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1 Introduction

Warren McCulloch died about 25 years ago. Almost 50 years ago, he and Walter
Pitts published one of the most cited papers in history. I refer, of course, to the
now classic paper, A Logical Calculus of the Ideas Immanent in Nervous Activity
[30].

As befits a groundbreaking paper, there is a simply stated underlying idea,
which can be cast in the following syllogistic form:

1. the brain carries out logical thinking
2. logic describes logical thinking
3. therefore, the brain’s functioning can be described by logic.

This idea has behind it the weight of two thousand years of Western philosophy,
making it at once both believable and banal. How can such an obvious idea have
any interesting consequences? Here McCulloch and Pitts make a great leap from
philosophy to physiology. They identify the abstract elements which compute
logical functions with the neurons of the brain. Suddenly abstract words like
“AND” and “OR” become concrete, viewable, measurable, biological entities.

Why hadn’t this identification been made before? I don’t know, but at one
place, at one time, the people with the right knowledge and viewpoints came to-
gether. One should at least mention that models of the neuron and neural nets

2



predate McCulloch and Pitts. For example, Rashevsky [36] and Hill [22] proposed
models of the neuron, but their models were based on differential equations. Fur-
ther, Rashevsky and his group [37, 23] created networks of their model neurons
and used these networks to explain experimental results from physiology and psy-
chology.

How were McCulloch and Pitts different from their counterparts? Walter Pitts
never completed a degree, but according to legend he is the only person, other
than Bertrand Russell, to have read and understood all of Whitehead and Russell’s
Principia Mathematica. Where Russell had attempted to reduce all of mathematics
to logic, Pitts would try to reduce all of life to logic. Warren McCulloch, on
the other hand, had completed degrees in philosophy, theology, and medicine,
and mathematics was not his strongest suit. McCulloch was interested in the
Big Picture. He wanted to create a new philosophy that was appropriate for a
scientific age. In this new philosophy, vague metaphysical concepts had to be
replaced by concrete elements which could be measured and manipulated by the
scientist. McCulloch’s attitude can be seen from a little joke he used to tell.
For many years, he was associated with the EE department at MIT. For most
people, he explained, EE stood for electrical engineering, but for him, EE stood
for experimental epistemology.

Perhaps such backgrounds were necessary to create the logical model of the
neuron, because in creating a model one must pick out exactly the relevant part of
a phenomenon and ignore all of the other aspects. Newton did not record whether
the apple was red or green, only that it fell down. Galileo demonstrated that
weight was irrelevant by dropping spheres of different weight, but he did not drop
bodies with different shapes. So McCulloch and Pitts used physiological evidence
in support of their model, but ignored details like the biochemistry which were
irrelevant to their model.

Of course, a model, as well as describing its phenomenon, must be in concert
with the spirit of its age. A model not in concert with its time will probably have
zero impact. Luckily the logical model of McCulloch and Pitts found acceptance
because it was only slightly ahead of its time. In 1943, there were no digital
computers, and the locution “electronic brain” was still a decade in the future. As
someone has remarked, we try to compare the brain with the most complicated
artifact we have. In the early 40’s, this most complicated artifact was the telephone
exchange, and the brain had been compared to a very large telephone exchange.
The idea of describing an exchange as a Boolean contact network was in its infancy,
and so the McCulloch-Pitts model did reflect the technology of its age. But the
McCulloch-Pitts model was a gate network rather than a contact network. The
importance and technological relevance of gate networks was described a few years
later by John von Neumann [33]. In this most widely cited unpublished paper, von
Neumann described how a slightly modified version of the McCulloch-Pitts model
could be used to describe the logical design of a digital computer. In creating the



logical description, von Neumann was pointing out that from the perspective of
what one wants a computer to do, the underlying electric or electronic properties
are irrelevant. A computer could be designed using physical properties, other than
electronics, without changing the logical design.

I hope this brief background indicates that the McCulloch-Pitts model was the
right model at the right time. It would take several volumes to even outline the
developments in theory and application of neural nets in the past 50 years. So in
this brief paper, I will have to content myself with mentioning a few subareas that
my colleagues and I have been working on recently.

2 Classical Results

The brilliance of the McCulloch-Pitts model lies in the simplicity of its individual
elements, neurons, and the complexity which can arise out of an interconnection
of these simple elements. As usually presented, the model neuron has a set of
weights wq, wo, ...... wyg, and a threshold A. These parameters are allowed to be any
real number, so, in particular weights may be negative or positive. The neuron
has k input lines, each of which can carry a 0 or a 1. These lines will be called
T1, To, ..., Tg, and the signal on the i line at time ¢ will be represented by z;(t). A
time unit is chosen so that the output of the neuron at time ¢+ 1 will be a function
of its inputs at time £. The function used is usually a linear threshold function;
that is, the neuron takes a weighted sum of its inputs, compares this sum with
the threshold, and outputs 0 or 1 depending on the result of the comparison. In
equation form,

Out(t+1) = H(zn: w;x;(t) — h)

where H is the nonlinear Heaviside operator which takes positive numbers to 1 and
nonpositive numbers to 0. Actually this is one of the two model neurons discussed
in the classic McCulloch-Pitts paper. The other model treats positive and negative
weights separately. If an input line corresponding to a negative weight carries a 1
at time ¢, then the neuron will output a 0 at time ¢ 4+ 1. If none of the negative
weight input lines carries a 1, then the output at ¢ + 1 is computed according to
the above equation.

Behavior impossible for a single neuron can be obtained by creating neural nets;
that is, by connecting the ouputs of some neurons to the inputs of some neurons.
Some of the inputs may still be from external sources. McCulloch and Pitts showed
that even though their two model neurons were different, nets of either type could
be simulated by nets of the other type. Further, their simulations were carried
out by local replacements, so the number of neurons in a net of one type could
be bounded by a constant multiple of the number of neurons in a net of the other
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McCulloch and Pitts recognized two major problems for neural nets: the anal-
ysis problem, and the synthesis problem. The analysis problem is: Given a neuron
net, determine its dynamical behavior. The synthesis problem is: Given a desired
behavior, either build a neural net with that behavior or show that no such net
is possible. McCulloch and Pitts gave simple solutions for both the analysis and
synthesis problems for loop-free nets. A net is loop-free if it is impossible to find
a neuron and a path from ouput to input to output to ... which starts at a neuron
and returns to the same neuron.

LOOP-FREE SYNTHESIS: Let F' be any function from {0,1}™ to {0, 1}; then
there is a loop-free net of n neurons so that

Out(t+2) = F(Y;)

and n < 2™,

COROLLARY: Let G be a function of input sequences of length d; then there is a
loop-free net so that

Out(t + 2) = G(K, }/:‘,717 ceey K*d«kl)

LOOP-FREE ANALYSIS: For a loop-free net of depth d with m input lines and
k output neurons, there is a function F from {0,1}™ to {0,1}* so that

OU‘t(t + ]-) = F(Y;fa Y;f—la XS] )/t—d-i-l)

McCulloch and Pitts also give theorems about nets with loops. Unfortunately,
this part of their paper is very difficult to read. According to legend, only Walter
Pitts really understood what this part of their paper meant. A clear statement
about nets with loops was given by Kleene [26].

KLEENE’S THEOREM: The following three statements are equivalent:

1. L is the set of input sequences which takes a neural net from a designated
start state to some state in a set of designated on-states.

2. L is a language recognized by a finite automaton.
3. L is a language represented by a regular expression.

In essence, this theorem solves both the analysis and synthesis problems. To
analyze a neural net, one can construct the corresponding finite automaton. A net
with n neurons has 2" states. For each state and each setting of the inputs, one can



determine the unique next state. Hence, by drawing a state diagram with labeled
arrows for each input setting, one can obtain a full description of the behavior
of the neural net. For synthesis, if one can show that no finite automaton exists
for a desired behavior, then one knows that no neural net can display the desired
behavior. On the other hand, if a finite automaton with n states ¢, ¢, ....q, and m
input symbols sy, s, ...5,, exists, then one can construct a corresponding neural net
as shown in Figure 2. The circled ANDs in the figure represent neurons which turn
on if at least two of their input lines are on. In the simulation of the automaton,
exactly one AND cell will be on at a time. For example, if the automaton is in
state ¢, receiving symbol s;, then the upper right AND cell is the only one which
is on. If the automaton should change state to state ¢y, the output line from this
AND cell is connected to the input of each cell in the column for ¢». Now, if exactly
one line for an s; is on, a single cell in column 2 representing state gs and symbol
s; will go on.

These classical results say what can and can’t be done with neural nets. As we
will see in subsequent sections, these results also raise questions which we are still
trying to answer.

3 Complexity

One of the most attractive properties of neural nets is that their finite size and
finite number of states allow algorithmic methods for solving questions about them.
But, in the past two decades, the study of computational complexity has lead to
the classification of problems as “easy” and “hard”. Those problems which possess
an algorithm with run time bounded by a polynomial in the size of the input are
easy problems. I will call such algorithms fast algorithms. Problems without such
an algorithm are hard. Even when one has no proof of the non-existence of a fast
algorithm, one can still call the problem hard if one can show that the problem
is the hardest problem within some well-defined class of problems. For example,
NP is the class of problems which have fast algorithms, if one augments the usual
computer instructions with a magical “guess” instruction, which always chooses
the correct alternative from a set of possibilities. A hardest problem for NP is
called NP-Complete, and NP-Complete problems are considered too hard to be
practically algorithmically solvable.

The point, of course, is that many of the questions one would like to answer
about neural nets are NP-Complete problems. Consider a single neuron with n
inputs, and some Boolean function which specifies the output as a function of
the inputs. If one allows a general Boolean expression, and asks if there is some
setting of the inputs that will turn the neuron on, one is faced with an NP-Complete
problem. In fact, this is the well-known SAT problem (see Garey and Johnson [15]
for more details). For McCulloch and Pitts neurons, on the other hand, this
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Figure 1: Relationship between complexity classes and some problems.

problem is easy. To determine if there is an input setting which turns the neuron
on, one only has to check to see if the sum of the positive weights is greater than
threshold. If so, there will be one or more input settings which turn the neuron

OI1l.

On might hope that the special McCulloch-Pitts form would allow one to avoid
NP-Completeness, but NP-Completeness quickly appears in problems which seem
only slightly more complicated. The following problems about McCulloch-Pitts
neural nets are NP-Complete:

1.

Is there a setting of the inputs which simultaneously turns on all the neurons
in a (single-level) neural net?

Given an autonomous neural net and a specified state, is there a state such
that if the net is started in this state, then the net will enter the specified
state?

Given a loop-free net with n inputs and n outputs, does the net compute a
noninvertible function from the inputs to the outputs?

Given an autonomous net, are there some transient states?

Given two loop-free nets, is the function computed by one net different from
the function computed by the other net?



This is just a sample of some of the questions about neural nets which turn
out to be NP-Complete, but there are questions about neural nets which seem to
be even harder. For example, the equivalence problem for neural nets is PSPACE-
Complete. By PSPACE we mean the class of all problems which can be solved
by algorithms which use memory space bounded by a polynomial in the size of
the input. As usual, complete means the hardest problem in this class. The
equivalence problem is determining if the two neural nets recognize the same set of
input sequences. A neural net functions as a recognizer when there is a specified
initial state and a specified output neuron. The neural net recognizes an input
sequence when the neural net is started in the specified initial state, is fed the input
sequence, and turns on the output neuron when the input sequence is finished.

The point is that even though there are algorithms that answer questions about
neural nets, these algorithms may be practically useless because they use unrea-
sonably large amounts of time. Figure 1 displays the relationship between the
mentioned complexity classes and the locations of several problems.

4 Size

McCulloch and Pitts [30] and Kleene [26] exactly characterized the abilities of neu-
ral nets. In particular, they showed that every Boolean function can be computed
by a loop-free neural net, and that every finite state machine can be simulated
by a neural net with loops. These demonstrations were constructive and therefore
give upper bounds on the number of neurons required.

These constructions suggest two natural questions:

1. Are these constructions worst case optimal? That is, do the constructions
use the fewest neurons possible for some situations? Of course, we expect
there to be specific functions or machines which can be computed by smaller
neural nets than those given by the constructions.

2. Can one name specific functions or machines for which the constructions are
optimal? This question seems to presuppose that the answer to (1) is yes,
but if one finds a better construction, then (2) can be asked about the new
construction.

McCulloch and Pitts showed that every Boolean function of n variables can be
computed by a loop-free neural net with at most 2" neurons. Their construction
made use of the disjunctive canonical form which states that any Boolean function
can be computed as a disjunction (ORing together) of terms, where each term
is a conjunction (ANDing together) of literals, and a literal is a variable or the
negation of a variable. This form is canonical when each variable appears exactly
once in each term. When all variables are not required to appear in every term,
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Figure 2: Every n state, m symbol finite automaton can be represented by an
O(nm) neuron net.

the form is called a disjunctive normal form. A function may have a number of
different normal forms, but the canonical form is unique up to the order in which
the terms appear, and the order in which the variables appear in a term.

The McCulloch-Pitts construction is based on the observation that each term
can be computed by a single neuron, and the ORing of terms can also be computed
by a single neuron. This construction may not be practical because the term
neurons will have n inputs and the OR neurons may have about 2" inputs. The
number of inputs is usually called the “fan-in”, and for practical nets there should
be some fixed constant upper bound on the fan-in. Further, this construction can
badly overestimate the number of neurons needed to compute a function. For
example, the “majority” function which ouputs 1 if at least half of the inputs are
on, can be computed by a single neuron, but any method based on disjunctive
normal form will use about 2"/,/n neurons.

In one sense the size problem has been solved. Shannon [42] showed that
with fan-in 2 almost all functions require 2" /n neurons, and Lupanov [28] gave a
construction which built a net with about 2" /n neurons. On the other hand, these
results are disappointing because they don’t specify a function which requires this
number of neurons. In fact, Wegener [45] states that no one knows how to prove
that any specific function requires more than a constant times n neurons.

For machines, it is well known [31] that any n state machine can be simulated
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Figure 3: Simulation of randomly chosen 31 neuron nets.

by a net with about n neurons. Recently Alon et al. [1] have given a construction
which uses about n** neurons. They also show that at least (n log n)/? neurons
are required. More satisfactorily, they show that with constant fan-in, or with
simultaneous limits on fan-out, weights and thresholds, then about n neurons
are required. These results present the seeming paradox that the 2" states of
an n neuron neural net are required to simulate the n states of a machine. A
possible explanation is that the Minsky construction works for both deterministic
and nondeterministic machines, and it is known that some n state nondeterministic
machines require about 2" deterministic states. So it may be that the number of
neurons required to simulate a machine is related to the minimum number of
nondeterministic states rather than to the number of deterministic states.

5 Random Nets

Some years ago, Kauffman [24] proposed that certain biological phenomenon could
be explained if one could understand the state cycles generated by autonomous
neural nets (nets with no inputs). By simulating randomly chosen nets, Kauffman
showed that nets with low fan-in had short state cycles, while nets with high
fan-in had very long state cycles. Figure 3 shows some results of our simulations
confirming Kauffman’s results [10].

Since random nets in which every neuron receives an input from every neuron
correspond to state mappings that are random mappings, reasonable probabilistic
techniques can be used to study the expected behavior of such nets. Such results
were computed long ago by Rubin and Sitgreaves [41], and summarized more
recently by Gelfand [16]. To study nets with other than complete fan-in, other



techniques seem to be needed.

Back in 1971, I developed a linearization technique for studying neural nets
[8]. Because the linearization was over the finite field GF(2), it did not allow the
calculation of expected values. Subsequently, Caianiello [6, 7] developed a rational
field linearization. In [9, 11], I have shown how the results for nets with complete
fan-in can be computed using Caianiello’s rational linearization. In the future, I
hope to be able to use the linearization to compute the expected behavior of nets
with other fan-ins.

On the other hand, perhaps the complicated calculations based on the lineariza-
tion will be unnecessary, because cycle length may obey a 0-1 law. One version
of a theorem of Fagin [13] says that if a property of a structure can be stated in
first order logic, then, as the number of elements in the structure goes to infinity,
the probability that the structure has the property goes exponentially to 0 or to
1. For example, this theorem can be used to show that there is a ¢, so that if
every vertex in a graph with n vertices has degree greater than ¢ log n, then the
probability that the graph has a Hamiltonian cycle goes to 1 as n goes to infinity.
Similarly, if the degree is less than ¢ log n, then the probability that the graph has
a Hamiltonian cycle goes to 0. Such a 0-1 law might apply to neural nets. There
may be a critical value of the fan-in, so that nets which have fan-in greater than
the critical value will have long state cycles with high probability, while nets with
fan-in less than the critical value will have short state cycles with high probability.

We have run into some difficulties trying to apply Fagin’s theorem to random
neural nets. First, we had difficulty trying to state the property that the net has a
long state cycle as a first order property of a net. The difficulty is that the property
occurs in the state space, which is somewhat removed from the connections and
functions used to describe the neural net. In fact, it can be shown that even
the seemingly simple statement that there is a path between two specified states
cannot be expressed in first order logic (see Papadimitriou [34]). Second, if there
is a critical value of fan-in, the critical value should occur between 2 and 3. We
have carried out detailed simulations in this range and found a gradual increase
in average cycle length rather than a step-like transition from low to high cycle
length. Further, when we looked at the increase in cycle length as a function of the
number of neurons, there seemed to be a slow increase rather than the exponential
increase predicted by Fagin’s theorem.

Another concept closely related to randomness is “chaos”. Experimentalists
have been measuring brain waves for years, and having great difficulty explaining
these waves in terms of linear systems theory. Recently some researchers, for
example Freeman [14], have suggested that brains are highly nonlinear systems
and so chaotic behavior should be expected in normally functioning brains.

We reasoned that, if chaos is typical, then we should also expect to find it
in simulated networks. We attempted to find chaos by looking at the correlation
dimension of the eventual trajectory found by picking a random starting state, and



running a net for 100 time units to get rid of transients. As expected, for low fan-in
we got cycles that were too short for our method to measure their dimension. Also
as expected for high fan-in nets, the method reported that the trajectories were
essentially random and did not measure dimension. We expected that medium
fan-in nets would have measurable dimension, but the method also reported that
these trajectories were essentially random. More details can be found in [10].

Perhaps another method would allow us to find chaos, or perhaps there is a 0-1
law saying that a net has either small cycles or essentially random cycles.

6 Learning

The explosive rebirth of interest in neural nets is largely based on the ability of
neural nets to learn. Clearly, the ability to learn is a property of the nervous system,
and since neural nets were meant to model nervous systems, the ability of neural
nets to learn was at least implicit in the original McCulloch-Pitts formulation. How
neural nets were meant to learn is a little unclear. Since neural nets are specified
by the interconnection weights between neurons, and by the thresholds of the
neurons, a learning mechanism must involve some sort of rule for changing these
quantities. There are two obvious sorts of rules: one for supervised learning, and
one for unsupervised learning. In supervised learning, one can look at a neural
nets’ behavior and tell the net when its behavior does not match the desired
behavior. Thus learning rules for supervised learning make the neural net adjust
its weights so as to reduce the difference between its behavior and the desired
behavior. In unsupervised learning, the neural net must notice relationships within
its environment. Thus, for unsupervised learning, the learning rule should depend
on some correlation between the firing of neurons. This rule may be as simple as:
if at the time ¢ neuron 7 and neuron j both fire, then increase the strengths of
connections between ¢ and j. Both of these types of learning rules were proposed
and used many years ago. For example, Rosenblatt’s perceptron learning rule [39]
is an error decreasing rule, while Caianiello [5] gives a correlation based learning
rule.

The currently most popular learning rule is back propagation. It is based on
making changes in the weights proportional to the partial derivatives of the error
with respect to the weight. To make this process of taking derivatives possible,
one replaces the threshold nonlinearity of the McCulloch-Pitts model with an S-
shaped nonlinearity. By choosing this S-shaped function as a simple differentiable
function, the back propagation changes can be easily calculated. Because of this
seemingly easy algorithm, all sorts of wild claims have appeared. For example,
some have claimed that with trainable neural nets, programmers will be obsolete.
Instead of writing programs, one can simply train a neural net by presenting it
with a few examples of inputs and desired outputs.



Even if neural nets can learn is that enough? One is reminded of an old
fisherman’s story. When someone asked the fisherman, “Can fish learn?” He
replied, “Sure!” Then as he pulled up another fish, he added, “Luckily they don’t
learn fast enough.” In a similar sense we want learning rules, so that a neural net
can learn a desired behavior, but we also want the learning to be fast. As in most
algorithmic situations, one equates fast with the existence of a polynomial time
bound. Different definitions will allow the polynomial to be a function of different
parameters.

Valiant [44] came up with the currently most widely accepted definition of ef-
ficiently learnable. This is usually called the PAC model, where PAC abbreviates
“probably almost correct.” “Almost correct” means that there is an error param-
eter, and the behavior of the learned program is only guaranteed to be within
this error parameter of the behavior of the intended program. The “probably”
introduces another parameter, so that the guarantee of almost correct is only with
within the probability given by this parameter. This model is distribution-free
because it requires learning within these parameters regardless of the distribution
of learning examples, but the distribution is taken into account when one calcu-
lates almost and probably. To be efficient, the run time of the learning algorithm
must be bounded by a polynomial in the size of its inputs and outputs, and in
the reciprocals of the error and probability parameters. These reciprocals are used
because the parameters go to 0 for guaranteed error free learning, and we expect
the algorithm to have to work harder as these parameters go to 0.

One would be pleased to state that a large variety of problems are PAC-
learnable. Unfortunately, this may not be the case. Except for a few very simple
examples which can be shown to be PAC-learnable, almost all results say that such
and such is not PAC learnable unless some expected complexity result is false.

An example of a class of Boolean functions which are PAC-learnable is the class
of functions which can be represented as the ANDing together of complemented
and uncomplemented Boolean variables. Since these functions can be represented
by a single McCulloch-Pitts neuron, it is not surprising that this class can be
learned. In fact, the classical perceptron learning rule will learn this class. The
perceptron rule is guaranteed to converge in a finite number of steps, but there is
no obvious bound on how many steps the perceptron rule will use. While a PAC-
algorithm may produce an incorrect answer, with high probability it will produce
the correct function in time bounded by a polynomial which is almost linear in
all the parameters. In this example, one can trade off a guarantee of correctness
against a guarantee of speed.

Unfortunately, most of the recent theoretical results on learning are negative
rather than positive. For example, Blum and Rivest [4] showed that the question:
Given a desired behavior and a 3-neuron neural net, is there a learning algorithm
so that the net will learn the desired behavior? is an NP-complete problem. Pitt
and Valiant [35] have shown that under a reasonable assumption about complexity



classes, a disjunctive normal form formula with three disjuncts cannot be learned
from examples in polynomial time. Again, under a reasonable complexity assump-
tion, Reif [38] has shown that there is a class of functions computed by fixed depth,
loop-free, neural nets, so that these functions cannot be PAC-learned in polynomial
time.

On the positive side, efficient learning is possible when the learner is not re-
stricted to seeing a sequence of examples. As every mathematics teacher knows, a
student often can correctly solve some problems, but fail to solve others, because
the student has created a method which only works in special cases. By examining
the student’s method, the teacher can often show where the student’s method fails
and lead the student toward the correct method. A strategy like this can be used
to learn a finite automaton. The learner starts with some automaton. The teacher
then provides an example in which the learner’s automaton gives different output
than the desired automaton. The learner then asks questions about what output is
desired on certain inputs. After a number of rounds like this, the learner will have
learned the desired automaton. Further, all of the learner’s work will take time
polynomial in the size of the desired automaton and the size of the teacher’s exam-
ples. Since a neural net with loops is exactly equivalent to a finite automaton, a
neural net can be learned in the same way. This positive result was demonstrated
by Angluin [2]. Notice that for this type of learning the teacher must be very
powerful-much more powerful than the simple giver of examples in PAC learning.

To find out more about learning theory, a good place to start is Hearns and
Vazirani [25]. Theoretical results on learning appear every year at the Conference
on Learning Theory (COLT). Applications of learning neural nets often appear in
the yearly conference of the International Neural Net Society (INNS).

At present, the field of learning in neural nets consists largely of negative the-
oretical results, and a myriad of papers claiming to show that neural nets can
be practically used to learn a wide variety of functions. At this point, many of
the practical papers are marred by poor experimental design, and by exaggerated
claims that run counter to known theoretical results. We can hope that in the
future, there will be a rapprochement between theory and practice, with the the-
oreticians analyzing models which more closely describe what practioners want to
do, and with the practioners using better experimental design and theory to create
better experiments.

7 Learning To Decode

As an example of a situation in which a trainable neural net may provide a
reasonable solution to a problem, we consider the decoding of an error-correcting
code. This example is based on Tallini and Cull [43].

In some sense, this problem has a trivial solution, but we want to argue that
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in the idealized solution a number of features of the realistic problem have been
glossed over. When the realistic features are added to the problem, the ideal
solution is no longer applicable, and the realistic problem is difficult. On the other
hand, we will demonstrate that neural nets can provide a solution to this difficult
realistic problem.

In an error-correcting code, one usually considers an n-dimensional Boolean
vector space, in which certain vectors have been designated as codewords. When
these codewords are transmitted over a noisy channel, the received vector may
be a non-codeword. The general idea is that if only a few errors occur in the
transmission then the received vector will still be close to only one codeword.
Thus, decoding the received vector as the closest codeword will correct the errors
made in transmission.

Since there are only 2" possible vectors, one could construct a table which
contains the closest codeword to each vector. With this table, decoding becomes
the trivial task of table look-up. But clearly, even for moderate values of n, 2"
becomes too large to make this table reasonable. Hence codes are often constructed
so that there is an efficient decoding algorithm. In particular, most known error-
correcting codes are constructed based on the idea of linearity. For example, in
the prototypic Hamming code, operating on the received vector with a matrix
produces a vector which can be read as the binary number indicating which bit
of the received vector is in error when there is exactly one error. When there is
no error, the product of this matrix times the received vector produces the all
zeroes vector. As usual, when we generalize, things become more complicated.
When linear codes which can handle several errors are used, the product of the
matrix with the received vector is not sufficient to locate the errors. One is faced
instead with finding the solution to a set of linear equations. While solving a set
of linear equations can be done quite readily by standard methods like Gaussian
elimination, the linear system for decoding is under-determined and so has many
solutions. The decoding problem then is to find the solution which corresponds to
the fewest errors, and thereby locate the closest codeword. Berlekamp et al. [3]
showed that this is an NP-complete problem. Hence decoding even for linear codes
is a hard problem.

In realistic situations, things are even more complicated. For example, if each
bit of a codeword is sent over a different wire, then the probability of an error may
well be different for different bits. So the “closest” codeword to a received word
may not be the one with the fewest changes, but the one with probabilistically
fewest changes. For example, if wire 1 had a probability of error of .001, and wires
2 and 3 each had a .1 error probability, then having errors on both wire 2 and wire
3 would be more probable than having a single error on wire 1.

Assuming we are dealing with linear codes, there is a matrix H so that for every
codeword X, XH = 0. If a codeword X is transmitted, then the received word
X' can be written as X + E, where E is the vector of errors. Assuming linearity,



X'H = (X + E)H = EH. This vector EH is called the syndrome, and we will
use the symbol S for syndrome. The decoding problem is to work from S and find
a good estimate E’ of the actual error vector E, and then output X' + E’ as the
estimate of the sent codeword. Our plan is to have a neural net learn to calculate
the mapping from syndrome S to most probable error E’ .

In the following, by (n,k,d) we denote a linear code of length n, dimension
k and minimum Hamming distance d. To test our method we chose four liner
codes: the (7,4,3) Hamming code (see Subsection 7.1), two shortened Hamming
codes (see Subsection 7.2) and the (32,16, 8) 2" order Reed-Muller code [29] (see
Subsection 7.3).

We implemented the neural decoders using the continuous neuron model. In
this case, a neuron is the following computing device. It has p+ 1 input wires. For
i =0,...,p, the i-th wire carries a real number x; € [0, 1] and has a real number
w; associated with it. The value z, is always set to 1. Further, the neuron has ¢
output wires (feeding ¢ different neurons), all carrying the output of the neuron,
which is computed as follows:

f (E;?:O xiwi)a

def
xoutput -

def
f(8) = e

Since xy = 1, wy represents the threshold of the neuron.

The neural decoder architecture is multi-layered: there is an input layer with
r (= syndrome length) neurons, some internal layers, and an output layer with n
(= error pattern length) neurons. Each neuron in the internal and output layers
takes input from all the neurons of the previous layer. In order to digitalize the
output from the neural network decoder, we set the output from a neuron of the
output layer to 0, if the real output is less than or equal to 0.5, and to 1 otherwise.

To train the neural decoder we used a simple implementation of the back-
propagation rule. Each connection weight is modified following the presentation
of each training example, using changes given by:

Wpew — W — &+ %, (A [04, 045],
ow
e being the total error on the network response to the example. Only the weights of
wires which are input to internal or output neurons are changed. In the following,
with pg : py @ ... : pg_1, we indicate a neural network with d layers containing p;
neurons at layer ¢, for i =0,...,d — 1.

We ran our computer programs on an HP-9000 workstation.

7.1 The (7,4,3) Hamming code

In this subsection, we show that the best performances, in terms of degree and
speed of learning, seem to be obtained when the training examples are uniformly
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Figure 6: Learning behavior with disturbance.

distributed in the set of error patterns £ that we want the neural decoder to
correct, provided that the function which associates an error pattern F € £ with
its syndrome is one-to-one. In particular, we compare the learning behavior of
a neural decoder for a (7,4,3) Hamming code C with respect to various learning
schedules. The parity check matrix of C is the following:

100 1101
H =] 010 1011
001 0111

Note that C is a perfect code; i.e., ZZJ is partitioned by the spheres of radius 1
centered at each codeword.

Figure 6 compares the learning behaviors of a 3 : 7 neural decoder for C, using
five different learning schedules. We generated error patterns according to the
probability distribution of a binary symmetric channel whose error probability is
e = 0.15, but we trained the neural decoder only on those error patterns whose
weight is less than or equal to t, for t = 1,2,3,4,7. In Figure 6, on the z-axes
we represent the number of training examples generated so far. Each curve is
the graph of the ratio between the number of training examples for which the
network gives a correct answer and the total number of examples generated. The
topmost curve is the ratio between the number of examples whose weight is less
than or equal to 1 and the total number of examples generated. Since C is a
perfect 1-error correcting code, this curve represents the maximal performance of
C on the given binary symmetric channel. We attribute the learning behaviors
represented in Figure 6 to a phenomenon which we call “disturbance.” In this
case, the neural decoder is faced during the training phase with two different error
patterns having the same syndrome, causing an unstable output on those error
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Figure 7: Learning behavior without disturbance.

patterns. Assume that the set of training examples contains a subset £(S) of error
patterns having the same syndrome S. Then the neural decoder tends to learn the
most likely element in £(S) with respect to the probability distribution defined by
the learning schedule.

In Figure 7, we generated error patterns according to the probability distribu-
tion of five BSCs whose error probabilities were ¢ = 0.1,0.2,0.3,0.4,0.5, respec-
tively. Further, we trained the neural decoder only on those error patterns whose
weight is less than or equal to 1, to avoid disturbance. On the z-axes we represent
the number of training examples generated so far. Each curve is the graph of the
ratio between the number of training examples for which the network gives a cor-
rect answer and x. After 20, 000 training examples, all the neural decoders learned
how to optimally decode C; with the decoder which was trained with ¢ = 0.3, the
learning was fastest.

7.2 The shortened Hamming codes

In this subsection, we give some examples of how our approach can be used to
design an optimal decoder of a (binary) linear code, for any given channel.

For example, assume we have a binary channel composed of n = 8 parallel
wires, each one carrying a component of the transmitted binary vector X, where
wire ¢ carries the ¢-th component of X, for i = 0,...,7. Assume also that the i-th
wire is a BSC with probability of error equal to ¢;, where:

(607 €1, €2, €3, €4, €5, €q, 67) =

(0.05,0.05,0.05,0.06,0.16,0.15, 0.15, 0.15). (1)



H Prob ‘ Err. patt. H
| 0.4157 | E; = 00000000 |
| 0.0792 | E, = 00001000 |

0.0734 | E5 = 00000100
0.0734 | E4 = 00000010
0.0734 | E5 = 00000001
| 0.0265 | Es = 0001 0000
0.0219 | E7 = 00100000
0.0219 | Es = 01000000
0.0219 | Ey = 1000 0000
0.0140 | Eyp = 0000 1100
0.0140 | Ey; = 00001010
0.0140 | By, = 0000 1001
0.0129 | Ey3 = 00000110
0.0129 | By, = 00000101
0.0129 | Ey5 = 00000011
| 0.0050 | Ey = 00011000 |

Table 1: The first 16 most likely error patterns of the channel given in the example.

If statistical properties of channels don’t change over time, every channel trans-
mitting binary words of length n defines a probability distribution over the set of
all error patterns £ = ZZJ: for all error patterns F € £, Prob(FE) is the probability
that a word X is sent and X + E is received. Prob(FE) is nothing but the probabi-
lity of occurrence of the error pattern E during the transmission of a word. Table
1 shows the 16 most likely error patterns of our example channel (1), ordered in
non-increasing order with respect to Prob.

Given r,n € IN, let C be a binary linear code having, as parity check matrix,

the r x n matrix H of maximum rank. The channel and C define the following

relation in the set £ of the 2" error patterns. For Ey, Er €&, By < Ey ety

Prob(Ey) < Prob(Ey) and FE,-H' =FE,-H".

The above relation is reflexive and transitive and so defines a (pre-)ordering in £.
The code C is optimal for the channel in the sense that it minimizes the probability
of error, iff there exists a set £ C & composed of the 2" most likely error patterns
of the channel, such that:

VEl,EQEg,, E1 ﬁ EQ and EQ ﬁ El-

In other words, C is optimal iff £ is an antichain [40] of the (pre-)ordered set
(€,=). In order to make the relation < anti-symmetric, let £* be the set & where
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Each curve is the graph of the ratio between x and the number of training examples
for which the decoders give a correct answer.

we identify two error patterns having the same syndrome and probability of oc-
currence. The elements of £* are classes, but we can identify each class with one
of its elements. Now, a decoder for C is optimal iff it can correct the 2" most likely
maximal elements of the partially ordered set (£*, <).

In our example, the code C; defined by the parity check matrix:

1000 1110
0100 1101
0010 1011
0001 0111

le

is optimal, whereas the code Cy defined by the parity check matrix:

1000 1110
0100 1100
0010 1011
0001 0111

HQZ

is not optimal because Ejy < Ej (see Table 1). Figure 8 shows the learning
behavior of a 4 : 10 : 10 : 8 and a 4 : 14 : 14 : 8 neural decoder for C; and Cs
respectively. We generated error patterns according to the probability distribution
defined by our channel (1), but we trained both the decoders on error patterns in
the set:

gtraining = {E =e€1...¢63 ef:

w(E) <2 and w(ey...eq) =w(es...e3) =1},



111111111111 111111111111 1111 1111
111111111111 1111 0000 0000 0000 OO0
11111111 0000000011111111 0000 0000
11110000 111100001111 00001111 0000
11001100 1100110011001100 1100 1100
101010101010101010101010 1010 1010
11111111 0000 0000 0000 0000 0000 0000
11110000 1111 0000 0000 0000 0000 0000
11001100 1100 1100 0000 0000 0000 0000
101010101010 1010 0000 0000 0000 0000
1111 0000 0000 0000 1111 0000 0000 0000
1100 1100 0000 0000 1100 1100 0000 0000
101010100000 0000 10101010 0000 0000
11000000 1100 0000 1100 0000 1100 0000
101000001010 0000 1010 0000 1010 0000
1000 1000 1000 1000 1000 1000 1000 1000

Figure 9: Parity check matrix of the (32,16,8) 2"¢ order Reed-Muller code C.

Where w(X) indicates the weight of X. The neural decoder for C; is optimal and
the one for C, is very close to optimal. It is interesting to note that when the
neural decoder for Cy is faced with either the error pattern Eiy or Es, it gives as
output Ej because Ej is about 5 times more probable than Fy. Figure 8 shows
that the decoder for C; performs better than the decoder for Cy, which in turn
performs better than a decoder performing 1 error correction.

7.3 (32,16,8) Reed-Muller code

In this subsection, we discuss an example of a 16 : 96 : 96 : 32 neural decoder for
a (32,16, 8) 2" order Reed-Muller code C. The parity check matrix of C is shown
in Figure 9. It is well known that C is capable of correcting all error patterns of
weight less than or equal to 3 and many error patterns of weight greater than 3.
A priori, the set £’ of correctable error patterns is a complex set. It might be very
difficult to generate error patterns uniformly distributed in £’. To approximate
this uniform distribution, we generated error patterns according to the probability
distribution of a BSC with probability of error ¢ = 0.3, but we trained the decoder
only on those error patterns of weight less than or equal to 3. Figure 10 shows the
learning behavior of the neural decoder during the training phase on 4,000, 000
training examples. The training took approximately 90 hours to run. Table 2
shows the performance of the decoder. It can correct all error patterns of weight
less than or equal to 2, and all but 11 error patterns of weight 3. It is also capable
of correcting 47 error patterns of weight 4, although the decoder was not trained
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on error patterns of weight greater than 3.

Table 2 shows that for three or more errors the neural net may not produce the
correct error pattern. For example, if E is the correct error pattern of weight 3,
then occasionally the net may produce E’ which differs from E in exactly one bit.
Now if E’ is added to X', we have a word with one error, and by feeding £’ + X'
back through the decoder, this single error will be corrected. Of course, we do
not need to know that an incorrect error pattern was calculated for this double
decoding trick to work. If the net correctly calculates E, then adding E to X'
gives a word with no errors; feeding this to the decoder will produce an output of
the 0 word since there was no error, and now E + X'+ 0 will be the same word.
This double decoding trick also often works when E has weight 4. From Table 2,
when F has weight 4, then in about 26% of the cases E’ differs from E in at most
3 bits. So decoding a second time will produce the correct sent word except for
the 11 cases in which the decoder fails to correct three errors.

8 Analog Nets

The McCulloch-Pitts neuron is the prototypical digital device, but many feel
that a “real” description of a neuron should be a continuous time, continuous
state description, and that the digital neuron is some sort of an approximation to
the real analog neuron. Recently, my colleague Rick Hangartner and I have been
looking at the relationship between analog and digital neurons.
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Table 2: 16 : 96 : 96 : 32 neural decoder performance for the (32,16,8) 2"¢ order
Reed-Muller code C. FE’ is the decoder response to the error pattern E. In the
above table, the entry in row ¢ and column j is the number of pairs (F, E") such
that w(F + E') = i and w(F) = j. The j-th entry in the last row is the number

of error patterns F of weight j.



That analog devices behave digitally is the basis for a large part of electronics
engineering and allows for the construction of electronic computers. It is part of
the engineering folklore that when the gain is high enough, any circuit from a large
class will eventually settle into one of two states, which can be used to represent
Boolean 0 and 1. As far as we can tell, this theorem and its proof have never been
published, but they probably appear in a now unobtainable MIT technical report
of the 1950s.

We have worked on extending this analysis from a single analog neuron to a
net of such neurons. While much more complicated phenomena are possible in
such a net, we were able to show that under the assumption of high gain, if a
consistent ternary (3-state) model of the net is possible, then many phenomena
are not possible. In particular, neurons cannot get stuck except at their Boolean
values. Our ternary analysis will allow one to decide whether and at which Boolean
value the net will settle, or allow one to show that the net will continue oscillating.

We used our ternary analysis method to show that the pattern generator net-
work of the sea slug tritonia must oscillate. This is the network observed by
Getting [18]. We have also shown that an excitatory/inhibitory synapse proposed
by Getting is unnecessary to make the network oscillate. While our ternary model
can demonstrate oscillation, it cannot predict the detailed form of the oscillation.
Using some information from Getting and some guesses for parameter values, we
were able to simulate the networks and produce an oscillation that was reasonably
similar to observed oscillations. Details of this work appear in [12] and [21].

Of course, we used a digital computer to run our simulations of analog neurons.
But as we have mentioned, such a computer is based on using analog circuits which
behave as Boolean gates. Thus, at a few levels removed we are using analog circuits
to simulate analog nets. It would be more efficient to use analog circuits directly.
Hangartner [20] has shown that it is possible to design an analog neuron which
could be directly implemented in VLSI technology. Perhaps in the future such
neurons will be fabricated, and it will be possible to study large scale neural nets
by studying nets directly implemented in silicon. Such nets will give us the large
scale parallelism found in actual brains, and the silicon implementation will allow
speeds considerably greater than the speeds of the biological counterpart.

9 An Example: the Swim CPG of Tritonia diomedea

To amplify the preceeding, this section describes our analysis of the swim CPG
of the sea slug Tritonia diomedea which has been extensively studied by Getting
[17],[19]. In his work, Getting [17] found that each of Tritonia’s paired cerebral
ganglia incorporated a swim CPG consisting of 6 neurons of three types: three dor-
sal swim interneurons (DSI), two ventral swim interneurons (VSIA, VSIB), and one
central neuron (C2). All three DSIs are mutually coupled by excitatory synapses
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Figure 11: Tritonia diomedea swim central pattern generator (CPG): full network
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Figure 12: Simulated and actual Tritonia swim firing pattern.




while two of the three also seem to exhibit electrotonic coupling. Consequently,
Getting represented the three DSIs by a single cell in the CPG schematic shown
in Figure 11(a). Initially Getting identified only VSIA; he later identified VSIB
and showed that although the action-potential sequences of VSIA and VSIB are
distinct, they are highly correlated during rhythmic pattern generation. For quali-
tative modeling, therefore, they can be combined into a single VSI. One simplified
schematic suggested by Getting [17] is shown in Figure 11(b).

The schematics use circles to represent inhibitory synapses and lines to rep-
resent excitatory synapses. Getting’s study was surprising in that he identified
synapses which generated multiple component post-synaptic potentials (PSPs) on
varying time scales. Both he and Kleinfeld and Sompolinsky [27] claimed that
these multi-action synapses are among the primary architectural elements respon-
sible for pattern generation. The schematics represent these synapses by com-
binations of circles and lines in the order of the induced PSP; thus a single DSI
action-potential generates an excitatory, then an inhibitory, and finally another ex-
citatory PSP in VSIA. Significantly, the simplified schematic shown still includes
an excitatory-inhibitory synapse between C2 and DSI in which the later inhibitory
PSP dominates the initial excitatory PSP.

In contrast to this view, it is shown here that the net synaptic architecture
represented by the interconnection matrices:

0 —biy —Dbi3 . fi
B=| by 0 —bys =1/
—bs; b3 0 —f3

where 21, 29, and z3 are DSI, C2, and VSI respectively, qualitatively determines
the firing pattern for the swim CPG if the C2-DSI synapse is regarded as solely
inhibitory. (Although the negative entries in f could be interpreted as tonic inputs
not appearing in the swim CPG, they also could have been absorbed into the
activation function as a threshold shift. They have been explicitly included here
to simplify the analysis.)

A ternary analysis of the model for the swim CPG which supports this claim
is summarized next. The analysis shows that for a range of parameter values, the
state transition mapping for the Tritonia swim CPG has no fixed points that a
consistent ternary quantization maps into B". Since the state transition mapping
must have at least one fixed point, the analysis shows that the consistent ternary
quantization maps any possible fixed point into regions such that the corresponding
equilibria of the network are unstable. As a result, the net must oscillate in some
fashion.

Choosing values for the various model parameters is the first and perhaps most
difficult problem in the analysis. Obviously, the most desirable choices are pa-
rameters derived from extensive experimental observations. Unfortunately, this
is a difficult task because our model represents an idealization of the biological



network. Although Getting [19] faced this same problem and devised methods for
estimating the parameters in his model, it is not clear how to convert his published
parameter values into values for our model. Fortunately, the ternary analysis tech-
nique developed here does not require precisely measured parameters and one can
chose parameters values which seem to be consistent with Getting’s data.

Thus the analysis presented here uses the analysis tools summarized above
to show that a range of parameter values exist such that the model oscillates in
a fashion qualitatively similar to the swim CPG. The analysis begins with the
assumption that only the most pessimistic bounds are possible for the state 2-

Zm =0 Z[u} = max lim hzogz(C) = Z[U] P = 17 27 3
i (—00

13 13

It is also necessary to make some assumptions on the entries of the B and f
Various alternatives were investigated and although another set of assumptions
best describes the biological network, the set used here has been chosen to better
illustrate details of the analysis techniques:

e cither C2 activity or VSI activity alone is sufficient to inhibit DSI, i.e.:

0 < fi
0 > —(1—a)bp "+ fi
0 > —(1—a)b"+fi
0 > —(1—a)bz"T— (1 — )bVl + fy
e VSI activity inhibits C2 even if C2 is excited by DSI, i.e.:
0 < (1- a)bﬂzm — /o
0 > —(1—a)byszl"l—f
0 > (14 a)byz" — (1 —a)bys2lVl — £,
e (2 activity excites VSI even if VSI is inhibited by DSI, i.e.:
0 < (1—a)bgzlVl—f
0 < —(14+a)bs 2"+ (1 — a)bs2V) — f
0 > —(1—a)byVl—f4

These assumptions describe a network which has a consistent ternary quanti-
zation. Furthermore,

. i —(1 — a) min{blg, blg}Z[U] + f1 1

ol = (14 )by 2V — (1 — a)by32lVl — f, (2)
B E |
o )

ol = (1 — )by 2V — £, (3)
(1 + )b 2P+ (1 — a)bs2) — f3 J




so the network has a Boolean model for any £ > &, where &, is the minimum value
that satisfies

hiegi(606,”) < az" hiegi(So9)”) > (1— )z
for o =1,...,n. It should be clear from the assumptions that the Boolean model
is
U,(Z) =73 N3 Uy(Z) =21 N3 U3(Z) = 22

To find the ternary model, first define the operators:

2] = {o if z; € {0, x} 7] = {0 if z; = 0

1 ifz; =1 1 ifz; € {x,1}
Then
. [ —5122’[[]} (Zﬂ - b13Z[U} (23] + f1 |
() [0] = bglz[U] LZIJ — b23Z[U] (Zg—l (4)
L —bglz[U} IVZI—I + b322’ Ul LZZJ ]
. [ —512Z[U} LZQJ - b13Z[U] LZ3J + f1 |
(I) [1} = bglz[U] [Zl—l — bng[U] LZgJ (5)
L —bglz[U} LZIJ + bggz[U} [ZQ—I ]
Based on these assumptions, the ternary model \17(2') has three potential fixed
points:
Z° = U(Z™) € {xxx xx0,1xx}

The problem is to ascertain the actual nature of the corresponding equilibria and
thereby deduce when the network must oscillate.

The only possible fixed points of the state transition mapping must be in the
set:

ZOOGZ — ZlLJZQUZg
U [Z[l}, z[n]] > [Z[O}, Z[l]] > [Z[O], Z[l]]

Thus the compact region:

Y = uUlUls
= {7=[i@=) e 2} U {77 [AE) € 2.} U {77 [FF™) € 2}

contains all equilibria of the network. Furthermore, )} must contain at least one
equilibrium. Since none of the potential stable states are binary, it can be inferred
that the network must either settle to a non-binary stable equilibrium or oscillate.



The stability of the equilibria in ) can be ascertained by examining the roots
of the characteristic equation:

|J(G°°,6) = M| = =X+ A(Jizja1 — Jesjaz — jizjor) — (Jr2Jj2sda1 + J13Jz2721)(6)

in each of the connected, compact regions Y, Yo, and )3 separately. In region
V1, the characteristic equation clearly has a non-zero root so that J(7*°,£) is not
nilpotent everywhere in ). Therefore, there exists a & such that any equilibrium
7 € Y, is unstable.

The region ), requires only slightly more analysis. Let:

V) = {gG Vs ‘h3(y3) = Z;L,a}

and
V2 = {ge yg ‘Zz[f] < hg(yg) S Z:E)O}}

By definition, the third row of J(7, &) is zero (j;3 = 0 for i = 1,2, 3) everywhere
in V;. As a result, the characteristic equation reduces to:

J(F,6) = M| = —X* = Ajagjso (7)

which has a non-zero root, so J(7*,¢) is not nilpotent everywhere in V;. The
reasoning for ), shows that J(7*, €) is not nilpotent everywhere in V,. Therefore,
there exists an & such that any equilibrium:

g e ViUV, = W

is unstable.

A similar analysis shows that there exists a £3 > 0 such that any equilibrium
> € Y5 is unstable if £ > &5. Combining the results for all three regions leads to
the result that any equilibrium 3°° € ) must be unstable if:

£ > & > max{&, &, )

Of course, any network which has no asymptotically stable equilibria for any £ > &,
may have no asymptotically stable equilibrium for much smaller values of &.

Consequently, the class of network models for the Tritonia swim CPG includes
instances which have no asymptotically stable equilibria. Those instances must ex-
hibit either a stable periodic or a chaotic orbit, an interesting possibility currently
under investigation. Figure 12 presents simulation results for one instance of an
actual stochastic spiking network model with parameters chosen to meet the as-
sumptions stated above. The action-potential pattern in the model duplicates the
essential structure of the pattern generated by the Tritonia swim CPG as reported
by Getting (Figure 12).



10 Conclusion

Fifty years after the pioneering work of McCulloch and Pitts, the study of
neural nets is alive and active. In this paper, I have discussed some of the work
that is of current interest to me and my co-workers. I would, perhaps, be remiss
if T failed to mention some of the current hype about neural nets.

Can neural nets quickly solve NP-complete problems? No. A look at the
proposed nets will show that the question of whether the net will converge, or
where the net will converge to, are as difficult as the original NP-complete problem.
This does not prevent the neural net from giving an approximate solution to a hard
optimization problem, but no one has yet proven any approximation bounds. Hard
problems are only hard in the worst case, so there may be many easy instances of
a hard problem. Nothing prevents a neural net from solving these easy instances
quickly.

Can analog neural nets compute things not computable a Turing machine?
Yes. But any analog device with infinite precision has more computational power
than a Turing machine, so a neural net with unlimited precision should be a very
powerful device. But practically all devices are constructed with limited precision,
and these limited precision devices have no more power than a Turing machine.

Can neural nets compute faster than other parallel models? No. Neural nets
are in fact equivalent to the usual parallel models. The only difference that can
occur is if the neural net has infinite precision which as mentioned above is highly
unlikely.

Does learning in neural nets make programming unnecessary? No. As we
saw in the discussion of learning, learning rules must be devised, and it seems that
different learning tasks will require different learning rules. Further, the kind of net
to use for a particular task will be an important decision. In our decoding example,
some network topologies did not lead to good decoders, while other topologies did.
Neural nets will not replace programmers, but give programmers another paradigm
in which to program.

In spite of the hype, I believe that neural nets will be useful both as biological
models and as programming paradigms.

Finally, according to an often-told tale, there was a golden age of neural nets
which suddenly ended in 1970. Depending on the version of the tale, the golden age
ended because of the Vietnam war, or Minsky and Papert’s book on perceptions
[32], or cuts in funding, or the rise of artificial intelligence. But I hope that the
reader of this paper and the rest of this volume will see that the death of Warren
McCulloch had a most profound effect on the field. We miss him as a brilliant
scientist, as a warm human being, and as the greatest story-teller of our age.
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