstruction process is given by the following equation:

At(x,y) = Ai(x,y)rILK Ir(x,y) + bl (7)

where At(x,y), Ai(x,y) are the amplitudes of the transmitted and

incident light.

In acoustical holography the intensity of the CRT beam or scanning

light fixed to the receiver is proportional to S(x,y) + K1 where Kl

is a constant proportional to the average intensity.

Ir(x,y) = 1/2 Po(x,y) PR cos[pRs(x,y) - (1)0(x,y) I + Kl (8)

The amplitude transmittance function of the film is given by the

following expression

At(x,Y) = Ai(x,y) {1/2 KP0(x,y) PR cosPRs(x,Y) - 4)0(x,Y)]

+ KK1 + b} (9)

and the film described by Eq. (9) is called a hologram after Gabor.(1)

Once the amplitude and phase information about the object has been

recorded, there remains to reconstruct the image of the object. If we
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illuminate the developed transparency (i.e., the hologram) with a

point source of monochromatic light derived from a laser, then

Ai(x,y) = Al coquit +
11L(xad

(10)

where the light emerging from the hologram is given by Eq. (7).

At(x,y) = Al cos (wLt +
(I)RL)

f1/2 KP0(x,y) PR cos[coRs(x,y)

-
(/)o(x'y

+
KK1

+ b (11)

Using a trigonometric identity, Eq. (11) can be expressed as

At(x,y) = 1/4 KA, Po(x,y) PR cospLt + 4)0(x,y) 4)RL(x-Y) g'Rs(x-Yd

+ 1/4 KAl Po(x,y) PR coskt +
4)RL(x4) 4)R5(x4) cl'o(x4)]

A1 (KK1 (x'd+ b) cos[Lit + (12)
4)RL

The first term of Eq. (12) indicates that it is of the same form as the

original object signal, Eq. (1), except for the amplitude weighting

1/2 KA1 PR and the phase terms (1)RL and (pRs. This implies that the

sound which was reflected or scattered by the object would be

reproduced exactly if the phase terms (pRs(x,y) and (pRi.(x,y) were equal.

To analyze this imposed requirement, we can express the phase terms

of Eq. (12) by the following expressions

27
cp0(x,y) = qb10(x,y) + x sin Tx-0

27
'PIRL(xa) = (1)L(x,y) + x sin ocRL

(13)

(14)

27

cbIRS(x4)
s(x,y) + x sin TRs (15)



if the reference, object and reconstruction signals are assumed to be

plane waves. The above terms take into account the phase variations

about the average angular deviations uo, a
RS aRL

and the phase

variations 0(x ,y), 4)11(x,Y), (PRs(x,Y), at the hologram plane. The

analysis assumes that the object and reference positional variations

occur in the x-z plane only (see Figs. 1, 3 and 4).

If the phase terms (pRs(x,y) and 4)RL(x,y) are to be equal, then the

following conditions must be satisfied:

AL
sin a = 7sinw

A
aRs

L s

= s(x,Y) (17)

The ratio of the light to acoustic wavelengths AL/AS is usually very

small in most applications. For example, suppose we employ a helium-

neon laser for the source in reconstructing the acoustic hologram that

was constructed using 1 MHz sound. The ratio ALIAS is approximately

4 x 10-4. This means the acoustic reference signal can be

simulated almost without regard to the direction angle -c-t-Rs requirement

because the reconstruction source angle 7c-e-Ri_ is essentially zero for all

values of aRs
This condition restricts the direction of the

reconstruction beam to be essentially perpendicular to the hologram

plane as shown in Figs. 3 and 4.

If we now substitute Eqs. (13), (14), and (15) into Eq. (12) and

assume the phase terms 5(x y) (PRL(x,Y) are equal, then the final

expression for the light emerging from the hologram in the reconstruc-

tion process is

9

(16)



RECONSTRUCTION SOURCE

a
o

\

3-1 I

I

I I

TRUE (VIRTUAL) IMAGE

A

HOLOGRAM

Figure 3. General reconstruction geometry for the true image.

It OBSERVER



CONJUGATE RECONSTRUCTION SOURCE

CONJUGATE REAL IMAGE

Figure 4. General reconstruction geometry for the conjugate image.



12

At(x,y) = 1/4 KAi Po(x,y) PR cos [wit + (po(x,y)]

+ 1/4 KA, Po(x,y) PR coskt +
(PRL(x4) `PRS(x'Y) q)o(x4)]

+ (KKi + b) A1 cos[wLt + 'PK] (18)

Notice, that the first term in Eq. (18) is simply an exact duplication

of the original object signal Eq. (1) except for amplitude weighting.

In the reconstruction the diffracted light due to the first term

appears to the observer as the true virtual image of the object as

shown in Fig. 3. The direction of propagation of the image is about

the average angle -c-to. The second term is referred to as the conjugate

image. The conjugate image is propagated at a different angle than

the true image and therefore, does not interfere with it in the

reconstruction. The third term is simply the reconstruction beam with

amplitude weighting. It is commonly referred to as the dc term.

If we wish to observe the conjugate image, we illuminate the

hologram with a reconstruction source which can be expressed as

Ai (x,y) = A1 cos [oiLt -(x4)] (19)
4)RL

where cpRL(x,y) is equal to cpRs(x,y). The light emerging from the

hologram can be expressed as

At(x,y) = 1/4 KAl Po(x,y) PR cos [cit - cpo(x,y)]

+ 1/4 KAl Po(x,y) PR cos [wLt. +
gbRL(x4) (PRS(xd) q)0(x'Y)]

+ (KIK, + b) A1 cos -
(1)RL(xd)]

(20)
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where the first term represents the conjugate image of the object.

This is a pseudo-image because the phase information is reversed (i.e.,

the object appears inside out). The conjugate image appears at a mean

angle - 71-0 and this places it on the side of the hologram opposite to

the reconstruction source. Thus, it is a real conjugate image of the

object as shown in Fig. 4.
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III. GENERALIZED ANALYSIS OF SCANNED ACOUSTIC HOLOGRAPHY

The analysis in the preceeding section was intended to present a

simplified analysis of the basic construction and reconstruction

process in acoustical scanned holography. To determine the effects of

random position and velocity errors introduced by the scanning receiver

(either mechanical and electrical) in acoustical holography on the

important holographic parameters such as image location, resolution,

radial and lateral magnification, a detailed analysis will be carried

out. This analysis of holography uses an analytic technique similar

to that used by K. Haines and Kogo Kamiya.(11)

The hologram construction and reconstruction geometry used in this

analysis is illustrated in Fig. 5. The position of the fringes on the

hologram plane that are constructed by interference of the reference

electronic signal (i.e., simulated plane wave source) and the reflected

signal from the object can be expressed as

Iss [ro + r1 - = 2n7

27
=

(21)

where A is the wavelength used for the construction of the hologram

and n is an integer. We will assume the hologram to be recorded on

film which consists of opaque or transparent sections whenever Eq. (21)

is satisfied. The effect of replacing the actual hologram film with

this approximate one would be a construction of images of all orders.

We will consider only the first order diffracted image, since in

14



REFERENCE SOURCE
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RECONSTRUCTION
SOURCE 1 r0
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Figure 5. Acoustic hologram geometry.

0

IMAGE POINT

xb 'yb,zb)

111



16

reality the actual hologram will allow no other recognizable images.

If an image is to be formed at 0, then the light from S1 passing

through the hologram film and arriving at the image point 0 must be in

phase. This can be expressed as

13.

L Era + rb I
= + 27n + 13LC

and

L
= 2r/XL

where C is a constant defined as the optical path function, and XL is

the wavelength of the reconstruction source. We may substitute for n

from Eq. (21) into Eq. (22) and obtain the following expression:

Era rb] [r0 rl LC

Since C is a constant, the differential of C with respect to x or

aC aC
y should be zero. If and are zero without any restrictions,

ax ay

then a perfect image will be formed at 0. This is essentially Fermat's

principle, which states the position of image point 0 for the ray from

S1
should be where the variation of the optical path function C becomes

zero. This implies that the position of the image at 0 for a ray from

S is where the variation of the optical path function C is zero. In

aC aC
reality, the differentials , are not zero at the point and only

ax

become approximately zero under the following conditions. First, we

express the distance terms ra, rb, ro, r1 and r2 of Eq. (23) in rectan-

gular coordinates:



f35 [(x1 - x)2 + (y1 - y)2 z1 2]'12

[0(0 - x1)2 4 (y0 y1)2 zi)11/2

- [0(2 - )02 -I- (y2 y)2 z22

= kli[ka - >02 (Ya Y)2 Z
1112

a

[(xb x)2 (Yb - Y)2 + z132]1/2

1/2
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(24)

In the construction process the receiver's "x" component of

velocity is denoted by vx and the "y" component by vy The receiver's

position at any time "t" in the construction process can be defined

mathematically by the following equations:

x = vxt (25)

y = v t (26)

The position of the CRT beam which simulates the actual receiver

position can be defined in terms of its E and n coordinates. The and

n velocity components of the scanning beam are defined by the following

equations:

= v t (27)

n = v t (28)

Substituting Eqs. (27) and (28) into Eqs. (25) and (26), we arrive with

the following expressions for x and y:

x = mx (29)

y = M (30)



where
V

Xm =
x v

and vs,
m =
y v

aC
In reality, the differentials -B7- and become zero at a point only if

a small region is considered around 0. It is this small region which

yields the equations relating to aberrations. If E and n are small,

then the distance terms in Eq. (24) can be approximated. We substitute

Eqs. (29) and (30) into Eq. (24) and expand the distance terms in a

binominal expansion

L

=
L fira

[1 (cxa + nya) c2 + 112
(cx + ny )2

a a

i"'a2 2a2 2a4

(ç2(C

2
+ 2)

2 (C2 +

4

) + nya)

8ra 2r
a4

+ Tb [l -
(Cxb +nyb) 2 2 (cxt, + nyb)2

-- 2
-r-

2
2

4

2rb 2rb 8rb

(c2

+ n2 (cxb + nyb)

11__l

[
1

(mx Cxi + my nYi)

4 r3S r -2
b 1

mxc+m n ( + n )2
2 2 2 2

mx xl my Y1

2-1,-,-1421r
2

2 2 2 22
(m

2
2+ m

2 2
(m C + m n )
x Y + Yx

C n ) (flx Cx1 + my nYl)
_

8T,-;
4 4

1 2r1

18



2 2 2 2

(mx Cx2 my nY2) mx my n (mx Cx2+1 nY2)2--
Y2

[1

1'22
222

27'T2

2

n(mx2 C2 my2 2) (mx2 C2 my2 n2)(mx Cx2 my nY2)
+r

81-24 2i724

where

2 2 2 2

rl
=x1 +y1 +z12

2 2 2 2

r2 = X2 +y2 + Z2

2

ra = xa2 + ya2 + za2

2 2 2 2

rb = Xb +
yb

+
Zb

We may now combine all of these terms and express C as:

Al

= [a r + + r
a b 1 r2 0

[

cxa
+

nya + cxb
+

nyb 7 AL (mx cx1
+ my nyi)

_ A

ra 7.b
S

r1

L (mx cx2 + my ny2)]

AS T-72

(c2 fl2) 1 1 AL (m 2 c24. 2 2) 1

ra
S2- -A-- x mY ---

1

19

(33)



1 [(Cxa nYa)2 (cxb + ny,)2 (mx
cx1

+m
y ny1)2u

2 A
-13

L (m +
my flY2)2

I's23

1 2 2 xa xbi 1 2 2 2 _21 x1 x21
+ m

+ + ) LS+ (n1n
[

ra i"

X X
S

2
+ m

2 2)1'1 Y2
y n

T.,23
ri

The differentials of C with respect to c and n are

acxa xb AL Mx X' Am X, 1 1 1]

rb AS AS r2 -r F

AL 2 c[ 1 1 1+ a

AS 171
172

and

DC Ya Yb
A

m Y1 4. AL 1211_12 , 1- n

-Fa -Ft, AS S r2 Ta Tb

20

(higher order terms) = 0 (35)

AL
m

2 [ 1 1

-47 n + (higher order terms) = 0 . (36)
YAS ri r2 Bn

1

1

-

( 2 n2)

212
n ,

AL 1m no, 2
+
A52

x

4. 1 AL ( 2 ,2
-8- --x ,mx

Ya+ Yb]

17'a'5713

1 4. 1

3 3

La rb

2
m

2)2[ 1
, L 3 1

. (34)

)723
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Equations (35) and (36) do not become zero because of the higher

order terms in the expansion. These terms contain the aberrations of

the system. If the hologram aperture is reduced to a point, the

aberrations will disappear. The above differentials will be used to

derive the Gaussian image location equations.

IMAGE LOCATION EQUATIONS

To solve for the Gaussian image location equations, we assume the

hologram aperture dimensions are small compared with the distances zl,

z2' z0
and centered around the (x,y,z) origin. In the coordinate

transformation it is centered about the (co,y) origin. The result

of this condition is to restrict the scanning receiver to small

excursions about the (x,y,z) origin and a degradation of the resolution.

The higher order terms of Eqs. (35) and (36) can now be neglected. If

pC
C is constant, then the differentials and 2C-must be zero. Setting

c

Eqs. (35) and (36) equal to zero and equating coefficients in c and n,

we generate the following image location equations for the receiver

scanning alone.

5 (37)

9 (38)

(39)



_1 AL (v_.0Fl_ 11_ 1

-r-b
AS v n

[F1 F2] Fa

The upper signs refer to the conjugate images and the lower signs refer

to the true images.

MAGNIFICATIONS

The stationary source or receiver scanning alone hologram radial

and lateral magnifications are given by the following expressions:

a-FID AL

S

(Fb)2(V

.

)2

mR
3r1

r
1 E

NI

axb AL (1.7b)(Vx)

L(x) It Asr, '

NI
AL (17b)N

L(y) ayl As r1 )V

If the details of source receiver scanning for the more general cases

of acoustic holography are to be understood, then a more complete

analysis is in order. Such an analysis is carried out in Appendix B.

Radial

Lateral

22

(40)



IV. RESOLUTION ERRORS IN ACOUSTIC HOLOGRAPHY

The resolution in the object space is defined as the incremental

distance Ax1 through which the object point can be displaced before the

phase of the finest fringe arising at the hologram plane is deviated Tf

radians during the recording process.(12)

The phase at the receiving transducer in the hologram plane during

the recording process is

(1)(xy"z)=-L-1-Fr +r -rl
1 A L 0 1 2J

(44)
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If the phase yx,y,z) varies at a rate (x,y,z), then the

Al
incremental phase change when the object point moves an incremental

distance
Ax1

is

0 (X y z) -
ll

, (x,y,z) AX
dA/ 1

where

2
(X1 X)

A(1)
ff

kx,Y,L)
1

x
S x)2 (y1 y)2 z)2 ]1/2

(x1 - x0)
+ r Ax . (46)

[(xi - x0)2 (Y1 - Y0)2 (z1 - z0)2 11/2 1

Setting Eq. (46) equal to n and solving for the resolution Axl, we

obtain the following expression:

XS

Ax -
1 [(xl - x) (x1 - x0)]

'r1 0
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(45)

(47)



Let vx and
vY

be the actual acoustic receiver velocity components in

the recording aperture (i.e., (x,y) plane) and vc, vn the simulated

velocity components. The E, n coordinates are related to the x,y

coordinates by the following equations:

24

(48)x = m E
x

Y = m 11
(49)

Y

We now substitute Eqs. (48) and (49) into Eq. (47) and assume that

random errors exist in the simulated position of the acoustic receiver

during the hologram construction. The following linear statistical

models are used

_
E = E + e

_
n = In + e

)1

where T and 71-are the mean values and e and e are statistically
n

independent random errors. It is assumed that the errors are normally

distributed with zero means and their respective variances (G2 G 2).
C n

In order to derive the variance and expected value of the stationary

source hologram resolution, we expand the function (Ax1) in a Taylor's

series. If the errors e and e are small with respect to the measured
C n

values of the independent variables E and n (i.e., 1:7 and G < 0.1 of
n

E and 11, respectively), then only the linear terms of the expansion are

retained (see Appendices A and B). This approximation is usually quite

adequate for obtaining the approximate variance and expected value of

an arbitrary function. The final expression for the linear terms is

given by the following equation:



As
x r
s 0

A ---7---
+m

xl 2(xl-mx -x0)-x0)
x 2

r1

+

r1 r0

where

zr1 = .(x1 - mx T)2 + (Y1 - my 71)2 +2

VARIANCE OF THE STATIONARY SOURCE HOLOGRAM RESOLUTION

The variance of the stationary source hologram resolution AX1

when statistically independent random errors are introduced is

xs r0+
my 2 ri fr0(my71--Y1)

(xl-mxT)

ql.^0 (x1-m0 r1(x1-x0)]

v [AXi]
SS

2

{ri2

ro - (xl-mx T)

[r0(xl-m041^1(xl-x0)]

( 2 -El rnx)

1'0(2' ri2
ro - ro(xi mx T)2

L'tx0' 1

- mx) + (xi - x0)]2

(As r0 f r0(my 71- - yl) (xl mx

2 ri x [roki xod2
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(n-71) (52)

This assumes the maximum deviation of errors in the C and n scanning

receiver positions will essentially never exceed these values. The

(53)

(54)

If the deviations in the simulated receiver positions are assumed

never to exceed three standard deviations, then estimators of the

variances can be defined as

, 2
a =

2
(55)

9

- 2
=

2
An (56)

9

ac2

n2



probability of errors greater than or An is approximately 0.003.

2
Using the estimators of a and

cSn2
the approximate variance of the

hologram resolution Ax1 can be expressed as

2{r, 2 ro(x_ 7) 2]2
2

(xs r0 L1 ` 1 x

V[Ax1] 6 r "Ix
ss 1 kb(x, - mx) + ri(xl - x0)]

+ w
F1 (my n - Y1) (xl - mx )]2

2

An

/

If the holograms are sampled for deviations in scanning receiver

positions, then estimates can be calculated using the maximum likelihood

method. The estimation of the means and T assuming a normal

distribution is

2 1

ii
G =

n-1

[ro(x, - mx -) + ri(x, - x0)

It is important to note that the estimates of and -TThave not involved

estimates of 02 or
an2.

If and are unknown, then unbiased

estimates of cr2 and
Gn2

can be expressed as

(57)
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The variance of
Ax1

can then be expressed as{m[rori 2 - ro (xi nx

[r0(x1 -
--)---(111n zi

where

V[Axi] 2f
ss

(xs r0 mx)2

2r1

tin I mx ZEi )1 (n-1)-1 I (12[r0ki Lni-Y1) kx1

r / my
]4

lx1 t; r1(xl - x0)

mx
r1 = _

1 n

\2 /

+ V1

In order to investigate the effects of position scanning errors on

the hologram resolution, we can simplify Eq. (57) in applying the usual

valid assumptions in acoustic holography. The maximum aperture

dimension is
2xm

and the errors are only in the simulated positions

of the receiver. The objects are located near the z axis and the holo-

gram to object distances are much greater than the aperture dimensions.

The source is located near the z axis. Figure 6 is a simplified

diagram of the approximate hologram resolution geometry using these

assumptions.

Equation (57) simplifies to the following expression after

employing the previously mentioned assumptions and substituting

C =m for the maximum simulated aperture dimension.

222
z

xs 1

v[xl]ss 36 m 2 4

x m

)2

n.
+ z12n

1212

.11 (n-1)-' Z(_c.-C)2

ri(xl-x0)14

(64)

27

(63)

1

(62)



FIGURE 6. Hologram Resolution Geometry

The standard deviation is

xL\C
S zi

cy [AX1]ss=
6 m

2

x m

The errors in the stationary source hologram resolution vary

inversely as the square of the simulated aperture dimension.

Theoretically the resolution errors would approach zero if the aperture

was infinite. In this case we have an angular aperture approaching 7

radians and this of course provides infinite resolution. The actual

aperture dimension can be related to the simulated dimension by the

following equation

X = mm (66)
m x

(65)

28
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If we substitute Eq. (66) into Eq. (65), the standard deviation is now

a function of the actual scanning aperture dimension xm.

MxXS Z1-
Jss 6X2

Equation (67) shows that demagnification of the hologram increases the

resolution errors. Usually the hologram film is demagnified to increase

the lateral and radial magnifications. Naturally, if the ratio of the

magnifications approach unity, the three dimensional quality of the

hologram will be restored.

THE EXPECTED VALUE OF THE STATIONARY SOURCE HOLOGRAM RESOLUTION

The expected value of the hologram resolution is the first term

of Eq. (52). The expected value of a constant is the constant itself.

E
r1 r0 As

1

ss 2r0(x1 - mx -) + 2r1(x1 - x0)

If the same assumptions and geometry used to simplify the variance are

employed, the expected value of the hologram resolution will simplify

to the following expression.

As z1

+x1]
==

ss 2xm

The resolution approaches infinity (i.e., Axi 4- 0) when the angular

aperture approaches 7 radians. The resolution is also a function of the

object to hologram distance and the wavelength of sound. The resolution

of the hologram is dominated by the scanning aperture of the receiver in



the stationary source system, but is also dependent on the scanning

source aperture if source scanning is employed.

SIMULTANEOUS SOURCE RECEIVER SCANNING RESOLUTION ERRORS

The stationary source hologram resolution, Eq. (47),can be

modified to allow for simultaneous scanning of the source and receiver

in the (x-y) plane. If the source and receiver are scanned together,

the source position can be defined by the following expressions:

xo = x + dl = mx c +
d1

(70)

YO = d2 = my d2
(71)

The velocities of the source and receiver are related by the following

equations.

dx0dx u
V a = - vx
0 dt dt

dyo cit
V 13 = - = Vy
0 dt dt

Figure 7 is a simplified diagram of the scanning source receiver

hologram construction geometry. If we assume the source and receiver

occupy the same space, then d1 = d2 = d3 = O.

Substituting Eqs. (70) and (71) into Eq. (47) results in the

following expression for the simultaneous source receiver scanned

hologram resolution.

r r
S 0 1Lyps) =

2(x1 - mx)
r0

+ 2(x1 -
mx - dl) rl

where

ro - mxc - d1)2 + (y- -m n - d2)2 + (z1 - z0)2
I y

30



_
n = n + e

ri

where T and T are the means. The statistically independent random

errors are ec and e. It is assumed that ec % N(0,02) and
n

e % N(0,a 2).
n n

We expand Eq. (74) in a Taylor's series about the points --c- and

and retain only the linear terms of C and n in the expansion. This

31

Figure 7. Simultaneous source receiver hologram construction geometry.

and

(77)

(78)

r1 = , x-, - mx02 + (Y1 - myn)2 + z12 (76)

If we assume random position errors in c and II, the following statisti-

cal models can be used
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is justified if the errors are small with respect to the measured

values of c and n (i .e. ,
aC

or
CYn

< 0.1 or n) . The expansion of the

resolution is

Axi (ps) =

x

x

r1 r0 AS mx

r r A m
1 0 S x

[r1-1r0(myT - Y1) +

(2- [r0(xl - mxT) +

nixT dl)]

ro(xi - mx-c-) + r1 (x1 - NT - d1)

+
mx

I ro(xi - mx-E-) + r1 (x1 - - d1)

[rori -1 (mx-E- - x1) + r1r0-1 (mx-c- - xi + di )]

if [ro(xi - mxT) + r1 (x1 - mxT - di )]

[(NT - xi + di )(xi - nix) r0 (r0 + r1)]

2 [r0 (x1 - + r1 (x1 - mx-C - d1 )] 2

Pi -' (mxT - xi )(xi - NZ- - di )]

2 [ro ( xi - mx-4-) + r1 (x1 - mx-C - di )] 2

[ro(xi - NZ) + r1 (x1 - mxT - di )]

+A m
S Y if [ro (xi -m-0 + ri ( xi - mxT - di

)]

-1

r1r0 (myn + d2 - y1d
r1 (x1 - mx-C - di )]

e
c

e
n

[(m+ d2 - y1 )(x1 - mj)]

enrl AS m 2

[r0 (xl - mxT) + rl (xl - NT d1).11

[(Y1
+

- mil (x1 - mxT - '1)]

enr0 AS
m
Y 2 [ro(xi - mxT) + ri (x1 - mxT - di

)]
2

e

e

(79)



where

and

r1 =,./(mT + d1

r
=,./(x1

- mx-02 + (Y1 - myn) z12

VARIANCE OF THE SIMULTANEOUS SOURCE RECEIVER SCANNED HOLOGRAM

RESOLUTION

The approximate variance of the scanning source and receiver

hologram resolution is obtained by taking the variance of Eq. (79).

[ro(xi - mxT) + r1 (x1 - mxT - di)]

V[Axi(ps)] = xs
mx

[ro(xi - mx-) + r1 (x1 - nixT - did

1

[(mx xl) rOrl

fm

x'

/2- [r0(xl mxT) r1(x1

m AS rx0

1

)2 (m T. 4.

Y

[(mxT- xi + di)(xi

2 [ro(xi - mxT)

d2 - y1)' (z1 - z0)2

x1 + d1) r1r0-1]

- mxT - di)]

- rori(ro +

- m- d )1 2
x 1 J

2

[(mxT - xi) (xi - mx-C - di)]
2

2 [ro( xi - m + ri ( xi - mxT - d1)]2

Er (x mxT) rl ( xl dl0l
{

+ x, m

y VT [ro(xi - mxT) + ri(xi - - d1)]

[rori -1 (myTi - yi ) + ri ro (myri + d2 - y1)]
-1

[ro(xi - rrixT) + ri(xi - mx-C - d1) ]
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(81)



The standard deviation can then be written as

S z1
Ac

a[Axl(ps)] =

where

m S gro(x, - mxj) + ri(xl -mx - d1)]2

2

[(111xT xl)(xl d1)] 2
a

mx xS r0
2[r0(x1 - mxT) + ri(xi - mxT - d1 )] 2

In order to compare the resolution errors of the stationary

source configuration with the simultaneous source receiver scanned

configuration it is necessary to simplify Eq. (82) by applying the

same assumptions as previously done in the stationary source case.

The variance of the hologram resolution Eq. (82) simplifies to the

following expression if the source and receiver are scanned together

(i.e., r1 ; r0).

5212 2

V[Axl(ps)] =
z AE

[(mxT - xl + di)(xl - mxT) r1 - rorl(r, + rod

4
144 m2

x m

2
12

mx cm
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(82)

(85)

This result is very interesting when compared with the stationary

source case. The standard deviation of the moving source hologram

resolution is identical to the stationary source deviation except for

a constant. The stationary source resolution errors are increased by



a factor of two compared with the moving source errors. If we substi-

tute Eq. (85) into the standard deviation, then it is now a function of

the actual aperture dimension (i.e., xm)

A..
mx0.[Ax1(ps)] =

12 x2m

Equation (86) shows that decreasing the aperture and demagnification

of the hologram increases the resolution errors.

EXPECTED VALUE OF THE SIMULTANEOUS SOURCE RECEIVER SCANNED HOLOGRAM

RESOLUTION

The expected value of the scanning source receiver hologram

resolution is obtained by taking the expected value of Eq. (79).

The expected value of the resolution is the first term of the

expansion.

E[x1(Ps)]
2[r0(x1 - mxT) + ri(xl - mx-C - d1)]

If we use the same conditions, as previously applied to simplify the

variance, then Eq. (87) can be reduced to the following expression.

S
Z]

E[Axi(ps)J - 4 mx
11.1

where
r1 r0'

and =m
Equation (88) can be expressed in terms of the actual scanning

aperture dimension as previously done.

S Z1
E[Axi(ps)] = 4x

AS rOrl
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(86)

(87)
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This result shows that the resolution is increased by source scanning.

In this particular example where the source and receiver are at the

same position, the system provides twice the resolution of a stationary

source system. The errors are also decreased by scanning a point

source with the receiver. The ratio of the stationary and moving

source standard deviations reduces to the following approximation.

o[Axi(ss)]

G[Axi(Ps)] 2

The ratio shows that by scanning a point source with the receiver

decreases the hologram resolution errors by a factor of two.

(90)



V. RADIAL MAGNIFICATION ERRORS IN ACOUSTIC SCANNED HOLOGRAPHY

HOLOGRAM RADIAL MAGNIFICATION

The hologram radial magnification is defined as the partial

derivative of the image point (rb) with respect to the object point

distance (r1 ). The radial magnification can be expressed mathemati-

cally as

M=
R

Dr1

The image location equations (employing parallel source receiver

motion) relating image and object point distances are (see Appendix C)

arb

rb1AL (V_L)2 [ 1 4. (Vois) 1 1] 1

S
V

r1 Vy r2
-

ra

where the plus and minus signs refer to the conjugate and the true

images, respectively.

Differentiating Eqs. (92) and (93) with respect to rb and r1 the

radial magnification can be expressed as

2 v 2
r V0121

MR(V) A5
[("x) (

S (rl

AL /rb\2 r/V \2 /11002 1
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(91)

1 AL Cx)2 [ 1 4_(ocy.)2 1 1 1

rb XS VE rl Vx r0 r2 ra

M(V)=
= t

S 1

)
n I



If the radial magnification is to be undistorted, then the

following conditions on the actual and simulated scanning velocities

must be satisfied:

If the source receiver motion is identical, then Voc Vx, Von = Vy and

the conditions of Eq. (96) reduce to the following expression:

After substitution of Eq. (97) into Eqs. (94) and (95), the radial

hologram magnification for simultaneous source receiver scanning is

defined by the following equations:

38

(97)

If the source is stationary (i.e., Voa = Vois = 0), then the radial

hologram magnification is increased approximately by a factor of two.

This implies that scanning the source decreases the radial magnifi-

cation of the hologram. The radial magnification employing a fixed

source of illumination (or constant phase across the aperture) is given

by the following expressions:

AL (17-b Vx)
MR(V)ss = IL 7---

A r V
, (100)

S 1

V

V)( C

2

+ (v ?la)

2

=

2

(VVI.. ) +rl (v()Iii)

2

(96)

C 11

A
v 2

MR(VE)ps
+2 L

S

.x)
r V

(

1 c
1 (98)

AL

MR(Vn)Ps -4 + 2
S

2

rb V(-Y
Vn

-)
rl

(99)



2

AL

(v
Cb

mRrdss = rl

VARIANCE OF THE RADIAL HOLOGRAM MAGNIFICATION

To derive the variance and the expected value of the radial

magnification, we assume the following linear statistical models for

the simulated velocities
VC

and V

V = V + e
VC '

V = V + e
n n Vn

The simulated velocities V and
Vn

are assumed to be statistically

independent random variables with their respective means Vc V and

variances a 2a 2. The velocity errors

eVC

and
eV

are assumed

to be independent and normally distributed with zero means:

e, % N(0, av 2)
wc

C )

2
ev % N(0, av

\

n /

(101)

If the errors
eV

and
eV

are small with respect to the measured

n
values of the independent variables (V and V ),then the radial

magnification can be expanded in a Taylor's series with retention of

only the linear terms. (See Appendices A and B.) After a Taylor's

expansion of Eqs. (98) and (99) about their respective mean values

V-n and neglecting terms of degree higher than in the first

deviations (V -
V-n)

and (V -
V-T-1),

we have the following expressions:

39

9 (104)

(105)



40

, (106)

X (r V\2
(rbY_

v )2 (v -V)
MR(Vn)ps

2 L 11_1 _ - ri . (107)- AS rl
Vn

AS rl
Vn

V

The variances of the hologram radial magnifications with respect to

The variance of the stationary source radial magnification is

greater than the simultaneous source receiver motion variance. The

corresponding standard deviations for the radial hologram magnifica-

tion are given by:

?

v 2 av

aMR(Vc)ps =4 7'.-L (r rb
(110)

AS 1 V/

A, (r, V.,)2 aV
aMR(Vn)ps =4 -1----1 (111)

AS rl V

The radial magnifications MR0c)ps and MR(Vdps are linear functions

of the random variables V and V. The radial magnifications can be

expressed as

(112)

their corresponding velocity errors ev and eV are given by the

following equations:

x

M (V ) s] -16 ( LV[R
XS

cy,,

x vE[rb

j4 2

(108)
ri 7 7 2

c c

V[MR(Vn)p

x )2

d .16 L

uv

b

v
n

i4 2

( 109 )

rl -1/ 2
n



and

MR(Vn)ps = c + d (Vn - Vn) (113)

where a, b, c and d are constants.

The variance of the sum of the radial magnifications MR(V)ps

and MR(Vn)ps is

V[MR(V)ps + MR(Vn)ps] = b2 V[ev ]+ d2 V[ev ]

C n

+ 2 bd cov[eeV ]
Vc

where covariance is zero.

The final expression for Eq. (114) is given by the following

Estimates of a, and av can be made if the expected deviations
vc

n

0., - Vd, (Vn - 11n) of the simulated velocities are assumed not to

exceed three standard deviations. The estimators of a and
av

are
V

n

given by the following expressions:

AV

alic 3

AV
f_; . __D..
-V 3

T)

tilt\4 aV 1

vi-n

)
vrl2

1
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(114)

(115)

expression:

V[MR(V)ps + MR(Vn)ps] = 16
X
--L

)
As

x
2 (r )14(V

1

V"E

2 aV 2
§

vCz



+
-11--

V ) AV
2 2

If we assume the expected deviations in the simulated velocities

The hologram aperture dimension Lx can be defined as Lx = VT and the

simulated aperture as L = VT, where T is the hologram line scanning

time. The ratio of the velocities is then defined in terms of the

aperture dimensions

VX LX

V = L
C

The standard deviation can now be related to the aperture dimensions.

The radial magnification error increases

42

If three sigma value is assumed, then the probability of the velocity

deviations exceeding AV , AV is 0.0027. Equation (115) can then be

(118)

AV AV

ratios --C- and 7+1 are approximately equal and imposing the stigmatic

(118) reduces to the following
VE V,/

condition = , then Eq.

expression:

w 4 v 2

L2
V[11 (V)ps + MR(Vn)ps] =

32 (A) lb v ) y(xE
(119)

Viri 1-/ c

The standard deviation of the radial hologram magnification is

4,/T xL (Fb V\

-17

C

°V (120)
°I1R(Ps'

AS rl 7

expressed as

V[MR(V0ps + MR(Vn)ps1 =
16 ,1

2

() (%)
4v

x

E
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4 /2- A (r b) (LI AVC
GMR(ps) -

L rL (122)

S1 EV
as the square of the actual to simulated aperture dimensions. Usually

the simulated aperture is much smaller than the actual aperture

scanned by the source and receiver. Equation (122) shows that

reducing the simulated aperture dimension by a factor of four increases

the radial magnification error by a factor of sixteen. The standard

deviation also varies directly as the simulated velocity deviations

(0c) or (On).

EXPECTED VALUE OF THE RADIAL HOLOGRAM MAGNIFICATION

The expected or mean value of the radial magnification for

simultaneous source receiver scanning is given by the following

expressions.

- AL (rb V 2x

E[MR(V)ps] = +2
AS V1

E[MR(V
2

n)ps] L__ xsAL (rb Va)

rl Vr1

where V and Vn are the average values of the simulated scanning

velocities. The expected value of the stationary source radial

magnification is decreased by a factor of two from the simultaneous

source receiver radial magnification.

To avoid radial magnification distortion the expected values,

Eqs. (123) and (124), must be equal. This implies the identical

restrictions as mentioned previously, the velocity ratios must remain

( 123)

(124)



Equation (125) can be written in the following form:

XL (r,)2rs,)2 (V")2j

E[MR(V)ps + MR(Vdps] = + 271= +

AS rl V

The expected values of the radial magnifications can be expressed

in terms of the actual and simulated aperture dimensions:

1 2

(

TR(VE )bs] + 2 AL rb "x

xS r1
L
E

1 r, Lx

qMR
(V )ps] = + 2L (Y-

n -- A r L
S 1 Ti

2
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Equations (128) and (129) show that decreasing the simulated aperture

dimensions
LE

and L with respect to the actual aperture (i.e., demag-

nification of the hologram) increases the radial magnification.

equal. The expected value of the sum of the radial magnifications

MR(VE)ps and MR(Vr)ps can be written as

E [a

+beVE
+c+deV ] =a+ b (125)

where

a = + L
2

As

(rb V)2x
(126)

rl

and

b = +
AL

2 -
As

(127)
(rb Vv)2

rl \--rn

Ti

9 (128)

(129)
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VI. LATERAL MAGNIFICATION ERRORS IN ACOUSTIC SCANNED HOLOGRAPHY

HOLOGRAM LATERAL MAGNIFICATION

The hologram lateral magnification as defined by Hildebrand
(12)

is the partial derivative of the image point distance with respect

to the object to hologram distance. The lateral magnification can

then be expressed mathematically by the following equation:

This is the magnification in the (x,y) plane of the object space

(see Fig. 5). The image location equations for source receiver

scanning relating xb, yb and xl, yl are given by the following

equations (see Appendix C):

xb
=

V

+
[xi (x1 - x0) x2] xa

rbS V r1
r1

r2 ra

Yb x VY -Y) Y Ya+ L 1 + (
1 0 2

rb5 V r
r1 r2 ran 1

where r0 = r1, V Vx and 110 = Vy . The plus and minus signs refer

to the conjugate and true images, respectively.

Differentiating Eqs. (132) and (133) with respect to xb, yb, xl,

and yl, the lateral hologram magnification is given by the following

equations:

9 AL Vx rb
ML(x)ps

=-
S E 1

5

(130)

(131)

(134)



equations:

x V r

ML(Vn)ps = :±2 T-
s Vn 1

If the source is stationary, then Eqs. (134) and (135) reduce to the

following expressions:

xb
ML(x)= -±;xTL171

S 1

XL V17b
M (Y) = 7

S n 1

VARIANCE OF THE LATERAL HOLOGRAM MAGNIFICATION

A V r
AL

V r

M (x)ps = + 2 --1-= xj--)-12
x

bx

"

rl
xs 7 2 ri

(V - V)
S

Vc
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(135)

The same conditions that were assumed in deriving the variance

and expected value of the radial magnification were used in obtaining

the variance and expected value in the lateral hologram magnification.

After a Taylor's series expansion of Eqs. (134) and (135) about their

rexpective mean values , V retaining only the linear terms of

the expansion we have the following expressions

( 1 38 )

x, V r, A, V rkm (Aps +2 L _.y. U T: 2 L. ___y_ _li_
(V - V ) (139)

L - x S 1/ rl
xs 7 2 r, n n '

Ti Ti

The variances of the hologram lateral magnifications with respect

to their corresponding errors eV and eV are given by the following

Ti



The variance of the stationary source lateral magnification is

approximately equal to the simultaneous source receiver

motion variance. The corresponding standard deviations for the

lateral hologram magnification are given by:

2,L Vx rb GVc
0-ML(x)ps = 2

xs v-- r1 V

V r

crM (x)ps = 2
L b n

XSv rl

expressions:

The variance of the sum of the lateral magnifications ML(x)Ps and

ML(y)ps is
2 2

V[ML(x)ps ML(Y)P+ v 2

4 AL rb)2 1(Vx)

2
V+2 °V

---f--'2- 1n

(Y-)

( 144 )

V
n

VII

The estimators of a and a are given by the following
V V

ri
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2

V
rb12 GVC

V[ML(x)ps] =4 [A--= (140)

S V rl V"

Vr
2

(711

V [(ML(y)pd= 4
]2i 7Y- rbi[X

ri

(141)Tr1-2- .

n



If we assume the expected deviations in the simulated velocities

ratios to be approximately equal and impose the stigmatic conditions,

then Eq. (147) reduces to the following expression:

8 [AL rb Vx A\H
V[ML(x)ps ML(Y)Psi = -9- v

E

The standard deviation of the lateral hologram magnification reduces

to

2

(148)

where the ratio of the velocities has been defined in terms of the

actual and simulated apertures (i.e., Vx/V = Lx/L

Vx/Vc = Lx/Lc) . (150)

The lateral magnification error increases directly as the ratio of the

actual to simulated aperture dimension and the deviation in the

simulated velocitiesAV orNn
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This assumes the deviations will never exceed the three sigma values.

Equation (144) can be expressed in terms of the estimators:

4 (AL rb)2{(Vx )2 '64E'
V[ML(x)ps + ML(y)psj = )

V )

v

2
AV

2

(147)

v2

-
4,7Z AL rb (Lx

r L
S 1

) AVE (149)a 3ML(ps)

VE



EXPECTED VALUE OF THE LATERAL HOLOGRAM MAGNIFICATION

The expected value of the lateral magnification for simultaneous

source receiver scanning is given by the following expressions:

V r
x

E[ML(x)ps]
=

A
b

+

S V 1

V rh

E[mL
(y)pd = + 2 ---1=

ASV- r
1

where the (+) and (-) signs refer to the conjugate and true images,

respectively.

The expected value of the lateral hologram magnification can be

expressed in terms of the actual and simulated aperture dimensions:

L r
x b

E[ML(x)ps] = + 2
A L r
S c 1

L r
b

E[ML(y)ps] = +
L r

S 1

49

( 151 )

(152)

(153)

The result is similar to the radial magnification example, the lateral

magnification is identical if the source is not scanned. The same

conditions must be employed to eliminate lateral magnification dis-
V V

tortion also (i.e., 1:12-(=

n
To avoid distortion in the hologram magnification, the radial

magnification must equal the lateral magnification. In acoustic

holography the sound to light wavelength ratio is usually much greater

than one and this factor alone introduces magnification distortion in

the hologram. The radial image distances are magnified or stretched

(154)
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many times more than the lateral image distances. If the recording

acoustic wavelength in water corresponds to a frequency of 1 MHz and
0

the reconstructing wavelength is 6328 A, the image will be elongated

approximately 2500 times. Equations (155) and (156) are the ratios

of the radial and lateral magnifications, if the reference and

reconstruction sources are plane waves (i.e., r2 = ra

If the illuminating source is stationary, the ratios are increased by

a factor of two:

MR(x)Ps 1 AS

ML(x)ps 2 AL Lx

MR(Y)Ps 1 AS

M (y)ps 2 XL Ly

MR(x)ss As Lc

M (x)ss AL Lx

MR(y)ss xs Ln

ML(y)ss AL Ly

Equations (155), (156), (157) and (158) show it is theoretically

possible to obtain equal magnifications by requiring the ratios to be

unity.

The hologram magnification distortion can be eliminated in two

ways:1) construct and reconstruct the hologram with the same wave-

length (e.g., optical hologram using the same laser to construct and



stationary source case.

L LExL
Lx Ly XS
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reconstruct the hologram, 2) require the simulated to actual aperture

dimension ratio to equal the light to sound wavelength ratio in the

(159)

This is a very impractical requirement for small apertures because the

simulated aperture or hologram film would have to be demagnified 2500

times if the construction source was 1 MHz sound in water and the

reconstruction source a helium-neon laser. Typical actual scanning

apertures in the laboratory are approximately 10 cm square and the

hologram would have to be reduced to 4 x 10-3 cm. If large scanning

apertures are employed, then magnification distortion in acoustic

holography could be eliminated. Using 10 MHz sound in water and

helium-neon laser for reconstruction, the actual aperture size (for

a 3 cm x 3 cm hologram) would be 100 meter x 100 meters. It appears

that magnification distortion in acoustic holography will always be

present and this results in apparent loss of the three-dimensional

effect that is so characteristic of optical holograms. The radial

distortion in the acoustic hologram obscures the depth information

and the images appear two-dimensional. The information is there and

can be viewed by focusing on different planes in depth parallel to

the hologram plane.



VII. IMAGE POSITION ERRORS AS A RESULT OF RANDOM VELOCITY

ERRORS IN THE ACOUSTIC SCANNING RECEIVER

The image point distance rb is defined in terms of the wavelength,

velocity ratios and geometrical distances (r1, r2, and ra). The

distances r
r2

and
ra

are constant as required in the derivation

of the image location equations. The acoustic wavelength As and the

light wavelength AL are constant during the hologram construction and

reconstruction. The horizontal and vertical components of the simulated

scanning receiver velocity are assumed to contain random errors. The

image location distance is given by the following expressions:

rb(Vc)ps

rb(Vn)ps

As v )

AL

(
Vx

4. AS (Vvri

L yl

rarir2

I
ra(2r2 - r1) T rlr, 7 7-

' ' L "y

AS (V12

rarir2

2

ASra(2r2 - r1) 7F- rir2 )7. (v37\11
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(160)

(161)

where the source and receiver are scanned; the upper and lower signs

refer to the conjugate and true images, respectively.

Equations (160) and (161) are required to remain equal to prevent

astigmatism in the hologram. This condition requires the velocity

ratio to be equal.



If we assume the following linear statistical models for the

simulated velocities:

V = V + eV (162)

Vn
+ +e (163)

where V and V are statistically independent random variables with
fl

2 2
their respective mean values

VC
, V and variances a The

n ' aV 'Vc
n

random errors
eV

and
eV

are assumed to be normally distributed with

C n

zero means:

e, %11(0, av 2)
vc

)
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(164)

ev 14(0, av 2) (165)

Ti fl

We expand the function rb(V)ps and rb(Vn)ps in Taylor's series about

their respective means Vc , Vin and retain only the linear terms in the

expansion:

rb(V )Ps t 4
{v 2

(L x

ra(2r2 - r1) -+- r1r2 vxAS Cc)2 1

rarlr2

Vx2
a - 17 r As ViC 12 / '

(166)

r (2r2 r.) r

r 2 r r (2r - r ) V e-
2

a 12 2 1 cvc+

I 1 2 AL Vx



AS
rb

Ti

(V)ps +

AL

ran r2

A (i7 2

ra(2r2 - r1) -1--- r1r2 7,SL. c)

+ 2
r r r (2r - r,) -1-1 eV
a2 1 2 2 1 Ti Ti

(7 )2]
V2

2 1Y r a(2r 2 - r1) + r1 r2 71.-. vir---1.

VARIANCE OF THE IMAGE POINT POSITION

The variances of the image position distance rb with respect to

the corresponding velocity errors eV and eV are given by the following

expressions:

2

2As

Vfrb(V)ps]

ra2 r1r2 (2r2 - r1)
2

=((, ,

Vx`
ra(2r2 - r1) + r1r2 -ASL- 17-

A (v- )212 a11 ,

(168)

V[rb(Vn)ps] '((.: 2vy2 2 V .

12a
2A5

ra2 r1r2 (2r2 - r1)
2

V-7-1

[ra (2 r2
- rl) r1r2

AS (Vn) n

71 5,1: Vy (169)

The variance of the sum of the image point positions rb(Vc)ps and

rb
(V )ps is the sum of the variances if the random variables are

ri

independent. The simulated velocities V and Vn are assumed to be

independent random variables and this implies that the covariance is

zero. The variance of the image position for a stationary source

hologram is decreased by a factor of four from the source receiver

scanning case.

54
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The variance of the sum is given by the following expression:

2 2 2

V[rb(V)ps + rb(V

4 2 2
2 r r- r2 (2r2 - r1) V_ a.

(XS) a 1

VEcdps] s 4 (v )14

V ir
(2r2 - r1

) Trr --S-xa 12 x. V
L x

2 77'2 2

+

(X2 ra4 r12 r22(2r2 - r1) av

(170)4 4 D
XL

XS (1
Vy4 ra(2r2 - ri) rir2 vy

The expression for the variance is difficult to analyze unless computer

techniques or valid approximations are employed. The latter method will

be used to reduce the complexity of Eq. (170). If an electronic

reference signal is used, then the distance r2 is infinite. The

electronic reference signal simulates a spherical source at infinity

(i.e., plane wave of constant phase across the hologram). The second

condition is to require a plane wave reconstruction source (i.e.,

ra = -). Equation (170) can then be written as

where
L V
C

LX vX

and

L V
T1 =

L V
Y Y



be defined by the following expressions:

2
AV

- 2 c

aV = 9

2
AV

2 n

Equation (171) reduces to the following expression

V[rb(V)ps + rb(Vn)ps] =

The standard deviation is

a[rb(V)ps + rb(Vn)ps] =

(As )2 r/L \2 Avc2 402 64,12 ]

A 1 RLx! ) 777
y

11

r1L

x
VC

xs

J(-)2Aii2

(LI 64,12

T x L 2 4. L 2
L x 17c y

THE EXPECTED VALUE OF THE IMAGE POINT POSITION

The expected or mean values of the image position are

rar2r1
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If the deviations in the simulated velocities are assumed never to

exceed three standard deviations, then estimators of the variances can

(174)

. (175)

and

E [rb(V)ps] =

E[rb(Vn)ps] + .

7
L x

x (v )2

S n

AS
c-12

ra(2r2 - r1) + v r, r2
AL x '

[rar2r1
AL Vy

ra(2r2 - r1) +



AS (v4 rar2r,

7 2
x

ra(r2 - r1) rir,, ..TX

E [rb(Vd ss] =

S-(vv--C)

AL x

AS (7n)2
r1r2 )7. \

If the stigmatic conditions are imposed, then the expected values of
V

the image positions with respect to the velocity ratiosv,=. and e
must be equal. This requires the velocity ratios to always be equal.

It is the identical conditions that were imposed on the radial and

lateral magnifications.

In acoustical scanned holography the reference source is usually

generated electronically and with proper signal conditioning can

simulate either a moving or stationary source. If we assume the

reference source is a plane wave (i.e., r2 = -) and impose the

stigmatic conditions, then

AS ,2 rl
ED-OPs = T.PD ri,As 2

ra AL

Vc V
where 13, = . The stationary source expected value is

x y

AS 2

E[rb]ss =Tj
r1

.T: 1 S

ra AL

r
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The stationary source expected values are given by similar expressions

(178)

(179)

(180)

(181)

and 2

E[rb(Vii)ss]=
AS (711)
rt.- 7y

rar2r1

ra(r2 - r1)



It is interesting to note that if the reference and reconstruction

sources are point sources at infinity (i.e., plane waves), then

Eqs. (180) and (181) simplify to the following expressions:

AS2 r1
E[rOps = , 2

AL

AS
E[rb]ss = +

2
r1

AL
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The ratio of the stationary source to the moving source image point is

two. The expected value of the stationary source image position is

twice as far from the hologram as the moving source image position.

This means the image would appear closer or magnified in the moving

source generated hologram. The image distance from the hologram is

determined by the ratio of the sound to light wavelengths and the

magnification of the hologram. If 1 MHz sound is used in the hologram

construction and a helium neon laser in the reconstruction, then the

image distance is approximately 2500 times the object distance assuming

the magnification (i.e., 13 = 1). This means that a converging lens

must be used with the hologram to have reasonable reconstruction

distances. Figure 10 in the next section is a typical acoustic

hologram reconstruction setup.



VIII. ACOUSTIC SCANNED HOLOGRAPHY SYSTEM

The experimental set-up used in the construction of the holograms

is shown in Fig. 8. The apparatus is basically an x-y scanner with

some unique signal conditioning features. Figure 9 is a picture of

the scanner and associated electronics. The acoustic transmitter was

either a plane-wave quartz crystal (5 cm in diameter) or a PZT-4

spherical ceramic (5 cm in diameter). The acoustic receiver was a

PZT-5 ceramic (0.254 mm in diameter). The objects to be imaged were

located outside of the periphery of the projected scanning aperture

when stationary source illumination was employed and this allowed

for complete separation of the two images (true, conjugate) and the

undiffracted light. Objects can be placed inside the projected

aperture, but the reference signal must be phase shifted or the

source scanned to provided separation of the images.

The field of sound scattered or generated by the objects is

scanned over a plane area by the receiving transducer. The area

scanned (i.e., aperture) is usually about 10 cm x 10 cm with a line

separation of 0.457 cm. The scanner is capable of varying both

the aperture, line density and rate of scan. The receiver signals

are amplified by a preamplifier located in close proximity to the

receiving transducer. They are amplified again and then mixed with

the electronic reference signal in a balanced mixer. This provides

the necessary conditions for combining the received and reference

signals in holography (see Appendix D). The output signal of the

mixer is time-averaged, and the large voltage peaks are clipped before
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it is used to modulate the intensity of the glow modulator tube. The

average level is adjusted to the center of the dynamic range of the

light source and film sensitivity. The varying intensity of the

modulator tube is coupled optically by a fiber optic light pipe to the

top of the receiving transducer. A mirror located on the transducer

reflects the light to a camera mounted above the scanning plane. The

hologram is then constructed on 46L Polaroid transparency film. If

the light source is mounted on the receiving transducer, then the

scanning velocity and position errors are zero. Usually it is not

possible in practical applications of acoustic holography to have the

light source coupled directly to the scanning receiver. A cathode

ray tube is used to construct the hologram and the receiver velocity

components are simulated electronically to control the beam position.

These signals contain errors that affect the hologram resolution,

magnification, and image position.

HOLOGRAM RECONSTRUCTION GEOMETRY

Figure 10 shows the hologram reconstruction geometry. The helium-

neon laser (6328 A) is used after expanding the beam to completely

illuminate the hologram. The lens was adjusted to bring the true

image of the object into focus at 10 meters from the hologram. The

lens had a focal length of 52 cm. The zero order (i.e., undiffracted

light) and the conjugate image are then located between the true image

and the hologram. The expected values of the hologram resolution,

magnifications and irege positions were verified experimentally using
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this reconstruction geometry. The expected value image positions of

the objects were in excellent agreement with the theoretical

calculations. Positioning of the lens determined the depth of focus

in the hologram. Objects at various depths in the tank came into

focus at different lens positions. The expected value of the lateral

and radial magnifications were calculated from the theory and proven

to agree with the experimental results.



IX. EXPERIMENTAL RESULTS

In this section we describe a number of experiments to verify some

of the theoretical results developed in the preceeding sections. The

expected value of the hologram resolution, radial, lateral magnifica-

tions, and image position are proven to agree conclusively with the

theory. The experiments include stationary source illumination

(i.e., receiver scanning alone) and simultaneous source receiver

scanning.

HOLOGRAM RESOLUTION EXPERIMENTS

The initial experiments were designed to verify the expected value

of the hologram resolution employing both stationary and moving source

illumination. Two 0.25 mm diameter PZT-5 ceramic transducers were

mounted side by side in the water tank outside of the projected

aperture. The lateral separation, object to hologram distance,

aperture and the acoustic frequency were set according to Eq. (69).

Numerous holograms were constructed using the same technique and

varying the parameters that effect the resolution. Figure 11 shows a

hologram and the reconstruction of the true image. In this example

the lateral separation was 5.1 mm, line density 22 lines/cm, object

to hologram distance 31 cm, frequency 3.6 MHz and the scanning

aperture 2.54 cm x 2.54 cm. The two images in the reconstruction are

almost touching and the two points can be identified. Now if we

decrease the lateral separation, the two points would be unresolvable

in the reconstruction and we have exceeded the resolution of the
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hologram. The optical system used in the reconstruction is shown in

Fig. 10. The reconstruction distance xl = 5.9 cm, do = 560 cm,

rbt = 1000 cm and rbc = 390 cm.

Increasing the frequency or the aperture increased the resolution

as shown in Fig. 12. The two images are now completely separated.

The resolution measurements were obtained and checked using this

technique. Figure 13 is a family of curves showing the stationary

source hologram resolution as a function of object to hologram distance

and aperture size. Figure 14 shows the hologram and the reconstruction

of the true image. The source and receiver were scanned together and

the image separation distance has increased approximately twice the

stationary source image separation distance (see Fig. 11). This

experimental result proves conclusively that simultaneous source

receiver scanning doubles the resolution capability. Figure 15 is

a family of curves showing the hologram moving source resolution as

a function of object to hologram distance and aperture dimension.

The source and receiver were scanned simultaneously together. This

increased the hologram resolution by a factor of two (i.e., decreased

the resolvable distance). Intuitively, the reason for this increase

in resolution can be explained in the following way. In a stationary

source hologram the receiver is cutting across the acoustic spherical

wavefronts reflected from a point object. The hologram becomes the

familiar zone plate with a line density proportional to the rate of

change of the object to receiver distance. If the source moves, the

illumination angle changes at the same rate as the receiver and this
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Figure 13. Stationary source hologram resolution.
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Figure 15. Simultaneous source receiver scanned hologram resolution.
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increases the line density to approximately twice its former value.

Thus, for a hologram of a general object the spatial bandwidth has

approximately doubled when simultaneous source-receiver scanning is

used.

RADIAL MAGNIFICATION EXPERIMENTS

The experiments were designed to verify the expected value of the

stationary and moving source radial magnification. Two point objects

were separated at various distances in the radial direction (i.e.,

depth). Holograms were constructed at different frequencies and

objects distances. Figure 16 shows a hologram and the reconstructions

of the two point objects. The hologram was constructed at 3.6 MHz,

the radial separation 5 cm, the line density 22 lines/cm, the scanning

aperture 10 cm x 10 cm, the object to hologram distances 30.5 cm and

35.5 cm. The upper image (i.e., circular dot) is in focus 1000 cm

from the hologram. In Fig. 17 the lower image is in focus 900 cm

from the hologram. The difference in the object to hologram distances

was calculated and agreed with the theoretical value of the radial

magnification. The true images were viewed at approximately 10 meters

using the optical system as shown in Fig. 10. The reconstruction

distances for the upper image were xl = 5.8 cm, do = 560 cm, rbt = 1000

cm and rbc = 390 cm. The reconstruction distances for the lower image

were x1 = 5.8 cm' d0 = 560 cm' rbt = 900 cm, and rbc = 4.6 cm.

Figure 18 shows a family of curves of the stationary source hologram

radial magnification as a function of frequency and object to hologram

distance. Radial magnification measurements were obtained using
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Acoustic Hologram True Image at 10 meters
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Figure 16. Hologram and the reconstruction of two circular objects sepaated
in the radial direction. 6.3
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Figure 18. Hologram stationary source radial magnification.
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simultaneous source receiver scanning. The radial magnification was

decreased by a factor of two, which agreed with the theoretical

prediction. Figure 18a shows a family of curves of the moving source

radial hologram magnification as a function of frequency and object

to hologram distance.

HOLOGRAM LATERAL MAGNIFICATION EXPERIMENTS

The experiments were designed to verify the expected value of the

lateral hologram magnification using stationary and moving source

illumination. Two circular objects were separated at various distances

in the lateral direction. Holograms were constructed at different

frequencies and object distances. Figure 12 shows a hologram and the

reconstruction of the true image. The hologram was constructed at

3.6 MHz, the lateral separation 5.1 mm, the line density 22 lines/cm,

the scanning aperture 10 cm x 10 cm, and the object to hologram

distance 31 cm. The reconstruction distances were x1 = 5.9 cm,

d = 560 cm' rbt = 1000 cm and rbc = 390 cm. The expected value of
0

the lateral magnification was calculated by taking the ratio of the

lateral separation distance between the two images in the reconstruc-

tion and the lateral separation distance between the objects. The

true image was viewed at 10 meters from the hologram using the optical

system shown in Fig. 10. The results were in excellent agreement with

the theoretical calculations. Figure 19 shows a family of curves of

the stationary source hologram magnification as a function of frequency

and object to hologram distance. Lateral magnification measurements

were obtained using simultaneous source receiver scanning and the
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Figure 18a. Hologram moving source radial magnification.
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results verified the theoretical calculations. Figure 20 shows the

stationary source hologram and the reconstruction of the true image at

10 meters from the hologram. The object was to show by comparison with

the stationary source hologram that scanning the source and receiver

decreases the image distance (i.e., rb =)
b/2''

The object was a

styrofoam figure "F". The hologram was constructed at 3.6 MHz, the

line density 22 lines/cm, the scan aperture 10 cm x 10 cm, and the

object to hologram distance 28 cm. The length of the figure was 4.9 cm

and the width 3.18 cm. The reconstruction distances were xl = 5.9 cm,

do = 560 cm, rbt = 1000 cm and rbc = 390 cm. Figure 21 shows the

moving source hologram and the reconstruction of the true image at 10

meters from the hologram. The image of the figure "F" is approximately

twice the size of the stationary source hologram image. This result

shows that the lateral magnification is the same and the image size

would be identical to the stationary source image (figure 20) if viewed

at approximately 5 meters. The reconstruction distances were

xl = 5.9 cm, do = 560 cm, rbt = 1000 cm and rbc = 390 cm. Figure 22

shows a family of curves of the moving source lateral hologram magnifi-

cation as a function of frequency and object to hologram distance. The

true images were viewed at 10 meters from the hologram.

HOLOGRAM IMAGE POSITION EXPERIMENTS

The experiments were designed to verify the expected value of the

image position using stationary and moving source illumination.

Objects were placed at various depths in the tanks. Holograms were

constructed at different frequencies and object distances. The
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Figure 19. Hologram stationary source lateral magnification.
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Acoustic Hologram True Image at 10 meters

Illumination: Stationary Source Object. Styrofoam "F"

Frequency: 3.6 Mhz Resolution. 1.16 mm

Film Magnification: 2 Aperture: 10 cm x 10 cm

Line Density: 22 lines/cm Lateral Magnificatic^: 0 9.7

Figure 20. Hologram and reconstruction of the figure "Fun co
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expected values of the image positions were measured using the optical

system shown in Fig. 10. Figure 20 shows a stationary source hologram

and the reconstruction of the true image. The expected value of the

true image position (i.e., rbt) was 1000 cm. The expected value of

the conjugate image position was 390 cm. Numerous image positions were

measured and the results agreed with the theoretical calculations.

Figure 21 shows a moving source hologram and the reconstruction of

the true image. The expected value of the true image position was

1000 cm. The expected value of the conjugate image position was

cm. Figure 23 shows a moving plane-wave source hologram and the

reconstruction of the true and conjugate images. The styrofoam

figure "F" was placed directly in the projected scanning aperture.

The plane-wave transducer was inclined at 10 degrees with the

horizontal and the image was shifted approximately 6 cm from the

undiffracted light. The hologram was constructed at 4.75 MHz, the

line density 22 lines/cm, the scanning aperture 15 cm x 15 cm, and

the object to hologram distance 33 cm. The expected values of the

true and conjugate images were 1000 cm and 365 cm, respectively,

with the zero order focussed at 540 cm. The theoretical calculation

of image positions were in good agreement with the experimental

results.



10

1.0

0.1

TRUE IMAGE AT 10 METERS
ACOUSTIC FREQUENCIES 1,3,6,10MHz
HOLOGRAM MAGNIFICATION 0.25
RECONSTRUCTION WAVELENGTH 6328A
PLANE WAVE REFERENCE SOURCE
MOVING SOURCE ILLUMINATION

1MHz

3MHz

Figure 22. Hologram moving source lateral magnification.

83

1 10 100

OBJECT TO HOLOGRAM DISTANCE IN cm



Acoustic Hologram True Image at 10 meters
Illumination: Moving Plane-Wave Source Object: Styrofoam "F"
Frequency: 4.75 Mhz Resolution: 0.7 mm
Film Magnification: 2 Aperture: 15 cm x 14 cm
Line Density: 22 lines/cm Lateral Magnification: 0.24

Figure 23. Hologram and the reconstructions.

Conjugate Image at 3.65 Meters
Object: Styrofoam "F"
Resolution: 0.7 mm
Aperture: 15 cm x 15 cm
Lateral Magnification: 0.0875
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X. SUMMARY AND CONCLUSIONS

In this thesis we have presented a generalized analysis of

scanning errors in acoustic holography. The analysis includes

simultaneous source receiver scanning and receiver scanning alone.

These errors adversely affect the hologram resolution, magnifications

(radial, lateral) and the image position. The simulated velocity and

position errors are assumed to be statistically independent, identi-

cally distributed random variables; i.e., random variables with the

same distribution function.

The law of Fropagation of errors for the general case (i.e., for

several random variables) is used in the analysis. Its validity is

based on the assumption that the errors are reasonably small with

respect to the measured values of the variables. In practice, if

the standard deviation is of the order of 10% of the measured value

of the variable, the law can be reliably used. The approximate

variance, standard deviation and expected values are derived for

the hologram resolution, magnifications (i.e., radial, lateral) and

image positions using simultaneous source receiver scanning and

receiver scanning alone.

The standard deviation of the hologram resolution varied inversely

as the square of the aperture dimension and this implied that

increasing the5canning aperture greatly reduced the resolution errors.

Demagnification of the hologram also increased the resolution errors

and the errors increased directly with the wavelength of sound and the

position error. Scanning both the source and receiver decreased the
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resolution errors by a factor by two compared with the stationary

source resolution. The expected value of the hologram resolution was

increased by a factor of two compared with the stationary source

resolution. Thus, simultaneous source scanning increased the

resolution and decreased the standard deviation.

The standard deviation of the hologram radial and lateral

magnifications varied directly as the deviation in the simulated

receiver velocity for simultaneous source receiver scanning and

receiver scanning alone. The standard deviation in the radial

magnification was decreased by simultaneous source receiver scanning

and the ratio of the standard deviations of the radial magnifications

[i.e., cl1R(ss)/GMR(ps)] was approximately two.

The standard deviation of the hologram image position varied

directly as the sound to light wave length ratio and object to hologram

distance. Scanning both the source and receiver decreased the standard

deviation by a factor of two compared with the stationary source

standard deviation. Thus, simultaneous source receiver scanning

decreased the standard deviation in hologram resolution, radial

magnification, and image position, but remained the same in the

lateral magnification. The expected value of the simultaneous source

receiver hologram image position is decreased by a factor of two

compared with the stationary source image position if a plane-wave

source is used in the reconstruction (i.e., rb 7..b/L). Thus, scanning

both the source and receiver together makes the object appear closer

to the hologram plane.



87

Experimental results for the expected values of hologram

resolution, magnifications (i.e., radial and lateral) and image

position are shown. Various graphs have been plotted and the results

are in good agreement with the theory.
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APPENDIX A

THE LAW OF PROPAGATION OF ERRORS

The exact calculation of the variance of a nonlinear function

containing several variables that are subject to error is generally a

problem of considerable mathematical complexity. Generally,

approximations are used and it is not necessary to solve these

difficult problems exactly. There exists a process called lineariza-

tion that allows the replacement of any nonlinear function with a

linear one, for the purpose of obtaining approximate estimates of the

variances. The approximation is usually quite adequate for most

applications. Linearization is based on the Taylor's series expansion

of the nonlinear function with retention of only the linear portion

of the expansion.

Let us consider first a function of a single random variable:

M = f(X)

For example, X might represent the simulated scanning velocity of the

receiver and M its magnification. We are interested in the random

error of M as a result of random errors in X.

To an error E in X, corresponds an error 6 in M, given by

6 = f(X + E) - f(X) . (A-1)

If we assume e to be small with respect to X, it can be treated as a

differential increment. Then the following approximation is assumed

valid
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and

f(X + 6) - f(X) df(X)

dX

df(X) dM
-

dX 6 dX E

where the derivative of M with respect to X is evaluated at the

measured or average value of X. The variance is given by the following

expression

/dMN2
V(6) = ka) V(E)

dM
where ia s a constant.

For example, consider the lateral hologram magnification

_Vx rb
ML(x)ss = 4-xVr

S E 1

The derivative with respect to the velocity VE is

Vx rb

ML(x)ss
=

xS V
2

rl

and the variance

AL Vx rb)2
V(ó) = V(EE)

S V 1

where E is the random error in the velocity simulation, and (5 the

random error, induced by E, in the magnification. If Ev % N(0,Ge2),

then the standard deviation is

xL Vx rb
GS = a

xS V
2

r1
6
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(A-7)

(A-8)



etc., then Eq. (A-11) can be written as

V(s) = ax` +
12 2

.

Y aY
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Expressing the error as a coefficient of variation, we have

% C Vm = X 100 (A-9)

'IL V

Equation (A-4) expresses the law of propagation of errors for the case

of a single independent variable. Its proof is based on the assumption

that the error E is small with respect to the measured value of x

(i.e., ac 0.1 of x).

The law of propagation of errors for the case of several random

variables is just an extension of Eq. (A-4). Assume

u = f(x,y,z, . . .) (A-10)

where x,y,z . . . represent random variables. Let E1, E2' E3' . .

represent statistically independent errors of x,y,z . .

respectively. The error induced in u as a result of errors 61, 62,

E3,
. has a variance of

= (il)2 V(E1) + (g)2 V(62) + . . (A-11)

The partial derivations are evaluated at values equal or close to the

measured values of (x,y,z, . .). If 61 N(0, Gx2), 62 A, N(0, a 2),

(A-12)



APPENDIX B

APPROXIMATE AVERAGE VALUE AND VARIANCE OF AN ARBITRARY FUNCTION

To find the exact mean and variance of an arbitrary function of

several random variables is usually a very difficult task. However,

if the function varies slowly in the region where the values of the

independent variables remain within one or two standard deviations of

their mean, the function can adequately be represented by the linear

terms of its Taylor series expansion.

Let u = f(x,y), where x and y are random variables with mean values

x
x2

,

2
and y, variances a a and covariance a Let

y xy*

x = T+
ex

(B-l)

and

y = -37+ e (B-2)

where the random errors
ex

and
ey

are assumed distributed N(0, ax2) and

N(0, 0y2) If we expand u about the point -;-(- and -37, and retain only

the linear terms, then

u f(7,-37) + (x - +-f (y -
Dy

93

(B-3)

where the partial derivatives with respect to x and y are evaluated at

the point 37).

The expected or mean value of u is given by

E[u] = f(x,y) (6-4)

since
E[x - = E[ex] = 0 (B-5)



and

ELy - = E[ey] = 0 (B-6)

The variance of u is

el2 2 2

V[u] = K) a 2 + ef) G2 + 2 f (1 G (B-7)
x By y oy xy

since the variance of a constant (i.e., f(i,Y)is zero. If x and y are

independent random variables, then the covariance is zero.
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2ff2ff
(x,y,z) = + + r - r - r

1 1 0 2
AL

a

where

(C-3)

As = acoustic wave length in the construction medium,

AL = reconstruction (light) wave length, and

+ sign refers to the conjugate image,

- sign refers to the real image.

If the phase front (C-3) is to focus at the image point (xb, yb, zb),

then
2ff

= , rk (C-4)
"L

where this is termed the Gaussion image sphere. The usual procedure

is to expand the distance terms (ra, rb, rl, r2 and ro) in a binomial
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APPENDIX C

IMAGE LOCATION EQUATIONS EMPLOYING A MOVING SOURCE

The analysis that follows is similar to the approach used by

Champagne and Hildebrand.(13,14) Figure 1 is a simplified diagram

to provide the terminology and geometry for the derivation of the

image equations.

The phase at the receiver point (x,y,z) during the acoustic

hologram construction is

(D(x,y,z) = cpb(x,y,z) - (pr(x,y,z) (C-1)

where
2ff

0)(x,y,z) = [r1 + r0 - r

As
2]

(C-2)

The phase at the receiver point (x,y,z) after the hologram is illumi-

nated by the reconstruction source
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series and equate coefficients of x,y and z. We expand the distance

terms about the origin of the (x,y,z) system and the distance r0 is

expanded about the a,13,y system. The area in which the receiver scans

is assumed small with respect to the distances and is centered at the

(x,y,z) origin. A similar restriction holds for the source motion.

Then we have

X y4. ,2
y2

Xia y113
27 xl Y1 x

(1) (x y z) = + r -
'

.1.

1 " 1 r
rl

2r 2r '0 r r
1 1 1 0 0

a2 132 x2x y2y x2 y2 4. 27 XaX+-+ r9 ++
c_r L I r2

2 2 2
r 2r 2r

0 0 XL
a

ra

, 2YaY y2 .i. x2 4.

27

x x
u x (C-5)

ra 2ra 2ra
' x rb

rb 2rb

The simulated receiver position (E,n) can be defined in terms of the

actual and simulated velocitiesV,Vy,V,V, wherexEn
Vr

E

=vx
x (c-6)

V

n = X
V

(C-7)

After substituting Eqs. (C-6) and (C-7) into Eq. (C-5) and retaining

only the first two terms of the expansion, we have:

(I)1(x'y,z) A rl -V'r V 1r V '
2r1 Vn

1 2r

X 1 1 x ,e
VxVy (V )2 (V )2 2 1

E 1 n 1 E 1

(x1 - x0)(1 - y0)(3 a2 132 2 x y2

0
0 0

2r0 2r0 1/ r2 Vn r2

and

+r



v v 2

("x)2 r2 1 , (1.y.) 2 1

V
2rb Vn

n
2rb

dc_ dx
dt 1 dt

b

dt 1 dt
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(C-8)

(C-11)

whereda
dx

dt '
and

dt at ' dt
are the velocity components of the source

and receiver, respectively. The final expressions for a and 3

(assuming ao = 1)0 = 0) are

V
Oa

= (C-12)

(C-13)

-

2

Vx) 2
r

1 +

2

(Tv v)
n
2

"

1

-

27r

r

VxVy
x a a

2r2 2r2
V '

Vn L
a

VE ra Vn ra

2 2

+ VA, 2
---- n

(
I + (Vx r 2

'

1
=

27r
r
b

Vx xb Vv yb
- - --2- n

VE
s'

rb Vn ' rb2ra

If we allow only parallel motion of the source and receiver, then

the expressions for the source position are:

a = a0 + al x (C-9)

= b0 + b1 y (C-10)

The velocities of the source and receiver are related by

V

=
Vn



IMAGE LOCATION EQUATIONS

After substituting Eqs. (C-12) and (C-13) into Eq. (C-8) and equat-

ing like coefficients, we obtain the following expressions for image

location:

and

xb AL Vx xi Voa 1 x2
xa

rb Vr1 1 -
S

x0)
Vx r0 r2 ra

Yb + AL v.a 1j_+ , \ V013 1 Y 2 } Ya

rb
-- X5 r 'Yl - YO) -Tr 17- - ---

_

raS II 1 y 0 r2

1 AL 1 (V0a)2 1 1 1+ (Vx)2{

VSE1r+ x0 r2 ra

1

rb

1

rb

V V
X

VE Vn

V v0
0(3VV

x y

xbL xi f x21 xa

rb AS g r "1 - x0)
r0 r2 ra1

5
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Then we have the final expressions for the image location equations

In order tor
rb

to be the same for each coordinate (i.e., stigmatic),

then the following conditions must be satisfied

(C-18)

(C-19)

(C-20)

4. )1 c)2 { 1 4. (V0()2 1 1 1

-V r
S n 1

V r - rY.0' 2 - a



A r

ML(x) = ML(y) = + 2 g

AS r1
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If the source and the receiver are located at the same position (i.e.,

r1 = r0
and f = 1), then the lateral magnification can be expressed by

the following equation:

(C-27)

Yb AL fY1 f

=t)-7g r (Y1 - YO) -r-

Ya Ya
-r-

(C-21)

S 1 0 2 a

1 AL n2 f1 f2 1

rb AS rl r0 r2

where
V V
x _ _y_

g v
n

and

1

ra

(C-22)

(C-23)

V V
Oa Ofi

f = =
V V
x y

(C-24)

MAGNIFICATIONS

Lateral Magnification

rbaxb ALrif
ML(x) =-+-g

1 ro

ML(y)
1.L n

rif

=

ri

rb

1

(C-25)

(C-26)
ML('' Dy, s '

r0

where

z1 xl or yl

z1 - z0 xl - x0 or y1 - y0



Radial Magnification

xL (rb
9 rl]

MR + g)2 [-1 + f-177-(;
FC -AS

If the magnification of the hologram is to be undistorted, then the

ratio MR /ML must equal unity:

The ratio of the magnifications can be controlled by the velocity

ratios

V V )
Oa 013

(f = - -
V V
x y

Scanning the receiver and source together the ratio reduces to the

tollowing expression:

MR rb

ML
= gr1

MR_ rb [1 +
M gr 1+ f

1

100

(C-28)

(C-29)

(C-30)



Let

T1 = wt + cpy,

T2
= wt +

(/)o

then
cos Ti cos T2 - sin Ti sin T2 = cos (T1 + 12)

cos 11 cos 12 + sin 11 sin 12 = cos (11 - 12)

cos 11 cos 12 = 1/2 cos (11 + 12) + 1/2 cos (Ti - T2)

1 )1 AB / 1 ji AB
y = cosk2wt + 6r + cko) dt + cos(cpr - (/)0) dt

1 J=
AB

y cos( - (1) ) dt =
AB

cos Ecp - (1) ]
r o 2 r 0

o

where cbr = constant,

o
= f(x,y) only

APPENDIX D

HOLOGRAPHIC SIGNAL PROCESSING

The reference signal can be written as: a = A cos (wt + (1),), and

the object signal expressed as: is = B(x,y) cos + (1)0(x,Y)] where

(cp -) represents the phase difference between the signals:
r 0

Low Pass

Filter

, rTy - T, AB(x,y) cos [wt + (pr] cos [wt + ito(x,y)] dt

Jo

Output

y = a(3 dt
1
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Balanced

Mixer




