Monadification of Functional Programs*

Martin Erwig and Deling Ren

Oregon State University
Department of Computer Science
Corvallis, OR 97331, USA
[erwig|rende]@cs.orst.edu

Abstract. The structure of monadic functional programs allows the inte-
gration of many different features into such programs by just changing the
definition of the monad and not the program, which is a desirable feature
from a software engineering and maintenance point of view. We describe
an algorithm for the automatic transformation of a function into such a
monadic form. We argue that the proposed transformation is sound and
under certain conditions also complete. We also show how invertible mon-
ads can be used to extend the scope of the proposed transformation and
can help to prevent the proliferation of monads over a program.

Keywords: Haskell, Monad, Program transformation

1 Introduction

Monads provide a standardized way to integrate a variety of language features
into functional languages, such as I/O interaction, state-based computation, or
exception handling [16]. The notion of monad originates in category theory [12].
Eugenio Moggi [14, 15] used monads to structure semantics definitions, which paved
the way for using monads in functional languages [20]. An excellent survey is given
by Phil Wadler in [21].

Despite their usefulness, monads are difficult to understand for beginners, and
even experienced Haskell programmers often begin the development of a functional
program by writing non-monadic functions and later add monadic aspects to the
code. In other situations, monads are added to functions only temporarily, for
example, for debugging purposes or to implement other tracing functionality. These
monads are often to be removed later from the program. In any case, the task of
turning one or more functions into monadic computations is a routine exercise for
functional programmers. We call this process monadification.

From a more general point of view, it has been observed that monads can
support aspect-oriented programming [13]. Aspect-oriented programming is con-
cerned with adding functionality to a program that is orthogonal to the program’s
functional decomposition [1,5]. One example is exception handling that cannot
be localized in one module, but spreads the whole program. A program that is
given in monadic form is prepared for the addition of aspects because the aspects
can be realized through the definition of the monad operations; the monadic pro-
gram structure ensures that the aspects are executed at the appropriate places

* Technical Report TR02-60-10, Department of Computer Science, Oregon State Univer-
sity, October 2002

in the program (these are called “join points”). One criticism of this approach
to aspect-oriented programming has been that a programmer has to provide the
join points explicitly and in advance, by providing the monadic program struc-
ture, which compromises much of the benefits of aspect-oriented programming [9].
With the proposed monadification this limitation of the monadic approach can be
eliminated. To some degree, monadification can detect join points automatically.

In a different context, Ralf Lammel uses a program transformation technique
called sequencing [6] to flatten a expression into let expressions [10]. This in-
termediate result is then transformed into a monadic computation. However, the
described approach is limited to several special cases and does not consider the
general case of monadification of arbitrary function definitions. A major limitation
is that Lammel’s approach cannot deal with general cases of recursive definitions,
in particular, when the recursive calls might not be liftable (which is explained
below) due to locally used variables.

In Haskell a monad is a unary type constructor with two associated functions,
which is expressed by a type class (more precisely, as a constructor class) Monad.

class Monad m where
return :: a -> m a
(>>=) ::ma->(a->mb) >mb

This definition expresses that any type constructor m can be regarded as a monad
once these two operations have been defined (the function >>= is also called bind).!

As an example for monadification, we consider the task of adding exception
handling code to a function definition. Consider the following simple expression
data type and a corresponding evaluating function, which we have taken from
Richard Bird’s book [3, Chapter 10].

data Expr = Con Int
| Plus Expr Expr
| Div Expr Expr
eval :: Expr -> Int
eval (Con x) =x
eval (Plus x y) = eval x + eval y
eval (Div x y) = eval x ‘div‘ eval y

One limitation of the shown definition of eval is that it does not handle excep-
tions. For example, when eval is applied to the argument Div (Con 1) (Con 0),
a runtime error will occur. In order to capture such exceptions, Int values can be
wrapped by the Maybe monad, which is a type constructor defined as:

data Maybe a = Just a | Nothing

! In the Haskell 98 standard [17], the monad class contains two further functions: (i) a
variation of (>>=):m >> f = m >>= _->f and (ii) a function fail that is invoked on
pattern matching failure in do expressions. For this paper, these differences are not
relevant. In addition, the monadic structure requires return to be a left and right unit
of >>= and >>= to be associative in a certain sense.

A Just constructor denotes a normal state associated with a value of type a while
a Nothing constructor denotes an error state where no value should be stored.
Instances of the two basic monad operations, return and >>=, are defined for the
Maybe type as follows.

instance Monad Maybe where
Just x >>=k =k x
Nothing >>= k = Nothing
return Just

The >>= operation works as follows. If the previous computation has produced
a proper value (indicated by the enclosing constructor Just), the value obtained
so far (x) is passed on for further computation (k). But if an error has occurred
(indicated by the constructor Nothing), this error state is propagated, regardless of
the following computation. In Haskell, the do notation is provided as a convenient
syntax for monadic programming. Expressions using do are translated into calls to
the monadic functions return and >>= (see Section 3).

We want to use the Maybe type in the eval function in the following way.
Whenever a computation can be performed successfully, the corresponding result
value is injected into the Maybe type by wrapping a call to return around it. On the
other hand, any erroneous computation should result in the Nothing constructor.
This strategy has an important implication on the definition of eval. First of
all, the result type of eval changes from Int to Maybe Int. As a consequence
of this, the results of recursive calls to the function eval cannot be directly used
anymore as arguments of integer operations, such as + or div. Instead, we have
to extract the integer values from the Maybe type (if possible) or propagate the
Nothing constructor through the computation. Doing this “by hand”, that is, by
explicitly pattern matching all Maybe subexpressions in eval with case expressions
can become extremely tedious for larger programs. At this point the fact that Maybe
is defined as an instance of the Monad class comes into play: the monad performs
the unwrapping of values and propagation of Nothing automatically through the
function >>=. However, this function has to be placed in eval at the proper places
to make the monadic version of eval work. The (changed) types of the involved
objects more or less dictate how this has to be done. In short, all recursively
computed values have to be bound to variables that can then be used as arguments
of integer operations—this binding process is the inverse operation to the wrapping
performed by return.

The monadified version of eval is given below using the do notation. In this
paper we use the naming convention to append an M to names of monadified func-
tions.

evalM :: Expr -> Maybe Int
evalM (Con x) = return x
evalM (Plus x y) = do i <- evalM x
j <-evalM y
return (i+j)
do i <- evalM x
j <—evalM y
if j==0 then Nothing
else return (i ‘div‘ j)

evalM (Div x y)

The monadification consists of two part: the Maybe monad is employed to hide the
error status; the adaptation in the last two lines in the above code catches the
exception and correctly set the error status. The first change should preserve type
correctness and semantics. The second change, the introduction of extra actions,
changes the semantics, but does not change the types.

The advantage of evalM over eval is its proper handling of divide-by-zero errors,
which do not cause runtime errors anymore.

After having examined this and various other examples of monadification (see
Section 2), we can observe that monadification is mostly a mechanical process that
can be described by a systematic change of the source program. We call this sys-
tematic method of monadifying source programs programmed monadification. Such
a transformation can be captured by the definition of a monadification operator,
which can be implemented, for example, with a meta language or as a stand-alone
tool. Such a monadification operator should have nice properties, such as preserving
syntax and type correctness of the transformed program. Moreover, monadification
should change the program as little as possible and as much as needed, that is, the
monadified program should behave similarly to the original program, only those
parts that should be changed/improved by the introduction of the monad should
expose a different behavior. We will formalize this idea in Section 5. Programmed
monadification has several advantages over manual monadification:

1. Reliability. Programmed monadification will be done on the abstract syntax
level, no syntax errors can be introduced. Moreover, if the monadification op-
erator is well designed and implemented, type correctness of the resulting pro-
gram can be also guaranteed. The proper design of the monadification operator
is the main contribution of this paper.

2. Reusability. We may need to monadify different functions with the same monad.
For example, various functions that need to manipulate on integer values may
all raise divided-by-zero exceptions. We can use the same monadification pro-
gram for adding exception handling repeatedly.

3. Versatility. A function can be monadified with different monads, producing
different functions for different purposes.

4. Efficiency of Transformations. Using a tool to perform repeated monadification
tasks is also much faster than performing all the required changes with a text
editor.

The rest of this paper is structured as follows. We demonstrate in Section 2 the
scope of monadification by several practical examples. In Section 3, we collect re-
quirements of the monadification operator by considering several small functions
that illustrate implications on monadifications in different situations. These require-
ments prepare for a formal definition that is developed in Section 4. In Section 5
we define several correctness criteria for monadification and give corresponding
correctness results for our monadification operator. The concept of invertible mon-
ads is introduced in Section 6. We show how invertible monads can be used to
lift a limitation of the monadification operator and how they can be used to limit
the proliferation of monads all over a program. Section 7 briefly discusses the as-
pect of adding monadic actions to monadified functions. Finally, we present some
conclusions in Section 8.

2 Examples of Monadifications

By applying different monads, and inserting different monadic actions, the eval-
uator can be monadified in different ways, exhibiting various behaviors fitted for
different applications. In this section, we will demonstrate some of these monadifi-
cations.

2.1 Exception Handling

In Section 1, we have seen how the evaluator is monadified by a Maybe monad to
realize a simple form of exception handling. The Maybe monad simply regards all
errors as the same, without any information about the error. This is sometimes not
enough. The following Exc monad associates an error message with the error state,
which can be shown to the user.

data Exc a = Raise String | Return a

The monad instance for Exc is similarly to Maybe, where an exception is indicated
by Raise and propagated through the whole computation:

instance Monad Exc where
return x = Return x
(Raise x) >>= _ = Raise x

(Return a) >>= f f a

With the Exc monad, we can now represent the divided-by-zero error by associating
a string with the Raise constructor:

evalM :: Expr -> Exc Int
evalM (Con x) = return x
evalM (Plus x y) = do i <- evalM x
j <-evalM y
return (i+j)
do i <- evalM x
j <- evalM y
if j==0 then Raise "divide by 0"
else return (i ‘div‘ j)

evalM (Div x y)

2.2 Counting Operations

We will consider a state transformer monad that takes an initial state and returns
a value paired with the final state. A simple example of a state transformer is an
integer counter, whose state is represented by an integer. The definition of a general
state transformer is defined as:

data ST s a = Trans (s —> (a,s))
instance Monad (ST s) where
return x Trans (\s -> (x,s))
(Trans c) >>= f = Trans (\s -> let (x,s8’) = c s
Trans d = f x
in d s?)

The call return x produces a state transformer which returns x as the value and
leaves the state unchanged. The call (Trans c) >>= f applies the first state trans-
former to the initial state s, yielding intermediate value/state pair (x,s’); then
it applies state transformer £ x to s’. We need an operation that increases the
counter by 1, and returns no value.

tick :: ST Int ()
tick = Trans (\c¢ -> (O ,c+1))

To count the number of operations performed during the evaluation of an expres-
sion, we take the original evaluator, monadify it with ST, and perform a small
change to the code to cope with counting:

evalM :: Expr -> ST Int Int
evalM (Con x) = return x
evalM (Plus x y) = do i <- evalM x
j <— evalM y
tick
return (i+j)
do i <- evalM x
j <— evalM y
tick
return (i ‘div‘ j)

evalM (Div x y)

2.3 Producing Output

In the examples we have seen so far, the monadification was done in a similar way:
take the original program, which is not monadic, wrap the return value with a
call to return, and add some local “action” before return. The following example
deviates from this schema in that it requires access to variables that are not defined
near to the location of the action. First, we define an Out monad that couples an
output string with the result value. The string is to be printed at the end; we have
to thread all the output strings through the whole computation.

data Out a = Out (String,a)
instance Monad Out where
return x = Out ("",x)
OQut (s,x) >= f = 0ut (s’,x’) where Out (s1,x’)
S)

f x
s++s1

The call return x wraps value x, together with an empty string. The call Out
(s,x) >>= f applies £ to x, returns its result value and appends the output to the
S.

A basic operation on Out is to add a string to the output and return no value:

out :: String -> Out ()
out x = Out (x,(Q))

To add an execution trace to the evaluator, the original evaluator is monadified
with Out. The code for tracers is also added:

e u= clv]|\v->e|ee]|letv=eine | case e of {pi—>e1;...;Pn=>en}

Fig. 1. Syntax of the object language.

eval :: Expr -> Out Int
eval (Con x) = do out (show (Con x)++"="++show x)
return x

do i <- eval x
j <—eval y
out (show (Plus x y)++"="++show (i+j))
return (i+j)

do i <- eval x
j <—eval y
out (show (Div x y)++"="++show (i ‘div‘ j))
return (i ‘div‘ j)

eval (Plus x y)

eval (Div x y)

The interesting aspect of this example is that the changes required for the original
program are not local in the sense that they cannot be achieved by just adding
a context-independent expression before return. Rather, the inserted expressions
need to refer to the parameter of the function, which makes automatic transforma-
tion more challenging.

Now we have seen several examples in which monads extend the functionality
of programs. Next we consider how monadification can be automated.

3 The Essence of Monadification

From the above examples, we can see that the process of extending a program
with monads is rather mechanical. Therefore, we would like monadifications to be
performed automatically by a meta program. In this section, we try to identify the
rules that govern correct monadification by considering a number of small examples.

Given a function f of type t1->to=>...->t;->t, we want to change f so that
the type of the return value of f is changed from ¢ to some monadic type m t, that
is, after the change, the type of f is changed to t1->to=>...->tx=>m t, where m is
a monad type.

In a functional setting, a function can also be a value. A multi-parameter func-
tion can be considered to have more than one “return type”. For instance, if a
function has type t1->to—->t3, the “return type” of it could be either t3 or to—>t3.
Therefore, monadification can also be performed on different return values. In this
paper, we consider the right-most type as the return type of a function unless stated
otherwise.

For the sake of simplicity, we consider as an object language lambda calculus
extended by case expression and let expressions. The syntax is defined in Figure 1.
For syntactic convenience we make use of the do notation, which can be translated
into lambda calculus based on the following equalities.

do {e} = e
do {e;stmts} = e >>= _ -> do {stmts}
do {x <- e;stmisyt = e >>= \x -> do {stmis}

Next we will examine several examples to better understand how to monadify
functions in different situations.

The first example demonstrates the notion of a return expression, which is an
expression that is subject to wrapping by the monad operation return.

f :: Int -> Int -> Int
f =\x > \y -> x+y

If we consider f as a two-parameter function, after stripping off two lambda ab-
stractions, x+y is the expression that defines the result. The most direct way to
monadify the function is to wrap a call to return around the return expression.

fM :: Monad m => Int -> Int -> m Int
fM = \x -> \y -> return (x+y)

The body of £ could be of any syntactic form. It might be the case that the lambda
abstractions are embedded in other syntactic structures, such as case expressions
or applications. Here is such an example where lambda abstractions are embedded
in a case expression.

Int -> Int -> Int
= \x -> case x of
0 ->\y —> y+1
n ->\z > z-1

f
f

The definition of f contains two return expressions: y+1 and z-1. To monadify this
function, return should be applied to both of them.

fM :: Monad m => Int -> Int -> m Int
fM = \x -> case x of
0 -> \y -> return (y+1)
n -> \z -> return (z-1)

Moreover, a function can be defined in terms of other functions, or be the result of
an application. In these cases, the number of parameters to the function does not
match the number of lambda abstractions in the function definition. For example:

f Int -> Int

f=Q~Nx->\y > x+y) 0

The syntactic structure of this one-parameter function is an application instead of
a lambda abstraction. In this form, there is no return expression to apply return
to. However, the above definition is n-equivalent to the following definition.

f2 =\z > (\x > \y -> x+y) 0 z

After the return expression has been exposed, it can now be monadified in the
usual way.

fM :: Monad m => Int -> m Int
fM = \z -> return ((\x -> \y -> x+y) 0 z)

All the examples we have seen so far are non-recursive functions. In the case that
the definition of £ contains calls to itself, the monadification is more complicated
because the corresponding subexpressions change their types due to the monad-
ification of f. Not properly handled, these subexpressions would introduce type
errors. Let us look at a simple example.?

f :: Int -> Int
f = \n -> n*xf (n-1)

If we simply wrap a return to the return expression nxf (n-1), the result return
(n*f (n-1)) is not type correct since the type of £ (n-1) ism Int and not Int,
which is required for the application of *. The solution is to bind the expression f
(n-1) to a variable, say x, and use x in place of £ (n-1):

fM :: Monad m => Int -> m Int
fM = do {x <- fM (n-1); return (n*x)}

Still, this is not a complete solution. An expression being bound and lifted out may
contain local variables, which will become free variables after the lifting. This case
can be exemplified by the following function where the local variable is introduced
by the second alternative of the case expression.

f :: Int -> Int
f = \x -> case x of
0 ->1
n -> nx(f (n-1))

Since the scope of n is limited to the second body of the case expression, we should
be careful not to lift £ (n-1) outside that scope. In this case, a correct way is to
move the operation down to all bodies of the case expression. Another reason that
we do not want to lift £ (n-1) is that in the original program, it is evaluated only
when the second alternative of the case is matched. Lifting it out might cause it to
be evaluated more than necessary, which increases the strictness of the program.

fM :: Monad m => Int -> m Int
fM = \x -> case x of
0 -> return 1
n -> do {y <- fM (n-1); return (nx*y)}

Since all bodies of a case expression have the same type as the type of the whole
expression, operations on the case expression can be simply moved down to the
bodies.

Such scoping problems can also be introduced by lambda abstractions because in
a lambda abstraction the type of the body differs from that of the whole expression
by an “arrow”. Consider the following function.

f :: Int -> Int
f=\n-> (\x ->nx(f x)) (n-1)

2 This function, as some other examples that appear in the rest of the paper, is non-
terminating. However, this is not really relevant because it could be easily changed into
a terminating definition by adding a case expression. To reveal the essential structure,
we use the simpler non-terminating forms instead.

In this example, the return expression is (\x -> n*x(f x)) (n-1), the recursive
call £ x needs to be lifted and bound. But the scope of x is within the lambda
abstraction. Here, we can monadify the anonymous function (\x -> n*(f x))
and change its type from Int -> Int to Int -> m Int.

fM :: Monad m => Int -> m Int
fM = \n -> (\x -> do {y <- fM x; return (n*xy)}) (n-1)

In summary, three steps are involved in monadifying a function:

— Navigating. Locate the return expressions (wrapping points) in the function def-
inition. The basic approach is to move down k lambda abstractions. Navigating
might be taken down into case expressions. Whenever we cannot find enough
lambda abstractions, we use 7-expansion to create additional abstractions.

— Wrapping. Apply return to the expressions located in the navigation step.
Before applying return, locate recursive calls and bind them to (fresh) variables
(see next item); special care is required in case that recursive calls cannot be
safely moved outside.

— Binding. Identify recursive calls and bind them to (fresh) variables; special care
is required in case that recursive calls involve local variables.

The last two steps are performed together for practical reasons since variables to
which recursive calls are bound are generally used in return expressions.

4 Automatic Monadification

We want to monadify a Haskell function f that is defined by f = e into a function
called faq. We define an operator M such that faq = M(f,k,e) is the sought
monadification of f. In this section, we are only concerned about the refactoring
aspect of monadification, that is, we ignore the insertion of monadic actions. We
will address this issue later in Section 7. M takes three parameters: the name of
the function to be monadified, the number of parameters to the function and the
definition. The name of the function and the number of parameters to the function
are needed to identify recursive calls. We make the following assumption for f: if f is
recursively defined, it is always applied to at least k& arguments in e, that is, there is
no partial application of f that leaves calls to f “undersaturated” with arguments.
This condition can be checked through the predicate “for all subexpressions e’ of e:
R(f,0,e') = R(f, k,e')”. However, this is not a limitation of the algorithm because
we can always supply additional arguments for such calls through n-expansion
before applying monadification.

4.1 Characterizations of Subexpressions

The definition of the monadification operator is steered by properties of expressions.
First, we need a predicate that tells whether or not e contains a recursive call to
f with k arguments. This property is captured in the definition of the predicate
R(f,k,e). R is inductively defined in Figure 2.

In addition, we also need the information whether or not e contains a recursive
call to f as a strict subexpression, that is, e contains a recursive call to f, but e itself

10

R(f, k. d)
CALL ABS —m——
R\, f €1 e2...en) R(J, k, \o->d)
APP R(f7k761) R(f7k762)
R(f7k7el 62) R(f7k761 62)
LET R(f7k761) R(fyk7€2)
R(f,k,let x=e1 in e2) R(f,k,let x=e1 in e3)
CASE R(fakae/) R(f7k7ej) for some j € {1,,71}
R(f, k,case € of {p;->e;}) R(f, k,case € of {pi->e1;...;pn=>en})

Fig. 2. Recursive calls.

isnot a call to f. We write S(f, k, e) if e has this property. S can be defined in terms
of R as follows. S(f, k,e) = R(f,k,e)ATer,ea,...,e, such that e = fejey ... eg.

Another relationship between an expression e and its subexpressions e’ is
whether it is safe to lift e’ to the outside of e¢ and bind it to a variable. As we
have elaborated in the examples, if ¢’ contains a variable that is local to e, say z,
we shall not lift ¢/ because otherwise x would become unbound. Moreover, in the
case that ¢’ resides in the body of a case expression, lifting e’ might change the
termination behavior of the program, that is, lifting might make the program less
lazy. To avoid this, we shall not lift such e’ either. If ¢’ can be safely lifted outside
e, we say € is a liftable subexpression of e. The liftability predicates £ is defined
in Figure 3.

L(d,e") vé FV(e) L(e1,e) L(e2,€")
ABS - APP] ——————>— APPy —
L(\v->d,e") L(er ez, €’) Ler ez, €’)
! / / ’
— L(e1,e€’) v ¢ FV(,e) — L(ez,e€") v ¢ FV(,e)
L(let v=e; in ez, e’) L(let v=e; in e2,¢€’)
CASE £leo,)

L(case eg of {pi->e;},e’)

Fig. 3. Liftable subexpressions.

4.2 Locating Return Expressions

We define a navigation operator N that moves monadification across lambda ab-
stractions and eventually passes the found result expressions to the wrapping op-
erator W. More precisely, N(f, k,n,e) tries to “strip off” n lambda abstractions
from e and then passes the result to W. A can be defined inductively as follows.
For the base case, when n = 0, e can be directly wrapped. Otherwise, the
syntactic structure of e is scrutinized, in case a lambda abstraction is not present,
n-expansion is necessary. In all expressions below, z has to be a fresh variable with
respect to e, that is, z has to be chosen such that z ¢ FV (e). Moreover, we assume

11

n > 0.

(f7]€,076) = W(f,k,e)
N(f7 ku n, C) = N(f, k,n, \z=>c Z)
N(f, k,n,v) =N(f, k,n,\z2=>v 2)
N(f7 ku n, \U_>d) =\v >N(f, k n—1 d)
N(f,k,n,let v=ey in ey) =N(f,k,n,\z=- >(1et v=ep in eg) 2)
N(f.k,n e e2) = N(f, k,n, \z=>(eq €2) 2)
N(f,k,n,case ¢ of {p;—>e;}) =

N(f,k,n,\z->case ¢’ of {p;—>e; 2}) if R(f,k,¢€')
case ¢’ of {p;i—>N(f,k,n,e;)} otherwise

It is worth mentioning that we use a slightly specialized version of n-expansion in
the transformation of case expression. Because of the following fact:

(case ¢’ of {p;->e;}) e = case €’ of {p;—>e; e}
we can customize the n-expansion for case expressions as follows.
case € of {p;—>e;} = \z->case ¢’ of {p;—>¢; 2}

The reason for using this relationship instead of the general law is related to the def-
inition of the wrapping operator W that will be discussed below. If we had used the
simple form of n-expansion, we had to pass an application (case ¢’ of {p;—>¢;}) 2
to W. If no topmost call to f in this expression is liftable, we will resort to applying
N again, with the case expression as the parameter. This will lead to an infinite
loop. By using the above transformation, we are able to avoid this non-terminating
situation.

4.3 Wrapping Return Expressions

Having exposed return expressions, we need to change their types from ¢ to m t.
This is done by the operator W, which takes the name of the function being monad-
ified, the number of its parameters (that is, the number of parameters that are not
being monadified in addition to the result type), and the expression to be wrapped.

First, if there are no recursive calls to f inside e, e will be wrapped by a return
unless e is a direct call to f because in this case its type is already monadic. The
condition is formally captured by the predicate —-S(f, k, e).

[fmerexr ...er ife=ferex ... e
W(f k,e) = { return e otherwise

Otherwise, that is, if a topmost call to f inside e is liftable, the corresponding
subexpression is lifted and bound to a fresh variable. The condition for this case is
expressed formally by using the notion of contexts. A context is an expression with
a “hole” and is written as C'(). With contexts we can express the condition that, for
example, e’ is a subexpression of e by e = C(e’). Therefore, the condition that e con-
tains a liftable call to f is expressed by: e = C(f e1 ea ... ex)AL(e, fe1 ea ... eg).
To additionally ensure that C{) locates a topmost call to f, that is, a call that

12

is not nested inside another call to f, we also require JC’, e} e, ... e} : C{z) =
C'(f €} e5 ... €}) (for a fresh variable z).

W(f,k,e) = do {2z <= W(f,k,fe1ez ... ex); W(f, k,C(z))}
where z ¢ VARS(e)

Note that we require that z ¢ VARS(e), that is, z does not conflict with any
variable in e, not only the free variables. This is because z replaces a subexpression
of e and must not be captured by a binder in e.

Finally, if no topmost recursive call to f in e is liftable, we have to scrutinize
the syntactic structure of e (since e contains calls to f, e cannot be a variable or
constant).

‘ e = case ¢/ of {p;—>e;} ‘ In this case, we have to wrap and bind ¢’ and move the
operation down to the bodies e;:

W(fa k76) =do {Z <- W(kaae/); case z of {p’i_>W(fak76i)}}

We cannot deal with this case. Consider the following example.

f :: Int -> Int -> Int

f=\x->0Ny>fyx

For k£ = 1, we regard the function \y -> £ y x as the return value, that is, we
need to change the type of this function from Int -> Int -> Int to Int -> m
(Int -> Int). The recursive call £ y should be bound to a variable, but at the
same time it cannot be lifted outside the return expression itself. It is possible
to monadify this function to a function with type Int -> m (Int -> m Int), for
example,

fM = \x -> return (\y -> do {z <- fM y; z x})

However, this is not helpful for our monadification algorithm that fails in this case.
A possible remedy is discussed in Section 6.

e=ege1 ... ey ‘ where eq is not an application, that is, ey # €’ €’ for any ¢/, e”.

If e is a non-recursive let expression let z=e(in ef (that is, x ¢ FV(ep)), it is
converted to an equivalent S-redex (\z->ejj) ej. A general solution to this case
is to apply W to e; ...ey,, which makes their types monadic, bind them to fresh
variables with respect to e, say 21 ...zm, and also apply N to eg. This requires
the recursive application N (f, k, m,eg) because eg is regarded as a m-parameter
function and has to change its return type to a monadic type. Only when e is a
recursive let expression and contains a non-liftable call to f, N'(f,k, m,eq) will
apply n-expansions to eg and eventually pass it, applied to m arguments, down to
W again, which would cause an infinite loop. So monadification stops with an error
in this case. In all other cases, we have the following definition:

W(fa k7€) =do {Zl<_W(fa k761); s ;Zm<_W(fa k76m);N(fa k7m760) 21 .- Zm}

This solution might introduce unnecessary bindings in some of the e; (1 <i < m)
(but not all). We can eliminate these by optimizing the resulting expression through
the left unit monad law [3].

13

‘e = let z=e; in eq ‘ In case x is not recursively defined, namely, = ¢ FV(e1), e
is treated like a (-redex.

W(f7kae) =do {I <= W(kaael); W(fak762)}

If = is recursively defined, but if =R(f,k,e;) holds, which means there are no
non-liftable calls in e, we can still wrap e by only wrapping es:

W(f, k,e) = let x=e; in W(f, k, e2)

But if not only x is recursively defined, but also its definition contains non-liftable
calls to f, we are unable to apply W to it. This is basically the same situation as
for lambda abstraction shown above.

Finally, we have to define the monadification operator M, which can be directly
given in terms of N:

M(f, k,e) =N(f, k, k,e)

5 Correctness of Monadification

We introduce two notions of correctness for monadification: soundness and com-
pleteness. Ideally, the behavior of a monadified version of a function is identical to
that of the original function, except that the return value is wrapped by a monad;
in cases when the original function does not terminate with a result, the monad-
ified function should not terminate either. These requirements are formalized as
completeness and soundness properties as follows.

Let faq be the function obtained by monadification of f. fa4 is called a complete
monadification of f if

fxi...0p. =y = fmx1...7p = returny
fam is called a sound monadification of f if
fmzTi...xp, = 2 = return (fx1...21) = 2

Soundness is a very strong criterion, which actually might not be always desirable in
practice, in particular, when monadic actions are used. For example, the monadified
function evalM from Section 1 is not a sound monadification of eval because it
does return a value for y = 0 while eval does not.

Before we evaluate the monadification algorithm presented in Section 4 accord-
ing to these criteria, we recall the restrictions of the algorithm. There are two cases
that M cannot deal with:

— A result expression is a lambda expression,which contains a recursive call in-
volving local variables.

— A result expression is an application whose first part is a recursive let expres-
sion that contains a non-liftable recursive call.

We have already discussed the problem that binding recursive calls to variables
might change the termination behavior of the transformed function. For case ex-
pressions we were able to avoid this problem by a classifying the calls as not liftable

14

(see the definition of £ in Figure 3) and eventually moving the monadification down
into case expressions. However, the problem is generally always present in situa-
tions when expressions are lifted from non-strict functions because in a lazy evalu-
ation setting, these recursive calls might not be evaluated in the original function,
but they are when being extracted. This generally causes an “increased strictness”
of monadified functions. In these cases, monadification is not complete. The follow-
ing functions illustrate this case:

g=_->0
f=\x-—>g (f

Since g does not rely on the input to produce a return value, £ always terminates
and returns 0. But if we apply our monadification algorithm to £, we get:

fM = do {y <- fM x; return (g y)}

The actual evaluation depends on the strictness of the implementation of the >>=
operation for the monad that is being used. For example, the implementation of
>>= for the Maybe monad inspects the pattern of the argument and therefore forces
the evaluation of the expression that is to be bound (this is probably the case for
most monads). This means that the argument £M is evaluated to get the result and
inevitably £M would not terminate. To avoid this problem, we could instead bind
y to a function to delay the evaluation.

fM’ x = do let y _ = fM’ x
return (g (y O))

This solution works well when g has a polymorphic type. However, if g’s type is
constrained by a signature to, say Int -> Int, the shown transformation will cause
a type error because g is applied to an argument of type m Int.

A different aspect of this delaying approach is that it makes the monadified
code quickly unreadable. To obtain programs that will be read and maintained by
humans, this approach does not seem to be appropriate.

Now we can give the main results about the correctness of our monadification
algorithm. The first result is that monadification is sound.

Theorem 1. Given f =e, far = M(f, k,e) is a sound monadification of f.

To prove the soundness, we can consider two cases. If f is not recursively defined,
the soundness can be shown by a structural induction on the function definition.
Otherwise, we can perform an induction on the recursive evaluation of f. The base
case is when the recursion of f ends, where no recursive evaluation takes place.
For cases where a positive number of steps of recursion take place, the inductive
hypothesis and left unit monad law are applied to conclude soundness.

Although monadification is not complete due to increased strictness, monadifi-
cation is a complete transformation under eager evaluation.

Theorem 2. Given f = e, fam = M(f,k,e) is a complete monadification of f
under eager evaluation.

Since we already have soundness, the completeness follows whenever faq is not less
defined than f. Under eager evaluation this condition is satisfied.

15

We could prove a stronger result for normal order evaluation for a class of
functions that require lifting only out of polymorphic functions by using the delayed
binding transformation discussed above.

Finally, we can show that the proposed algorithm terminates on all inputs. M
is defined in terms of A, which eventually passes expressions to YW. Whenever a
recursive definition occurs, VW is applied recursively to smaller subexpression so
that the termination follows by a structural induction on the expression. There is
one exception, namely when W is applied to an application eg ... e,, and eg is a
recursive let expression containing a recursive call that is not liftable. In that case,
eo is passed to A/ that might expand it and pass it back to W. Since our algorithm
identifies this case, W is guaranteed to terminate.

6 Invertible Monads

In Section 4, we have seen a situation where W cannot be applied to a lambda
abstraction. This was due to the need to lift a subexpression out of a context that
would also lift variables out of their scope.

Another problem in applying monadification to a function in a module con-
taining other functions is that monadification is only locally type correct, that is,
although it guarantees the type correctness of the monadified function, it does
not guarantee that callers of the monadified function deal with the new monadic
type correctly. Global type correctness can be recovered by a static analysis that
identifies all calls of a monadified function and monadifies the calling functions
accordingly. However, this might lead to a proliferation of monadic types all over
the program. We call this the problem of monad infestation.

The simple concept of invertible monads provides a (partial) solution to both of
these problems. An invertible monad is a monad that also has a receive operation,
which can be considered the dual operation to return. In Haskell, we can define
invertible monads as a subclass of Monad as follows.

class Monad m => MonadInv m where
receive :: ma -> a

Basically, the purpose of receive is to extract the value from a monad; it is similar
to the run function that is defined for some monads in Haskell.

To give an example, we show how to define the Maybe type constructor as an
instance of MonadInv.

instance MonadInv Maybe where
receive (Just x) = x

As another example we define a MonadInv instance for state transformers. The idea
of getting the value out of the monad is to apply the state transformer to an initial
state and extract the value from a value/state pair. To do this, we need to know
what the initial state is. Therefore, we can define a type class Initializable of
initializable values. Any data type that is intended to be used as a state for state
transformer can be made an instance of Initializable by providing a initial value.
For instance, an initial value for integers could be 0.

16

class Initializable s where
initValue :: s

instance Initializable Int where
initValue = 0

Now we can capture the requirement on the state of a state transformer monad to
have an initial value by a corresponding class constraint in the instance definition
for MonadInv.

instance Initializable s => MonadInv (ST s) where
receive (Trans f) = let (x,_) = f initValue in x

In addition to the three basic monad laws [3], an invertible monad should also
satisfy the following inversion law [8].

receive (returnz) =z Monad Inversion

This law ensures that values injected into a monad can be recovered by receive.
It is easy to check that this law holds for the Maybe and the ST monads. Formally,
receive corresponds to the natural transformation force [4] that is a part of the
definition of abstract Kleisli categories [12,2].

The value of the receive operation lies in the fact that we can use it to “un-
wrap” a monadic expression at any place, meaning that we can extract the value
from a monad in-place without lifting and binding. Therefore, in the process of
wrapping, whenever a recursive call to f is encountered that cannot be lifted, we
can apply receive to get a proper non-monadic value instead. With this approach,
the function £ from Section 4.3 can be monadified as follows.

fM = \x -> return (\y -> (receive (fM y)) x)

This method is sound and complete (at least for monads that satisfy the monad
inversion law). However, by escaping monads the essence of monads can be lost
to some degree at those places where receive is used. Moreover, monadic actions
cannot be inserted at these points. On the other hand, receive provides a way to
make monadification work in some cases.

Another use for receive is to limit the effect that the monadification of a
function has on the rest of a module. By wrapping receive around some or all
calls to the monadified function we have precise control over what other functions
have to be monadified. In this way, we can effectively bound monad infestation.

7 Adding Actions to Monads

So far, we have developed an algorithm for converting a function into monadic
style. In most cases the goal of this is to add further code to these monads, which
is sometimes also called monadic action. In the introductory example from Sec-
tion 1, the conditional expression for handling divided-by-zero exceptions is such
a monadic action. Other examples are the call to tick and out in the monads
presented in Section 2.

17

A simple, but inflexible, approach is to (always) insert an action before return.
Such an action can be passed down to W from M and A as a parameter. We could
define a W, in an almost the same way as W except changing return e everywhere
to @ >>= return e. However, this solution is very limited since the context of the
return expression is totally ignored, which means that the same action is inserted
before every return. No useful adaptation can be achieved in this way.

A more general approach can be obtained by using some form of symbolic rewrit-
ing [19,18,11] to describe the insertion of actions. The idea of symbolic rewriting
is to match a pattern against an expression to obtain a pattern variable bind-
ing, then substitute the expression with another pattern, with pattern variables
instantiated. The following rewrite rule describes the adaptation that is needed for
divided-by-zero exception handling in the example in Section 1:

return (z ‘div‘ y) — if y==0 then Nothing else return (x ‘div‘ y)

The pattern return (z ‘div‘ y) is matched against the expression return (i
‘div‘¢ j) which causes z to be bound to i and y to be bound to j. The expression
is then substituted by the conditional expression on the right hand side, with x
and y instantiated with i and j, respectively.

Similar rewrite rules can handle the examples from Sections 2.1 and 2.2. A more
challenging one is the example in Section 2.3. The action that is to be inserted does
not only refer to the return expression, but also to the variables x and y, which are
variables introduced by a case expression. To describe such a transformation we
need a rewriting system that is capable of expressing rewrite rules with variable
context dependencies, which is not a common feature of existing rewrite systems,
but can be implemented, for example, by the approach described in [11]. We can
imagine the following rewrite rule for the task.

case ¢ of p -> (return e — out (show p ++ "=" ++ show e)

It can be explained as: match an enclosing context of a case expression, bind the
meat variable p, and then perform the shown rewrite rule.

8 Conclusions

We have shown how function definitions can be automatically converted into a
monadic form by a process called monadification. The developed transformation
is safe since it preserves syntax and type correctness of the transformed program.
Moreover, monadification conserves the semantics of the original program as much
as possible.

Monadification is an example of a generic program transformation that can
be effectively used as a very general functional refactoring [7]. In many cases,
such refactorings are only preparatory steps toward adding further functionality
to programs. In the monadic setting this means to add monadic actions. In future
work we will investigate this issue further. In particular, we will explore how we
can add monadic actions while still preserving syntax and type correctness of the
transformed program.

18

References

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

ACM. Communications of the ACM, volume 44(10), October 2001.

M. Barr and C. Wells. Category Theory for Computing Science. Prentice-Hall Inter-
national, 1996.

R. S. Bird. Introduction to Functional Programming Using Haskell. Prentice-Hall
International, London, UK, 1998.

A. Bucalo, C. Fiihrmann, and A. Simpson. An Equational Notion of Lifting Monad.
Theoretical Computer Science, 2002. To appear.

T. Elrad, M. Askit, G. Kiczales, K. Lieberherr, and H. Ossher. Discussing Aspects of
AOP. Communications of the ACM, 44(10):33-39, 2001.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The Essence of Compiling with
Continuations. In ACM Conf. on Programming Languages Design and Implementa-
tion, pages 237247, 1993.

M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Reading, MA, 1999.

J. Hughes. The Design of a Pretty-Printing Library. In Advanced Functional Pro-
graming, LNCS 925, pages 53-96, 1995.

R. Lammel. Declarative Aspect-Oriented Programming. In ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Program Manipulation, pages 131—
146, 1999.

R. Lammel. Reuse by Program Transformation. In G. Michaelson and P. Trinder,
editors, Functional Programming Trends 1999. Intellect, 2000.

R. Lammel and J. Visser. Typed Combinators for Generic Traversal. In 4th Symp.
on Practical Aspects of Declarative Languages, LNCS 2257, pages 137-154, 2002.

S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, 1971.
W. D. Meuter. Monads as a Theoretical Foundation for AOP. In ECOOP Workshop
on Aspect-Oriented Programming, 1997.

E. Moggi. Computational Lambda-Calculus and Monads. In IEEE Symp. on Logic
in Computer Science, pages 1423, 1989.

E. Moggi. Notions of Computation and Monads. Information and Computation,
93(1), 1991.

S. Peyton Jones. Tackling the Awkard Squad: Monadic Input/Output, Concur-
rency, Exceptions, and Foreign-Language Calls in Haskell. In T. Hoare, M. Broy,
and R. Steinbriiggen, editors, Engineering Theories of Software Construction, pages
47-96. 10S Press, 2001.

S. L. Peyton Jones, J. Hughes, et al. Report on the Programming Language Haskell
98, 1999. http://haskell.org/onlinereport.

E. Visser. Strategic Pattern Matching. In 10th Int. Conf. on Rewriting Techniques
and Applications, LNCS 1631, pages 30-44, 1999.

E. Visser and Z. Benaissa. A Core Language for Rewriting. In Workshop on Rewriting
Logic and Applications, 1998.

P. Wadler. Monads for Functional Programming. In Advanced Functional Programing,
LNCS 925, pages 24-52, 1995.

P. Wadler. How to Declare an Imperative. ACM Computing Surveys, 29(3):240-263,
1997.

19

