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ON OUTPUT STATISTICS OF NONLINEAR DEVICES: 1) THIRD
AND HIGHER ORDER INFORMATION, 2) QUADRIPHASE

CARRIER RECONSTRUCTION, 3) ANALYSIS OF POINT PROCESSES

I. INTRODUCTION

Although it is an old problem there is still interest in the out-

put statistics of nonlinear devices. Much has been published on the

several methods of determining the autocorrelation function of a ran-

dom process following a nonlinear transformation, but there has been

little on the higher order correlation functions. The method of Price

[7, 15, 37, 41, 42] in this connection has found great acceptance but

often leads to intractable integrals. Certain third and fourth order

integrals have received exhaustive treatment by Kamat [25], Gupta

[18], and Cheng [10]. Tukey [49] and Hasselmann, Munk, and Mac-

Donald [21] have recently emphasized that while the spectrum (the

Fourier transform of the second order correlation function) is useful

for linear problems it provides insufficient information in the non-

linear case. An extension to the bispectrum (multiple Fourier trans-

form associated with the third order correlation function) is clearly

called for. The bispectrum and yet higher order spectra--called

polyspectra by Tukey--represent the spectral decomposition of the

third and higher order moments of a stationary, multivariate sto-

chastic process.

Some of the better-known and successful uses of the polyspectra,
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the bispectrum in particular, in the study of nonlinear phenomena

have occurred in the oceanographic field. A recent report by

Carpenter [9] has emphasized the bispectrum in the analysis of weak-

ly nonlinear quadratic systems.

A method for determining the nth order correlation function for

the output of a nonlinear device with Gaussian input will be described

below and several specific examples will be worked out. The general

method will also be applied to several aspects of noise analysis,

originally propounded by Rice [43, 44] and refined by others. The

third chapter of the thesis will deal with a practical problem in an

advanced communication system-quadriphase signaling-in which non-

linear analysis is required.
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II. Nth ORDER CORRELATION FUNCTIONS OF
NONLINEAR DEVICES

2. 0 The Nonlinear System Model

The nonlinear system we will consider in this chapter consists

of a device whose input X(t) is a stationary, continuous time,

ergodic Gaussian process and whose output process Y(t) results

from the nonlinear transfer function, h(X(t)). The output correlation

function is defined as

E[Y(t)Y(t+T)] = RY, y(T) (2. 1)

where E[. ] is the expected value operator and T is an arbitrary

time shift parameter. Here we are taking the time average of the

quantity in brackets which, under the assumption of ergodicity, is

identical with the ensemble average. This average may also be writ-

ten in the form

oo

(T) = S'Sh(x
1

)h(x
2

(x,, x2)dxidx2 (2.2)
Y, Y X l' X I

2
- 00

where by x. we mean x (ti), i = 1, 2, and t
2

-t
1

= T . The

(x1, x2) is the joint Gaussian density function associated with
X1' X2

the input process X(t).

We will use the notation of Parzen [39] where upper case



subscripts refer to the appropriate random variable while the lower

case arguments of the function refer to observed values of the cor-

responding random variables.

Assume that the Gaussian, variables are standard

SO

E[X(t )] = 0,

E[X?(ti)] = 1 = Rx,x(C)

PX,X2 (x 1,
x2) = 1exp[- (x2 +x2-2px

1 2Trj1 l-p2 2(1 -p
2) 1

)]

(2. 4)

4

and p = E[X
1
X

2
] is defined as the normalized correlation function

of the input variables. That is, I P I < 1.

2. 1 An Example: The Half-Wave Rectifier

A half-wave rectifier is defined by

h(X) =

max , x > 0

x < 0; m+1 > 0

It is convenient here to introduce a function, say

(2. 5)



G(p; m) = (x
1
x2)mpXr

2
X(x 1,x 2

)dx ldx 2
0 0

A change to polar coordinates

xi = r cos 8, x2 = r sin 0

is quite successful at this level as

G(p; m)
1

2

Sxrdr SIT/ 2d0( r 2sin 20 )m e
2

2141-p 0 0

(2. 6)

(2.7)

r2(1 -p sin(20))

2(1-p 2)

(2. 8)

= Trr(rn+i)o_p2)rn+1
(In"

`)13

dO[
sin 20 1m +1

1-p sin(20)J

TrThe change of variable, 20 =-2 -(p, leads to

1 Tr/ 2

G(p; m) - r(m+1) (1-p2)m+z cos (p
clip (2. 9)

2Tr m+1
0 (1-p cos

From the identity

cr/ 2 1 _1
dco cos (-p) Tr/ 2 + sin p

0
1-p cos 2

P

5

pl < 1

(2. 10)

it is clear that if m is restricted to integer values greater than

zero then
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G(p; m) = m! (1-p2)m-I-j-- 1 dm cos (-p)
2n (1 -P

dm -p 2
p

Some special cases are:

1 -1 1 Tr . -1 ,
G(p; 0) =

2T.
cos (-p) = sm P1

1
G(p; 1)= [p cos-1 (-p)+,11-p 2]

1
G(p; 2) =

2Tr
[(1+2p

2 )cos 1 (-p)+3pi./1-p 2],
Ip < 1

6

(2. 11)

(2. 12)

The autocorrelation functions of the outputs of the several half-

wave rectifiers are now defined in terms of m as

R
Y,Y

(p; m) = a 2 G(p; m), m = 0, 1, 2.

2. 2 Bilinear Series Expansion of Density Functions

(2. 13)

It is advantageous to reduce a joint density function of general

order N to a series of terms, each term a product of N func-

tions which depend only on x
1,

on x2 on xN. The start-

ing point is the moment matrix

= [E(x xs)], r, s = 1, 2, ... , N (2. 14)

If there are N standard Gaussian variables present then
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r, s = 1, 2, ... , N (2.15)

and the moment generating function--sometimes known as the char-

acteristic function--is

where

2MX, X ... X (al, a
2,

..., a N) = e
1' 2' N

CL =

al

a
2

aN

(2. 16)

and a' is the transpose of the matrix a.

The corresponding joint density functionif the variables are

Gaussian- -is

where

(x , ) -
PX

1
,X

2 (21
, , X

N
1 x2, xN 0N

X =

1

21-01/2e
(2. 17)

It is easy to verify that the density function of (2. 4) is derived from

1 1 -]
1-p 2 [p 1

(2. 18)
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The probability density function and characteristic function are

Fourier Transform pairs:

00 00(1)N/2(1
e
-ia'

PX , XN I N 2Tr
-co _co

X da
1

da
N

co co

MX ... X
(a

13
...,a N) = e p

X
1 N _co _oo 1,,

At this point consider the set of functions

cp(0)(x) -
1 e-x2/2

x(-1) (I (0)
(x) = (Y)dY

0

(a ...,a...,X N

(2. 19)

xN )d dx
X1 N

d

n

n (0)
v(n)(x) = (x), n = 1, 2,.. -oo < x < oo

dx

(2. 20)

The fundamental Fourier Transform pairs of interest for the

standard Gaussian variable case are

and

2
M (a) = e -a /2

x

-iax-a2/2
p

X
(x) =

(0)
oo

1
(x) = .e do.

_co

(2. 21)

(2. 22)



Then

(n)
(x)

oo

-a) e1 S n-iax-a2/2
( da

2Tr
_co

For the case of two standard Gaussian variates

1(x ,x ) = () 2

PX
1
,X

2
1 2 2Tr

1 2

(TT) if°_00_00

i(a x +a x )-
1 1 2 2 2 da da

1 2

2a
1

2+a +2pa
1
a

2

9

(2. 23)

2 2
a

1
+a

2

i(alxl+a2x2)- 2 (-Pala
e

d
daida2n!

co
9(n)(xl )9(n) (x2 )Pn

n!
n=0

and each term has the property, "function of x
1

x2" .

n=0

(2. 24)

times function of

The term "error function" is reserved for cp
1) (x); it and

its first twenty derivatives have been well tabulated by the Harvard

Computation Laboratory [20]. In the implementation of this formula

several important integrals occur. The principle idea is that

(2n+1) (0) = 0
and (2. 25)

9(2n)(0)
(-1)n(2n)!

2nn!
n = 0, 1, 2, .. .
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Table 2. 1 lists these integrals.

Table 2. 1. Some special integrals.

oo
(n)

cp (x)dc -
0

wx(p (n)(x)dx
=

0

co

x cp(n)(x )dx
0

2'
,n-1/

2(n -1 )I
2i-r 2(n-1)/2 n-11.!

2

(-1)(n-2)/2(n- 2)!
2(n-2)/2( n-2)1

2

1

2

1,

co
S x29 ( n)(x)dx =

_co

0,

2,

0,

2 (-1)
(n--1)/2

(n-3)!

2(n-3)/2(n-3)l
2

n = 0

n = 1, 3, 5, ...

n = 2, 4, 6, ...

n = 0

n = 1

n = 2, 4, 6, ...

n = 3, 5, 7, ...

n = 0

n = 1

n =

n = 3, 5, 7, ...

n = 4, 6, 8

n = 0

n = 1

n = 2

n > 3



11

This means that if h(X) is a polynomial defined over the half
oo

line then
('oo

h(x )(p(n)(x)dx is easily evaluated and

J.0
,0

h(x)(p, n/(x)dx will depend on the first integral in some simple
-oo

fashion. Note that, at least formally, for the standard Gaussian

variates

am+n

m n MX ,X (al, a 2)
8a

1
aa

2
1 2

oo

(_i)m+n Sxmxn e-i(a 1 x
1
+a

2
x2)

j 1 2
(x ,x_)dxidx2p

X l'X2 1

-00

= (-i)m+nE[Xmxn -i(a1X1+a2X2)
1 2 e

Setting m=n=2 and evaluating at a
1
=a 2=0 we obtain

a
4

2 2 [Mx1'X
2
(al' a2)]

ax
1

ax
2 al=a 2=0

E[x i2x,2]

(2. 25)

(2. 26)

which is the correlation function for a full-wave, second order recti-

fier (within a constant scale factor). That is, such a rectifier may

be defined as

h(xi) = nial x. 1 m real (2. 27)

and it is expedient to define a second function



H(p; m) =

So, in this case,

x ImpX X 1 2 1 22 (x ,x )dx dx
_co _oo

x
l' 2

R
Y,Y

(p; m) = a2H(p; m).

From (2. 16) and (2. 26) we have that

H(p; 2) = 1 + 2p 2

12

(2. 28)

(2. 29)

(2. 30)

It is worthwhile to check the forms of G(p; m) for m = 0, 1, 2

by implementation of the bilinear expansion for 13)(' X(xl, x2).
1 2

Begin with the series

Also

and

-p2) 1/2
00

(1- p2)1/2 = 1_

00

5.11)

1 dx - sin p _-1 (2n
)'P2

0 1- x n=0 2 (n!) (2n+1)
IP I

(2. 31)

< 1 (2. 32)

co

2

1dx - [sin p-p l_p t= (2n)!p2n+3

0 j1 -x 2
2n (n!) 2

n=0
(2n+3)



Next

Now we write

00 (n) (n)
00 00 cp (xi )cp (x2)pn

G(p; 0) = y dx
1
dx

2n!
0 1 0

n=0

1
= +

4 2Tr

00

n=

(2n)!p2n+1

2
2n (n!)2 (2n+1)

13

1

2T

1

r

-1 1
=

4
+ sin p =

27.
cos- 1(-p),

IPI < 1 (2. 33)

G(p; 1) = xix
0 0

and finally,

1 0 1
_

2Tr
+

4
+

2Tr

1

4 2Tr

oo (n) (n) n
(P (xi )(P (x2)P

n=0

oo

n=

00

n!

(2n)! r 1 1 2n+2
2n(n!

)
2 2n+1 2n+2 1p

(2n)! p
2n+1

n=0
22n+1 (n!) 2

(n+1 )

1 Tr 1
[ l_p 2 p(-2 + sin p)],

2Tr

2
1 20 1

G(p, 2) = + +
2._

+

n=

1 Tr 4 2 2
= H2(1+ +

Tr

00

n=

( 2n)! p
2n+ 2

2n(n
! )2(2n+1)

(2n)! r 1 1 1 2n+3
2n(n!

)
2 2n+1 n+1 211+31P

00

(2n)! p2n+2
-P

22n+lnn=0 !(n+1)!

(2.34)



2

+ P
ir

(2n)!p 2n+1

2
2nn!(2n+1)

co

1 (2n)! p2n+3
2n(n!

)2
2n+3Tr

n=0

1 2 Tr 2 -1 -1 2
= [(1+2p ) 2 + + 2p sin p + sin p - pg 1-p ]

1 Tr[(l+2p 2 )(-
2

+sin-lp)+ 3pNil-pz
2Tr

which agrees with (2. 12).

and

Correspondingly,

14

(2. 35)

H(p; 0) = 1 (2. 36)

H(p; 1) =5'0°Swi,,,,,21

(n),

)9(n)(x
2)Pn dx dx

2

cp kx,

n!
-00 _oo

n=0

= 2C;(p;1)-Sw 0erx
1
x

0 -00

XiX

n=0

(n) (n) n
)(P (x 2)P

dxldx
2n!

00
9

(n)
9

(n) n
(x 1) (x 2)p

dx
1
dx2

n!
n=0

but there is just one non-zero odd term in the series, namely

00sx9(i)(-x)dx - 4271 00xe -x2/ 2 1
dx

0 0

Therefore

(2. 36)

(2.38)
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H(p; 1) = 2G(p; 1) + 2[G(p; 1)-p/ 2]

= 4G(p; 1) - p, (2. 38a)

an identity published by Rubin [45].

2. 3 Third Order Information

Although the correlation function of the output of a nonlinearity

provides information about the resulting random process, additional

information may be obtained by calculating higher order correlation

functions. This would yield the higher moments, or cumulants, so

an Edgeworth series [15, 52] might be employed to arrive at a suitable

approximation to the density function associated with the output.

The multiple Fourier transform of the third order correlation

function is the bispectrum, a two dimensional power spectrum which

is becoming increasingly important in the physical sciences.

At the third level there are three time shift parameters, while

for an arbitrary N there are
2

such parameters. The formal

expression is

00 N
]E[11h(x.) = ... H h(xi)p, (xi, , xN)dxl dxN

i=1 _oo i=1
(2. 39)

and for N = 3 the symmetric moment matrix associated with three

standard Gaussian variables is
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= [pii] j = 1, 2, 3 (2. 40)

The determinant of the matrix is

and

-1 1

-1113 17)31

2 2 2

I 3 I 1 P12 P23 P31 + 'Pl2P23P31

2(1-p23) -(P12-P23P31)

2

-(P31-P12P23)

-(P12-P23P31)

-(P31-P12P23)

(1-p13)

-(P23-P12P31)

-423-P12P31)

2
(1-p 12 )

(2.41)

In principle a linear transformation might be found to rotate

the X
1,

x2, x3 coordinate system so the inverse matrix which de-

fines p might be reduced to a diagonal matrix.X1,X2,X (x1, x2, x3)
3

The required integration over 3-space would not, however, be appeal-

ing.

Since interest is centered on the half-and full-wave rectifiers,

it is logical to extend the G and H functions, defined by (2. 6)

and (2. 28), in terms of the third order density function. The exten-

sion to a trilinear series representation of pXr
2 3

X'X(x 1,
x2, x3) is

straight forward.
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oo 1

1 3
-ia'x- xl

3
x

PX X X (x
1,

x2. x3)
2ir

yyy 2
e dx

2' 3
_oo

oo 1,r_ia'x--
2

La' a+2p1
2
al a

2
+...]

1 3

tw) irS,)e dx

_00

-a 1 a' a

(-1 )3

oo i'x-
SYS

2
2Tr

-00 n=0

(P12ala2+1)23a2a3+P31a3a1)
X dalda

2
da

3n!

n

(2. 42)

and term by term evaluation is possible.

To help the typist, let the order of the 9 functions be con-

trolled so a term like 0
cp

2 4

(2) (4)
9

(0)
(x1)9 (x2)9 (x3)

is understood to mean

Now we can write the third order analogue

of the relatively simple second order case of (2. 24) as

PX1,X2,X3 (x1,
x2, x3)

0 0 0 1 1 0 0 1 1 1 0 1

9 9 9 P129 9 9+ P239 9 9 P319 9 9

1 2 2 2 0 2 0 2 2 2 2 0 2 1 2 1

+ 7 P12" 9 +P239 9 9 +P13 9

[
" + P 12P 239 9 9

1 1 2 2 1

+2P23P319 9 9 +2P30129 9 9



..{1 3 3 3 0 3

P13 9 9 9 +P23 9

r 2 2 3 1

+1P12(P239 9 9

0 3 3 3 3 0 3
9 9 +P 31 9 9 9

3 2 1 2 1 2

+13319 9 9 )11323(13319 9 9
3 1 3 2
+P129 9 9 )

2 3 1 2 2 1 3 2 2 2 2 2 2}
+P31 (P129 +P239 9 9 ) 6P12 P23 P31 9 9

18

(2. 43)

If p23 = p31 = 0 then (2. 43) reduces to (2. 24), the second

order probability density function in bilinear form. A formally cor-

rect and compact form of (2.43) may be written as

co

r s t (t+r)
PX l' X

2'
X

3
(xl'x2'x3) ni!

( rst )P12 P23 (x
1

)

n=0 r, s, t=0

where

X 9(r+s) (x2)9(s+t)(x3)

nn
rst/

n!
r!s!t! r+s+t=n

(2. 44)

is the set of multinomial coefficients.

The next step is to obtain the third order analogues of G(p; m)

and H(p; m), m = 0, 1, 2, the functions associated with half- and

full-wave rectifiers:

G(p12,p23,p31;m) =S0°S°°31 (x x
2
x

3
)1np

X l' X
2'

X
3
(x1' x2, x3)dx1dx2dx3

0 0 0

(2. 45)



and

and

coocco co

H(P12'P23'P31;111) ix1x2.31_.,

Clearly

Px ,
(xl'x2'x3)dx1dx2dx

3

H(p12, p23, p31;
0) 1

19

(2. 46)

(2.47)

2 2H(p12, p23, p31; 2) = 1 + 2p12 + 2p23 + 2p312 + 8/312p23p31

(2. 48)

which Kamat [25] lists as [2, 2, 2]. Note that (2. 48) reduces to

H(p; 2) when p23 = p31 = 0. Next

3 3 3
P12+P6! 23 IP311 1

0 r 0) = + [p +p +p ,+G(P12'P23'' 3 8 4Tr 12 23 3i

+ (pi2+p 23
5

+p
31

5
) +

- - 1=8 +4 (si.n-1
8 4Tr

p12+ sin 1 p23 + sin p31)

(see Gupta [18] ).

The next case is anything but simple.

G(p12, p23, p31;
1)

11 13/2{1 1 2 2 21+
`2Tr/ 21 P12+P23+P31 P P Pl22331

(2. 49)



2

+

1

131213231331(1312 +1323 +1331
21

611
6 6 61 2 21 41 2 21

4- 61 1'13124-P234-P31
45[1312

(p 234331 )+p23 'P31+12112

1 ,

44-2-TT IP 12 -FP 23 +P 31 +P 12 P 23+P 23 P 31 +P31P12].

It is convenient to write

M3
2 2 2

P12 -P23 -1331 +412P23P31

2

M12 I-P12

2

M 23 =11-1323

2
M31 =

31

20

(2. 50)

(2.51)

and conjecture that the above (i. e., (2. 50)) quite horrible series may

have the closed form

1 3/2 Tr -1,P12P23P31
= (27 ) M3+(p

12
+p

23 p 31) 2
+sin )

G(13 12'P23'P31;1/
23 31

-1 1323-P3012]+sin (

31 12

)
2

+ sin-1( P3
M
1-P12P23

)-1} (2. 52)(P31+P12' o 23
12

M23



The corresponding result

H(PP'P;1/ 1213/2
4I P+PPis' n

-1(312-P23P31)
1V2331 3122331 M

23
M31

-1 P23-P31P12)+ (p23+p3ipidsin (

"L31M12

P31-P12P23
+(P31+Pl2P23)sin ( Ml2M23

21

(2. 53)

is listed as (1, 1, 1) by Kamat. Clearly the third order analogue

of the Rubin formula (2. 38a) is

H(P12'P23'P31;1 = 8G(p12,p23, ;1)

[13124-P23+P31+P12P23+P23P31+P31P12]

(2. 54)

In realistic computations the pii tend to be simple exponen-

tial functions so the series of ascending powers might well be best

for computation if the correlation level is low (i. e. , < . 6).

The above conjecture (2. 52) has been checked out by comparing

the powers of the Pij - through the sixth degree.

2. 4 Limiters and Quantizers, Fourth Order Information

Another interesting group of devices to consider by the method

of bilinear, trilinear, even quadrilinear expansion of the probability
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density function are the limiters, clippers, and quantizers whose out-

put functions are listed below.

The clipper

.fab, x> b
h(x) = ax, - b < x < b

dab, x < - b

has been discussed by Price [41] and the smooth limiter

h(x) = acp(-1)(x ), - 00 < x < 00

has been discussed by Baum [4]. The quantizer is defined by

where

h(x)

[ is the "greatest integer function".
h(x)

ab

b

--ab

Figure 2. 1. The clipper.

1 X

(2. 55)

(2. 56)

(2. 57)



h(x)
A

a
2

a
2

h( x)

x

"*.
....,

Figure 2. 3. The quantizer output function.

x

23
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Due to the odd symmetry of this group of devices it can be

shown that the third order information term for each is identically

zero.

Moving on to the case of fourth order information we discover

almost immediately that the task is to be much more formidable than

that for the third order case for the rectifier family. The fourth

order quadrilinear expansion for the appropriate density function

must take the form

00
14 SSISSI e-ia'x- 2 &a-Ep..a.a.

PXl' X
2
,X

3
,X

4
(x

1,
x2, x3, x4

211-

_co

X dalda2da3da4 (2.58)

and, of course, there are (42)
6 different Pij's' p12, p13, p14,

ID p p 0
23 24, 34. Thus

PX
1,

X2, X3,X
4

(x
1,

x2, x3, x4)

co n

=
1

n!
1

( r stuvw ) P12 P13 P14P 23 P24 P34
n r stuvw

n=0 r, s, t,u,v,w=0

X(r+s+t)(xl )(p(r+u+v) (x2)9(s+u+w)(x
3

)9(t+v+w) (x4)rp (2. 59)

If the expansion is spelled out, an order-preserving notation could

be employed such that cp
a (ppcpycp6 would mean



In the case of the smooth limiter (2. 54), the integral

,S100 (-I) x (n)
cp ( .)cp (x)dx

_co

is zero for even values of n. Let

In(c) =
(-1) x (2n+1)

(-..)go (x)dx

co
x (2n) 1 (0) x (2n)

(x)dx,= 9
(-1)

(1) )( (x) 9 (-c-)49c
0 0

1 $00 (0),x,
9

(2n)
= 7 () l V (x)dx

0

c2n+1(2n)!r( 2)
i

2
n+xn!

But one can write

Sloo
e

-x2 /2c 2x2ndx ic
( 2c2u)n-1 e

-u 2(c du)
0 0

i
1

= 2n -xc2n+lr(n+
2

).

In general

n> 0

25

(2. 60)

(2.61)



g9(n)(x) )n9(0)13014"n
(-1)nc9(0)(x)n!

[n /2]
xn- 2k

(-1)k
k=0

2kk!(n- 2k )!

where Hn(x) are the Hermite polynomials so, finally,

1 Cc° (0) x (2n)
c (x)dx

0

and

x
2

2 l+c 2 n
(2n)!

_
2 (-1)kx2n-2koo

2irc
e c dx

0 k=0
2
kk!(2n-2k)!

(2n)!
2Trc

k=0

(-1)k (2n- 2k+1 ) (2n- 2k)!I- (1)

2
kk!(2n-2k)! Nil+c2 2

nk+1(n-k)!

n

(2n)!1-(1) c 2n+1 1 (-1)kn! 1 +c2 k
21r2n+

n!c L k!(n-k)! c2
k=0

(2n)! c2

)

n+1
1_

1 l+c2)n
NIT 2/1+1

1+c
2 n! c

(1 c
2

Incn N57; (1+c2)"1

(_1)n1 (2n)!
n+l

2 n!
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(2. 62)

(2. 63)

n = 0, 1, 2, ... (2. 64)

For the fourth order information about the smooth limiter we

are interested only in those terms of the quadrilinear expansion of
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(xi, x2, x3, x4) which consist of odd order derivativesX1' X2' X3'x4

of cp (0)(x). There are many permutations of the odd indices. Table

2. 2 lists the possible combinations of odd indices through the ninth

term of the expansion of the density function.

Table 2. 2. Combinations of odd order indices through the
ninth term in expansion of density function.

Order of
term Combination of indices

0
1

none
none

2 (1, 1, 1, 1)
3 (3, 1, 1, 1)
4 (3, 3, 1, 1)
5 (5, 3, 1, 1), (3, 3, 3, 1)
6 (5, 5, 1, 1), (5, 3, 3, 1), (3, 3, 3, 3)
7 (7, 5, 1, 1), (5, 5, 3, 1), (7, 3, 3, 1), (5, 3, 3, 3)
8 (7, 5, 3, 1), (7, 3, 3, 3), (7, 7, 1, 1), (5, 5, 5, 1),

(5, 5, 3, 3)
9 (9, 7, 1, 1), (9, 5, 3, 1), (9, 3, 3, 3), (7, 7, 3, 1),

(7, 5, 5, 1), (7, 5, 3, 3), (5, 5, 5, 3)

A computer program was written to evaluate the series solu-

tion for the fourth order information of the smooth limiter for terms

up to the ninth degree. In the program the constant c was chosen

to be 1 and, although the program was written in general form it

was also decided to obtain numerical results for the case

p . i= 1, p.. = p; i, j= 1, 2, 3, 4. (2. 65)

The Appendix lists the contributions by degree of term from two to
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nine as well as the running total for p = . 1 to 1 in steps of 0. 1.

The convergence of this series is seen to be satisfactory for p < .7

however for larger values more terms would need to be added. The

slow convergence for expansions of the Gaussian density function has

been commented on by Cheng [10] and Gupta [18].

The quadrilinear expansion may be used to obtain fourth order

information about all the devices mentioned in this chapter but one

becomes painfully aware of the tediousness of the chore.
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III. QUADRIPHASE CARRIER RECONSTRUCTION

3. 0 Introduction

In order to coherently detect a quadriphase-modulated signal it

is necessary to either reconstruct the carrier or to make use of a

transmitted pilot carrier. This part of the thesis is an analysis of

the carrier reconstruction section of a quadriphase demodulator.

Basically, the quadriphase (QPSK) signal may be described as

where

and

47:cos [o0t+cp(t)+0] (3. 1)

s is the average power of the signal,

0.)
0

is the carrier radian frequency,
IT94) is the modulation (i. e., (19(t), takes on one of the values ± 4'

± 37 radians for a period of T seconds),
4

0 is a random phase angle uniformly distributed over [0, 27].

Passing this signal through a nonlinear device and filtering so as to

recover the fourth harmonic yields

K cos (4coot + Tr + 40) (3.2)

where we see that the modulation has been removed and in its place

a constant phase term is left. To reconstruct the carrier one can

divide the frequency by four and subtract out
4
Tr radians and obtain
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K1 cos (co
0
t + 0) which may be used as the coherent reference.

In a physical system the implementation is generally as indi-

cated in Figure 3. 1. The QPSK signal and additive Gaussian noise

with one-sided spectral density of N
0

watts/Hz are passed through

a bandpass filter sufficiently wide to pass at least the main lobe of

the QPSK signal. The phase-locked loop (PLL) tracks the signal

component at 40,
0

from the ( )4 device and the reconstructed

carrier is obtained from the VCO output at w 0

The analysis consists of deriving the signal-to-noise ratio at

the input of the PLL and, knowing this, the average error rate for

the detected QPSK signal.

QPSK
input

Bandpas s
filter

Phase-locked loop

1

L

BPF

Reconstructed
carrier

Filter

Arc+.

Phase shift
network

Figure 3. 1. Physical implementation of carrier reconstruction.
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3.1 Signal-To-Noise Ratio at the PLL Input

Figure 3. 2 illustrates the system we will be working with in

this section of the analysis. X(t) is the input signal plus noise

(s(t)+n(t)). Y(t) represents the filtered signal plus noise

(s1(t)+0t)) and Z(t) = Y4(t). To determine the signal-to-noise

ratio (SNR) at the PLL input it is necessary to take the Fourier trans-

form of the autocorrelation function of Z(t). This autocorrelation

function R (T) = E[Z(t)Z(t+T)] (where E[ is the expectation

operator), may be found by expanding Z(t) in terms of signal and

noise components.

X(t)
s(t)+n(t)

Band pass
filter

Y(t)
(0)4

Z(t4.

'(t)+n'(t) [s 1(t)+n' (t)] 4

Figure 3. 2. Multiplier system.

In this analysis we assume the signal and noise to be statisti-

cally independent. For notational convenience we write:

[ st(t) = s1, s (t+T) = s2, n'(t) = n1, and n'(t+T) = n2] (3. 3)

From Figure 3. 2 and the associated description we have that
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Rz (T) = E[ (s
1
+nl )4 ( s

2
+n2)4]

ELs4 s
4+4s4

s
3n

+b,
, 3

S
4

s
2

n
2 +4s 4s n 3

+s
4

n
4 +4s 3

s
4n +lbs

1
s

2

3
n

1
n2

1 2 1 2 2 1 2 2 1 2 2 1 1 1 2 1

+24s3 s
2n n2+16s 3s n n 3+4s 3n

n
4+6s2

s
4

n
2+24s2

s
3 n 2n

1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2

+36s2 s
2

n
2
n

2+24s2s
n2 n

3+6s2
n

2
n
4+4s s4n

3+16s s3n
3n

1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 2

+24s s2n 3
n

2+16s
s n3 n

3+4s
n3 n

4+s4
n

4+4s3
n

4n
1 2 1 2 1 2 1 2 1 1 2 2 1 2 1 2

2+6s2n
4n +4s nn 3n4

2 1 2 2 1

4
2
+n

1

4
2

(3. 4)

The bandpass filter will be assumed ideal with transfer func-

tion H(f), where

H(f) =

f 1 fi < Il, f =0.)
0

-
2

W
< i

0
+

2 0 0
/2Tr

otherwise.
(3. 5)

Since n'(t) is a linear function of n(t) (a Gaussian function)

it too is Gaussian. The power density spectrum of n'(t) is shown

in Figure 3. 3. It is easy to show that the autocorrelation function of

n'(t) is

sin TrTW
Rnt (T) = NOW

TrTW
cos w OT

= N
0
Wp(T)

= E(nin2) (3. 6)
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-01 w l'e
NO/2

i

-f
0

Sn,(f)

f
0

f

Figure 3. 3. Power density spectrum of n'(t), S ni(f)-

The various moments of n'(t) are listed below. Considerable

simplification of Equation (3. 4) may be made by noting that

E[nlin] = 0 for i+j odd. (3. 7)

This is a consequence of n'(t) being zero-mean Gaussian.

Table 3. 1. Moments of n'(t).

E(nin2) = WN0p(T)

E(n 2) = WNo

E(n
1 2
n3) = 3W

2
N

0
2 p(T)

E(14.n) = W21\1(1+2p2(T))

E(n2inl) = W
3
No (1+4p

2(T))

E(nn32 ) = W3N
0
3p(T)[3+2p2(T)]

1

E(nn) = W4N
[3+4

P

4(T)]
1 2 0

E(niin2) = 0, i+j odd

where sin(TrTW)NT) -
1TTW

co S ' OT



3.2 Moments of the Signal Process, s'(t)

In order to make the mathematics tractable, we restrict the

bandwidth of the filter W to be sufficiently wide to allow the as-

sumption

This requires that

34

s(t) = s'(t). (3.8)

W >
2

(3. 9)

where T is the quadriphase symbol duration (seconds) and W is

the filter bandwidth (Hertz).

Writing

Rs,(T) = E(sis2)

= E{2s cos(co0t+co(t)+0) cos [w0(t+T)+9(t+T)+0]) (3. 10)

we first average over 6, which is uniformly distributed (0, 2Tr)

and obtain

Ee[s s2] = s {cos (coot+(p(t))cos[wo(t+T)+9(t+T)]

+ sin (w0t+(p(t))sin[co0(t+T)+9(t+T)}}

= s cos [w0T+9(t+T)-(f(t)] (3. 11)

Recall now that cp (u) is a discrete variable taking on one of
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Trthe four values (± 4 ± 3Tr ) with equal probability during each suc-

cessivesive time period of duration T seconds. co( u) and co(u+T)

are assumed independent (i.e., data transmitted is random in nature).

Averaging E
0

[ sls
2]

over time yields

R t(r) = E[s sz] = Et[Eds s2] ] T
cos co

0
T; I TI < T

0, I TI > T

(3. 12)

In similar fashion one obtains the results in Table 3.2.

Table 3.2. Moments of the signal process.

E(s1s2) = S(T) COS W T
0

E(s 2) = s
1

, 3,
=

2
3 ,.Ets s

2
) s

2
(T) COS WoT

1

E(s2 s
2
2)

1
= s2[1+1(-r ) cos 2w0-r]

2 4E(s
1

s 2) = s3[.E(7) cos 2(.00-r +

33 3E(sis2) = R(v) cos 3w0T + 9(T) cos coo-r]

4 4, r 1
17_m(s ls 2) = s 41. cos 4w0T + MT) cos 2co0T]

where =

for I TI < T

otherwise



Substituting the results of Tables 3.1 and 3.2 into Equation

(3. 4) we have,

4
s
8

3R z (T) = [cos 4woT+16(T)COS 2w + 6WN 0s
3 R(T)cos 2w

0
T +-

2

9 2 2 2 ..-- 3 , ,r+ .2-W No S qw IN s p(TM(T)LCOS T-F 9 cos woT]
0 0

+ 72W
2

No2 s
2p(T)(T) cos w0T+ 6WNos 3 R(T)cos 2w0T

2 2 1+ 36W No s (1+2p 2 (T))(1+
2

(T)cos 2w
o

T)

+ 6W
3N

0

3 s(1+4p 2(T))
+ 72W

2N
0

2
s

2 p(T)(T)cos woT

3 ,.
(A)

2 ili IN
2 2+ low IN SpkT)S(T)COS oT[+Lp tT S

0 2 0

+ 6W
3N

0

3 s(1+4p 2
(T)) + W

4N 4
(3+4p

4(T))
0
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(3. 13)

The power density spectrum S
Z

(f) of Z(t) may be com-

puted by taking the Fourier transform of R (T) but since we are

only interested in that portion of S (f) near 4f we can inspect

(3. 13) and determine that only five terms yield components in this

frequency range. They are:

4
Rz(T) = cos 4w

o
T + 4WN 0s

3p(T)VT)cos
3w

0
T

+ 36W
2Nos 2

p
2 (T)VT)cos 2w0T

3 3 3 4 4+ 32W No sp (T)VT)cos woT + 4W Nop (T) (3. 14)



The first term of (3. 14) yields the desired reconstructed

sinusoid at 4f
0

while the remainder produce noise. At this point

it is usual to assume that the phase-locked loop has an input band-

width BL << W and that the noise spectral density at 4f0
0

essentially flat for

B
1 14f

0

B
L

- < 1 f 1 < 4f
0

+
L

2

is
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so that we may say that the total noise power at the input to the PLL

is SZ (4f0)BL. SZ (4f
0)

is the one-sided power spectrum evaluated

at 4f0.

3.3 Noise Power Spectral Density at 4f0

Recalling that an autocorrelation function consisting of a pro-

duct of n functions transforms into a spectral density function con-

sisting of an n-fold convolution of the spectral density functions cor-

responding to the n functions in the autocorrelation function, i. e.,

if

then

R(T) = R1(T)R2(T) ... Rn(T) (3. 15)

a(R (T)) = S(f) = Si (f ) at 52(f) ® . . . Cd, Sn (f )

where 3-( ) indicates Fourier transform of ( ) and 0

(3. 16)



signifies convolution, then we evaluate the noise spectral density at

4f0 as follows:

A. 4WN s 3p
(T) cos 36)0T

and

3'(4wN0s3p(T)) =

2WN0s3, If I -2- Ifl Ifl + -2-

0, otherwise

3-(UT)cos 3w 0T) = T
sin TrT(IfI-3f

0
)

2 ( irT(IfI-3f )
)

0

_oo<f<oo
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(3. 17)

Convolving these spectra, we obtain for the energy density at 4f0:

W/2
S
A

(4f 0) = 4s NOT (
sin

TrfT
TrfT )

2 df
0

(3. 18)

The integral in (3. 18) cannot be evaluated in closed form but tables

exist [17] which evaluate

Sf(x) =

0
2

2

du (3. 19)

Allowing the bandwidth to be a function of the quadriphase sym-

bol duration
a
T

we may write (3-18) as

(3.20)



2s3N0
S
A

(4f 0) - (Tra)
Tr

B. 36W2 N0 s
3

p
2 (T)t(T) cos 2co0T
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(3. 21)

Convolving the transform of p(T) with itself yields a triangu-

lar spectrum centered about ± 2f0 as shown in Figure 3. 4.

2W

fo

A

2
18W

2Nos 2

0 fo

Figure 3.4. Spectrum resulting from 3 (p(T)) 0 (p(T)).

Convolving this with 3- [t(T)cos 2w0T] we obtain

TTrf-i) 2
f

T
SB (4f 0) = 18s 2

No2WT S)
W sin(

(1- ) dfW
0 Trf

2

but

2TrWT sin2(-121 )[= 18s 2
NO2WT 1

2 22TrTS(2TrTW)- 2
dus

4WTr T 0 u

0

. 2 usin 2

u2
4

du =

4
(3. 22)

(x) - 3 (x) (3. 23)



(also from the Tables) where

3 (x).y is/( )du
0

Table 3. 3 lists approximations to 3 (x) obtained by numerically

integrating the tabular values for 1,5 (x).

Table 3. 3 Approximate value for, (x)/Tr.

x j(x)/TT x (x) /ir

3Tr/2 2.707 6-rr 15.71
2Tr 3.88 15Tr/2 20. 31
5Tr/ 2 5.3 8Tr 21.81
3Tr 6. 75 9ir 24. 87
4TT 9.69 121r 34.11
5Tr 12. 69

Equation (3. 22) can now be written as

9s 2N 2W
0 1{1(2Tra)-

2Tra
[2Tra./.5 (2Tra)- 3 (2Tra)] }5B (4f0) = Tr

--I
9s

2
No

2Wj (2Tra)

2aTr2

C. 32W
3N 3

sp ( )g(T) cos cooT

Convolving a (p(T))

spectrum of the form

40

(3. 24)

with itself twice yields a symmetric
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NOW
(3W -2( I fl -3f0)2

11f1-3f01 <8 4

NOW -3f0)2
S

C' (f) = W

0,

9W
-311f1-3f01+ 4 ],

W
2
< WI-3f 3W

1<
2

otherwise (3. 25)

3 3
Convolving 32W NO s ,D((i-)cos

o
-r) with SC' (f) yields

W/2
3

4
3W 2 sinz(rrfT)

S
C

(4f
0

) = 8sNoWT ( -2f /W) df
0 (TrfT )2

3W/2 f
2

9W sin2
errfT )

+ 4sN
0
3WT J ( w -3f +

4
) df

W/2 (TrfT )2

We easily show that

so we have

(3. 26)

2 usin 2
u du = 2(x-sin x) (3. 27)

u0
4

N
0
31ATZ(3 5 sin arc 9 el- 4> (3aTT )SC (4f

0) Tr 2
Tr

2a
2 2

2 sin (3aTr) 3
+ 3 (3aTr) - 3 (air)} (3. 28)

air a2
2 air
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D. 4W4N
o

4
p

4
(T)

Convolving a (p(r)) with itself twice gives a spectrum of the

form (3. 25). Convolving this with 4W
4N 4 _(p(T)) yields

0

W/2
4 2f2

S
D

(4f 0) = NoW S' (
3W

- )df
4 W

0

7N
OW

3

24

The total noise spectral density at 4f0 is therefore

3 2 -1
(2Tra)9 s No2WJ2s NO isSZ (4f 0) - (Tra) +

Tr 2
2aTr

3 2
SNOW [3 $(aTr)4.

2 2
5 sin aTr

-
2
9

(3aTr) - 2+
Tr 2 aTrTra

(3. 29)

7N
4

W3
3sin(3a7r)

+ (3 (3aTr)- (aTr)1+
0

a2 Tr
2 aTr 24

The SNR at the input to the PLL is therefore

s4

SNR - 8

SZ (4f
0

)BL

(3. 30)

(3. 31)

Typical cases might be for a = 2, 3, 4. Table 3.4 lists the various

values of tg (x) needed in these evaluations.



Table 3. 4. Several values of S(x).

a S(aTr) SI(3arr)

2 2. 84 3. 04
3 2. 93 3. 07
4 2. 98 3. 09

For a = 2 we have

SNR -
B 2(.904s 3N

0 0
+ 3.47s 2N

0

2W+ 1.28sN
0

3
W2+ .146N 4

W3)

s4
8

NO

Knowing that

and

we obtain

N W NOW
2

NOW
3116BL 904+ 3.47 o + 1.28( s ) +.146( )
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(3.32)

s T = symbol energy = 2(bit energy) = 2Eb (3. 33)

aT = 17

SNR -

Eb
W

(TT ) (171-
0 L

14.4+ 55.5 + 20.5(
No

)2+ 2.34(
NO

)
3

ENo
b

Eb Eb

Similarly, for a = 3 we have

(3. 34)



Eb
W(N )(B )

0 L
SNR

a =3 NO
222.4+135 +73.2() +11.8(-0)3E0b Eb Eb

and for a = 4 we obtain

Eb
W

(N )( IT)
0 LSNRa=4 -

0
NO

330.2+250 T +181(T0)2+37.4(T)
b b b

44

(3. 34)

(3. 35)

The SNR at the PLL input can be calculated for any value of a > 2.

Values of a < 2 tend to become meaningless because (3. 8) no

longer holds.

3.4 Density Function of the PLL Output Phase Error, cp

When a sinusoid plus noise is applied to the input of a phase-

locked loop the output phase of the PLL differs from the phase of the

input sinusoid in a random fashion. The probability density function

of this difference has been shown by Viterbi [51] to be of the form

p
exp (SNR cos co)

P `P 27rI0(SNR ) 191 < Tr

where I
o(

) is the modified Bessel function.

(3. 36)
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We are now at a point where we can determine the probability of bit

error when we have a given Eb/N) and W/BL.

3. 5 Probability of Bit Error for Quadriphase Modulation Systems

Since each of the possible phases of the transmitted quadri-

phase signal i s equally likely, we ieed consider only one of them in

formulating the probability of making an error in the detection pro-

cess. Furthermore, since the PLL is tracking a carrier at 4f0

we must divide its output signal by 4 yielding a reference signal

at f0. This divide-by-four operation has the advantage of also re-

ducing the phase difference cp by 4. Figure 3. 5 shows a phasor

diagram of a received signal originally transmitted as

TrNIT cos (wot + 4 + 0) . (3. 37)

where E is the symbol energy.

The reference signal used in coherently detecting this signal is of the

form
K cos (w0t + 0 + (3. 38)

01

00 10

Figure 3. 5. Phasor diagram of received quadriphase signal.



46

The four equally likely choices for symbol in each time period

T results in

log2 4 = 2 bits of information/symbol (3. 39)

The assignment of the symbol to each pair (x, y) of binary digits

transmitted may be arbitrary and we will choose to do it as indicated

in Figure 3. 5. Here we see that the assignments are:

x Y (P(t)

0 0 -3Tr/4
0 1 +3Tr/4
1 0 -Tr/4
1 1 Tr/4

Since the transmitted symbol may be considered the vector

addition of the x and y components we will assume that the

noise is also composed of x and y components. Each component

of noise (n , n ) will be assumed Gaussian with zero mean and one-x y

sided noise density N
0

watts/Hertz. Further, we assume the two

components to be statistically independent.

A hard decision as to which two bits were transmitted is made

by determining in which quadrant the received signal vector lies.

For the case shown in Figure 3. 5, one bit will be in error if the re-

ceived vector lies in quadrant II or IV and two bits will be in error if

it lies in quadrant III. No error will result if it lies in the first



quadrant.

The conditional probability of a bit error when two bits (one

symbol) are transmitted given an angle cp is

where

Prob (bit error per 2 bits q))

Prob(nx> -E coscos a, n < _NT sin a)
y

+ Prob(nx < -NE cos a, n > E sin a)
y

+ 2 Prob(nx < -NE cos a, n < -NIE sin 0)
y

1

'ITN°

-y ? /N-x2/1\10 00

e dx J e
0 dy

cos a 4-7 sin a

1
-x 2

/Ntl 00c
e

-y2/N
0 dy

+11-NO `)Nr-E- cos a -/rE- sin a

,

2 Coo
-x2/1\10 -y2 /N

0
dx dy

ITNO 3
e

NE cos a Nrrs sin a

1 JEerfc (1..7,- cos a) + erfc ( 77 sin a)}
INO INO

erfc (Z) = 2
2-t

NPFT

is the complementary error function.

47

(3. 40)

The probability of a bit error for one bit transmitted given cp is

1clearly just 7 the result of (3. 40).
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Using the ideas of conditional probability we can next write

Prob(bit error/bit transmitted)

= Prob(bit error I (p)Prob(v)

exp(SNR cos cp) [erfc
( 77-E cos a) + erfc -1\TE sin a) dcp

8TrI (SNR )
-Tr 0 0 0 (3.41)

where, again, a
4

cp as in Figure 3. 5 and

E = symbol energy

= 2(bit energy) = 2Eb

Equation (3. 41) cannot be solved in closed form, however, a com-

puter program was written to numerically integrate it with various

values of SNR and Eb
/NO. For the sake of simplicity, SNR was

taken to be of the form

where

SNR = 13Eb/No (3. 42)

p = constant

Curves of bit error probability vs. input E
b

/NO with several

values of p are shown in Figure 3. 6. It will be noted that for

R = 5 there is at most a degradation in performance of 0. 2 dB (i.e.

the transmitted power must be increased by at most 0. 2 dB to provide

the error performance achieved by a noiseless reference. The



10

X
BPF

SNR

)4

R

Eb

NO

SNR

PLL

10-

10
5 6 7

10 log (Eb/No)

Figure 3. 6. Probability of bit error vs Eb/No.

10 11

49



50

portions of the curves drawn broken are areas where the PLL is not

in lock and should not be used for system operating points.

In physical systems one would want to keep p as large as pos-

sible to reduce performance degradation. This is usually done by

lowering BL. A compromise must be made here, however, be-

cause reducing BL increases the acquisition time of the loop. If

E
b

/NO is small, it is to be expected that the PLL will lose lock and

be required to reacquire before coherent reception is possible. One

then uses the largest BL possible consistent with low system

degradation.

Table 3.5 lists the required W/BL to maintain p = 5 for

various values of Eb
/NO and a = 2,3,4. For the lowest Eb /NO

expected, one may select W/BL to minimize system degradation

due to a noisy reference.

Table 3.5. W/B
L

required to maintain p = 5 (a = TW).

Eb /NO
W/BL

a = 2 a = 3 a = 4

1.3 347 860 1702
1.6 279 665 1274
2.1 230 525 977
2.6 196 433 785
3.7 168 357 629
4.1 146 301 515
5.1 130 258 431
6.5 117 226 367
8.1 108 201 319



IV. POINT PROCESSES

4. 0 Average Number of Crossings of X(t) = x

The formula for the average number of times per unit of time

that X(t) = x has been established by Rice [43] as

poo

N I YIPX,Y (x, Y)dY
-oo

51

(4.1)

where it is understood that X(t) represents a continuous time,

differentiable, random process and px, y(x, y) is the probability

density function associated with X(t) and its time derivative Y(t).

Let N(t) represent a random noise process normally dis-

tributed with zero mean and variance N0. It is well known that

N'(t) is also normally distributed with zero mean and with variance

A2N0.

Let

X(t) = N(t) + Q sin (coot+0)
(4. 2)

= N(t) + S(t)

and

Y(t) = N'(t) +c000 cos (w0t+0)
(4. 3)

= N'(t) + St(t)

The cross-correlation is zero:
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E[X(t)Y(t)] = 0 (4. 4)

but this does not imply that X(t) and Y(t) are statistically inde-

pendent.

To implement the formula of Equation (4. 1) it is necessary to

determine the form of the joint density function. This is accom -

plished as follows: consider the two dimensional random variables

and

U(t) = [N(t), N'(t)] (4. 5)

V(t) = [S(t), S'(t)] (4. 6)

with bivariate moment generating functions MN,1\11(a.1' a2) and

MS,S1(al' a2). The Fourier transform pairs are pN,N'(x, y) and

pS,S' (x, y). The vector valued processes U(t) and V(t) are

clearly independent of each other, thus the moment generating func-

tion for [X(t), Y(t)] is defined by the product

M
X,Y

(a
1
, a2) = MN,N' (al, a

2
)MS,S' (al, a.2)

where by definition,

i(a
1
N+a.

2
N'),

M N,N' (al, a 2) = E[e

and
i(a

1
S+a2S'),

MS,S' (al, a 2) = E[e J

(4.

(4.

(4.

7)

8)

9)



the notation of Parzen [39]. Equation (4. 7) implies that the joint

density function is a convolution

so

P (x, y) = PN,1\11(x, y) ® P (x, y)X, Y S,S'

oo

SPN,Nl(x-u' y-v)pS,S' (u, v)du dvS'
_oo

53

(4. 10)

The covariance matrix associated with N(t) and N'(t) is

-IR =NO
1 0

0 A2

1 x YpN,N'(x, y) - AN 9 (4N9 (4N
o

)(P ( A4 N )

0

where co( ) is the error function defined by (2. 20) with

(0) 4
q, (x) = co(x)

(4. 11)

(4.12)

(4. 13)

Consider the fixed amplitude sinusoid Q sin (0, t+0). A selec-

tion of values of this continuous time process corresponding to ran-

domly selected instants of time, t1, t
2,

t
3,

..., is equivalent to

allowing the phase angle 0 to be uniformly distributed over the

interval (0, 2Tr). The moment generating function associated with

the sinusoidal process is



iaQ sin(w0t+0)
M s(a) = E[e ]

1 0
2Tr iaQ sin(co t+0)

2Tr ,c 'o
e de

= J0(Qa)

where Jo(x) is the Bessel function of the first kind.

The density function is the Fourier transform pair

1 Coo -iax
PS(x) TT i e Ms(a)da

_co

1

00

dae-iaxS 7dOeiaQ cos 0-'
2Tr

2
S
-00 0
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(4. 14)

Tr
1

= S b(x-Q cos e)de (4. 15)
IT

0

Korevaar's [26] general formula for the Dirac delta function,

Sdb[g(t)]f(t)dt -
l

, enf(T) ,

c

where g(t) E c' in the open interval (c, d), g'(T) 0, g(T) = 0,

c < T < d leads to

, lxi> Q

Ps(x) 1----, I xl < Q
TrgQ

2 -x2

(4. 16)

(4,17)
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Now let S'(t) = co0Q cos (w0t+0). When X(t) takes on a

given value x, S'(t) must take on one or the other of the two values

±w0NIQ 2-x2 with equal probability. The conditional probability

density for X'(t), given a prescribed value of S(t), is then

J,2_3(2)+ j, 2-3(2)
°r 0 5'2 3r1- 0 5'2

PS, I S(x' Y) 2

The relationship

yields

Ps,s,(x' Y) = Ps(x)Ps, I s(x' Y)

PS,S' (x, y) =
6(y- co oN/Q2-x2)+ 5 (y+co

0
tiQ2-x2)

2TrN/Q2-x2

(4. 18)

(4. 19)

I xl Q

IxI <Q

The convolution integral of (4. 10) may now be written as

Q
1 du x-u y-v

P (x,Y) = dv -) co( A[
)X, Y 2TrANO jQ I

Q
2 -u 2

oo 0 0

0,102_112)4_ oN/Q2_u2nX [5(v-co

Q
1 x-u

2,rrAN
0

-Q9(

X
du

/Q2-u2

y-w0"
2

cP AT-N-0-

c
./,

+cp

/y -G) N/Q2-u2

ANFICT
0

(4. 20)

(4. 21)



Let

0 = cos 1 u du
2 '

de - - 0 < 0 < TT
NQ -u

and introduce the dimensionless parameters

NiT\T
o NM°

It is easily established that

Sc°
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(4. 22)

(4. 23)

I z I (P(z+a)dz = 2[9(z )+acp(-1 )(a)1, (4. 24)

so implementation of (4. 1) leads to

Tr

N(; a) = 2A S cp(-a cos 0)[(p('o a sin 0)
7 0

A

(Th
+ A

a sin co
(-1) (A a sin 0 )] d0 (4. 25)

a result of Rice. Let us remark that his approach was very much

different in style; the present approach is interesting in itself as an

application of the classical ideas in probability theory.

Some special cases are at once evident; for the noise power

only case Q = 0 and

N(; 0) = A
e -2/2

7
(4. 26)



The transgression rate for the extreme N
0

0 should be either

u)0
or 0 and that for Q oo should be w0/ Bendat [5]

remarks about this point. The well-known properties of the error

function and the delta function yield the expected results,

lim
N0 -0

Q
059(A4No sin 0) = 0

57

( 1 ) w OQ 1
1 im ( sin 0) = 0 < < Tr (1.27)

N rv' IN°
0

so Korevaar's formula yields

lim N(; a)
N

0

Tr

2
_1= 6(x-Q cos 0) co sin 0 c10

0
TT 0

For the other extreme,

ixi > Q

(4. 28)
6.)0

x < Q

Tr
1lim N(t; = 5(-cos 0)
2

w
0

sin 0 dO
Q-- 0

(4. 29)
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4.1 Summit Formula

The extension of the methods of the previous section to one

higher level is straightforward since the formula for the average

number of summits occurring in the region X(t) < x is known to be

where

0

M= dx'S IzIPX,Y,Z(xl, 0, z)dz
_oo _oo

Z ( t) = X" ( t )

(4. 30)

Define the variance of the second time derivative of the noise

process N(t) to be B
4

N
0

. Interest is now in the three inde-

pendent processes of a continuous time parameter,

X(t) = N(t) + Q sin (w0t+0)

= N(t) + S(t)

Y(t) = N'(t) + St(t)

Z (t) = N "(t) + S "(t).

The moment generating function for [X(t), Y(t), Z(t)] is

mX,Y,Z (al, a
2,

a 3) =M
N,N1,N" (al, a

2,
a

3
)MS,S',S" (al' a

2, a 3)

and the corresponding convolution is

(4.31)

(4. 32)



oo

X,
(x, y, z) = SS.rpN,NI,N" (x-u, y-v, z-w)Y,Z

_oo

X PS,S',Sti(u'
v, w)dudvdw
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(4. 33)

The covariance matrix of the noise term and its first two derivatives

has the form

11\ =
3

N
0

1

0

-A2

0

A2

0

-A 2.-

0

B4

(4. 34)

and the discriminant is

= N0A 2
[B4 -A4

]

while the inverse matrix is

(4. 35)

-1
3

1

B4
0

1

A2

(4. 36)

B
4-A4

0

A2

B
4-A4

0

1

N
0

2
A

0

B
4-A4

That is

1

PN,N1,N"(x' Y' z) 3/2 p71- exp

o
(27rN ) A B -A

2 y2 (z +A2x)2
x +A2

A2 B
4-A4

2N0

(4. 37)



60

(See Rice [44] below his Equation (66).)

An extension of the argument in the previous section leads to a

signal density function

(x, y, z)
PS,S',S"

Hence

x

2

1.2 2 ,/ 2 2
5(z+w

0
x)

Y-w0 -x )+ 6
-x ) 24Q2- x2

(4. 38)

x <

1 C du
$ Sixdwg9()x-u y-v

(x, y, z) -
X, Y, Z Nritf ANo

TrAN
3/2 /

B4 -A4
J-0

fg/Q
2 -u 2

CO- -co 0
0

Since

X
zl-A2x-w

co

qN
0
(B4_A4)

X 8(w+wo
2u)

6(v-woN/Q2-u2)+5(v-I-woNIQ2-u2

2

1 Q du x -u

,\A:22_u2 NINoTrAN3/2T4-T4
0

we may easily write

z+A2x+w:u
9 / 4 4NiNo(B -A. )

X 7 91

y_co0tiQ2

+
AN/11

_oo

yo(x-a)dx = 1

(4.39)

(4. 40)
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1 du
p X,Y,Z(x, y, z)dxdydz = -Tr 51 = 1 (4.41)

t/Q2 2

It is convenient to set

A2a x' -
0

= A.NrICT
0

z'
4N B - )

u = Q cos 0 = aNfT\T- cos 0
0

(4.42)

and change to dimensionless coordinates as defined by (4. 23). Im-

plementation of the formula (4. 30) leads to

M(; a) A
Tr

coodx' J d0 49(x'-a cos 0)9(-A- a sin 0)
_oo 0

2
co

X $ z' cp(zi -a[xt+2 a cos 0])dzt
0 A

=
A dxt'a

0

2

X (/)(ct.Lxt+

A

d0 co(x 1-a cos 0)co(
A

a sin 0)

2

a cos 0])+a[x'+02 a cos 0]
A

2

w1 (-1) 0
X [ -2 +9 (a[x1-1--.? a cos 0] )} (4.43)

It is better to examine the second integral first. Integrate by

parts so
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2

w0dx1(p(xLa cos 0)[xl-a cos 0 + (A2+1) a cos 0]
_oo

2

rl (-1), r

I 2 (P ctlx +-2
A

a cos 0] )]

2

_r1+ ( -1)
12 9 aLs+ a cos 01)19(f-a cos 0)

A2

2

+ cp(x 1-a cos 0)(p(a [x' +(2'0 a cos 0] )
_co A

2 2 2

+
co

0 1 0
a cos 0 cp (x - a cos 0)[-2 + (-1) (a[x1+-1w72 a cos 0])]dx'

A2

A

-co (4.44)

That is,
2

1 (- 1) w0
M(f; a) = a

d09A
-2

( a sine) -9(t-a cos 0)[+co RA- a cos
Ir

0 A2

2

+ (1+a2) y ,p(x'-a cos 0)9(4.30+-7 a cos 0]
-oo

2 2 2

+
w 0+A

) a cos e cp(xi_acose) ----1 +j1 )(a [e+w°7 a cos di dx'
2

A _oo

(4.45)

It is easy to establish that the second term has the form



2

cp(x'-a cos 0)9 a xt+-2 a cos
_co A

, 2
0-(co +A

2
)

=
A2,47277. a cos() 9(xhia2+1+

dx'

2 2
(a

w 0
-A2)

A24a2 +1

)a cos() dx'

a(w24-
a2(co

2-A2)
1 0 A2) 0

cp acos 0) __21+(p(1)(Nia2+1 + i

42+1 A2t/a2+1 A qa +1

Since

a +12 B2
a A2
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a cos 0)]
(4. 46)

the average number of summits below x = VIT is written as

M(; a) 1 r w0 a sin0)
Tr

2 A2

2

2 2
2 w0 a 2

x
{B2 (w0+A

A
cp

B A
2

a cos () [1. +(p" )
2

(a [ t+
B2

{1 (_ ,) ([
A.- (p(t-a cos 0)

2
--I-cp a t+ a cos 0

Az

(4.47)

a cos 0)))

2 2 2

0A
A 2

a co s (p(x - a co s 0) 1 +(p" ) a [x1+6)+ --2- a co s (1] dx"
-oo A2

(4.48)

If, in similar fashion, K(t; a) designates the average number of

summits above x = tq\ then
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iTJK(;a)= deyo(A a sin 0)
11. 0

B2 w0

2

+A
2

B
2 awo 2

B
2

( a cos )1.
2 `I'

1 J-1)
A 2

a cos 0

2 A 2

2

+ A.9(-a cos 0) --;-+(p(1)(a+w--9z a cos El))
A

2
+A2

w0
+A

OS.7p(x'-a 1
2

+yo(1)

2

aFx1+4 a cos 0
L A

dx'a cos cos0)
A

(4.49)

The total average number of summits occurring at all levels is

.Tr
1M(; a) + K(; a) ) d0 go(

A
wo a sin

Tr
0

2 2
iw 0+A

B2

w
0

2A2
a cos Or co(x'-a cos 0)

A2 -co

2
. w

2
x 9(-1)(c1,11--° a cos Oi I

A2 --/

a cos

dx'? (4. 50)

These formulas should be checked for extreme values of the

parameters. First, let signal energy diminish to zero (i. e. , a 0).

Then

and

11+9( -1) a2 +1)] - Ae- 2/2[[-Z-Fg9
(-1)

(la)]j 4. 51)



K(;0) =+.

which yields

2

{ -
2/2

1 (-1)1-1E- coi/( c[1.7-1)] + Ae [-2-+co

1 B2M(; 0) K(;

-...(a).] (4.

(4.

65

52)

53)+ 0) = -2Tr

all which agree with Rice.

Observe that the average number of summits occurring on the

positive side, noise only, is

A2 +B2K(0; 0)
4TrA

(4. 54)

while the average number of summits occurring on the negative side

is

M(0; 0) -
4TrA

B2 -A2
(4. 55)

Second, Bendat [5] points out that if t is relatively large in

value the average number of summits occurring in the region

X(t) > x = t\fl\o, noise only input, should be about one-half the

average number of transgressions of x. This checks out since

2
AK(; 0) = 2Tr e 4 /2

>> 1 (4. 56)

Third, if noise power diminishes to zero the fixed sinusoid



remains. The passage to the limit is facilitated by introducing

parameters

Po = A NO' R
o

B4N0

66

(4. 57)

which are the variances associated with Y(t) and Z(t). Then

(4. 48) may be written as

51 Tr L)0
Q

.

M(x; Q) = CLU S111 U
-rr

0 0

and

2

P NO
00

(ID 04-wONO Q cos
0

R
0

2
PO

1 (-1 )( 0
: a NOk 2r-

X
2

+ cp a P[
0

R
0

Q cos d)]
2

PO 0
N

0
0 sxcixto Nxt_Qcos 0

N Nri7T-P Q cos
00 0 0 oo

2,iv
X

z
+

(-1)( [xi L')0

N/N
+

O 0

The basic formulas are

lira x9(Ax) = 8(x)

0,

21 1lim [-2 A-9 1)
(Xx)] 7--

X -00
1,

Q 0]).71 (4. 58)cos

x <0

x = 0

x > 0

(4.

(4.

59)

60)



Successive passages to the limit yield

lim M(x;Q) =
R 0
P 0

Let

SO

67

2
woQ r Tr/2 x

Tr
d0 dx'6(w0QsinO)cos 05(x'-Q cos()) (4.61)

0 '-oo

u= WOQsin0

du =0,0 Q cos Ode

wo o
x u2

Tr
lim M(x; Q) = s dx15(x1)6(x1-Q

2 2
N 0 _co

0 w0Q

= w.2 s 15(xt-Q)dx'
27

_co

WO

0, 0 < x < Q

0< Q <x

(4. 62)

(4. 63)

(Note that s
oo

o(t)dt = 1
; see p. 71, Vander Pol and Bremm-r

0

[50]. )

The formulas for M(; a) and K(; a) are somewhat formid-

able but for large values of certain parameters suitable approxima-

tions are available, particularly for narrow bandpass filters. From

Table 4.1 it is clear that if



then

and

2
>w0a + a

A2

2

w1 a+ 9 1)
(aL

r x'+ 02 a cos 0]) = 1
A2

2

1 (1)l, r

z + ai s+ a cos 0] ) 1

A2

68

(4.64)

2 A2

1 (-1) B2 0 a a cos 0] )
2

(a[ 0 (4. 65)
A

for all value of 0. Hence the formula for the average number of

summits occurring in the region X(t) > x = 0 reduces to

A sTrK(t; a) = d09( 1-73 a sin 0)
0

(J.)

2+A2

X co(-a cos 0) - °
2

a cos 0 1) (t- a cos 0)
A

(4. 66)

Table 4.1. Some values of 9 ( 1)
(x).

x 9(-1)(x)

0 0
1 0. 34135
2 O. 47725
3 0. 49867



Integration by parts of the second term is quite simple; the

final form of the approximating summit formula and the transgres-

sion formula (4. 25) may be exhibited side by side as

and

A
2

Tr woa sin() wo+A
2

K(; a) -= S' 9(-a cos 0) 9(
A Aw

) + a sin 0
Tr 0 0

X 9(-1) (''2o a sin0)} dO
A

w 0 w0AN(; a) = s Tr

9(,_a cos 0) fgo( 1,, a sin 0) + --A- a sin 0
7 0

°X 9(-1) ( --A- a sin 0) dO}

69

(4. 67)

(4.68)
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APPENDIX

Computer results for fourth order correlation function of

smooth limiter (c = 1, pii = 1, = p, i, j = 1, 2, 3, 4).

Degree of term Contribution Sum

p = .1

p 2

2

3

4

5

6

7

8

9

2

3

4

5

6

7

8

9

. 00018998 . 00018998

- 1. 2665144 x 10-5 . 00017731

1.1081996 x 10-6 . 00017842

- 0. 9498854 x 107 . 00017833

O. 8621529 x 108 . 00017833

- 8. 7072833 x 10 10 . 00017833

0. 5889075 x 10 10
. 00017833

- 0.8852953 x 10-11 . 00017833

. 00075991 . 00075991

- . 00010132 .00065859

1.7731196 x 105 . 00067632

- 3. 0396340 x 106 . 00067328

5. 5177782 x 107 . 00067383

-1.1145321 x 107 . 00067372

1. 5076034 x 108 . 00067373

-4. 5327114 x 109 . 00067373

75



76

Degree of term Contribution Sum

3

2 . 00170979 . 00170979

3 - . 00034196 . 00136784

4 0.8976419 x 104 . 00145760

5 -2.3082221 x 105 . 00143452

6 6.2850964 x 10-6 . 00144080

7 -1.9042830 x 10-6 . 00143890

8 3.8638242 x 107 . 00143928

9 -1.7425268 x 107 . 00143911

= 4

2 . 00303963 . 00303963

3 - . 00081057 . 00222907

4 . 00028370 . 00251276

5 -0.9726827 x 104 . 00241550

6 3.5313774 x 105 . 00245081

7 -1.4266013 x 10-5 . 00243654

8 3.8594649 x 106 . 00244040

9 -2.3207486 x 106 . 00243808

P 5

2 . 00474943 . 00474943

3 - . 00158314 . 00316629

4 . 00069262 . 00385891

5 - . 00029684 . 00356207

6 . 00013471 . 00369678

7 -0.6802566 x 104 . 00362876

8 2.3004210 x 10-5 . 00365176

9 -1.7290930 x 10-5 . 00363447



Degree of term Contribution Sum

P = . 7

p =

2

3

4

5

6

7

8

9

2

3

4

5

6

7

8

9

2

3

4

5

6

7

8

9

. 00683918

- . 00273567

. 00143623

. 00073863-

. 00040225

- .00024375

1.2770633 x

- 0.8921738 x

. 00930888

.00434414

.00266079

.00159647

. 00101431

. 00071708

. 00043831

. 00035725

. 00683918

. 00410351

. 00553973

. 00480110

.00520335

.00495960

104 . 00508730

104 . 00499809

.00930888

.00496474

. 00762552

.00602905

. 00704337

.00632628

.00676460

. 00640735

. 01215854 . 01215854

. 00648455 .00567398

. 00453919 . 01021317

. 00311258 .00710059

. 00226008 .00936067

. 00182605 .00753462

. 00127562 . 00891 024

. 00118822 . 00762202

77



Degree of term Contribution Sum

P = .9

p = 1

2

3

4

5

6

7

8

9

2

3

4

5

6

7

8

9

. 01538815 . 01 538815

- . 00923289 . 00615526

. 00727090 . 01342616

.00560898 00781718

. 00458183 . 01239901

- .00416467 . 00823435

.00327297 . 01150732

- . 00342981 . 00807751

. 01899772 . 0189977 2

- .01266514 . 00633257

. 011 08200 . 01741457

- . 00949886 . 00791571

. 008621 53 . 01653725

- . 00870729 . 00782996

. 00760331 . 01543327

- .00885296 . 00658031

78


