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FOURIER ANALYSIS OP

NON-SINUSOIDAL WAVES

1. FOURIER'S THEOREM

Fourier announced hie famous theorem in his "!Hieorie

Analytique de la CJhaleur" in 1822. Essentially his theorem

may be stated as follows: Any single-valued function f(x)

defined over an interval ^ can be represented

over this Interval by a trigonometric series of the form

(1.1) f-c)
ICSJ

. . ATTky \
•V SIh —J- j ,

where the coefficients are computed from the function f(x)

by the formulas

, /• 'J- jTtIcs
(1.2) dy. = — f-(^) cos T da

-'I-

(1.3) ^ S'n-=p- d S ^ - 'j'^3 ' ' J

As stated, this theorem is not strictly true. Cer

tain restrictions must be imposed upon the function f(x)

to assure that f(x) may be represented by the series of

(l.l). The discussion of Fourier series will be based

ux}on the restatement of the theorem to include certain

restrictions and a choice of the interval to be -TTix^TT,

The Fourier series is simplified by choosing the interval

-TTl X ^ TT , with no loss of generality.



The theorem. Let f(x) be a single-valued function

defined in the interval If f(x) and rf(x)]2
are Riemann integrable^ and if at each point Xq in the

interval there exists two positive constants, a • a(xo}

and A « A(xo), such that

(1.4) 1 A-t-^ hr oitla.

then the series

(1.5) sex)
00 \

•=. ^ ^ 2] (a,^c,os\Cx + b^. Siv\k>j

with the coefficients

(1.6)

(1.7)

\ J ces k.s Js ^ k:=a^ /j ••
— Tl

=a J "fy,) 3,-„ Jrs Js, /C= 6 <=«.

converges at Xq lio

(1.8)

where f(35^ • 0) is the limit of f (x) as x approaches Xq

from the left and f{xo 0) is the limit of f(x) as x

approaches x© fro® the right.

Hot eveiy continuous function satisfies the condi

tion of (1.4). For example, the function

(1.9) ix-x.)

does not satisfy this condition near x©*

, nJ



(1.10)

rig, 1.1. f(3t) • (x - x©)?'

consider the left aeobep of (1.4) divided by 4lt[,

Mt

which say be rewritten as

(1.11) -fCX^) ,

since f(x) Is eyiiunetrlo. with respect to x^.

The limit of (1.11) as 2t goes to zero is the der

ivative of f(x). fh® derivative becomes infinite as x

approaches x©, therefore A cannot exist and the condition

of (1.4) cannot be satisfied at Xq,

On the other hand, a dlscontlntious function aay

satisfy the condition of (1.4). For instance, if f(x) Is

continuous except for a finite Jump at x© and has bounded

right and left hand derivatives in the neighborhood of x©,

and if f(x) is defined at x© as the arithmetic mean of the

limits approached from the right and left, then f(x)

satisfies (1.4),



Under the hypothesis of the theorem. If f{x) Is

continuous at the point x » Xq* th®^ f(*0 - O) « fCx© ♦ 0)

« 80 that at all points in an interval of continu

ity, the series converges to f(x). At the points of difi«

«3ntinulty, it convei^s to the arithBetic mean of the

values of the ri^t and left hand limits. If f(x) is of

period STf, that is, if f(x ♦ 277 ) - f{x), the series eon-

verges to ^ f (x - 0) * f (x ♦ 0]Q for all x.
fhe field of aatheiaatlcal applications to physics

Is not materially limited by these restrictions for most

physical phenomena produce results which meet the restric

tions for the Fourier expansion. A comparision with the

Taylor series, which requires a continuous function f(x)

and continuous derivatives of all orders, reveals the

lai^er class of functions to ^ich a Fourier expansion

may be applied.

The Fourier series of (1.5) will hereafter be

rofej^red to as *the series* and the Fourier coefficients

of (1.6) and (1.7) as "the coefficients.*

2. ORI^KMSONAL FONCTIONS

Definition, ^e functions f(x) and g(x) are

orthogonal over the interval if

,ir

(8.1) J Jx =.d.



The Fouplep series la a series of orthogonal func

tions; that la, each tern Is orthogonal to evei^ other

term of the series. Consider cos six, cos nx, sin mx, and

sin nx, for m,a « 0, 1, 2, . • ^ where

.11 rTt

(2.2) tnKCo%r)-K Jtc [cos ^w-#7^x-+cos Jx

r s»V^ Chn-hH J_ sm _ zv , _
= L - rn-A) ^ - m^v,

Similarly,

(2.3) A S'hw* .s/;>hJf tJx = fees- tas C»»i+n)?njy

—r tM-nj-y 3>'n t>n4h')l^=. q m. ^ >1,
L ^-*1 m+n. J_7i

and

(2.4) cosinx •S'M )ix <J5C •=^

= ccsCynin)x _ cas Cvw-n)->c1 ""=0 ^ al/
L rn-n —i-rr

Due to these relations the terms of the series satisfy

(2.1), so the Fourier series is a series of orthogonal

functions in the Interval -^77.

S. DERIVATION OF FOURIER C0EFFICIEHT3

If f(x) Is integrable over (-TT, /T) and if f (x) is

equal to a uniformly convergent Fourier series so that the

series can he integrated tem by tera, the coefficients

of the series are given by (I.6) and (1.7).



To obtain the coefficient % of the general cosine

term, multiply both sides of (1.5) (cos kx dx) and

integrate texna by term from -tt to TT. Since the terms of

the series are orthogonal, there results

Tf

(3.1) cos kx Jx = cos^k-K d-ic ^

(5.2) ^

Similarly, by multiplying (1.5) by (sin kx dx) and

perfoming term by tewa Integration fro® -^to tt, one

obtains

(3.3) / s>hkxi-x = J dx - b^TT^
-^TT -n"

(3.4) lo s'n Kx Ax .
y rr

How whatever the behavior of the series of f(x), if

f(x) is integrable its Fourier coefficients can be defined

by (3.2) and (3.4) and the convergence of its Fourier

series investigated.

4. MAGNITUDE OF COEFFICIENTS

Let f(x) be a continuous function of period 2IT

which has a continuous first derivative for all values of

X. Consider the integrals defining the coefficients



(4.1)

(4.2) ^vc - ^ Xrr S)ia ks Js.

Applying the principle of integration by parts, one obtains

(4.3) ~ t'k '̂(^") ~Tfk / s'ii tsJa
-n -in

_ . j

(4.4) - -ir [-^ >(s) "s *»]%
i r c.^ 4

~ "S A-S da^

since products ^(s) sln ki^ and 1^(8)-cos ksj vanish at
both ends of the Interval. If Kj^ is the fflaxlmum of \f'(x)l,

(4.5) 1^kI ^ / lf'(s)l| s»hVs|ds

and similarly

(4.6) ILkI 5 _/"lf'(s)|l COS V;s\ J
If f(x) has a continuous second derivative for all

Xwith M2 as the maximtim of f "(x)[, then integration by
parts can be repeated and

(4.7)



(4.8) avcl ^

Likewise

11 \ <
(4.9) 1W \ ^ ir^

Under this condition it can be inferred that the

series is convex^ent. For

(4.10) Iay^cro^ kx-t-lD,^-5)hkx^ 1

and ia the general term of a conTergent series. How-

ever, this does not prove convergence of the series to

f (x).

If fix) has a continuous nth derivative for all x.

the magnitude of the coefficients

(4.11)
JilA

and the general term is

I < ) L 1 <r
K-l \^n i I b>^l = J

(4.12) \ ay^ cos kx -t lo^ 3»h kx < .

Thus as the number of continuous derivatives increases^

the more rapidly the series converges.

6. LIMIT OP GEHEBAL COEPPICIENT

Let f(x) and^f(x^^ be functions which are Inte-
grable over the interval and let Su(x) be



- t '

the partial sum of the Fburier expansion of f{x) through

terms of the nth order,
^ n

(5.1) =• X +ZICaw.ces kx 4- sih kx) .

Consider the integral

(5,2) 5^Cx)]\ix kx) 6^0c)^x 5

~7f -T K:= t

Transposing aeabers of (5.3), there results

(5.4) X •" n \V^cItt,
k:=»

The right member will not be decreased by dropping the

last Integral which is non-negative, so

(5.5)
a_ n

This is known as Bessel's inequality.

Since (5.5) is true for all values of n, while the

right hand side is independent of n, the series

(5.6)

is convergent and therefore

(S-V) ^

since a necessaj^y condition for the convei^ence of a series

is that the general term approach zero.



the eoeffidents appit>ach zero is known ae

Hi^ann^s theorem, RieBiann*s theorem holds tinder isore

general conditions, but the theorem tmder these more gen

eral conditions is not needed in this paper.

6. COHTERGEHCE OF THE SERIES

To prove the convergence theorem of section 1,

without loss of generality, f{x) can be defined outside of

the Interval (-77, TT) to be of period ZH" so that f(x ♦ 2/7)

• f(x). CJonslder the partial sua defined by

(6.1) 5„cx) = ^ +

By substituting (1.6) and (1.7) in (6.1), one has

(6.2) -^^TVlr/-^<s)cosks cos kx
v^, ^IT

. - n*

+ 4 smkx <i^j

(6.5) hi) t cos s cas X + . • .

+ COS ns cos HX+ Smx -f • •• + SjKinS Js .

(6.4) SyjCK") ^ cos»cCs-v)]^ Js .

By use of the idenlty

(6.5) Cs-"5t) -
S»h (*!•*• '-QCs

one may rewrite (6.4) m 'W -H

"v "E*

-•y '-..ifc m-m



(6.6) ns) ds .

If <6.5) Is integrated over then by the

orthognallty property

(6.7)
I f sm ds-x)

•= s,„

Multiplying by f(x), one obtains
^ir

f-cC) = sV sihSiVj ^ S~-X^(6.8)

If (6."?^) is subtracted from (6.6), there results

(6.9) S,Cx)-to) = jL js ,
—rr ^ )

A series of substitutions will change (6.9) to

the form

(6.10) S^6<)-fcx) =Xy[/:fx+a-tHRx-a^)-J?Cx)] jt .
C

fhe first substitution is to let s « x ♦ s', then

de « ds', and the limits may remain —it to TT , since f(x)

is periodic. Hien (6.9) written as the sum of two inte

grals is

(6.11) = -h.)-] dv

+i fiKx* s') -/-«;] "nU-*0'i '
^x.

where I]_ is the first tena, and I2 is the second term of

the right side of (6.11).



In the first tenn, let s* «-s", the ds' •-de",

and beooaes:

(6.12) = [/'w-S'J-fe)] (-Js"),

(6.18) I.<•>".

Dropping the primes and combining and I2, one has

(6.14) S„Cv)-fo()= >
a-Try^ ^ •'j si^

Let s « 2t, then ds « 2 dt, and

r ^(6.15) s>tO()-^ ^^^ •

By hypothesis the function f(x) satisfies the

condition that at each point 3^ In the interval there

exists two positive constants, a « a{3^) and A « A(xq}

such that

(6.16) AO-t'f'C'<6-i6)-a/o(6')[ ^ At, ^

Therefore it follows that for any value of t; S ^ in

O< t < GL J

(6.17) I * Jfe

< XJfr < AS,
= ^>'d y/4t- _ TT^ ^ ^

(6.18) si»n +Ofr t j



(6.19)
-i. < 9 /or- 0±-t S:h.

Now, glTen an C?o, ohoose T ^ ; f>en this
portion of the integral of (6.15) will be lesa in absolute

value than If 'C is thus fixed, the rest of the

Integral approaches zero as n becomes Infinite. This may

be seen as follows. Define

(6.20)

- ^ -T"! t" 77.

then g(t) and '[g(t)]]^are integrable in the interval, so,
as shown in section 5, the general coefficient 1:^ has the

liiait zero as k goes to infinity; that is

(6.21) liM t),u +, =<2 .

where

(6.22)
S)h -t

If w« idaoose n large enough the absolute value of (6.22)

will be less than the absolute value of (6.15)

becones

(6.23) 5>, - R>) < € .

Therefore the sequence of partial sums, Su{x) of



the series representing f(x) converges to the value

at each point 3^ \^ere (6,16) Is satlsflea. At a point of

discontinuity S^ix) converges to the average of the right

and left hand limits.

DinMITIONS CONCERHIHS SISIIS (^MPOHEHfS

Consider the functions —

(7.1) C6<, ^ s»7

where x is difflensionless.

fhe following definitions and equations are given

for a clearer understanding of various symbols of (7.1)

which occur in the series.

Ihe function f(x) Is a periodic function with fun-

damental period T if f{x ♦ f) • f(x) for every x, and no

number less than T has this property. The period for the

trigonometric functions of (7.1) is

(7.2)

Frequency, f. Is the reciprocal of f.

(7.5) -

fhe fundamental frequency, f^. Is the frequency at

which k * 1 in the functions of (7.1),

(7.4) ^ ^ ^ .



A fundamental component Is a component having the funds-

fflental frequency. Sxaaplee are

(7.5) CL, C6SX.J 8'>T>C ^ C, CosC .

C7.6)

Bie nth harmonic frequency, of f^ Is n tioes

/•„ =. h.'f, - '^jr .

The nth harmonic components (or nth harmonics) are the

components having the nth hannonic frequency,

(7.7) Cy^ CqS ,

A constant is said to have frequency zero. The

component of zero frequency, , is called the average

component and is the average value of the function.

The amplitude of a function is the constant multi

plier a^, b|j, or Cj^ of (7.1).

•Rie phase of the function is the angle (kx), or

(kx - 0^). The Initial phase is the phase lAien x * 0,

namely (O) in cos (kx), or (-0ic) in cos (kx » 0^).

If X has the dimension of time, then k will have

the dimension of angular velocity, the rate of change of

the phase with respect to time.

8. HARMONIC COMPONENTS

It is often convenient to combine two harmonic

components of the same frequency into one component.



Consider the sm of the trigonometric functions of the

kth harmonic in the series of (1.5),

(8.1) Tk - Co!> lof Sty) kx ,

One may write (8.1) as

(8.2) X-k>'

(8.3) "^K L 4 S)»i S»^

(8.4) Ty; - C)^

where

(8.5)

(8.6)

(8.7)

where

(8.8)

<4 =

Similarly (8.1) may be written

Ik = Ck siu C»CK. -v-^yj

= art tab ,

Thus with an introduction of phases the function

f(x) of (1.5) may be expressed as a series of sines or

cosines. The series then takes the forai



<8.9) /jfx) 4- 21 Ckj

(8.10) R^) - % Z S)n f'cy
Vc-^

where

(8.11)

All terms of the form Cjj. cos (kx - ^) are called

"haraonlcs* of cos <x - 0^}, the latter being called

the fundamentsd component.

9. ODD AHD EVEN FONCTIONS

definition, an even function f3^(x) satisfies

the relation

(9.1)

and an odd function fg(x) satisfies

(9.2)

If f(x) is even, the Fourier expansion leads to a

series where all the "b^'s vanish, aaid consists of cosine

terras alone, plus a possible constant. To develop this

series consider the coefficients written as the sum of

two integralsj



(9.3) = Cos ^

^ /"TT

(9.4) W^ )^S ds + jtS)3/h)rsds.

In the first integral of (9.3) and (9.4) let s • -t. fhen

ds « -dt; f{8) • f(-t), f(-8) « f(t), and by (9.1) f(8) «

f(»s), f(-t) » f(t); also cos ks » cos i^ks), sin ks »

sin («>kt) m . sin kt, and

(9.5) y COS W ds - h±) cos kfc dfrj
Tt A

(9.6) f'Ci) s;»j cis =-J^ fct\Sihkt^t^

(9.7)

(9.8)

(9.9)

h fs) C«S dSj
•^o

bx ^ '

*^6 series becomes

«o

Cos kxj

^ere aj,. is defined by (9.7).

If f(x) is odd, the expansion leads to a series

where all the aj^'s vanish and consists of sine terns alone.

As before, consider the coefficients written as (9.3) and

(9.4), letting s « -t in the first integral of each

equation. Now ds * -dt; f(s) « f('-t), f(-s) * f(t), and

by (9.2) f(s) « -.f(-s), f(-t) « -f(t); also cos ks •

f *1 <••?/•

^ "JS



(9.10)

(9.11)

SO

(9.12)

(9.13)

'-n

-tr

K =

/ Ci) C03 At j

^fct) S/V7 Hrt dd

The series becomes

CO

(9.14) fcx)-=2i

where bj^ is defined by (9.13).

Any periodic function f(x) aa^ be analyzed into the

sum of odd stfid even comiK>nents, for f(x) may be written as

(9.X5) ^ H. +-4 \Joo~

(9.16)

where f,(x) is even and f«(x) is odd.

10. ABSENCE or EVEN HABMONICS

It frequently occurs that the given periodic

function satisfies the condition

^ -fc



If this condition is satisfied the series expansion of

f(x) contains no even harmonicsj the series of f(x) is

developed as follows.

Consider the coefficient aj. written as the stm of

two integrals:

(10.2) die- C«i k:3 Js ^ ^ ^
- »r "^c . .

In the first integral of (10.2) let s « s* - 77" ,

(10.3) X/cs) = f fc%^-Tr)co% Icci^f-n) A%i,
-r?

Dropping the prises, one may sttbstitute the right side of

(10.3) for the first Integral of (10.2),
^JT

(10.4) ^y [fcsjcoi ics+ ^1.-/7) Coaxes.

By the Identity

(10.5) Cos kCs-/r ) =• cos cos Ics^

equation (10.4) yields

(10.6) cos Jcs-v/ts-rr 3cask:/iconics] J.

By (10.1) the coefficient aj^ is

(10.7) ^ CJ <^0 5Icnj y /Cs) Cei \Ci ds.

Similarly, the ©oefficient is

(10.8) Cl- caslcrr y fC:t) Sih ks Jsj



vhlch 18 determined Ijy substituting sin ks for cos fcs in

ea<di of the equations (10.2) through (10.7).

The factor (1 - cob kfJ ) is zero for all even

integers of k and equal to 2 for all odd integer values of

k. Hence the periodic function \rfilch satisfies (10.1) has

a series expansion of odd harmonics only. The average

value, Bq/2 is also zero.

The coefficients of the ^dd harmonics are then

given by

(10.9) I'

(10.10) Isk- 'j 5 •••

The question arises of what the results are when

the function f(x) satisfies

(10.11) /^^X-4-TT ) - i- C^).

The factor in (10.7) and (10.8) is changed to (1 ♦ cos rnr)

80 that only even harmonics are present. But the condition

given by (10.11) merely states that f(x) has the funda

mental period ofTT instead of 2rr.

11. EXPANSION OVER A FINITE INTERVAL

If the sole object Is to obtain a trigonometric

series which yields the correct values of the stated

function over a finite Interval, there is an infinite



variety of ways to establish a Fourier expansion. The

Interval may alternatively be considered aa only a part of

the fundamental period, and the definition of the given

function over the remainder of the period is entirely

arbitrary*

If the interval over ^ich the representation is to

be maintained is only series in even

functions is

(n.i) a^c6skK,

and in odd functions

(11.2) fo<) •= L sih )\K ^

with the coefficients

(11.3) <X^ - cos Vts
"V

(11.4) 9fj.fJ-fcs) i>Vl VCi ds.
A simple example of a variety of series obtained

for the function 11'1» defined in the

interval O^x^fT# is illustrated in Pig. 11.2.

Fig. 11.li o<x <rrs

> rM



Pig. 11.2a: Sines and cosines, odd harmonics only

(11.5a)

{11.5b)

6<x<n-^

;cx)= -ir<x<6, ^

^ ^-1 oo , , , •)
+3V—L Sih (Jf^-Ox

At J

Pig. 11.2bi Sines only, e^ren and odd harmonies.

(11.6a) = n- - /r 0 </7

fcv; = 0 .

oO i^.i
(11.6b) fo^-)-= jiufcA



Pig. 11.2c; Cosines only, odd harmonics only,

fCx)

{11.7a) %Ul; -n-l ~ fCiv) - Q,
i^K)- ^ rt< /tx;~ f 3;r,

(11.71,) ib.) = r (CO. ^^
^He>rc — /.

Fig. 11.2d: Sines only, odd harmonics only

{11.8a)

(11.81))

kx)

^ X
IT —fix S^rr

= ^C=Tr-^).
__ CO ,,h--1 -CLIS.-V /llr — Zi



Fig. 11.2e: An approximation with a single eine term<

(11.9) /Cx;-^CSC-^ S'>1 ^ j <-rr«Y- <-0.000350. /br- Ifa^

Pig. 11.2: Various possible periodic continuations
of the function of Fig. 11.1.

In each case the behavior over the defining inter

val is the same as that of Fig. 11.1, but the series

representations for the individual cases are quite differ

ent. It is also significant that the rate of convergence

of the resulting series may be quite different for the

various forms of periodic functions.

12. EXAMPLES OF FOUfHER DEVELOPMENTS

Each of the following exsraples is the Fourier

develoiMaent of a single-valued periodic function f(x) of

period 2'Tr. The function f<x) is defined throughout a

period interval and Illustrated by a corresponding figuro.

The Fourier expansion of f(x), has been derived in

accordance with the preceding fonnulas. Since these

•



functions satisfy the hypothesis of the theor«a, Moh of

the series does converge and Is the function fix).

Fig. 12.1: Square wave (odd).

(12.1a) v^cx)--i ; 0 <x <rr r ^ f-cn) ^

(12.lb) h^) - d. T——
' V A-

sm -i J X.

Pig. 12.2: Square wave (even)

(12.2a)

(12.2b)

(•00=-!,

~ ^ — Cos fifc-O y .



Pig. 12.3J Saw-tooth wave (odd).

{12.3a)

(12.Sb)

fOi) -

f(^) =

= 21 S To.

Fig. 12.4| Sav-tooth wave (even).

(12.4a) /Tx) - <J ^ X̂ nJ

fM = ^ Cir -vax)j

flP..il"h\ C^rx\
00 1

- ^ V ' „ cos (•^'c-0 y



Fig. 12.5; Triangular ware #1 (odd),

j /-(X)

(12.5a) ^ i CT-X) ^
/CO) 6

(I2.i5te) •=

oo

ir S'H lex.

Pig. 12,6: Triangular wave #2 (odd).

(12.6a) -rf<x<rr

(12.6b) ^6^) = £ y s.n kx.



Pig. 12,"s Perlodie rectangular puls®.

(12.7a) fc)-l

{12.7b)

/fx) - Cij & <X <-i.rr-6.

Fig. 12.8i Periodic Triangular pulse.

(12.8a) ^ - -3.6- -^X < 6 ^

{12.8b) H Cfls lex .



Fig, 12,Output of single-phase^ half-wave rectifier.

o

(12.9a) eO^) ^ E^^cos X j

etx)-= 0 ^ •

(12.9b) eOc)=^ Is + cos-x Cos 5kX.
TT ^ TI Z_

Pig. 12.10: Output of a single-phase, full-wave rectifier.

(12.10a) etx) ^

eCx) =

(12.10b) ew -

r>^c«sx ^

- COS ^ 1 ^ .

^s. ^t]^f Cos Jfc/.^ T? ^ 4^-1
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15, WAVES HAVIBO DISCONTINTJITISS

In Pig. 12.1 the sqoare.wave jumped, at x « 0, from

the Value -1 to the value ♦1. Similarly the square-wave

of Fig. 12.2 la discontinuous for x » 7^ In these two
exeoaples the amplitudes of the successive components

diminish very slowly; not always exactly as l/k, but the

decrease Is of the order of 1/k. Other examples are given

in Pigs. 12.5, 12.6, and 12.7.

When f(x) JiMpa discontinuously from a to b for a

certain value of x, • Xq, the series converges to

(a ♦ b)/2 at X s Xq. Por instance, In Pig. 12.1, the

series converges to zero at x « since at this point

a « —1 and b * "fi.

Bhe sum of a finite number of terms in a Fourier

series for a function having a Jump is only a fair

approximation to the value of the function in the vicinity

of the Jump.

Other types of waves present no Jmps, but they

have sharp corners, such as the waves of Pigs. 12.3, 12.4,

12.8, 12.9, 12.10, and 12.11. fhese waves are continuous,

but their first derivatives are discontinuous, that is,

they are characterized by Jumps similar to the Jumps which

the square waves have. For such waves the successive

amplitudes of the Fourier components decrease, although

slowly, somewhat faster than in the case of the square



waves; their decrease la of the order of l/k2.

The smoother the wave, the higher the order of th« *

derivative at which a Jump first occurs. The amplitudes

of the successive components then diminish more rapidly,

of at least the magnitude of l/k^^, where n Is the order of

the derivative at which a jump first occurs. (See section

4: Magnitude of coefficients.)

14. OBJECT or FOURIER ANALISI3

If a sinusoidal voltage such as sin mt, cos mt, or

cos (mt - 0) is applied between two terminals of a linear

passive network, all potential differences and currents In

the network are sinusoidal and of the same frequency as

the applied voltage. The amplitudes and phases of these

potential differences and currents may be calculated by

the ordinary alternating current theory.

However, In communication engineering periodic

oscillations are used ^Ich are non-sinusoidal. The micro

phone current when a steady sound Is sung or spoken, the

output of a detector on which a sinusoidal voltage Is im

pressed, the scsmning voltage of a cathode ray tube, are

Important examples of periodic non-sinusoidal oscillations.

If the output voltage is desired from a certain

network, to which a non-sinusoidal voltage is applied, we

may use ordinaiy alternating current theory to obtain

the sinusoidal output voltage due to any one of the



slnasoidal components of the Input Toltage. If the network

Is linear, the principle of superposition holds, that is,

the actual output is the sum of all the sinusoidal output

coBiponents. The building up of a periodic function fro®

its sinusoidal components of •arious frequencies is called

Fourier synthesis.

The network problem involving periodic, non-sinu- ;;

soidal voltages and currents may thus be solved in three

steps; <1) Fourier analysis of input voltage or current,

(2) calculation on the network according to the alterna

ting current theory at each component frequency, and (3)

Fourier synthesis of the output,

15. EFFECTIVE 7ALUE

A non-sinusoidal current or voltage function f(x)

may be represented by the series as

oo

(16.1) h-x) --± ^ ,

With the coefficients and phase angles asdefined by (1.6),

(1.7), (8.5), and (8.6).

The effective value of voltage (or current) f(x) la

defined as

(15.2)

(15.3) ^^ C® +0 '̂-+ •-3l^.



since Cjj is the maximum value of the nth haraonlo

of the alternating component, the effective value of the

nth component is

(15.4)

Therefore the effective value Is equal to the square iH>ot

of the sum of the squares of the effective components

(15.5)

vihere Eg represents the direct current (or averse) com

ponent and % la the effective value of the nth harmonic.

16. SERIES CIRCUIT

In the consideration of the series circuit the lasff

of electrical networks (Klrchhoff's Laws) are used and

hence are stated her®.

1. The algebraic sum of the currents flowing to

ward any point in a network is zero.

2, The algebraic sum of the products of the cur

rent and resistance in each of the conductors in any

closed path in a network is equal to the algebraic staa of

the electromotive forces in that path.

If an instantaneous current 1 • l(t) is flowing in

the series circuit of Fig. 16.1, containing the constauit

elements, resistance R, inductance L, and capacitance C,



there Is Impressed a difference of potential e « e(t)

(16.1) eCt^ ^ ^ ^ dbj
where /1 dt represents the total quantity of electricity

-'C

on the condenser, C.

For a simple electrical example consider a periodic

non-sinusoidal voltage e(0), where 0 « 27f ft, impressed on

the series circuit of Fig. 16.1, and assume that the first

step in solving the network is completed; that is, e(0) is

approximated by using the nth partial sum of its Fourier

series

(16.2) eC4) ^ "1 II ~ ^k: ) .

1^1 rtS\itAr\CC.

L". mJu.c^dy,c^

C: cfl pae\-lra»ce

Fig. 16.1: Simple series circuit.

If e{0) is not defined throughout a period so that

one may derive its series in accordance with the preceding

theory, but is an unknox^^l voltage, then one may put the

input voltage on an oscilloscope and determine experimen

tal values of e(0) at 2n or more points equally spaced on



the 0 axis throughout a period. Then the trigonometric

Bum of (16.2) may be derived in accordance with section 20.

^e second step in solving the network is calculating each

component In the output according to alternating current

theory.

Assume that the voltage e(0) has been applied to

the circuit long enough so that the steady-etate condition

has been reached. The voltage drops e^, and eo across

R, L, and C respectively will be given by

(16.3)

(16.4)

(16.5)

where

(16.6)

(16.7)

Therefore

(16.8)

ei?.- lR

. •= Lit ^ L ^

•' - i M -.4.
^ %

Xl ~ ^ = uirfc '

eOi) - ^

or upon differentiating with respect to 0,

(16.9)



since e(0) Is approximated by the first in * 1)

terms of the aeries, we will have n ♦ 1 differential equa

tions

1- -c -o.

^[e^cosCfc|/-^)J •= +h(-K^ Ic-1/-j"-(16.11)

The third step is the Fourier synthesis of the out

put. The current 1(0) will be the stm of the solutions

of the n ♦ 1 differential and have the fora

(16.12) t =r-ai C«
^-1 lc»(

The direct current component, , has produced a tran-

flient current which is no longer present in the steady

state, but appears as a voltage across the capacitor G.

The voltage drops across the circuit components

may now be calculated as

(16.1S) /z

Vc-/

(16.14) u r=r:(iTi
K:-1

The effective value of the current is

(16.16) 3--
k:=>

Th© electromotive force law and current law may



be applied tk> more implicated networks to obtain as many

Independent equations as are necessary to determine the

unknown quantities Involved. If a complex voltage of the

form (16.2) Is applied to the network, calculation must be

made on the network at each component frequency, then a

Fourier synthesis of the output.

17. THE POLL WAYE RECTIFIER

For another example of an electrical application of

Fourier series, consider the full wave rectifier of Fig.

17.1.

I ^

Schematic Diagram Simplified Equivalent
Diagram

R: load resistance
r_! resistance of diode and one

^ side of the transfozroer

Fig. 17.1: Diagrams of full-wave rectifier.

The current through diode A consists of a half

sine wave, and the current through diode B consists of a

half sign wave displaced by ^ radians from the current



through diode A. Since both currents go through the load

R In the sme direction, the total current through R Is

the sum of the currents.

If one choses the beginning of the half cycl« of

the current through diode A as the reference point, thou

the current through R is as shown in Fig. 17,1,

<17.1)

Broken line: current through R due to diode A
Continuous line: current through R due to diode B
Sum of both currents: total current through R

Pig. 17.1; Rectified current through R.

Therefore the current 1 throi^h R may be given as

5IV1 Uit

In the design of a full wave rectifier it la

Important to know the magnitude of the direct-current

component and the magnitudes of the harmonic components of

the rectified current through R.

These can be determined by expanding (17.1) in

a Fourier series.

Cos

- 1



Only a direct current and even harmonics of the

supply frequency occur. !nie direct current coaponent of

(17.2) 18

(17.3)
T

rT(R.+rp)

and the effective value of the (2k)th harmonic Is

(17.4) -JtiK),

18. SATURATION AMPLIFIERS

^ E

•n- Cfitrp)C^K^- I)

Cathode limitation sometimes occurs In amplifiers

at lai^e Input voltages. Rils condition generates har

monics of the fundamental frequency.

Cathode limitation (or saturation) occurs when all

of the elections emitted by the cathode are being absorbed

by the plate. The varying plate current may be given

(18.1) i C*yii)-= A C6S mi ^ < vn-h ± :iir-4^

- A cos ^ J < yy\-t J

idiere cathode limitation or saturation occurs in the

interval = Vn-i

If there were no saturation, the current would be

(18.8) ^("if) - A ctsh,-i.

-J,"
. "• - > i r " • ' * • r ir W



mt.
riiv

-•^ - ^ \\

Fig. 18.11 Varying plate current component of
a saturation amplifier #1.

Bie Fourier expansion of the current (18.1) is

(18.3) = A Cc/cos^ -tm^) +^('rr-^+S;>7^cos^)cd34/i
^ A["""ft+Oii sih£K-0(/-\ . u

^ tcdv^-O

Saturation introduces a direct current of

(18.4) =

a_

^ (_^ cos^- sin^) .

The amplitude of the fundamental la reduced from A to

(18.5)
— 0 - S/^7^ COS

harmonics are Introduced as indicated "by the suiamation

tenn of the series of (18.2).

The current may be limited on the lower half of the

cycle too, for example, i(mt) may be as Fig. 18.2, where

l(mt) is defined

(18.6)
-Acos j TT-^-^yni

L(>nt')-=Aco!> ^ = tT-J j 7r+0



-Cm-t)

Ae.o&^

-5^ O ^ f

TXg* 18.2s Varying plate current component of
a saturation amplifier #2.

The series expansion of (18.6) Is

CI8.7) Cv~ ^ cx>i0 ) cas >>it
y A.rsiii cic-ti)^ sih^ic-'Wl <•>.< Ictnt

The current i{mt) contains no direct current component

and only odd harmonics.

19. ANALYSIS OF TUNED CLASS B POWER AMPLIFIER

The object of this analysis Is to derive expres

sions for power output and plate efficiency in terms of

the rated quantities of a high vaciitM thermionic triode

operated as a class B tuned power amplifier.

From electronic theory one may obtain a relatively

simple approximate analytic expression for the tube

characteristics under linear operation.

<19.1)



where

1q1 total Instantaneous plate current,
mutual conductance of tube,

e^: total Instantaneous grid voltage,
eij! total instantaneous plate voltage,

amplification factor of the tube.

The basic diagram of an amplifier with a parallel-

tuned load is shown in Pig. 19.1.

ev, Cp

Ev\.

instantaneous
value of vary
ing component of
grid voltage
instantaneous

value of varying
component of
plate voltage
grid bias voltage
plate supply
voltage.

Pig. 19.1: Basic circuit diagr€un of a tuned amplifier.

If the plate load circuit is tuned to resonate at

the frequency of the grid signal voltage e^, and if the

impedance of the parallel-tuned plate load circuit is

negligible at harmonics in comparison to its impedance at

the fundamental, a sinusoidal grid-signal, eg, will produce

a Voltage drop across the load that is also sinusoidal.

for class B operation, the grid-bias, is

adjusted so that when eg « 0, the plate current is ssero.

Equation 19.1 equated to zero becomes

(19.2) = I= •= <5 .



Therefore, for class B opdratloa

(19.3) e - -— 1

The voltages and are

(19.4) 6c - ^3^

(19.5) = E

Therefore 1^ Is given by

(19.6) l-V.-

Beth e- cund e are sinusoidal, thus the sum
o P

(eg ♦ ep) Is sinusoidal. The wave form of the current

1|5 consists of a series of alternate half-sinusoid and

zero-current half-cycles &a shown in Fig. 19.4.

If the origin of time is chosen at the starting

point of one of the current pulses, the Fourier series

representation is

_ . oO

(19.7) If:. •
K=»

The average value of the plate current I|j Is

(19.8) = 5^ .
TT

efWwe value ^ ,
The/fflnplltude of the fundamental component, Ip^, is

T

(19.9) •





since the circuit Is tuned, the Impedance at the

resonant frequency Is a pure resistance, R^. Hence the

effective value of load voltage, E^, la |

(19.10) Cp = Jp, Kt

The direct-current power Input to the plate the

alternating current power output to the load ttie

plate efficiency are given In teras of the fundamental

component of plate current ^P1 by the following relations:

(19.11)

(19.12)

(19.13)

~̂V>lo ^^3 " C~^ i

Pac - 3

n« = ^ ' J06.

20. REPRESENTATION OF AN EMPIRICAL CURVE

Frequently the function Is not defined at every

point, but 18 an empirical curve or set of experimental

Ijolnta i^ch is to be represented by means of a trlgono-

mentric sum analogous to the Fourier series of the fora

(20.1) LLC<)- % -V ^ go& Wx + sm ^x).

Assume, for example, that the Interval Is

and that there are n experimental values u^ taken at

iT
V - — —. ^ — /> I J ... VI _ »(20.2) yq-=

n >



n being Boae number greater than 2r. The coordinates

specifying the experimental points are

(80.3) u,),---. (TA<t)y/-'^%-,).
The problem is to determine the (2r ♦ 1) coeffi

cients of (20.1). Substituting Jth^ each experimental point

of (20.3) In (20.1), one obtains n equations (called the

equations of condition) containing (r + 1) unknowns.

I, a. ^ L \(20.4) '̂ 1 - ^ -t/_ h

Now in order to determine anyone of the unknowns, one must

form the normal equation with respect to the unknown by

multiplying each of the equations of (20,4) by the coef

ficients of the unknox-^n in the equation and adding to

gether all these products.

The nonnal equation of a. is

(20.5) -

Since

(20.6) L
kq siiT

n4.. 5F' r - -If a/r

+ ar2:c.»



(20.7) y ^ O^
q-s.6

equation (20.5) becomes

(20.8) a. +U, + ••• ,

(20.9) ao= ^H ^1-

The normal equation for is

(20.10) a.+ (t, c.s ^ +kjC0j

•V '̂ 1'jr raiT ^ l V.. ^»'T",.„''i3£rcltT" co4^ "5 n t- ••>-<=•>''— ®"' h
<f-o 1="

Again, since

(20.11) f ^ Si^ ,
(80.12) co,(3f ^

9-0
(and for calculation of

(20.13) ^ S)v, ^-3^
9^6

equation (20.10) becomes

(20.14) Coi^ +UjCoS ^^^f.'.



(20.15)
a.^ 21 *^1

The other normal equations may fee obtained and

reduced in the eame way; finally we obtain

(20.16)

(20.17)

"^vc^ ^ Z. '> •^ <j-=o
n-J

The resultant sum of (20,1) whose coefficients are

defined by (20.16) and (20.17) is a trigonometric sum which

represents the empirical curve.

r

m
if -'-(..y, i-

I •
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