

AN ABSTRACT OF THE DISSERTATION OF

Guohua Hao for the degree of Doctor of Philosophy in Computer Science presented on

July 21, 2009.

Title: Efficient Training and Feature Induction in Sequential Supervised Learning

Abstract approved:

Thomas G. Dietterich

Sequential supervised learning problems arise in many real applications. This

dissertation focuses on two important research directions in sequential supervised

learning: efficient training and feature induction.

In the direction of efficient training, we study the training of conditional random fields

(CRFs), which provide a flexible and powerful model for sequential supervised

learning problems. Existing training algorithms for CRFs are slow, particularly in

problems with large numbers of potential input features and feature combinations. In

this dissertation, we describe a new algorithm, TREECRF, for training CRFs via

gradient tree boosting. In TREECRF, the CRF potential functions are represented as

weighted sums of regression trees, which provide compact representations of feature

interactions. So the algorithm does not explicitly consider the potentially large

parameter space. As a result, gradient tree boosting scales linearly in the order of the

Markov model and in the order of the feature interactions, rather than exponentially as

in previous algorithms based on iterative scaling and gradient descent. Detailed

experimental results are provided to evaluate the performance of the TREECRF

algorithm and possible extensions of this algorithm are discussed.

We also study the problem of handling missing input values in CRFs, which has been

rarely discussed in the literature. Gradient tree boosting also makes it possible to use

instance weighting (as in C4.5) and surrogate splitting (as in CART) to handle missing

values in CRFs. Experimental studies of the effectiveness of these two methods (as

well as standard imputation and indicator feature methods) show that instance

weighting is the best method in most cases when feature values are missing at random.

In the direction of feature induction, we study the search-based structured learning

framework and its application to sequential supervised learning problems. By

formulating the label sequence prediction process as an incremental search process

from one end of a sequence to the other, this framework is able to avoid complicated

inference algorithms in the training process and thus achieves very fast training speed.

However, for problems where there exist long range dependencies between the current

position and future positions, at each search step, this framework is unable to exploit

these dependencies to make accurate predictions. In this dissertation, a

multiple-instance learning based algorithm is proposed to automatically extract useful

features from future positions as a way to discover and exploit these long range

dependencies. Integrating this algorithm with maximum entropy Markov models yields

promising experimental results on both synthetic data sets and real data sets that have

long range dependencies in sequences.

c©Copyright by Guohua Hao
July 21, 2009

All Rights Reserved

Efficient Training and Feature Induction in Sequential Supervised
Learning

by

Guohua Hao

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented July 21, 2009
Commencement June 2010

Doctor of Philosophy dissertation of Guohua Hao presented on July 21, 2009.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Guohua Hao, Author

ACKNOWLEDGEMENTS

First and foremost I owe my deepest gratitude to my major advisor, Professor Thomas

Dietterich, for his tremendous support and great patience throughout my PhD study.

Without his continuous encouragement, I would not have been able to finish my

research work. It is my honor to work as his graduate student in the past six years.

I would like to thank all my current and previous PhD committee members, including

Professor Alan Fern, Professor Xiaoli Fern, Professor Weng-Keen Wong, Professor

Prasad Tadepalli, and Professor Jon Herlocker, for their kindly support and guidance to

my PhD study and research. I would also like to thank Professor Margaret Niess and

Professor Jack Barth for taking their time serving as GCRs on my committee.

I would like to show my gratitude to Dr. Stefan Riezler, my internship mentor at

Google Inc., for giving me the opportunity to apply my research to solve industry

problems. It is a valuable experience for my future career.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Sequential Supervised Learning . 1

1.2 Previous Work . 2

1.3 Contributions . 5

1.4 Outline . 6

2 Conditional Random Fields (CRFs) 7

2.1 Model Representation . 7

2.2 Training CRFs . 9

2.3 Inference in CRFs . 10

3 Training CRFs with Gradient Tree Boosting 13

3.1 Motivation . 13

3.2 Functional Gradient Tree Boosting . 14

3.3 TREECRF Algorithm . 19

3.4 Related Work . 24

3.5 Experimental Results . 25
3.5.1 Data Sets . 26
3.5.2 Performance of Shrinkage in Regression Tree Generation 28
3.5.3 Comparison between TREECRF and MALLET 29

4 Handling Missing Values in CRFs with Gradient Tree Boosting 43

4.1 Motivation . 43

4.2 Review of Instance Weighting . 44

4.3 Review of Surrogate Splitting . 45

4.4 Experimental Results . 46
4.4.1 Protein Secondary Structure Prediction 48
4.4.2 NETtalk Stress Prediction . 48
4.4.3 Hyphenation . 52
4.4.4 FAQ Document Segmentation 52
4.4.5 Analysis and Discussion . 53

TABLE OF CONTENTS (Continued)

Page

5 Discovering Future Features in Sequential Supervised Learning 56

5.1 Motivation . 58

5.2 Review of Multiple-Instance Learning (MIL) 61

5.3 MIL-based Future Feature Discovery 63
5.3.1 Future Feature Model . 64
5.3.2 Training Algorithm . 65

5.4 Experimental Results . 70
5.4.1 Synthetic Data Sets . 71
5.4.2 NETtalk Data Set . 76

6 Summary and Future Work 78

6.1 Summary . 78

6.2 Future Work . 80

Bibliography 81

LIST OF FIGURES

Figure Page

1.1 Graphical representation of a training example in the NETTalk data set.
X is the English word “determine” and Y the corresponding sequence
of stress/phoneme pairs. 2

3.1 Comparison of prediction accuracy on each data set. 33

3.1 Comparison of prediction accuracy on each data set (Continued). 34

3.1 Comparison of prediction accuracy on each data set (Continued). 35

3.2 Comparison of cumulative CPU time on each data set. 36

3.2 Comparison of cumulative CPU time on each data set (Continued). . . . 37

3.2 Comparison of cumulative CPU time on each data set (Continued). . . . 38

3.3 Comparison of average CPU seconds spent per iteration on forward-
backward algorithms and feature induction algorithms by TREECRF
and MALLET. 42

4.1 Performance of missing values methods for different missing rates. . . . 49

4.1 Performance of missing values methods for different missing rates (Con-
tinued). 50

4.2 Fraction of the time that each FAQ feature is true (versus false). Features
1, 3, 4, 7, 8, 10, 11, 12, 16, 18, and 20 are rarely true. 54

LIST OF TABLES

Table Page

3.1 Best-first version of the CART algorithm. 17

3.2 Derivation of the functional gradient. 21

3.3 Gradient tree boosting algorithm for CRFs. 23

3.4 Performance comparison of TREECRF with different regression tree fit-
ting algorithms. Entries marked with one or more stars are statistically
significantly better than the alternative method. Specifically, * means
p < 0.025, ** means p < 0.005 and *** means p < 0.001 according to
McNemar’s test. 29

3.5 Performance of TREECRF, MALLET, and BASELINE on each data set.
Entries marked with one or more stars are statistically significant than
BASELINE. Specifically, * means p < 0.005, ** means p < 0.001
according to McNemar’s test. Bolded numbers indicate the statisti-
cally better prediction accuracy between TREECRF and MALLET. The
BASELINE method stops training if the optimization of loss functions
converges. So for each FAQ data set, different training set may have
different number of training iterations. Here we gave out the range of
number of training iterations for each FAQ data set. 31

3.6 Comparison of average CPU seconds spent per iteration on forward-
backward algorithm and feature induction algorithm in TREECRF and
MALLET for each data set. 39

4.1 Estimation of the coefficients corresponding to different missing values
methods and statistical test results. In FAQ ai-general problem, impu-
tation was the baseline method, so the coefficient values give the log
odds of the change in accuracy relative to imputation. * means that the
parameter value is statistically significantly different from zero (p < 0.05). 51

5.1 Derivation of the top level update function. 67

5.2 Derivation of the lower level update function. 69

5.3 Performance of the FF-MEMM algorithm on synthetic data sets, where
* means one future feature is extracted, ** means two future features
are extracted, and *** means more than two future feature are extracted. 74

LIST OF TABLES (Continued)

Table Page

5.4 Prediction accuracy (%) of SW, MEMM, CRF, and FF-MEMM on syn-
thetic data sets. 76

5.5 Prediction accuracy (%) of SW, MEMM, CRF, and FF-MEMM on NETtalk
data set. 77

DEDICATION

To my family.

Chapter 1 – Introduction

In this chapter, we first formulate the sequential supervised learning problem and de-

scribe its application in a variety of domains. Then we give a brief review of previous

work that has been done to solve this problem. After that, the contributions of this

dissertation are summarized, and the outline of this dissertation is given at the end.

1.1 Sequential Supervised Learning

Many applications of machine learning involve assigning labels collectively to sequences

of objects. For example, in natural language processing, the task of part-of-speech

(POS) tagging is to label each word in a sentence with a part of speech tag (“noun”,

“verb” etc.) (Ratnaparkhi, 1996). In computational biology, the task of protein sec-

ondary structure prediction is to assign a secondary structure class to each amino acid

residue in the protein sequence (Qian and Sejnowski, 1988).

These kinds of problems can be formulated as follows:

Given: A set of training examples of the form (Xi, Yi), where each Xi = (xi,1, . . . ,xi,Ti
)

is a sequence of Ti feature vectors and each Yi = (yi,1, . . . , yi,Ti
) is a correspond-

ing sequence of class labels, where yi,t ∈ Y = {1, . . . , L}.

Find: A classifier H that, given a new sequence X of feature vectors, predicts the

corresponding sequence of class labels Y = H(X) accurately.

2

Figure 1.1: Graphical representation of a training example in the NETTalk data set. X
is the English word “determine” and Y the corresponding sequence of stress/phoneme
pairs.

These problems are called Sequential Supervised Learning (SSL) (Dietterich, 2002) or

Label Sequence Learning (LSL) problems .

Perhaps the most famous SSL problem is the NETtalk task of pronouncing English

words by assigning a phoneme and stress to each letter of the word (Sejnowski and

Rosenberg, 1987). One training example in this task is shown in Figure 1.1. Other

applications of SSL arise in information extraction (McCallum et al., 2000), handwritten

word recognition (Taskar et al., 2004), and so on.

1.2 Previous Work

Early attempts to apply machine learning to SSL problems were based on sliding win-

dows. To predict label yt, a sliding window method uses features drawn from some

“window” of the X sequence. For example, a 5-element window wt(X) would use

the features xt−2,xt−1,xt,xt+1,xt+2. Sliding windows convert the SSL problem into

a standard supervised learning problem to which any ordinary machine learning algo-

rithms can be applied. However, in most SSL problems, there are correlations among

successive class labels yt. For example, in part-of-speech tagging, adjectives tend to

3

be followed by nouns. In protein sequences, alpha helixes and beta structures always

involve multiple adjacent residues. These correlations can be exploited to increase clas-

sification accuracy.

The best-known method for capturing the yt−1 ↔ yt correlation is the hidden Markov

model (HMM) (Rabiner, 1989), which is a generative model of P (X,Y), the joint dis-

tribution of the observation sequence and label sequence. In this model, the joint distri-

bution is factored as

P (X,Y) =
∏

t

P (yt|yt−1)P (xt|yt) ,

where P (y1|y0) = P (y1), and the observation distribution is further factored as

P (xt|yt) =
∏

j

P (xt,j|yt) .

This assumption of independence of each input feature xt,j conditioned on yt makes

HMMs unable to model arbitrary, non-independent input features, and this limits the

accuracy and “engineerability” of HMMs.

Recent research has instead focused on discriminative models, in which arbitrary

and non-independent observation features can be easily incorporated. Much machine

learning research has shown that discriminative models tend to be more accurate and

more robust to incorrect modeling assumptions (Ng and Jordan, 2002). McCallum and

his collaborators introduced maximum entropy Markov models (MEMMs) (McCallum

et al., 2000) and conditional random fields (CRFs) (Lafferty et al., 2001). MEMMs are

4

directed graphical models of the form

P (Y |X) =
∏

t

P (yt|yt−1, wt(X)) ,

where wt(X) is a sliding window over the X sequence centered at time t. They are

easy to train, but they suffer from the label bias problem that results from the local

normalization at each time step t. Conditional random fields are undirected models of

the form

P (Y |X) =
1

Z(X)
exp

[∑
t

Ψ(yt, yt−1, wt(X))

]
,

where Z(X) is a global normalizing term and Ψ(yt, yt−1, wt(X)) is a potential function

that scores the compatibility of yt, yt−1, and wt(X). The global normalization avoids

the label bias problem but makes training much more computationally expensive. CRFs

have been applied to many problems with excellent results including POS tagging (Laf-

ferty et al., 2001) and noun-phrase chunking (Sha and Pereira, 2003).

Kernel-based methods have also been extended to the SSL case. The hidden Markov

SVM (Altun et al., 2003; Tsochantaridis et al., 2004) and max-margin Markov networks

(Taskar et al., 2004) learn a discriminant function F (X,Y ′) that assigns a real valued

score to each possible label sequence Y ′ to maximize the margin between the correct

label sequence Y and all competing incorrect label sequences.

More recently, the search based structured learning framework (Collins and Roark,

2004; Daumé III and Marcu, 2005) has become a promising approach to deal with com-

plex structured learning problems. Unlike probabilistic graphical models such as CRFs,

this approach does not rely on dynamic programming. In this framework, output labels

5

are inferred incrementally by some approximate search methods (such as beam search),

and the model parameters are learned to optimize this search process. It is straightfor-

ward to apply this approach to SSL problems.

1.3 Contributions

This dissertation describes the gradient tree boosting algorithm originally proposed by

Dietterich et al. (2004) and proposes a new method for incorporating weight penal-

ties into this algorithm. It then compares training time and generalization performance

against McCallum’s Mallet system. The results show that our implementation of tree

boosting is competitive with Mallet in both speed and accuracy and that additional im-

provements in our implementation of the forward-backward algorithm would likely pro-

duce a system that is faster than both systems.

Within CRFs, we also perform experiments to evaluate the effectiveness of four

methods for handling missing values (instance weighting, surrogate splits, indicator

features, and imputation). The first two algorithms are specific to the tree boosting

algorithm, while the other two are general missing values methods. The results show

that instance weighting works best, but that imputation also works surprisingly well.

This leads to two conclusions. First, for CRF models, instance weighting combined

with gradient tree boosting can be recommended as a good algorithm for learning in the

presence of missing values. Second, for all SSL methods, imputation can be employed

to provide a reasonable missing values method.

Another contribution of this dissertation is that we analyze the limitations of the

6

search based structured learning framework. This framework is unable to exploit long

range dependencies between the current position and future positions at each search step,

and thus can possibly fall into local ambiguity. In this dissertation, a multiple-instance

learning algorithm is proposed to automatically extract useful features from future posi-

tions in the sequence as a way to capture these long range dependencies. Integrating this

algorithm with maximum entropy Markov models gives promising experimental results

on both synthetic data sets and real data sets, which have long range dependencies in

sequences.

1.4 Outline

The remainder of this dissertation is organized as follows.

In chapter 2, we give a review of the conditional random field model, including

the model representation, training algorithms, and inference algorithms. We also ana-

lyze the difficulty of training CRFs. Chapter 3 presents the TREECRF algorithm, which

trains CRFs with gradient tree boosting. Detailed experimental comparisons against Mc-

Callum’s Mallet system are given. In chapter 4, we empirically evaluate four methods

for dealing with missing feature values in CRFs. The search based learning framework

is analyzed in chapter 5, and a new learning algorithm is proposed to discover useful

features at future positions. Chapter 6 concludes this dissertation with summary and

future work.

7

Chapter 2 – Conditional Random Fields (CRFs)

Conditional random fields (CRFs) have been successfully applied to solve many se-

quential supervised learning problems. An introduction to CRFs is given by Sutton and

McCallum (2007). In this chapter, we give a brief review of CRF, and point out the

difficulty in training CRF models. This chapter serves as a background for the next few

chapters.

2.1 Model Representation

Let (X,Y) be a sequential labeled training example, where X = (x1, . . . ,xT) is the

observation sequence and Y = (y1, . . . , yT) is the sequence of labels, where yt ∈ Y =

{1, . . . , L) for all t. A conditional random field is a linear chain Markov random field

(Geman and Geman, 1984) over the label sequence Y globally conditioned on the ob-

servation sequence X . The conditional probability distribution P (Y |X) can be written

as

P (Y |X) =
1

Z(X)
exp

[∑
t

Ψt(yt, X) + Ψt−1,t(yt−1, yt, X)

]
,

where Ψt(yt, X) and Ψt−1,t(yt−1, yt, X) are potential functions defined on cliques yt and

(yt−1, yt), which capture (respectively) the degree to which yt is compatible with X and

the degree to which yt is compatible with a transition from yt−1 and with X . These

potential functions can be arbitrary real-valued functions. The exponential function

8

ensures that P (Y |X) is positive, and the normalizing constant

Z(X) =
∑

Y ′
exp

[∑
t

Ψt(y
′
t, X) + Ψt−1,t(y

′
t−1, y

′
t, X)

]
,

ensures that P (Y |X) sums to 1. If given sufficiently rich potential functions, this model

can represent any first-order Markov distribution P (Y |X) subject to the assumption

that P (Y |X) > 0 for all X and Y (Besag, 1974; Hammersley and Clifford, 1971).

Normally, it is assumed that the potential functions do not depend on t, and we will

adopt this assumption in this paper.

To apply a CRF to an SSL problem, we must choose a representation for the po-

tential functions. Lafferty et al. (2001) studied potential functions that are weighted

combinations of binary features:

Ψt(yt, X) =
∑

a

βaga(yt, X) , (2.1)

Ψt−1,t(yt−1, yt, X) =
∑

b

λbfb(yt−1, yt, X) , (2.2)

where the βa’s and λb’s are trainable weights, and the features ga and fb are boolean

functions. In part-of-speech tagging, for example, g234(yt, X) might be 1 when xt is

the word “bank” and yt is the class “noun” (and 0 otherwise). As with sliding window

methods, it is natural to define features that depend only on a sliding window wt(X) of

X values. This linear parameterization can be seen as an extension of logistic regression

to the sequential case.

9

2.2 Training CRFs

CRFs can be trained by maximizing the log likelihood of the training data, possibly with

a regularization penalty to prevent overfitting. Let Θ = {β1, . . . , λ1, . . .} denote all of

the tunable parameters in the model. Then we seek to maximize the objective function

J(Θ) = log
∏

i

P (Yi | Xi)

=
∑

i

log
1

Z(Xi)
exp

[∑
t

Ψt(yi,t, Xi) + Ψt−1,t(yi,t−1, yi,t, Xi)

]

=
∑

i

∑
t

Ψt(yi,t, Xi) + Ψt−1,t(yi,t−1, yi,t, Xi)− log Z(Xi)

=
∑

i

∑
t

∑
a

βaga(yi,t, Xi) +
∑

b

λbfb(yi,t−1, yi,t, Xi)− log Z(Xi) .

Training CRFs is difficult for several reasons.

1. As with all collective classification problems, training requires performing infer-

ence. In particular, all algorithms must compute the conditional log likelihood

log P (Yi|Xi) for each training example (Xi, Yi) in each iteration. This is expen-

sive, and it dictates that training algorithms should try to minimize the number of

iterations and maximize the amount of progress made in each iteration;

2. In many SSL applications, the space of potential features for describing the ar-

guments of Ψt(yt, X) in Equation 2.1 and Ψt−1,t(yt−1, yt, X) in Equation 2.2 is

immense. As a result, there can be millions of weights βa and λb to learn. In POS

tagging and semantic role labeling, for example, it is common to have one feature

(and hence, one weight) for every combination of a word and a pair of class labels.

10

Furthermore, in most applications, performance is improved if the algorithm can

consider combinations of these basic features (e.g., word n-grams, feature con-

junctions and disjunctions, and so on). If feature interactions are permitted, the

number of parameters to be learned explodes;

3. In some problems, feature values can be missing, and this is difficult for discrim-

inative training algorithms to handle.

There has been steady progress in algorithms for training CRFs. The initial paper

(Lafferty et al., 2001) introduced an iterative scaling algorithm, which was reported to

be exceedingly slow. Several groups have implemented gradient ascent methods (such

as Sha and Pereira, 2003), but naive implementations are also very slow. McCallum’s

Mallet system (McCallum, 2002) employs the BFGS algorithm, which is an approxi-

mate second order method, to speed up the training of CRFs and improve the prediction

accuracy. More recently, Vishwanathan et al. (2006) proposed to use stochastic gradient

descent to train CRFs, and to accelerate this process via the Stochastic Meta-Descent

(SMD), which is a gain adaptation method. The resulting algorithm is much faster than

the BFGS algorithm and scales well on large data sets.

2.3 Inference in CRFs

Once a CRF model has been trained, there are (at least) two possible ways to define a

classifier Y = H(X) for making predictions. First, we can predict the entire sequence

11

Y that has the highest probability:

H(X) = argmax
Y

P (Y |X) .

This makes sense in applications, such as part-of-speech tagging, where the goal is to

make a coherent sequential prediction. This can be computed by the Viterbi algorithm

(Rabiner, 1989), which has the advantage that it does not need to compute the normalizer

Z(X).

The second way to make predictions is to individually predict each yt according to

Ht(X) = argmax
v

P (yt = v|X) ,

and then concatenate these individual predictions to obtain H(X). This makes sense

in applications where the goal is to maximize the number of individual yt’s correctly

predicted, even if the resulting predicted sequence Y is incoherent. For example, a pre-

dicted sequence of parts of speech might not be grammatically legal, and yet it might

maximize the number of individual words correctly classified. P (yt|X) can be com-

puted by executing the forward-backward algorithm as

P (yt|X) =
α(yt, t)β(yt, t)

Z(X)
,

and the details of computing α(yt, t) and β(yt, t) will be given in chapter 3.

Most of the existing training methods involve the repeated computation of the par-

tition function Z(X) and/or maximizing over label sequences, which is usually done

12

using the forward-backward and Viterbi algorithms. The time complexity of these algo-

rithms is O(T · Lk+1), where L is the number of class labels, k is the order of Markov

model, and T is the sequence length. So even for first order CRFs, training and infer-

ence scale quadratically in the number of class labels, which becomes computationally

demanding for large label sets.

13

Chapter 3 – Training CRFs with Gradient Tree Boosting

In this chapter, we describe the TREECRF algorithm originally proposed by Dietterich

et al. (2004). This algorithm extends Friedman’s gradient tree boosting algorithm (Fried-

man, 2001) to train CRFs. A new method for incorporating weight penalties into this

algorithm is described. Characteristics of the TREECRF algorithm are analyzed based

on detailed experimental comparisons against MaCallum’s Mallet system (McCallum

et al., 2000). The work presented in this chapter was published as a journal paper (Diet-

terich et al., 2008).

3.1 Motivation

A drawback of the linear parameterization in Equation 2.1 and Equation 2.2 is that it

assumes that each feature makes an independent contribution to the potential functions.

Of course it is possible to define more features to capture combinations of the basic

features, but this leads to a combinatorial explosion in the number of features, and hence,

in the dimensionality of the optimization problem. For example, in protein secondary

structure prediction, Qian and Sejnowski (1988) found that a 13-residue sliding window

gave best results for neural network methods. There are 32 × 13 × 20 = 2340 basic fb

features that can be defined over this window. If we consider fourth-order conjunctions

of such features, we obtain more than 1012 features. This is obviously infeasible.

14

McCallum’s Mallet system (McCallum, 2002) implements standard CRFs and CRFs

with feature induction (McCallum, 2003). When feature induction is turned on, the

learner starts with a single constant feature and (every 8 iterations) introduces new fea-

ture conjunctions by taking conjunctions of the basic features with features already in

the model. Candidate conjunctions are evaluated according to their incremental impact

on the objective function. He demonstrates significant improvements in speed and clas-

sification accuracy compared to a CRF that only includes the basic features. In this

chapter, we employ the gradient tree boosting method (Friedman, 2001) to construct

complex features from the basic features as part of a stage-wise construction of the po-

tential functions. The regression trees grown at each step are compact representations

of complex features.

3.2 Functional Gradient Tree Boosting

Suppose we wish to solve a standard supervised learning problem where the training

examples have the form (xi, yi), i = 1, . . . , N and yi ∈ {1, . . . , L}. We wish to fit a

model of the form

P (y | x) =
exp Ψ(y,x)∑
y′ exp Ψ(y′,x)

.

Gradient tree boosting is based on the idea of functional gradient ascent. In ordinary

gradient ascent, we would parameterize Ψ in some way, for example, as a linear func-

tion,

Ψ(y,x) =
∑

a

βaga(y,x) .

15

Let Θ = {β1, . . .} represent all of the tunable parameters in this function. In gradient

ascent, the fitted parameter vector after iteration m, Θm, is a sum of an initial parameter

vector Θ0 and a series of gradient ascent steps δm:

Θm = Θ0 + δ1 + · · ·+ δm ,

where each δm is computed as a step in the direction of the gradient of the log likelihood

function:

δm = ηm ∇Θ

∑
i

log P (yi | xi; Θ)

∣∣∣∣∣
Θm−1

,

and ηm is a parameter that controls the step size.

Functional gradient ascent is a more general approach. Instead of assuming a linear

parameterization for Ψ, it just assumes that Ψ will be represented by a weighted sum of

functions:

Ψm = Ψ0 + ∆1 + · · ·+ ∆m .

Each ∆m is computed as step in the direction of thefunctional gradient:

∆m = ηm Ex,y

[
∇Ψ log P (y | x; Ψ)|Ψm−1

]
.

The functional gradient indicates how we would like the function Ψm−1 to change in or-

der to increase the true log likelihood (i.e., on all possible points (x, y)). Unfortunately,

we do not know the joint distribution P (x, y), so we cannot evaluate the expectation

Ex,y[·]. We do have a set of training examples sampled from this joint distribution, so

16

we can compute the value of the functional gradient at each of our training data points:

∆m(yi,xi) = ∇Ψ

∑
i

log P (yi | xi; Ψ)

∣∣∣∣∣
Ψm−1

.

We can then use these point-wise functional gradients to define a set of functional gra-

dient training examples, ((xi, yi), ∆m(yi,xi)), and train a function hm(y,x) so that it

approximates ∆m(yi,xi). Specifically, we can fit a regression tree hm to minimize the

squared error
∑

i

[hm(yi,xi)−∆m(yi,xi)]
2 .

We can then take a step in the direction of this fitted function:

Ψm = Ψm−1 + ηmhm .

Although the fitted function hm is not exactly the same as the desired ∆m, it will point

in the same general direction (assuming there are enough training examples). So ascent

in the direction of hm will approximate true functional gradient ascent.

A key thing to note about this approach is that it replaces the difficult problem of

maximizing the log likelihood of the data by the much simpler problem of minimizing

squared error on a set of training examples. Friedman (2001) suggests growing hm via

a best-first version of the CART algorithm (Breiman et al., 1984; Friedman et al., 2000)

and stopping when the regression tree reaches a pre-set number of leaves L. The pseudo-

code of this algorithm is shown in Table 3.1. Overfitting is controlled by tuning L (e.g.,

by internal cross-validation).

17

Table 3.1: Best-first version of the CART algorithm.

FITREGRESSIONTREE(Data, L)
// Data = {(xi, yi) : i = 1, . . . , N, xi = (xi1, . . . , xip)}
// NodeQueue is a priority queue of tree nodes where the first node has the minimum SplitScore
Root := FINDBESTSPLITATTRIBUTE(Data, NodeQueue)
NumLeaves := 1
while ((NumLeaves < L) AND NOTEMPTY(NodeQueue))

Node := REMOVEFRONT(NodeQueue)
TrueData := examples in Node whose values of SplitFeature are true
FalseData := examples in Node whose values of SplitFeature are false
TrueChild := FINDBESTSPLITATTRIBUTE(TrueData, NodeQueue)
FalseChild := FINDBESTSPLITATTRIBUTE(FalseData, NodeQueue)
SETCHILDNODES (Node, TrueChild, FalseChild)
NumLeaves := NumLeaves + 1

end
return Root
end FITREGRESSIONTREE

FINDBESTSPLITATTRIBUTE(Data, NodeQueue)
SplitScore := 0, SplitFeature := 0
for j from 1 to p

TrueData := {(xi, yi) ∈ Data : xij = 1}
FalseData := {(xi, yi) ∈ Data : xij = 0}
Gain := SQUAREDERROR(TrueData) + SQUAREDERROR(FalseData)

−SQUAREDERROR(Data)
if Gain < SplitScore

SplitScore := Gain, SplitFeature := j
end

end
Node := MAKELEAF(OUTPUT(Data), Data, SplitFeature, SplitScore)
if SplitFeature ≥ 1

INSERT(Node,NodeQueue)
end
return Node
end FINDBESTSPLITATTRIBUTE

18

In our experience, using L to control overfitting is a blunt tool that is hard to cal-

ibrate. In this paper, we instead introduce shrinkage into the algorithm for growing

regression trees by adding a quadratic weight penalty. For each leaf in the regression tree

hm, the quantity that we minimize is the squared error of the examples ((xi, yi), ∆m(yi,xi))

falling into this leaf plus a quadratic penalty:

∑
i

(∆m(yi,xi)− δ̂)2 + λδ̂2 ,

where δ̂ is the output of this leaf and λ > 0 controls the strength of the penalty. Dif-

ferentiating the above objective function with respect to δ̂ shows that the minimum is

achieved at

δ̂ =

∑
i ∆m(yi,xi)

λ + N
, (3.1)

where N is the total number of examples falling into this leaf. This has the nice in-

terpretation that λ is an equivalent number of training examples with target values of

0. So this shrinks the leaf values (learned weights) toward zero. With this method, we

can select a large number for L (the maximum number of leaves in the regression tree),

and use λ to give fine control of overfitting. The algorithm shown in Table 3.1 can be

adapted by using Equation 3.1 in the computation of function OUTPUT and function

SQUAREDERROR. Experimental results show that this new algorithm works better and

is more efficient than the original best-first version of the CART algorithm.

19

3.3 TREECRF Algorithm

In principle, it is straightforward to apply functional gradient ascent to train CRFs. All

we need to do is to represent and train Ψ(yt, X) and Ψ(yt−1, yt, X) as weighted sums of

regression trees. Let

F yt(yt−1, X) = Ψ(yt, X) + Ψ(yt−1, yt, X)

be a function that computes the “desirability” of label yt given values for label yt−1 and

the input features X . There are L such functions F k, one for each class label k. With

this definition, the CRF has the form

P (Y |X) =
1

Z(X)
exp

∑
t

F yt(yt−1, X) .

We now compute the functional gradient of log P (Y |X) with respect to F yt(yt−1, X).

To simplify the computation, we replace X by wt(X), which is a window into the se-

quence X centered at xt. We will further assume, without loss of generality, that each

window is unique, so there is only one occurrence of wt(X) in each sequence X .

Proposition 3.1 The functional gradient of log P (Y |X) with respect to F v(u,wd(X))

is

∂ log P (Y |X)

∂F v(u,wd(X))
= I(yd−1 = u, yd = v)− P (yd−1 = u, yd = v | wd(X)) ,

where I(yd−1 = u, yd = v) is 1 if the transition u → v is observed from position d−1 to

20

position d in the sequence Y and 0 otherwise, and where P (yd−1 = u, yd = v | wd(X))

is the predicted probability of this transition according to the current potential functions.

To demonstrate this proposition, we must first introduce the forward-backward algo-

rithm for computing the normalizing constant Z(X). We will assume that yt takes the

value ⊥ for t < 1. Define the forward recursion by

α(k, 1) = exp F k(⊥, w1(X))

α(k, t) =
∑

k′
exp F k(k′, wt(X)) · α(k′, t− 1) ,

and the backward recursion by

β(k, T) = 1

β(k, t) =
∑

k′
exp F k′(k, wt+1(X)) · β(k′, t + 1) .

The variables k and k′ iterate over the possible class labels. The normalizer Z(X) can

be computed at any position t as

Z(X) =
∑

k

α(k, t)β(k, t) .

If we unroll the α recursion one step, we can also write this as

Z(X) =
∑

k

[∑

k′
α(k′, t− 1) · [exp F k(k′, wt(X))

]
]

β(k, t) .

21

Ta
bl

e
3.

2:
D

er
iv

at
io

n
of

th
e

fu
nc

tio
na

lg
ra

di
en

t.

∂
lo

g
P

(Y
|X

)
∂
F

v
(u

,w
d
(X

))

=
∂

∂
F

v
(u

,w
d
(X

))

∑ t

F
y

t
(y

t−
1
,w

t
(X

))
−

lo
g

Z
(X

)

=
I
(y

d
−

1
=

u
,y

d
=

v
)
−

∂
lo

g
Z

(X
)

∂
F

v
(u

,w
d
(X

))
(3

.2
)

=
I
(y

d
−

1
=

u
,y

d
=

v
)
−

1
Z

(X
)

∂
Z

(X
)

∂
F

v
(u

,w
d
(X

))

=
I
(y

d
−

1
=

u
,y

d
=

v
)
−

1
Z

(X
)

∂

∂
F

v
(u

,w
d
(X

))

∑ k

[∑ k
′

[ex
p

F
k
(k
′ ,

w
d
(X

))
] ·

α
(k
′ ,

d
−

1)

] β
(k

,d
)

(3
.3

)

=
I
(y

d
−

1
=

u
,y

d
=

v
)
−

1
Z

(X
)

[e
xp

F
v
(u

,w
d
(X

))
]α

(u
,d
−

1)
β
(v

,d
)

(3
.4

)

=
I
(y

d
−

1
=

u
,y

d
=

v
)
−

P
(y

d
−

1
=

u
,y

d
=

v
|X

)

22

Table 3.2 shows the derivation of the functional gradient. In Equation 3.2, exactly

one of the F yt(yt−1, wt(X)) terms will match F v(u,wd(X)), because wd(X) is unique.

This term will have a derivative of 1, so we represent this by the indicator function

I(yd−1 = u, yd = v). In Equation 3.3, we expand Z(X) at position d using the forward-

backward algorithm. Again because wd(X) is unique, only the product where k′ = u

and k = v will give a non-zero derivative, so this gives us Equation 3.4. The right-hand

expression in Equation 3.4 is precisely the joint probability that yd−1 = u and yd = v

given X . Q.E.D.

If wd(X) occurs more than once in X , each match contributes separately to the

functional gradient.

This functional gradient has a very satisfying interpretation: It is our error on a

probability scale. If the transition u → v is observed in the training example, then the

predicted probability P (u, v | X) should be 1 in order to maximize the likelihood. If

the transition is not observed, then the predicted probability should be 0. Functional

gradient ascent simply involves fitting regression trees to these residuals.

The pseudo code for our gradient tree boosting algorithm is shown in Table 3.3, and

we call this algorithm TREECRF. The potential function for each class k is initialized

to zero. Then M iterations of boosting are executed. In each iteration, for each class k,

a set S(k) of functional gradient training examples is generated. Each example consists

of a window wt(Xi) on the input sequence, a possible class label k′ at time t − 1, and

the target ∆ value. A regression tree having at most L leaves is fit to these training

examples to produce the function hm(k). This function is then added to the previous

potential function to produce the next function. In other words, we are setting the step

23

Table 3.3: Gradient tree boosting algorithm for CRFs.

TREEBOOST(Data, L)
// Data = {(Xi, Yi) : i = 1, . . . , N}
for each class k, initialize F k

0 (·, ·) = 0
for m = 1, . . . , M

for class k from 1 to K
S(k) := GENERATEEXAMPLES(k, Data, Potm−1)

// where Potm−1 = {F u
m−1 : u = 1, . . . K})

hm(k) := FITREGRESSIONTREE(S(k), L)
F k

m := F k
m−1 + hm(k)

end
end
return F k

M for all k
end TREEBOOST

GENERATEEXAMPLES(k, Data, Potm)
S := {}
for example i from 1 to N

execute the forward-backward algorithm on (Xi, Yi)
to get α(k, t) and β(k, t) for all k and t

for t from 1 to Ti

for k′ from 1 to K
P (yi,t−1 = k′, yi,t = k | Xi) :=

α(k′, t− 1) exp[F k
m(k′, wt(Xi))]β(k, t)

Z(Xi)

∆(k, k′, i, t) := I(yi,t−1 = k′, yi,t = k)−
P (yi,t−1 = k′, yi,t = k | Xi)

insert ((wt(Xi), k
′), ∆(k, k′, i, t)) into S

end
end

end
return S
end GENERATEEXAMPLES

24

size ηm = 1. We experimented with performing a line search at this point to optimize

ηm, but this is very expensive. So we rely on the “self-correcting” property of tree

boosting to correct any overshoot or undershoot on the next iteration.

The sets of generated examples S(k) can become very large. For example, if we have

3 classes and 100 training sequences of length 200, then the number of training examples

for each class k is 3 × 100 × 200 = 60, 000. Although regression tree algorithms

are very fast, they still must consider all of the training examples! Friedman (2001)

suggests two tricks for speeding up the computation: sampling and influence trimming.

In sampling, a random sample of the training data is used for training. In influence

trimming, data points with ∆ values close to zero are ignored. We did not apply either

of these techniques in our experiments.

3.4 Related Work

The most related work to ours is the virtual evidence boosting (VEB) algorithm devel-

oped by Liao et al. (2007) for training CRFs. Both VEB and our approach use boosting

for feature induction. However, VEB is a “soft” version of maximum pseudo-likelihood

training, where the observed values of neighborhood labels are not used, but the proba-

bility distribution over neighborhood labels is used as virtual evidence. Our approach is

a true maximum log likelihood method that does not depend on the pseudo-likelihood

approximation. Another difference is that VEB only uses decision stumps to induce sim-

ple features, while our approach uses regression trees to induce more complex feature

combinations.

25

3.5 Experimental Results

We implemented the gradient tree boosting algorithm for CRFs and compared it to Mc-

Callum’s Mallet system (McCallum, 2002) on several data sets. We call our algorithm

TREECRF. We use TREECRF-FB to denote TREECRF with forward-backward pre-

dictions and TREECRF-V to denote the TREECRF with Viterbi predictions. MALLET

denotes the Mallet package with McCallum’s feature induction algorithm (McCallum,

2003) turned on. Similarly, we use MALLET-FB and MALLET-V for the MALLET with

forward-backward predictions and Viterbi predictions respectively. We also used the

Mallet package to train standard CRFs without feature induction. We call it BASELINE,

which serves as the baseline method. As before, BASELINE-FB donotes BASELINE

with forward-backward predictions and BASELINE-V denotes BASELINE with Viterbi

predictions. Note that the MALLET-FB and BASELINE-FB algorithms are not imple-

mented in the original Mallet package. Instead we implemented them ourselves.

TREECRF, MALLET and BASELINE have parameters that must be set by the user.

For all these algorithms, the user must set (a) the window size, (b) the order of the

Markov model, which is set to be 1 in our experiments, and (c) the number of iterations

to train. For TREECRF, the only additional parameter is either the maximum number

of leaves L in the regression trees using the best-first version of CART, or the regular-

ization constant λ for the shrinkage alternative. For MALLET, the parameters are (a) the

regularization penalty for squared weights (called the variance), (b) the number of iter-

ations between feature inductions (kept constant at 8), (c) the number of features to add

per feature induction (kept constant at 500), (d) the true label probability threshold (kept

26

constant at 0.95), and (e) the training proportions (kept constant at 0.2, 0.5, and 0.8).

For BASELINE, the only additional parameter is the variance as in MALLET. Except for

the variance, we kept all of MALLET’s parameters fixed at the values recommended by

Andrew McCallum (personal communication). We did not optimize the window size,

but instead employed values that have been used in previous studies. The chosen sizes

are given in the following section. To set the remaining parameters, we manually tried

the following settings and chose the setting that gave the best internal cross-validation

performance:

• Number of leaves in regression trees: 30, 50, 75, 100,

• TreeCRF regularization constant: 0, 5, 10, 20, 40, 80,

• Weight variance prior in Mallet package: 1, 5, 10, 20.

Throughout the experiments, we measured the performance by computing the pre-

diction accuracy of individual labels, rather than individual sequences. McNemar’s test

is employed to assess the statistical significance of these results.

3.5.1 Data Sets

Protein Secondary Structure Benchmark (Qian and Sejnowski, 1988). Each observa-

tion sequence is a string of amino acid residues, and the corresponding output sequence

is a string over the 3-letter alphabet {α, β, γ}, where α indicates alpha helix, β indicates

a beta sheet or beta turn, and γ indicates all other secondary structure types. There are

20 possible amino acid residues, and we represent each residue by a set of 20 indicator

27

variables. There is a training set of 111 sequences and a test set of 17 sequences. An

11-residue sliding window is used in our experiments.

NETtalk Data Set. The original NETtalk task (Sejnowski and Rosenberg, 1987) is

to assign a combination of phoneme and stress to each letter of the word so that the word

is pronounced correctly. However, there are 140 legal phone-stress combinations, which

gives a very large label space. Neither TREECRF nor MALLET is efficient enough to

work with such a large label space. Hence, we chose to study only the problem of as-

signing one of five possible stress labels to each letter. The labels are ‘2’ (strong stress),

‘1’ (medium stress), ‘0’ (light stress), ’<’ (unstressed consonant, center of syllable to

the left), and ‘>’ (unstressed consonant, center of syllable to the right).

Each input sequence is an English word, a string of letters over the 26 letter alphabet.

Each input observation is represented by 26 boolean indicator variables. There are 1000

training words and 1000 test words in our standard training and test sets. We employed

a window size of 13 (window width of 6).

Hyphenation Data Set. The hyphenation task is to insert hyphens into words at

points where it is legal to break a word for a new line. This problem appears widely in

many word processing programs. The input sequences are English words, encoded as

for the NETtalk task. The output class label has only two values to indicate whether or

not a hyphen may legally follow the current letter. We manually constructed a training

set of 1951 words and a test set of 908 words. The input window size is set to be 6 (i.e.,

3 letters on either side of the potential hyphen location).

Usenet FAQs Data Sets. Each of the FAQ data sets consists of Frequently Asked

Questions files for a Usenet newsgroup (McCallum et al., 2000). The FAQs for each

28

newsgroup are divided into a set of files: ai-general has 7 files, ai-neural has 7 files, and

aix has 5 files. Every line of an FAQ file is labeled as either part of the header, a ques-

tion, an answer, or part of the tail. Hence, each xt consists of a line in the FAQ file, and

the corresponding yt ∈ {header, question, answer, tail}. The measure of accuracy is the

number of individual lines correctly classified. McCallum provided us with the defini-

tions of 20 features for each line xt. We made a slight correction to one of the features,

so our results are not directly comparable to his. The size of the sliding window used

here is 1. For each newsgroup, performance was measured by leave-one-file-out cross-

validation: the CRF was trained on all-but-one of the files and tested on the remaining

file. This was repeated with each file, and the results averaged.

3.5.2 Performance of Shrinkage in Regression Tree Generation

To evaluate the effectiveness of shrinkage in the regression tree fitting algorithm, we

fixed L, the maximum number of leaves in regression trees, to be 100, and applied in-

ternal cross-validation to choose the best regularization constant λ. For purposes of

comparison, we also implemented the original best-first regression tree generation algo-

rithm. Internal cross-validation was employed to select the best value for L.

We ran these two implementations of TREECRF on each data set. The best perfor-

mance of both forward-backward predictions and Viterbi predictions is reported as the

percentage of correct predictions over the yts, as shown in Table 3.4. There are 12 pairs

of comparisons (6 data sets with 2 prediction algorithms). In six of them, TREECRF

with shrinkage does statistically better than TreeCRF without shrinkage. In five of them,

29

Table 3.4: Performance comparison of TREECRF with different regression tree fitting
algorithms. Entries marked with one or more stars are statistically significantly better
than the alternative method. Specifically, * means p < 0.025, ** means p < 0.005 and
*** means p < 0.001 according to McNemar’s test.

TREECRF-FB TREECRF-V
Shrinkage Original Shrinkage Original

Protein 64.52** 62.70 62.05*** 59.20
NETtalk 85.18*** 84.08 85.20*** 84.18
Hyphen 92.20 92.20 91.76 92.07

FAQ ai-general 95.65 95.69 95.72 96.02***
FAQ ai-neural 99.02 98.97 99.20*** 99.05

FAQ aix 94.00 94.02 95.26* 95.15

the performance of these two versions of TREECRF is statistically indistinguishable. In

only one of them, TREECRF without shrinkage does statistically better than TREECRF

with shrinkage. Based on the results of these experiments, we decided to only employ

TREECRF with shrinkage in the remaining experiments.

3.5.3 Comparison between TREECRF and MALLET

TREECRF and MALLET are the two leading CRF training methods that have feature

induction capability. Here we compare the prediction accuracy and training speed of

these two methods on each available data set. We also compare TREECRF and MAL-

LET with the BASELINE method. For each method, internal cross-validation is applied

to select the parameters that give the best performance of both forward-backward pre-

dictions and Viterbi predictions. The results reported here for each method are based

30

on the prediction algorithm that gives higher prediction accuracy. All experiments were

run on machines with 2.4 GHz Intel Xeon processors, 512KB cache, and 4GB memory.

Prediction Accuracy. Table 3.5 summarizes the prediction accuracy of TREECRF,

MALLET, and BASELINE on each data set. McNemar’s tests show that on four of the

data sets, that is, protein, hyphen, FAQ ai-neural and FAQ aix, the difference between

the prediction accuracy of TREECRF and MALLET is not statistically significant. On

the FAQ ai-general data set, the prediction accuracy of TREECRF is statistically better

than that of MALLET(p < 0.001). Only on the NETtalk data set is the prediction accu-

racy of MALLET statistically better than that of TREECRF (p < 0.05). In comparison

with the baseline method, the prediction accuracy of TREECRF and MALLET is statis-

tically better than that of BASELINE in most cases. On the FAQ ai-general data set, the

difference between MALLET and BASELINE is not statistically significant. Only on the

FAQ ai-neural data set is the prediction accuracy of BASELINE statistically better than

that of both TREECRF and MALLET.

Figure 3.1 plots the prediction accuracy of TREECRF, MALLET and BASELINE as

a function of the number of training iterations. One worrying aspect of MALLET is that

the performance curve exhibits a high degree of fluctuation, which is clearly shown on

Figure 3.1a, 3.1d, 3.1e and 3.1f. This is presumably due to the effect of introducing new

features. But it also suggests that it will be difficult to find the optimal stopping points

for avoiding overfitting.

31

Ta
bl

e
3.

5:
Pe

rf
or

m
an

ce
of

T
R

E
E

C
R

F,
M

A
L

L
E

T
,a

nd
B

A
S

E
L

IN
E

on
ea

ch
da

ta
se

t.
E

nt
ri

es
m

ar
ke

d
w

ith
on

e
or

m
or

e
st

ar
s

ar
e

st
at

is
tic

al
ly

si
gn

ifi
ca

nt
th

an
B

A
S

E
L

IN
E

.
Sp

ec
ifi

ca
lly

,*
m

ea
ns

p
<

0.
00

5,
**

m
ea

ns
p

<
0.

00
1

ac
co

rd
in

g
to

M
cN

em
ar

’s
te

st
.

B
ol

de
d

nu
m

be
rs

in
di

ca
te

th
e

st
at

is
tic

al
ly

be
tte

r
pr

ed
ic

tio
n

ac
cu

ra
cy

be
tw

ee
n

T
R

E
E

C
R

F
an

d
M

A
L

L
E

T
.

T
he

B
A

S
E

L
IN

E
m

et
ho

d
st

op
s

tr
ai

ni
ng

if
th

e
op

tim
iz

at
io

n
of

lo
ss

fu
nc

tio
ns

co
nv

er
ge

s.
So

fo
re

ac
h

FA
Q

da
ta

se
t,

di
ff

er
en

t
tr

ai
ni

ng
se

t
m

ay
ha

ve
di

ff
er

en
t

nu
m

be
r

of
tr

ai
ni

ng
ite

ra
tio

ns
.

H
er

e
w

e
ga

ve
ou

t
th

e
ra

ng
e

of
nu

m
be

ro
ft

ra
in

in
g

ite
ra

tio
ns

fo
re

ac
h

FA
Q

da
ta

se
t.

Pr
ot

ei
n

N
E

T
ta

lk
H

yp
he

n
FA

Q
ai

-g
en

er
al

FA
Q

ai
-n

eu
ra

l
FA

Q
ai

x
T

R
E

E
C

R
F

64
.5

2*
85

.2
0*

*
92

.2
0*

*
95

.6
5

**
99

.2
0*

*
95

.2
6*

*
A

cc
ur

ac
y

(%
)

M
A

L
L

E
T

64
.4

3*
85

.9
4*

*
92

.1
0*

*
92

.7
0

99
.3

1*
95

.2
8*

*
B

A
S

E
L

IN
E

62
.4

4
82

.8
1

88
.8

6
92

.7
0

99
.4

1
94

.0
4

C
um

ul
at

iv
e

T
R

E
E

C
R

F
41

9.
6

45
4.

6
39

.2
39

21
.9

21
77

.7
26

36
.1

C
PU

M
A

L
L

E
T

78
6.

9
94

1.
4

66
.4

48
4.

1
23

7.
2

12
5.

5
Se

co
nd

s
B

A
S

E
L

IN
E

32
.8

13
.7

8.
8

63
.0

40
.3

34
.1

T
R

E
E

C
R

F
14

2
16

9
58

21
4

84
15

8
It

er
at

io
ns

M
A

L
L

E
T

12
3

16
7

69
18

8
18

1
15

0
B

A
S

E
L

IN
E

66
34

47
12

8–
19

5
72

–1
12

80
–1

40

32

Training Speed. It is difficult to directly compare the CPU time of these two meth-

ods, because TREECRF is written in C++ while MALLET is written in Java. However,

comparing the CPU time on different data sets can still give us some insight into the

properties of these two methods. Figure 3.2 shows the number of cumulative CPU sec-

onds consumed by these two methods on each data set. First, we can see that TREECRF

scales linearly in the number of training iterations, because the cumulative CPU time

has a constant slope. This makes sense, because for each potential function, only one

regression tree is generated in each training iteration. Regression tree evaluations from

previous iterations are cached so that they do not need to be re-evaluated. Without

caching, the cumulative CPU curves for TREECRF would rise quadratically. Second,

as shown in Figure 3.2a, 3.2b and 3.2c, TREECRF runs faster than MALLET on protein,

NETtalk and hyphen data sets. But it is much slower than MALLET on FAQ data sets

as shown in Figure 3.2d, 3.2e and 3.2f. The actual time required for each method to

reach its peak performance on each data set is given in Table 3.5. Again we see that on

the protein, NETtalk, and hyphen data sets, the time required for MALLET to reach its

peak performance is about twice that of TREECRF. However, on the FAQ data sets, the

time required for TREECRF to reach its peak performance is about 10-20 times more

than for MALLET. BASELINE is faster than both TREECRF and MALLET as shown in

Figure 3.2 and Table 3.5.

Analysis and Discussion. We can explain the training speed difference between

TREECRF and MALLET by examining the details of these two methods. In both of

them, most of the CPU time is spent on two major computations: forward-backward

inference and feature induction/tree growing. The relative proportion of these two com-

33

 59

 60

 61

 62

 63

 64

 65

 66

 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-FB
Mallet-FB

Baseline-FB

(a) Protein

 70

 72

 74

 76

 78

 80

 82

 84

 86

 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-V
Mallet-FB

Baseline-FB

(b) NETtalk

Figure 3.1: Comparison of prediction accuracy on each data set.

34

 86

 87

 88

 89

 90

 91

 92

 93

 10 20 30 40 50 60 70 80 90 100

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-FB
Mallet-FB

Baseline-FB

(c) Hyphen

 75

 80

 85

 90

 95

 100

 50 100 150 200 250

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-FB
Mallet-V

Baseline-V

(d) FAQ ai-general

Figure 3.1: Comparison of prediction accuracy on each data set (Continued).

35

 75

 80

 85

 90

 95

 100

 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-V
Mallet-FB

Baseline-V

(e) FAQ ai-neural

 80

 82

 84

 86

 88

 90

 92

 94

 96

 98

 20 40 60 80 100 120 140 160 180 200

P
re

di
ct

io
n

A
cc

ur
ac

y
(%

)

Iterations

TreeCRF-V
Mallet-FB

Baseline-FB

(f) FAQ aix

Figure 3.1: Comparison of prediction accuracy on each data set (Continued).

36

 0

 200

 400

 600

 800

 1000

 1200

 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-FB
Mallet-FB

Baseline-FB

(a) Protein

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-V
Mallet-FB

Baseline-FB

(b) NETtalk

Figure 3.2: Comparison of cumulative CPU time on each data set.

37

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-FB
Mallet-FB

Baseline-FB

(c) Hyphen

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 50 100 150 200 250

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-FB
Mallet-V

Baseline-V

(d) FAQ ai-general

Figure 3.2: Comparison of cumulative CPU time on each data set (Continued).

38

 0

 1000

 2000

 3000

 4000

 5000

 6000

 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-V
Mallet-FB

Baseline-V

(e) FAQ ai-neural

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 40 60 80 100 120 140 160 180 200

C
um

ul
at

iv
e

C
P

U
 S

ec
on

ds

Iterations

TreeCRF-V
Mallet-FB

Baseline-FB

(f) FAQ aix

Figure 3.2: Comparison of cumulative CPU time on each data set (Continued).

39

Table 3.6: Comparison of average CPU seconds spent per iteration on forward-backward
algorithm and feature induction algorithm in TREECRF and MALLET for each data set.

Data Average Number of Forward-Backward Seconds Feature Induction Seconds
Set Length Features TREECRF MALLET TREECRF MALLET

Protein 163 231 1.493 0.736 1.433 48.889
NETtalk 7 351 0.622 0.589 2.049 25.983
Hyphen 6 162 0.324 0.307 0.332 4.621

FAQ ai-general 1580 20 18.927 0.780 1.562 1.211
FAQ ai-neural 1832 20 26.998 0.526 1.894 1.656

FAQ aix 1806 20 16.658 0.352 1.199 1.123

putations varies from problem to problem. To measure this, we instrumented both

TREECRF and MALLET to track the amount of CPU time spent on each of these two

computations. Table 3.6 shows that on domains with short sequences (Protein, NETtalk,

and Hyphen), the time spent by both algorithms on forward-backward inference is about

the same. But for domains with very long sequences, TREECRF consumes much more

CPU time in forward-backward inference. Conversely, in domains with a small num-

ber of basic features (the FAQ data sets), the two methods consume roughly the same

amount of CPU time in feature induction. But in domains with a large number of basic

features, TREECRF is much more efficient than MALLET.

Why would the forward-backward cost of TREECRF be larger than for MALLET?

TREECRF and MALLET use almost the same implementation of forward-backward al-

gorithm except that in TREECRF the values of the potential functions at each position

of the sequences are computed by evaluating the gradient regression trees generated in

the current training iteration, while in MALLET those values are obtained by computing

dot products of vectors, which is faster than tree evaluation. We hypothesize that the

40

regression trees are more expensive to evaluate, not only because dot products are eas-

ier to compute than tree evaluations, but also possibly because of the reduced memory

locality of regression trees.

Why would feature induction be more expensive in MALLET? In each feature in-

duction iteration, MALLET considers conjoining all of the basic features to each of the

existing compound features. Hence, if there are n basic features and C compound fea-

tures, this costs nC. Furthermore, C grows over time, so the cost of feature induction

gradually increases. In the cumulative CPU time plots of Figure 3.2, the “steps’ in the

“staircase” correspond to the feature induction iterations. In TREECRF, the cost of fea-

ture induction is the cost of growing a regression tree, which depends on the number of

basic features n and the number of internal nodes in the tree L. This cost is nL, which

remains constant across the iterations.

To verify our conjectures about the computational complexity of TREECRF and

MALLET, we generated synthetic training data sets using a hidden Markov model (HMM)

with 3 labels {l1, l2, l3} and 24 possible observations {o1, . . . , o24}. To specify the

observation distribution, for each label li, we randomly drew an observation from the

set {oi∗8−7, . . . , oi∗8} with probability 0.6 and randomly drew an observation from the

complement of this set with probability 0.4. The transition distribution was defined as

P (yt = li | yt−1 = li) = 0.6 and P (yt = lj | yt−1 = li) = 0.2 if i 6= j.

In order to measure the complexity of the forward-backward algorithm, we tried

sequence lengths of 10, 20, 40, 80, 160 and 320. For each sequence length, we gen-

erated a training data set with 100 sequences and employed a sliding window of size

3. TREECRF and MALLET were run on each of these training data sets. Figure 3.3a

41

shows the average CPU seconds spent per iteration on the forward-backward algorithm

by these two methods. We see that the CPU cost of the forward-backward algorithm

in TREECRF implementation rises faster than that in MALLET implementation as the

length of sequence increases.

In order to measure the complexity of the feature induction algorithms, we generated

a training data set with 100 sequences. The length of each sequences is 100. We tried

sliding window sizes of 3, 5, 7, 9 and 11, so that the number of input features at each

sequence position takes the values of 75, 125, 175, 225 and 275 (because each input

observation is represented by 25 boolean indicator variables). TREECRF and MALLET

were run for each sliding window size. Figure 3.3b shows the average CPU seconds

spent per iteration on the feature induction algorithm by these two methods. It is clear

that the feature induction algorithm in MALLET spends more and more CPU time than

that in TREECRF as the number of basic features increases. In all the experiments

on synthetic data sets, TREECRF uses regression trees of maximum 100 leaves and

shrinkage constant 40. MALLET uses weight variance prior 20.

This analysis suggests that the performance of TREECRF could be improved by

“flattening” the ensemble of regression trees to compute the corresponding vector of

features and vector of weights. Then the cost of potential function evaluations would be

similar to that of MALLET, and we would have a method that was faster than both the

current TREECRF and MALLET implementations.

42

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

10 20 40 80 160 320

C
P

U
 S

ec
on

ds

Length of Sequence

TreeCRF
Mallet

(a) Forward-backward algorithm

 0

 5

 10

 15

 20

 25

75 125 175 225 275

C
P

U
 S

ec
on

ds

Number of Basic Features

TreeCRF
Mallet

(b) Feature induction algorithm

Figure 3.3: Comparison of average CPU seconds spent per iteration on forward-
backward algorithms and feature induction algorithms by TREECRF and MALLET.

43

Chapter 4 – Handling Missing Values in CRFs with Gradient Tree

Boosting

In this chapter, we study the problem of missing feature values in sequential supervised

learning problems. Four algorithms are compared and a guideline is given as to which

method is preferred in a given situation. The work presented in this chapter was pub-

lished in the Journal of Machine Learning Research (Dietterich et al., 2008).

4.1 Motivation

In some problem settings (e.g., activity recognition, sensor networks), the problem of

missing values in the inputs can arise. The values of input features can be missing for

a wide variety of reasons. Sensors may break or the sensor data feed may be lost or

corrupted. Alternatively, input observations may not have been measured in all cases

because, for example, they are expensive to obtain. Many methods for handling missing

values have been developed for standard supervised learning, but many of them have not

been tested on SSL problems. Recently, Sutton et al. (2006) developed a feature bagging

method to deal with SSL problems where highly indicative features may be missing in

the test data. A single CRF trained on all the features will be less robust, because the

weights of weaker features will be undertrained. The feature bagging method divides all

the original features into a collection of complementary and possibly overlapped feature

44

subsets. Separate CRFs are trained on each subset and then combined.

With gradient tree boosting, a CRF is represented as a forest of regression trees.

There exist very good methods for handing missing values when growing regression

trees, which include the instance weighting method of C4.5 (Quinlan, 1993) and the

surrogate splitting technique of CART (Breiman et al., 1984). An advantage of training

CRFs with gradient tree boosting is that these missing values methods can be used di-

rectly in the process of generating regression trees over the functional gradient training

examples.

4.2 Review of Instance Weighting

The instance weighting method (Quinlan, 1993), also known as “proportional distribu-

tion”, assigns a weight to each training example, and all splitting decisions are based on

weighted statistics. Initially, each example has a weight of 1.0. When selecting a feature

to split on, each boolean feature xj is evaluated based on the expected weighted squared

error of the split using only the training examples for which xj is not missing. The best

feature xj∗ is chosen, and the training examples for which xj∗ is not missing are sent

to the appropriate child node. Suppose that nleft examples are sent to the left child and

nright examples are sent to the right child. The remaining training examples (i.e., those

for which xj∗ is missing) are sent to both children, but with reduced weight. The weight

of each example sent to the left child is multiplied by nleft/(nleft + nright). Similarly,

the weight of each example sent to the right child is multiplied by nright/(nleft +nright).

At test time, when the test example reaches the test on feature xj∗, if the feature

45

value is present, then the example is routed left or right in the usual way. But if xj∗

is missing, then the example is sent to both children (recursively). Let ŷleft be the

predicted value computed by the left subtree and ŷright be the predicted value computed

by the right subtree. Then the value predicted by node j∗ is the weighted average of

these predictions:

ŷ =
nleftŷleft + nrightŷright

nleft + nright

.

Instance weighting assumes that the training and test examples missing xj∗ will on av-

erage behave exactly like the training examples for which xj∗ is not missing.

4.3 Review of Surrogate Splitting

The surrogate splitting method (Breiman et al., 1984) involves separate procedures dur-

ing training and testing. During training, as the regression tree is being constructed (in

the usual top-down, greedy way), the key step in the learning algorithm is to choose

which feature to split on. Each boolean feature xj is evaluated based only on the train-

ing examples that have non-missing values for that feature, and the best feature, xj∗ is

chosen. Each of the remaining features j′ 6= j∗ is then evaluated to determine how

accurately it can predict the value of xj∗, and the features are sorted according to their

predictive power. This sorted list of features, called the surrogate splits, is stored in the

node.

At test time, when test example x is processed through the regression tree, if xj∗ is

not missing, then the example is processed as usual by sending it to the left child if xj∗

is false and to the right child if xj∗ is true. However if xj∗ is missing, then surrogate

46

split features are examined in order until a feature j′ is found that is not missing. The

value of this feature determines whether to branch left or right.

4.4 Experimental Results

We performed a series of experiments to evaluate the effectiveness of methods for han-

dling missing values in the TREECRF algorithm. In addition to the instance weighting

and surrogate splitting methods described above, we also studied two simpler methods:

imputation and indicator features. Let xtj, j = 1, . . . , n be the input features describ-

ing a particular input observation xt. Imputation and indicator features are defined as

follows:

Imputation: when a feature value xtj is missing, it is replaced with the most common

value for xj in the training data among those feature values that are not missing.

This strategy can be viewed as substituting the most likely value of xj a priori or

alternatively as substituting the value of xj least likely to be informative.

Indicator Features: a boolean feature x̃tj is introduced for each feature xtj such that

if xtj is present, x̃tj is false. But if xtj is missing, then x̃tj is true and xtj is

set to a fixed chosen value, typically 0. Indicator features make sense when the

fact that a value is missing is itself informative. For example, if xtj represents a

temperature reading, it may be that extremely cold temperature values tend to be

missing because of sensor failure.

47

We adopted a first-order Markov model in all the following experiments and em-

ployed an internal hold-out method to set the other parameters: Two-thirds of the orig-

inal training set was used as sub-training set and the other one third was used as devel-

opment set to choose parameter values. Final training was performed using the entire

training set.

For each learning problem, we took the chosen training and test sets and injected

missing values at rates of 5%, 10%, 20% and 40%. For a given missing rate, we gener-

ated five versions of the training set and five versions of the test set. A CRF was then

trained on each of the training sets and evaluated on each of the test sets (for a total of

5 CRFs and 25 evaluations per missing rate). The label sequences were predicted by

the forward-backward algorithm (i.e., we computed ŷt = argmaxyt
P (yt|X) for each t

separately). Prediction accuracy was based on the number of individual labels correctly

predicted in the label sequences. The final prediction accuracy was the average of all 25

combinations of damaged training and test sets.

To test the statistical significance of the differences among the four methods, we

performed an analysis of deviance based on the generalized linear model discussed by

Agresti (1996). We fit a logistic regression model

log
P (yt = ŷt)

1− P (yt = ŷt)
= δ1m1 + δ2m2 + δ3m3 +

∑

`

σ`S` ,

where m1, m2, and m3 are boolean indicator variables that specify which missing values

method we are using and the S`’s are indicator variables that specify which of the five

training sets we are using. If m1 = m2 = m3 = 0, then we are using instance weight-

48

ing, which serves as our baseline method. If m1 = 1, this indicates surrogate splitting,

m2 = 1 indicates imputation, and m3 = 1 indicates the indicator feature method. Con-

sequently, the fitted coefficients δ1, δ2, and δ3 indicate the change in log odds (relative

to the baseline) resulting from using each of these missing values methods. We can

then test the hypothesis δi 6= 0 against the null hypothesis δi = 0 to determine whether

missing values method i is statistically significantly different from the baseline method.

This statistical approach controls for variability due to the choice of the training set

(through the σ`’s) and variability due to the size of the test set.

4.4.1 Protein Secondary Structure Prediction

Figure 4.1a shows that instance weighting achieves the best prediction accuracy for each

of the different missing rates. Table 4.2a shows that the base line missing values method,

instance weighting, is statistically better than the other three missing values methods in

most cases. In other cases, it is as good as other methods.

4.4.2 NETtalk Stress Prediction

In Figure 4.1b, we see that instance weighting does better than the other three missing

values methods for all of the different missing rates. The statistical tests reported in

Table 4.2b show that the baseline method, instance weighting, is statistically better than

each of the other missing value methods in all cases.

49

 55

 56

 57

 58

 59

 60

 61

 62

 63

5 10 20 40

pr
ed

ic
tio

n
ac

cu
ra

cy
 (

%
)

missing rate (%)

instance weighting
surrogate splitting

imputation
indicator feature

(a) Protein

 72

 74

 76

 78

 80

 82

 84

 86

5 10 20 40

pr
ed

ic
tio

n
ac

cu
ra

cy
 (

%
)

missing rate (%)

instance weighting
surrogate splitting

imputation
indicator feature

(b) NETtalk

Figure 4.1: Performance of missing values methods for different missing rates.

50

 86

 86.5

 87

 87.5

 88

 88.5

 89

 89.5

 90

 90.5

 91

 91.5

5 10 20 40

pr
ed

ic
tio

n
ac

cu
ra

cy
 (

%
)

missing rate (%)

instance weighting
surrogate splitting

imputation
indicator feature

(c) Hyphen

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

5 10 20 40

pr
ed

ic
tio

n
ac

cu
ra

cy
 (

%
)

missing rate (%)

instance weighting
surrogate splitting

imputation
indicator feature

(d) FAQ ai-general

Figure 4.1: Performance of missing values methods for different missing rates (Contin-
ued).

51

Table 4.1: Estimation of the coefficients corresponding to different missing values meth-
ods and statistical test results. In FAQ ai-general problem, imputation was the baseline
method, so the coefficient values give the log odds of the change in accuracy relative to
imputation. * means that the parameter value is statistically significantly different from
zero (p < 0.05).

Missing Surrogate Indicator
rate splitting Imputation feature
5% −0.018 −0.072* −0.028*

10% −0.013 −0.040* 0.001
20% −0.025* −0.074* −0.020*
40% −0.041* −0.072* −0.020*

(a) Protein

Missing Surrogate Indicator
rate splitting Imputation feature
5% −0.051* −0.066* −0.064*

10% −0.051* −0.067* −0.059*
20% −0.069* −0.057* −0.052*
40% −0.080* −0.116* −0.111*

(b) NETtalk

Missing Surrogate Indicator
rate splitting Imputation feature
5% 0.036* 0.007 0.023

10% −0.031* −0.022 −0.027*
20% −0.071* −0.049* −0.040*
40% −0.024* −0.054* −0.047*

(c) Hyphen

Missing Instance Surrogate Indicator
rate weighting splitting feature
5% −8.824E−16 −0.043 −1.499*

10% −2.161* −1.867* −1.961*
20% −0.874* 0.072 0.100
40% −1.243* −0.584* −0.359*

(d) FAQ ai-general

52

4.4.3 Hyphenation

Figure 4.1c shows that instance weighting is the best missing values method except for

a missing rate of 5%. Statistical tests shown in Table 4.2c tell us that for missing rate

of 5%, surrogate splitting is the best missing values method and the other three methods

are not statistically significantly different from each other. For a missing rate of 10%,

instance weighting and imputation are statistically better than the other two methods

(and indistinguishable from each other). For missing rates of 20% and 40%, instance

weighting is statistically better than the other three methods.

4.4.4 FAQ Document Segmentation

This task is based on the ai-general Usenet FAQ data set as we discussed in Chapter 3.

We treat the first 6 files as the training set and the seventh file as the test set. The input

window contains only the features corresponding to a single line in the file (window

half-width of 0). Unlike in the previous data sets, instance weighting is no longer the

best missing values method, as shown in Figure 4.1d. Instead, imputation performs very

well for various missing value rates. Table 4.2d shows that imputation is statistically

the best missing values method. For missing rates of 10% and 40%, it is statistically

better than the other three methods. For a missing rate of 5%, it does as well as instance

weighting and surrogate splitting. For a missing rate of 20%, it does as well as surrogate

splitting and indicator features.

53

4.4.5 Analysis and Discussion

The four missing values methods are based on different assumptions about the input

data. Imputation assumes that the most frequent value of a feature is the least informa-

tive and therefore presents the lowest risk of introducing errors into the learning process.

Missing values are injected prior to converting the input features to binary. Hence, in

the protein data set, missing values are introduced by choosing an amino acid residue

position in the observation sequence and setting all 20 boolean indicator features that

represent that position to missing. Similarly, in the NETtalk and hyphenation problems,

a letter is made to be missing by setting all 26 indicator features for that letter to miss-

ing. Similarly, imputation is computed at the amino acid or letter level, not at the level of

boolean features. However, in the Usenet FAQ data set, since the binary features are not

exclusive, imputation is computed at the level of boolean features. In the case of protein

sequences, imputation will replace missing values with the most frequently-occurring

amino acid, which is alanine, code ‘A’. Alanine tends to form alpha helices, so this may

cause the learning algorithms to over-predict the helix class, which may explain why

imputation performed worst on the protein data set. In the case of English words, the

most common letter is ‘E’, and it does not carry much information either about pronun-

ciation or about hyphenation, so this may explain why imputation worked well in the

NETtalk and hyphenation problems. Finally, in the ai-general FAQ data set, most of the

features exhibit a highly skewed distribution, so that one feature value is much more

common than another, as shown in Figure 4.2. Hence, in most cases, imputation with

the most common feature value will supply the correct missing value. This may be why

54

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

F
ra

ct
io

n
of

 ti
m

e
tr

ue

Feature Index

Figure 4.2: Fraction of the time that each FAQ feature is true (versus false). Features 1,
3, 4, 7, 8, 10, 11, 12, 16, 18, and 20 are rarely true.

it worked best on that data set.

The indicator feature approach is based on the assumption that the presence or ab-

sence of a feature is meaningful (e.g., in medicine, a feature could be missing because

a physician explicitly chose not to measure it). Because features were marked as miss-

ing completely at random, this is not true, so the indicator feature carries no positive

information about the class label. However, in cases where imputation causes problems,

the indicator feature approach may help prevent those problems by being more neutral.

The learning algorithm can learn that if the indicator feature is set, then the actual fea-

55

ture value should be ignored. This may explain why the indicator feature method works

slightly better in most cases than the imputation method.

The surrogate splitting method assumes that the input features are correlated with

one another, so that if one feature is missing, its value can be computed from another

feature. The protein, NETtalk, and hyphenation data sets have a single input feature

for each amino acid or letter. Hence, if this input feature is missing, then there is no

information about that position in the sequence. The only exception to this would be if

there were strong correlations between successive amino acids or letters. However, such

strong correlations do not exist much either in protein sequences or in English, with

the possible exception of the letter ‘q’, which is always followed by ‘u’. Note that the

converse is not true: ‘u’ is not always preceded by ‘q’. Based on these considerations,

we would not expect surrogate splitting to work well in these domains, and it does not.

In the FAQ data set, each line is described by 20 features computed from the words

in that line. In the experiment, each of these 20 features could be independently marked

as missing, which is a bit unrealistic, since presumably the real missing values would

involve some loss or corruption of the words making up the line, and this would affect

multiple features. The 20 features do have some redundancy, so we would expect that

surrogate splitting should work well, and it does for 5% and 20% missing rates.

The instance weighting method assumes that the feature values are missing at ran-

dom and that the other features provide no redundant information, so the most sensible

thing to do is to marginalize away the uncertainty about the missing values. Our exper-

iments show that this is a very good strategy in all cases except for the FAQ data set,

where the features are somewhat redundant.

56

Chapter 5 – Discovering Future Features in Sequential Supervised

Learning

Most existing models for structured learning problem are based on the Markovian de-

pendency assumption and use dynamic programming techniques, for example, the Viterbi

algorithm, for inference. However, the Markovian assumption makes it hard to capture

long term dependencies among the output labels. Furthermore, dynamic programming

is impractical in many complex structured learning problems, especially in natural lan-

guage processing. Recently a new family of approaches have been proposed, which use

approximate search methods, for example, beam search, to incrementally infer struc-

tured output labels, and model parameters are learned to optimize predictive accuracy

when used with this search process. Each state s in the search space S consists of par-

tially labeled structured outputs. A linear ranking function

f(s,X) = w · Φ(X, s) (5.1)

is defined to compute a score for the state s, where w is a weight vector and Φ is a

vector of features. In each step of beam search with beam width b, the value of Eq. (5.1)

is evaluated at each candidate state and only the b highest ranked states are kept and

expanded to get the next set of candidate states. The weight parameter w is trained to

ensure that at each search step there exists at least one state in the beam that can lead

57

to a goal state. For a given state s, it is expanded by providing class labels for the next

unlabeled position in the structured output. For example, when the output structure is a

linear chain with length T , a state st can be represented as

st = (y1, . . . , yt,⊥, . . . ,⊥) ,

which consists of class labels only for positions from 1 to t. In this state, positions from

t+1 to T are not labeled, which is indicated by the special symbols⊥ at these positions.

Expanding the state st will return a set of states. Each state in this set is in the form of

st+1 = (y1, . . . , yt, yt+1,⊥, . . . ,⊥) ,

which means it provides a class label yt+1 for position t + 1 while keeps the class labels

for positions from 1 to t the same as in the state st.

The advantage of this method is that the decoding process does not rely on dynamic

programming and thus it becomes possible to use non-local (i.e., higher order) output

dependencies. Collins and Roark (2004) first used this idea for incremental parsing.

Later on, Daumé III and Marcu (2005) proposed the LaSO framework to solve syntactic

chunking and joint tagging/chunking tasks. Recently, Xu et al. (2007) improved the

LaSO framework and applied it in a planning domain.

58

5.1 Motivation

Previous work on search based structured learning mostly focused on unidirectional

(for example, left-to-right) greedy beam search, so the feature vector in Eq. (5.1) only

depends on the input X and the preceding output labels (which are represented by the

search state s) at each search step. However, this information is not sufficient to resolve

local ambiguity in some cases. An example is given by Ashenfelter (2003), where the

task is to pronounce “photograph” and “photography”, whose pronunciations are totally

different. If the search process runs from left to right, it will have exactly the same

partial pronunciations for these two words before the step in which the position of the

ending letter “y” is considered in the input features. Pronunciation errors made before

this step cannot be recovered in the later search process.

This problem can possibly be avoided by running the search process from right to

left, as was done by Bakiri and Dietterich (1997). However, in some cases, unidirec-

tional search, either left-to-right or right-to left cannot make correct predictions. Here is

an example. Consider a hidden Markov model where the label set is L = {l1, l2, l3} and

the observation set is E = {e1, e2, e3}. Define the transition model as

P (yt = li | yt−1 = lj) =

0.9 if i = j

0.05 if i 6= j

59

and the observation model as

P (xt = e1 | yt) =

0.45 if yt = l1

0.8 if yt = l2

0.1 if yt = l3

,

P (xt = e3 | yt) =

0.45 if yt = l1

0.1 if yt = l2

0.8 if yt = l3

,

P (xt = e2 | yt) = 0.1 for any yt.

Given an observation sequence (x1, x2, x3) = (e1, e2, e3), use the forward-backward

algorithm to find the most probable label for x2. In the forward pass, we have

α2(l1) = 0.1 ∗ (0.45 ∗ 0.9 + 0.8 ∗ 0.05 + 0.1 ∗ 0.05) = 0.045

α2(l2) = 0.1 ∗ (0.45 ∗ 0.05 + 0.8 ∗ 0.9 + 0.1 ∗ 0.05) = 0.07475

α2(l3) = 0.1 ∗ (0.45 ∗ 0.05 + 0.8 ∗ 0.05 + 0.1 ∗ 0.9) = 0.01525.

In the backward pass, we have

β2(l1) = 0.45 ∗ 0.9 + 0.1 ∗ 0.05 + 0.8 ∗ 0.05 = 0.45

β2(l2) = 0.45 ∗ 0.05 + 0.1 ∗ 0.09 + 0.8 ∗ 0.05 = 0.1525

β2(l3) = 0.45 ∗ 0.05 + 0.1 ∗ 0.05 + 0.8 ∗ 0.9 = 0.7475.

60

So the forward pass predicts the label of x2 as l2, while the backward pass predicts the

label of x2 as l3. But both predictions are incorrect, because by combining the forward

pass and backward pass together, the label of x2 is found to be l1. This example shows

that both forward-pass-only and backward-pass-only will fail in some cases even when

the full forward-backward algorithm works. The problem in this example cannot be

solved by reversing the sequence.

One way to handle this problem is to use a large sliding window over the input

X . But this will introduce a large number of features into the model and thus hurt

generalization. Another drawback of using sliding windows is that features extracted

from a sliding window are associated with specific positions within the sliding window,

which gives us less flexibility in feature engineering. What we want is that at time t, we

compute a score for the state st as

f(st, X1:t,ht) ,

where X1:t represents the input features from position 1 to position t, and ht is a feature

vector, which is called future feature vector. A future feature c inside ht takes the value

1 if and only if there exists a future position t′ > t such that feature c is true for input

observation xt′ . We formulate the problem of learning future features as a multiple-

instance learning problem.

61

5.2 Review of Multiple-Instance Learning (MIL)

In a standard single instance learning scenario, the training data set D = {(xi, yi)}N
i=1

consists of N instances, where xi ∈ X is an instance (the feature vector) and yi ∈ Y =

{0, 1} is the corresponding instance label. The goal is to learn a classifier f : X → Y .

Multiple-instance learning (MIL) is a generalization of standard supervised learning,

and it can be formulated as follows:

Given: a training data set D = {(Bi, yi)}N
i=1 consisting of N bags, where each bag

Bi = {xi1, . . . ,xini
} consists of ni instances and yi ∈ Y = {0, 1} is the corre-

sponding bag label.

Assume: there exists an unknown concept f that classifies each individual instance xij

as 1 or 0 (positive or negative), and the bag label yi is determined as follows:

• yi = 1 if there is at least one instance xij ∈ Bi such that f(xij) = 1, and

• yi = 0 if f(xij) = 0 for every instance xij ∈ Bi.

Goal: learn the concept f to predict unseen instances and/or bags.

In multiple-instance learning, only bag labels are known, and instance labels are not

directly provided. For instances in a negative bag, all of them are negative instances.

However, for instances in a positive bag, it is unknown which ones are the actual positive

instances and which ones are not. How to deal with this ambiguity is the key challenge

in MIL.

Multiple-instance learning was first introduced by Dietterich et al. (1997) in the

context of drug activity prediction. In that task, each molecule is represented as a bag of

62

possible conformations. If a molecule shows drug-like activity (a positive bag), it can

be inferred that at least one of its conformations is able to bind to the target binding site

(a positive instance). On the other hand, if a molecule does not show drug-like activity

(a negative bag), it can be inferred that none of its conformations is able to bind to the

target site (negative instances). Experimentally, it is only possible to test the efficacy

of a molecule, not of individual conformations. MIL has also been applied to many

other real-world tasks, such as content-based image retrieval (Maron and Ratan, 1998;

Zhang et al., 2002), text categorization (Andrews et al., 2002), face detection (Viola

et al., 2006), and so on.

After the axis-parallel rectangle (APR) algorithms proposed by Dietterich et al.

(1997), many algorithms have been developed to solve MIL problems. A framework

called Diverse Density (DD) was proposed by Maron and Lozano-Pérez (1998). This

algorithm was later combined with the EM algorithm by Zhang and Goldman (2001) to

create the EM-DD algorithm. Many standard single instance learning algorithms have

been adapted to the multiple-instance setting in the past, such as nearest neighbor (Wang

and Zucker, 2000), decision trees (Chevaleyre and Zucker, 2001; Blockeel et al., 2005),

SVMs (Andrews et al., 2002), neural networks (Ramon and De Raedt, 2000; Zhou and

Zhang, 2002), logistic regression (Ray and Craven, 2005), boosting (Auer and Ortner,

2004; Xu and Frank, 2004; Viola et al., 2006), and so on. A good survey of multiple-

instance learning was given by Zhou (2004).

In this chapter, we take the approach introduced by Viola et al. (2006) to extend

single instance logistic regression to the multiple-instance setting. For each instance xij

63

in the bag Bi, the probability of this instance being positive is given by

pij = P (yij = 1 | xij) =
1

1 + exp[−F (xij)]
, (5.2)

where F (xij) is the score function, which is usually represented as a linear combination

of the features in xij . The probability that the bag Bi is positive is given by

pi = P (yi = 1 | Bi) = 1−
ni∏

j=1

(1− pij) , (5.3)

which is a noisy OR (Pearl, 1988). The score function F (·) can be trained by maximiz-

ing the conditional log-likelihood

`(D) =
N∑

i=1

yi log pi + (1− yi) log(1− pi)

over the training data set D using gradient based methods.

5.3 MIL-based Future Feature Discovery

As discussed in Chapter 1, each training example in a sequential supervised learning

problem can be represented as a pair (X,Y), where X = (x1,x2, . . . ,xT) is a sequence

of T feature vectors, Y = (y1, y2, . . . , yT) is a corresponding sequence of class labels,

and yt ∈ Y = {1, . . . , L} for 1 ≤ t ≤ T . Let

Bt = {xt+1,xt+2, . . . ,xt+u}

64

denote a bag of u future instances starting from position t + 1, where u can take a fixed

value or take the value (T −t) so that it extends to the end of the sequence. Our intuition

is that at position t in the sequence, if there exist dependencies between class label yt

and class labels at some future positions, some unknown pattern exhibited by at least

one future instance xt′ ∈ Bt will be useful for predicting class label yt. That is to say,

some pattern exhibited in the bag Bt can be useful for predicting yt. We call this pattern

a future feature. We will use a MIL-based algorithm to discover a set of future features.

5.3.1 Future Feature Model

At each position t in a sequence, we consider three sources of information to the predict

class label yt: the feature vector xt or wt(X) in general, the class labels at previous

positions yt−1, . . . , yt−k, and the bag of future instances Bt. We call the first two sources

the local features. As in the Maximum Entropy Markov Model (MEMM) proposed by

McCallum et al. (2000), we can represent the conditional probability of the class label

yt as

P (yt | yt−1, . . . , yt−k,xt, Bt) =
exp F yt(yt−1, . . . , yt−k,xt, Bt)∑L
l=1 exp F l(yt−1, . . . , yt−k,xt, Bt)

,

where each function F l(·) is the score function for class label l ∈ Y . We call this model a

k-th order Future Feature MEMM. The model is trained to maximize the log-likelihood

log P (Y | X) =
T∑

t=1

log P (yt | yt−1, . . . , yt−k,xt, Bt). (5.4)

65

Unlike a MEMM, at each position t in the sequence, this model makes use of future

features extracted from the bag Bt to resolve local ambiguity. The training algorithm

for this model is discussed in detail in the next section.

5.3.2 Training Algorithm

In this section, we discuss the training of a first order Future Feature MEMM with

binary class labels. That is to say, k = 1 and Y = {0, 1}. In this case, the conditional

probability of class label yt being 1 is written as

P (yt = 1 | yt−1,xt, Bt) =
exp F (yt−1,xt, Bt)

1 + exp F (yt−1,xt, Bt)
,

where F (·) is the score function. This function will be learned by maximizing the log-

likelihood function specified in Equation 5.4 with the functional gradient tree boosting

method introduced in section 3.2.

Suppose the current estimation of the score function F (·) is Fm−1(·):

F (·) = Fm−1(·) .

We use h
(m)
t to denote the future features extracted from bag Bt so far. The vector ht is

initialized to be an empty feature vector before training, and is extended incrementally

during the training process. Two options are considered for the next training iteration.

66

First Option. Assume that the next update of the score function F (·) is of the form

F (·) = Fm(·) = Fm−1(·) + αm · f(yt−1,xt,ht) . (5.5)

Function f(·) is called the top level update function. It only depends on local features

and existing future features.

Proposition 5.1 The top level update function f(yt−1,xt,ht) in Equation 5.5 can be

computed as

f(yt−1,xt,ht) = I(yt = 1)− P (yt = 1 | yt−1,xt, Bt) ,

where I(yt = 1) is 1 if class label yt is 1 and 0 otherwise, and where P (yt = 1 | yt−1,xt, Bt)

is computed according to the current score function F (·) = Fm−1(·).

The proof of this proposition is given in Table 5.1. In Equation 5.6, only one

of the P (yt | yt−1,xt, Bt) terms will contain f(yt−1,xt,ht) if we assume that each

(yt−1,xt,ht) is unique. Equation 5.8 is derived by writing the log-likehood function in

Equation 5.7 in the cross-entropy form.

As in the TREECRF algorithm, we can fit a regression tree to approximate the func-

tion f(·). Thus in this option, we are adding a new top level regression tree to the score

function F (·) in each training iteration, and this regression tree only depends on local

features and existing future features. The step size αm in Equation 5.5 can be determined

by a line search.

67

Table 5.1: Derivation of the top level update function.

f(yt−1,xt,ht)

=
∂ log P (Y |X)

∂f(yt−1,xt,ht)

∣∣∣∣
F=Fm , f=0

=
∂

∂f(yt−1,xt,ht)

T∑
t=1

log P (yt | yt−1,xt, Bt)

∣∣∣∣∣
F=Fm , f=0

(5.6)

=
∂

∂f(yt−1,xt,ht)
log P (yt | yt−1,xt, Bt)

∣∣∣∣
F=Fm , f=0

(5.7)

=
∂

∂f(yt−1,xt,ht)

[
ytF (yt−1,xt, Bt)− log

(
1 + exp F (yt−1,xt, Bt)

)]
(5.8)

=
∂

∂f(yt−1,xt,ht)

[
ytFm−1(yt−1,xt, Bt) + ytf(yt−1,xt,ht)

]∣∣∣∣
f=0

− ∂

∂f(yt−1,xt,ht)
log

[
1 + exp

[
Fm−1(yt−1,xt, Bt) + f(yt−1,xt,ht)

]]∣∣∣∣
f=0

= I(yt = 1)− P (yt = 1 | yt−1,xt, Bt)|F=Fm−1

Second Option. Assume that the next update of score function F (·) is of the form

F (·) = Fm(·) = Fm−1(·) + ηm ·Q(Bt) (5.9)

That is to say, the update function Q(·) only depends on future instances in bag Bt.

Inspired by the multiple-instance learning (MIL) introduced in section 5.2, we treat

function Q(·) as the probability of bag Bt exhibiting some unknown pattern. Similar

to Equation 5.2 and Equation 5.3, let ptj be the probability that instance xt+j ∈ Bt is

68

positive, which can be written as

ptj =
exp G(xt+j)

1 + exp G(xt+j)
, (5.10)

where the function G(.) is the score function corresponding to the unknown pattern, and

1 ≤ j ≤ u. Then function Q(Bt), the probability of bag Bt being positive, can be

written as

Q(Bt) = pt = 1−
u∏

j=1

(1− ptj) . (5.11)

In this training iteration, our goal is to update the score function G(·) based on its current

definition Gn−1(·). That is to say, we want to compute a lower level update function g(·)
such that

G(·) = Gn(·) = Gn−1(·) + βn · g(·) (5.12)

maximizes the log-likelihood in Equation 5.4 based on the representation of the score

function F (·) in Equation 5.9. This can be done by the functional gradient tree boosting

algorithm as well.

Proposition 5.2 The lower level update function g(xt+j) in Equation 5.12 can be com-

puted as

g(xt+j) = ηm

[
I(yt = 1)− p(yt = 1 | yt−1,xt, Bt)

]
· (1− pt) · ptj ,

where I(yt = 1) is 1 if the class label yt is 1 and 0 otherwise, P (yt = 1 | yt−1,xt, Bt) is

computed according to the current definition of the score function Fm(·), and ptj and pt

69

Table 5.2: Derivation of the lower level update function.

g(xt+j)

=
∂ log P (Y |X)

∂G(xt+j)

∣∣∣∣
F=Fm−1+ηm·Qn−1

=
∂

∂G(xt+j)

T∑
t=1

log P (yt | yt−1,xt, Bt)

∣∣∣∣∣
F=Fm−1+ηm·Qn−1

=
∂

∂G(xt+j)
log P (yt | yt−1,xt, Bt)

∣∣∣∣
F=Fm−1+ηm·Qn−1

(5.13)

=
∂ log P (yt|yt−1,xt, Bt)

∂Q(Bt)

∣∣∣∣
F=Fm−1+ηm·Qn−1,Q=Qn−1

·∂Q(Bt)

∂ptj

· ∂ptj

∂G(xt+j)

∣∣∣∣
G=Gn−1

(5.14)

= ηm

[
I(yt = 1)− p(yt = 1 | yt−1,xt, Bt)|F=Fm−1+ηm·Qn−1

]
(5.15)

·
[

u∏

i=1,i6=j

(1− pti)

]
· ptj(1− ptj)

∣∣∣∣∣
G=Gn−1

= ηm

[
I(yt = 1)− p(yt = 1 | yt−1,xt, Bt)

]
· (1− pt) · ptj.

are computed according to G(·) = Gn−1(·).

The proof of this proposition is given in Table 5.2. Function Qn−1(·) is computed

according to Equation 5.10 and Equation 5.11 with G(·) = Gn−1(·). The chain rule

is applied to expand the partial derivative in Equation 5.13 into three terms as shown

in Equation 5.14. As in the first option, a regression tree can be fit to approximate the

function g(·). So in this option, a new lower level regression tree is added in one training

iteration. A line search can be used to determine the step size βn in Equation 5.12.

70

Training Algorithm. The overall training algorithm involves alternating between

iterations with the first option and iterations with the second option. The basic idea is

that we keep training the model based on the first option until the performance cannot

be further improved. That means further exploiting local features and existing future

features does not improve the log likelihood. At such a point, the algorithm needs to

discover some new future features by performing training iterations based on the second

option. When the log likelihood of these iterations stops improving, the value of Q(Bt)

serves to define a new future feature extracted from bag Bt. This new future feature

is then added to the future feature vector ht to obtain a new future feature vector for

position t. In our current implementation, we evenly discretize the value range of Q(·)
function into 20 bins and use the thermometer representation to represent the value of

Q(Bt). The step size ηm in Equation 5.9 is then determined by an additional line search.

After introducing this new feature feature, the algorithm returns to performing training

iterations based on the first option.

5.4 Experimental Results

We implemented the training algorithm for our Future Feature MEMM model. We call

this algorithm FF-MEMM. In this section, we compare this algorithm to three other se-

quential supervised learning algorithms: 1) sliding windows method denoted by “SW”,

2) the original MEMM algorithm proposed by McCallum et al. (2000), and 3) CRFs.

We use “FF-MEMM-i”, “MEMM-i”, and “CRF-i” to denote the corresponding models

with the i-th order Markov assumption. CRF models are trained by the TREECRF al-

71

gorithm as described in Chapter 3. The implementation of TREECRF package is also

able to train MEMM models via the functional gradient tree boosting method. Sliding

windows models are treated as zeroth-order MEMM models and thus are trained using

the same code.

For these four algorithms, a common set of parameters must be set by the user,

which include (a) the window size, (b) the order of the Markov model, (c) the number of

iterations to train, and (d) the maximum number of leaves in the regression trees, which

is used to regularize trees. For the FF-MEMM algorithm, additional parameters include

(a) the size of bag Bt for each position t, (b) the value range of step sizes αm in the

top level line search, (c) the value range of step sizes βn in the lower level line search,

(d) the value range of step sizes ηm in the top level line search when introducing a new

future feature, and (e) the maximum number of iterations with the second option before

the beginning of the next training iteration with the first option (kept constant at 10).

The lower bound of the step size value ranges is always set to 0. Hold-out validation is

used for parameter selection.

Throughout the experiments, the prediction accuracy is measured according to the

fraction of correctly labeled sequence elements. For CRF models, we use the forward-

backward algorithm to make label sequence predictions.

5.4.1 Synthetic Data Sets

We evaluated the performance of our algorithm on three synthetic data sets. Each data

set consists of 400 training sequences, 200 validation sequences, and 100 test sequences.

72

The length of each sequence is 30. At each position t in a sequence, we generated a

random feature vector xt, which consisted of 8 binary features. That is to say, xt =

(xt,1, xt,2, . . . , xt,8).

For each position t in a sequence, we assigned a local label ylocal
t . If at least 4 of

the first 6 bits in xt were true, then ylocal
t = 1. Otherwise, ylocal

t = 0. This is a 4-of-6

problem at each position t. As a result, using the sliding window method with window

size 1, we can learn this SSL problem perfectly with simple learning algorithms such as

logistic regression. The last 2 bits in xt serve as random noise.

In the next three data sets, at each position t in a sequence, we consider a bag of 6

future instances, Bt = {xt+1, . . . ,xt+6}. An instance in the bag is a positive instance

if and only if at most 1 of the first 6 bits in it is true. The bag label ybag
t for Bt is 1 if

it contains at least 1 positive future instance. Otherwise, ybag
t = 0. The reason why we

chose the bag of size 6 is that the probability of a bag being positive is about 0.5 if every

feature vector xt is generated randomly.

XOR Data Set. In this data set, we assigned the class label yxor
t to each position t,

where

yxor
t = ylocal

t ⊕ ybag
t ,

and ⊕ is the XOR operator. This is a very hard problem for the sliding window method,

because two identical feature vectors appearing at different positions in a sequence will

have opposite class labels with probability of about 0.5.

OR Data Set. In this data set, we assigned the class label yor
t to each position t,

73

where

yor
t = ylocal

t ∨ ybag
t ,

and ∨ is the OR operator.

EXTRA Data Set. In this data set, ybag
t is used as an extra input feature at position t.

We assigned the class label yextra
t to each position t, where yextra

t = 1 if the number of

true features in (ybag
t , xt,1, . . . , xt,6) is at least 4. Otherwise, yextra

t = 0.

In these three data sets, if the algorithm can correctly extract the future feature ybag
t

from bag Bt, then it can learn these SSL problems perfectly even with the sliding win-

dow method. Otherwise, it is doomed to fall into local ambiguity.

We tested the performance of the FF-MEMM algorithm over these synthetic data sets

in order to get some insights about this algorithm’s characteristics and how it works. In

the experiments here, we set the window size to 1, the maximum number of leaves in the

regression trees to 10, and the bag size to 6. For the score function G(·) in Equation 5.12,

we chose different initial values G0. For each G0, we performed hold-out validation to

select the other parameters, and the best values are reported.

Based on the results shown in Table 5.3. We have the following observations.

1. As shown in the columns “Instance Accuracy” and “Bag Accuracy”, the algorithm

can identify bag labels ybag
t very well, because it can identify positive and nega-

tive instances in bags very well. This property is fairly robust to different initial

values G0. For initial values marked with “*”, only one score function G(·) is

learned. That is to say, one future feature is enough to correctly represent ybag
t .

For initial values marked with “**”, two score functions G(·) are learned. For

74

Table 5.3: Performance of the FF-MEMM algorithm on synthetic data sets, where *
means one future feature is extracted, ** means two future features are extracted, and
*** means more than two future feature are extracted.

Step Size Upper Bound Prediction Accuracy (%) Instance Accuracy (%) Bag Accuracy (%)
G0 α β η Iterations Train Val Test Train Val Test Train Val Test
0** 40 105 10 29 100 100 100 100 100 100 100 100 100
-1*** 40 104 10 52 99.17 98.67 98.97 N/A N/A N/A N/A N/A N/A
-5** 40 5000 10 34 100 100 100 100 100 100 100 100 100
-7** 60 5000 10 32 99.98 99.92 99.97 100 100 100 100 100 100

(a) XOR data set

Step Size Upper Bound Prediction Accuracy (%) Instance Accuracy (%) Bag Accuracy (%)
G0 α β η Iterations Train Val Test Train Val Test Train Val Test
0** 20 5000 40 11 100 100 100 100 100 100 100 100 100
-1*** 40 106 40 32 99.98 99.90 99.97 N/A N/A N/A N/A N/A N/A
-3*** 40 105 20 43 100 99.98 100 N/A N/A N/A N/A N/A N/A
-5* 40 105 20 11 100 100 100 100 100 100 100 100 100
-7* 40 105 20 11 100 100 100 100 100 100 100 100 100
-10** 40 106 20 13 100 100 100 100 100 100 100 100 100

(b) OR data set

Step Size Upper Bound Prediction Accuracy (%) Instance Accuracy (%) Bag Accuracy (%)
G0 α β η Iterations Train Val Test Train Val Test Train Val Test
0*** 60 105 10 49 100 100 100 100 100 100 100 100 100
-5* 40 104 10 43 100 100 100 100 100 100 100 100 100
-7* 40 104 10 43 100 100 100 100 100 100 100 100 100
-10*** 60 105 20 51 99.99 99.97 99.93 100 100 100 100 100 100

(c) EXTRA data set

any positive instance or bag, at least one score function can identify it as posi-

tive. For any negative instance or bag, both score functions identify it as negative.

So the combination of predictions made by these two score functions, that is to

say, the combination of the two extracted future features, can represent bag labels

ybag
t correctly. For initial values marked with “***”, it was sometimes difficult

to determine whether the algorithm had correctly learned to predict the instances,

so these were marked as N/A. However, the learned model can still make accu-

75

rate predictions over test sequences. We believe this is because that the extracted

future features can represent ybag
t very well.

2. The step size βm in Equation 5.12 can be very large, because the functional gra-

dient residues g(·) are very small, and only large step sizes are able to make a

significant update to the G(·) function.

3. We recommend setting G0 to some negative value. In the current problem setting,

most instances are negative instances. Setting G0 to negative values treats all

instances as negative instances at the beginning of the future feature extraction

process.

We also compared the zeroth-order FF-MEMM model with the other three SSL

methods over synthetic data sets. A zeroth-order FF-MEMM model is actually a sliding

window model with future features. The results are shown in Table 5.4. We have the

following observations.

1. Zeroth-order FF-MEMM does best in all cases by extracting future features.

2. On the OR and EXTRA data sets, CRFs with higher order Markov connections

are able to improve the prediction accuracy. That means there exist long range

dependencies in these two problems. By extracting future features, FF-MEMM

can exploit these long range dependencies without using complicated inference

algorithms such as the forward-backward algorithm.

3. On the XOR data set, even using higher order CRFs does not improve the perfor-

mance. This is an example where even increasing the order of CRFs can not solve

76

Table 5.4: Prediction accuracy (%) of SW, MEMM, CRF, and FF-MEMM on synthetic
data sets.

SW MEMM-1 CRF-1 CRF-2 CRF-3 CRF-4 FF-MEMM-0
XOR 51.6 50.7 56.0 57.3 57.6 58.4 100
OR 67.5 66.5 76.6 85.9 91.1 93.9 100

EXTRA 84.4 84.9 87.1 90.2 92.5 92.9 100

the problem, but FF-MEMM can solve the problems very well.

5.4.2 NETtalk Data Set

To evaluate FF-MEMM on a real data set, we transformed the original NETtalk data set

into a binary classification problem. This is necessary because our current approach can

only handle binary labels. For letters whose stress labels are ‘2’ or ‘1’, we assign class

label 1. For letters whose stress labels are ‘0’, ‘<’, or ‘>’, we assign class label 0. We

employed a window size of 1 and a bag size of 2 in our experiments. The FF-MEMM

method is compared with the other three SSL methods, and the results are shown in

Table ??.

The prediction accuracies of SW, MEMM-1, and CRF-1 are similar. The big im-

provement from CRF-1 to CRF-2 indicates that there exist high order dependencies

within the sequences. By extracting future features, FF-MEMM-1 can capture this

high order dependency to some extent. As a result, it can improve the performance of

MEMM-1 to 89.4%, which is much better than both MEMM-1 and CRF-1. However,

it is still inferior to CRF-2. This is probably because there is some dependency among

77

Table 5.5: Prediction accuracy (%) of SW, MEMM, CRF, and FF-MEMM on NETtalk
data set.

SW 84.2
k=1 k=2 k=3 k=4

MEMM 85.7 87.1 88.9 89.0
CRF 85.7 90.4 91.8 91.4

FF-MEMM (bag = 2) 89.4 90.4 90.6 90.3
FF-MEMM (bag = 4) 88.9 89.6 90.5 89.23

output labels that cannot be represented by a first-order model and that cannot be easily

captured by a multiple instance problem defined over the input features. This hypoth-

esis is confirmed by the second order FF-MEMM-2 model, which is able to improve

the performance to reach the same prediction accuracy as CRF-2. Without extracting

future features, the prediction accuracy of MEMM-2 is only 87.1%. On this data set,

increasing the size of the bags beyond 2 does not help much.

78

Chapter 6 – Summary and Future Work

6.1 Summary

In this dissertation, we presented TREECRF, a novel method for training conditional

random fields based on gradient tree boosting. TREECRF has the ability to construct

very complex feature conjunctions from basic features and scales much better than meth-

ods based on iterative scaling and simple gradient descent. It appears to match the L-

BFGS algorithm implemented in MALLET, which also gives dramatic speedups when

there are many potential features. In our experiments, TREECRF is as accurate as MAL-

LET on four data sets, more accurate on one data set, and less accurate on one data set.

Its feature induction method is faster than that of MALLET for problems with a large

number of features. But its forward-backward implementation is slower than that of

MALLET for very long sequences.

TREECRF is easier to implement and tune than MALLET. It introduces only one

tunable parameter (either the maximum number of leaves permitted in each regression

tree or the regularization constant), whereas MALLET has many more parameters to ad-

just. It is easier for the TREECRF to find the optimal stopping point to avoid overfitting,

since its performance improves smoothly, while that of MALLET fluctuates wildly. An

important direction to pursue in future research is to develop an approach that can use

tree boosting for feature induction while still attaining the very fast inference of Mal-

79

let. This might be accomplished, for example, by converting the learned trees into flat

feature vectors.

TREECRF also has the ability to handle missing data via the instance weighting

and surrogate splitting methods, which are not available in MALLET and other CRF

training algorithms. Our experiments suggest that when the feature values are missing

at random, the instance weighting approach works very well. In the one domain where

instance weighting did not work well, imputation was the best method. The indicator

feature method was also very robust. The method of surrogate splitting was the most

expensive method to run and the least accurate. Hence, we do not recommend using

surrogate splits with conditional random fields. The good performance of the indicator

features and imputation methods is encouraging, because these methods can be applied

with all known methods for sequential supervised learning, not only with gradient tree

boosting. Since there is no one best method for handling missing values, as with many

other aspects of machine learning, preliminary experiments on subsets of the training

data are required to select the most appropriate method.

The search-based structured learning framework provides a powerful and efficient

way to solve sequential supervised learning problems, particularly with large label vo-

cabularies. However, the unidirectional search strategy that search-based methods em-

ploy make them unable to exploit long range dependencies between the current position

and future positions. These long range dependencies can be essential for resolving local

ambiguity in the search process. As a first step toward tackle this problem, we showed

how to integrate a multiple-instance learning based algorithm into MEMM models to

learn future features. Experimental results on synthetic data sets show that this method

80

works very well on problems where a higher order CRF model is necessary or where no

fixed-order CRF model can do well. Experiments on real data set show that this method

is able to discover and exploit long range dependencies.

6.2 Future Work

Within the research direction of this dissertation, there are several open problems that

need to be further explored.

In the direction of TREECRF algorithm, one problem is how to make TREECRF

algorithm practical for problems where the number of features is very large. Many

problems in natural language processing (NLP) have a huge number of features. How-

ever, in the current implementation of the TREECRF algorithm, in order to generate

regression trees, we must consider all possible features at each internal node to decide

the best split. This makes the current TREECRF algorithm impractical for solving those

NLP problems. One possible solution is to use the random forest algorithm proposed by

Breiman (2001). Instead of generating a single regression tree based on all features, we

could generate a forest of random trees, where at each internal node of a random tree,

only a much smaller number of features is considered. These random trees can even be

generated in parallel to save more running time.

In the direction of the Future Feature MEMM model, several open problems need to

be further studied.

• A more comprehensive evaluation of the binary class Future Feature MEMM

model needs to be conducted. Potential benchmark problems include (1) intru-

81

sion detection in computer networks, where CRFs have been applied (Gupta et al.,

2007; Gupta et al.), (2) the FAQs data sets as adapted by Cohen and Carvalho

(2005), where “trailer” and “answer” are considered as separate tasks for each

FAQ data set, and (3) the CMU seminar announcements data set used by Sutton

and McCallum (2007), where we can treat identifying location names and identi-

fying speaker names as two separate binary label tasks.

• The second open problem is how to extend the binary class Future Feature MEMM

model to multiclass problems. This will make this algorithm much more useful,

since many SSL problems are multiclass problems. One possible way is to extract

a different set of future features for each class label and then combine all these

future features together for the next round of top-level training.

• The third open problem is how to integrate the FF-MEMM model into the existing

search-based structured learning framework, so that at each search step, we can

automatically extract a set of useful future features to help resolve local ambiguity.

Current search-based frameworks are not able to identify such information during

the search process. We believe that this integration will make the search-based

structured learning frameworks much more effective.

82

Bibliography

Alan Agresti. An Introduction to Categorical Data Analysis. Wiley, New York, 1996.

Yasemin Altun, Ioannis Tsochantaridis, and Thomas Hofmann. Hidden Markov support
vector machines. In Tom Fawcett and Nina Mishra, editors, Proceedings of the 20th
International Conference on Machine Learning (ICML 2003), pages 3–10. AAAI
Press, 2003.

Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector ma-
chines for multiple-instance learning. In Suzanna Becker, Sebastian Thrun, and Klaus
Obermayer, editors, NIPS, pages 561–568. MIT Press, 2002.

Adam J. Ashenfelter. Sequential supervised learning and conditional random fields.
Master’s thesis, Oregon State University, 2003.

Peter Auer and Ronald Ortner. A boosting approach to multiple instance learning. In
Jean-François Boulicaut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi,
editors, Machine Learning: ECML 2004, 15th European Conference on Machine
Learning, Pisa, Italy, September 20-24, 2004, Proceedings, volume 3201 of Lecture
Notes in Computer Science, pages 63–74. Springer, 2004.

Ghulum Bakiri and Thomas G. Dietterich. Achieving high-accuracy text-to-speech with
machine learning. In Data mining in speech synthesis. Chapman and Hall, 1997.

Julian Besag. Spatial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society B, 36(2):192–236, 1974.

Hendrik Blockeel, David Page, and Ashwin Srinivasan. Multi-instance tree learning.
In Luc De Raedt and Stefan Wrobel, editors, Machine Learning, Proceedings of the
Twenty-Second International Conference (ICML 2005), Bonn, Germany, August 7-11,
2005, volume 119 of ACM International Conference Proceeding Series, pages 57–64.
ACM, 2005.

Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. Classifi-
cation and Regression Trees. Wadsworth Publishing Company, 1984.

83

Yann Chevaleyre and Jean-Daniel Zucker. Solving multiple-instance and multiple-part
learning problems with decision trees and rule sets. application to the mutagenesis
problem. In Eleni Stroulia and Stan Matwin, editors, Advances in Artificial Intelli-
gence, 14th Biennial Conference of the Canadian Society for Computational Studies
of Intelligence, AI 2001, Ottawa, Canada, June 7-9, 2001, Proceedings, volume 2056
of Lecture Notes in Computer Science, pages 204–214. Springer, 2001.

William W. Cohen and Vitor R. Carvalho. Stacked sequential learning.
In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI, pages
671–676. Professional Book Center, 2005. ISBN 0938075934. URL
http://www.ijcai.org/papers/0378.pdf.

Michael Collins and Brian Roark. Incremental parsing with the perceptron algorithm.
In Proceedings of the 42nd Meeting of the Association for Computational Linguistics
(ACL’04), Main Volume, pages 111–118, Barcelona, Spain, July 2004.

Hal Daumé III and Daniel Marcu. Learning as search optimization: Approximate large
margin methods for structured prediction. In International Conference on Machine
Learning (ICML), Bonn, Germany, 2005.

Thomas G. Dietterich. Machine learning for sequential data: A review. In Proceedings
of the Joint IAPR International Workshop on Structural, Syntactic, and Statistical
Pattern Recognition, pages 15–30, London, UK, 2002. Springer-Verlag.

Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. Solving the mul-
tiple instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-2):
31–71, 1997.

Thomas G. Dietterich, Adam Ashenfelter, and Yaroslav Bulatov. Training conditional
random fields via gradient tree boosting. In Proceedings of the 21st International
Conference on Machine Learning (ICML 2004), pages 217–224, Banff, Canada,
2004. ACM Press.

Thomas G. Dietterich, Guohua Hao, and Adam Ashenfelter. Gradient tree boosting for
training conditional random fields. Journal of Machine Learning Research (JMLR),
9(Oct.):2113–2139, 2008.

Jerome Friedman. Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5):1189–1232, 2001.

84

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression: a
statistical view of boosting. The Annals of Statistics, 38(2):337–374, 2000.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6(6):721–741, Nov. 1984.

Kapil Kumar Gupta, Baikunth Nath, and Kotagiri Ramamohanarao. Layered approach
using conditional random fields for intrusion detection. IEEE Transactions on De-
pendable and Secure Computing. In Press.

Kapil Kumar Gupta, Baikunth Nath, and Kotagiri Ramamohanarao. Conditional random
fields for intrusion detection. In Proceedings of 21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW), pages 203–
208. IEEE Press, 2007.

John M. Hammersley and Peter Clifford. Markov fields on finite graphs and lattices.
Technical report, Unpublished, 1971.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of
the 18th International Conference on Machine Learning (ICML 2001), pages 282–
289. Morgan Kaufmann, 2001.

Lin Liao, Tanzeem Choudhury, Dieter Fox, and Henry A. Kautz. Training conditional
random fields using virtual evidence boosting. In Manuela M. Veloso, editor, Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI
2007), pages 2530–2535, Hyderabad, India, January 6-12 2007.

Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learning. In
Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural
Information Processing Systems, volume 10. The MIT Press, 1998.

Oded Maron and Aparna Lakshmi Ratan. Multiple-instance learning for natural scene
classification. In Jude W. Shavlik, editor, ICML, pages 341–349. Morgan Kaufmann,
1998.

Andrew McCallum. Efficiently inducing features of conditional random fields. In
Christopher Meek and Uffe Kjaerulff, editors, Proceedings of the 19th Conference
on Uncertainty in Artificial Intelligence (UAI 2003), pages 403–410. Morgan Kauf-
mann, 2003.

85

Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum entropy
Markov models for information extraction and segmentation. In Proceedings of the
17th International Conference on Machine Learning (ICML 2000), pages 591–598.
Morgan Kaufmann, 2000.

Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

Andrew Y. Ng and Michael Jordan. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive Bayes. In Advances in Neural Information
Processing Systems, volume 14. MIT Press, 2002.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San mateo, California, 1988.

Ning Qian and Terrence J. Sejnowski. Predicting the secondary structure of globular
proteins using neural network models. Journal of Molecular Biology, 202:865–884,
1988.

J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San
Francisco, CA, 1993.

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

Jan Ramon and Luc De Raedt. Multi instance neural networks. In ICML-2000, Work-
shop on Attribute-Value and Relational Learning, 2000.

Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging. In Eric
Brill and Kenneth Church, editors, Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 133–142, Somerset, New Jersey, 1996.
Association for Computational Linguistics.

Soumya Ray and Mark Craven. Supervised versus multiple instance learning: an em-
pirical comparison. In Luc De Raedt and Stefan Wrobel, editors, Machine Learn-
ing, Proceedings of the Twenty-Second International Conference (ICML 2005), Bonn,
Germany, August 7-11, 2005, volume 119, pages 697–704. ACM, 2005.

Terrence J. Sejnowski and Charles R. Rosenberg. Parallel networks that learn to pro-
nounce english text. Complex Systems, 1:145–168, 1987.

86

Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In
Marti Hearst and Mari Ostendorf, editors, HLT-NAACL 2003: Main Proceedings,
pages 213–220, Edmonton, Alberta, Canada, May 27 – June 1 2003. Association for
Computational Linguistics.

Charles Sutton and Andrew McCallum. An introduction to conditional random fields for
relational learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical
Relational Learning. 2007.

Charles Sutton, Michael Sindelar, and Andrew McCallum. Reducing weight undertrain-
ing in structured discriminative learning. In Proceedings of the main conference on
Human Language Technology Conference of the North American Chapter of the As-
sociation of Computational Linguistics, pages 89–95, Morristown, NJ, USA, 2006.
Association for Computational Linguistics.

Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks. In Se-
bastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural
Information Processing Systems 16, pages 25–32. MIT Press, Cambridge, MA, 2004.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun.
Support vector machine learning for interdependent and structured output spaces. In
Proceedings of the 21st International Conference on Machine Learning (ICML 2004),
pages 823–830, Banff, Canada, 2004. ACM Press.

Paul Viola, John Platt, and Cha Zhang. Multiple instance boosting for object detec-
tion. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information
Processing Systems 18, pages 1417–1424. MIT Press, Cambridge, MA, 2006.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and Kevin P. Murphy.
Accelerated training of conditional random fields with stochastic gradient methods. In
William W. Cohen and Andrew Moore, editors, Proceedings of the 23rd International
Conference on Machine learning (ICML 2006), pages 969–976, New York, NY, USA,
2006. ACM.

Jun Wang and Jean-Daniel Zucker. Solving the multiple-instance problem: A lazy learn-
ing approach. In Pat Langley, editor, ICML, pages 1119–1126. Morgan Kaufmann,
2000.

Xin Xu and Eibe Frank. Logistic regression and boosting for labeled bags of instances.
In Honghua Dai, Ramakrishnan Srikant, and Chengqi Zhang, editors, Advances in

87

Knowledge Discovery and Data Mining, 8th Pacific-Asia Conference, PAKDD 2004,
Sydney, Australia, May 26-28, 2004, Proceedings, volume 3056 of Lecture Notes in
Computer Science, pages 272–281. Springer, 2004.

Yuehua Xu, Alan Fern, and Sung Wook Yoon. Discriminative learning of beam-search
heuristics for planning. In Manuela M. Veloso, editor, Proceedings of the 20th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-2007), pages 2041–2046,
Hyderabad, India, January 6-12 2007.

Qi Zhang and Sally A. Goldman. EM-DD: An improved multiple-instance learning
technique. In Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani, edi-
tors, NIPS, pages 1073–1080. MIT Press, 2001.

Qi Zhang, Sally A. Goldman, Wei Yu, and Jason E. Fritts. Content-based image re-
trieval using multiple-instance learning. In Claude Sammut and Achim G. Hoffmann,
editors, ICML, pages 682–689. Morgan Kaufmann, 2002.

Zhi-Hua Zhou. Multi-instance learning: A survey. Technical report, AI Lab, Depart-
ment of Computer Science & Technology, Nanjing University, Nanjing, China, March
2004.

Zhi-Hua Zhou and Min-Ling Zhang. Neural networks for multi-instance learning. Tech-
nical report, AI Lab, Computer Science & Technology Department, Nanjing Univer-
sity, China, August 2002.

