


AN ABSTRACT OF THE THESIS OF

Jessica R. Curtis for the degree of Master of Science in Radiation Health Physics pre-

sented on June 9, 2016.

Title: Special Nuclear Material Analysis Using Temporal Gamma-Ray Spectroscopy

and Machine Learning Methods

Abstract approved:

Steven R. Reese

Following thermal neutron induced fission, supervised machine learning and

temporal gamma-ray spectroscopy methods were used to identify differences in the

delayed gamma-ray spectra of Pu-239 and U-235. The temporal gamma-ray

spectroscopy method takes advantage of the time-dependent decay of fission

products. Employing Spearman’s rank-order correlation coefficient and without

prior knowledge of peak locations or their associated energies, temporal behavior

patterns characteristic of radioactive decay were identified within the complex

fission product gamma-ray spectra below 3 MeV of Pu-239 and U-235. Individual

rho (ρs) values and their respective differences (∆ρs) were used as a part of feature

selection to identify channels with significant attributes used as “fingerprints” to

create profiles for Pu-239 and U-235 which may be used for the identification of

temporal behavior in an unknown sample. This method may be combined with

additional machine learning techniques for future quantification of fissile material

with the potential for similar accuracy and precision to previous temporal

gamma-ray spectrometry methods.



c© Copyright by Jessica R. Curtis

June 9, 2016

All Rights Reserved



Special Nuclear Material Analysis Using Temporal Gamma-Ray Spectroscopy and

Machine Learning Methods

by

Jessica R. Curtis

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented June 9, 2016

Commencement June 2017



Master of Science thesis of Jessica R. Curtis presented on June 9, 2016

APPROVED:

Major Professor, representing Radiation Health Physics

Head of the School of Nuclear Science and Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Jessica R. Curtis, Author



ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Steve Reese, for giving me the

opportunity to work on such a fascinating research project. I am extremely grateful

for his guidance, endless knowledge and support throughout this project. I would

also like to thank Electra Sutton for her time and committment as well as her

wealth of knowledge as all greatly impacted the success of this project. Finally, I

would like to thank my family and friends for their neverending support, love and

encouragement.



TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Nuclear Safeguards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Nondestructive Assay Techniques . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Passive Interrogation . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Active Interrogation . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Delayed Gamma-Ray Detection . . . . . . . . . . . . . . . . . 8

1.2.4 Temporal Gamma-Ray Spectrometry . . . . . . . . . . . . . . 9

1.3 Evaluation of Lower Energy Delayed Gamma Emissions . . . . . . . . 10

1.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Goal and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Materials and Methods 16

2.1 OSU TRIGA Reactor and Beam Port #4 . . . . . . . . . . . . . . . . 16

2.2 Fast Rabbit Pneumatic Transfer System . . . . . . . . . . . . . . . . 18

2.3 Irradiation of Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Gamma-Ray Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 High-Purity Germanium Detector . . . . . . . . . . . . . . . . . . . . 21

2.6 List Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Parse Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 R Statistical Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9.1 The Pearson Product-Moment Correlation Coefficient . . . . . 27

2.9.2 Spearman’s Rank-Order Correlation Coefficient . . . . . . . . 28



TABLE OF CONTENTS (continued)

Page

2.10 Supervised Machine Learning . . . . . . . . . . . . . . . . . . . . . . 32

2.11 Use of Spearman’s Correlation Coefficient to Identify Patterns in Tem-

poral Gamma-Ray Spectroscopy . . . . . . . . . . . . . . . . . . . . . 33

2.12 Template Development . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.13 Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.14 Evaluation Using R . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Results and Analysis 43

3.1 Decay Template Sensitivity Analysis . . . . . . . . . . . . . . . . . . 43

3.2 Evaluation of Cycle Independence . . . . . . . . . . . . . . . . . . . . 45

3.3 Validation of ρs Computation . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Frequency Quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Quantiles for ∆ρs,HEU,Pu . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Template 1 ∆ρs,HEU,Pu Quantiles . . . . . . . . . . . . . . . . 53

3.5.2 Template 2 ∆ρs,HEU,Pu Quantiles . . . . . . . . . . . . . . . . 58

3.5.3 Template 3 ∆ρs,HEU,Pu Quantiles . . . . . . . . . . . . . . . . 63

3.5.4 Template 4 ∆ρs,HEU,Pu Quantiles . . . . . . . . . . . . . . . . 68

3.6 Cycle Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.7 Identifying Significant Channels . . . . . . . . . . . . . . . . . . . . . 74

3.7.1 The Relationship Between ∆ρs,HEU,Pu and ρs . . . . . . . . . 75

3.8 Significant Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.8.1 Template 1 Channel 139 . . . . . . . . . . . . . . . . . . . . . 79

3.8.2 Template 1 Channel 140 . . . . . . . . . . . . . . . . . . . . . 80

3.8.3 Template 1 Channel 230 . . . . . . . . . . . . . . . . . . . . . 81



TABLE OF CONTENTS (continued)

Page

3.8.4 Template 1 Channel 301 . . . . . . . . . . . . . . . . . . . . . 82

3.8.5 Template 1 Channel 302 . . . . . . . . . . . . . . . . . . . . . 83

3.8.6 Template 1 Channel 964 . . . . . . . . . . . . . . . . . . . . . 84

3.8.7 Template 1 Channel 965 . . . . . . . . . . . . . . . . . . . . . 85

3.8.8 Template 3 Channel 1535 . . . . . . . . . . . . . . . . . . . . 86

3.8.9 Template 3 Channel 1687 . . . . . . . . . . . . . . . . . . . . 87

3.8.10 Template 3 Channel 1939 . . . . . . . . . . . . . . . . . . . . 88

3.8.11 Template 3 Channel 2273 . . . . . . . . . . . . . . . . . . . . 89

3.8.12 Template 4 Channel 231 . . . . . . . . . . . . . . . . . . . . . 91

3.8.13 Template 4 Channel 433 . . . . . . . . . . . . . . . . . . . . . 92

3.8.14 Template 4 Channel 834 . . . . . . . . . . . . . . . . . . . . . 94

3.8.15 Template 4 Channel 1503 . . . . . . . . . . . . . . . . . . . . 95

3.8.16 Template 4 Channel 1628 . . . . . . . . . . . . . . . . . . . . 96

3.8.17 Template 4 Channel 1787 . . . . . . . . . . . . . . . . . . . . 97

4 Conclusion 101

5 Future Work 102



LIST OF FIGURES

Figure Page

1 Thermal fission yield curves for Pu-239 (dashed line) and U-235 (solid

line) (Chivers, 2011; England & Rider, 2011). . . . . . . . . . . . . . 1

2 Horizontal section of the OSTR (Robinson, 2012). . . . . . . . . . . . 16

3 Schematic of the PGNAA Facility Beam Port #4 (Robinson, 2012). . 18

4 Schematic Cross Section of Beam Port #4 (Robinson, 2012). . . . . . 18

5 Schematic of Fast Rabbit Pneumatic Transfer System#4 (Williford,

2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Photograph of Pu-239 (15.4 mg) sample. . . . . . . . . . . . . . . . . 20

7 Photograph of U-235 (178.2 mg) sample. . . . . . . . . . . . . . . . . 20

8 Schematic of three different coaxial geometries (Reproduced from Knoll,

2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Schematic of p- and n-type coaxial detectors. (Reproduced from Knoll,

2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

10 Excerpt of List Mode text file from a 10 second HEU irradiation cycle

produced by the ORTEC ListDump program. . . . . . . . . . . . . . 24

11 Channel 230 Cycle 19 has a ρs,HEU of 0.93, a ρs,Pu of -0.47 and a

∆ρs,HEU,Pu of 1.40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

12 Channel 139 Cycle 5 has a ρs,HEU of 0.95, a ρs,Pu of -0.90 and a

∆ρs,HEU,Pu of 1.85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

13 Template displaying decay pattern. . . . . . . . . . . . . . . . . . . . 36

14 Template displaying ingrowth pattern. . . . . . . . . . . . . . . . . . 36

15 Template displaying ingrowth and decay pattern. . . . . . . . . . . . 37

16 Template displaying decay and ingrowth pattern. . . . . . . . . . . . 37

17 Plot of ρs versus per cent change in λ relative to Template 0. . . . . . 45



LIST OF FIGURES (continued)

Figure Page

18 Frequency of counts in each of the twenty cycles for the irradiation of

HEU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

19 Frequency of counts in each of the twenty cycles for the irradiation of

Pu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

20 The 98% ∆ρs,HEU,Pu quantile for Template 1 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

21 The 95% ∆ρs,HEU,Pu quantile for Template 1 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

22 The 90% ∆ρs,HEU,Pu quantile for Template 1 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

23 The 98% ∆ρs,HEU,Pu quantile for Template 2 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

24 The 95% ∆ρs,HEU,Pu quantile for Template 2 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

25 The 90% ∆ρs,HEU,Pu quantile for Template 2 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

26 The 98% ∆ρs,HEU,Pu quantile for Template 3 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

27 The 95% ∆ρs,HEU,Pu quantile for Template 3 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

28 The 90% ∆ρs,HEU,Pu quantile for Template 3 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

29 The 98% ∆ρs,HEU,Pu quantile for Template 4 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



LIST OF FIGURES (continued)

Figure Page

30 The 95% ∆ρs,HEU,Pu quantile for Template 4 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

31 The 90% ∆ρs,HEU,Pu quantile for Template 4 displaying channel fre-

quency among cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

32 Channel 139 Cycle 5 has a ρs,HEU of 0.95, a ρs,Pu of -0.90 and a

∆ρs,HEU,Pu of 1.85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

33 Channel 139 Cycle 11 has a ρs,HEU of 0.62, a ρs,Pu of -0.91 and a

∆ρs,HEU,Pu of 1.53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

34 Channel 140 Cycle 3 has a ρs,HEU of 0.94, a ρs,Pu of -0.79 and a

∆ρs,HEU,Pu of 1.73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

35 Channel 140 Cycle 9 has a ρs,HEU of 0.85, a ρs,Pu of -0.82 and a

∆ρs,HEU,Pu of 1.67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

36 Channel 230 Cycle 1 has a ρs,HEU of 0.98, a ρs,Pu of -0.79 and a

∆ρs,HEU,Pu of 1.77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

37 Channel 230 Cycle 19 has a ρs,HEU of 0.93, a ρs,Pu of -0.47 and a

∆ρs,HEU,Pu of 1.40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

38 Channel 301 Cycle 11 has a ρs,HEU of 0.90, a ρs,Pu of -0.71 and a

∆ρs,HEU,Pu of 1.61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

39 Channel 301 Cycle 7 has a ρs,HEU of 0.87, a ρs,Pu of -0.86 and a

∆ρs,HEU,Pu of 1.73. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

40 Channel 302 Cycle 4 has a ρs,HEU of 0.58, a ρs,Pu of -0.58 and a

∆ρs,HEU,Pu of 1.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

41 Channel 302 Cycle 3 has a ρs,HEU of 0.93, a ρs,Pu of -0.63 and a

∆ρs,HEU,Pu of 1.56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



LIST OF FIGURES (continued)

Figure Page

42 Channel 964 Cycle 3 has a ρs,HEU 0.87, a ρs,Pu of -0.77 and a ∆ρs,HEU,Pu

of 1.64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

43 Channel 964 Cycle 10 has a ρs,HEU of 0.63, a ρs,Pu of -0.39 and a

∆ρs,HEU,Pu of 1.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

44 Channel 965 Cycle 3 has a ρs,HEU of 0.69, a ρs,Pu of -0.18 and a

∆ρs,HEU,Pu of 0.87. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

45 Channel 965 Cycle 20 has a ρs,HEU of 0.87, a ρs,Pu of -0.71 and a

∆ρs,HEU,Pu of 1.58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

46 Channel 1535 Cycle 11 has a ρs,HEU of -0.34, a ρs,Pu of 0.61 and a

∆ρs,HEU,Pu of 0.95. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

47 Channel 1535 Cycle 6 has a ρs,HEU of 0.13, a ρs,Pu of -0.63 and a

∆ρs,HEU,Pu of 0.76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

48 Channel 1687 Cycle 2 has a ρs,HEU of 0.74, a ρs,Pu of -0.22 and a

∆ρs,HEU,Pu of 0.96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

49 Channel 1687 Cycle 5 has a ρs,HEU of -0.65, a ρs,Pu of 0.17 and a

∆ρs,HEU,Pu of 0.82. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

50 Channel 1939 Cycle 14 has a ρs,HEU of 0.79, a ρs,Pu of -0.05 and a

∆ρs,HEU,Pu of 0.84. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

51 Channel 1939 Cycle 5 has a ρs,HEU of -0.61, a ρs,Pu of 0.40 and a

∆ρs,HEU,Pu of 1.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

52 Channel 2273 Cycle 18 has a ρs,HEU of -0.71, a ρs,Pu of 0.47 and a

∆ρs,HEU,Pu of 1.18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

53 Channel 2273 Cycle 2 has a ρs,HEU of 0.63, a ρs,Pu of -0.37 and a

∆ρs,HEU,Pu of 1.00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



LIST OF FIGURES (continued)

Figure Page

54 Channel 231 Cycle 17 has a ρs,HEU of -0.59, a ρs,Pu of 0.55 and a

∆ρs,HEU,Pu of 1.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

55 Channel 231 Cycle 8 has a ρs,HEU of -0.52, a ρs,Pu of 0.33 and a

∆ρs,HEU,Pu of 0.85. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

56 Channel 433 Cycle 4 has a ρs,HEU of 0.50, a ρs,Pu of -0.40 and a

∆ρs,HEU,Pu of 0.90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

57 Channel 433 Cycle 12 has a ρs,HEU of 0.54, a ρs,Pu of -0.46 and a

∆ρs,HEU,Pu of 1.00. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

58 Channel 834 Cycle 11 has a ρs,HEU of -0.52, a ρs,Pu of 0.44 and a

∆ρs,HEU,Pu of 0.96. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

59 Channel 834 Cycle 18 has a ρs,HEU of -0.49, a ρs,Pu of 0.29 and a

∆ρs,HEU,Pu of 0.78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

60 Channel 1503 Cycle 15 has a ρs,HEU of -0.24, a ρs,Pu of 0.68 and a

∆ρs,HEU,Pu of 0.92. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

61 Channel 1503 Cycle 2 has a ρs,HEU of 0.04, a ρs,Pu of -0.67 and a

∆ρs,HEU,Pu of 0.71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

62 Channel 1628 Cycle 10 has a ρs,HEU of 0.63, a ρs,Pu of -0.17 and a

∆ρs,HEU,Pu of 0.80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

63 Channel 1628 Cycle 14 has a ρs,HEU of -0.58, a ρs, Pu of 0.81 and a

∆ρs,HEU,Pu of 1.39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

64 Channel 1787 Cycle 7 has a ρs,HEU of -0.70, a ρs,Pu of 0.42 and a

∆ρs,HEU,Pu of 1.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

65 Channel 1787 Cycle 13 has a ρs,HEU of -0.34, a ρs,Pu of 0.75 and a

∆ρs,HEU,Pu of 1.09. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



LIST OF TABLES

Table Page

1 Example ranking of two data sets. The first ranked data set is Channel

231 from a single Pu irradiation cycle and is to be compared with the

ranked data of Template 1, the second data set. . . . . . . . . . . . . 29

2 HEU raw time-stamped data for Cycle 10 after parsing. UTC Time

represents the Coordinated Universal Time and the real time represents

the time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 HEU temporal interval matrix for Cycle 10. Each channels counts were

divided into ten, six second intervals accounting for the total counts

acquired over the sixty second counting period. . . . . . . . . . . . . 40

4 Pu temporal interval matrix for Cycle 11 with decay ρs,Pu. . . . . . . 41

5 HEU temporal interval matrix for Cycle 11 with decay ρs,HEU . . . . . 41

6 ρs results based on per cent change in λ relative to Template 0. . . . 44

7 Interval values for Templates 1-4. . . . . . . . . . . . . . . . . . . . . 47

8 Test data sets created from the four templates in Table 2. . . . . . . . 48

9 The ρs values for Template 1, the template displaying a decay pattern. 48

10 The ρs values for Template 2, the template displaying an ingrowth

pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11 The ρs values for Template 3, the template displaying an ingrowth

followed by decay pattern. . . . . . . . . . . . . . . . . . . . . . . . . 49

12 The ρs values for Template 4, the template displaying a decay followed

by ingrowth pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

13 The ∆ρs,HEU,Pu ranges for each template and all three percentiles. . . 52

14 Total number of channels returned in each cycle for all three percentiles

for Template 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



LIST OF TABLES (continued)

Table Page

15 Channels present in at least 80% of the cycles for the 98th percentile

for Template 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

16 Channels present in at least 80% of the cycles for the 95th percentile

for Template 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

17 Total number of channels returned in each cycle for all three percentiles

for Template 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

18 Channels present in at least 80% of the cycles for the 98th percentile

for Template 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

19 Channels present in at least 80% of the cycles for the 95th percentile

for Template 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

20 Total number of channels returned in each cycle for all three percentiles

for Template 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

21 Channels present in at least 30% of the cycles for the 98th percentile

for Template 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

22 Channels present in at least 30% of the cycles for the 95th percentile

for Template 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

23 Total number of channels identified in each cycle for all three per-

centiles for Template 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

24 Channels present in at least 30% of the cycles for the 98th percentile

for Template 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

25 Channels present in at least 30% of the cycles for the 95th percentile

for Template 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

26 Percentage of channel frequency for all four templates. . . . . . . . . 73

27 Channels identified by Templates 1 and 2. . . . . . . . . . . . . . . . 77



LIST OF TABLES (continued)

Table Page

28 Channels identified by Template 3. . . . . . . . . . . . . . . . . . . . 77

29 Channels identified by Template 4. . . . . . . . . . . . . . . . . . . . 78



1

1 Introduction

Improving the methods used for detection and quantification of fissile mate-

rial is essential to nuclear security and safeguards as special nuclear material (SNM)

accountability, control, safety and security remain to be of great importance. With

the continued expansion of the nuclear industry and the need for safe management of

spent fuel, particularly knowledge of Pu-239 and U-235 content, improving existing

nondestructive assay (NDA) techniques is imperative.

U-235 and Pu-239 have similar fission yield curves with the majority of fis-

sion fragments having a mass number of 94 and 140 (Shultis, 2008). Figure 1 shows

the fission product yields from the thermal neutron induced fission of U-235 and Pu-

239, where plutonium is shifted toward higher masses. The similarities in their fission

yield curves presents a challenge when differentiating these materials in an unknown

sample.

Figure 1: Thermal fission yield curves for Pu-239 (dashed line) and U-235 (solid
line) (Chivers, 2011; England & Rider, 2011).
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While passive measurements of special nuclear material have proven to be

beneficial in certain situations, active interrogation methods such as thermal neutron

induced fission followed by delayed gamma-ray detection have the ability to improve

the detection and characterization of special nuclear material (Little, 2006). Tradi-

tionally, delayed gamma-ray detection has relied on peak identification and nuclear

data in order to quantify fissile material. This process results in high uncertainties.

Novel methods, such as temporal gamma-ray spectrometry, have been researched

and suggest a reduction in the uncertainty associated with these traditional methods

(Williford, 2013)

Williford’s research in temporal gamma-ray spectrometry used the time-

dependent decay characteristics of fission fragments to measure fissile material with

improved accuracy and precision over traditional methods. Following thermal neu-

tron induced fission, Williford evaluated the time and energy data of the resultant

high energy beta-delayed gamma rays (≥ 3 MeV). Many of these well-developed peaks

were composed of gammas from more than one fission product. Each of these fission

fragment decay products had an individual half-life, yield and potential for ingrowth;

therefore, they could be evaluated temporally. Williford looked not only at key peaks

but at how those peaks changed as a function of time resulting in the identification

and quantification of fissile material based on the temporal characteristics of these

peaks.

The goal of this research is to explore whether using temporal spectroscopy

methods and a nonparametric statistical method to evaluate the spectrum below 3
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MeV will provide useful information that can be used for future quantification of

fissile material with similar accuracy and precision.

1.1 Nuclear Safeguards

In 1968, the Nuclear Non-Proliferation Treaty (NNPT) was introduced and

since then, 189 countries have signed. Under the IAEA, a safeguards system was

established by the NNPT with the following goals: to prevent the spread of nuclear

weapons and weapons technology, to promote the peaceful use of nuclear energy and

to further disarmament (IAEA, 1970). To meet these goals, the nuclear industry

has focused on proper management and accountability of nuclear materials, ensuring

that the diversion of special nuclear material is detected in a timely manner, and

deterring proliferation activities by making it known that detection is a possibility

(Parker, 2015). Further, Physical Inventory Verification (PIV) tasks have been carried

out by the IAEA to verify declared nuclear material inventories (Parker, 2015; Reilly,

1991). Nondestructive assay techniques are commonly used for the management and

accountability of nuclear materials. These methods have been in use for decades and

have become an integral part of nuclear safeguards.
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1.2 Nondestructive Assay Techniques

Nondestructive assay techniques are categorized as either passive or active

depending on whether they are used to measure the spontaneous or induced radiation

emitted by nuclear materials (Reilly, 1991). Destructive analysis techniques require

sampling and chemical analysis of the source material; whereas nondestructive assay

techniques do not require the source material to be altered, physically or chemically.

Nondestructive assay techniques are less time consuming and more cost effective than

destructive analysis methods; however, they tend to be less accurate than chemical

analysis (Reilly, 1991). To date, much research into the improvement and under-

standing of nondestructive assay techniques has been performed and the accuracy

and precision of measurements has increased.

While the development of nondestructive assay methods occurred early on;

it wasn’t until the mid-sixties that the research and use of NDA techniques began to

take off in the nuclear industry (Gozani, 1981). During this time the growth of the

nuclear industry was at its highest and the need for more accurate measurements of

nuclear materials for accountability and management was evident. Research into the

use of passive and active nondestructive assay methods was performed at many of

the national laboratories. Two of the main programs for active nondestructive assay

were initiated under the Office of Safeguards and Material Management of the U.S.

Atomic Energy Commission. In 1966, Los Alamos Scientific Laboratory researched

using 14-MeV neutrons as a radiation source to perform active nondestructive assay
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(Gozani,1981). In 1967, research on the use of high-energy gamma rays generated

by a linear accelerator for active nondestructive assay was performed at the Linac

Department of Gulf General Atomic (Gozani, 1981). Common applications of nonde-

structive assay include: accounting of nuclear material, searching for nuclear material

as a safeguard against theft, verification of prior measurements and the quality con-

trol of nuclear materials (Gozani, 1981). Passive and active nondestructive assay

techniques will be explored further in the next sections.

1.2.1 Passive Interrogation

Passive interrogation involves the detection of gamma rays emitted intrin-

sically from nuclear materials. Both, uranium and plutonium isotopes, emit alpha

or beta radiation along with their associated gamma rays as a part of their natural

decay process. In addition, both isotopes can spontaneously fission producing fission

fragments along with their respective neutrons and gamma rays. The energies of the

gamma rays emitted are characteristic of the nuclide from which they originated and

detection of these gamma rays can be used to differentiate nuclear material from that

of background (Reilly, 1991).

Gamma rays emitted naturally from U-235 and Pu-239 are typically low in

energy, around the 500 keV range. For U-235, passive measurements include those at

or below 186 keV and for Pu-239, those at or below 413 keV (Beddingfield and Ce-

cil,1998). In most situations where uranium and plutonium need to be distinguished
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from one another, these lower energies are difficult to detect due high background

levels or to shielding. In addition, emissions from spontaneous fission are much lower

than those from induced fission. Implementing active interrogation methods can over-

come these challenges and results in a more accurate measurement of fissile material.

Passive interrogation is typically used to measure scrap, waste and residue;

however, passive interrogation methods have their limits (Gozani, 1981). For instance,

the emission of lower energy gamma rays from nuclear material such as uranium and

plutonium are easily shielded making passive interrogation nearly impossible. Or, in

the case of measuring plutonium and uranium in an spent nuclear fuel (SNF) assem-

bly, a complex overlapping background exists from the gamma rays emitted by the

build up of fission products during irradiation and those emitted by uranium and plu-

tonium; making measuring these materials quite challenging using passive methods

(Reilly, 1991).

1.2.2 Active Interrogation

The primary purpose for researching active NDA methods was for nuclear

safeguards; however, improved processes for quality control also resulted (Gozani,

2009). Active interrogation involves the use of penetrating radiation, typically a pho-

ton or neutron source, to induce fission on fissile material resulting in fission fragments

and their associated neutrons and gamma rays. Typically, a neutron source results

in the prompt fission production of two to three neutrons and about eight gamma
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rays (Gozani, 1981). Following irradiation, about six or seven delayed gamma rays

are emitted and about 0.01 to 0.02 delayed neutrons per fission (Gozani, 1981).

Active interrogation techniques may be used to detect either the prompt or

delayed emissions. On average, about eight photons are emitted per fission resulting

in prompt gamma-ray emissions having strong signatures (Gozani, 2009). However,

detecting the prompt emissions can be challenging due to irradiation and detection

occuring simultaneously. Doing so requires implementing one of many methods in

order to accurately differentiate the prompt fission emissions from the interrogating

source (Gozani, 1981). Delayed emission detection on the other hand measures the

decay of fission products after irradiation has ended. Inducing fission on U-235 and

Pu-239 results in fission products that decay via beta decay resulting in the emission

of subsequent gamma rays. Delayed gamma rays are about 500 to 700 times more in-

tense than delayed neutrons from fission and therefore the counting of delayed gamma

rays is a more sensitive method (Gozani, 1981).

Many authors have reported the use of active interrogation methods for de-

tection and quantification of shielded SNM (Norman, 2004; Slaughter, 2005; Hall,

2007; Miller, 2013). In addition, significant research has been performed on using

active interrogation for the management and accountablility of Pu-239 and U-235 in

spent fuel (Tobin, 2010; Rodriguez et al., 2013; Williford, 2013). Various active inter-

rogation methods are being explored; however, one of the more common techniques

utilizes the delayed gamma method.
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1.2.3 Delayed Gamma-Ray Detection

Early research showed that differentiating U-235 from Pu-239 could be per-

formed by using active interrogation and evaluating gamma-ray energy peaks greater

than 800 keV by looking at their peak intensity ratios and comparing these values

to calculated theoretical values (Beddingfield & Cecil, 1998). The intensity ratios

were developed from the multiple isotopes comprising the chosen peaks and were in-

dependent of the number of fissions induced. While the authors confirmed that their

method could be used to identify fissile material, they stated that a large number of

intensity ratios needed to be evaluated to ensure accurate identification.

Firestone et al. extended this research and looked at the prompt and de-

layed gamma-rays in the 3-4 MeV range to determine concentration and enrichment

of U-235. They found that the high-energy gamma rays above 3 MeV emitted from

the decay of short-lived fission products which provide a unique signature of fissile

material can be used to quantify uranium. Further, by using ratios of the gamma-ray

intensities, the concentration of fission iostopes could be determined (Firestone et al,

2005).

Both of these approaches relied on nuclear data which carries fairly high

uncertainty, especially for short-lived fission products. However, this research led to

the identfication of specific gamma-ray line pairs which dominated the gamma-ray

spectrum from 1 minute to 14 hours following fission (Marrs et al., 2008). Marrs

et al. focused on identifying gamma-ray line pairs that were insensitive to neutron
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energy. They were able to identify line pairs and groups with intensity ratios that

were different for U-235 and Pu-239 (Marrs et al, 2008). From here, research of a

novel temporal gamma-ray spectroscopy method was explored empirically by Chivers

(Chivers, 2011).

1.2.4 Temporal Gamma-Ray Spectrometry

In an effort to reduce the high uncertainities associated with traditional

methods, Chivers suggested to only look at the temporal response from the beta-

delayed gamma emissions of fissile materials. To do this, the peaks in the spectrum

needed to be normalized so that only temporal differences were present. This was

done by taking the counts in a 3 keV energy bin over a 2.5 second time frame and

normalizing this by the total number of counts over a 10 second time frame (the

entire counting interval) in the same 3 keV bin (Chivers, 2011). Using these ratios,

characterization of fissile material could be performed and by taking the difference of

these ratios the material could then be quantified. Chivers’ work was promising but

had not been carried out experimentally.

Building on their research, Williford exploited the time-dependent decay

characteristics of fission fragments and evaluated not only the peaks but he also looked

at how they changed as a function of time. To do this, Williford fission-normalized the

measurements by using peak responses at a reference time and creating a continuous

temporal spectrum. Several factors, such as the number of radioisotopes composing
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the peak, their respective half-life as well as whether any of the radioisotopes experi-

ence ingrowth, influence the temporal response of peaks (Williford, 2013). The tem-

poral method takes advantage of using the more pronounced, well-developed peaks

composed of multiple fission fragments thus minimizing systemic biases. Through

the evaluation of these high energy peaks (≥ 3 MeV) within the temporal spectrum,

Williford showed that he could quantify fissile material with a 2 % uncertainty; a

significant improvement from the existing 10 % uncertainty for SNF assemblies using

traditional delayed gamma methods (Williford, 2013; Charlton, 2011).

1.3 Evaluation of Lower Energy Delayed Gamma Emissions

To present, the focus of research has been on higher energy delayed gamma

rays that are easier to discern from the very complex spectrum of fission product

delayed gamma emissions below 3 MeV. However, lower energy delayed gamma emis-

sions are much more abundant. Evaluating the spectrum below 3 MeV using temporal

methods paired with machine learning techniques and descriptive statistical methods

leads to a data driven process that may provide additional information for fissile ma-

terial identification within this overwhelming portion of the spectrum.

Given the unique time-dependent decay characteristics of fission products,

known patterns of decay and ingrowth are expected throughout the spectrum. This a

priori knowledge can be used to generate a training set of data which use patterns of

decay and ingrowth to evaluate the spectra of uranium and plutonium. By learning
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which temporal patterns are present and which channels have significant attributes in

the spectra of uranium and plutonium, this information can be used as a set of rules

to develop a model that can identify these same temporal patterns in an unknown

sample.

1.4 Machine Learning

Machine learning is a subfield of computer science that originally was used

for artificial intelligence. Through the use of algorithmic methods, machine learning

is able to address complex data tasks. Breiman has written extensively about the

two cultures of statistical modeling. Scientists either assume that data was created

from a particular model or they assume an unknown model and apply algorithmic

methods to the data to reach conclusions (Brieman, 2001). The latter ensures a data

driven process and supports an innovative way of solving complex data problems.

Machine learning techinques are used across disciplines and have become

increasingly used to solve the issues surrounding “big data”. Machine learning tech-

niques, such as Neural Networks (NN) and Support Vector Machines (SVM), have

been used to interpret gamma-ray spectrometry data (Yoshida et al., 2002; Dragovic

et al., 2005; Kangas et al., 2008; Wei et al., 2010; Hata et al., 2015; Varley, 2016). For

example, an artificial neural network (ANN) algorithm used for pattern recognition

has been employed for gamma-ray spectral analysis from Ge detectors (Yoshida et

al., 2002). Typically, ANN is rarely used for gamma-ray spectrometry analysis due to
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the large spectral size (Yoshida et al., 2002). To overcome this, Yoshida et al. created

a subset of data consisting of peak energy information as the input data and used

patterns of emitted gamma-ray energies from individual nuclides for training. They

were able to successfully use ANN for pattern recognition and identify radioisotopes

within the gamma-ray spectra (Yoshida et al., 2002). However, they were unable to

process the raw spectral data and were limited to a data set consisting of gamma-ray

peak energies.

King states, “...the production of humanly comprehensible rules from a ma-

chine learning system allows the rules to be checked for consistency with existing

knowledge and opens the possibility that rules may provide fresh insight.”(King,

1992) King et al. used machine learning techniques to derive a set of rules that could

be used to predict relative activities for two drugs.

In supervised machine learning, the use of background knowledge is impor-

tant. A set of known inputs is used as a training set. These inputs are compared

with the desired outputs given by a “teacher” with the goal of learning rules that

map inputs to outputs. In our research, the inputs are rank-order, time-stamped

data and templates displaying the natural relationships of ingrowth and decay seen

in the emission of fission fragment decay products. The desired outputs are the rho

scores computed by using Spearman’s rank-order correlation coefficient (the measure

of association between our templates and the trends occurring in the data). Employ-

ing these methods, allows the discovery of meaningful patterns within a large complex

spectrum of gamma ray emissions.
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1.5 Descriptive Statistics

Measures of correlation are descriptive statistical methods used to show

the extent of relationship between two variables. Correlation measures are not used

for inferential purposes; however, once a measure of correlation has been calculated,

inferential statistics may be used to evaluate an hypothesis concerning the correlation

(Sheskin, 2011). In addition, a correlation between two variables does not imply that

a change in one variable causes a change in the other. If two variables have a strong

correlation, one can not conclude that one variable caused a change in the other

variable; rather it can be noted that there is an association present between the two

variables (Mukaka, 2012). Two of the most common measures of correlation are the

Pearson product-moment correlation coefficient (PPMCC) and the Spearman’s rank-

order correlation coefficient (Mukaka, 2012).

The Pearson product-moment correlation coefficient was developed by Karl

Pearson in 1900 and is a measure of linear correlation between two values. Spearman’s

rank-order correlation coefficient was developed in 1904 by Charles Spearman and is

a special case of the PPMCC. Spearman’s rank-order correlation coefficient is used

with rank-order data where PPMCC is used with interval/ratio data (Sheskin, 2011).

Spearman’s rank-order correlation coefficient evaluates the extent of a monotonic

relationship between two variables. A monotonic increasing relationship exists if as

one variable increase so does the other. A monotonic decreasing relationship exists if

as one variable decreases (increases) the other increases (decreases) (Sheskin, 2011)
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where the rate of change between variables does not necessarily occur at a constant

rate; therefore, the relationship may be linear or curvilinear. A monotonic increasing

relationship is indicative of a positive association whereas a monotonic decreasing

relationship is indicative of a negative association (Sheskin, 2011).

The Spearman’s method is ideal for data sets that do not have a normal

distribution, have a potential for outliers and have non-linear relationships (Sheskin,

2011). Radioactive decay is a stochastic, non-linear process; making Spearman’s

rank-order correlation coefficient an appropriate method to implement into a machine

learning process for the identification of the differences in the spectra of plutonium

and uranium.

1.6 Goal and Objectives

The goal of this research project was to determine whether useful informa-

tion could be obtained below 3 MeV from the fission product spectra of plutonium and

uranium produced by thermal neutron induced fission through the use of supervised

machine learning techniques and the application of nonparametric statistical meth-

ods. Typically, when performing active interrogation of SNM, the focus is placed on

identifying peaks above 3 MeV as they provide a unique signature for fissile material

and are easily discerned from background. The delayed gamma-ray spectrum below

3 MeV is quite complex making it difficult to identify peaks for characterizing SNM.

Further, the fission yield curves of Pu-239 and U-235 overlap adding to the difficulty
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in identifying these two materials independently.

By developing a data training set comprised of templates corresponding to

known radioactive decay behavior and using Spearman’s rank-order correlation co-

efficient, patterns can be identfied within the gamma-ray spectra of uranium and

plutonium. The result will be channels that show significant differences between the

two materials. These significant attributes are characteristic of the radioactive decay

behavior of the isotopes comprising these channels. The patterns and channels iden-

tified will therefore lead to a model that can be used for identfication of unknown

material.
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2 Materials and Methods

2.1 OSU TRIGA Reactor and Beam Port #4

The Oregon State University TRIGA Reactor (OSTR) is a convection cooled,

pool-type 1 megawatt (MW) research reactor It is licensed to operate at a steady state

of 1.1 MW. The reactor core contains fuel elements composed of low-enriched ura-

nium homogeneously combined with zirconium-hydride and is surround by a graphite

reflector (Oregon State University, 2007). Four beam ports penetrate the concrete

shield and reactor tank entering the graphite region. Figure 2 is a horizontal diagram

of the reactor.

Figure 2: Horizontal section of the OSTR (Robinson, 2012).
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The Prompt Gamma Neutron Activation Analysis Facility (PGNAA) is lo-

cated at beam port #4, which penetrates the graphite reflector and looks directly at

the core producing the highest thermal neutron flux of all the beam ports (Robinson,

2012; Williford, 2013). The facility consists of a collimator, beam shutter, sample

chamber, beam stop and high purity germanium detector. The detector is housed

within borated polyethylene and lead shielding and is positioned 90 degrees from the

neutron beam. Lead and boral rings located in the collimator are used to collimate

the neutron beam to a uniform diameter of 2 cm (Robinson, 2012). The beam is

filtered by the use of bismuth and sapphire filters which reduce the gamma and fast

neutrons, respectively. The shutter can be moved to prevent the neturon beam from

entering the sample chamber when the beam port is not in use. The sample cham-

ber is where the sample resides when it is undergoing irradiation. The beam stop

is the final component of the PGNAA facility and is used to stop the beam when

the shutter is open during irradiation. The facility components are designed so that

they can be evacuated or back-filled with helium to reduce interactions with air that

would increase background levels and decrease the signal-to-noise ratio of the detector

(Robinson, 2012). Figures 3 and 4 show schematic diagrams of beam port #4.
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Figure 3: Schematic of the PGNAA Facility Beam Port #4 (Robinson, 2012).

Figure 4: Schematic Cross Section of Beam Port #4 (Robinson, 2012).

2.2 Fast Rabbit Pneumatic Transfer System

A pneumatic transfer system was built around the PGNAA facility at the

end of beam port #4 to maximize the counting geometry for samples. The original

distance between the sample and the HPGe detector when it was positioned 90 degrees

from the neutron beam was about 30 cm; with the implementation of the new design,



19

the distance between the sample and the detector was 10 cm. This allowed for an

ideal efficiency to look for low yield fission products from uranium and plutonium

(Williford, 2013). The pneumatic transfer system was used to shuttle the sample

between the beam and the detector. The polyethylene encapsulated sample was

propelled through the system using pressurized helium with a transit time of 50

milliseconds (ms). A programmable logic controller (PLC) was setup to automate

the irradiation time, count time and rest time. Two optical sensors were used to send

a signal to the PLC indicating when the sample was being counted or irradiated.

This information was then sent to the digital spectrometer where it was recorded in

the List Mode data files. Figure 5 displays a schematic of the Fast Rabbit Pneumatic

Transfer System.

Figure 5: Schematic of Fast Rabbit Pneumatic Transfer System#4 (Williford, 2013).
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2.3 Irradiation of Samples

Using beam port #4 and the fast rabbit pneumatic transfer system, samples

of 178.2 milligrams (mg) of uranium-235 (HEU) nominally enriched to 93 % and 15.4

mg of plutonium-239 (Pu) were irradiated and counted in ten second, one minute

and ten minute intervals for twenty cycles each. This research utilizes the temporal

gamma-ray spectra data produced from the one minute irradiation cycles.

Figure 6: Photograph of Pu-239 (15.4 mg) sample.

Figure 7: Photograph of U-235 (178.2 mg) sample.
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2.4 Gamma-Ray Spectroscopy

An important aspect of detection is understanding the way in which ionizing

radiation interacts with matter. Charged particles, such as alpha and beta particles,

interact directly with the material they are traversing via ionization or excitation.

Photons on the other hand, are uncharged particles and interact indirectly with the

material they pass through. Detection of these particles is dependent on the transfer

of photon energy to electrons in the absorbing material. Three main interaction mech-

anisms are dominant in gamma-ray spectroscopy: photoelectric absorption, Compton

scattering and pair production. Photoelectric absorption occurs most often for low-

energy gamma rays, pair production occurs most often for high-energy gamma rays

and Compton scattering occurs most often between these two extremes. The proba-

bility of occurrence of these three mechanisms is also dependent on the atomic number

of the absorbing material. The probability of photoelectric absorption is greatest for

high-Z materials and therefore gamma-ray spectroscopy detectors use materials with

a high atomic number (Knoll, 2010).

2.5 High-Purity Germanium Detector

The detector used for this research was a coaxial, high-purity germanium

detector (HPGe) chosen for its superior energy resolution. In a coaxial configuration,

the core of the crystal is removed and one electrode is provided on the outer surface
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(either p+ or n+ contact) of the crystal while a second electrode is provided on the

inner surface (opposite contact of the outer electrode) of the crystal. Use of coaxial

(cylindrical) geometry, incorporates a larger crystal volume resulting in a larger active

volume in the detector (Knoll, 2010). Figure 8 displays the most common types

of coaxial geometries and Figure 9 displays schematic diagrams of p- and n-type

detectors.

True coaxial Closed-ended coaxial Closed-ended coaxial
(bulletized)

represents electrical contact surface

Figure 8: Schematic of three different coaxial geometries (Reproduced from Knoll,
2010).

π-type Ge

Holes

Electrons

n+ contact p+ contact

p-type coaxial

– +

ν-type Ge

Holes

Electrons

p+ contact n+ contact

n-type coaxial

+ –

Figure 9: Schematic of p- and n-type coaxial detectors. (Reproduced from Knoll,
2010).
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Semiconductors achieve better energy resolution due to the increased num-

ber of charge carriers for a given radiation event. In semiconductors, the carriers are

electron-hole pairs moving between the valence and conduction bands of the crystal.

In the prescence of an applied electric field, these pairs move in opposite directions

contributing to the conductivity of the material (Knoll, 2010). The small band gap

between the valence and conduction bands of the semiconductor require that an HPGe

detector must be cooled to liquid nitrogen temperature (77 K) to reduce current leak-

age so that the associated noise does not interfer with the energy resolution (Knoll,

2010). The HPGe detector was coupled with a digital spectrometer, the DSPEC Pro

(Model: DSPEC Pro, Serial Number: 199), and can be operated in standard mode

using GammaVision or in List Mode (ORTEC, 2016).

2.6 List Mode

Operating in List Mode, information such as the time of detection, energy

channel, as well as live and real time data are collected and streamed to the com-

puter (ORTEC, 2016). This data file can then be converted into a usable text file.

For this research, the DSPEC Pro was operated in List Mode rather using traditional

spectroscopy methods which result in a spectrum output for the user.

ListPRO is a program developed by ORTEC and is used to retrieve the List

Mode data which is stored in an internal memory cache every 10 milliseconds (OR-

TEC, 2016). Following data retrieval, the cache is cleared and all data is dumped.
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The result is a large data file (.dat) of each detected count, its respective time of

occurrence (in increments of 200 nanoseconds), the channel in which the count oc-

curred (ADC), running live and real time (in increments of 10 milliseconds), header

information as well as external port readings (in increments of 10 milliseconds) that

must be converted to a text file by the ORTEC ListDump program for further use

(Williford, 2013).

The ORTEC ListDump program reads the .dat file and converts it to a

tab delimited text file which displays a list of sequential events along with header

information. Figure 10 shows an excerpt of the List Mode text file produced.

Figure 10: Excerpt of List Mode text file from a 10 second HEU irradiation cycle
produced by the ORTEC ListDump program.
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U1, U2 and U3 separate the Coordinated Universal Time (UTC) time-

stamps, the spectrometer’s count-rate meter (CRM) records the time since the last

cache dump, EX1 indicates the value of the signal into external port 1, ADC repre-

sents the channel in which the count was detected, LT represents the live time and

RT represents the real time.

2.7 Parse Code

List Mode data was collected continuously during irradiation cycles whether

the sample was in front of the detector or being irradiated. The List Mode data files

needed to be parsed in order to evaluate the data when the sample was in front of the

detector. To do this, Williford developed a parse code using Python. As mentioned

earlier, in the List Mode text file the value of EX 1 represents where the sample is

located. EX 1 has a value of 0 during sample irradiation and then switches to a

value of 1 when the sample is at the detector. The parse code was written to look

for the the switch from 0 to 1. Parsing of the raw data resulted in forty individual

one-minute time stamped data files, twenty files corresponding to the twenty cycles

of irradiation/counting performed for each material. These files contained the time

at which a count was detected and the channel (ADC) in which it occurred.
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2.8 R Statistical Software

R is a language and environment used for data calculation, manipulation and

visualization (Venables et al., 2016). R has a history of being utilized for scientific

and statistical analysis. It is available as Free Software through the GNU Operating

System project. R contains many standard packages that make up the base environ-

ment. In addition to these, there are many packages available meant to extend the

R environment (Venables et al., 2016). Lattice, a graphing package, was utilized for

visualization of the temporal behavior present in channels of interest. The LOESS

smoothing function was applied to the scatter plots to show the overall trend present

in the data points. The LOESS method is used to fit a smooth curve between two

variables. It is a nonparametric method of local polynomial regression. It is used as

a non-formal modeling tool, as a scatter plot smoother (Avery, 2012).

2.9 Descriptive Statistics

Descriptive and inferential statistics are two areas that comprise the field of

statistics. Descriptive statistics are referred to as assumption free and are used for

presenting and summarizing data rather than for making predictions (Sheskin, 2011).

Through the use of descriptive statistics, the data can be displayed in a meaningful

way so that patterns may emerge. As mentioned earlier, evaluating the measures

of association/correlation are categorized as descriptive statistical methods. In this
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section, two measures of correlation will be discussed.

2.9.1 The Pearson Product-Moment Correlation Coefficient

The Pearson Product-Moment Correlation Coefficient (PPMCC) is a bi-

variate, parametric measure of association/correlation. This method is used with

interval/ratio data to evaluate whether a linear relationship exists between two vari-

ables. The correlation coefficient computed by PPMCC is represented by the Greek

letter rho, ρ and can have a value between 1 and -1. As the absolute value of ρ ap-

proaches 1, the strength of the linear relationship between the two variables increases

(Sheskin, 2011). As the absolute value of ρ approaches 0, the strength of the linear

relationship between the two variables decreases. The sign of ρ indicates the direction

of the linear relationship where, a positive sign indicates a direct linear relationship

and a negative sign indicates a indirect (inverse) linear relationship (Sheskin, 2011).

The following formula is used to calculate ρ,

ρ =

∑
XY − (

∑
X)(

∑
Y )

n√[∑
X2 − (

∑
X)2

n

] [∑
Y 2 − (

∑
Y )2

n

] (1)

where, X and Y represent the values of the two data sets, and n represents the number

of measurements in the data set.

The PPMCC assumes a linear relationship best represents the data. The

value of ρ may not indicate the extent of the relationship between the two variables if a
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curvilinear relationship better describes the data (Sheskin, 2011). In this research, the

temporal spectra were evaluated for curvilinear patterns of ingrowth and decay which

are characteristic of radioactive decay. Spearman’s rank-order correlation coefficient,

used for curvilinear relationships, will be discussed next.

2.9.2 Spearman’s Rank-Order Correlation Coefficient

Spearman’s rank-order correlation coefficient is a nonparametric, descriptive

statistical method used to investigate the strength of association between non-linear

sets of rank-order data (Sheskin, 2011). Given that the Spearman’s method assumes

nothing about the distribution and is used for non-linear associations, it is an ideal

method for use in this research. Spearman’s rank-order correlation coefficient is a

special case of the Pearson product-moment correlation coefficient therefore it is also

represented by the Greek symbol rho, ρ, designated as ρs and referred to as Spear-

man’s rho or Spearman’s correlation coefficient. To calculate Spearman’s correlation

coefficient, the data sets are ranked separately in either ascending or descending or-

der as long as the ranking is performed the same for both data sets (Sheskin, 2011).

Table 1 shows an example of how two data sets would be ranked.
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Channel

Counts

Rank

Pu-239
Template 1

Rank
Template 1

264 10 659 1

267 9 435 2

283 7 287 3

275 8 190 4

285 6 125 5

295 4 83 6

287 5 54 7

306 2 36 8

301 3 24 9

313 1 16 10

Table 1: Example ranking of two data sets. The first ranked data set is Channel
231 from a single Pu irradiation cycle and is to be compared with the ranked data of
Template 1, the second data set.

The difference in ranks is calculated, the resulting values squared and then

summed. The following formula is used to calculate Spearman’s correlation coefficient

for untied ranks:

ρs = 1 −
6

n∑
i=1

(di)
2

n(n2 − 1)
(2)

where, n represents the number of measurements in the data set and di represents

the difference in ranks. While Equation 2 is for untied ranks, it has been noted

in the literature that if only a few ties exist using Equation 2 is still quite reliable
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(Brase, 1983). In R, a tie-corrected formula is used to compute Spearman’s correlation

coefficient. Equations 3 through 6 lead to the final formula utilized in R seen here as

Equation 7:

Tx =
s∑

i=1

(t3(x) − ti(x)) (3)

Ty =
s∑

i=1

(t3(y) − ti(y)) (4)

The notations in Equations 3 and 4, indicate that for each variable, the number of

tied ranks is subtracted from the number of tied ranks cubed and then summed.

∑
x2 =

n3 − n− Tx
12

(5)

∑
y2 =

n3 − n− Ty
12

(6)

where, n in Equations 5 and 6 represent the number of observations in the data set.

ρsc =

∑
x2 +

∑
y2 −

∑
d2

2
√∑

x2
∑
y2

(7)

In order to verify that the same ρs will be computed when using the tie-
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corrected formula on data that are untied, consider a simple example where the

computed Spearman’s correlation coefficient is a value of one. Assume the sum of the

difference in ranks to be zero and the number of observations in the data set to be

ten. Substituting these values into Equation 2 computes the following ρs value:

ρs = 1 − 6(0)

10(102) − 1
= 1 (8)

Now, compare the results from Equation 8 to the results of the tie-corrected

formula used in R, Equation 11. Equations 3 and 4 result in a value of zero since

there are no ties present in the data set. Substituting in ten for n and Equation 3

into Equation 5 the result is,

∑
x2 =

103 − 10 − 0

12
= 82.5 (9)

Substituting in ten for n and Equation 4 into Equation 6 the result is,

∑
y2 =

103 − 10 − 0

12
= 82.5 (10)

Finally, substituting in zero for the difference in ranks and Equations 5 and 6 into

equation 7 the result is,
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ρsc =
82.5 + 82.5 − 0

2
√

(82.5)x(82.5)
= 1 (11)

Equation 11 results in a Spearman’s correlation coefficient of 1, the same result seen

using Equation 8.

As with PPMCC, the Spearman’s correlation coefficient produces a value

between 1 and -1 indicating either a strong positive or a strong negative association

between the paired data sets. As mentioned previously, an association between data

sets does not imply causation (Sheskin, 2011). Spearman’s rank-order correlation

coefficient is a descriptive statistical method, and for the purposes of this research is

used for pattern recognition, not to predict behavior.

2.10 Supervised Machine Learning

Supervised machine learning is driven by relationships. A rule based system

is needed that uses known inputs and desired outputs to teach a system rather than

to explicitly program it. Through feature selection, relevant features are identified in

the data and used for model construction.

In this research, the known inputs are the interval ranked time-stamped data

and templates whereas the desired outputs are the measures of association between

the data sets, the ρs values. Signatures of nuclear material will be identified based on

temporal behavior patterns. These relevant features are used to develop a model that
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can be compared against an unknown data set to classify unknown nuclear material.

Through a library of templates, Spearman’s rank-order correlation coeffi-

cient, a descriptive statistical method, can be used to identify temporal behavior pat-

terns in the data. Once relavant features are selected the process can be automated

and through the implementation of a decision tree, the classification of unknown spe-

cial nuclear material can be performed. This process leads to a data driven method

which supports forensic science.

2.11 Use of Spearman’s Correlation Coefficient to Identify

Patterns in Temporal Gamma-Ray Spectroscopy

This research employed a nonparametric statistical method as part of a su-

pervised machine learning process to identify differences in the temporal gamma-ray

spectra of uranium and plutonium. Typically, Spearman’s correlation coefficient is

used to determine whether or not an association between two random sets of paired

data exists as part of a descriptive statistical process. For this research, Spearman’s

correlation coefficient was used for pattern identification as part of a machine learning

process and therefore the Spearman’s correlation coefficient computation was imple-

mented in a slightly different way. While the raw time-stamped data sets of plutonium

and uranium were random in nature due to the stochastic process of radioactive de-

cay, they were compared individually to training data sets which were comprised of

known inputs resembling specific patterns characteristic of radioactive decay in order
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to tease out patterns in the plutonium and uranium temporal spectra. Comparing a

random data set to one comprised of known inputs as a part of the supervised machine

learning process made this method unique. Further, ρs for one channel/template pair

of plutonium was compared to ρs of the same channel/template pair of uranium as

opposed to evaluating ρs for the strengths of association between materials directly.

In order to determine which patterns were significant, delta rho (∆ρs,HEU,Pu)

was calculated by taking the absolute value of the difference in the individual ρs val-

ues of plutonium and uranium. Implementing feature selection as part of the machine

learning process, ∆ρs values were clustered to identify channels with the highest ∆ρs

indicating those channels with the greatest difference between the two materials. For

example, a channel that returns a “weak” ρs value for plutonium and a very “strong”

ρs value for the same channel of uranium would result in a relatively large ∆ρs value

indicating a difference in their temporal spectra as seen in Figure 11 below.

Figure 11: Channel 230 Cycle 19 has a ρs,HEU of 0.93, a ρs,Pu of -0.47 and a
∆ρs,HEU,Pu of 1.40.
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Similarly, a channel that returns very “strong” ρs values for both plutonium and

uranium but with opposite trends in association would also highlight the difference

in temporal spectra between fissile materials and can be seen in Figure 12 below.

Figure 12: Channel 139 Cycle 5 has a ρs,HEU of 0.95, a ρs,Pu of -0.90 and a ∆ρs,HEU,Pu

of 1.85.

Patterns such as these, highlight the differences in the temporal spectra of plutonium

and uranium and help form as set of rules that may be implemented in the process

of evaluating an unknown data set.

2.12 Template Development

Using the basic principles of the radioactive decay law and serial decay, four

templates were created to form the training set of patterns to be used in the compu-

tation of Spearman’s correlation coefficient. In order to perform the computation of
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Spearman’s rho, the data sets being compared must have the same number of values.

The sixty second counting cycles for each channel of the raw time-stamped data were

divided into ten, six second intervals. Therefore, the templates used for the training

set were developed to have ten, six second intervals as well.

Figure 13: Template displaying decay pattern.

Figure 14: Template displaying ingrowth pattern.
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Figure 15: Template displaying ingrowth and decay pattern.

Figure 16: Template displaying decay and ingrowth pattern.

Postive and negative linear trend templates were not used. The results of

the decay template sensitivity analysis, Section 3.1, showed that varying the decay

rate of the function did not effect the ρs value. Even with a long decay rate, a near

negative linear trend, the ρs value was still 1. For completeness, positive and negative
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linear templates were created and run against the decay data. As expected, ρs values

were -1 and 1, respectively.

2.13 Quantiles

A quantile is a measure used to divide a data set into equal percentage points

(Sheskin, 2011). A percentile, an example of a quantile, corresponds to a value in the

data set at which a certain percentage of the values fall at or below (Sheskin, 2011).

The basic quantile function is described in R as,

quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, type = 7, ....)

where:

• x= data being measured

• probs=specifies the percentiles to be returned

• na.rm= a logical argument; if true, the NA values will be removed before the

quantiles are computed.

• names=a logical arugment; if true, the result has a names attribute

• type= an interger that identifies which of the nine quantile algorithms to be

used
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In R, the user has the abililty to use the quantile function to cluster the data

into various percentile groupings. The quantile function was utilized as a clustering

technique at two different stages during the data analysis process; to remove the

channels with the lowest count frequency and to determine significant channels based

on the ∆ρs,HEU,Pu values.

2.14 Evaluation Using R

For initial proof-of-concept, individual channels from temporal gamma-ray

spectra of uranium and plutonium were evaluated using a nonparametric, descrip-

tive statistical method in R. In order to compute Spearman’s correlation coefficient,

temporal interval matrices for each cycle needed to be created. Using the parsed

raw time-stamped data, the cut function in R was used to divide the time field into

a sequence of ten, six second intervals for each cycle. The result was a temporal

interval matrix of all channels for each cycle. Table 2 is an excerpt of the HEU raw

time-stamped data after parsing of the List Mode data and before applying the cut

function in R. Table 3 is an excerpt of the resulting temporal interval matrix for HEU.
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Cycle Real Time Channel UTC Time

10 1144530 1872 15:59:04.402

10 1144530 228 15:59:04.402

10 1144530 557 15:59:04.403

10 1144530 493 15:59:04.403

10 1144530 356 15:59:04.403

10 1144530 793 15:59:04.403

10 1144530 528 15:59:04.403

10 1144531 113 15:59:04.403

10 1144531 93 15:59:04.403

10 1144531 2945 15:59:04.404

Table 2: HEU raw time-stamped data for Cycle 10 after parsing. UTC Time repre-
sents the Coordinated Universal Time and the real time represents the time.

Interval

1 2 3 4 5 6 7 8 9 10

C
h
a
n
n
e
l

338 48 50 50 49 38 48 48 36 47 39

339 53 60 61 37 31 51 47 41 47 39

340 58 71 58 46 47 36 41 43 37 34

341 51 46 44 42 52 36 33 35 35 29

Table 3: HEU temporal interval matrix for Cycle 10. Each channels counts were
divided into ten, six second intervals accounting for the total counts acquired over
the sixty second counting period.

Using the quantile function in R, the channels with lower counts in the

temporal interval matrices were removed. The 83rd percentile was used resulting in

a unique count threshold of at least 100 counts to be applied to each cycle.
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Using the training sets, Spearman’s correlation coefficient was computed for

all forty cycles to identify patterns in the data that would show significant differences

between HEU and Pu. Tables 4 and 5 are excerpts of the Pu and HEU interval

matrices with their computed decay ρs, respectively.

Interval Decay

ρs,Pu1 2 3 4 5 6 7 8 9 10

C
h
a
n
n
e
l

301 162 194 189 174 197 205 202 206 226 194 -0.71

302 186 223 205 177 192 233 228 218 213 232 -0.52

303 181 172 174 167 155 193 164 191 197 173 -0.23

433 102 86 66 76 60 62 76 53 60 57 0.81

Table 4: Pu temporal interval matrix for Cycle 11 with decay ρs,Pu.

Interval Decay

ρs,HEU1 2 3 4 5 6 7 8 9 10

C
h
a
n
n
e
l

301 108 97 75 72 67 57 47 43 40 57 0.90

302 88 73 69 71 61 55 60 50 56 46 0.92

303 94 81 72 77 70 43 59 53 54 55 0.81

433 152 158 157 175 171 161 145 171 160 166 -0.30

Table 5: HEU temporal interval matrix for Cycle 11 with decay ρs,HEU .

The Pu and HEU interval matrices were then merged in order to calculate the

∆ρs,HEU,Pu values. This was repeated for each of the four templates comprising the

data training set.
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In order to determine significant channels within the data, the quantile func-

tion in R was utilized to cluster the data into various percentile groupings based on

∆ρs,HEU,Pu values. Based on the results, three percentiles (0.90, 0.95 and 0.98) were

selected to evaluate channels identified as having significant differences for the two

materials. Spreadsheets for all twenty cycles and each of the four templates were

created for all three percentile groupings (0.90, 0.95 and 0.98). Histograms were used

to visualize channel frequency across the twenty cycles. Subsets of channels with

higher ∆ρs,HEU,Pu values that occurred consistently across cycles for each of the four

templates were created for further evaluation. Lattice, a graphing package in R, was

used to visualize the temporal behavior present in selected channels and to evaluate

the differences between HEU and Pu.
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3 Results and Analysis

3.1 Decay Template Sensitivity Analysis

Spearman’s rank-order correlation coefficient is calculated by comparing the

individual values of two sets of rank-order data against one another. Calculating the

ρs based on rank-order implies that changes in the magnitude of the interval values

within the data sets should not have an effect on the calculated ρs.

To determine whether varying the magnitude of the interval values of the

template would have an effect on the calculated ρs, a sensitivity analysis was per-

formed on the template displaying a decay pattern (Template 1), Figure 13. Using

Template 1, a test data set of thirteen templates was created where Template 0 rep-

resents the original decay template with a decay constant (λ) of -0.0693. Twelve

additional templates were created by varying λ in increments of +/- 10 % relative to

template zero.

The Spearman’s correlation coefficient calculation was performed on each of

the thirteen template and test data template combinations. Table 6 shows the per

cent change in λ values calculated relative to Template 0 as well as the calculated ρs.

As seen in Figure 17, varying the magnitude of the template did not have an effect

on the ρs as it remained at a value of one (a perfect positive association) for each of

the thirteen templates.

Based on these results, any of the thirteen templates could have been used to
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identify the general decay pattern within the data. Template 1, the Decay Template

with a λ of -0.0693 was chosen. As mentioned previously, Spearman’s correlation

coefficient is a descriptive statistical method, and in this research is used for pattern

recognition, not to predict behavior.

Template Per Cent Change Relative
to Template 0 λ ρs

0 0 -0.0693 1

1 -10% -0.0624 1

2 +10% -0.0762 1

3 -20% -0.0554 1

4 +20% -0.0832 1

5 -30% -0.0485 1

6 +30% -0.0901 1

7 -40% -0.0416 1

8 +40% -0.0970 1

9 -50% -0.0347 1

10 +50% -0.1040 1

11 -60% -0.0277 1

12 +60% -0.1109 1

Table 6: ρs results based on per cent change in λ relative to Template 0.
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Figure 17: Plot of ρs versus per cent change in λ relative to Template 0.

3.2 Evaluation of Cycle Independence

Build-up of long-lived fission products occurs when the sample has not been

given a long enough rest period before subsequent irradiations. In order to evaluate

whether build-up was seen in the twenty cycles, a tally matrix was created for all

channels across twenty cycles. The data was then plotted in Excel and a linear re-

gression analysis was performed. The results indicated that both materials showed

build-up; however, it was difficult to know where in the spectrum this was occurring

The trend lines in Figures 18 and 19 show a 10 %, a half per cent per cycle, increase

in total counts from Cycle 1 to Cycle 20. The R2 value for HEU is 0.15 and for Pu

it is 0.81.

Build-up has the potential of obscurring peaks within the spectrum. In

this research, evaluation of the spectrum was not based on identifying specific peaks.

Rather, the entire spectrum was evaluated for patterns of radioactive decay and
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ingrowth. Therefore, cycles were evaluated independently when determining the fre-

quency and ∆ρs,HEU,Pu quantiles. Optimizing the irradiation and count/rest times

could be beneficial at reducing the build-up seen and should be investigated as future

work.

Figure 18: Frequency of counts in each of the twenty cycles for the irradiation of
HEU.

Figure 19: Frequency of counts in each of the twenty cycles for the irradiation of
Pu.
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3.3 Validation of ρs Computation

A simple analysis was performed in order to assess the accuracy of the

calculation of Spearman’s correlation coefficient using R. Test data sets were created

by using the template values, seen in Table 7, and multiplying them by a factor

of 3. This resulted in four test data sets, seen in Table 8, that when run against

their corresponding template should return a ρs of 1. The Spearman’s correlation

coefficient computation was performed by running each of the four templates against

the set of four test data sets. The subsequent ρs values were then evaluated and

compared to the expected ρs values.

Interval

1 2 3 4 5 6 7 8 9 10

T
e
m

p
la

te

1 659 435 287 190 125 83 54 36 24 16

2 340 565 713 810 875 917 946 964 976 984

3 314 478 548 562 543 507 462 415 368 325

4 659 435 287 190 125 340 565 713 810 875

Table 7: Interval values for Templates 1-4.
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Interval

1 2 3 4 5 6 7 8 9 10

T
e
st

D
a
ta

1 1977 1305 861 570 375 249 162 108 72 48

2 1020 1695 2139 2430 2625 2751 2838 2892 2928 2952

3 942 1434 1644 1686 1629 1521 1386 1245 1104 975

4 1977 1305 861 570 375 1020 1695 2139 2430 2625

Table 8: Test data sets created from the four templates in Table 2.

Interval Template 1
ρs

1 2 3 4 5 6 7 8 9 10

T
e
st

D
a
ta

1 1977 1305 861 570 375 249 162 108 72 48 1.0

2 1020 1695 2139 2430 2625 2751 2838 2892 2928 2952 -1.0

3 942 1434 1644 1686 1629 1521 1386 1245 1104 975 0.32

4 1977 1305 861 570 375 1020 1695 2139 2430 2625 -0.57

Table 9: The ρs values for Template 1, the template displaying a decay pattern.

Table 9 shows that when compared to the template displaying a decay pat-

tern (Template 1), test data sets 1 and 2 resulted in a ρs of 1 and -1, respectively.

This was expected as the values of test data set 1 showed a decay pattern while the

values of test data set 2 showed an ingrowth pattern. Also expected, test data sets 3

and 4 had ρs values much lower than 1 and -1, respectively.
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Interval Template 2
ρs

1 2 3 4 5 6 7 8 9 10

T
e
st

D
a
ta

1 1977 1305 861 570 375 249 162 108 72 48 -1.0

2 1020 1695 2139 2430 2625 2751 2838 2892 2928 2952 1.0

3 942 1434 1644 1686 1629 1521 1386 1245 1104 975 -0.32

4 1977 1305 861 570 375 1020 1695 2139 2430 2625 0.57

Table 10: The ρs values for Template 2, the template displaying an ingrowth pattern.

Table 10 shows that when compared to the template displaying an ingrowth

pattern (Template 2), test data sets 1 and 2 showed inverse results from that of the

computation for the template displaying decay. Again, this was expected as the values

of test data set 1 were of a descending order and the values of test data set 2 were of

ascending order. Test data sets 3 and 4 also showed inverse results from that of the

template displaying a decay pattern.

Interval Template 3
ρs

1 2 3 4 5 6 7 8 9 10

T
e
st

D
a
ta

1 1977 1305 861 570 375 249 162 108 72 48 0.32

2 1020 1695 2139 2430 2625 2751 2838 2892 2928 2952 -0.32

3 942 1434 1644 1686 1629 1521 1386 1245 1104 975 1.0

4 1977 1305 861 570 375 1020 1695 2139 2430 2625 -0.89

Table 11: The ρs values for Template 3, the template displaying an ingrowth followed
by decay pattern.
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Table 11 shows that when compared to the template displaying an ingrowth

followed by decay pattern (Template 3), test data set 3 was the only one to return

a ρs value of 1. Test data sets 1 and 2 returned the same ρs value of 0.32 but with

opposite signs and test data set 4 returned a ρs value of -0.89. Comparing Table 6

to Tables 4 and 5, test data sets 1 and 2 returned the same ρs values as test data

set 3 returned when compared to the template displaying a decay pattern and the

template displaying an ingrowth pattern.

Interval Template 4
ρs

1 2 3 4 5 6 7 8 9 10

T
e
st

D
a
ta

1 1977 1305 861 570 375 249 162 108 72 48 -0.57

2 1020 1695 2139 2430 2625 2751 2838 2892 2928 2952 0.57

3 942 1434 1644 1686 1629 1521 1386 1245 1104 975 -0.89

4 1977 1305 861 570 375 1020 1695 2139 2430 2625 1.0

Table 12: The ρs values for Template 4, the template displaying a decay followed
by ingrowth pattern.

Table 12 shows that when compared to the template displaying a decay fol-

lowed by ingrowth pattern (Template 4), test data set 4 was the only data set to

return a ρs value of 1. Test data sets 1 and 2 returned ρs values of -0.57 and 0.57,

respectively. Test data set 3 returned a ρs value of -0.89. Comparing Tables 5 to 7,

test data sets 1 and 2 returned the same ρs value of 0.57 (with opposite signs) as test

data set 4 returned when compared to the template displaying a decay pattern and

the template displaying an ingrowth pattern. Also, test data set 3 returned a ρs value
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of -0.89 the same ρs value as test data set 4 returned when compared to the template

displaying an ingrowth followed by decay pattern.

In summary, when the Spearman’s correlation coefficient was computed on

all of the test data set/training data set combinations, the expected ρs values were re-

turned validating the accuracy of the Spearman’s correlation coefficient computation

in R.

3.4 Frequency Quantile

Using the quantile function in R, percentiles in one per cent increments

ranging from 78 to 92 were evaluated. Counts varied across the twenty cycles for both

materials. Rather than using a standard count threshold for all cycles, a percentile

was chosen which resulted in using a count threshold that was unique to the individual

cycle and material. The lowest count threshold for the entire percentile range (78 to

92) was 63 counts and the highest was 403.

After evaluating the data at each percentile, the 83rd percentile was chosen

for the frequency quantile. This ensured that counts were greater than or equal to

100 for each of the twenty cycles and both materials. Choosing a count threshold

of 100 resulted in the inclusion of the most channels that had the potential to be

significant. Channels with counts lower than 100, on average, had less than 10 counts

per interval which would not show enough variation in temporal behavior. The lowest

count threshold for the 83rd percentile was 100 and the highest count threshold was
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147. This shows that there was variation between materials and across the twenty

cycles; however, the variation was minimal. Furthermore, the variation in counts at

each percentile was typically within ten counts; the greatest variation being 31 counts

for cycle 10 with HEU having 103 and Pu having 134. The 83rd percentile frequency

quantile was held constant while the ∆ρs,HEU,Pu quantiles were varied.

3.5 Quantiles for ∆ρs,HEU,Pu

The quantile function in R was also utilized as a clustering technique to

determine significant channels based on the ∆ρs,HEU,Pu values. The 90th, 95th, and

98th percentiles were evaluated after performing the Spearman’s correlation coefficient

computation for each of the templates comprising the training set. The ∆ρs,HEU,Pu

values varied per cycle as well as template, resulting in a range of ∆ρs,HEU,Pu values at

each percentile. Table 13 shows the ∆ρs,HEU,Pu ranges for each of the three percentiles.

∆ρs,Pu,HEU Percentile

0.90 0.95 0.98

T
e
m

p
la

te

1 0.48-0.56 0.61-0.73 0.79-0.90

2 0.48-0.56 0.61-0.73 0.79-0.90

3 0.49-0.60 0.59-0.72 0.71-0.87

4 0.53-0.64 0.66-0.76 0.79-0.92

Table 13: The ∆ρs,HEU,Pu ranges for each template and all three percentiles.

All three percentiles returned a significant number of channels for evaluation.
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In order to determine which channels were consistently present within the twenty

cycles, an output file of the frequency of channels present in each of the twenty cycles

for all four templates was generated. To better visualize this information, histograms

were created using MATLAB. The following section is divided into subsections which

report the findings for each template that was a part of the training set used for

evaluation. Templates 1 and 2 identified channels consistently across the cycles;

therefore, channels were identified as significant if they were present in at least 80 %

of cycles. Templates 3 and 4 identified channels with less consistency than Templates

1 and 2 but are included for completeness. Channels were selected as significant if

they were present in at least 30 % of the cycles for these templates. Histograms of the

90th percentile were included for completeness; however, it was observed that while

the overall number of channels identified increased, the channels which occurred with

the most consistency displayed little variation. Therefore, the benefit of using the

90th percentile appeared minimal. Due to the abundance of channels returned and

for the proof-of-concept of this research, focus was placed on comparing the 98th and

95th percentiles.

3.5.1 Template 1 ∆ρs,HEU,Pu Quantiles

Table 14 shows the number of channels identified in each cycle for all three

percentiles for the template displaying a decay pattern (Template 1). The top 2 % of

data returned 36 channels on average while the top 5 and 10 % returned 88 and 176
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channels, respectively.

∆ρs,HEU,Pu Percentile

0.90 0.95 0.98

C
y
cl

e

1 168 87 34

2 176 87 35

3 175 91 36

4 179 87 36

5 174 93 37

6 189 87 36

7 173 87 37

8 173 87 37

9 179 87 35

10 169 86 34

11 176 91 35

12 178 89 35

13 182 89 35

14 175 89 33

15 174 91 35

16 177 88 35

17 178 88 39

18 182 89 36

19 175 88 36

20 175 88 38

Table 14: Total number of channels returned in each cycle for all three percentiles
for Template 1.
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Figures 20 through 22 display histograms of the channel frequency through-

out the twenty cycles for each of the three ∆ρs,HEU,Pu percentiles evaluated for Tem-

plate 1. The total number of channels identified increased as the percentile of the

∆ρs,HEU,Pu quantile decreased; however, the frequency of the channels which occurred

most often among the twenty cycles displayed little variation overall between the three

percentiles.

Figure 20: The 98% ∆ρs,HEU,Pu quantile for Template 1 displaying channel fre-
quency among cycles.
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Figure 21: The 95% ∆ρs,HEU,Pu quantile for Template 1 displaying channel fre-
quency among cycles.

Figure 22: The 90% ∆ρs,HEU,Pu quantile for Template 1 displaying channel fre-
quency among cycles.
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There were several channels seen in all three percentiles consistently. These

channels also had the most consistent showing across all twenty cycles. Tables 15

and 16 show the channels that occurred in at least 80% of the cycles for the 98th

and the 95th percentiles, respectively. Table 16, shows that including the top 5 %

of the data (a ∆ρs,HEU,Pu value of at least 0.70) resulted in the addition of three

more channels and increased the overall consistency of previously identified channels

among the twenty cycles.

Channel Frequency Percentage

139 20 100

140 18 90

230 17 85

301 17 85

302 18 90

965 16 80

Table 15: Channels present in at least 80% of the cycles for the 98th percentile for
Template 1.
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Channel Frequency Percentage

139 20 100

140 18 90

230 17 85

231 16 80

301 20 100

302 20 100

874 17 85

964 17 85

965 18 90

Table 16: Channels present in at least 80% of the cycles for the 95th percentile for
Template 1.

3.5.2 Template 2 ∆ρs,HEU,Pu Quantiles

Template 2, the template displaying an ingrowth pattern, identified the same

channels as Template 1; however, Template 2 returned inverse ρs values to that of

Template 1. This is expected as the templates are inverse of one another. Table 17

below, shows the number of channels identified in each cycle for all three percentiles.

The top 2 % of data returned 36 channels on average while the top 5 and 10 %

returned 88 and 176 channels, respectively.
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∆ρs,HEU,Pu Percentile

0.90 0.95 0.98

C
y
cl

e

1 168 87 34

2 176 87 35

3 175 91 36

4 179 87 36

5 174 93 37

6 189 87 36

7 173 87 37

8 173 87 37

9 179 87 35

10 169 86 34

11 176 91 35

12 178 89 35

13 182 89 35

14 175 89 33

15 174 91 35

16 177 88 35

17 178 88 39

18 182 89 36

19 175 88 36

20 175 88 38

Table 17: Total number of channels returned in each cycle for all three percentiles
for Template 2.

Figures 23 through 25 display histograms of channel frequency among the

twenty cycles for each of the three ∆ρs,HEU,Pu percentiles evaluated for Template
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2. Again, the total number of channels identified increased as the percentile of the

∆ρs,HEU,Pu quantile decreased; however, the frequency of the channels which occurred

most often among the twenty cycles displayed little variation.

Figure 23: The 98% ∆ρs,HEU,Pu quantile for Template 2 displaying channel fre-
quency among cycles.
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Figure 24: The 95% ∆ρs,HEU,Pu quantile for Template 2 displaying channel fre-
quency among cycles.

Figure 25: The 90% ∆ρs,HEU,Pu quantile for Template 2 displaying channel fre-
quency among cycles.
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Tables 18 and 19 show that the same channels were seen consistently through-

out the twenty cycles for Template 2 as for Template 1. By moving from the 98th

percentile to the 95th percentile, three additional channels were identified and the

overall channel consistency among the twenty cycles increased.

Channel Frequency Percentage

139 20 100

140 18 90

230 17 85

301 17 85

302 18 90

965 16 80

Table 18: Channels present in at least 80% of the cycles for the 98th percentile for
Template 2.
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Channel Frequency Percentage

139 20 100

140 18 90

230 17 85

231 16 80

301 20 100

302 20 100

874 17 85

964 17 85

965 18 90

Table 19: Channels present in at least 80% of the cycles for the 95th percentile for
Template 2.

3.5.3 Template 3 ∆ρs,HEU,Pu Quantiles

Table 20 shows the overall number of channels identified in each cycle by

Template 3, the template displaying ingrowth followed by decay, for each percentile

evaluated. The top 2 % of data returned 36 channels on average while the top 5 and

10 % of data returned 90 and 177, respectively.
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∆ρs,HEU,Pu Percentile

0.90 0.95 0.98

C
y
cl

e

1 170 86 36

2 179 91 35

3 183 88 37

4 175 91 36

5 183 91 35

6 186 91 39

7 174 87 35

8 184 90 36

9 173 90 36

10 171 89 34

11 177 88 36

12 177 97 36

13 173 92 36

14 175 89 37

15 175 87 35

16 177 87 36

17 175 90 35

18 174 93 36

19 177 93 35

20 179 90 35

Table 20: Total number of channels returned in each cycle for all three percentiles
for Template 3.

Figures 26 through 28 display histograms of channel frequency among the

twenty cycles for each of the three ∆ρs,HEU,Pu percentiles evaluated for Template 3.
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As mentioned previously, the channels identified by Template 3 did not display the

consistency seen by Templates 1 and 2 across the twenty cycles. Figure 26 shows

that only two channels were seen in at least 30 % of the cycles for the 98th percentile.

Figure 27 shows only one channel seen in at least 45 % of the cycles for the 95th

percentile and Figure 28 shows that only one channel was seen in at least 50 % of the

cycles for the 90th percentile. Due to this inconsistency, channels that were present

in at least 30 % of cycles were included for evaluation.

Figure 26: The 98% ∆ρs,HEU,Pu quantile for Template 3 displaying channel fre-
quency among cycles.
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Figure 27: The 95% ∆ρs,HEU,Pu quantile for Template 3 displaying channel fre-
quency among cycles.

Figure 28: The 90% ∆ρs,HEU,Pu quantile for Template 3 displaying channel fre-
quency among cycles.
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Tables 21 and 22 show the number of channels seen in at least 30 % of the

cycles for the 98th and 95th percentiles. Template 3 identified fewer channels than

Templates 1 and 2. Further, the channels identified were not as consistently seen

among the twenty cycles. Only one channel was seen in at least 45 % of the cycles

for the 95th and only one channel was seen in at least 50 % of the cycles for the 90th

percentile; a much lower consistency than the minimum of 80 % seen for Templates

1 and 2.

Channel Frequency Percentage

1565 6 30

1939 6 30

Table 21: Channels present in at least 30% of the cycles for the 98th percentile for
Template 3.

Channel Frequency Percentage

1497 6 30

1535 7 35

1565 6 30

1687 6 30

1939 6 30

2273 9 45

Table 22: Channels present in at least 30% of the cycles for the 95th percentile for
Template 3.

Table 23 shows the channels identified in each of the twenty cycles at each

percentile for Template 4. The 98th percentile returned 36 channels on average, while

the 95th and 90th percentiles returned 89 and 177 channels, respectively.
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3.5.4 Template 4 ∆ρs,HEU,Pu Quantiles

∆ρs,HEU,Pu Percentile

0.90 0.95 0.98

C
y
cl

e

1 169 84 34

2 170 88 39

3 176 89 35

4 177 89 36

5 176 88 36

6 187 90 39

7 173 87 39

8 176 89 35

9 175 90 35

10 170 85 34

11 177 93 36

12 174 92 36

13 178 93 37

14 179 88 38

15 182 88 35

16 182 87 37

17 183 91 37

18 182 88 35

19 181 94 37

20 176 88 37

Table 23: Total number of channels identified in each cycle for all three percentiles
for Template 4.



69

Figures 29 through 31 show how the channels varied based on the ∆ρs,HEU,Pu

percentile. Template 4, like Template 3, was less consistent than Templates 1 and

2. More channels were identified at the lower percentiles; however, only two channels

were identified in at least 50 % of the cycles for the 90th percentile. Therefore, channels

present in at least 30 % of cycles were included for evaluation.

Figure 29: The 98% ∆ρs,HEU,Pu quantile for Template 4 displaying channel fre-
quency among cycles.
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Figure 30: The 95% ∆ρs,HEU,Pu quantile for Template 4 displaying channel fre-
quency among cycles.

Figure 31: The 90% ∆ρs,HEU,Pu quantile for Template 4 displaying channel fre-
quency among cycles.
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Channel Frequency Percentage

140 6 30

302 6 30

Table 24: Channels present in at least 30% of the cycles for the 98th percentile for
Template 4.

Channel Frequency Percentage

139 7 35

140 8 40

230 6 30

231 6 30

302 6 30

433 7 35

834 6 30

1503 6 30

1628 6 30

1787 6 30

Table 25: Channels present in at least 30% of the cycles for the 95th percentile for
Template 4.

Tables 24 and 25 display the channels seen in 30 % of the cycles for the

98th and 95th percentiles, respectively. In the 98th percentile, the only two channels

identified in at least 30 % of the cycles were Channel 140 and Channel 302. The

95th percentile returned several more channels; however, many of these channels were

identified by other templates with more consistency.

In summary, it was observed that the 98th percentile provided too little of
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data at 36 channels on average, resulting in less channels being identified with enough

consistency. The 95th percentile resulted in 89 channels on average resulting in more

channels being identified with consistency across the twenty cycles. The benefit of

using the 90th percentile appeared minimal.

Table 26 summarizes the channels identified in the 95th percentile. The per

cent frequency for each of the four templates is listed. For every channel except

Channel 231, one of the four template patterns identified the channel as being signif-

icant. However, it was observed based on the percentage of channel frequency that

some templates were a better fit than others. Overall, Templates 3 and 4 identified

channels less consistently across the twenty cycles. Templates 1 and 2 identified the

channels used for the proof-of-concept of this research.
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Channel Template 1 Template 2 Template 3 Template 4

139 100 100 20 35

140 90 90 5 40

230 90 90 10 30

231 55 55 NA 30

301 100 100 5 25

302 100 100 10 30

433 75 75 10 35

834 70 70 15 30

964 85 85 10 25

965 90 90 5 10

1497 20 20 30 15

1503 20 20 15 30

1535 5 5 35 15

1565 20 20 30 30

1628 15 15 25 30

1687 15 15 30 25

1787 15 15 20 30

1939 20 20 30 20

2273 30 30 45 25

Table 26: Percentage of channel frequency for all four templates.

3.6 Cycle Consistency

For the 98th percentile, Templates 1 and 2 identified six channels that oc-

curred in at least 80 % of the cycles. As mentioned previously, Templates 3 and 4
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did not maintain the consistency seen for Templates 1 and 2; therefore, channels that

were seen in at least 30 % of cycles were included as significant. Templates 3 and 4

identified two channels for the 98th percentile. Using the 95th ∆ρs,HEU,Pu percentile,

Templates 1 and 2 identified nine channels that occurred in at least 80 % of cycles.

Templates 3 and 4 identified six and ten channels, respectively, that showed up in at

least 30 % of cycles. The 95th percentile was chosen as it provided enough channels

for the proof-of-concept for this research.

3.7 Identifying Significant Channels

In the previous sections, discussion consisted of how the ∆ρs,HEU,Pu quantile

was used as a clustering technique to identify channels that may be significant and

how the various ∆ρs,HEU,Pu percentiles effected how consistently channels were seen

in the twenty cycles. While using the 95th percentile increased the overall number

of channels identified and increased the consistency of channels previously identified,

the ∆ρs,HEU,Pu threshold used was lowered. For the 98th percentile the ∆ρs,HEU,Pu

threshold ranged from 0.79-0.92 while the ∆ρs,HEU,Pu threshold range for the 95th

percentile was 0.59-0.76. This led to the inclusion of channels with a wide range

of ∆ρs,HEU,Pu values across cycles and channels making it difficult to determine if a

channel was significant based on the ∆ρs,HEU,Pu value alone. In order to ensure only

channels with the greatest significance were evaluated, the relationship between the

individual ρs and the ∆ρs,HEU,Pu values required further investigation.
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3.7.1 Template 1 ∆ρs,HEU,Pu and ρs

Lattice, a graphics package in R, was used to plot the channels identified

as significant for both the 98th and 95th percentiles. In line with the characteristic

behavior of radioactive decay, the temporal behavior for each channel varied from

cycle to cycle; therefore, plots for each cycle were generated. Some cycles appeared

to show greater differences between uranium and plutonium for the same channel.

To explore these variations, the individual ρs and ∆ρs,HEU,Pu values for each of the

twenty cycles for each channel were evaluated. Spreadsheets were created in Excel

for both the 98th and 95th percentiles.

It was found that the relationship between the individual ρs and the ∆ρs,HEU,Pu

values was important. Below a ∆ρs,HEU,Pu value of 1, the signs of the individual ρs

values could potentially be the same, indicating that the association trends were either

both positive or both negative. When the signs of the individual ρs values were the

same, the difference in temporal behavior between the materials was minimal. When

the signs of the individual ρs were opposite one another below a ∆ρs,HEU,Pu value of

1, significant differences between the materials was seen. Implementing a ∆ρs,HEU,Pu

threshold value of 1 was considered; however, this would have eliminated some cy-

cles that showed significant differences between the two materials and would have

greatly limited the channel consistency across cycles. The 95th percentile included

channels with at least a ∆ρs,HEU,Pu threshold value of 0.70 and provided enough

channels to evaluate for the proof-of-concept of this research. However, values below
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0.70 may be useful for identifying additional significant channels but would require

further evaluation and rules would need to be discovered through the implementation

of additional machine learning techniques. Further evaluation of values below 0.70

should be considered for future work. Based on these findings, the data was clustered

by the ∆ρs,HEU,Pu value and then further clustered by identifying cycles where the

individual ρs values had different signs. This resulted in a set of channels that dis-

played the greatest differences consistently across the twenty cycles between uranium

and plutonium.

Tables 27 through 29 show the final channels identified as significant for each

template and their per cent frequency among the twenty cycles. Three channels (231,

433 and 834) were identified more consistently by Templates 1 and 2 ; however, they

were present in less than 80 % of the cycles. These channels were evaluated under

Template 4 since they were identified in at least 30 % of the cycles for that template.

To visualize the temporal behavior in each channel for both uranium and plutonium,

plots were generated in R and are shown in the next section.
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Channel Percentage

139 100

140 90

230 85

301 95

302 95

964 85

965 90

Table 27: Channels identified by Templates 1 and 2.

As seen in Table 27, by eliminating cycles where the individual ρs had the

same sign, a reduction in cycle consistency was seen for channels 230, 301, and 302

identified by Templates 1 and 2. Further, Channel 874 and Channel 231 were elimi-

nated, resulting in the identification of seven channels as significant.

Channel Percentage

1535 35

1565 30

1687 30

1939 30

2273 45

Table 28: Channels identified by Template 3.

As seen in Table 28, eliminating cycles where the individual ρs had the same

sign led to the elimination of Channel 1497, originally identified by Template 3 as
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being present in 30 % of the cycles.

Channel Percentage

231 30

433 35

834 30

1503 30

1628 30

1787 30

Table 29: Channels identified by Template 4.

Similarly, as seen in Table 29, eliminating cycles where the individual ρs

had the same sign led to the elimination of four channels (139, 140, 230, and 302)

originally identified by Template 4 as being present in 30 % of the cycles.

3.8 Significant Channels

The next sections will display the temporal behavior seen in each of the iden-

tified channels based on which template had the best fit. Overall, eighteen channels

were identified as showing significant differences between materials. Channels that

were identified in less than 80 % of the cycles but more than 30 % will be displayed

under Templates 3 and 4. Templates 1 and 2 had the same numerical ρs values;

however, since Template 2 is the inverse of Template 1, their ρs values had opposite

signs. For simplicity, only the ρs values for Template 1 are given below for each plot
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of temporal behavior for Template 1.

3.8.1 Template 1 Channel 139

Figure 32: Channel 139 Cycle 5 has a ρs,HEU of 0.95, a ρs,Pu of -0.90 and a ∆ρs,HEU,Pu

of 1.85.

Figure 33: Channel 139 Cycle 11 has a ρs,HEU of 0.62, a ρs,Pu of -0.91 and a
∆ρs,HEU,Pu of 1.53.
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3.8.2 Template 1 Channel 140

Figure 34: Channel 140 Cycle 3 has a ρs,HEU of 0.94, a ρs,Pu of -0.79 and a ∆ρs,HEU,Pu

of 1.73.

Figure 35: Channel 140 Cycle 9 has a ρs,HEU of 0.85, a ρs,Pu of -0.82 and a ∆ρs,HEU,Pu

of 1.67.
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3.8.3 Template 1 Channel 230

Figure 36: Channel 230 Cycle 1 has a ρs,HEU of 0.98, a ρs,Pu of -0.79 and a ∆ρs,HEU,Pu

of 1.77.

Figure 37: Channel 230 Cycle 19 has a ρs,HEU of 0.93, a ρs,Pu of -0.47 and a
∆ρs,HEU,Pu of 1.40.
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3.8.4 Template 1 Channel 301

Figure 38: Channel 301 Cycle 11 has a ρs,HEU of 0.90, a ρs,Pu of -0.71 and a
∆ρs,HEU,Pu of 1.61.

Figure 39: Channel 301 Cycle 7 has a ρs,HEU of 0.87, a ρs,Pu of -0.86 and a ∆ρs,HEU,Pu

of 1.73.
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3.8.5 Template 1 Channel 302

Figure 40: Channel 302 Cycle 4 has a ρs,HEU of 0.58, a ρs,Pu of -0.58 and a ∆ρs,HEU,Pu

of 1.16.

Figure 41: Channel 302 Cycle 3 has a ρs,HEU of 0.93, a ρs,Pu of -0.63 and a ∆ρs,HEU,Pu

of 1.56.
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3.8.6 Template 1 Channel 964

Figure 42: Channel 964 Cycle 3 has a ρs,HEU 0.87, a ρs,Pu of -0.77 and a ∆ρs,HEU,Pu

of 1.64.

Figure 43: Channel 964 Cycle 10 has a ρs,HEU of 0.63, a ρs,Pu of -0.39 and a
∆ρs,HEU,Pu of 1.02.
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3.8.7 Template 1 Channel 965

Figure 44: Channel 965 Cycle 3 has a ρs,HEU of 0.69, a ρs,Pu of -0.18 and a ∆ρs,HEU,Pu

of 0.87.

Figure 45: Channel 965 Cycle 20 has a ρs,HEU of 0.87, a ρs,Pu of -0.71 and a
∆ρs,HEU,Pu of 1.58.
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The channels identified by Templates 1 and 2 all displayed significant differ-

ences in temporal behavior between the two materials. Given their cycle consistency,

and significant attributes, these channels could be used as a model for the identifica-

tion of an unknown sample of SNM.

3.8.8 Template 3 Channel 1535

Figure 46: Channel 1535 Cycle 11 has a ρs,HEU of -0.34, a ρs,Pu of 0.61 and a
∆ρs,HEU,Pu of 0.95.
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Figure 47: Channel 1535 Cycle 6 has a ρs,HEU of 0.13, a ρs,Pu of -0.63 and a
∆ρs,HEU,Pu of 0.76.

3.8.9 Template 3 Channel 1687

Figure 48: Channel 1687 Cycle 2 has a ρs,HEU of 0.74, a ρs,Pu of -0.22 and a
∆ρs,HEU,Pu of 0.96.
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Figure 49: Channel 1687 Cycle 5 has a ρs,HEU of -0.65, a ρs,Pu of 0.17 and a
∆ρs,HEU,Pu of 0.82.

3.8.10 Template 3 Channel 1939

Figure 50: Channel 1939 Cycle 14 has a ρs,HEU of 0.79, a ρs,Pu of -0.05 and a
∆ρs,HEU,Pu of 0.84.
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Figure 51: Channel 1939 Cycle 5 has a ρs,HEU of -0.61, a ρs,Pu of 0.40 and a
∆ρs,HEU,Pu of 1.01.

3.8.11 Template 3 Channel 2273

Figure 52: Channel 2273 Cycle 18 has a ρs,HEU of -0.71, a ρs,Pu of 0.47 and a
∆ρs,HEU,Pu of 1.18.
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Figure 53: Channel 2273 Cycle 2 has a ρs,HEU of 0.63, a ρs,Pu of -0.37 and a
∆ρs,HEU,Pu of 1.00.

While Template 3 identified channels that displayed differences in temporal

behavior between the two materials, the channels were not as consistent among the

cycles as the channels identified by Templates 1 and 2. However, channels identified

for Template 3 were included for completeness. Further evaluation of Template 3

should be considered for future work, as Template 3 may be able to identify channels

with more consistency if certain parameters such as count time were changed.
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3.8.12 Template 4 Channel 231

Figure 54: Channel 231 Cycle 17 has a ρs,HEU of -0.59, a ρs,Pu of 0.55 and a
∆ρs,HEU,Pu of 1.14.

Figure 55: Channel 231 Cycle 8 has a ρs,HEU of -0.52, a ρs,Pu of 0.33 and a ∆ρs,HEU,Pu

of 0.85.
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Channel 231 was one of the channels identified by Templates 1 and 2 more

consistently but in less than 80 % of the cycles. The temporal behavior was more

representative of decay for HEU. The ρs,HEU value for Cycle 8, Template 1 was 0.94

and for Cycle 17, Template 1 the ρs,HEU value was 0.96 while the ρs,Pu value was -

0.96. Channel 231 shows strong differences between uranium and plutonium in several

cycles, it does not show up consistently across all cycles for any of the templates.

3.8.13 Template 4 Channel 433

Figure 56: Channel 433 Cycle 4 has a ρs,HEU of 0.50, a ρs,Pu of -0.40 and a ∆ρs,HEU,Pu

of 0.90.
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Figure 57: Channel 433 Cycle 12 has a ρs,HEU of 0.54, a ρs,Pu of -0.46 and a
∆ρs,HEU,Pu of 1.00.

Channel 433 was another channel that was identified by Templates 1 and 2

with more consistency. The ρs,Pu value for Cycle 4, Template 1 was 0.87 while the

ρs,Pu value for Cycle 12, Template 1 was 0.86. Like Channel 231, Channel 433 was

not identified consistently enough by any of the templates. Channel 834, seen next,

was the last of the three channels to be identified with more consistency by Templates

1 and 2.
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3.8.14 Template 4 Channel 834

Figure 58: Channel 834 Cycle 11 has a ρs,HEU of -0.52, a ρs,Pu of 0.44 and a
∆ρs,HEU,Pu of 0.96.

Figure 59: Channel 834 Cycle 18 has a ρs,HEU of -0.49, a ρs,Pu of 0.29 and a
∆ρs,HEU,Pu of 0.78.
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3.8.15 Template 4 Channel 1503

Figure 60: Channel 1503 Cycle 15 has a ρs,HEU of -0.24, a ρs,Pu of 0.68 and a
∆ρs,HEU,Pu of 0.92.

Figure 61: Channel 1503 Cycle 2 has a ρs,HEU of 0.04, a ρs,Pu of -0.67 and a
∆ρs,HEU,Pu of 0.71.
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3.8.16 Template 4 Channel 1628

Figure 62: Channel 1628 Cycle 10 has a ρs,HEU of 0.63, a ρs,Pu of -0.17 and a
∆ρs,HEU,Pu of 0.80.

Figure 63: Channel 1628 Cycle 14 has a ρs,HEU of -0.58, a ρs, Pu of 0.81 and a
∆ρs,HEU,Pu of 1.39.
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3.8.17 Template 4 Channel 1787

Figure 64: Channel 1787 Cycle 7 has a ρs,HEU of -0.70, a ρs,Pu of 0.42 and a
∆ρs,HEU,Pu of 1.12.

Figure 65: Channel 1787 Cycle 13 has a ρs,HEU of -0.34, a ρs,Pu of 0.75 and a
∆ρs,HEU,Pu of 1.09.
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Template 4 identified several channels that were also identified by Templates

1 and 2. They were evaluated under Template 4 since their cycle frequency was below

the 80 % threshold selected for Templates 1 and 2; however, they only showed up in

at least 30 % of the cycles for Template 4. This was most likely due to the fact that

this template was a hybrid of the decay and ingrowth templates. Template 4 was

still able to identify channels that showed significant difference in temporal behavior;

however, like Template 3 they were not seen consistently enough across the twenty

cycles to be used as a model for identification of a sample of unknown SNM.

The proof-of-concept for this research involved evaluating single channels of

the temproal spectra of uranium and plutonium. It should be noted that the reso-

lution of the HPGe detector is such that evaluation of individual channels implies a

better resolution than is actually achievable in traditional gamma-ray spectroscopy.

Performing the same methods as outlined in this work on a range of channels (ie:

grouping of 3 channels) may result in a more accurate representation of the resolu-

tion of the HPGe detector used and should be considered for future work.

As discussed earlier, Templates 1 and 2 showed the greatest consistency in

identifying channels that showed significant differences between plutonium and ura-

nium. Templates 3 and 4 did not identify channels that occurred with the same

consistency across cycles. For this research, a one minute counting time was used

which might not provide enough time to see the combination of ingrowth and decay

patterns displayed by Templates 3 and 4. It would be beneficial to experiment with

other counting times using these templates to see if they are able to identify channels
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more consistently.

From the rules created through the supervised machine learning process,

channels identified were those that displayed the greatest difference between pluto-

nium and uranium, highlighting channels that displayed opposite trends (ingrowth

or decay). The channels with the greatest consistency across twenty cycles were all

located below 1 MeV. Channels displaying decay of both uranium and plutonium

were not identified for this research and was a potential reason for the identification

of channels below 1 MeV as the short-lived fission products at higher energies were

decaying quickly for both materials.

Based on the results from Templates 1 and 2, seven channels were identified

as displaying significant differences in temporal behavior for plutonium and highly

enriched uranium. Furthermore, these channels showed up consistently in at least 80

% of the cycles. The channels were closely grouped (139 and 140; 301 and 302; 964

and 965) implying that a peak was most likely present at these locations in the spec-

trum. From this research, seven channels were identified which make up a model that

could potentially be used for the identification of unknown special nuclear material.



100

4 Conclusion

Currently, most NDA techniques rely on the evaluation of the delayed gamma-

ray spectrum at higher energies (≥ 3 MeV). The use of temporal gamma-ray spec-

trometry has been shown to identify and quantify special nuclear material within an

uncertainty of 2 % at these higher energies. Building off of this research, the temporal

gamma-ray spectroscopy method was combined with machine learning techniques to

evaluate the spectrum below 3 MeV. Channels with significant attributes were iden-

tified through the use of Spearman’s rank-order correlation coefficient. This metric

was used to determine a set of rules that could be used to create a model for the

potential identification and future quantification of plutonium-239 and uranium-235.

While all four templates were able to identify channels that highlighted the

differences between plutonium and uranium, only Templates 1 and 2 were able to

identify channels with enough consistency to be used to create a model and combined

with other machine learning techniques for future identification and possible quan-

tification of fissile material. Templates 1 and 2 identified seven channels that were

present within at least 80 % of the cycles. These channels highlight the differences

in the temporal spectra below 3 MeV, indicating that this method is able to identify

useful information within otherwise complex data spectra.
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5 Future Work

Focus was placed on evaluating the spectra of U-235 and Pu-239 since these

materials are of greatest concern in the nuclear industry for nuclear safeguards.The

methods discussed for the initial proof-of-concept of this research, successfully identi-

fied differences between fissile material. However, there are several areas that should

be considered for future work before this method can be implemented and used for

identification and quantification of special nuclear material with the same accuracy

and precision seen with previous temporal spectrometry methods.

A 1 mininute irradiation/counting cycle was used for this research. Data was

also collected for 10 second and 10 min irradiation/counting cycles. As discussed pre-

viously, Templates 3 and 4 identified channels with less consistency than Templates

1 and 2. This could be due to the time scale at which the channels were evaluated.

Since the time scale is relatively short, there might not be enough time for the fission

decay products to exhibit the Template 3 and 4 patterns (ingrowth followed by de-

cay or decay followed by ingrowth). By optimizing the count time, Templates 3 and

4 might be able to more consistently identify channels which would provide useful

information for identification purposes. In addition, optimization of the count/rest

time may reduce build-up seen across the twenty cycles.

Further evaluation of cycle consistency could also prove to be beneficial. In

this research, channels were selected as significant if they showed up consistently in

the twenty cycles. For Templates 1 and 2 channels that showed up in at least 80 %
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of the cycles were identified as significant. However, the same cycle consistency was

not seen for Templates 3 and 4. Channels identified by these templates showed up

at most in 50 % of the cycles however, majority of these channels showed up in only

30 % of cycles. Further work needs to be done in order to determine what frequency

percentage is necessary for a channel to be deemed as significant and incorporated

into the model to be used as a profile.

Using a range of channels rather than evaluating the spectrum by single

channels may also be beneficial. As mentioned previously, the current method evalu-

ated individual channels of the spectrum. HPGe detectors have an energy resolution

of about 1.7 keV. While looking at individual channels was successful for proof-of-

concept, it implies the detector has a better energy resolution than exists. Therefore,

it is suggested that ranges of 3 and 5 channels are evaluated.

The frequency quantile was chosen based on a unique selection for each cy-

cle while ensuring that the minimum 100 count threshold was met. Evaluating the

impact of implementing a frequency quantile selection of a standard 100 count thresh-

old for all cycles could be useful. The current method led to a few cycles requiring a

more restrictive quantile to be chosen. Studying the impact that this has on the other

cycles could be important in further developement and fine tuning of this method.

It was seen in the results and analysis section that the 95 % ∆ρs,HEU,Pu quan-

tile was the best choice for channel identification. However, since a ∆ρs,HEU,Pu thresh-

old was unique to the cycle and template, the lowest ∆ρs,HEU,Pu quantile allowed was

0.59. The average ∆ρs,HEU,Pu quantile was about 0.70; however, the channels that
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showed up most consistently for Templates 1 and 2, had a minimum ∆ρs,HEU,Pu of

0.80. If a specific ∆ρs,HEU,Pu threshold value could be determined for all templates, a

standard ∆ρs,HEU,Pu quantile could be used rather than a quantile that is unique to

each cycle and template. Further evaluation of the ∆ρs,HEU,Pu score and its impacts

on the ∆ρs,HEU,Pu quantile would be beneficial.

Using additional machine learning techniques to explore the combinations of

individual ρs and the ∆ρs,HEU,Pu scores could also be beneficial. Currently, channels

were selected as significant if they had a large ∆ρs,HEU,Pu value and the signs of in-

dividual ρs were opposite of one another. There are many combinations of individual

ρs that yield high ∆ρs,HEU,Pu values. This creates a new complex data set that could

benefit from machine learning techniques to further hone in on which channels are

best to use as fingerprints in the identification of SNM.

Lastly, in this research it was shown that the seven channels identified high-

light differences between plutonium and highly enriched uranium and may be useful

for creating a profile to identify fissile material. It would be advantagous to also create

profiles that could be used to identify a mixed sample of unknown SNM. Therefore,

the evaluation of various mixtures of these materials using the same machine learning

methods should also be performed (ie: 0/100, 50/50, 100/0).
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