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FOURIER ANALYSIS OF
NON.SINUSOIDAL WAVES

1. FOURIER'S THEOREM

Fourier announced his famous theorem in his "Théorie
Analytique de la Chaleur" in 1822, Essentlally his theorem
may be stated as follows: Any single-valued function f(x)
defined over an interval —Eéxf-_-g__ can be represented
over this interval by a trigonometric series of the form

Co
a 2k x . aTkx
(1.1) Fex) = 3 -rKZ(akcos - + L.Ksm = ),
=)

where the coefficients are computed from the function f(x)

by the formulas

(1.2) Ay

= k
e
A2s) sin -"_5ASJ k=12, "",.

(1.3) b = =

As stated, this theorem is not strictly true. Cer-
taln restrictions must be imposed upon the function f(x)
to assure that f(x) may be represented by the series of
(1.1). The discussion of Fourier series will be based
upon the restatement of the theorem to include certain
restrictions and a cholce of the interval to be -M<Xx<T,
The Fourier series is simplified by choosing the interval

—mTEx< W, with no loss of generallty.



The theorem. Let f(x) be a single-valued function
defined in the interval -T2 X33, If f(x) and [r(x)]z

are Rlemann integrable, and if at each point X5 in the
interval there exists two positive constants, a = a(xp)
and A = A(xp), such that

(1.4) | F(xorat) + F(xo-2t)—2F(X) |2 At, ke ottsa.
then the series

Sl ik o
{(1.5) S = E"_ +Z (ancos\(x + by sin x)

k-:l

with the coefficients

m
(1.6) ak= —lﬁ/ —f(S) cos ks Js) k:o) /) 1,00,
“n
m
(1.7) bx = —;E-rf fts) sin ks ds, K= /,QJ--j)ooJ
‘n

converges at x5 to
(1.8) Zz, [_"c(xo = 0) + ﬂc(xo"'o)] 5

where f(xy - 0) is the limit of f(x) as x approaches X,
from the left and f(x, + 0) is the limit of f(x) as x
approaches Xg from the right.

Not every continuous function satisfies the condi-

tion of (1.4). For example, the function
L7
(1.9) £ = (x=x)"

does not satisfy this condltlion near X5«
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Pig. 1.1. f(x) = (x = x5)°
Consider the left member of (1.4) divided by 4|t|,

4t

(1.10) \ Ay +2t) + £(Xo-28) --zf(xo)'
which may be rewritten aé

{138 )

H(Xs+28) — F(%) [
2t

since f£(x) 1s symmetric.with respect to x,.

The 1imit of (1.11) as 2t goes to zero is the der-
ivative of f(x). The derivative becomes infinite as x
approaches Xy, therefore A cannot exist and the condition
of (1.4) cannot be satisfied at x,.

On the other hand, a dlscontinuous functlon may
satisfy the condition of (1.4). For instance, 1f £(x) is
continuous except for a finite Jump at X, and has bounded
right and left hand derivatives in the nelghborhood of x,,
and if f(x) 1s defined at X, as the arithmetic mean of the
limite approached from the right and left, then f(x)
satisfles (1.4).



Under the hypothesis of the theorem, if f(x) is
continuous at the point x = X5, then f(xy - 0) = £(x, + 0)
= f(x,), 80 that at all points in an interval of continu-
ity, the series converges to f(x). At the points of dis-
continuity, it converges to the arithmetic mean of the
velues of the right and left hand limits. If £(x) is of
period 277, that 18, if £(x ¢+ 277) = £(x), the series con-
verges to &[?(x - 0) + £(x + 0)] for al1 x.

The field of mathematical applications to physics
is not materially limited by these restrictions for most
physical phenomena produce results which meet the restric-
tions for the Fourler expansion. A comparision with the
Taylor series, which requires a continuous function £(x)
and continuous derivatives of all orders, reveals the
larger class of functions to which a Fourler expansion
may be applied.

The Fourler series of (1.5) will hereafter be
referred to as "the series" and the Fourier coefficients

of (1.6) and (1.7) as "the coefficients.®
2. ORTHOGONAL FUNCTIONS

Definition. The functions f(x) and g(x) are
orthogonal over the interval -—77XX=T7 if

n
(2.1) /ﬂfcx»goo dx =4
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The Fourier series is a series of orthogonal func-

tions; that is, each term is orthogonal to every other
term of the series. Consider cos mx, cos nx, sin mx, and

sin nx, form,n=0, 1, 2, . « .,°9 , vhere

7T
(2.2) ;.1/77“5 mx - cosnx dx =/[cos (m-nMx + cos (m+n)x_] ax

sih CM n)x sm men)x\ T _

"[ man -] = % L SiE R

Similarly,
a ir

(2.3) 2/ sthmx.smnhx dx =/£cos (m-h)x —cos(m*n)X]Jx

= [S»h m-nX _ sih m+n) 7= o m# n.

m-~-h m4n -Nn A

and

4 : i ;
(2.4) 4/’1 cosmx - sin hx dx -:/ [Sés\c»ﬁh)x + blh(m—n)acl\t

T [_. cos (m+n)X ¢ (,m-h)‘l a , brall mn
m-t+n, 1Y

Due to these relations the terms of the series satisfy
(2.1), so the Fourier series is a series of orthogonal

functions in the interval -mMé<x < 77.
3. DERIVATION OF FOURIER COEFFICIENTS

If £(x) 1s integrable over (-, ) and if f(x) is
equal to a uniformly convergent Fourier serlies so that the
series can be integrated term by term, the coefflclents

of the series are given by (1.6) and (1.7).
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To obtaln the coefficlient ap of the general coslne
term, multiply both sides of (1.5) by (cos kx dx) and

integrate term by term from 7T to 7. Since the terms of

~the series are orthogonal, there results
44 T
(3.1) _4 FOx) cos kx dx = ak‘z;r cosikx dx = 2, T,

or

n
(3.2) Ay = ’-,ﬁ-/ Foy eos kx dx.

Similarly, by multiplying (1.5) by (sin kx dx) and

performing term by term integration from -mto w, one

obtains
A8 i
(3.3) /o fox) sinkx dx = by [nsn‘n*kx dx = b, T,
or
o
(3.4) ‘o,\':'ilf f(x) sin kKx dx .
Zn

Now whatever the behavior of the series of f(x), if

£(x) 1s integrable its Fourlier coefficients can be defined
by (3.2) and (3.4) and the convergence of its Fourier

series investigated.
4. MAGNITUDE OF COEFFICIENTS

Let £(x) be a continuous function of period 21
which has a continuous first derivative for all values of
x. Consider the integrals defining the coefficlents

R T TR S R i e e
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m
(4.1) Ar_ = "lﬁ-I,r £(s) cos ks ds

m
(4.2) by = Y S F5) i ks ds.

Applying the prineiple of integration by parts, one obtalns
T m
(4.3) 3k = —lﬁ Y_i £(s) ks} -?I'LKI’FI“) sh ksds
—n n
ir
= —ﬁ,KIﬂffs) sin ks Js)

and

n, .,
(4.4) Lk_ = % [-})t F(s) cos ks]zrn-u- TT'Kfnf(s)cosl’st

m,.,
- ﬁ"/'c_j" £¢s) cos ks ds,

since products Yi_?(s)-sin ks] and E(s)-ccs ks] vanish at
both ends of the interval. If M; is the maximum of et (x)],

(a.5) |acl = & [ﬂﬁl{'ICS)“ snks|ds

T
e = M
é Tk IT‘M‘ As '—E‘)
and similarly
i
(4.8) Lo | = [ 1Fen]leoskslds 2 2D

‘1 o2
If £(x) has a continuous second derivative for all
x with My as the maximum of lt”(x)l, then integration by

parts can be repeated and

- | ;TII
(4.7) A =Tm [ T8 cos ks ds,
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and

(4.8) lail s 4o
Likewise

s bl l’%:__

Under this condition it can be inferred that the
gseries is convergent. For
Mo

A

(4.10) | 2 cos kx-t—bhsmkx\ o 2

and 55% is the general term of a convergent series. How-
ever, this does not prove convergence of the serles to
f(x).

If £(x) has a continuous nth derivative for all x,
the magnitude of the coefficients
(4.11) l&\dé‘l’%n g s 8 "*—\-(Nln" X

and the general term 1is

1< “4Mn

(4.22) accos kx + b 3m kx| 2 HAn |

Thus as the number of continuous derivatives increases,

the more rapldly the series converges.
5. LIMIT OF GENERAL COEFFICIENT

Let £(x) and Lf(xl]z be funetions which are inte-
grable over the interval —~T<%x<W, and let 8,(x) be
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the partial sum of the Fourler expansion of f(x) through

terms of the nth order,

: n
(5.1) Swo0= E +) (accos kx + by sim ).

Consider the integral
w w T n
(5.2)/‘:}(1()-5.,0()]143( =/['F(X)-f' X "-3/;()() Sh()dx ‘?:/‘:Sh(X)]{c)x_)
e =z m 5y 2 ;‘TI
(5.3 )jfﬁx)—SnCXﬁec‘k '-‘J[&*B]’“JX -3 17 @k"'b@l
=9 =1 K=1

Transposing members of (5.3), there results

- n it m
(.00 %+ 3 (arbe) = & [FoTob 4 [Thon- S,
»—n

=1
The right member will not be decreased by dropping the

last integrel which is non-negative, so

d b I n T
B e Geey s L S [Feoltdx.

This is known as Bessel's inequality.
S8ince (5.5) is true for all values of n, while the
right hand side 1s independent of n, the serles

n
(5.6) Y (axr+ b))
k=
is convergent and therefore

ak-_'.d ) ‘lm 1;)"=CJ)

Koo

(5.7) lim,

Kk—>0

since a necessary condition for the convergence of a serles

is that the general term approach zero.
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That the coefficients approach zeroc is known as
Riemann's theorem. Riemann's theorem holds under more
general conditions, but the theorem under these more gen=

eral conditions 1s not needed in this paper.

6. CONVERGENCE OF THE SERIES

To prove the convergence theorem of section 1,
without loss of generality, f(x) can be defined outside of
the interval (-7, 7T) to be of period 2/T so that f(x + 27)
= £(x). Consider the partial sum 8,(x) defined by

B s s s
K=\
By substituting (1.6) and (1.7) in (6.1), one has
m n m
(6.2) S =g [ F®)ds+ ) [ | Fo)cosks caskx ds

T
+_,1‘_‘f Fts) sinks simkx c‘s]_,

e

T
(6.3) S..,(\() = 'lﬁ’J; f'(s) ['/,__ + cosS cosx + ¢ -

+CoS NS coSNX+ SINS SinX - + smnssmnx]AS :

4
(6.4) Snex) =) f f<s>}'_’a.*§cosk<s-x)14s.
-1 =)

By use of the idenity

n )
| _ s (nt b Y(s ~x)
(6.5) i Kzz_‘c:oslc (s-x) = i (5_3_3‘) .

one may rewrite (6.4) as
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S ) frgy Shh (n+%) (s-x)
= : it "
(6.8) n(x) lﬂf“ (s) _s,"( -1() ds

If (6.5) is integrated over (-7, 7 ), then by the

orthoé?ality property

T
gl /sm(m- ) (s-x) |
(6.7) AN/ sim (S-:f)
Multiplying by f(x), one obtains
m
\ sih (h+h)(s -¥)
(x) = 3T F(X
(6.8) foo v/ ) bin € 227) ds.

If (6.9) is subtracted from (6.6), there results

(6.9) SaM-f0d = 3x f [ Fs)- Fug) Sinln+a)(s 20 o

S)n (5-1()

A series of substitutions will change (6.9) to

the form

% m (en+) t
(6.10) Sa®-fo) = L [[forat)+ fx-at)-Ted] S d

o

The first substitution is to let s = x + s', then
de = ds', and the limits may remain -7 to m , since f(x)
is periodic. Then (6.9) written as the sum of two inte-

grals 1is

/

()
(6.11) 5.,<J<)—th)=.3‘if"[f-cx+5') i YRy : SV

Sim S/

S 5/

i
+ i—nﬂé[f(x.a. s’y - J’(x)] SMI)_‘ da"

where Iy is the first term, and Ig is the second term of

the right side of (6.11).
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In the first term, I;, let s' =-8", the ds' =-ds”,

and I becomes:

i’

T ch tana) L) ")
(6.12) 1l=3,-,f[m—s")—;u)] sm (-32) Lo s

1!
sinlan+n) >4 "

7 ds
sm (5'4)

(6.13) I,=3 /cfu s”) =fe)]
Dropping the primes and combining I and I, one has

(6.14) Snly)-fix) = /L /Ef’CX+S)+k¥—S) afa)]sih(lh:/l) Lcls.

Let s = 2¢, then ds = 2 4%, and

: %
(6.15) Sy 00 = 5% 1.-;-‘1_7/0‘[_ﬂx+zt)+f(_x-e_t)-.zj@] Sth S:;:-l'_}t

By hypothesis the function f(x) satisfies the
condition that at each point X, in the interval there
exists two positive constants, a = a(x%,) and A = A(xg)

such that

(6.186) \kxc,»r at)+ cho-a.e)-afuol SAL, for bt @

in

o

Therefore it follows that for any value of T =

R s - G

(6.17) | fEch4 2t )+ Fix-26) ~2kxj] 22 36;7.:+_-é> ¢ b

l.
__L/ S J A Y A
S—-‘- il St 6-—— I/, LJ& T

for

(6.18) sih (2h+ 1) 2




"

and

HA

.b
(6.20) -1 % b el

Now, given an €20, choose [ < %\; then this
portion of the integral of (6.15) will be less in absolute
value thaﬁ éé_. Ir C 1s thus fixed, the rest of the
integral approaches zero as n becomes infinite. This may

be seen as follows. Define

(6.20) Q&)= fOx+28) +fex-at) 2fCx), TLE< Uf__,

= 0 elsewhere 7 e §.77,

2
then g(t) and [g(t]| are integrable in the interval, so,
as shown in section 5, the general coefflclent bg has the
1limit zero as k goes to infinity; that 1is

(6.21) J‘{:\m b&h-\-\ =0 1 kK =2+,
where 2}
(6.22) b= + f_r Th"“’g’;&f“)"z’c‘fgsm (an)t ot

|

|

‘ If we choose n large enough the absolute value of (6.22)
will be less than 64__, so the absolute value of (6.15)

becomes

(6.23) ] S (X)) — £(x) } <&

Therefore the sequence of partial sums, Sn(x) of
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the series representing f(x) converges to the value f(x,)
at each point x, where (6.16) is satisfied. At a point of
discontinuity S,(x) converges to the average of the right
and left hand limits.

7. DEFINITIONS CONCERNING SERIES COMPONENTS

Congsider the functions

a.
(7.1) =, ax oes KX, by smlx, Cpcos (xx- i)

where x is dimensionless.

The following definitions and equations are given
for a clearer understanding of various symbols of (7.1)
which occur in the series.

The function f(x) is a periodiec function with fun-
damental period T if f(x + T) = £{x) for every x, and no
number less than T has this property. The period for the
trigonometric functions of (7.1) is

al
(7.2) e et ( mmé ).

Frequency, f, is the reciprocal of T,

f” = Kf_n ( Qﬁdes&hrva l) :

|
(7.3) o

The fundamental frequency, fj, i1s the frequency at
which k = 1 in the functions of (7.1),

(7.4) § = L ( C‘ﬁ"”“%éev%’).

a2t
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A fundamental component is a component having the funda-

mental frequency. Examples are
(7.5) Qifess x| by Wi <. cos ( X=F,) .

The nth harmonic frequency, f,, of f; is n times f,
{7.8) ﬂcn =h.’§|= DQ/,IT'

The nth harmonic components (or nth harmonies) are the

components having the nth harmonic frequency,
(7.7) Q, Cos hX, by, Smnx , Cncoes(nx—g,),

A constant is said to have frequency zero. The
component of zero frequency, 9%;, is called the average
component and is the average value of the function.

The amplitude of a function is the constant multi.
plier &, by, or ¢, of (7.1).

The phase of the function is the angle (kx), or
(kx - @). The initial phase is the phase when x = O,
nemely (0) in cos (kx), or (-fk) in cos (kx - F).

If x has the dimension of time, then k will have
the dimension of angular velocity, the rate of change of

the phase with respect to tlme.
8. HARMONIC COMPONENTS

It is often convenient to combine two harmonle

components of the same frequency into one component.




Consider the sum of the trigonometric functions of the

kth harmonic in the series of (1.5),
(8.1) e = Q. cos kx + b sin kx

One may write (8.1) as

% T aw kx+ b
(8.2) T;‘—(aa‘*E’-)’*k&%{):,;COS C;-la-l:‘—)'/hsm kx])

or
(8.3) _T)\ = Ck{ Cos ﬁ)(- cos Kx + Sin dh Sin Kx])

(8.4) T = ¢ cos (kx—&xl,

where

(8.5) Ck = (ax: +bxY) 143

(8.6) B = arc tan bxg .
Similarly (8.1) may be written

(8.7) Te = Ck sm (Kx +@k),

where

(8.8) QS’K = are tan %ﬁ,( ;

Thus with an introduction of phases the function
f(x) of (1.5) may be expressed as a serles of sines or

cosines. The series then takes the form:

19



o8
(8.9) f(x) = Q% + Z C Cos (Kx‘ﬁk))
k=\

or

(8.10) Fo) = & + 7 ¢ sm(kx+d.)

\

T8

where

Y ALa S & it AR
(8.11) Co=(a2+vbd%, J=ta' % | Be=tar P

All terms of the form ¢, cos (kx - ) are called
"harmonics" of ¢y cos (x - fy), the latter being called
the fundamental component.

9. ODD AND EVEN FUNCTIONS

By definition, an even function fy(x) satisfles
the relation

(9.1) fx) = (=20,

and an odd function fg(x) satisfies

(9.2) A) 5 (1)

If £(x) is even, the Fourier expansion leads to a
series where all the by's vanish, and consists of cosine
terms alone, plus a possible constant. To develop this
series consider the coefficients written as the sum of

two integrals:
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6 n
(9.3) & = }"/TJ“ 1‘(5) CoS Ksds -\-—.—l'-r_[&s) cos ks ds,
¢ m
(9.4) b= ,L;,frrfCS)sm ks ds + 'é’rf‘ Fs) st ks ds.
In the first integral of (9.3) and (9.4) let s = -t. Then

ds = -dt; f(s) = £(-t), £(-s8) = £(t), and by (9.1) £(s8) =
f(-8), £(~t) = £(t); also cos ks = cos (-ks), sin ks =

gin (-kt) = - sin kt, and

6
(9.5) _/ ;LS) cos k¢ ds = /;ﬂfét—) ces kt d&,

=N

a
(e.6) 40 fs) simks ds :—[ f(t) sih kt dt,

80
r
(9.7) Ax = }r'r[ FG) cos ks ds,
(9.8) che it s O
The series becomes
QO
(c.9) /6‘): ao/.,_ e Z @, cos kx,

K=1
where a, 1s defined by (9.7).

If £(x) is odd, the expansion leads to a serles
where all the a,'s venish and consists of sine terms alone.
As before, consider the coefficients written as (9.3) and
(9.4), letting s = «t in the first integral of each
equation. Now ds = -dt; f(s) = £(-t), f(-s) = £(t), and

by (9.2) f£(s) = -f(-s8), £(-t) = -£(t); also cos ks =




cos (-kt) = cos kt, sin ks = sin (~kt) = - sin kt, and

o T
(9.10) [nf(s) cos ks ds = _-,/f(f) Salee ey
o T
(90.11) _/ [(5) Sin kg d¢ = ./ol fCt) s)n K& JﬁJ
£

80
(9.12) Q=0
V4
(9.13) bk = %’r/o As) sim ks ds.
The series becomes

0
(9.14) fCX) = Z bk $in Rx ,

Y=

where by is defined by (9.13).

22

Any periodic function f£(x) may be analyzed into the

sum of odd and even components, for f(x) may be written as

(9.15) oo = Y [F00 +f0)+ 4 [foeo- F0],
(9.16) foy = £060 ¥ A0,

where f; (x) is even and fy(x) 1s odd.

10. ABSENCE OF EVEN HARMONICS

It frequently occurs that the given periodic

funetion satisfles the condition

(10.1) F(xAT) = F0e)




If this condition is satisfied the series expansion of
f(x) containe no even harmonics; the series of f(x) is
developed as follows.

Consider the coefficient 8 written as the sum of
two integrals:

o n
(10.2) ar-= ,r__/;;CS)Cosksds + '{-,£ f(s) Cos ks ds.
In the first integral of (10.2) let s = 8' - 77,

o /3
(10.3) / Fesy cosds =f Fs1) cos hoest-n) dst,
n A 5

Dropping the primes, one may substitute the right side of
(10.3) for the first integral of (10.2),

(10.4) a = #[‘ffCSJCos ks + #¢s-1) Cos‘vCSr-ﬂ'z]Js,

By the identity

(10.5) cos KCs-m )= cos KT cos ks,

equation (10.4) ylelds

(10.6) Ay = J{,‘JEF(S) cos kst Fts—ir ) cos Kot kS] "
By (10.1) the coefficlent ay is

(10.7) Qg= ’(7’7 ()—cos kn)/orrf(s) cos ks ds.

S8imilarly, the coefficient b, is

/4
(10_.8) b"( = J.,’r (l- ces kI [F(S) sin ks Js_,
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which 1s determined by substituting sin ks for cos ks in
each of the equations (10.2) through (10.7).

The factor (1 - cos k77) is zero for all even
integers of k and equal to 2 for all odd integer values of
k. Hence the periodic function which satisfies (10.1) has
a series expansicn of odd harmonlics only. The average
value, a,/2 is also zero.

The coefficients of the 8dd harmonics are then

given by

& T
(10.9) Ay = {-{/o £(s) cos ks JS) k= 1,3, 5, - ,99,
(10.10) bK--z %ffﬂ/(?:) sih ks As) WK<l 3 S;)oo

The question arises of what the results are when
the function f(x) satisfies

(10.11) £(x+1 ) = F(x).

The factor in (10.7) and (10.8) is changed to (1 + cos nT)
so that only even harmonics are present. But the condition
given by (10.11) merely states that f(x) has the funda-
mental period of1r instead of 21T

11. EXPANSION OVER A FINITE INTERVAL

If the sole object is to obtain a trigonometric
series which ylelds the correct values of the stated

function over a finite interval, there 1s an infinite
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variety of ways to establish a Fourler expansion. The
interval may alternatively be considered as only a part of
the fundamental period, and the definitlion of the given
function over the remainder of the period is entirely
arbitrary.

If the interval over which the representation 1ls to
be maintained is only (§<x<7r the serles in even
functions is

ab o)
(11.1) Fx) = - +£ Ay cos KX,

and in odd functions

[~ e}
(11.2) £0x) = Z BK sih Kx)

K=\
with the coefficlents

T
(11.3) Qg = %fo £ACs) cos ks ds,

T

(11.4) bx = ;frfa fcs) s»n Ks ds,

A simple example of a variety of serles obtalned
for the function ’-3=%7¢ , of Fig. 11.1, defined in the
interval Oé’x<{r , 18 1llustrated in Fig. 11.2.

A4

qJ..
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Fig. 11.2a: B8Sines and cosines, odd harmonics only.
i f(-’()

/l q.-h

-\
° / // o
| [ - |

~ rr\\\ ' \\ yEi
g \?

a it

a
(12.88) 100 =%  0<4x < feoy =- ;3

Foo= oD, M<x<0,  Flmy= % .

(11.5b) Jf&x)= & "%Z@JT\)L cos (2k=1) X
r;_',z L _I_ sSn (Qk—l)x}
=)

Fig. 11.2b: Sines only, even and odd harmoniecs.

fx).
A

a
Bl X)) =T X, -m<x<mg

FCry = 0,

2 0 Kkl
(11.6b) Ax) = -.N@Z_C:_')_R_ Sin kX .
io=)
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Fig. 11.2¢: Cosines only, odd harmonics only.

fx)
|\\ % 'r ™~
- g% A i
< S Do NS
[ i, e < : L,
| I// 3 <!
,‘f T :;l

(11.72) £x) = % lx\, g1 xS XEW, f(x) = fCan):o)

foo= & (x-am), n<xgan, foo= QarX), awxgsm

= [ i0k1)
o /& ¢ -
(11.7) o9 = /_#»czz.{-m—' _n_a’_e} cos (2l |

wheve (*=- /.

Fig. 11.2d4: 8ines only, odd harmonics only

~ ,/’/ iT' iy ~ e
Ty - e
(11.8a) )= % x, -mEx=w,
6) = & (A, reExsan
N R 2k~




28

Fig. 11.2e: An approximation with a single sine term.

A foo T

X
4

(11.9) fo):Q.csc% sin% | error <0.00035a. hor CZ 190,

Fig. 11.2: Various possible periodic continuations
of the function of Fig. 11.1.

In each case the behavior over the defining inter-
val 1s the same as that of Fig. 11.1, but the series
representations for the individual cases are quite differ-
ent. It is also signifiecant that the rate of convergence
of the resulting series may be quite different for the

various forms of periodiec funections.
12. EXAMPLES OF FOURIER DEVELOPMENTS

Each of the following examples is the Fourier
development of a single-valued periodic function f(x) of
period 27 . The function f(x) is defined throughout a
period interval and illustrated by a corresponding figure.
The Fourier expansion of f(x), has been derived in

accordance with the preceding formulas. Since these




functions satisfy the hypothesis of the theorem, each of

the serles does converge and is the

Fig. 12.1: Square wave (odd).

function f(x).

A fx)
-+ ROR TN
[ |
| I
%ﬂ' ?Z} —
[ !
B | |
(12.1a) £0x)= 0 <x <t 3 £(0) = Ferr) = 0,
fex)=-1, mT<x<am
4y (
: ; Feo £ (s TGS s, :
K=\
Fig. 12.2: Square wave (even).
Nfcy
+1
| l
| |
' : 1 S Y
i s an 5
[

JUR IR s

(3k.2a) foa=) , I o5 <o
f’(\)‘-\ % < <‘3J1’
o0 K+ |
ga fo)=% ) GO
=1 ak‘l

£ (0)=F(3%)=0,

cos (k~-1) x .
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Pig. 12.3: Saw-tooth wave (odd).

) 5O

'._

- -+

(12.3a) oo = el s %

fx) = 2%, & <xs3l

X, Kt/
(12.3b) oc(x) = -ﬁ,_KZ__ —(_(_3.,%:’_5" sin (.zk-l))(_
=1

Fig. 12.4: Saw-tooth wave (even).
A Fex)

AL &
anr - o

(12.42) f(x) =

by (i
fix) = K (T aax), -MMEXZg,

“D§>) 0§X§ﬂ)

(12.4b) fx) = _, Z M_ , cos (2k=1)%

30



Fig. 12.5: Triangular wave #1 (odd).
A o)

e

o !
(12.52) $(x) = '1'? (r-x) | 6<% < 2T
FL0Y: =8
Qo
(12.5b) foo = ‘%‘[Z_ K. 3n kx,

=]

¢

Fig. 12.8: Triangular wave #2 (odd).

A fox)

+t

(12.6a) fOO= X% DA <ty
?(ﬂ) =4 .
(o o] Kl
(12.66) A£Gy =2 5 (D e o
T L, TR
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Fig. 12.7: Periodle rectangular pulse.

[ fx)

et 324 _

o
— e @ — —
T,

R T

—
l
©
l |
I
P

(12.7a) f&x)=1 5= <AL G F(-6)=f(o)=

fN=06, 6 <x<amr-@

O
(12.7)  f00)= -—?—r- “+ %Z 5””):9 cos Kx .
‘ k=1

Fig. 12.8: Periodic Triangular pulse.

} £x)
26 | a& = ar P e
(12.8a) fix)=35(6+%) , —26 Sx <0,

Foo = o o), Osx €28, Fov=0, BTxFans

z.8) f)= & + rrez—- (s'"ke cos kx |
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Fig. 12.9: Output of single-phase, half-wave rectifier.

A e(x)
o 17N \lT ’rsy X
J-\\ 7 {
(12.9a) €x) = Emecos x | S NS
e=0 , Z..—fx 532

o SO e T
. Em 2Em ( 1)
(12.9b) eG)= _Trr_!,+ =4 Cosx +‘ﬁ'3_ T cos kX.

Fig. 12.10: Output of a single-phase, full-wave rectifler.

A ex)
' o 'Zg_ = a,rg =X

(12.102) e(x) = Ewmcos X | 5 %

%
QC_X):-—EMCOSX) Zégxﬁs

o v e
(12.10)  ©x) = 2Em +4Bn Y CD - cog akx
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Fig. 12.11: Superposition of two half-.waves to form a

full-.wave.
¢,
Em
\ = X

-

/l T

(12.118) 6,—_ EM sn X 6'5_1 s

=
Qo
(12.110) € = B+ B sy = 2En 37 g | cos 2k,

K=1
Aeq
\_h Ew\ /\
o T o
\\ (’
‘\‘_ e

(12.11¢) €=0, o2 x£W, e,=-K smx, A3IxZan

c | ‘
(12.114) e,- __E%\, — =X smx - "‘E"‘Z_‘*k“-' Cos Jxx ,

(12.11e) ¢+ e, == Em lSmXL 0 < X<2’7)

; o0
BRI2E): 0. R < Hh, 85 b
= = \(g:‘_ e oS kX
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13. WAVES HAVING DISCONTINUITIES

In Fig. 12.1 the square-wave Jjumped, at x = O, from
the value -1 to the value #1. Similarly the square-wave
of Fig. 12.2 1s discontinuous for x -'ﬂ%: In these two
examples the amplitudes of the successive components
diminish very slowly; not always exactly as 1/k, but the
decrease is of the order of 1/k. Other examples are glven
in Figs. 12.5, 12.6, and 12.7.

When f(x) Jjumps discontinuously from a to b for a
certaln value of x, = x,, the series converges to
(a + b)/2 at x = x,. For instance, in Fig. 12.1, the
series converges to zero at x = X,, since at this point
a =221 and b = +1.

The sum of a finite number of terms in a Fourler
geries for a function having a jump is only a fair
approximation to the value of the function in the vielnity
of the Jjump.

Other types of waves present no Jjumps, but they
have sharp corners, such as the waves of Figs. 12.3, 12.4,
12.8, 12.9, 12.10, and 12.11. These waves are continuous,
but their first derivatives are discontinuous, that is,
they are characterized by jumps similar to the jumps which
the square waves have. For such waves the successive
amplitudes of the Fourier components decrease, although

slowly, somewhat faster than in the case of the square
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waves; thelr decrease 1s of the order of 1/kZ2,

The smoother the wave, the higher the order of the
derivative at which a Jjump first occurs. The amplitudes
of the successive components then diminish more rapidly,
of at least the magnitude of 1/kR, where n is the order of
the derivative at which a jump first occurs. (8See section
4: Magnitude of coefficients.)

14. OBJECT OF FOURIER ANALYSIS

If a sinusoldal voltage such as sin mt, cos mt, or
cos (mt - #) is spplied between two terminals of a linear
passive network, all potentlal differences and currents 1n
the network are sinusoidal and of the same frequency as
the applied voltage. The amplitudes and phases of these
potential differences and currents may be calculated by
the ordinary alternating current theory.

However, in communicatlion engineering periodic
oﬁcillatians are used which are non-ginusoidal. The micro-
phone current when a steady sound i1s sung or spoken, the
output of a detector on which a sinusoidal voltage 1s im-
pressed, the scanning voltage of a cathode ray tube, are
important examples of periodic non-sinusoidal osclllations.

If the output voltage is desired from a certaln
network,‘to which a non-sinusoidal voltage is applled, we
may use ordinary alternating current theory to obtain
the sinusoidal output voltage due to any one of the
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sinusoidal components of the input voltage. If the network
is linear, the principle of superposition holds, that is,
the actual output is the sum of all the sinusoldal output
components. The bullding up of a perlodic function from
i1ts sinusoidal components of various frequencles is called
Fourier synthesis.

The network problem involving periodie, non-ginu-
soidal voltages and currents may thus be solved in three
steps: (1) Fourier analysis of input voltage or current,
(2) ealculation on the network according to the alterna-
ting current theory at each component frequency, and (3)
Fourler synthesis of the output.

15. EFFECTIVE VALUE

A non-sinusoidal current or voltage function f(x)

may be represented by the serles as
(15.1) /CX)=—.% ch cos (x~ dic) |

with the coefficlents and phase angles asdefined by (1.6),
(1.7), (8.5), and (8.6).
The effective value of voltage (or current) f(x) 1s

defined as

(15.2) E= (_1“]'1 (x}]zcjx>é
s.3)  p= [4 (% S Y o R )]i
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Since ¢, is the maximum value of the nth harmonie
of the slternating component, the effective value of the

nth component is
Cn_
(15.4) n \r_l‘

Therefore the effective value is equal to the square root

of the sum of the squares of the effective components

(15.5) E= [ B2+ B2+ EZ+ s B2 14

where E, represents the direct current (or aversge) com-

ponent and E, is the effective value of the nth harmoniec.
16. SERIES CIRCUIT

In the consideration of the series circult the laws
of electrical networks (Kirchhoff's Laws) are used and
hence are stated here.

1. The algebralc sum of the currents flowing to-
ward any point in a network 1s zero.

2. The algebraic sum of the products of the cur-
rent and resistance in each of the conductors in any
closed path in a network i1s equal to the algebralc sum of
the electromotive forces in that path.

If an instantaneous current 1 = 1(t) is flowing in
the series circuilt of Fig. 16.1, containing the constant

elements, resistance R, inductance L, and capacitance C,
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there 1s impressed a difference of potential e = e(t)

(16.1) e(t)—.l.i‘—% +K£+,‘5j;£¢(b)

where Jél dt represents the total quantity of electricity
on the condenser, C.

For a simple electrical example consider a periodilc
non-sinusoidal voltage e(#), where @ = 27 £t, impressed on
the series circuit of Fig. 16.1, and assume that the first
step in solving the network is completed; that is, e(f) is
aporoximated by using the nth partial sum of its Fourier

series
e n
(16.2) ey = 2+ ) e cos (xf-g.).
=1
Tﬁ R: fYesigbance
e(d) L. ndwctance

T s caPac"-l'ahce

Fig. 16.1: 8Simple series circult.

If e(f) 1is not defined throughout a period so that
one may derive its series in accordance with the preceding
theory, but is an unknown voltage, then one may put the
input voltage on an oscilloscope and determine experimen-
tal values of e(#) at 2n or more points equally spaced on




40
the @ axis throughout a period. Then the trigonometric
gsum of (16.2) may be derived in accordance with section 20.
The second step in solving the network is calculating each
component in the output according to alternating current
theory.

Assume that the voltage e(f) has been applied to
the clircult long enough so that the steady-state condition
has been reached. The voltage drops ep, €1, and eg across

R, L, and C respectively will be given by
(16.3) ér= LR

(6.4) e =Lgt-arflel ok 9

(16.5) €. = CfLJt chM X /CM

where

(16.6) ¢ =arft ¢ 3?7: .
(16.7) X, ==2TfL, X i
Therefore

d¢ : ;
(16.8) e@) = X.gg + R + xcﬂoM,
or upon differentiating with respect to #,

(16.9) J}Z X, ap2+ K —fxc(;'




Since e(f) is approximated by the first (n + 1)
terms of the series, we will have n + 1 differentlal equs-

tions

< %
(16.10) M( Xz_“ £ °“¢° "R VAR

L os(kg- X d3¢ ka X il
(16.11) d¢[€’k65 ¢¢)_1 ol¢k+RJ¢ + Aclyy K %

The third step is the Fourier synthesis of the out-
put. The current 1(f) will be the sum of the solutions
of the n + 1 differential and have the form

(16.12) i(4)= Z,_K Zﬁ. T cos (x@-9.).

k=1 k=1
The direct current component, e&, has produced a tran-

slent current which is no longer present in the steady
state, but appears as a voltage across the capaclitor C.
The voltage drops across the eircult components

may now be calculated as
(16.13) €g=(R= Ri*{"’lkcos<(¢ 50,()

(16.14) 5 :er)_ j% =2zl Zﬂf,v N2 I, s (kﬁ—%)

(16.15) ¢, .{'TCICM So QUCZ—L sm(x¢ )

The effective value of the current is

(16.16) 1x [i I\:]’i
k=1

The electromotive forece law and current law may
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be applied to more complicated networks to obtain as many
independent equations as are necessary to determine the
unknown quantities involved. If a complex voltage of the
form (16.2) 1s applied to the network, calculation must be
made on the network at each component frequency, then a

Fourier synthesis of the output.
17. THE FULL WAVE RECTIFIER

For another example of an electrical application of

Fourier series, consider the full wave rectifier of Fig.

b P2 3
(D
. : ﬁEs‘muté R
TaE'smut R ‘ I
Y2Cemuwt
Schematic Diagram Simplified Equivalent

Diagram

R: load resistance
r

p: resistance of dlode and one
slde of the transformer

Fig. 17.1: Diagrams of full-wave rectifier.

The current through diode A consists of a half
sine wave, and the current through diode B consists of a

half sign wave displaced by T radians from the current
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through diode A. 8ince both currents go through the load
R in the same direction, the total current through R 1s
the sum of the currents.

If one choses the beginning of the half c¢ycle of
the current through diode A as the reference point, then
the current through R is as shown in Fig. 17.1. '

1L

ae | s
R* fP ’ ’,I \\\ /\
’ \
/ \‘ g Lﬂb

T 2m

Broken line: current through R due to dlode A
Continuous line: current through R due to diode B
Sum of both currents: total current through R

Fig. 17.1: Reetifled current through R.

Therefore the current 1 through R may be given as

YA€ sm wt
R_-\' ’("'?

(17.1) =

In the design of a full wave rectifier 1t is
important to know the magnitude of the direct-current
component and the magnitudes of the harmonic components of
the rectifled current through R.

These can be determined by expanding (17.1) in

a Fourier series,

0
(17.2) L= VAR [ T .xz Cos kWt
T(’CK«-T;,) 2 4K - |
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Only a direct current and even harmonics of the
supply frequency occur. The direct current component of

(17.2) 1s

Nk
: n'(ﬁ ‘l'rp)

and the effective value of the (2k)th harmoniec is

(17.3)

o e
%e - .= Ty, . = 4 E
B D e TS (R+p) (¥K2— 1)

18. SATURATION AMPLIFIERS

Cathode limitation sometimes occurs in amplifiers
at large input voltages. This condition generates har-
monics of the fundamental frequency.

Cathode limitation (or saturation) occurs when all
of the electrons emitted by the cathode are being absorbed
by the plate. The varying plate current may be given

by

(18.1) { (mt)= A ces mi ¢‘§m{. f—-llf—d)
= Acesf , o =hauz f

where cathode limitation or saturation occurs in the
interval —J £ mt =4 .

If there were no saturation, the current would be

(18.2) i(mt) = A ces m?.
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; ‘74A¢°$¢
/'.d 2

Fig. 18.1: Varying plate current component of
a saturation amplifier #1.

The Fourier expansion of the current (18.1) is
(18.3) tUmt) = % ((/cos¢ - SmJ) +—‘-(T-t-(rt —¢+Smﬁcosﬂ'>comt

— A [ 3nlict) @ s (k- 1)d
* KZ:-;; "‘,ﬁ' K Oct) o K LK-\) ]COS klnt

Saturation introduces a direct current of

(18.4) b - -’;“— (f cosgd-sing) .

QO

The amplitude of the fundamental is reduced from A to

(18.5) A Ll ~ £~ yng“?’l].

Hg?monics are introduced as indicated by the summation
term of the series of (18.2).

The current may be limited on the lower half of the
cycle too, for example, i(mt) may be as Fig. 18.2, where
i(mt) is defined

Llmt) = Acos ¢{) -g< mt‘ﬁdJ =@ <mt §TH¢)

(18.6)
Lmt)=Acosmt, JEmes m-d , w+f < mt 227A
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Fig. 18.2: Varying plate current component of
a saturation amplifier #2.

The geries expansion of (18.6) is
(18.7) Limt)= Bﬁ (v- g+ singd cosf ) cos mt

+§ A sin (k) _s_»b_ﬁs:_'ld] cos kmnt.

L k(k+ K Cie=)
K=3,5,7 l) )

The current i(m%t) contains no direct current component

and only odd harmonies.
19. ANALYSIS OF TUNED CLASS B POWER AMPLIFIER

The obJect of this analysis is to derive expres-
sions for power outfzut and plate efficiency in terms of
the rated quantities of a high vacuum thermionic triode
operated as a class B tuned power amplifier.

From electronic theory one may obtain a relatively
simple approximate analytic expression for the tube

characteristics under linear operatlon,

(19.1) 0 e g B +—QP-LL\,



47
where

total instantaneous plate current,
mutual conductance of tube,

total instantaneous grid voltage,

total instantaneous plate voltage,
amplification factor of the tube.

Tdade

‘-

The basic diasgram of an amplifier with a parallel-
tuned load is shown in Fig. 19.1.

<— i}

eg: instantaneous
T value of vary-
(— ing component of
s e grid voltage
€y ¢ Te op: instantaneous

R value of varying
l component of
L:Ml‘r

; e
es - plate voltage
L l eet 8rid bles voltage
+ 1Y b Dlate supply
Eee Ev voltage.

Fig. 19.1: Basic circult diagram of a tuned amplifier.

If the plate load circult is tuned to resonate at

the frequency of the grid signal voltage e_, and if the

st
impedance of the parallel-tuned plate load circult is
negligible at harmonics in comparison to ite impedance at
the fundamental, a sinusoidal grid-signal, gy will produce
a voltage drop across the load that is also sinusoidal.

For class B operation, the grid.blas, E,,, 1s
adjusted so that when eg = 0, the plate current 1s zero.

Equation 19.1 equated to zero becomes

(19.2) ¢ =9, (ca%) [ Ca LA %) =0.

le=o




Therefore, for class B operation

= Sy
(19.3) oo = 0222
Pk
The voltages e, and ey are
(19.4) e= Becit Cg)
(19.5) €y = By + €.

Therefore 1, 1s given by

(19.8) Ly = 4, (ee +j_f_>): am (€q +i—£), Gy 230

Both eg and ep are sinusoidal, thus the sum
(eg + ep) 1s sinusoidal. The wave form of the ourrent
1), consists of a series of alternate half-sinusoid and
zero-current half-cycles as shown in Fig. 19.4.

If the origin of time 1s chosen at the starting
point of one of the current pulses, the Fourler series

representation is

=)
o \
(19.7) Ly = _ly%[ ,{smwt ) SiT) b akwt].
=1

The average value of the plate current Ib is

(19.8) 'LL, 1\9"1. -
T

effective value
The ,@np&&%ade of the fundamental component, I

Pl’
_______I’L'ﬂ-
(19.9) If‘ At

48
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aw

3t

Fig. 19.2¢ The instantaneous plate voltage, ep.

ecT

Fig. 19.3: The instantaneous grid voltage, ég;.

A

e

Fig. 19.4: The instantaneous plate current, 1yp.

4y
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S8ince the circult is tuned, the impedance at the

resonant frequency ls a pure resistance, R,. Hence the

effective value of load voltage, Ep, is

(19.10) Ce= Ip, Re

The direct-current power input to the plate Py, the
alternating current power output to the load P,,, the
plate efficiency Y\? are given in terms of the fundamental
component of plate current Ipl by the following relations:

(19.11) P\o ':E\o\o 1\a e E\»\o (%‘ I\’\) 5
(19.12) Pac = 1\,’\'&_— :
(19.13) = Pac g

rl? ‘Db

20. REPRESENTATION OF AN EMPIRICAL CURVE

Frequently the function 1s not defined at every
point, but is an empirical curve or set of experimental
points which is to be represented by means of a trigono-

mentric sum analogous to the Fourier series of the form

-
(20.1) W = ‘l:zs 4 ) (o4 cos ox + by smkx),
r=\
Assume, for example, that the interval 1is

and that there are n experimental values u, taken at

q
291
(20.2) Xq'F aar & g=idpa, 4. n-l,




51
n being some number greater than 2r. The coordinates

specifying the experimental points are
qlT *
(20.3) (O)u")) (%ﬂl}.)ul), w n_ ) Q)) (‘2—(—2—{&“; %-,),

The problem is to determine the (2r + 1) coeffi-
eients of (20.1). Substituting the each experimental point
of (20.3) in (20.1), one obtains n equations (called the

equations of condition) containing (r + 1) unknowns.
L5 kaqT qn

(20.4) ‘L‘l" Le Z_ (QK Cos —w +bhm )q-oah-.
=\

Now in order to determine anyone of the unknowns, one must
form the normal equation with respect to the unknown by
multiplying each of the equations of (20.4) by the coef-
ficients of the unknown in the equation and adding to-
gether all these products.

The normal equation of a, 1is

(20.5) Ue+ U+ - *lUp— =

o
h-y 170 q‘ifl
Tanmes T:"” + b, snr‘j:ﬂ
=0
9=0
Since
n—\ A
T
(20.8) Z cos —g%- . e R=1, coy A
q=0
and
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n—\

kqall
(20.7) ZSH‘I%:O) K.—_’)...)d’)
4=5
equation (20.5) becomes
(20.8) Uy + Ly & oo - :"J_gf)
or
n-
(20.9) T u
9=0
The normal equation for & 1is
(20.10)  W,+ U, cos = 'm- +l, coy == "'2'T un__coso""%m
5 T
= QoZ_Cosq—aﬁ- + Q, Z [Goa 9'—1",,.-3___&"+ ve il
q=
e ar -y ¥ ot -
ax Z Coercos e~ i B,,.Z Cosq% Sin 1%—”

9=0 9=0
Again, since

n-\

C_EL_ Jqur
- c 3 : o
(20.11) g : cos *155 B
(20.12) & 9T
3 Z Co3 #l Sm"ﬂ.".’.ﬂ. = 0
9=0 % ?

(and for caleculation of by)
(20.13) hz—:'_ siq 4927 s:nJﬁ_i,LT =y K,
=0
equation (20.10) becomes
(20.14) U -+, cos q*—u ol n», v asMUT_ na,

n '—Ia

or
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2 dist CETIN

(20.15) & = = Z.M‘i c8s
q=0

The other normal equations may be obtalned and
reduced in the same way; finally we obtaln

2 kqall

SR g .

(20.18) S G E-ouq cos~imm s 6 4o enh
< . t9anr

(20.17) b= e_r-l i: lig 310 SR e K e a, e

The resultant sum of (20.1) whose coefficlents are
defined by (20.16) and (20.17) ie a trigonometric sum which

represents the empirical curve.
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